pubs.acs.org/JACS

Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes

Xiao-Yang Dong,[§] Jiang-Tao Cheng,[§] Yu-Feng Zhang,[§] Zhong-Liang Li,[§] Tian-Ya Zhan, Ji-Jun Chen, Fu-Li Wang, Ning-Yuan Yang, Liu Ye, Qiang-Shuai Gu, and Xin-Yuan Liu*

nent asymmetric radical 1,2-carboalkynylation of alkenes has been developed, providing straightforward access to diverse chiral alkynes from readily available alkyl halides and terminal alkynes. The utilization of a cinchona alkaloid-derived multidentate N,N,Pligand is crucial for the efficient radical generation from mildly oxidative precursors by copper and the effective inhibition of the undesired Glaser coupling side reaction. The substrate scope is broad, covering (hetero)aryl-, alkynyl-, and aminocarbonyl-

substituted alkenes, (hetero)aryl and alkyl as well as silyl alkynes, and tertiary to primary alkyl radical precursors with excellent functional group compatibility. Facile transformations of the obtained chiral alkynes have also been demonstrated, highlighting the excellent complementarity of this protocol to direct 1,2-dicarbofunctionalization reactions with $C(sp^2/sp^3)$ -based reagents.

INTRODUCTION

The intermolecular three-component asymmetric 1,2-dicarbofunctionalization of alkenes has recently attracted increasing attention owing to its high synthetic convergency with readily available starting materials for rapid assembly of carbon skeletons (Scheme 1A).^{1,2} Given the fact that chiral alkynes are versatile synthons for many other $C(sp^2/sp^3)$ -based functionalities,³ the enantioselective 1,2-carboalkynylation of alkenes represents a useful and appealing strategy in asymmetric organic synthesis. However, this strategy has been significantly underdeveloped and only recently did Liu et al. achieve an asymmetric 1,2-trifluoromethylalkynylation of alkenes (Scheme 1B).⁴ In this work, the efficient trap of an *in*situ generated benzylic radical with chiral Box(bisoxazoline)-Cu^{II}-alkynyl species is crucial for subsequent enantioselective C-C bond formation, which represents a general strategy pioneered by Fu and others.⁵ Notably, the reaction was demonstrated to be compatible with only the (MeO)₃Siprefunctionalized alkynes and Togni's reagent as the nucleophiles and the radical precursor, respectively,⁴ the cost and availability of which arguably impede its wide application in asymmetric synthesis. Therefore, the development of robust catalyst for a broadly applicable atom- and step-economic asymmetric 1,2-carboalkynylation of alkenes from readily available building blocks is highly desirable.

In continuation of our research interest in copper-catalyzed asymmetric radical reactions,⁶ we have recently developed a copper-catalyzed enantioconvergent Sonogashira $C(sp^3) - C(sp)$ coupling reaction.⁷ Critical to the success of the reaction is the development of a chiral alkaloid-derived

multidentate N,N,P-ligand for both enhancing the reducing capability of a copper catalyst and inhibiting the Glaser coupling side reaction (Scheme 1C).8 Thus, mildly oxidative alkyl halides and side-reaction-prone terminal alkynes were highly enantioselectively coupled together via trapping alkyl radicals with the presumed chiral Cu^{II}-alkyne complex. Since alkyl halides and terminal alkynes⁹ both are widespread building blocks in organic synthesis, we envisioned a coppercatalyzed asymmetric radical 1,2-carboalkynylation of alkenes directly with these two readily available reagents (Scheme 1D). The success of this method would not only allow expeditious access to diverse chiral alkynes but also offer complementary approaches to direct asymmetric 1,2-dicarbofunctionalization of alkenes using $C(sp^2/sp^3)$ -based reagents. Several factors have thwarted the development of such a strategy: (1) the relatively difficult radical generation from alkyl halides by copper catalysts with most common chiral ligands;¹⁰ (2) the inhibition of easily occurring copper-catalyzed Glaser homocoupling of terminal alkynes;⁸ (3) the problematic chemoselectivity between radical addition to terminal alkenes and alkynes owing to the inherently high reactivity of radical species.¹¹ Herein, we describe the development of a mild copper(I)/cinchona alkaloid-derived N,N,P-ligand catalytic

Received: March 21, 2020 **Published:** April 25, 2020

Scheme 1. Intermolecular 1,2-Carboalkynylation of Alkenes

B. Prior Work on Asymmetric Radical 1,2-Trifluoromethylalkynylation of Alkenes

C. Prior Work on Cu(I)/N.N.P-Ligand Catalyst for Asymmetric Radical C-C Coupling

D. This Work on Asymmetric Radical 1,2-Carboalkynylation by Cu/N.N.P-Ligand

system for a general asymmetric intermolecular threecomponent radical 1,2-carboalkynylation of alkenes with alkyl halides and terminal alkynes.

RESULTS AND DISCUSSION

Reaction Development. Based on the above-mentioned proposal, we began to investigate the three-component asymmetric reaction of easily available styrene 1a, alkyne 2a and *tert*-butyl α -bromoisobutyrate 3a (Table 1). After extensive screening of reaction conditions, we were pleased to find that the chiral cinchona alkaloid-derived N,N,P-ligands were remarkably effective in radical generation and inhibition of the Glaser coupling side reaction leading to 4' (Table 1). In addition, the desired reaction was disfavored with ligands bearing electron-deficient P-aryl rings and the most sterically bulky ligand L1 gave rise to the highest enantioselectivity. In contrast, the enantioselectivity only slightly changed among different solvents or copper salts. Notably, the reaction solvent significantly affected the ratio between the desired alkene addition product 4 and the undesired alkyne addition product 4" and 1,4-dioxane gave the highest ratio. We finally identified the best reaction conditions in terms of cost efficiency as follows: the reaction of 1a, 2a, and 3a in a molar ratio of 1.5:1.0:1.2 in the presence of 7.5 mol % CuOAc and 7.5 mol % L1 provided 4 in 72% yield and 93% ee in 1,4-dioxane at room temperature (Table 1, entry 15).

With the optimized reaction conditions in hand, the substrate scope of alkenes for this asymmetric transformation was then investigated (Table 2). Various styrene-type alkenes, including those having monosubstituted phenyl rings with electron-neutral, -rich, or -deficient functional groups at different positions (ortho, meta, or para) and a disubstituted phenyl ring, were suitable for this reaction to afford the desired

^aReaction conditions: 1a (0.10 mmol), 2a (0.15 mmol), 3a (0.12 mmol), [Cu] (10 mol %), L (15 mol %), and Cs₂CO₃(2.0 equiv) in solvent (1.0 mL) at room temperature for 24 h under argon. 'Yields of 4 and 4" were based on ¹H NMR analysis of the crude product using 1.3.5-trimethoxybenzene as an internal standard, and that of 4' was based on GC-MS analysis. "Ee values based on HPLC analysis. ^d1a (0.12 mmol), 2a (0.10 mmol), 3a (0.12 mmol). ^e1a (0.15 mmol), 2a (0.10 mmol), 3a (0.12 mmol). ^fCuOAc (7.5 mol %), L (7.5 mol %)

1,4-dioxane

72

4

93

L1

CuOAc

products 4-25 in good yields and excellent ee. Many functional groups, such as methoxyl (5-7), phenoxyl (8), acetoxyl (9), halo (15–19), trifluoromethyl (20), cyano (21), formyl (22), acetyl (23), and methoxylcarbonyl (24) groups, were well tolerated under the reaction conditions. Furthermore, alkenes bearing polycyclic aryl rings were also compatible with the reaction to give 26-28 in moderate to good yield with excellent enantioselectivity. Noteworthy is that many alkenes that contain medicinally relevant heterocycles, such as benzo[d][1,3]dioxole, pyrazole, furan, benzofuran, thiophene, benzo[b]thiophene, pyridine, quinoline, and thiazole, all underwent the current reaction smoothly to deliver the corresponding products 27-35, respectively, in 46-91% yields with 83-96% ee. Interestingly, besides (hetero)aryl alkenes, the reaction of an aminocarbonylsubstituted alkene also proceeded to provide the corresponding product 36 in 20% yield and 81% ee. More significantly, the conjugated eneyne was also a suitable substrate to afford

Table 2. Substrate Scope of Alkene^{*a,b,c*}

^aReaction conditions: 1 (0.30 mmol), 2a (0.20 mmol), 3a (0.24 mmol), CuOAc (7.5 mol %), L1 (7.5 mol %), and Cs₂CO₃ (0.40 mmol) in 1,4-dioxane (2.0 mL). ^bIsolated yield. ^cThe ee value was determined by HPLC. ^dN,N-Diethylacrylamide (0.80 mmol) was used as the alkene substrate. "Togni's reagent 3h was used as the radical precursor.

pubs.acs.org/JACS

the carboalkynylation product 37 in 66% yield and 65% ee. With regard to the unactivated aliphatic alkene, the reaction also worked with Togni's reagent 3h (Table 2) as the radical precursor to afford the product 38 in good yield, albeit with low ee. These results are currently under further optimization in our lab. Unfortunately, the 1,1- and 1,2-disubstituted alkenes are currently inapplicable to the carboalkynylation (see Scheme S1 in the Supporting Information).

Encouraged by the above results, we next switched our attention to evaluate the scope of alkynes (Table 3). Thus,

mmol) in 1,4-dioxane (2.0 mL). ^bIsolated yield. ^cThe ee value was determined by HPLC.

under the standard conditions, a series of aryl alkynes possessing phenyl rings with distinct electronic and steric properties and a naphthalene ring as well as a ferrocene ring all worked well to give 39-54 in moderate to good yield with excellent ee. Many functional groups, such as methoxyl (41-43), halo (45-48), methoxylcarbonyl (49), formyl (50), nitro (51), and pinacolborato (52), survived the reaction conditions. The absolute configuration of 53 was determined to be R by Xray crystallographic analysis (Table 3 and Figure S1 in the Supporting Information). Furthermore, heteroaryl alkynes, such as 3-pyridinyl-, 2-thiophenyl-, and 3-imidazo[1,2-b]-

pyridazinyl-substituted acetylenes, were also viable substrates for this reaction to deliver 55-57 in 48-68% yield with 93-96% ee. Notably, a series of alkyl alkynes underwent the current reaction smoothly to give products 58-67 in good yield and high ee. And a wide range of functional groups, such as cyano (58), carbazole (59), carbamate (60), acetal (61), ester (64), primary alcohol (65), and even primary chloride (66), at different distances away from the reacting alkynes were compatible with the reaction conditions. Most importantly, the industrially relevant propyne, one key component of the readily available MAPP (methylacetylene-propadiene propane) welding gas, was also a suitable substrate to give the desired product 67 in 66% yield and 95% ee. Furthermore, trimethylsilyl acetylene also worked well to provide 68 in 90% yield and 96% ee. As for the scope of alkyl radical precursors (Table 4), tertiary alkyl bromide 3b and chloride 3c

^{*a*}Reaction conditions: 1a (0.30 mmol), 2a (0.20 mmol), 3 (0.24 mmol), CuOAc (10 mol %), L1 (15 mol %), and Cs_2CO_3 (0.40 mmol) in 1,4-dioxane (2.0 mL). ^{*b*}Isolated yield. ^{*c*}The ee value was determined by HPLC. ^{*d*}CuOAc (7.5 mol %), L1 (7.5 mol %). ^{*c*}Yield was based on recovered 2a.

that are α to ester functional groups were suitable radical precursors to afford 69 and 70, respectively, in excellent ee. The structurally similar Weinreb amide-type tertiary alkyl bromide 3d also delivered product 71 in 74% yield and 94% ee, of which the amide moiety is readily amenable to facile synthesis of carbonyl compounds. In addition, the fluorocontaining tertiary alkyl bromide 3e was applicable to this transformation too, providing the enantioenriched product 72 with the pharmacologically important difluoromethylene moiety.¹² Importantly, the secondary alkyl chloride 3f gave the desired product 73 as a 1.3:1 mixture of diastereomers with 91% and 94% ee, respectively. Furthermore, the asymmetric reaction proceeded smoothly on primary alkyl bromide 3g to give 74 in 70% yield and 95% ee. Interestingly, the Togni's reagent 3h was also a viable radical precursor to afford 75 and 76 in good yield and excellent ee. Noteworthy is that the thuspubs.acs.org/JACS

incorporated trifluoromethyl units are particularly important in the development of many pharmaceuticals and agricultural chemicals.

Synthetic Utility. To demonstrate the synthetic utility of this method, we carried out further transformations of the prepared chiral alkynes. As shown in Scheme 2, the complete

hydrogenation of chiral alkyne 59 provided 77 featuring a saturated aliphatic chain. On the other hand, a highly stereoselective partial hydrogenation of this chiral alkyne afforded Z-alkene 78. Besides, the trimethylsilyl group of chiral alkyne 68 was readily removed to provide the corresponding terminal alkyne, which further underwent copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to provide 1sulfonyl-1,2,3-triazole 79 in 90% yield and 96% ee. In addition, direct oxidation of alkyne 68 to the corresponding carboxylic acid followed by reduction with LiAlH₄ successfully gave the chiral 1,5-diol 80. Moreover, straightforward hydration of chiral alkyne 76 furnished ketone 81 characterized by a β chiral stereocenter. It is noteworthy that no apparent loss of enantiopurity was observed during all these transformations. Thus, this asymmetric radical 1,2-carboalkynylation of alkenes-when combined with one- or two-step further manipulations-provides practical and excellent complementary approaches to direct asymmetric 1,2-dicarbofunctionalization of alkenes using $C(sp^2/sp^3)$ -based reagents.

Mechanistic Studies. To gain insights into the reaction mechanism, control experiments were conducted. First, the reaction of copper phenylacetylide, **1a**, and **3a** proceeded smoothly in the presence of **L1** to provide **39** in 80% yield and 96% ee, while no reaction occurred in the absence of **L1** (Scheme 3A). Thus, the ligand-coordinated copper acetylide is likely the reductant of alkyl halides for reaction initiation. The radical clock substrate **82** led to the ring-opening product **83** under the standard reaction conditions (Scheme 3B). Thus, a radical pathway was likely involved, which was further supported by the radical inhibition experiment with TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (Scheme 3C).

To investigate the possible binding mode of the N,N,Pligand with Cu^{I} , we carried out the NMR experiments (Figure 1). The L2Cu^I complex was synthesized by mixing CuI and L2 in a 1:1 ratio in CDCl₃ at room temperature. Its ¹H NMR

0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4

Figure 1. ¹H NMR Studies of the L2 Cu^I Complex. Red: ¹H NMR of L2. Blue: ¹H NMR of L2 Cu^I.

spectrum revealed apparent downfield shifts of protons adjacent to the quinuclidine nitrogen compared with those of **L2**, indicating probable binding of Cu^{I} with the quinuclidine moiety **L2** in solution (see full NMR analysis in the Supporting Information). The ³¹P NMR experiments also showed an apparent downfield shift (+2.4 ppm relative to that of **L2**), supporting probable binding of Cu^{I} with the phosphine moiety in **L2** in solution (see Figure S2 in the Supporting Information). The complex formation was further supported by the observation of the signals at m/z of 674.1969 and 676.1960, corresponding to the masses of **L2**⁶³Cu^I and **L2**⁶⁵Cu^I, respectively (see Figure S3 in the Supporting Information). However, we cannot obtain further information on other binding sites in **L2** with Cu^I from the NMR experiments.

A series of cyclic voltammogram (CV) experiments were performed to investigate the influence of the N,N,P-ligand on the redox potential of Cu^I catalyst utilizing CuBr as the copper salt. The CV of CuBr showed a quasi-reversible couple at +0.6 V (Figure 2). The complex of L2CuBr was prepared by mixing CuBr, L2, and Cs₂CO₃ in a 1:1:1 ratio, and the CV experiment showed a quasi-reversible couple at -0.1 V, corresponding to the Cu^I/Cu^{II} redox couple (Figure 2). These experiments support our hypothesis that the multidentate N,N,P-ligand could enhance the reducing capability of copper catalyst.

Article

Figure 2. Cyclic voltammograms of CuBr (red) and the L2 CuBr complex (blue). Conditions: 10 mM in CH_3CN with 0.1 M Bu_4NPF_6 as electrolyte and a 100 mV/s scan rate using a glassy carbon working electrode and a Pt counter electrode. Potentials were calibrated with Fc as an internal standard.

Since Cu^{II} has a d⁹ configuration, we carried out the electron paramagnetic resonance (EPR) experiment of the reaction mixture in order to support the involvement of a Cu^{II} species. The sample was prepared by taking an aliquot from the standard model reaction in glovebox. The EPR spectrum of the reaction mixture is consistent with that of a standard Cu^{II} complex, thus indicating that a Cu^{II} species is likely involved (Figure 3).

Figure 3. X-band EPR spectrum (9.26 GHz, 100 K). Black: a mixture of Cu(OAc)₂, **L2**, and **2a**. Red: a reaction component of the standard model carboalkynylation reaction.

Further kinetic analysis on the carboalkynylation reaction of 4-fluorostyrene 11 was performed with alkyne 2a, alkyl halide 3a, CuOAc, and ligand L2. The reaction was found to be of first-order dependence in alkene and catalyst, respectively (Figures 4A and 4B). The rate dependence on alkyl halide was close to zeroth-order, demonstrating that the generation of radical species from alkyl halide was irrelevant to the ratedetermining step(s) (Figure 4C). With regard to alkyne, the reaction rate was first increased and then decreased following the increase of its concentration, indicating its multifaceted roles in the reaction process (Figure 4D).

Based on these results and our previous reports,^{6,7} we proposed a plausible reaction mechanism, shown in Scheme 4. In the presence of base, Cu^{I} , alkyne, and L1 react to form a monomeric intermediate II. This complex may further react to afford the inactive polymeric complex V in the presence of excessive terminal alkyne, thus resulting in reaction inhibition.¹³ The Cu^{I} intermediate II reduces alkyl halide 3 to generate a Cu^{II} complex III and a $\cdot R^2$ radical possibly via a single electron transfer process. The alternative halogen atom

Figure 4. Kinetic analysis of the 1,2-carboalkynylation of alkenes. (A) Initial rate plot for determining the order in alkene. (B) Initial rate plot for determining the order in catalyst. (C) Initial rate plot for determining the order in alkyl halide. (D) Initial rate plot for alkyne.

Scheme 4. Proposed Mechanism

transfer process is less likely based on the fact that **3b** and **3c** have led to the same enantioselectivity (Table 4).¹⁴ Next, the $\cdot R^2$ radical selectively adds to alkene **1** to provide a prochiral alkyl radical **IV**, which was stabilized by delocalization of the unpaired electron into the adjacent (hetero)aromatic ring. Finally, radical **IV** and the Cu^{II} complex **III** undergo $C(sp^3) - C(sp)$ bond formation to deliver the enantioenriched products **4**–**76**, while releasing the **L1**Cu^I complex **I** for the next catalytic cycle. Notably, the direct coupling reaction between the tertiary $\cdot R^2$ radical and the Cu^{II} complex **III** was not observed, probably due to the steric hindrance in the construction of quaternary carbon centers.

As for the enantiodetermining $C(sp^3)-C(sp)$ bond formation, we have tentatively proposed the formation of Cu(III) species VI and its subsequent reductive elimination¹⁵ (Scheme 5A; also see Scheme S2 in the Supporting Information for

Scheme 5. Proposed Mechanism

alternative possible pathways). Accordingly, two enantiodiscrimination transition states of pentacoordinated Cu(III) complexes¹⁵ leading to enantiomers of 4-76, respectively, were deduced, as shown in Scheme 5B. The steric clash between the relatively bulky (hetero)aryl group in substrate and the *P*-3,5-di-*tert*-butylphenyl group in the ligand renders the *si*-**TS** unfavorable. Thus, the favorable *re*-**TS** leads to the formation of products of an *R* absolute configuration as experimentally observed. Nonetheless, we currently have no solid evidence to support this proposed enantiodiscrimination mechanism and, thus, are carrying out further experimental and theoretical studies on this reaction.

CONCLUSION

In summary, we have developed a copper-catalyzed intermolecular three-component asymmetric radical 1,2-carboalkynylation of alkenes for expedited synthesis of structurally diverse chiral alkynes. One striking feature of this method is the ready accommodation of easily available terminal alkenes ((hetero)aryl-, alkynyl-, and aminocarbonyl-substituted) and alkynes ((hetero)aryl, alkyl, and silyl) as well as various alkyl radical precursors (3°, 2°, and 1°). A multidentate cinchona alkaloid-derived N,N,P-ligand was strategically employed to enhance the reducing power of copper. Thus, a variety of mildly oxidative alkyl halides could be used as radical precursors and the Glaser coupling side reaction was effectively inhibited. Importantly, this reaction provides a general strategy for asymmetric 1,2-dicarbofunctionalization with not only chiral $C(sp^3)-C(sp)$ but also chiral $C(sp^3)-C(sp^2/sp^3)$ bond formations when allied with follow-up transformations. Further efforts for exploration of this catalyst system in asymmetric radical reactions are ongoing in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c03130.

Experimental procedures, characterization of compounds, Schemes S1 and S2, Figures S1–S3 (PDF) Crystallographic data for 53 (CIF)

AUTHOR INFORMATION

Corresponding Author

 Xin-Yuan Liu – Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China; orcid.org/0000-0002-6978-6465; Email: liuxy3@sustech.edu.cn

Authors

Xiao-Yang Dong – School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China; orcid.org/0000-0002-0663-1482

Jiang-Tao Cheng – Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

- **Yu-Feng Zhang** Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- **Zhong-Liang Li** Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- **Tian-Ya Zhan** Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Ji-Jun Chen Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Fu-Li Wang Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Ning-Yuan Yang Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Liu Ye Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Qiang-Shuai Gu Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; orcid.org/0000-0002-3840-425X

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c03130

Author Contributions

[§]X.-Y.D., J.-T.C., Y.-F.Z., and Z.-L.L. contributed equally. **Notes**

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Nos. 21722203, 21831002, and 21801116), Natural Science Foundation of Guangdong Province (No. 2018A030310083), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (2019BT02Y335), Shenzhen Special Funds (No. JCYJ20180302180235837), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101), and SUSTech Special Fund for the Construction of High-Level Universities (No. G02216303).

REFERENCES

pubs.acs.org/JACS

(1) For selected reviews, see: (a) Guo, H.-C.; Ma, J.-A. Catalytic Asymmetric Tandem Transformations Triggered by Conjugate Additions. Angew. Chem., Int. Ed. 2006, 45, 354-366. (b) Jensen, K. H.; Sigman, M. S. Mechanistic Approaches to Palladium-Catalyzed Alkene Difunctionalization Reactions. Org. Biomol. Chem. 2008, 6, 4083-4088. (c) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev. 2011, 111, 2981-3019. (d) Plesniak, M. P.; Huang, H.-M.; Procter, D. J. Radical Cascade Reactions Triggered by Single Electron Transfer. Nat. Rev. Chem. 2017, 1, 0077. (e) Tian, Y.; Chen, S.; Gu, Q.-S.; Lin, J.-S.; Liu, X.-Y. Amino- and Azidotrifluoromethylation of Alkenes. Tetrahedron Lett. 2018, 59, 203-215. (f) Wang, K.; Kong, W. Recent Advances in Transition Metal-Catalyzed Asymmetric Radical Reactions. Chin. J. Chem. 2018, 36, 247-256. (g) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Recent Advances in Copper-Catalysed Radical-Involved Asymmetric 1,2-Difunctionalization of Alkenes. Chem. Soc. Rev. 2020, 49, 32-48. (h) Li, S.; Xiang, S.-H.; Tan, B. Chiral Phosphoric Acid Creates Promising Opportunities for Enantioselective Photoredox Catalysis. Chin. J. Chem. 2020, 38, 213-214.

(2) For selected recent examples, see: (a) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. A Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes or Terminal Alkenes with Vinyl Triflates and Boronic Acids. J. Am. Chem. Soc. 2011, 133, 5784-5787. (b) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. Enantioselective 1,2-Difunctionalization of Dienes Enabled by Chiral Palladium Complex-Catalyzed Cascade Arylation/Allylic Alkylation Reaction. J. Am. Chem. Soc. 2015, 137, 13476-13479. (c) Yamamoto, E.; Hilton, M. J.; Orlandi, M.; Saini, V.; Toste, F. D.; Sigman, M. S. Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. J. Am. Chem. Soc. 2016, 138, 15877-15880. (d) Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. Nickel-Catalyzed $\beta_{,\gamma}$ -Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Conjunctive Cross-Coupling. J. Am. Chem. Soc. 2017, 139, 10657-10660. (e) Orlandi, M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S. Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. J. Am. Chem. Soc. 2017, 139, 12688-12695. (f) Gao, P.; Chen, L.-A.; Brown, M. K. Nickel-Catalyzed Stereoselective Diarylation of Alkenylarenes. J. Am. Chem. Soc. 2018, 140, 10653-10657. (g) Xiong, Y.; Zhang, G. Enantioselective 1,2-Difunctionalization of 1,3-Butadiene by Sequential Alkylation and Carbonyl Allylation. J. Am. Chem. Soc. 2018, 140, 2735-2738. (h) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed Enantioselective Reductive Diarylation of Activated Alkenes by Domino Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 12364-12368. (i) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-Catalyzed Asymmetric Reductive Diarylation of Vinylarenes. Angew. Chem., Int. Ed. 2019, 58, 3198-3202. (j) Zhang, Z.; Zhu, L.; Li, C. Copper-Catalyzed Carbotrifluoromethylation of Unactivated Alkenes Driven by Trifluoromethylation of Alkyl Radicals. Chin. J. Chem. 2019, 37, 452-456.

(3) (a) Pu, L. Asymmetric Alkynylzinc Additions to Aldehydes and Ketones. Tetrahedron 2003, 59, 9873–9886. (b) Acetylene Chemistry Chemistry, Biology and Material Science; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; WILEY-VCH: Weinheim, 2005. (c) Lin, L.; Wang, R. Recent Advance in Asymmetric Alkynylation of Ketones. Curr. Org. Chem. 2009, 13, 1565–1576. (d) Modern Alkyne Chemistry Catalytic and Atom-Economic Transformations; Trost, B. M., Li, C.-J.,

(4) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. Enantioselective Trifluoromethylalkynylation of Alkenes via Copper-Catalyzed Radical Relay. J. Am. Chem. Soc. **2018**, 140, 10965–10969.

(5) For selected reviews, see: (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds. Chem. Rev. 2015, 115, 9587-9652. (b) Choi, J.; Fu, G. C. Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry. Science 2017, 356, No. eaaf7230. (c) Fu, G. C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to S_N1 and S_N2 Processes. ACS Cent. Sci. 2017, 3, 692-700. (d) Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Acc. Chem. Res. 2018, 51, 2036-2046. For selected representative examples, see: (e) Binder, J. T.; Cordier, C. J.; Fu, G. C. Catalytic Enantioselective Cross-Couplings of Secondary Alkyl Electrophiles with Secondary Alkylmetal Nucleophiles: Negishi Reactions if Racemic Benzylic Bromides with Achiral Alkylzinc Reagents. J. Am. Chem. Soc. 2012, 134, 17003-17006. (f) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α, α -Disubstituted Ketones. J. Am. Chem. Soc. 2013, 135, 7442-7445. (g) Zhu, R.; Buchwald, S. L. Enantioselective Functionalization of Radical Intermediates in Redox Catalysis: Copper-Catalyzed Asymmetric Oxytrifluoromethylation of Alkenes. Angew. Chem., Int. Ed. 2013, 52, 12655-12658. (h) Mao, J.; Liu, F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P. J. Cobalt-Bisoxazoline-Catalyzed Asymmetric Kumada Cross-Coupling of Racemic *a*-Bromo Esters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2014, 136, 17662-17668. (i) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings. J. Am. Chem. Soc. 2015, 137, 4896-4899. (j) Jin, M.; Adak, L.; Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of *a*-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 7128-7134. (k) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A General, Modular Method for the Catalytic Asymmetric Synthesis of Alkylboronate Esters. Science 2016, 354, 1265-1269. (l) Wang, Z.; Yin, H.; Fu, G. C. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins. Nature 2018, 563, 379-383.

(6) For a review, see: (a) Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Copper(I)-Catalyzed Asymmetric Reactions Involving Radicals. Acc. Chem. Res. 2020, 53, 170-181. For selected examples, see: (b) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. A Dual-Catalytic Strategy to Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes. J. Am. Chem. Soc. 2016, 138, 9357-9360. (c) Ye, L.; Gu, Q.-S.; Tian, Y.; Meng, X.; Chen, G.-C.; Liu, X.-Y. Radical Asymmetric Intramolecular α -Cyclopropanation of Aldehydes towards Bicyclo[3.1.0]hexanes Containing Vicinal All-Carbon Quaternary Stereocenters. Nat. Commun. 2018, 9, 227. (d) Lin, J.-S.; Li, T.-T.; Liu, J.-R.; Jiao, G.-Y.; Gu, Q.-S.; Cheng, J.-T.; Guo, Y.-L.; Hong, X.; Liu, X.-Y. Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Three-Component Radical-Initiated 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2019, 141, 1074-1083. (e) Ye, L.; Tian, Y.; Meng, X.; Gu, Q.-S.; Liu, X.-Y. Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds. Angew. Chem., Int. Ed. 2020, 59, 1129-1133.

(7) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. A General Asymmetric Copper-Catalysed pubs.acs.org/JACS

Sonogashira C(*sp*³)-C(*sp*) Coupling. *Nat. Chem.* **2019**, *11*, 1158–1166.

(8) For selected examples, see: (a) Glaser, C. Beiträge zur Kenntnifs des Acetenylbenzols. *Ber. Dtsch. Chem. Ges.* **1869**, *2*, 422–424. (b) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Efficient Oxidative Alkyne Homocoupling Catalyzed by a Monomeric Dicopper-Substituted Silicotungstate. *Angew. Chem., Int. Ed.* **2008**, 47, 2407–2410. (c) Singh, M.; Singh, A. S.; Mishra, N.; Agrahari, A. K.; Tiwari, V. K. Benzotriazole as an Efficient Ligand in Cu-Catalyzed Glaser Reaction. *ACS Omega* **2019**, *4*, 2418–2424.

(9) For selected reviews, see: (a) Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. **2009**, 42, 335–344. (b) Girard, S. A.; Knauber, T.; Li, C.-J. The Cross-Dehydrogenative Coupling of C_{sp3} -H Bonds: A Versatile Strategy for C-C Bond Formations. Angew. Chem., Int. Ed. **2014**, 53, 74–100. (c) Díez-González, S. Copper(I)-Acetylides: Access, Structure, and Relevance in Catalysis. Adv. Organomet. Chem. **2016**, 66, 93–141.

(10) For selected reviews, see: (a) Patten, T. E.; Matyjaszewski, K. Copper(I)-Catalyzed Atom Transfer Radical Polymerization. Acc. Chem. Res. 1999, 32, 895-903. (b) Tang, S.; Liu, K.; Liu, C.; Lei, A. Olefinic C-H Functionalization through Radical Alkenylation. Chem. Soc. Rev. 2015, 44, 1070-1082. (c) Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T.-K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem. Rev. 2016, 116, 1803-1949. (d) Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Developments in the Chemistry of α -Carbonyl Alkyl Bromides. Chem. - Asian J. 2018, 13, 2316-2332. For selected recent examples, see: (e) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. An Efficient Generation of a Functionalized Tertiary-Alkyl Radical for Copper-Catalyzed Tertiary-Alkylative Mizoroki-Heck Type Reaction. J. Am. Chem. Soc. 2013, 135, 16372-16375. (f) Zhang, X.; Yi, H.; Liao, Z.; Zhang, G.; Fan, C.; Qin, C.; Liu, J.; Lei, A. Copper-Catalysed Direct Radical Alkenylation of Alkyl Bromides. Org. Biomol. Chem. 2014, 12, 6790-6793. (g) Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. Directed Copper-Catalyzed Intermolecular Heck-Type Reaction of Unactivated Olefins and Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 16929-16935. (h) Gockel, S. N.; Buchanan, T. L.; Hull, K. L. Cu-Catalyzed Three-Component Carboamination of Alkenes. J. Am. Chem. Soc. 2018, 140, 58-61. (i) Neff, R. K.; Su, Y.-L.; Liu, S.; Rosado, M.; Zhang, X.; Doyle, M. P. Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. J. Am. Chem. Soc. 2019, 141, 16643-16650.

(11) For a review on radical addition to terminal alkynes, see: (a) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Recent Developments in the Trifluoromethylation of Alkynes. Chem. - Eur. J. 2015, 21, 7648-7661. For selected examples, see: (b) Xu, T.; Cheung, C. W.; Hu, X. Iron-Catalyzed 1,2-Addition of Perfluoroalkyl Iodides to Alkynes and Alkenes. Angew. Chem., Int. Ed. 2014, 53, 4910-4914. (c) Xu, T.; Hu, X. Copper-Catalyzed 1,2-Addition of α -Carbonyl Iodides to Alkynes. Angew. Chem., Int. Ed. 2015, 54, 1307-1311. (d) Li, Z.; García-Domínguez, A.; Nevado, C. Pd-Catalyzed Stereoselective Carboperfluoroalkylation of Alkynes. J. Am. Chem. Soc. 2015, 137, 11610-11613. (e) Wang, F.; Zhu, N.; Chen, P.; Ye, J.; Liu, G. Copper-Catalyzed Trifluoromethylazidation of Alkynes: Efficient Access to CF3-Substituted Azirines and Aziridines. Angew. Chem., Int. Ed. 2015, 54, 9356-9360. (f) He, Y.-T.; Wang, Q.; Zhao, J.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. The Copper-Catalyzed Synthesis of β -Trifluoromethylated Acrylonitriles and Trifluoromethyl-Substituted 2H-Azirines. Chem. Commun. 2015, 51, 13209-13212. (g) Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Stereoselective Vicinal Difunctionalization of Alkynes through a Three-Component Reaction of Alkynes, Sodium Sulfinates, and Togni Reagent. Adv. Synth. Catal. 2017, 359, 2605-2609. (h) Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Vicinal Difluoroalkylation and Aminosulfonylation of Alkynes under Photoinduced Conditions. Chem. - Eur. J. 2017, 23, 1032-1035. (i) Zhu, X.;

Ye, C.; Li, Y.; Bao, H. Iron-Catalyzed Radical Decarboxylative Oxyalkylation of Terminal Alkynes with Alkyl Peroxides. *Chem. - Eur. J.* **2017**, *23*, 10254–10258. (j) Israr, M.; Xiong, H.; Li, Y.; Bao, H. Copper(I)-Catalyzed Cyanoperfluoroalkylation of Alkynes. *Org. Lett.* **2019**, *21*, 7078–7083.

(12) Feng, Z.; Xiao, Y.-L.; Zhang, X. Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl Halides. *Acc. Chem. Res.* **2018**, *51*, 2264–2278.

(13) Zuidema, E.; Bolm, C. Sub-mol% Catalyst Loading and Ligand-Acceleration in the Copper-Catalyzed Coupling of Aryl Iodides and Terminal Alkyenes. *Chem. - Eur. J.* **2010**, *16*, 4181–4185.

(14) Fantin, M.; Lorandi, F.; Gennaro, A.; Isse, A. A.; Matyjaszewski, K. Electron Transfer Reactions in Atom Transfer Radical Polymerization. *Synthesis* **2017**, *49*, 3311–3322.

(15) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Enantioselective Cyanation of Benzylic C–H Bonds via Copper-Catalyzed Radical Relay. *Science* **2016**, *353*, 1014– 1018.