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The direct enantioselective functionalization of C–H bonds—
the most predominant functional groups in organic mole-
cules—has been recognized as an ideal approach to construct 

enantioenriched, carbon-based molecules because of its inherent 
economic and environmentally benign nature1. In recent years, 
various powerful catalysts based on transition metals have been 
discovered for the enantioselective functionalization of prochiral 
C(sp3)–H bonds1 and representative strategies include C–H acti-
vation catalysed by a transition metal2,3 and concerted4–7 or step-
wise5,8–11 metal-oxo/carbenoid/nitrenoid C–H insertion (Fig. 1a,b).

As for robust racemic tertiary C(sp3)–H bonds (pKa > 25)2, direct 
asymmetric transformations have been rarely reported, particularly 
for enantioconvergent ones theoretically leading to highly enan-
tioenriched products in 100% yield12,13, although enantioconver-
gent substitution reactions of racemic tertiary alkyl electrophiles 
are emerging as a powerful synthetic strategy to access quaternary 
stereocentres14–17 (Supplementary Fig. 1). In this regard, Arnold 
et al. have made a breakthrough by accomplishing the first highly 
enantioconvergent tertiary C–H amination reaction with enzymatic 
catalysis18. The challenge for the lagged development of such a pro-
cess arises primarily from the mechanistic limitation inherent in 
the previous enantioselective C–H functionalization methods (Fig. 
1c): partial or complete chirality retention. Specifically, C–H activa-
tion catalysed by a transition metal and concerted metal-carbenoid/
nitrenoid C–H insertion have only achieved stereospecific transfor-
mations (Fig. 1a)2–7, while stepwise metal-carbenoid/nitrenoid C–H 
insertion as well as hydroxylation by metal oxo species8–11 tends to 
be complicated by partial or complete chirality retention (Fig. 1b). 
As such, these strategies are generally more amenable to kinetic 
resolution that affords 50% yield at best (Fig. 1c, left). The reason 
for the chirality retention in the non-concerted scenarios originates 
from the usually fast radical rebound (RR) step that seems as if it is 

kinetically coupled to the first hydrogen atom abstraction (HAA) 
step. Thus, the resulting C–H functionalization products inherit 
the initial chirality to different extents (Fig. 1b)10,11,19. As a result, 
the generally accepted transition-metal-catalysed, enantioselec-
tive C–H functionalization mechanisms would seem to preclude 
efficient enantioconvergent transformations of racemic tertiary 
C(sp3)–H bonds (Fig. 1c, right).

Seeking to address this challenge, we have become interested in 
combining a decoupled HAA with copper catalysis to provide a gen-
eral platform for enantioconvergent reactions of racemic tertiary 
C(sp3)–H bonds. On one hand, since the pioneering discovery of the 
Barton20 and the Hofmann–Löffler–Freytag reactions21,22, the HAA 
process has proven to be a powerful tool for regioselective activa-
tion of an inert C–H bond23–26. On the other hand, pioneered by Fu 
and others13,27–30, asymmetric transition-metal catalysis using chiral 
metal species to associate with an alkyl radical, generated in  situ, 
through different types of interactions has evolved into a versa-
tile strategy for realizing highly enantioselective transformations. 
Particularly, several groups have recently disclosed the Cu-catalysed 
enantioselective functionalization of prochiral benzylic, allylic or 
α-amino C(sp3)–H bonds via radical intermediates29,31–33. Motivated 
by these precedents, we envisioned a decoupled HAA process that 
does not involve metal species for racemic tertiary C(sp3)–H bonds. 
Accordingly, the thus-generated tertiary alkyl radical would readily 
lose chirality before interacting with our recently developed Cu(i)/
chiral phosphoric acid (CPA) catalyst29 for subsequent enantiocon-
vergent functionalization (Fig. 1d).

Herein we describe a dual Cu(i)/CPA catalytic protocol for 
the radical enantioconvergent transformation of racemic ter-
tiary β-C(sp3)–H bonds in readily available racemic ketones. This 
protocol afforded a series of chiral ring structures bearing tetra-
substituted carbon stereocentres (Fig. 1e), which upon further 
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manipulation led to valuable chiral 1,3-diamines and highly con-
gested multi-substituted cyclopropanes.

Results
Reaction development. In comparison to considerable advances in 
the asymmetric prochiral β-C(sp3)–H functionalization of carbonyl 
groups pioneered by Yu and others3,34, the direct enantioconvergent 
functionalization of corresponding racemic tertiary β-C(sp3)–H 
bonds has hitherto been unknown. As such, we began our study 
using racemic hydrazone B1 (E/Z mixture, readily available in 
one step from racemic ketone A1 and p-toluenesulfonohydrazide 
(TsNHNH2)) as the pilot substrate to probe the enantioconvergent 
tertiary β-C(sp3)–H amination reaction (Table 1). After some initial 
trials with various CPAs and different copper salts (Supplementary 
Table 1), we found that the expected product 1 was delivered—albeit 
with a poor yield—in 71% e.e. under the conditions as follows: 
commercially available t-butyl benzoperoxoate O1 as oxidant and 
a combination of 10 mol% of CuCN and 15 mol% of CPA (R)-C3 
as catalyst in AcOi-Pr at room temperature for 96 h. The major ole-
finic side product (E)-1′ identified in this reaction was presumed 
to be derived from the tertiary radical species, generated in situ, via 
sequential radical trapping by Cu(ii) and β-hydride elimination. 
Subsequent screening of oxidants and solvents revealed that oxi-
dant O7 was the best in terms of enantioselectivity (Table 1, entries 
1–7), and i-PrCO2i-Pr was the optimal solvent in terms of both 
reaction efficiency and enantioselectivity (Table 1, entries 7–12). 
Surprisingly, the addition of 20 mol% (NH4)2CO3 resulted in a great 
increase in product yield (71% yield), albeit with a slightly dimin-
ished enantioselectivity (Table 1, entries 10 and 13). Further evalua-
tion of its loading and reaction temperature as well as concentration 
(Table 1, entries 14–18) led to the discovery of the optimum reac-
tion conditions as follows: (±)-B1 (0.10 mmol), O7 (0.20 mmol), 
CuCN (10 mol%), (R)-C3 (15 mol%) and (NH4)2CO3 (5 mol%) in 
dry i-PrCO2i-Pr (2.0 ml) at 35 °C for 96 h under argon (63% yield 
and 92% e.e.; Table 1, entry 18).

Substrate scope. With the optimal reaction conditions being 
established, we next examined the generality of this enantiocon-
vergent tertiary β-C(sp3)–H amination reaction. In regard to the 
N-arylsulfonohydrazide scope (Fig. 2a), a range of differently 
substituted phenyl rings bearing one or two electron-donating or 
-withdrawing groups at the meta or para positions and a naph-
thalene ring all were compatible with this reaction to afford 2–19 
in 35–85% yield with 86–96% e.e. The absolute configuration 
of 14 was determined to be S by X-ray crystallographic analysis 
(Supplementary Fig. 2), and those of other products were assigned 
by analogy. As for the scope of the ketones (R1 in Fig. 2b), a broad 
series of aryl and heteroaryl ketones were all well accommodated 
in this process to deliver 20–44 in 43–83% yield with 78–94% 
e.e. Many common functional groups—such as methoxyl (20), 
fluoro (26, 27), chloro (28–30), bromo (31, 32), trifluoromethyl 
(33, 34), methoxylcarbonyl (35, 36), alkynyl (37), phosphonyl 
(38) and pinacolborato (39)—were all compatible with the mild 
reaction conditions. Notably, medicinally relevant heterocycles  
such as pyrazole (41), thiophene (42), benzo[b]thiophene (43) 
and dibenzo[b,d]furan (44) were also tolerated, providing the 
desired products in moderate to good yield with good to excel-
lent enantioselectivity. Strikingly, racemic completely aliphatic 
ketones also underwent the reaction to deliver 45–47 with prom-
ising enantioselectivity.

We next investigated the scope of the racemic tertiary β-C(sp3)–H 
moieties (Fig. 3a) and found (hetero)aryl substituents to be essential 
for this enantioconvergent amination reaction for the time being. 
Thus, both substituted phenyl and biologically important heterocy-
clic thiophenyl rings were viable substituents to give products 48–50 
with moderate to excellent enantioselectivity. As for the remaining 
substituents, simple unfunctionalized linear alkyl groups were well 
tolerated in the reaction (51 and 52). Moreover, alkyl groups bear-
ing a variety of functionalities—such as ester (53 and 54), ether (55), 
chloride (57) and azide (58)—were compatible with the reaction. 
Notably, products 56 and 59 bearing potentially reactive primary 
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alcohol and terminal alkene moieties, respectively, were obtained 
in high enantioselectivity and acceptable yield despite the oxidative 
nature of this process.

Chiral spiro-heterocycles not only represent key structural ele-
ments in a large number of natural products and pharmaceutical 
agents35, but also constitute excellent platforms for the develop-
ment of chiral catalysts with broad utility in asymmetric synthe-
sis36. Given this, we investigated ketones bearing racemic tertiary 
β-C(sp3)–H bonds on rings for the construction of such valuable 
skeletons. Thus, a series of chiral spiro-heterocycles 60–65 with 
different skeletons ([5,6] and [5,7] spirocycles) and functionalities 
(carbon-, oxygen- and nitrogen-tethered rings) were efficiently 
constructed with low to good yield and excellent enantioselectiv-
ity (Fig. 3a). The absolute configuration of 62 was determined to 
be S by X-ray crystallographic analysis (Supplementary Fig. 3), and 
those of other products were assigned by analogy. Noteworthy is 
that the substrate containing an allylic racemic tertiary β-C(sp3)–H 
bond on a cyclohexene ring also underwent the reaction to deliver 
spirocyclic product 66 with promising results, and the reaction is 
currently undergoing further optimization in our laboratory.

Synthetic practicality and applications. To demonstrate the 
practicality of this method, we next developed a tandem one-pot 
procedure for the direct use of readily available racemic ketones 
in the reaction without the need for isolating the hydrazone inter-
mediate. Thus, sequentially stirring various racemic ketones with 
p-methoxybenzenesulfonohydrazide in the presence of (R)-C3 
at 65 °C for 24 h and further with additional O7, CuCN and 
(NH4)2CO3 at 35 °C for 96 h efficiently delivered the corresponding 
products with more or less the same enantioselectivity (Fig. 3b). In 
addition, large-scale reactions were also performed using either the 
hydrazone intermediate B3 or ketone A1 as substrates under the 
corresponding standard reaction conditions, and the high efficiency 
and enantioselectivity remained almost the same (Fig. 3c,d).

To further demonstrate the utility of the current methodology, 
we converted chiral dihydropyrazole 3 to chiral 1,3-diamine 70 in 
four steps (Fig. 3e); 1,3-diamine compounds are essential building 
blocks in many natural products and pharmaceuticals, and many 
of them are also chiral ligands or auxiliaries in organic synthesis37. 
Moreover, treatment of spiro-heterocycle 62 with allylmagnesium 
bromide in the presence of CeCl3 afforded dihydropyrazole 71 in 

Table 1 | Survey on the model reaction conditions

Entrya Oxidant Solvent Additive Yield (%) e.e. (%)

1 O1 AcOi-Pr — 21 (< 5)b 71

2 O2 AcOi-Pr — < 5 —

3 O3 AcOi-Pr — 9 (17)b 38

4 O4 AcOi-Pr — < 5 —

5 O5 AcOi-Pr — 28 73

6 O6 AcOi-Pr — 33 78

7 O7 AcOi-Pr — 32 86

8 O7 EtOAc — 21 74

9 O7 i-PrCO2Et — 29 85

10 O7 i-PrCO2i-Pr — 36 89

11 O7 CH2Cl2 — 19 63

12 O7 Benzene — 25 48

13 O7 i-PrCO2i-Pr (NH4)2CO3
c 71 76

14 O7 i-PrCO2i-Pr (NH4)2CO3
d 61 88

15 O7 i-PrCO2i-Pr (NH4)2CO3
e 48 92

16 O7 i-PrCO2i-Pr (NH4)2CO3
e,f 51 92

17 O7 i-PrCO2i-Pr (NH4)2CO3
e,g 55 90

18 O7 i-PrCO2i-Pr (NH4)2CO3
e,g,h 63 92

aReaction conditions: (±)-B1 (0.10 mmol), oxidant (0.20 mmol), CuCN (10 mol%) and (R)-C3 (15 mol%) in dry solvent (1.0 ml) at room temperature for 96 h under argon; isolated yield of 1 based on (±)-B1 
is given; e.e. of 1 is based on HPLC analysis. bIsolated yield of 1′ based on (±)-B1 is given in parentheses. c(NH4)2CO3 (20 mol%) was used. d(NH4)2CO3 (10 mol%) was used. e(NH4)2CO3 (5 mol%) was used. 
fRun at 30 °C. gRun at 35 °C. hi-PrCO2i-Pr (2.0 ml) was used. Ts, p-toluenesulfonyl; LPO, dilauroyl peroxide; BPO, benzoyl peroxide; DTBP, di-tert-butyl peroxide.
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low diastereoselectivity. Subsequent heating in toluene further 
transformed 71 to sterically congested chiral spiro-cyclopropane 
72 possessing two vicinal all-carbon quaternary stereocentres 
without substantial enantiopurity erosion (Fig. 3f). The chiral 
multi-substituted cyclopropane moiety is found in a variety of natu-
ral products and medicinal agents, and can also serve as useful syn-
thetic intermediates38,39.

Mechanistic investigations. The formation of the desired prod-
uct 3 was not observed in the absence of either CuCN or (R)-C3 
(Supplementary Fig. 4). Thus, both the Cu(i) salt and CPA are 
indispensable for initiating this reaction. Subsequent separate 
radical-trapping experiments with 2,2,6,6-tetramethyl-1-piper-
idinyloxy (TEMPO), 1,4-benzoquinone (BQ) and butylated  

hydroxytoluene (BHT) all indicated reaction inhibition 
(Supplementary Fig. 4). In particular, the TEMPO-trapped ketone 
A1-TEMPO was detected by high-resolution mass spectrometry 
(HRMS) analysis (Fig. 4a). In addition, radical clock substrate 73 
underwent tandem cyclopropane ring opening and C–N bond for-
mation to provide eight-membered ring 74 (Fig. 4b). These obser-
vations support the formation of tertiary radical species under the 
current reaction conditions. As for the presumed 1,5-HAA event, 
side-by-side kinetic experiments using (±)-B26 and (±)-B26-d1 
provided an intermolecular kinetic isotope effect (KIE) value of 1.46 
(Fig. 4c). This indicates the involvement of reaction steps other than 
the 1,5-HAA in the rate-determining step(s). No H/D exchange was 
observed in the recovered starting material when (±)-B3-d1 was 
used under the standard conditions, indicating a likely irreversible 
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intramolecular 1,5-HAA (Fig. 4d). In addition, the enantiopurity of 
the recovered starting materials did not change when racemic or 
enantiopure (E)-B3 was used (Fig. 4e), suggesting that the kinetic 
resolution or dynamic kinetic resolution of racemic tertiary C–H 
bonds is unlikely. Overall, all of these control experiments strongly 
support a relatively fast irreversible 1,5-HAA process to deliver pro-
chiral tertiary radicals. In our reactions, a small amount of internal 
alkene product (E)-1′ was formed in some cases. However, it did 
not afford product 3 with or without O7 under the otherwise stan-
dard conditions (Fig. 4f). Thus, direct product formation from (E)-
1′ via intramolecular Michael addition or any other pathways can 

be excluded. Furthermore, the enantioselectivity remained almost 
constant during reaction (Supplementary Fig. 4). And the E/Z ratio 
of hydrazone apparently did not affect either the reaction efficiency 
or the enantioselectivity (Supplementary Table 2). Additionally, fac-
ile E/Z isomerization of hydrazone spontaneously occurred and was 
further facilitated by acid (Supplementary Tables 3 and 4), possibly 
via a nucleophilic-addition/bond-rotation/elimination process40. 
All these observations point to a likely uniform enantiodetermining 
transition state along with the same reaction pathway.

On the basis of the above observations and previous 
reports12–17,29, a plausible mechanism is tentatively proposed, shown 
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in Fig. 4g. Initially, Cu(i) reacts with CPA-activated peroxide via 
single-electron transfer (SET) to afford a highly reactive t-butoxy 
radical accompanied by the formation of the crucial chiral Cu(ii) 
phosphate complex I (ref. 29). Intermolecular hydrogen abstraction 
of the weak N–H bond in hydrazone B by the t-butoxy radical gives 
the nitrogen-centred radical II (ref. 41). Subsequent irreversible 
intramolecular 1,5-HAA gives rise to prochiral tertiary alkyl radical 
III. Next, Cu(ii) complex I associates with radical III and promotes 
the final enantioselective C–N bond formation.

Conclusions
In summary, we have described a strategy for direct radical enan-
tioconvergent tertiary C(sp3)–H amination starting from readily 
available racemic ketones with a dual Cu/CPA catalysis. The mech-
anistic blueprint consisting of sequential HAA and asymmetric 
radical functionalization highlights a decoupled HAA that allows 
for chirality loss of the generated tertiary radical. Thus, it is able to 
override the mechanistic limitation inherent to conventional C–H 
functionalization catalysed by a transition metal. The combination 
of this process with subsequent versatile transformations showcases 
the potential for rapidly converting racemic ketones bearing tertiary 
β-C(sp3)–H bonds into a broad range of enantioenriched structures. 
We anticipate that this strategy will spur the development of new 
classes of catalysts for general and broadly applicable enantioconver-
gent transformations of common racemic tertiary C(sp3)–H bonds.

Data availability
The findings of this study are available within the paper and 
its Supplementary Information. Crystallographic parameters 
for compounds 14 and 62 are available free of charge from the 
Cambridge Crystallographic Data Centre under CCDC 1923926 
(14) and 1923927 (62). All data are available from the authors 
upon reasonable request.
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