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The catalytic radical-initiated asymmetric 1,2-aminosilylation of alkene with a hydrosilane under Cu(I)/CPA cooperative cat-
alysis has been developed. This method features the use of hydrosilane as the reductive radical precursor, enabling efficient
access to skeletally diverse silicon-containing azaheterocycles including pyrrolidine, indoline and isoindoline bearing an α-
tertiary stereocenter with high enantioselectivity. The key to the success includes the use of Cu(I)/CPA cooperative catalyst
system and the β-silicon effect of the silyl group to stabilize the in situ generated carbocation intermediate.
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1 Introduction

Organosilicon compounds have been gaining significant in-
terest among chemists as powerful synthetic building blocks
in the design of organic electronic and photonic materials,
polymers, pharmaceuticals as well as agrochemicals because
these moieties exhibit improved biological and/or physico-
chemical properties relative to their parent carbon com-
pounds [1]. Consequently, tremendous efforts have been
devoted to the development of practical strategies for pre-
paration of organosilicon compounds with specific structures
[1]. Among the established methods, the use of silicon-
centered radical as the key intermediate, via hydrogen atom
abstraction (HAA) from the inert Si–H bond of the hydro-
silane, has been established as a powerful technique in var-

ious radical processes over the past three decades [2]. Given
the facile accessibility of alkenes, intermolecular addition of
radical species to alkenes followed by trapping of another
functional group to realize 1,2-difunctionalization of alkenes
has emerged as one of the most attractive strategies for the
simultaneous formation of two vicinal chemical bonds [3]. In
particular, owing to the innate reactivity and unique se-
lectivity of silicon-centered radicals [2], radical-initiated 1,2-
silylfunctionalization of alkenes has received increasing at-
tention in recent years [4]. Despite these impressive ad-
vances, the development of asymmetric catalytic versions of
such transformations, to the best of our knowledge, has so far
remained unknown, largely owing to the difficulty related to
the stereochemical control of the in situ generated alkyl ra-
dical species [5].
More recently, Cu(I)-catalyzed radical asymmetric reac-

tion featuring chiral metal species to trap reactive alkyl ra-
dical, a strategy pioneered by Fu and others (Scheme 1(a))
[6], has been proven as an attractive strategy for creating
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chiral scaffolds. In particular, Buchwald et al. and Liu et al.
[7] pioneered the use of a chiral Cu/bis(oxazoline) system to
elegantly realize enantioselective alkene difunctionaliza-
tions, respectively. At the same time, our group has devel-
oped the copper/chiral anionic ligand system to realize
asymmetric transformations [8]. Notably, all of these cata-
lytic systems are initiated by the reduction of oxidative ra-
dical precursors; the latter normally require prior preparation
by tedious procedure (Scheme 1(a)) [3d]. Inspired by these
work and to address the challenge above mentioned, we
envisaged if our Cu(I)/chiral phosphoric acid (CPA) dual-
catalysis could realize enantioselective radical-initiated 1,2-
aminosilylation of alkene with hydrosilane as the reductive
radical precursor in the presence of an additional commer-
cially available and cheap oxidant. We expected a catalytic
cycle wherein the silicon-centered radical would be first
generated from hydrosilane through hydrogen atom ab-
straction (HAA) by highly reactive radical in the presence of
peroxide and Cu catalyst [4]. Considering the ability of silyl
group to promote the formation and stabilization of carbo-
cation via the β-silicon effect [9], we further assumed that the
in situ generated tertiary benzylic radical intermediate I
might readily undergo a single-electron oxidation process in
the presence of CuII species to afford a carbocation inter-
mediate II. This stabilized carbocation might associate with
chiral metal phosphate through electrostatic interactions
[10], thereby resulting in a good chiral environment (Scheme
1(b)) for subsequent new C−N bond formation. If achieved,
this type of asymmetric alkene difunctionalization strategy
would be synthetically significant because the resulting
chiral 1-amino-2-silylalkanes represent key structural ele-

ments of molecules widespread in medicinal chemistry and
organic synthesis (Figure 1), but their asymmetric con-
struction remains a significant challenge and point of con-
cern [11]. Herein, we describe the development of the
catalytic asymmetric radical-initiated 1,2-aminosilylation of
alkene with hydrosilane enabled by Cu(I)/CPA cooperative
catalysis, leading to highly enantioselective construction of
skeletally diverse silicon-containing azaheterocycles in-
cluding pyrrolidine, indoline and isoindoline with the crea-
tion of an α-tertiary stereocenter (Scheme 1(b)).

2 Results and discussion

Our prior observation that the use of urea as nitrogen nu-
cleophile can provide the critical chiral environment created
by the cooperative multiple hydrogen-bonding and ion-pair
interactions with chiral phosphate for Cu(I)/chiral phos-
phoric acid (CPA)-catalyzed asymmetric alkene difunctio-
nalization [8b] encouraged us to further select N-alkenyl urea
1a as the model substrate. To do so, we initiated these in-
vestigations by examining the reaction of 1a with (Me3Si)3-
SiH (TTMSS, 2) as the reductive radical precursor [2e] in the
presence of commercially available and cheap peroxides as
the oxidant catalyzed by a combination of 15 mol% of
copper(I) thiophene-2-carboxylate (CuTc) and H8-1,1′-bi-2-
naphthol (BINOL)-based CPA (R)-A1. To our delight, the
desired 1,2-aminosilylation product 3A was obtained in 61%
yield with 72% ee with lauroyl peroxide (LPO) as the ex-
ternal oxidant in 1,2-dimethoxyethane (DME) at 0 °C (Table
1, entry 1). Under these reaction conditions, a variety of H8-

Scheme 1 Asymmetric radical-initiated alkene difunctionalization and aminosilylation reaction design (color online).
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BINOL- and BINOL-based CPAs were initially screened
(entries 1–7) and good results (79% ee) were obtained using
H8-BINOL-based (R)-A2 with 2-naphthyl groups at the 3,3′-
positions of the backbone. To further improve enantios-
electivity, we screened a series of commercially available
peroxides, different copper salts and catalyst loadings as well
as various organic solvents. Unfortunately, either reaction
efficiency or enantioselectivity could not be significantly
improved under these reaction conditions (entries 8–16).
Considering the previous reports that proton-containing
molecules are able to form a hydrogen bond network with

Figure 1 Representative bioactive molecules containing the key structure
of 1-amino-2-silylalkanes.

Table 1 Screening of reaction conditions a)–c)

Entry CPA Oxidant Solvent l) Yield (%) ee m) (%)

1 (R)-A1 LPO DME 61 72

2 (R)-A2 LPO DME 55 79

3 (R)-A3 LPO DME 52 43

4 (R)-A4 LPO DME 88 59

5 (R)-A5 LPO DME 75 33

6 (R)-A6 LPO DME 51 48

7 (R)-A7 LPO DME 48 27

8 d) (R)-A2 LPO DME 84 78

9 d) (R)-A2 BPO DME 77 25

10 d) (R)-A2 CPO DME 78 72

11 e) (R)-A2 LPO DME 80 69

12 f) (R)-A2 LPO DME 82 61

13 g) (R)-A2 LPO DME 67 9

14 (R)-A2 LPO CH3CN 73 2

15 (R)-A2 LPO THF 45 62

16 (R)-A2 LPO 1,4-Dioxane 75 39

17 h) (R)-A2 LPO DME 52 89

18 i) (R)-A2 LPO DME 52 82

19 j) (R)-A2 LPO DME 55 89

20 k) (R)-A2 LPO DME 54 93

a) Reaction conditions: 1a (0.025 mmol), 2 (2 equiv.), CuTc (15 mol%), CPA (15 mol%), oxidant (2.0 equiv.), solvent (0.5 mL), 0 °C, 24 h under argon; b)
yield based on 1H NMR analysis of the crude product with CH2Br2 as an internal standard; c) ee value based on HPLC analysis; d) CuTc (5 mol%), 48 h under
argon; e) CuCl (15 mol%); f) CuOAc (15 mol%); g) Cu(CH3CN)4PF6 (15 mol%); h) CuTc (5 mol%), MeOH (4.0 equiv.), 72 h under argon; i) CuTc
(5 mol%), EtOH (4.0 equiv.); j) CuTc (5 mol%), trimethoxymethane (4.0 equiv.); k) CuTc (5 mol%), trimethoxymethane (2.0 equiv.), 72 h under argon; l)
DME=1,2-dimethoxyethane, LPO=lauroyl peroxide, BPO=benzoyl peroxide, CPO=caproyl peroxide, CuTc=copper(I) thiophene-2-carboxylate; m) ee is
enantiomeric excess.
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chiral phosphate to improve enantioselectivity [12], we then
screened various alcohols and derivatives as the proton
sources (entries 17–20) and found that the use of 2.0 equiv. of
trimethoxymethane as the additive dramatically increased
the enantioselectivity to 93% ee in the presence of only
5 mol% of CuTc as the catalyst.
With the optimal reaction conditions being established, we

next investigated the substrate scope for the construction of
chiral silicon-containing pyrrolidines (Table 2). First, a
variety of cyclic N-alkenyl ureas containing three- to seven-
membered rings within the backbone were well tolerated and

provided a diverse set of enantioenriched silyl spiro products
3B–3F in moderate to good yields with 88%–96% ee. It was
also found that both the position and electronic nature of the
substituents on the aromatic ring (R1 or R3) have a negligible
effect on the reaction efficiency and stereoselectivity of the
process. For example, various diversely functionalized sub-
strates, including those having mono-substituted phenyl
rings with electron-neutral (H), electron-rich (Me), or elec-
tron-deficient (F, Cl, CF3) as well as disubstituted phenyl
ring were found to be suitable substrates to afford the ex-
pected products 3G–3N in 44%–89% yields with 71%–97%

Table 2 Substrate scope for the construction of pyrrolidine a)

a) All of the reactions were conducted on a 0.1 mmol scale. Isolated yields based on 1 were shown. The ee values were determined by high performance
liquid chromatography (HPLC) analysis. Reaction conditions: 1 (0.1 mmol), (TMS)3SiH (2.0 equiv.), CuTc (5 mol%), (R)-A2 (15 mol%), LPO (2.0 equiv.),
DME (2 mL), trimethoxymethane (2.0 equiv.), at 0 °C for 72 h under argon. b) At room temperature for 48 h under argon. c) See Supporting Information
online for screening of reaction conditions.
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ee. In addition, the unbranched substrate 1o underwent the
current reaction smoothly to give the corresponding product
3O in a moderate yield with 66% ee. Unfortunately, other
hydrosilanes are not compatible with this protocol to afford
the desired aminosilylation product 3Aa (see Table S1 in the
Supporting Information online for screening of reaction
conditions).
Encouraged by the aforementioned 1,2-aminosilylation

with linear substrates, we next turned our attention to expand
the substrate scope to 2-allylaniline derivatives, which are
much less effective in our previous asymmetric difunctio-
nalization of alkenes [8]. To our delight, upon optimizing the
reaction conditions (Table S2), we identified the following
protocol as optimal: 5 mol% of CuTc and 15 mol% of (R)-A1
with LPO as the oxidant in the presence of methylparaben as
the additive with DME as solvent at 0 °C, and the reaction of
1p gave indoline derivative 3P in 71% yield and 87% ee.
Furthermore, a range of diversely functionalized 2-allylani-
line derivatives, including those having electron-with-
drawing and electron-donating groups at different positions
of the phenyl ring within the backbone, afforded the corre-
sponding products 3Q–3U in moderate to good yields with
80%–83% ee. The absolute configuration of the chiral center
in 3U has been determined to be S by X-ray crystallographic
analysis (Table 3 and Figure S1 in Supporting Information
online). Meanwhile, it is striking to note that 2-vinylbenzy-
lamine derivative could also be employed in the reaction to

give isoindoline 3V in good yield and ee in the presence of
(R)-A7 under the modified reaction conditions (Table 3).
These results clearly indicate that this general asymmetric
radical reaction exhibits broad substrate scope with good
functional group tolerance to access skeletally diverse sili-
con-containing azaheterocycles including pyrrolidine, indo-
line and isoindline.
To exploit the synthetic application of the current method,

the silylated pyrrolidine 3Cwas treated with H2O2 (30%) and
was successfully converted to chiral hydroxylated pyrroli-
dine 4 without great loss of ee value (Scheme 2, Reaction
(1)). A series of control experiments were conducted to gain
further insights into the reaction mechanism. First, the pre-
sent reaction was completely inhibited by the addition of
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 1,4-
benzoquinone (BQ), and the radical trapping products
H23C11-TEMPO and (TMS)3Si-TEMPO were detected by
gas chromatography-mass spectrometer (GC-MS). These
observations indicate that the silyl radical was likely gener-
ated (Reaction (2)) [4]. In addition, no desired product 3G
was obtained in the absence of either CuTc or phosphoric
acid (R)-A2, thus revealing that both the Cu(I) salt and CPA
are necessary to initiate this reaction (Reaction (2)). Based
on our previous results, there exist two possible pathways
involving either carbocation intermediate or alkylcopper(III)
intermediate to create chiral center in the reaction [8]. Ac-
tually, in our reactions, a small amount of internal alkene

Table 3 Substrate scope for the construction of indoline and isoindoline

a) Reaction conditions: 1 (0.1 mmol), (TMS)3SiH (2.0 equiv.), CuTc (5 mol%), (R)-A1 (15 mol%), LPO (2.0 equiv.), DME (2 mL), methylparaben (1.0
equiv), at 0 °C for 96 h under argon. b) Reaction conditions: 1 (0.1 mmol), (TMS)3SiH (2.0 equiv.), CuTc (5 mol%), (R)-A1 (15 mol%), LPO (2.0 equiv.),
DME (2 mL), pivalic anhydride (1.0 equiv.), at 0 °C for 96 h under argon.
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product such as 3D′ was formed in some cases under the
modified reaction conditions (Reaction (3)). It is possibly
derived from sequential single-electron oxidation of in situ
generated benzylic radical to form carbocation intermediate
and further a β-hydrogen elimination [8h]. Furthermore,
product 3D′ was also observed in 10% yield via homolysis of
LPO under the thermal conditions (40 °C) in the absence of
Cu/CPA catalyst (Reaction (3)). These results might possibly
suggest that a carbocation intermediate C (structure in
Scheme 3) was involved in the reaction, presumably due to
the β-silicon effect to promote the formation and stabiliza-
tion of carbocations [9]. In addition, the control experiment
with (R)-A2 as the catalyst via homolysis of LPO in the
absence of the Cu catalyst furnished the desired product 3D
in only 8% ee. However, 78% ee was obtained with Cu/CPA
cooperative catalysis under the same conditions, clearly in-
dicating that Cu metal is necessary to cooperate with chiral
phosphate to control asymmetric induction (Reaction (4)).
On the basis of above observations and previous reports

[4,8], a plausible mechanism is tentatively proposed in

Scheme 3. Initially, Cu(I) reacts with CPA-activated per-
oxide via heterolysis of the O–O bond followed by the loss of
CO2 to afford highly reactive alkyl radical accompanied by
the crucial chiral Cu(II) phosphate complex A [8]. Hydrogen
abstraction from 2 by alkyl radical gives the silicon-centered
radical, which then adds to alkene to give alkyl radical B.
Intramolecular single-electron oxidation of B with Cu(II)
metal delivers the cation intermediate C, which could be
stabilized by silyl groups at the β-position [9]. Finally, this
intermediate C undergoes C–N bond formation invoking
both hydrogen-bonding interactions and ion-pair interactions
to give the final product with excellent enantioselective
control.

3 Conclusions

In summary, we have developed the catalytic asymmetric
radical 1,2-aminosilylation of alkene for the direct in-
corporation of silyl group with hydrosilane as reductive ra-

Scheme 2 Synthetic application and mechanistic study (color online).
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dical precursor under Cu(I)/CPA cooperative catalysis. This
approach offers a powerful platform enabling efficient access
to skeletally diverse silicon-containing azaheterocycles in-
cluding pyrrolidine, indoline as well as isoindoline bearing
an α-tertiary stereocenter with good efficiency and remark-
able enantioselectivity. The key to success of this process
relies on not only the use of Cu(I)/CPA cooperative catalyst
as the single-electron reductant to realize asymmetric in-
duction but also a silyl group to stabilize the in situ generated
carbocation intermediate via the β-silicon effect. Further
studies toward the development of a more challenging in-
termolecular asymmetric version are ongoing in our la-
boratory.
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