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Discovery and enantiocontrol of axially chiral
urazoles via organocatalytic tyrosine click reaction
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Axially chiral compounds play an important role in areas such as asymmetric catalysis. The

tyrosine click-like reaction is an efficient approach for synthesis of urazoles with potential

applications in pharmaceutical and asymmetric catalysis. Here we discover a class of urazole

with axial chirality by restricted rotation around an N–Ar bond. By using bifunctional orga-

nocatalyst, we successfully develop an organocatalytic asymmetric tyrosine click-like reaction

in high yields with excellent enantioselectivity under mild reaction conditions. The excellent

remote enantiocontrol of the strategy originates from the efficient discrimination of the two

reactive sites in the triazoledione and transferring the stereochemical information of the

catalyst into the axial chirality of urazoles at the remote position far from the reactive site.
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U
razoles are important heterocyclic compounds with
potential pharmaceutical applications and valuable
utilities in the area of protein modification chemistry

due to the simplicity of chemical synthesis and ease of
optimization of reaction conditions1–4. In addition, oxidation of
urazoles gives rise to a very useful class of persistent cyclic
hydrazyl radicals for versatile transformations5,6. Consequently,
there is a large demand for easy access to a broad variety of these
compounds. In this regard, the tyrosine click reaction provides a
straightforward strategy to access such compounds under mild
conditions as illustrated in Fig. 1a, in which a class of cyclic
diazodicarboxamides (triazodiones) reacted selectively and
rapidly with the phenol side chain of tyrosine as first developed
by the Barbas group for the application in bioconjugate
chemistry7,8. Although the development of other methodologies
towards the synthesis of these compounds has also been
reported9–11, to the best of our knowledge, there is no any
report involving the direct construction of chiral urazoles in a
catalytic enantioselective manner. Inspired by a developing
research field on atropisomeric compounds possessing an N–Ar
chiral axis12, we envisioned that urazoles directly obtained from
tyrosine click-like reaction could be recognized as a type of axially
chiral skeleton containing an N–Ar chiral axis because of the
presence of two N–Ar bonds in arylurazoles.

After discovery of the axially chiral urazoles (Fig. 1b,
compound D), we turned our attention to construct the chiral
urazoles in an atroposelective approach via tyrosine click-like
reaction. In this scenario, three major challenges would be
encountered: (1) the selection of suitable catalyst to interact with

the substrates in high efficiency to inhibit the very strong
background reaction; (2) the choice of an appropriate chiral
catalyst prompt to efficiently induce remote axial enantiocontrol
at the distant position via organocatalytic desymmetrization
strategy13–19; (3) the use of mild reaction conditions to
circumvent the axial rotation. Recently, some strategies have
been successfully developed for the organocatalytic synthesis of
axially chiral compounds20–33. Although the task of controlling
the remote axial chirality under the current reaction system is a
formidable challenge, the success of the above results provides
strong evidence that organocatalysis can be performed in the
control of axial chirality by using rationally designed substrate or
catalyst. It is well known that bifunctional organocatalysts have
made a great contribution to the field of asymmetric catalysis34–37.
In such catalysts, the acidic and basic centres acting as both
hydrogen-bonding donors and acceptors, respectively, thus
activating the nucleophile and electrophile at the same time in
an appropriate spatial configuration. As shown in Fig. 1c, we
speculated that the utility of bifunctional organocatalysts could be
expected by distinguishing the two nonequivalent reactive
nitrogen centres (a and b) in the triazoledione and transferring
the central chirality of the catalyst into the axial chirality far from
the reaction site. As part of our continued interest in the area of
synthesis of axially chiral compounds38 and asymmetric
catalysis39, herein, we would like to exhibit the remote control
of the axial chirality of arylurazoles by using a desymmetrization
strategy via organocatalytic tyrosine click reaction of 4-aryl-1,2,4-
triazole-3,5-dione (ATAD). The key feature of our strategy is
the ability of a bifunctional organocatalyst to transfer its
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Figure 1 | Synthesis of urazoles via tyrosine click reaction and discovery of axial chirality and strategy for remote enantiocontrol. (a) Synthesis of

urazoles via tyrosine click reaction (Barbas’ discovery). (b) Discovery of urazoles with axial chirality. (c) Our strategy for remote enantiocontrol of axial

chirality of urazoles.
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stereochemical information to a remote position and thereafter
efficiently control its axial chirality.

Results
Discovery of urazoles with axial chirality. In 2006, the Jørgensen
group discovered a new class of axially chiral skeleton A via
asymmetric amination of 8-amine-2-naphthol with azodi-
carboxylates (Fig. 1b)40,41. Motivated by this pioneering
discovery, we synthesized the compounds B and C through
tyrosine click reaction and imagined that such compounds should
have axial chirality due to the significant restricted rotation
between nitrogen atom and the directly attached phenol ring or
naphthol ring (Fig. 1b). Disappointedly, they did not display axial

chirality based on the chiral stationary high-performance liquid
chromatography (HPLC) analysis presumably because of the
relatively low rotational barrier of the N–Ar bond. To further
screen different aryl substituents of triazodiones, we are pleased
to find that urazole D with a steric bulky substituent (t-butyl
group) in the ortho position of the phenyl ring shows apparently
axial chirality. As such, a class of urazoles with axial chirality was
discovered (Fig. 1b).

Optimization of reaction conditions involving naphthols. To
investigate the feasibility of our hypothesis, we initiated to
conduct the tyrosine click reaction of naphthol (1a) with
4-(2-tert-butylphenyl)-3H-1,2,4-triazole-3,5-dione (2a) by using

Table 1 | Optimization of the organocatalytic enantioselective tyrosine click reaction*.
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Entry Solvent Catalyst Time (min) Yield (%)w ee (%)z

1 DCM C1 o5 57 25
2 DCM C2 o5 59 5
3 DCM C3 o5 68 75
4 DCM C4 o5 65 11
5 DCM C5 o5 63 �9
6 DCM C6 o5 61 �45
7 DCM C7 o5 68 91
8 DCM C8 o5 66 �43
9 Toluene C7 90 65 90
10 Et2O C7 25 73 97
11y Et2O C7 30 82 99
12|| Et2O C7 90 70 98

DCM, dichloromethane; HPLC, high-performance liquid chromatography.
*Reactions were performed with 1a (0.10 mmol), 2a (0.12 mmol) and catalyst (10 mol%) in 2.0 ml solvent.
wIsolated yield.
zDetermined by HPLC analysis on a chiral stationary phase.
yReaction was conducted with 5 mol% catalyst.
||3 mol% catalyst was used.
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Takemoto catalyst (C1)42 in dichloromethane (DCM) at room
temperature. To our delight, the desired product 3a was obtained
in almost quantitative yield in less than 5 min, albeit without any
enantioselectivity. Using the analysis of chiral HPLC, the urazole
compound 3a was confirmed to be atropisomeric and two peaks
corresponding to the enantiomers were observed on the chiral
HPLC at room temperature without any change during the
analysis timescale. In the absence of organocatalyst, the reaction
also proceeded very smoothly (less than 5 min for the model
reaction) in quantitative yield, indicating that the strong
background reaction might be the major challenge for
efficiently realizing enantioselective transformation. With these
initial results in hand and to improve the enantioselectivity, we
turned our attention to decrease the reaction temperature to
� 78 �C. Gratifyingly, the reaction proceeded completely within
just 5 min and the desired product was obtained in 57% isolated
yield with 25% enantioselectivity excess (ee). We next investigated
different bifunctional thiourea-tertiary amine catalysts (Table 1,
entries 2–5). Among the tested catalysts, Takemoto catalyst C3
with a cyclic tertiary amine proved to be very promising, with the
ee value up to 75%. Considering that the additional aromatic
stacking interaction might be involved in the transition states,
catalysts C6 and C7 with an axial binaphthyl moiety were
tested43. Catalyst C7 displayed an excellent enantiocontrol (entry
7), while catalyst C6 with opposite configuration of diamine gave
rise to poor enantioselectivity (entry 6). As shown in entry 8, the

diamine skeleton in the catalyst had a great influence on the
asymmetric induction. Of the solvents tested for the reaction
catalysed by C7, diethyl ether proved optimal with respect to the
enantioselectivity (Table 1, entry 10). It is noteworthy that the
reaction proceeded smoothly without having any affect on
enantioselectivity (99% ee) and with an improved chemical
yield up to 82% when 5 mol% of catalyst was used (entry 11).

Substrate scope. After the optimal reaction condition being
established, we set out to explore the substrate scope with respect
to various phenols and 2-naphthnols as reactants (Table 2). All of
the investigated reactions were complete within 60 min and gave
products in moderate to good yields (51–85%) and with excellent
enantioselectivities (90–99% ee). As regarding the use of
a variety of 2-naphthols, bearing electron-withdrawing (Table 2,
products 3b–3f) and electron-donating (Table 2, products 3g–3h)
groups, the reaction of these 2-naphthols with 2a gave the
expected products with very high stereoselectivities. These results
indicated that there was only limited influence on stereoselectivity
regardless of the electronic properties of the substituents at the
different positions on the aromatic ring. It is noteworthy that the
use of 4-substituted phenol, such as 4-tert-butyl-phenol and
4-phenyl-phenol, also afforded the desired products 3i and 3j in
excellent stereocontrol with a modified reaction conditions,
respectively, demonstrating that the substrate scope could not be
only limited to naphthols.

Table 2 | Substrate scope of naphthols or phenols*.
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60 min,
76% Yield,

97% ee

DCM, dichloromethane; HPLC, high-performance liquid chromatography.
*Reactions were performed with 1 (0.1 mmol), 2a (0.12 mmol) and catalyst C7 (5 mol%) in 2.0 ml Et2O. Isolated yields and the ee values were determined with HPLC analysis using the chiral stationary
phase.
wReactions were performed with 20 mol% catalyst C7 in 2.0 ml solvent.
zIn DCM at � 78 �C.
yIn toluene at �40 �C.
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Next, we explored the generality of the reaction with regard to
variation of ATADs. A broad range of ATADs containing
different substituents at the aromatic ring reacted smoothly with
2-naphthol 1a to produce the corresponding axially chiral
urazoles with high efficiency and excellent entantiocontrol
(Table 3). The electronic and position properties of the aromatic
ring substituents did not affect the selectivities of the tyrosine
click reactions. It should be pointed out that the ortho group is
not only restricted to tert-butyl group or iodo, and the bromo or
phenyl group at the ortho position could also be obtained with
excellent enantioselectivities (3p and 3q). It should be empha-
sized that the presence of I or Br is very convinient to do the
further transformation for diversity-oriented synthesis and drug
discovery due to the high reactivity in many transition metal-
catalysed reactions44. Experiments on the configurational stability
of the product were carried out by heating a solution of 3a in
toluene or MeCN at 80 �C for 12 h. Chiral HPLC analysis showed
that the ee value of 3a did not have any effect. Therefore, the
obtained axially chiral compounds may have potential wide
applications as asymmetric organocatalysts/ligands.

Optimization of reaction conditions involving indoles. To
expand the synthetic utility of this methodology and further
develop the application of the very reactive ATAD, we next

focused our attention on more challenging nucleophiles.
Although much progress has been made in the development of
organocatalytic asymmetric intermolecular transformation by
using indoles as nucleophiles45,46, to the best of our knowledge,
only few examples involving 2-substituted indoles as nucleophile
have been reported with good enantiocontrol, which is probably
ascribed to the interrupted interaction between the substrates and
the organocatalyst47. We envisaged that the very reactive
and multifunctional electrophile ATAD might provide new
possibility to proceed such a remote control process with good
stereoselectivity with bifunctional organocatalysts. To our
delight, by using the standard reaction conditions (Table 4,
entry 1), we found that the reaction of 2-phenylindole 4a with
4-(2-tert-butylphenyl)-3H-1,2,4-triazole-3,5-dione (2a) proceeded
smoothly by simply using the catalyst C6, giving the desired
product 5a in 74% yield with 15% ee. However, after making great
efforts on investigation of the optimized reaction conditions,
we could not improve the enantioselectivity by using thiourea-
tertiary amine organocatalyst (see Supplementary Table 1 for
details). On the basis of these findings and own comprehension
on the phosphoric acid catalysis48–50, we envisioned that
phosphoric acid might perform bifunctional action to
activate indole and ATAD simutaneously and control the
enantioselectivity51–54. As shown in Table 4, phosphoric acid

Table 3 | The reaction substrate scope of 4-aryl-1,2,4-triazoline-3,5-diones*.
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HPLC, high-performance liquid chromatography.
*Reactions were performed with 1a (0.1 mmol), 2 (0.12 mmol) and catalyst C7 (5 mol%) in 2.0 ml Et2O. Isolated product and the ee values were determined by HPLC analysis using a chiral stationary
phase.
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catalyst proved to be a suitable organocatalyst for this
tranformation. On optimizing the reaction conditions through
variation of the phosphoric acid catalysts, solvents and catalyst
loadings (Table 4, entries 3–15), the following protocol was
proved to be optimal: reaction of 4a and 2a with the molar ratio
of 1.0:1.2 by using phosphoric acid CP5 (5 mol%) as catalyst in
DCM/Et2O (1/1) at � 78 �C for 10 min, 5a was obtained in
exellent yield with 97% ee (Table 4, entry 15). It should be noted
that the chiral spiro-phosphoric acid catalyst displayed better
enantioselectivity than the BINOL-derived catalyst if the
substituent in the 3 and 30 positions is the same (entries 6 and
12; entries 10 and 13; entries 11 and 15).

Substrate scope with indoles as nucleophiles. Having identified
the optimized reaction conditions, the reaction was extended
to include various 2-substituted indoles and triazoledione
compounds with catalyst CP5. As shown in Table 5, the
reaction proceeded smoothly to give the desired product 5a–5m
in very high yield (86–96%) and excellent enantioselectivity
(84–97% ee). It should be noted that the electronic nature,
bulkiness or positions of the substituents on the cyclic
diazo compounds and substituted indoles have only minimal
effect on efficiencies and enantioselectivities. In addition to
aromatic groups, alkyl substituents on indole were used to
acquire the desired products (5l and 5m) with excellent yields and

Table 4 | Optimization of the asymmetric tyrosine click-like reaction involving indoles as nucleophiles*.
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Entry Solvent Catalyst (10%) Time Yield (%)w ee (%)z

1 Et2O C6 48 h 69 5
2 Et2O C7 24 h 74 � 15
3 Et2O CP1 10 h 96 89
4 DCM CP1 o5 min 99 68
5 Toluene CP1 60 min 94 60
6 DCM/Et2O (1/1) CP1 10 min 99 95
7 DCM/Et2O (1/2) CP1 20 min 98 95
8 DCM/Et2O (1/1) CP2 10 min 99 95
9 DCM/Et2O (1/1) CP3 10 min 98 37
10 DCM/Et2O (1/1) CP4 10 min 99 85
11 DCM/Et2O (1/1) CP5 10 min 99 97
12 DCM/Et2O (1/1) CP6 10 min 96 � 77
13 DCM/Et2O (1/1) CP7 10 min 96 �47
14 DCM/Et2O (1/1) CP8 10 min 97 � 79
15 DCM/Et2O (1/1) CP9 10 min 98 �95
16 DCM/Et2O (1/1) CP10 10 min 99 � 89
17 DCM/Et2O (1/1) CP5 (5%) 10 min 99 97
18 DCM/Et2O (1/1) CP5 (3%) 10 min 99 95
19y DCM/Et2O (1/2) CP5 (1%) 40 min 99 95

DCM, dichloromethane; HPLC, high-performance liquid chromatography.
*Reactions were performed with 4a (0.1 mmol), 2a (0.12 mmol) and 10 mol% catalyst (entries 1–15) in 2.0 ml solvent.
wDetermined by 1H NMR analysis using CH2Br2 as an internal standard.
zDetermined by HPLC analysis on a chiral stationary phase.
y1 mol% Catalyst CP5, solvent: DCM/Et2O¼ 1/2.
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good stereoselectivities in just less than 5 min (Table 5, entries
12–13).

Preliminary evaluation as chiral ligands. To verify the stability
of such axial compounds, we heated the obtained product 5a in
MeCN at 80 �C for 12 h and no ee erosion was observed. Thus,
this kind of axially chiral compounds displayed a high rotation
energy about the N–Ar bond, indicating that the chiral urazoles
may have potential applications in the field of asymmetric
organocatalysts and Lewis acid catalysis. To really investigate the
potential application of the resultant axially chiral urazoles in the
field of asymmetric catalysis, we chose the addition of
N-methylindole (8) to N-methylisatin (9) as a model reaction and
evaluated the potential application in the asymmetric catalysis
(see Supplementary Table 2). Gratifyingly, the reaction proceeded
completely within 8 h at 5 �C and the desired product (10) was
obtained in 96% yield with 62% ee (Fig. 2a), demonstrating that
the newly developed axially chiral urazoles have the potential
application in asymmetric synthesis. Further work encompassing
the application of axially chiral urazoles as ligands or catalysts for
enantioselective reactions is currently in progress in our
laboratory.

Gram-scale synthesis of enantiopure urazoles. To further
demonstrate the utility of the tyrosine click-like reaction, gram-
scale syntheses of products 3a and 5a were carried out.
As displayed in Fig. 2b, there was almost no change in reactivity
and stereoselectivity, suggesting that this method should have
the potential for large-scale chemical production (also see
Supplementary Note 3). It should be worth highlighting that the
reaction by using 2-phenyl indole as nucleophile was proceeded

very smoothly, with only 1 mol% of phosphoric acid catalyst CP5.
The absolute configuration of 3p was attributed to be aS and 5f
was assigned to be aR using X-ray diffraction analysis of
their methylation derivatives 6p and 7f (Fig. 2c, see also
Supplementary Fig. 1).

Discussion
We have successfully developed an organocatalytic asymmetric
tyrosine click-like reaction in high yields with excellent enantios-
electivity under mild reaction conditions in an excellent remote
enantiocontrol manner. The reaction represents a very
convenient approach to an interesting class of axially chiral
urazole derivatives, with potential biological activities and
potential application as effective chiral organocatalysts/ligands.
The excellent remote enantiocontrol of the process stems from
the efficient discrimination of the two reactive sites in the
triazoledione-involving phenols or indoles as nucleophile and
transferring the chirality of the catalyst into the axial chirality of
urazoles at the remote position far from the reactive site. The
application of this strategy to a broader substrate scope and
mechanistic investigations of the desymmetrization strategy are
currently underway in our group.

Methods
General information. Reagents were purchased at the highest commercial quality
and used without further purification, unless otherwise stated. Analytical thin
layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates.
Flash column chromatography was performed using Tsingdao silica gel
(60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by the use
of ultraviolet light (254 nm). NMR spectra were recorded on a Bruker DPX 400
spectrometer at 400 MHz for 1H NMR, 100 MHz for 13C NMR and 376 MHz for
19F NMR in CDCl3 or acetone-d6 with tetramethylsilane as internal standard.
Chemical shifts are reported in p.p.m., and coupling constants are given in Hz.

Table 5 | The substrate scope by using indoles as nucleophiles*.
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R

+
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CP5 (5 mol%)

DCM/Et2O = 1/1,
–78 °C

Entry R R1 R2 Time (min) 5 Yield (%)w ee (%)z

1 H Ph H 10 5a 96 97
2 H 4-F-Ph H 15 5b 95 96
3 H 4-Cl-Ph H 20 5c 95 92
4 H Ph Br 15 5d 94 94
5 H Ph Ph 15 5e 90 96
6 Br Ph H 10 5f 92 93
7 Br 4-F-Ph H 15 5g 92 93
8 Br 4-Cl-Ph H 20 5h 93 91
9 Ph Ph H 10 5i 92 94
10 Ph 4-F-Ph H 20 5j 91 95
11 Ph 4-Cl-Ph H 20 5k 86 92
12 H Isopropyl H o5 5l 95 90
13 H Methyl H o5 5m 95 84

DCM, dichloromethane; HPLC, high-performance liquid chromatography.
*Reactions were performed with 2 (0.12 mmol), 4 (0.10 mmol) and catalyst CP5 (5% mmol) in 2.0 ml solvent (DCM/Et2O¼ 1/1).
wIsolated yield.
zThe ee values were determined by HPLC analysis using a chiral stationary phase.
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Data for 1H NMR are recorded as follows: chemical shift (p.p.m.), multiplicity
(s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz)
and integration. Data for 13C NMR are reported in terms of chemical shift
(d, p.p.m.). High-resolution mass spectra were recorded on a LC-TOF
spectrometer (Micromass). Enantiomeric excess was determined on Agilent
HPLC using the DAICEL CHIRAL column. For preparation of 4-aryl-l,2,4-
triazoline-3,5-diones, see Supplementary Note 1.

Racemic compounds were obtained without catalyst.

General procedure for synthesis of axially chiral urazoles 3. In a Schlenk
tube, 4-aryl-l,2,4-triazoline-3,5-diones 2 (0.12 mmol) and catalyst C7 (5 mol%,
0.005 mmol) were dissolved in Et2O (2 ml; also see Supplementary Note 2).
The solution was stirred for 10 min at � 78 �C before 2-naphthols and phenols 1
(0.10 mmol) were added. The resulting solution was stirred at � 78 �C until the red
colour disappeared. After monitored with TLC, the reaction mixture was acidified
with 6 N HCl and concentrated. Then, the obtained crude material was purified
using silica gel column chromatography (CH2Cl2 to CH2Cl2/Acetone¼ 10/1) to
afford the pure products 3. In some cases, reactions were performed with 20 mol%

of catalyst C7 in 2.0 ml solvent, for 3d in DCM at � 78 �C; 3i and 3j in dry toluene
at � 40 �C.

General procedure for synthesis of axially chiral urazoles 5. In a Schlenk tube,
4-aryl-l,2,4-triazoline-3,5-diones 2 (0.12 mmol) and catalyst CP5 (5 mol%,
0.005 mmol) were dissolved in DCM/Et2O¼ 1/1 (2 ml; also see Supplementary
Note 2). The solution was stirred for 10 min at � 78 �C before 2-substituted
indole 4 (0.10 mmol) was added. The resulting solution was stirred under this
condition until the purple colour disappeared. After being monitored with TLC,
the reaction mixture was concentrated, and then purified using silica gel column
chromatography (CH2Cl2/Acetone¼ 20/1) to afford the pure products 5.
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