In the format provided by the authors and unedited.

A general asymmetric copper-catalysed Sonogashira C(*sp*³)-C(*sp*) coupling

Xiao-Yang Dong^{1,3}, Yu-Feng Zhang^{1,3}, Can-Liang Ma^{1,3}, Qiang-Shuai Gu^{1,2}, Fu-Li Wang^{1,3}, Zhong-Liang Li², Sheng-Peng Jiang¹ and Xin-Yuan Liu¹

¹Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. ²Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. ³These authors contributed equally: Xiao-Yang Dong, Yu-Feng Zhang, Can-Liang Ma, Qiang-Shuai Gu, Fu-Li Wang. *e-mail: liuxy3@sustech.edu.cn

Supplementary Materials for

A general asymmetric copper-catalysed Sonogashira C(sp³)–C(sp) coupling

Xiao-Yang Dong,^{1,3} Yu-Feng Zhang,^{1,3} Can-Liang Ma,^{1,3} Qiang-Shuai Gu,^{2,3} Fu-Li Wang,^{1,3} Zhong-Liang Li,² Sheng-Peng Jiang,¹ Xin-Yuan Liu^{1*} Correspondence to: <u>liuxy3@sustech.edu.cn</u>

Table of contents

Supplementary Table 1	1
Supplementary Table 2	2
Supplementary Table 3	
Supplementary Table 4	4
Supplementary Table 5	5
Supplementary Table 6	6
Supplementary Table 7	7
Supplementary Table 8	8
Supplementary Fig. 1	9
Supplementary Fig. 2.	10
Supplementary Fig. 3.	11
Supplementary Fig. 4.	12
Supplementary Fig. 5.	13
Supplementary Fig. 6.	14
Supplementary Fig. 7.	15
Supplementary Fig. 8.	16
Supplementary Fig. 9.	17
Supplementary Fig. 10.	
Supplementary Fig. 11.	19
Supplementary Fig. 12.	20
General information	
The synthesis of terminal alkyne substrates	22
The synthesis of alkyl halide substrates	
Asymmetric Sonogashira C(sp)-C(sp ³) cross-coupling: Scope of alkynes	53
Asymmetric Sonogashira $C(sp)-C(sp^3)$ cross-coupling: Scope of secondary alkyl halides	81
Procedure for synthetic applications	111
Assignment of absolute stereochemistry	146
Mechanistic study	149
NMR spectra	162
HPLC spectra	318
Supplementary references	465

Supplementary Table 1.

Screening of reaction conditions^a

Me	Н	[Cu] (10 mol%), L*8 (15 mo	ol%)	Ph 人		
Ph Br	Ph t	base (2.0 equiv.), solvent, rt,	, 24 h		Me [–] Ph	I———P
(±)- S1-1	S1-2		Pr	1		1'
En tres	[0-1		C - 1(Yield (%) ^b		
Entry	[Cu]	Base (x equiv.)	Solvent	1	1′	- ee (%) ⁻
1	CuI	Cs_2CO_3	CH ₃ CN	81	trace	50
2	CuI	Cs_2CO_3	EtOAc	85	trace	72
3	CuI	Cs_2CO_3	MTBE	83	trace	78
4	CuI	Cs_2CO_3	Toluene	65	trace	79
5	CuI	Cs_2CO_3	THF	79	trace	73
6	CuI	Cs_2CO_3	MeOH	81	trace	53
7	CuI	Cs_2CO_3	Et ₂ O	87	trace	81
8	CuI	Cs_2CO_3	CH_2Cl_2	65	trace	61
9	CuI	Cs_2CO_3	DCE	52	trace	54
10	CuCl	Cs_2CO_3	Et ₂ O	83	trace	82
11	CuBr	Cs_2CO_3	Et ₂ O	84	trace	82
12	CuTc	Cs_2CO_3	Et ₂ O	89	trace	82
13	(CuOTf)2·PhC	H ₃ Cs ₂ CO ₃	Et ₂ O	88	trace	82
14	CuTc	Na ₂ CO ₃	Et ₂ O	trace	trace	ND
15	CuTc	K_3PO_4	Et ₂ O	88	trace	81
16	CuTc	NaOH	Et ₂ O	87	trace	81

^aReaction conditions: (±)-**S1-1** (0.050 mmol), **S1-2** (1.5 equiv.), [Cu] (10 mol%), **L*8** (15 mol%), and base (2.0 equiv.) in solvent (0.50 mL) or Et₂O (1.0 mL) at room temperature for 24 h under argon. ^bYield of **1** was based on ¹H NMR analysis of the crude product using 4-bromo-*N*,*N*-dimethylaniline as an internal standard, and that of **1**' was based on GC analysis. ^cEe value was based on HPLC analysis.

Supplementary Table 2.

Contents of trace metal impurities in the crude reaction mixture

H + Ph 51-2 0.15 mmol	Ph Br Et S2 0.10 mmol	standard conditions Ph Et Ph 2 75% conversion, 73% yield
Element		Percentage (<i>w</i> / <i>w</i> _{Cu} %)
Fe		1
Со		0.03
Ni		0.08
Pd		0.005

Contents of trace metal impurities in the Cure catalyst			
Element	Percentage (<i>w</i> / <i>w</i> Cu%)		
Fe	0.1		
Со	0.006		
Ni	0.01		
Pd	0.004		

Supplementary Table 3. Contents of trace metal impurities in the CuTc catalyst

Supplementary Table 4.

Effects of Pd additive

_

	Ph + Ph H	Pd(PPh ₃) ₄ CuTc (5.0 mol%), L* (7.5 mol%) Cs ₂ CO ₃ , Et ₂ O, 30 °C, 2 h	Ph 2 OMe NH NH NH L^* (Ar = 3,5- ^r Bu ₂ C ₆ H ₃)	PAr2
Entry	[Pd] (ppm)	Conversion (%)	Yield (%)	Ee (%)
1	0	45	43	97
2	100	42	41	97
3	1000	46	45	97
4	10000	48	41	97

Reaction conditions: Racemic (1-bromopropyl)benzene (0.10 mmol), phenylacetylene (1.5 equiv.), CuTc (5.0 mol%), L* (7.5 mol%), Cs₂CO₃ (2.0 equiv.), and appropriate amounts of Pd(PPh₃)₄ in Et₂O (2.0 mL) under argon at room temperature for 2 h; Yield was determined by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard; Ee was determined by HPLC.

Supplementary Table 5.

4

Catalytic performance of Pd catalysts

Reaction conditions: Racemic (1-bromopropyl)benzene (0.10 mmol), phenylacetylene (1.5 equiv.), Pd (5.0 mol%), L* (7.5 mol%), and Cs₂CO₃ (2.0 equiv.) in Et₂O (2.0 mL) under argon at room temperature; Yield was determined by ¹H NMR with 1,3,5trimethoxybenzene as an internal standard.

0

Supplementary Table 6.

Effects of other transition metal additives

	Ph + Ph H	[M] (100000 ppm) CuTc (5.0 mol%), L* (7.5 mol%) Cs ₂ CO ₃ , Et ₂ O, 30 °C, 2 h	$rac{Ph}{2}$ $rac{OMe}{NH}$ $rac{N}{NH}$ $rac{N}{L^*}$ (Ar = 3,5- ⁷ Bu ₂ C ₆ H ₃)	PAr2
Entry	[M]	Conversion (%)	Yield (%)	Ee (%)
1	none	47	46	97
2	FeCl ₃	50	46	97
3	Ni(acac) ₂	58	47	97

Reaction conditions: Racemic (1-bromopropyl)benzene (0.10 mmol), phenylacetylene (1.5 equiv.), CuTc (5.0 mol%), L* (7.5 mol%), Cs₂CO₃ (2.0 equiv.), and metal additive (100000 ppm) in Et₂O (2.0 mL) under argon at room temperature for 2 h; Yield was determined by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard; Ee was determined by HPLC.

Supplementary Table 7.

Effects of other transition metal additives

Reaction conditions: Racemic (1-bromopropyl)benzene (0.10 mmol), phenylacetylene (1.5 equiv.), CuTc (5.0 mol%), L* (7.5 mol%), Cs₂CO₃ (2.0 equiv.), and metal additive (100000 ppm) in Et₂O (2.0 mL) under argon at room temperature for 2 h; Yield was determined by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard; Ee was determined by HPLC.

Supplementary Table 8.

Catalytic performance of other transition metal catalysts

Reaction conditions: Racemic (1-bromopropyl)benzene (0.10 mmol), phenylacetylene (1.5 equiv.), [M] (5.0 mol%), L* (7.5 mol%), and Cs₂CO₃ (2.0 equiv.) in Et₂O (2.0 mL) under argon at room temperature; Yield was determined by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Supplementary Fig. 1. Enantioselective synthesis of AMG 837 (122)

Supplementary Fig. 2.

Enantioselective synthesis of 123

Supplementary Fig. 3.

Enantioselective synthesis of UCP1172 (124)

Supplementary Fig. 4.

Enantioselective synthesis of (S)-ibuprofen (127) and (R)-ibuprofen (135). ^aThe ee value was determined on a derivative of the product.

Supplementary Fig. 5.

Enantioselective synthesis of **128** and formal synthesis of (+)-(Z)-nuciferol, (+)-nuciferal, (+)-*ar*-curcumene, (+)-(E)-nuciferol, (-)-4,7-dimethyl-1-tetralone, (+)-erogorgiaene, and (+)-*ar*-himachalene. ^aThe ee value was determined on a derivative of the product.

Supplementary Fig. 6.

Enantioselective synthesis of **129**, **136**, (+)-methylaristelegone A, and (–)-aristelegone B and formal synthesis of (+)-mutisianthol, (–)-aristelegone D, and (–)-xanthorrizol.

Supplementary Fig. 7.

Enantioselective synthesis of **130** and formal synthesis of (7S,9R)-(+)-bisacumol, (E)-(S)-(+)-dehydrocurcumene, and (S)-(+)-turmerone. ^aThe ee value was determined on a derivative of the product.

L*15, Ar = 3,5-^{*t*}Bu₂C₆H₃

Supplementary Fig. 8.

Enantioselective synthesis of 137 and formal synthesis of (+)-laevigatin. ^aThe ee value was determined on a derivative of the product.

Supplementary Fig. 9.

Enantioselective synthesis of **138** and **139** and formal synthesis of (-)-7-methoxy-1,2dihydrocadalene, (+)-(1S,4R)-7-methoxycalamene, and (+)-heritonin.

Supplementary Fig. 10.

Kinetic study on concentrations of 1-phenylpropyl bromide S2 in the reaction with phenylacetylene S1-2

The results reveal a first-order dependence of the initial reaction rate on the initial concentration of **S2**.

Supplementary Fig. 11.

Kinetic study on concentrations of CuTc catalyst in the reaction of 1-phenylpropyl bromide S2 with phenylacetylene S1-2

The results reveal a first-order dependence of the initial reaction rate on the initial concentration of CuTc.

Supplementary Fig. 12.

Kinetic study on concentrations of phenylacetylene S1-2 in the reaction with 1-phenylpropyl bromide S2

The results reveal that the reaction was initially promoted and then inhibited along with the increasing concentration of **S1-2**.

General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuI was purchased from Sigma-Aldrich. CuTc was purchased from Alfa Aesar and Bide. Anhydrous diethyl ether (Et₂O) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was directly used without further treatment. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO₄ indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-500 spectrometers at 400 or 500 MHz for ¹H NMR, 100 or 125 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃, CD_3OD or $DMSO-d_6$ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength). Column conditions are reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. ICP-MS was tested with the instrument of iCAP RQ.

The synthesis of terminal alkyne substrates

General procedure 1:

To a mixture of aryl bromide (1.0 mmol, 1.0 equiv.), bis(triphenylphosphine)palladium(II) chloride (35.1 mg, 0.050 mmol, 5.0 mol%), and trimethylsilylacetylene (196.0 mg, 2.0 mmol, 2.0 equiv.) in triethylamine (4.0 mL) was added copper(I) iodide (9.5 mg, 0.050 mmol, 5.0 mol%) under argon atmosphere. The resulting reaction mixture was stirred at 50 °C for 24 h. After completion of reaction (monitored by TLC), the reaction mixture was cooled to room temperature, filtered, and concentrated under reduced pressure. The residue was briefly purified by column chromatography on silica gel and the crude product thus obtained was dissolved in anhydrous THF (1.0 mL) under argon atmosphere. Tetra-*n*-butylammonium fluoride (1.5 mL, 1.0 M in THF, 1.5 equiv.) was added to the solution dropwise at 0 °C, and the reaction mixture was warmed up to room temperature and stirred for 0.5 h. After completion of reaction (monitored by TLC), the solvent was removed by evaporator and the residue was purified by column chromatography on silica gel to afford the corresponding terminal alkyne product.

General procedure 2:

To a mixture of aryl halide (bromide or chloride) (1.0 mmol, 1.0 equiv.), ethynyltriisopropylsilane (364.8 mg, 2.0 mmol, 2.0 equiv.), bis(triphenylphosphine)palladium(II) chloride (35.1 mg, 0.050 mmol, 5.0 mol%), and copper(I) iodide (9.5 mg, 0.050 mmol, 5.0 mol%) in *N*,*N*-dimethyl formamide (DMF, 10.0 mL) was added triethylamine (0.30 mL, 2.0 mmol, 2.0 equiv.) under argon atmosphere and the resulting reaction mixture was stirred at 40 °C for 24 h. After completion of reaction (monitored by TLC), the reaction was quenched by water. The mixture was poured into EtOAc and the aqueous layer was extracted with EtOAc three times. The combined organic layer was then washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was dissolved in MeOH (2.0 mL), treated with K₂CO₃ (0.28 g, 2.0 mmol, 2.0 equiv.), and stirred at room temperature for 3 h. After completion of reaction (monitored by TLC), the reaction gressure and purified by column chromatography on silica gel to afford the corresponding terminal alkyne product.

1-Ethynyl-4-vinylbenzene (S22)

According to **General procedure 1** with 1-bromo-4-vinylbenzene (182.0 mg, 1.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **S22** as a colorless oil (84.5 mg, 66% yield over two steps). The product was unstable in air and turned red in a short time. Therefore, it was stored in CH₂Cl₂ at -20 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 6.75 (dd, J = 17.6, 10.9 Hz, 1H), 5.83 (dd, J = 17.6, 0.9 Hz, 1H), 5.36 (dd, J = 10.9, 0.9 Hz, 1H), 3.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 136.2, 132.4, 126.2, 121.4, 115.1, 83.7, 77.9. HRMS (ESI) *m/z* calcd. for C₁₀H₉ [M + H]⁺ 129.0699, found 129.0699.

5-Ethynylbenzo[*d*][1,3]dioxole (S25)

According to **General procedure 1** with 5-bromobenzo[*d*][1,3]dioxole (200.0 mg, 1.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **S25** as a brown amorphous powder (67.2 mg, 46% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.00 (s, 2H), 3.00 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 148.3, 147.4, 126.9, 115.3, 112.0, 108.4, 101.4, 83.6, 75.6. HRMS (ESI) *m/z* calcd. for C₉H₇O₂ [M + H]⁺ 147.0441, found 147.0440.

2-Ethynylbenzo[*d*]oxazole (S28)

According to **General procedure 2** with 2-chlorobenzo[*d*]oxazole (153.0 mg, 1.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **S28** as a brown amorphous powder (108.7 mg, 76% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.74 (m, 1H), 7.58 – 7.53 (m, 1H), 7.50 – 7.35 (m, 2H), 3.41 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 146.4, 140.4, 126.8, 125.2, 120.7, 110.8, 81.8, 71.7. HRMS (ESI) *m/z* calcd. for C₉H₆NO [M + H]⁺ 144.0444, found 144.0443.

2-Ethynylbenzo[*d*]thiazole (S29)

According to **General procedure 2** with 2-bromobenzo[*d*]thiazole (212.9 mg, 1.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **S29** as a yellow amorphous powder (130.4 mg, 82% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 1H), 7.91 – 7.85 (m, 1H), 7.59 – 7.43 (m, 2H), 3.62 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.6, 147.5, 135.2, 126.8, 126.6, 123.9, 121.4, 84.0, 76.8.

HRMS (ESI) m/z calcd. for C₉H₆NS [M + H]⁺ 160.0215, found 160.0214.

5-Ethynylpyrazolo[1,5-*a*]pyrimidine (S33)

According to **General procedure 2** with 5-chloropyrazolo[1,5-*a*]pyrimidine (153.0 mg, 1.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **S33** as a white amorphous powder (107.3 mg, 75% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 7.1 Hz, 1H), 8.13 (d, *J* = 2.3 Hz, 1H), 6.93 - 6.86 (m, 1H), 6.71 - 6.69 (m, 1H), 3.00 - 2.83 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 145.7, 141.9, 134.4, 111.2, 104.4, 97.6, 96.5.

HRMS (ESI) m/z calcd. for C₈H₆N₃ [M + H]⁺ 144.0556, found 144.0556.

N-(4-Methoxyphenyl)hex-5-ynamide (S40)

To a mixture of hex-5-ynoic acid (123.2 mg, 1.1 mmol, 1.1 equiv.), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI) (230.0 mg, 1.2 mmol, 1.2 equiv.), and 4dimethylaminopyridine (DMAP) (12.2 mg, 0.10 mmol, 0.10 equiv.) in CH₂Cl₂ (2.0 mL) was added the 4-methoxyaniline (123.0 mg, 1.0 mmol, 1.0 equiv.) in one portion under argon atomsphere at 0 °C. The reaction mixture was naturally warmed up to room temperature and stirred overnight. After completion of reaction (monitored by TLC), the reaction was quenched by saturated NaHCO₃ and extracted with EtOAc three times. The combined organic phase was washed by brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to afford the alkynyl product **S40** as a white amorphous powder (173.6 mg, 80% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (br s, 1H), 7.39 (d, *J* = 9.0 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 3.77 (s, 3H), 2.46 (t, *J* = 7.2 Hz, 2H), 2.29 (td, *J* = 7.2, 2.7 Hz, 2H), 2.00 (t, *J* = 2.7 Hz, 1H), 1.94 – 1.87 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 156.4, 131.0, 121.9, 114.1, 83.5, 69.4, 55.5, 35.8, 24.1, 17.9. HRMS (ESI) *m/z* calcd. for C₁₃H₁₆NO₂ [M + H]⁺ 218.1176, found 218.1175.

2-(But-3-yn-1-yl)isoindoline-1,3-dione (S41)

To a mixture of isoindoline-1,3-dione (147.0 mg, 1.0 mmol, 1.0 equiv.) and K₂CO₃ (276.0 mg, 2.0 mmol, 2.0 equiv.) in DMF (5.0 mL) was added 4-bromobut-1-yne (158.4 mg, 1.2 mmol, 1.2 equiv.) under argon atmosphere and the resulting reaction mixture was stirred at room temperature overnight. Upon completion, the reaction was quenched by water and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and

concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the product **S41** as a white amorphous powder (161.1 mg, 81% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 7.78 – 7.68 (m, 2H), 3.97 – 3.79 (m, 2H), 2.69 – 2.55 (m, 2H), 1.97 (t, *J* = 2.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 134.0, 132.0, 123.4, 80.3, 70.3, 36.5, 18.3. HRMS (ESI) *m/z* calcd. for C₁₂H₁₀NO₂ [M + H]⁺ 200.0706, found 200.0706.

2,2-Diphenylpent-4-ynenitrile (S43)

S43 was synthesized as a white solid (1.12 g, 97% yield) with 2,2-diphenylacetonitrile (0.97 g, 5.0 mmol) according to reported literature¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 10H), 3.25 (s, 2H), 2.12 (s, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 138.9, 128.9, 128.4, 127.1, 121.6, 78.3, 73.3, 51.2, 30.9. HRMS (ESI) m/z calcd. for C₁₇H₁₄N [M + H]⁺ 232.1121, found 232.1119.

(Prop-2-yn-1-yloxy)benzene (S47)

To a mixture of phenol (94.0 mg, 1.0 mmol, 1.0 equiv.) and K_2CO_3 (276.0 mg, 2.0 mmol, 2.0 equiv.) in DMF (5.0 mL) was added propargyl bromide (142.8 mg, 1.2 mmol, 1.2 equiv.) under argon atmosphere and the resulting reaction mixture was stirred at room temperature overnight. Upon completion, the reaction was quenched by water and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1) to afford the product **S47** as a yellow oil (120.1 mg, 91% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 2H), 7.11 – 6.95 (m, 3H), 4.73 (d, *J* = 2.4 Hz, 2H), 2.55 (t, *J* = 2.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.6, 129.5, 121.6, 114.9, 78.7, 75.5, 55.8. HRMS (ESI) *m/z* calcd. for C₉H₉O [M + H]⁺ 133.0648, found 133.0649.

(4-(*tert*-Butyl)phenyl)(prop-2-yn-1-yl)sulfane (S48)

To a mixture of 4-(*tert*-butyl)benzenethiol (166.0 mg, 1.0 mmol, 1.0 equiv.) and K₂CO₃ (276.0 mg, 2.0 mmol, 2.0 equiv.) in DMF (5.0 mL) was added propargyl bromide (142.8 mg, 1.2 mmol, 1.2 equiv.) under argon atmosphere and the resulting reaction mixture was stirred at room temperature overnight. Upon completion, the reaction was quenched by water and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1) to afford the product **S48** as a yellow oil (179.5 mg, 88% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.55 (m, 1H), 7.48 – 7.41 (m, 1H), 7.26 – 7.18 (m, 2H), 3.67 (d, *J* = 2.7 Hz, 2H), 2.27 (t, *J* = 2.7 Hz, 1H), 1.55 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 150.4, 134.3, 133.2, 127.1, 126.64, 126.60, 79.8, 71.7, 36.6, 30.7, 24.5.

HRMS (ESI) m/z calcd. for C₁₃H₁₇S [M + H]⁺ 205.1045, found 205.1045.

The synthesis of alkyl halide substrates

General procedure 3:

To a solution of ketone (3.0 mmol, 1.0 equiv.) in EtOH (9.0 mL) was added NaBH₄ (136.8 mg, 3.6 mmol, 1.2 equiv.) at 0 °C and the reaction mixture was stirred at room temperature for 0.5 - 2 h. After completion of reaction (monitored by TLC), the reaction was quenched by water, diluted with CH₂Cl₂, and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the corresponding alcohol, which was directly used in the next step without further purfication. To a solution of the residue obtained above in CH₂Cl₂ (9.0 mL) was added PBr₃ (0.20 mL, 2.1 mmol, 0.70 equiv.) under argon atmosphere at 0 °C and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine,

filtered by a pad of silica gel, and concentrated under reduced pressure to afford the corresponding crude alkyl bromide, which was directly used in the next step without further purification or stored in a refridgerator. (The product readily decomposed in air or on silica gel).

(1-Bromopropyl)benzene (S2)

According to General procedure 3 with propiophenone (0.40 g, 3.0 mmol, 1.0 equiv.), S2 was obtained as a colorless oil (0.56 g, 94% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.24 (m, 1H), 4.88 (t, *J* = 7.4 Hz, 1H), 2.36 – 2.23 (m, 1H), 2.22 – 2.10 (m, 1H), 1.00 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 128.8, 128.4, 127.4, 57.7, 33.4, 13.1.

HRMS (ESI) m/z calcd. for C₉H₁₁ [M – Br]⁺ 119.0855, found 119.0853.

(1-Bromobutyl)benzene (S57)

According to **General procedure 3** with 1-phenylbutan-1-one (0.44 g, 3.0 mmol, 1.0 equiv.), **S57** was obtained as a colorless oil (0.61 g, 95% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.24 (m, 1H), 4.97 (t, *J* = 7.6 Hz, 1H), 2.34 – 2.21 (m, 1H), 2.17 – 2.04 (m, 1H), 1.58 – 1.42 (m, 1H), 1.41 – 1.24 (m, 1H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.4, 128.8, 128.4, 127.4, 55.6, 42.1, 21.6, 13.5. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₃ [M – Br]⁺ 133.1012, found 133.1009.

(1-Bromopentyl)benzene (S58)

According to **General procedure 3** with 1-phenylpentan-1-one (0.49 g, 3.0 mmol, 1.0 equiv.), **S58** was obtained as a colorless oil (0.63 g, 93% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.28 (m, 2H), 7.28 – 7.22 (m, 1H), 4.94 (dd, J = 8.4, 7.2 Hz, 1H), 2.33 – 2.22 (m, 1H), 2.18 – 2.07 (m, 1H), 1.50 – 1.39 (m, 1H), 1.38 – 1.31 (m, 2H), 1.29 – 1.22 (m, 1H), 0.88 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 128.7, 128.3, 127.3, 55.9, 39.8, 30.5, 22.1, 14.0.

HRMS (ESI) m/z calcd. for C₁₁H₁₅ [M – Br]⁺ 147.1168, found 147.1167.

(1-Bromohexyl)benzene (S59)

According to **General procedure 3** with 1-phenylhexan-1-one (0.53 g, 3.0 mmol, 1.0 equiv.), **S59** was obtained as a colorless oil (0.66 g, 92% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.29 (m, 1H), 5.00 (dd, J = 8.0, 6.8 Hz, 1H), 2.40 – 2.26 (m, 1H), 2.24 – 2.12 (m, 1H), 1.60 – 1.44 (m, 1H), 1.42 – 1.28 (m, 5H), 0.96 – 0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 128.7, 128.3, 127.3, 55.9, 40.1, 31.2, 28.0, 22.5, 14.1. HRMS (ESI) *m/z* calcd. for C₁₂H₁₇ [M – Br]⁺ 161.1325, found 161.1325.

(1-Bromoethane-1,2-diyl)dibenzene (S60)

According to **General procedure 3** with 1,2-diphenylethan-1-one (0.59 g, 3.0 mmol, 1.0 equiv.), **S60** was obtained as a colorless oil (0.64 g, 82% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.28 – 7.14 (m, 6H), 7.10 – 7.05 (m, 2H), 5.10 (t, *J* = 7.6 Hz, 1H), 3.52 (dd, *J* = 14.1, 7.8 Hz, 1H), 3.44 (dd, *J* = 14.1, 7.4 Hz, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 141.5, 138.1, 129.3, 128.7, 128.4, 127.6, 126.9, 55.6, 46.5.

HRMS (ESI) m/z calcd. for C₁₄H₁₃ [M – Br]⁺ 181.1012, found 181.1011.

(1-Bromopropane-1,3-diyl)dibenzene (S61)

According to **General procedure 3** with 1,3-diphenylpropan-1-one (0.63 g, 3.0 mmol, 1.0 equiv.), **S61** was obtained as a colorless oil (0.71 g, 86% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.22 (m, 6H), 7.19 – 7.11 (m, 4H), 4.87 (dd, *J* = 8.4, 6.4 Hz, 1H), 2.81 – 2.72 (m, 1H), 2.71 – 2.61 (m, 1H), 2.60 – 2.52 (m, 1H), 2.44 – 2.34 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.0, 140.5, 128.8, 128.6, 128.5, 127.4, 126.3, 54.8, 41.4, 34.3. **HRMS** (ESI) *m/z* calcd. for C₁₅H₁₅ [M – Br]⁺ 195.1168, found 195.1168.

(1-Bromo-3-methylbutyl)benzene (S63)

According to **General procedure 3** with 3-methyl-1-phenylbutan-1-one (0.49 g, 3.0 mmol, 1.0 equiv.), **S63** was obtained as a colorless oil (0.61 g, 90% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 5.03 (dd, J = 8.4, 7.2 Hz, 1H), 2.26 – 2.12 (m, 1H), 2.02 – 1.89 (m, 1H), 1.76 – 1.61 (m, 1H), 0.91 (d, J = 5.6 Hz, 3H), 0.90 (d, J = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 128.7, 128.3, 127.3, 54.1, 48.8, 26.8, 22.3, 22.0.

HRMS (ESI) m/z calcd. for C₁₁H₁₅ [M – Br]⁺ 147.1168, found 147.1168.

(1-Bromo-2-methylpropyl)benzene (S64)

According to **General procedure 3** with 2-methyl-1-phenylpropan-1-one (0.44 g, 3.0 mmol, 1.0 equiv.), **S64** was obtained as a colorless oil (0.58 g, 91% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.27 – 7.24 (m, 1H), 4.71 (d, *J* = 8.4 Hz, 1H), 2.39 – 2.24 (m, 1H), 1.19 (d, *J* = 6.4 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.7, 128.5, 128.1, 127.9, 64.4, 36.7, 21.7, 20.6. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₃ [M – Br]⁺ 133.1012, found 133.1013.

(1-Bromo-2,2-dimethylpropyl)benzene (S65)

According to **General procedure 3** with 2,2-dimethyl-1-phenylpropan-1-one (0.49 g, 3.0 mmol, 1.0 equiv.), **S65** was obtained as a colorless oil (0.55 g, 81% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.29 – 7.27 (m, 1H), 7.25 – 7.21 (m, 2H), 4.84 (s, 1H), 1.06 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 140.2, 129.2, 127.9, 127.7, 69.1, 37.1, 27.7.

HRMS (ESI) m/z calcd. for C₁₁H₁₅ [M – Br]⁺ 147.1168, found 147.1168.

According to **General procedure 3** with cyclobutyl(phenyl)methanone (0.48 g, 3.0 mmol, 1.0 equiv.), **S66** was obtained as a colorless oil (0.59 g, 88% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.27 (m, 1H), 4.96 (d, *J* = 10.8 Hz, 1H), 3.24 – 3.08 (m, 1H), 2.41 – 2.27 (m, 1H), 2.10 – 1.96 (m, 1H), 1.94 – 1.75 (m, 3H), 1.70 – 1.59 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 128.7, 128.4, 127.7, 61.8, 43.1, 28.7, 27.0, 16.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₃ [M – Br]⁺ 145.1012, found 145.1012.

(Bromo(cyclopentyl)methyl)benzene (S67)

According to **General procedure 3** with cyclopentyl(phenyl)methanone (0.52 g, 3.0 mmol, 1.0 equiv.), **S67** was obtained as a colorless oil (0.61 g, 85% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.32 – 7.26 (m, 2H), 7.26 – 7.20 (m, 1H), 4.76 (d, *J* = 10.0 Hz, 1H), 2.81 – 2.62 (m, 1H), 2.23 – 2.06 (m, 1H), 1.75 – 1.38 (m, 6H), 1.12 – 0.93 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.5, 128.6, 128.1, 127.6, 61.9, 48.6, 33.5, 31.5, 26.1, 25.2. HRMS (ESI) *m/z* calcd. for C₁₂H₁₅ [M – Br]⁺ 159.1168, found 159.1169.

(Bromo(cyclohexyl)methyl)benzene (S68)

According to General procedure 3 with cyclohexyl(phenyl)methanone (0.56 g, 3.0 mmol, 1.0 equiv.), S68 was obtained as a white solid (0.68 g, 90% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.35 – 7.30 (m, 1H), 4.80 (d, *J* = 8.8 Hz, 1H), 2.47 – 2.34 (m, 1H), 2.13 – 1.98 (m, 1H), 1.95 – 1.83 (m, 1H), 1.80 – 1.64 (m, 2H), 1.63 – 1.52 (m, 1H), 1.44 – 1.08 (m, 4H), 1.00 – 0.86 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 128.4, 128.0, 127.9, 63.3, 45.5, 32.2, 31.0, 26.2, 26.1, 26.0. HRMS (ESI) *m/z* calcd. for C₁₃H₁₇ [M – Br]⁺ 173.1325, found 173.1325.

Ethyl 3-bromo-3-phenylpropanoate (S71)

According to **General procedure 3** with ethyl 3-oxo-3-phenylpropanoate (0.58 g, 3.0 mmol, 1.0 equiv.), **S71** was obtained as a colorless oil (0.63 g, 82% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.39 (m, 2H), 7.37 – 7.24 (m, 3H), 5.40 (dd, *J* = 8.8, 6.0 Hz, 1H), 4.20 – 4.05 (m, 2H), 3.33 (dd, *J* = 16.1, 9.0 Hz, 1H), 3.18 (dd, *J* = 16.1, 6.2 Hz, 1H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 140.8, 128.83, 128.75, 127.2, 61.1, 48.1, 44.9, 14.2. HRMS (ESI) *m/z* calcd. for C₁₁H₁₄BrO₂ [M + H]⁺ 257.0172, found 257.0170. HRMS (ESI) *m/z* calcd. for C₁₁H₁₃O₂ [M - Br]⁺ 177.0910, found 177.0910.

Ethyl 4-bromo-4-phenylbutanoate (S72)

According to **General procedure 3** with ethyl 4-oxo-4-phenylbutanoate (0.62 g, 3.0 mmol, 1.0 equiv.), **S72** was obtained as a colorless oil (0.69 g, 85% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.26 (m, 1H), 5.07 – 5.00 (m, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 2.66 – 2.31 (m, 4H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.5, 141.6, 128.9, 128.6, 127.4, 60.7, 54.4, 35.1, 32.9, 14.3.

HRMS (ESI) m/z calcd. for C₁₂H₁₆BrO₂ [M + H]⁺ 271.0328, found 271.0331.

HRMS (ESI) m/z calcd. for C₁₂H₁₅O₂ [M – Br]⁺ 191.1067, found 191.1065.

Ethyl 5-bromo-5-phenylpentanoate (S73)

S73

According to General procedure 3 with ethyl 5-oxo-5-phenylpentanoate (0.66 g, 3.0 mmol, 1.0 equiv.), **S73** was obtained as a colorless oil (0.75 g, 88% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 4.95 (dd, J = 8.0, 6.8 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 2.37 – 2.25 (m, 3H), 2.24 – 2.13 (m, 1H), 1.91 – 1.77 (m, 1H), 1.71 – 1.58 (m, 1H), 1.25 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 142.0, 128.8, 128.5, 127.3, 60.5, 54.9, 39.4, 33.5, 23.8, 14.4. HRMS (ESI) *m/z* calcd. for C₁₃H₁₇O₂ [M – Br]⁺ 205.1223, found 205.1222.

(1-Bromo-3-chloropropyl)benzene (S81)²

According to **General procedure 3** with 3-chloro-1-phenyl-1-propanone (0.51 g, 3.0 mmol, 1.0 equiv.), **S81** was obtained as a colorless oil (0.64 g, 92% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.25 (m, 5H), 5.21 (dd, *J* = 9.0, 5.7 Hz, 1H), 3.82 – 3.65 (m, 1H), 3.63 – 3.39 (m, 1H), 2.85 – 2.60 (m, 1H), 2.56 – 2.38 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.0, 129.0, 128.8, 127.5, 51.5, 42.9, 42.2. **HRMS** (ESI) m/z calcd. for C₉H₁₀Cl [M – Br]⁺ 153.0466, found 153.0466.

1-(1-Bromopropyl)-4-methylbenzene (S83)

According to **General procedure 3** with 1-(*p*-tolyl)propan-1-one (0.44 g, 3.0 mmol, 1.0 equiv.), **S83** was obtained as a colorless (0.57 g, 89% crude yield oil over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 4.86 (t, *J* = 7.4 Hz, 1H), 2.32 (s, 3H), 2.30 – 2.21 (m, 1H), 2.19 – 2.08 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 139.3, 138.2, 129.4, 127.3, 57.9, 33.3, 21.3, 13.2. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₃ [M – Br]⁺ 133.1012, found 133.1012.

1-(1-Bromopropyl)-3-methylbenzene (S84)

According to **General procedure 3** with 1-(*m*-tolyl)propan-1-one (0.44 g, 3.0 mmol, 1.0 equiv.), **S84** was obtained as a colorless oil (0.54 g, 85% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.12 (m, 3H), 7.07 – 7.02 (m, 1H), 4.82 (dd, *J* = 8.0, 6.8 Hz, 1H), 2.31 (s, 3H), 2.29 – 2.19 (m, 1H), 2.18 – 2.06 (m, 1H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.1, 138.3, 129.1, 128.5, 128.0, 124.4, 57.8, 33.3, 21.4, 13.1. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₃ [M – Br]⁺ 133.1012, found 133.1012.

1-(1-Bromopropyl)-2-methylbenzene (S85)

According to General procedure 3 with 1-(o-tolyl)propan-1-one (0.44 g, 3.0 mmol, 1.0 equiv.), S85 was obtained as a colorless oil (0.51 g, 80% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.0, 1.4 Hz, 1H), 7.24 – 7.10 (m, 3H), 5.12 (dd, J = 8.4, 6.8 Hz, 1H), 2.41 – 2.29 (m, 4H), 2.25 – 2.12 (m, 1H), 1.03 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.0, 135.5, 130.7, 128.2, 126.72, 126.70, 54.0, 32.2, 19.2, 13.2. HRMS (ESI) *m/z* calcd. for C₁₀H₁₃ [M – Br]⁺ 133.1012, found 133.1012.

1-Bromo-2-(1-bromoethyl)benzene (S91)

According to **General procedure 3** with 1-(2-bromophenyl)ethan-1-one (0.59 g, 3.0 mmol, 1.0 equiv.), **S91** was obtained as a colorless oil (0.70 g, 89% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.9, 1.7 Hz, 1H), 7.55 (dd, J = 8.0, 1.3 Hz, 1H), 7.35 (td, J = 7.6, 1.3 Hz, 1H), 7.16 – 7.12 (m, 1H), 5.61 (q, J = 6.9 Hz, 1H), 2.04 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.0, 133.2, 129. 8, 128.4, 128.2, 123.2, 47.6, 26.2. **HRMS** (ESI) m/z calcd. for C₈H₈Br [M – Br]⁺ 182.9804, found 182.9804.

Methyl 3-(1-bromoethyl)benzoate (894)³

According to **General procedure 3** with methyl 3-acetylbenzoate (0.53 g, 3.0 mmol, 1.0 equiv.), **S94** was obtained as a colorless oil (0.68 g, 93% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 5.23 (q, J = 6.9 Hz, 1H), 3.93 (s, 3H), 2.06 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 143.8, 131.6, 130.7, 129.6, 129.0, 128.0, 52.4, 48.4, 26.8. HRMS (ESI) *m/z* calcd. for C₁₀H₁₁O₂ [M – Br]⁺ 163.0754, found 163.0753.

3-(1-Bromoethyl)benzonitrile (S95)

According to General procedure 3 with 3-acetylbenzonitrile (0.44 g, 3.0 mmol, 1.0 equiv.), **S95** was obtained as a colorless oil (0.55 g, 88% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.67 – 7.63 (m, 1H), 7.58 – 7.54 (m, 1H), 7.47 – 7.42 (m, 1H), 5.15 (q, *J* = 6.9 Hz, 1H), 2.03 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.8, 131.9, 131.5, 130.5, 129.7, 118.4, 112.7, 46.9, 26.6. HRMS (ESI) *m/z* calcd. for C₉H₈N [M – Br]⁺ 130.0651, found 130.0652.

1-(1-Bromopropyl)-4-(trifluoromethyl)benzene (896)

According to **General procedure 3** with 1-(4-(trifluoromethyl)phenyl)propan-1-one (0.61 g, 3.0 mmol, 1.0 equiv.), **S96** was obtained as a colorless oil (0.75 g, 94% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 4.87 (dd, J = 8.4,

6.8 Hz, 1H), 2.34 - 2.22 (m, 1H), 2.20 - 2.07 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 146.1, 130.4 (q, *J* = 32.5 Hz), 128.1, 125.8 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 272.1 Hz), 55.7, 33.2, 12.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₀H₁₀F₃ [M – Br]⁺ 187.0729, found 187.0728.

2-(1-Bromoethyl)naphthalene (S98)

According to General procedure 3 with 1-(naphthalen-2-yl)ethan-1-one (0.51 g, 3.0 mmol, 1.0 equiv.), **S98** was obtained as a white solid (0.59 g, 84% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 – 7.77 (m, 4H), 7.59 (dd, J = 8.5, 1.9 Hz, 1H), 7.53 – 7.43 (m, 2H), 5.40 (q, J = 6.9 Hz, 1H), 2.14 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 133.3, 133.2, 128.8, 128.2, 127.8, 126.62, 126.60, 125.3, 125.2, 50.1, 26.9.

HRMS (ESI) m/z calcd. for C₁₂H₁₁ [M – Br]⁺ 155.0855, found 155.0855.

5-(1-Bromoethyl)benzo[d][1,3]dioxole (899)

According to **General procedure 3** with 1-(benzo[d][1,3]dioxol-5-yl)ethan-1-one (0.49 g, 3.0 mmol, 1.0 equiv.), **S99** was obtained as a slightly yellow oil (0.56 g, 82% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 6.90 (s, 1H), 6.86 – 6.73 (m, 2H), 5.95 (s, 2H), 4.81 (q, *J* = 6.4 Hz, 1H), 1.46 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 146.8, 140.0, 118.7, 108.1, 106.1, 101.0, 70.2, 25.1. HRMS (ESI) *m/z* calcd. for C₉H₉O₂ [M – Br]⁺ 119.0597, found 149.0597.

3-(1-Bromoethyl)thiophene (S105)

According to General procedure 3 with 1-(thiophen-3-yl)ethan-1-one (0.38 g, 3.0 mmol, 1.0 equiv.), S105 was obtained as a brown oil (0.43 g, 76% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 5.2, 2.8 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.21 (dd, J = 5.2, 1.2 Hz, 1H), 5.35 (q, J = 6.9 Hz, 1H), 2.09 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.4, 126.9, 126.4, 121.7, 44.4, 26.7.

HRMS (ESI) *m/z* calcd. for C₆H₇S [M – Br]⁺ 111.0263, found 111.0266.

4-(1-Bromoethyl)thiazole (S108)

According to General procedure 3 with 1-(thiazol-4-yl)ethan-1-one (0.38 g, 3.0 mmol, 1.0 equiv.),
S108 was obtained as a yellow oil (0.39 g, 68% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (d, *J* = 2.0 Hz, 1H), 7.34 (d, *J* = 2.0 Hz, 1H), 5.42 (q, *J* = 6.4 Hz, 1H), 2.14 (d, *J* = 6.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 153.3, 115.1, 42.9, 25.4. **HRMS** (ESI) *m*/*z* calcd. for C₅H₇BrNS [M + H]⁺ 191.9477, found 191.9476. **HRMS** (ESI) *m*/*z* calcd. for C₅H₆NS [M - Br]⁺ 112.0215, found 112.0218.

method a: PPh_3 , CBr_4 , THF, Ar, 0 °C to rt **method b:** PBr_3 , CH_2CI_2 , 0 °C to rt

General procedure 4:

To a solution of aldehyde in anhydrous THF (2.0 mL/mmol aldehyde) was slowly added ethylmagnesium bromide (1.0 M in THF, 1.2 equiv.) at 0 °C under argon atmosphere. Then, the reaction mixture was warmed up to room temperature and stirred until the aldehyde was completely consumed (monitored by TLC). The reaction was quenched by 3.0 M HCl and extracted with CH₂Cl₂ three times. The combined organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and briefly purified by column chromatography on silica gel to afford the desired alcohol, which was directly used in the next step without further purification. *Method a*: To a mixture of the crude alcohol obtained above and triphenylphosphine (1.8 equiv.) in THF (2.0 mL/mmol alcohol) was added carbon tetrabromide (1.5 equiv.) in one portion at 0 °C under argon atmosphere. After stirred at 0 °C for a while, the reaction mixture was allowed to warm to room temperature and stirred for another 25 min. The mixture was filtered through a pad of celite with THF as the eluent. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to provide the corresponding alkyl bromide product.

Method b: To a solution of the crude alcohol obtained above in CH₂Cl₂ (2.0 mL/mmol alcohol) was added PBr₃ (0.7 equiv.) with vigorous stirring at 0 °C and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered through a silica gel pad, and concentrated under reduced pressure to afford the corresponding crude alkyl bromide product, which was directly used in the next step without further purification or stored in a refrigerator unless otherwise noted. (The product usually readily decomposed in air and on silica gel.)

1-(1-Bromopropyl)-3-methoxybenzene (S86)

According to **General procedure 4** with 3-methoxybenzaldehyde (0.41 g, 3.0 mmol, 1.0 equiv.) and *Method b*, **S86** was obtained as a colorless oil (0.63 g, 92% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (t, J = 8.0 Hz, 1H), 7.07 – 6.94 (m, 2H), 6.90 – 6.83 (m, 1H), 4.88 (t, J = 7.2 Hz, 1H), 3.85 (s, 3H), 2.40 – 2.11 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 143.6, 129.7, 119.6, 113.7, 113.0, 57.4, 55.3, 33.3, 13.0. HRMS (ESI) m/z calcd. for C₁₀H₁₃O [M – Br]⁺ 149.0961, found 149.0961.

1-Bromo-4-(1-bromopropyl)benzene (S89)

According to **General procedure 4** with 4-bromobenzaldehyde (0.93 g, 5.0 mmol, 1.0 equiv.) and *Method b*, **S89** was obtained as a yellow oil (1.08 g, 78% crude yield over two steps). The analytic data are consistent with the reported ones⁴.

1-Bromo-3-(1-bromopropyl)benzene (S90)

According to **General procedure 4** with 3-bromobenzaldehyde (0.93 g, 5.0 mmol, 1.0 equiv.) and *Method b*, **S90** was obtained as a yellow oil (1.14 g, 82% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (t, *J* = 1.8 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.29 – 7.26 (m, 1H), 7.25 – 7.23 (m, 1H), 4.82 (dd, *J* = 8.1, 6.7 Hz, 1H), 2.35 – 2.06 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 131.4, 130.4, 130.3, 126.1, 122.6, 55.9, 33.2, 13.0. **HRMS** (ESI) *m/z* calcd. for C₉H₁₀Br [M – Br]⁺ 196.9960, found 196.9960.

1-(1-Bromopropyl)-3,5-bis(trifluoromethyl)benzene (S97)

According to **General procedure 4** with 3,5-bis(trifluoromethyl)benzaldehyde (0.73 g, 3.0 mmol, 1.0 equiv.) and *Method b*, **S97** was obtained as a colorless oil (0.95 g, 95% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.83 (s, 1H), 4.92 (dd, J = 8.3, 6.4 Hz, 1H), 2.39 – 2.28 (m, 1H), 2.24 – 2.14 (m, 1H), 1.07 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 132.1 (q, *J* = 33.5 Hz), 127.5, 123.1 (q, *J* = 272.8 Hz), 122.2 – 122.0 (m), 54.0, 33.1, 12.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) m/z calcd. for C₁₁H₉F₆ [M – Br]⁺ 255.0603, found 255.0603.

3-(1-Bromopropyl)pyridine (S101)

According to **General procedure 4** with nicotinaldehyde (0.32 g, 3.0 mmol, 1.0 equiv.) and *Method a*, **S101** was obtained as a slight yellow oil (0.48 g, 80% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (d, J = 2.0 Hz, 1H), 8.53 (dd, J = 4.8, 1.6 Hz, 1H), 7.75 (dt, J = 7.6, 1.8 Hz, 1H), 7.29 (dd, J = 7.6, 4.8 Hz, 1H), 4.87 (dd, J = 8.4, 6.8 Hz, 1H), 2.36 – 2.23 (m, 1H), 2.21 – 2.09 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.5, 148.6, 137.9, 134.9, 123.7, 54.0, 33.1, 12.9.

HRMS (ESI) m/z calcd. for C₈H₁₁BrN [M + H]⁺ 200.0069, found 200.0066.

HRMS (ESI) m/z calcd. for C₈H₁₀N [M – Br]⁺ 120.0808, found 120.0808.

3-(1-Bromopropyl)benzo[b]thiophene (S104)

According to **General procedure 4** with benzo[*b*]thiophene-3-carbaldehyde (0.49 g, 3.0 mmol, 1.0 equiv.) and *Method b*, **S104** was obtained as a yellow oil (0.53 g, 70% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.44 (s, 1H), 7.44 - 7.39 (m, 1H), 7.38 - 7.33 (m, 1H), 5.26 (dd, *J* = 8.3, 6.2 Hz, 1H), 2.52 - 2.29 (m, 2H), 1.11 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 137.0, 136.6, 124.8, 124.2, 124.0, 123.0, 122.5, 50.4, 31.6, 13.3.

HRMS (ESI) m/z calcd. for C₁₁H₁₁S [M – Br]⁺ 175.0576, found 175.0573.

3-(1-Bromopropyl)benzofuran (S106)

According to **General procedure 4** with benzofuran-3-carbaldehyde (0.44 g, 3.0 mmol, 1.0 equiv.) and *Method b*, **S106** was obtained as a yellow oil (0.52 g, 72% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 1H), 7.67 (s, 1H), 7.54 – 7.50 (m, 1H), 7.40 – 7.29 (m, 2H), 5.23 – 5.09 (m, 1H), 2.54 – 2.30 (m, 2H), 1.14 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 155.8, 141.8, 125.9, 125.0, 122.8, 122.4, 120.8, 111.8, 47.9, 31.9, 13.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₁O [M – Br]⁺ 159.0804, found 159.0802.

5-(1-Bromopropyl)pyrimidine (S109)

According to **General procedure 4** with pyrimidine-5-carbaldehyde (0.32 g, 3.0 mmol, 1.0 equiv.) and *Method a*, **S109** was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) as a slight yellow oil (0.29 g, 48% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.75 (s, 2H), 4.79 (dd, J = 8.2, 6.6 Hz, 1H), 2.35 – 2.22 (m, 1H), 2.21 – 2.08 (m, 1H), 1.04 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.3, 155.9, 136.0, 50.0, 32.8, 12.8.

HRMS (ESI) m/z calcd. for C₇H₁₀BrN₂ [M + H]⁺ 201.0022, found 201.0022.

HRMS (ESI) m/z calcd. for C₇H₉N₂ [M – Br]⁺ 121.0760, found 121.0762.

General procedure 5:

To a solution of ketone (5.0 mmol, 1.0 equiv.) in EtOH (20.0 mL) was added NaBH₄ (228.0 mg, 6.0 mmol, 1.2 equiv.) at room temperature for 0.5 - 2 h. After completion of reaction (monitored by TLC), the reaction was quenched by water, diluted with CH₂Cl₂, and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the corresponding alcohol, which was directly used in the next step without further purification

To a solution of the crude alcohol obtained above and triphenylphosphine (1.8 equiv.) in THF (2.0 mL/mmol alcohol) was added carbon tetrabromide (1.5 equiv.) in one portion at 0 °C under argon atmosphere and the resulting reaction mixture was stirred at 0 °C for 5 min. Then, the mixture was allowed to warm up to room temperature and stirred for another 2 h. The precipitate was filtered off through a pad of celite and washed by cold THF. The solution was concentrated under reduced pressure and purified by column chromatography on silica gel to provide the corresponding bromo compound.

2-Bromo-5-(1-bromoethyl)pyridine (S102)

According to **General procedure 5** with 1-(6-bromopyridin-3-yl)ethanone (1.0 g, 5.0 mmol, 1.0 equiv.), **S102** was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) as a colorless oil (1.1 g, 84% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 2.6 Hz, 1H), 7.65 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 1H), 5.13 (q, *J* = 7.0 Hz, 1H), 2.03 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.3, 141.8, 138.5, 137.3, 128.4, 44.3, 26.6.

HRMS (ESI) m/z calcd. for C₇H₈Br₂N [M + H]⁺ 263.9018, found 263.9017.

HRMS (ESI) m/z calcd. for C₇H₇BrN [M – Br]⁺ 183.9756, found 183.9756.

3-Bromo-5-(1-bromoethyl)pyridine (S103)

According to **General procedure 5** with 1-(5-bromopyridin-3-yl)ethanone (1.0 g, 5.0 mmol, 1.0 equiv.), **S103** was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) as a colorless oil (1.1 g, 82% yield over two steps).

1H NMR (400 MHz, CDCl3) δ 8.56 (dd, *J* = 12.2, 2.1 Hz, 2H), 7.91 (t, *J* = 2.0 Hz, 1H), 5.11 (q, *J* = 7.0 Hz, 1H), 2.03 (d, *J* = 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 150.7, 146.3, 140.6, 137.2, 120.9, 44.1, 26.6.

HRMS (ESI) m/z calcd. for C₇H₈Br₂N [M + H]⁺ 263.9018, found 263.9017.

HRMS (ESI) m/z calcd. for C₇H₇BrN $[M - Br]^+$ 183.9756, found 183.9756.

3-(1-Bromoethyl)quinolone (S107)

According to General procedure 5 with 1-(quinolin-3-yl)ethanone (0.86 g, 5.0 mmol, 1.0 equiv.), S107 was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) as a slight yellow oil (0.64 g, 54% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 2.3 Hz, 1H), 8.15 (d, J = 2.3 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.82 (dd, J = 8.2, 1.4 Hz, 1H), 7.72 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.57 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 5.39 (q, J = 7.0 Hz, 1H), 2.17 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.3, 147.8, 136.1, 133.1, 130.1, 129.4, 128.1, 127.6, 127.3, 46.0, 26.5.

HRMS (ESI) m/z calcd. for C₁₁H₁₀N [M – Br]⁺ 156.0808, found 156.0807.

General procedure 6:

To a solution of benzaldehyde (0.32 g, 3.0 mmol, 1.0 equiv.) in dry Et₂O (9.0 mL) was added appropriate Grignard reagent RMgBr (3.6 mmol, 1.2 equiv.) dropwise at 0 °C under argon atomsphere. The reaction mixture was warmed to room temperature and stirred for another 1 h until the aldehyde was completely consumed (monitored by TLC). After that, the reaction was quenched by 3.0 M HCl and extracted with CH_2Cl_2 three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product thus obtained was directly used in the next step without further purification.

To a solution of the crude alcohol obtained above in CH_2Cl_2 was added PBr₃ (0.7 equiv.) dropwise at 0 °C with vigorous stirring. The resulting reaction mixture was then stirred at 0 °C for 3 h. After

completion of reaction (monitored by TLC), the reaction was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered through a short silica gel pad, and concentrated under reduced pressure to afford the corresponding alkyl bromide, which was directly used in the next step without further purification.

(1-Bromobutane-1,4-diyl)dibenzene (S62)

According to **General procedure 6** with (3-phenylpropyl)magnesium bromide (3.6 mL, 3.6 mmol, 1.0 M in THF, 1.2 equiv.), **S62** was obtained as a colorless oil (0.78 g, 90% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.24 (m, 7H), 7.20 – 7.13 (m, 3H), 4.94 (dd, *J* = 8.0, 6.8 Hz, 1H), 2.63 (t, *J* = 7.6 Hz, 2H), 2.36 – 2.25 (m, 1H), 2.22 – 2.10 (m, 1H), 1.89 – 1.76 (m, 1H), 1.69 – 1.55 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 141.8, 128.8, 128.50, 128.49, 128.4, 127.4, 126.0, 55.5, 39.6, 35.2, 30.1.

HRMS (ESI) m/z calcd. for C₁₆H₁₇ [M – Br]⁺ 209.1325, found 209.1325.

(1-Bromobut-3-en-1-yl)benzene (S69)

According to **General procedure 6** with allylmagnesium bromide (3.6 mL, 3.6 mmol, 1.0 M in THF, 1.2 equiv.), **S69** was obtained as a colorless oil (0.60 g, 95% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.37 – 7.31 (m, 2H), 7.31 – 7.25 (m, 1H), 5.82 – 5.65 (m, 1H), 5.19 – 5.04 (m, 2H), 4.96 (dd, *J* = 8.0, 7.0 Hz, 1H), 3.12 – 2.86 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.7, 134.8, 128.8, 128.5, 127.5, 118.3, 54.2, 44.2. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₁ [M – Br]⁺ 131.0855, found 131.0856.

(1-Bromohex-5-en-1-yl)benzene (S70)

According to **General procedure 6** with pent-4-en-1-ylmagnesium bromide (3.6 mL, 3.6 mmol, 1.0 M in THF, 1.2 equiv.), **S70** was obtained as a colorless oil (0.63 g, 88% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 5.78 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.09 – 4.91 (m, 3H), 2.38 – 2.23 (m, 1H), 2.23 – 2.04 (m, 3H), 1.71 – 1.57 (m, 1H), 1.45 – 1.37 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 138.0, 128.7, 128.3, 127.3, 115.1, 55.5, 39.4, 33.0, 27.5.

HRMS (ESI) m/z calcd. for C₁₂H₁₅ [M – Br]⁺ 159.1168, found 159.1168.

General procedure 7:

To a solution of benzyl derivative (5.0 mmol, 1.0 equiv.) in CCl₄ (10.0 mL) were added *N*bromosuccinimide (0.89 g, 5.5 mmol, 1.1 equiv.) and benzoyl peroxide (36.3 mg, 0.15 mmol, 3.0 mol%) and then the resulting mixture was refluxed overnight. After completion of reaction (monitored by TLC), the reaction mixture was cooled to room temperature. The precipitate was filtered off through a pad of celite and washed with CCl₄ (10.0 mL). The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the corresponding alkyl bromide product.

(1,3-Dibromopropyl)benzene (S80)

According to **General procedure 7** with (3-bromopropyl)benzene (0.99 g, 5.0 mmol, 1.0 equiv.), **S80** was obtained by column chromatography on silica gel (petroleum ether) as a colorless oil (1.2 g, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 5.33 – 5.03 (m, 1H), 3.62 – 3.50 (m, 1H), 3.49 – 3.39 (m, 1H), 2.85 – 2.73 (m, 1H), 2.63 – 2.48 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.9, 129.0, 128.9, 127.5, 52.6, 42.2, 31.1.

HRMS (ESI) m/z calcd. for C₉H₁₀Br [M – Br]⁺ 196.9960, found 196.9962.

3-(1-Bromoethyl)benzaldehyde (S92)

According to **General procedure 7** with 3-ethylbenzaldehyde (0.67 g, 5.0 mmol, 1.0 equiv.), **S92** was obtained by column chromatography on silica gel (petroleum ether) as a colorless oil (0.93 g, 88% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.94 (t, *J* = 1.8 Hz, 1H), 7.80 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 5.24 (q, *J* = 6.9 Hz, 1H), 2.07 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 144.5, 136.9, 133.1, 129.9, 129.6, 127.7, 47.9, 26.8.

HRMS (ESI) m/z calcd. for C₉H₁₀BrO [M + H]⁺ 212.9910, found 212.9908.

HRMS (ESI) m/z calcd. for C₉H₉O [M – Br]⁺ 133.0648, found 133.0648.

To a stirred solution of **S75-1** (1.1 g, 6.3 mmol, 1.0 equiv.) in dry Et₂O (30.0 mL) was added dropwise phenylmagnesium bromide (6.3 mL, 2.5 M in THF, 15.8 mmol, 2.5 equiv.) at 0 °C under argon atmosphere and the resulting reaction mixture was stirred at room temperature for another 3 h. The reaction was quenched by 2.0 M HCl and extracted with Et₂O three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethhyl acetate = 10/1) to afford compound **S74-1** (1.2 g, 75% yield). The analytic data are consistent with the reported one⁵.

According to *Method b* of General procedure 4 with S74-1 (0.76 g, 3.0 mmol, 1.0 equiv.), S74 was obtained as a white solid (0.80 g, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 2H), 7.59 – 7.53 (m, 1H), 7.49 – 7.39 (m, 4H), 7.37 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 5.05 – 4.97 (m, 1H), 3.01 (t, *J* = 7.1 Hz, 2H), 2.46 – 2.17 (m, 2H), 2.01 – 1.90 (m, 1H), 1.85 – 1.71 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 199.6, 142.0, 136.9, 133.2, 128.9, 128.8, 128.5, 128.1, 127.4, 55.2, 39.5, 37.7, 23.0.

HRMS (ESI) m/z calcd. for C₁₇H₁₇O [M – Br]⁺ 237.1274, found 237.1272.

S75-2 was synthesized according to reported literature⁶.

5-Bromo-5-phenylpentanenitrile (S75)

According to General procedure 3 with S75-2 (0.52 g, 3.0 mmol, 1.0 equiv.), S75 was obtained as a colorless oil (0.63 g, 88% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 4H), 7.32 – 7.28 (m, 1H), 4.94 (dd, J = 8.4, 6.0 Hz, 1H), 2.46 – 2.35 (m, 3H), 2.33 – 2.22 (m, 1H), 1.98 – 1.84 (m, 1H), 1.76 – 1.62 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.3, 128.9, 128.7, 127.2, 119.1, 53.8, 38.7, 24.2, 16.6. **HRMS** (ESI) *m/z* calcd. for C₁₁H₁₃BrN [M + H]⁺ 238.0226, found 238.0224. **HRMS** (ESI) *m/z* calcd. for C₁₁H₁₂N [M – Br]⁺ 158.0964, found 158.0964.

The synthesis of substrate S76

S76-3 was synthesized according to reported literature⁷.

To a solution of alcohol **S76-3** (2.1 g, 12.0 mmol, 1.0 equiv.) in a mixture of CH₂Cl₂ (40.0 mL) and DMSO (8.0 mL) was added 2-iodoxybenzoic acid (4.0 g, 14.4 mmol, 1.0 equiv.) and the reaction mixture was stirred at 50 °C for 2 h. After completion of reaction (monitored by TLC), the reaction mixture was quenched with water, filtered on a pad of celite, and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to afford aldehyde **S76-2** as a colorless liquid (1.4 g, 67% yield). The analytical data are consistent with the reported ones⁸.

4-(5,5-Dimethyl-1,3-dioxan-2-yl)-1-phenylbutan-1-ol (S76-1)

According to General procedure 4 with phenylmagnesium bromide (3.0 M in THF, 2.4 mL, 1.2 equiv.), **S76-1** was obtained as a colorless oil (0.98 g, 62% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.27 – 7.21 (m, 1H), 4.69 (td, *J* = 6.4, 2.8 Hz, 1H), 4.45 (t, *J* = 4.6 Hz, 1H), 3.68 – 3.53 (m, 2H), 3.41 (d, *J* = 10.7 Hz, 2H), 2.88 (d, *J* = 3.2 Hz, 1H), 1.93 – 1.86 (m, 2H), 1.84 – 1.64 (m, 2H), 1.18 (s, 3H), 0.71 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.9, 128.4, 127.4, 125.9, 101.9, 77.3, 74.2, 33.4, 31.2, 30.2, 23.1, 21.9.

2-(4-Bromo-4-phenylbutyl)-5,5-dimethyl-1,3-dioxane (S76)

According to Method a of General procedure 4 with S76-2 (0.79 g, 3.0 mmol, 1.0 equiv.),

triphenylphosphine (0.94 g, 3.6 mmol, 1.2 equiv.), and carbon tetrabromide (1.19 g, 3.6 mmol, 1.2 equiv.) in CH₂Cl₂ (20.0 mL), **S76** was obtained as a coloreless oil (0.62 g, 64% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.24 (m, 5H), 5.03 – 4.96 (m, 1H), 4.45 (t, *J* = 4.7 Hz, 1H), 3.62 – 3.54 (m, 2H), 3.39 (d, *J* = 11.1 Hz, 2H), 2.49 – 2.25 (m, 2H), 1.90 – 1.79 (m, 1H), 1.71 – 1.63 (m, 1H), 1.17 (s, 3H), 0.71 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.2, 128.8, 128.4, 127.4, 101.2, 77.3, 55.6, 34.4, 33.6, 30.2, 23.1, 21.9.

HRMS (ESI) m/z calcd. for C₁₅H₂₁O₂ $[M - Br]^+$ 233.1536, found 233.1534.

The synthesis of substrate S77

S77-2 was synthesized according to reported literature^{9,10}. **S77-1** was synthesized according to reported literature¹¹.

(4-Bromo-4-phenylbutoxy)(tert-butyl)diphenylsilane (S77)

According to *Method a* of General procedure 4 with S77-1 (1.2 g, 3.0 mmol, 1.0 equiv.), triphenylphosphine (0.94 g, 3.6 mmol, 1.2 equiv.), and carbon tetrabromide (1.2 g, 3.6 mmol, 1.2 equiv.), S77 was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) as a coloreless oil (0.84 g, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.64 (m, 4H), 7.48 – 7.29 (m, 11H), 5.05 – 4.92 (m, 1H) 3.79 – 3.63 (m, 2H), 2.46 – 2.24 (m, 2H), 1.83 – 1.69 (m, 1H), 1.67 – 1.51 (m, 1H), 1.08 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3, 135.7, 133.9, 129.8, 128.8, 128.4, 127.8, 127.4, 63.1, 55.6, 36.6, 31.2, 27.0, 19.3.

HRMS (ESI) m/z calcd. for C₂₆H₃₁OSi [M – Br]⁺ 387.2139, found 387.2137.

The synthesis of S78

4-Methoxy-1-phenylbutan-1-ol (S78-1)

To a mixture of diol (0.83 g, 5.0 mmol, 1.0 equiv.) in iodomethane (15.0 mL) was added Ag₂O (3.5 g, 15.0 mmol, 3.0 equiv.) in one portion and the resulting reaction mixture was stirred at room temperature overnight. After completion of reaction (monitored by TLC), the reaction mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 6/1) to afford **S78-1** as a colorless liquid (0.45 g, 50% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.26 – 7.21 (m, 1H), 4.64 (td, *J* = 6.4, 3.1 Hz, 1H), 3.38 (t, *J* = 6.1 Hz, 2H), 3.30 (s, 3H), 3.18 (d, *J* = 3.3 Hz, 1H), 1.82 – 1.76 (m, 2H), 1.74 – 1.53 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.9, 128.4, 127.3, 125.9, 74.1, 72.8, 58.6, 36.5, 26.2.

(1-Bromo-4-methoxybutyl)benzene (S78)

According to *Method b* of General procedure 4 with S78-1 (0.36 g, 2.0 mmol, 1.0 equiv.), S78 was obtained as a colorless oil (0.48 g, 98% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 1H), 4.98 (dd, J = 8.4, 6.7 Hz, 1H), 3.44 – 3.36 (m, 2H), 3.31 (s, 3H), 2.42 – 2.18 (m, 2H), 1.84 – 1.71 (m, 1H), 1.66 – 1.52 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 128.8, 128.5, 127.4, 71.9, 58.7, 55.6, 36.9, 28.5. HRMS (ESI) *m/z* calcd. for C₁₁H₁₅O [M – Br]⁺ 163.1117, found 163.1110.

The synthesis of S79

S79-1 was synthesized according to reported literature¹².

(1-Bromo-3-(phenylsulfonyl)propyl)benzene (S79)

According to *Method b* of General procedure 4 with **S79-1** (0.83 g, 3.0 mmol, 1.0 equiv.), **S79** was obtained as a colorless oil (0.96 g, 95% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.71 – 7.64 (m, 1H), 7.61 – 7.55 (m, 2H), 7.36 – 7.27 (m, 5H), 5.00 (dd, J = 8.7, 6.3 Hz, 1H), 3.41 – 3.26 (m, 1H), 3.25 – 3.07 (m, 1H), 2.75 –

2.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 139.0, 134.1, 129.6, 129.1, 129.0, 128.1, 127.3, 54.8, 52.1, 33.1. HRMS (ESI) *m/z* calcd. for C₁₅H₁₅O₂S [M – Br]⁺ 259.0787, found 259.0785.

The synthesis of substrate(S82)

(Bromo(phenyl)methyl)trimethylsilane (S82)

TMS

Br

To a solution of commercially available lithium diisopropylamide (LDA) (4.0 mL, 8.0 mmol, 1.0 equiv., 2.0 M in THF/heptane/ethylbenzene) in anhydrous THF (4.0 mL) and hexane (4.0 mL) was added a solution of benzyl bromide (1.37 g, 8.0 mmol, 1.0 equiv.) and chlorotrimethylsilane (TMSCl) (1.04 g, 9.6 mmol, 1.2 equiv.) in anhydrous THF (4.0 mL) at -100 °C. The resulting mixture was stirred under the same conditions for another 1 h before warmed up to -20 °C. Then, the reaction was quenched by water and the organic phase was separated. The aqueous phase was extracted with Et₂O three times. The combined organic phase was washed with 2.0 M HCl and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by distillation under reduced pressure to afford **S82** as a colorless oil (1.05 g, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.06 (m, 5H), 4.17 (s, 1H), 0.00 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 128.4, 128.0, 126.8, 43.8, –2.8.

The synthesis of substrate (S87)

S87-2 was synthesized according to reported literature¹³.

N-(3-(1-Bromoethyl)phenyl)acetamide (S87)

According to **General procedure 3** with *N*-(3-acetylphenyl)acetamide **S87-2** (0.53 g, 3.0 mmol, 1.0 equiv.), **S87** was obtained as a colorless oil (0.42 g, 58% crude yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.52 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.33 – 7.24 (m, 1H), 7.18 (d, *J* = 7.7 Hz, 1H), 5.16 (q, *J* = 6.9 Hz, 1H), 2.18 (s, 3H), 2.02 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.5, 144.1, 138.2, 129.3, 122.8, 120.2, 118.7, 49.3, 26. 8, 24.4. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₂NO [M – Br]⁺ 162.0913, found 162.0912.

The synthesis of S88

S88-1 was synthesized according to reported literature¹⁴.

3-(1-Bromoethyl)phenyl acetate (S88)

According to General procedure 7 with S88-1 (0.82 g, 5.0 mmol, 1.0 equiv.), S88 was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) as a colorless oil (1.0 g, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 2H), 7.18 (t, *J* = 2.0 Hz, 1H), 7.05 – 7.00 (m, 1H), 5.18 (q, *J* = 6.9 Hz, 1H), 2.30 (s, 3H), 2.03 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 150.8, 144.9, 129.7, 124.4, 121.7, 120.2, 48.4, 26.8, 21.2. HRMS (ESI) *m/z* calcd. for C₁₀H₁₁O₂ [M – Br]⁺ 163.0754, found 163.0753.

The synthesis of S93

S93-1 was synthesized according to reported literature¹⁵.

1-(3-(1-Bromoethyl)phenyl)ethan-1-one (S93)

According to General procedure 3 with 1,1'-(1,3-phenylene)diethanone **S93-1** (0.82 g, 5.0 mmol, 1.0 equiv.), **S93** was obtained as a colorless oil (1.0 g, 89% crude yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (t, *J* = 1.8 Hz, 1H), 7.86 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.65 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 5.23 (q, *J* = 6.9 Hz, 1H), 2.61 (s, 3H), 2.06 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.7, 144.0, 137.6, 131.7, 129.2, 128.4, 126.5, 48.5, 26.84, 26.82. HRMS (ESI) *m/z* calcd. for C₁₀H₁₂BrO [M + H]⁺ 227.0066, found 227.0066.

HRMS (ESI) m/z calcd. for C₁₀H₁₁O [M – Br]⁺ 147.0804, found 147.0804.

The synthesis of S100

S100-1 (4.8 g, 56% yield) was synthesized according to reported literature¹⁶.

1-(4-(1-Bromopropyl)phenyl)-1*H*-pyrazole (S100)

According to *Method b* of General procedure 4 with 4-(1*H*-pyrazol-1-yl)benzaldehyde S100-1 (0.86 g, 5.0 mmol, 1.0 equiv.), S100 was obtained as a slight yellow oil (1.1 g, 86% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 2.4 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 6.49 (t, J = 2.4 Hz, 1H), 4.93 (t, J = 7.2 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.27 – 2.14 (m, 1H), 1.04 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.3, 140.3, 139.8, 128.5, 126.7, 119.3, 107.8, 56.6, 33.3, 13.0. **HRMS** (ESI) *m/z* calcd. for C₁₂H₁₄BrN₂ [M + H]⁺ 265.0335, found 265.0332.

HRMS (ESI) m/z calcd. for C₁₂H₁₃N₂ [M – Br]⁺ 185.1073, found 185.1072.

The synthesis of S110

To a solution of cyclopropylphenylmethanone (1.5 g, 10.0 mmol, 1.0 equiv.) in EtOH (40.0 mL) was added NaBH₄ (0.46 g, 12.0 mmol, 1.2 equiv.) and the mixture was stirred at room temperature for 3 h before cooled in an ice bath. The reaction was quenched by water, then most of the solvent was removed under reduced pressure, and the aqueous layer was extracted with CH₂Cl₂. The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford **S110-1** as a colorless oil (1.4 g, 94% crude yield). The analytical data are consistent with the reported ones¹⁷.

(Chloro(cyclopropyl)methyl)benzene (S110)

To a solution of cyclopropyl(phenyl)methanol (0.89 g, 6.0 mmol, 1.0 equiv.) in CH₂Cl₂ (6.0 mL) was added dropwise chlorotrimethylsilane (2.60 mL, 30.0 mmol, 5.0 equiv.) at 0 °C under argon atmosphere. The reaction mixture was stirred at 0 °C for 1 h, quenched by water, and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over Na₂SO₄, and concentrated under reduced pressure to yield **S110** as a colorless oil (0.90 g, 90% crude yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.55 – 7.29 (m, 5H), 4.32 (d, *J* = 9.2 Hz, 1H), 1.66 – 1.51 (m, 1H), 0.90 – 0.80 (m, 1H), 0.76 – 0.66 (m, 1H), 0.65 – 0.56 (m, 1H), 0.50 – 0.39 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 141.8, 128.7, 128.3, 127.2, 69.1, 20.0, 6.6, 6.4. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₁ [M – Cl]⁺ 131.0855, found 131.0856.

(3-Bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane (S111)

S111 was synthesized according to reported literature¹⁸. ¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 4.49 (t, *J* = 6.7 Hz, 1H), 3.08 – 2.66 (m, 2H), 2.47 – 2.15 (m, 2H), 1.09 (s, 21H). ¹³**C** NMR (100 MHz, CDCl₃) δ 140.4, 128.7, 126.4, 105.7, 89.4, 41.6, 36.7, 33.6, 18.7, 11.3. HRMS (ESI) *m/z* calcd. for C₂₀H₃₁Si [M – Br]⁺ 299.2190, found 299.2189.

(3-Bromo-5-phenylpent-1-yn-1-yl)triethylsilane (S112)

S112 was synthesized according to reported literature¹⁸.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.30 – 7.22 (m, 3H), 4.52 (t, *J* = 6.8 Hz, 1H), 2.92 (t, *J* = 7.6 Hz, 2H), 2.46 – 2.26 (m, 2H), 1.07 (t, *J* = 7.9 Hz, 9H), 0.68 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 128.7, 126.4, 105.0, 90.2, 41.4, 36.6, 33.6, 7.6, 4.4. HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₅Si [M – Br]⁺ 257.1720, found 257.1719.

(3-Bromo-6,6-dimethylhept-4-yn-1-yl)benzene (S113)

S113 was synthesized according to reported literature¹⁸. ¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 2H), 7.23 – 7.16 (m, 3H), 4.48 (t, *J* = 6.7 Hz, 1H), 2.83 (t, *J* = 7.6 Hz, 2H), 2.44 – 2.04 (m, 2H), 1.23 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 140.5, 128.7, 128.6, 126.3, 96.8, 77.8, 41.9, 37.9, 33.6, 30.9, 27.7.

HRMS (ESI) m/z calcd. for C₁₅H₁₉ $[M - Br]^+$ 199.1481, found 199.1480.

The synthesis of S114

To a solution of 4-phenyl-1-butyne (0.80 mL, 7.7 mmol, 1.0 equiv.) in THF (20 mL) was added ^{*n*}BuLi (3.9 mL, 9.3 mmol, 1.2 equiv., 2.4 M in hexane) at -78 °C over 5 min. One hour later, 3-phenylpropanal (0.82 mL, 7.7mmol, 1.0 equiv.) was added dropwise to the mixture. Upon complete consumption of 4-phenyl-1-butyne as monitored by TLC, the reaction was quenched by the addition of a saturated ammonium chloride aqueous solution. The aqueous phase was extracted with EtOAc three times. Then the combined organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue thus obtained was purified by column chromatography on silica gel to afford **S114-1** as a colorless oil (1.9 g, 94% yield).

To a suspension of **S114-1** (1.1 g, 4.1 mmol, 1.0 equiv.) in THF (10 mL) was added LiAlH₄ (312 mg, 8.2 mmol, 2.0 equiv.) slowly at 0 °C. The reaction mixture was stirred at room temperature for 24 h and the reaction was quenched with Na₂SO₄· 10H₂O. The residue was then filtered and the organic solvent was removed under reduced pressure to afford **S114-2** as a colorless oil (1.02 g, 94% yield).

To a suspension of **S114-2** (1.02 g, 3.8 mmol, 1.0 equiv.) in CH_2Cl_2 (10 mL) was added PBr₃ (513 mg, 1.9 mmol, 0.5 equiv.) at 0 °C. The reaction mixture was stirred at room temperature for 2 h and then, quenched with water. The aqueous phase was extracted with CH_2Cl_2 three times. Then the combined organic layers was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Thus, crude **S114** was afforded as a colorless oil (1.06 g, 85% yield), which could be used in the next step without further purification.

(E)-(5-Bromohept-3-ene-1,7-diyl)dibenzene

S114

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.11 (m, 10H), 5.88 – 5.57 (m, 2H), 4.55 – 4.37 (m, 1H), 2.84 – 2.54 (m, 4H), 2.43 – 2.33 (m, 2H), 2.30 – 2.17 (m, 1H), 2.15 – 1.99 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.4, 140.7, 132.7, 132.2, 128.6, 128.5, 128.4, 126.2, 126.0, 55.4, 40.8, 35.3, 33.9, 33.7.

HRMS (ESI) m/z calcd. for C₁₉H₂₁ [M – Br]⁺ 249.1638, found 249.1634.

The synthesis of S115

To a mixture of cyclohexanecarbaldehyde (1.68 g, 15.0 mmol, 1.0 equiv.) and K_2CO_3 (0.41 g, 3.0 mmol, 0.2 equiv.) in Et₂O (30 ml) was added trimethylsilyl cyanide (1.63 g, 16.5 mmol, 1.1 equiv.) and the mixture was stirred at room temperature overnight. After completion (monitored by TLC), the reaction was quenched with saturated NaHCO₃ and extracted with Et₂O three times. The combined organic phase was washed with brine and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **S115-1** as a colorless oil (1.90 g, 91% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 4.25 (d, J = 6.4 Hz, 1H), 3.95 (br s, 1H), 1.96 – 1.63 (m, 6H), 1.34 – 1.02 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 119.5, 66.1, 42.1, 28.2, 27.9, 25.9, 25.4(3), 25.4(1).

2-Bromo-2-cyclohexylacetonitrile (S115)

To a solution of **S115-1** (0.70 g, 5.0 mmol, 1.0 equiv.) in CH₂Cl₂ (25 mL) were added triphenylphosphine dibromide (2.53 g, 6.0 mmol, 1.2 equiv.) and imidazole (0.41 g, 6.0 mmol, 1.2 equiv.) with vigorous stirring at 0 °C under argon,. Then the reaction was allowed to warm to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl and extracted with CH₂Cl₂ three times. The organic phase was washed with brine and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **S115** as a yellow oil (0.55 g, 55% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 4.21 (d, J = 5.7 Hz, 1H), 2.10 – 1.93 (m, 2H), 1.92 – 1.87 (m, 3H), 1.77 – 1.68 (m, 1H), 1.41 – 1.12 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 116.6, 42.7, 34.3, 30.4, 29.5, 25.6, 25.5.

The synthesis of S116 2-Bromo-*N*-methyl-*N*-phenylbutanamide (S116)

S116

A 100-mL flask was charged with *N*-methylaniline (2.17 mL, 20.0 mmol), evacuated, and backfilled with argon. The flask was cooled to 0 °C in an ice bath and then, Et₃N (3.06 mL, 22.0 mmol) and THF (40 mL) were added. The orange solution was stirred for 5 min and then, 2-bromobutyryl bromide (2.66 mL, 22.0 mmol) was added slowly via syringe, leading to the formation of a precipitate. The resulting suspension was stirred for 10 min at 0 °C, and then the reaction was quenched by the addition of ice/water. The mixture was extracted three times with Et₂O (40 mL), and the combined extracts were washed with brine, dried over sodium sulfate, and concentrated. The resulting oil was purified by column chromatography on silica gel (petroleum ether/ethyl acetate= 15/1) to afford the titled product **S116** as a colorless oil (4.61 g, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.36 (m, 3H), 7.29 (d, *J* = 7.6 Hz, 2H), 4.02 (t, *J* = 7.4 Hz, 1H), 3.31 (s, 3H), 2.25 – 2.05 (m, 1H), 2.02 – 1.85 (m, 1H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 143.0, 130.1, 128.5, 127.3, 45.9, 38.1, 28.7, 12.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₅BrNO [M + H]⁺ 256.0332, found 256.0328.

Asymmetric Sonogashira C(sp)–C(sp³) cross-coupling: Scope of alkynes

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 5.0 mol%), L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). Then, alkyl halide (0.30 mmol, 1.5 equiv.) and alkyne (0.20 mmol, 1.0 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 24 to 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by Et₂O or petroleum ether. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 5.0 mol%), L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). Then, alkyl halide (0.20 mmol, 1.0 equiv.) and alkyne (0.30 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 16 to 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by Et₂O or petroleum ether. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure C:

An oven-dried 25 mL Schlenk flask equipped with a magnetic stir bar was charged with CuTc (1.91 mg, 0.010 mmol, 5.0 mol%), L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), and Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.). The flask was evacuated with oil pump followed by the addition of a solution of alkyl bromide (0.20 mmol, 1.0 equiv.) in diethyl ether (4.0 mL) via syringe. Then, acetylene gas in a balloon was introduced into the flask via the side arm with a stopcock. Upon completion, the reaction mixture was stirred at room temperature for 18 h. After completion of reaction (monitored by TLC), the reaction mixture was diluted with petroleum ether, filtered on silica gel, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the corresponding product.

Note: Most of the products were unstable in neat state in air after purification, and should be stored in solvent (CH₂Cl₂ or Et₂O) at -10 °C. Their characterization by NMR, HPLC or HRMS should be done as soon as possible. Meanwhile, the reaction is sensitive to water and air, and thus, Schlenk tubes and the reagents must be dried prior to use.

The racemates of products were prepared following the same procedure described above using CuTc (1.9 mg, 0.010 mmol, 5.0 mol%) and L_{rac} (5.6 mg, 0.015 mmol, 7.5 mol%) as catalyst and ligand, respectively, at room temperature or 40 °C in anhydrous Et₂O (4.0 mL) for 24 to 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed with Et₂O, the filtrate was concentrated, and the residue was purified by column chromatography on silica gel to afford the desired product.

(*R*)-Pent-1-yne-1,3-diyldibenzene (2)

According to **General procedure B** with (1-bromopropyl)benzene **S2** (39.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **2** as a colorless oil (36.1 mg, 82% yield, 97% ee).

 $[\alpha]_{D}^{27} = -14$ (*c* 1.5, CH₂Cl₂).

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.57 min, t_R (major) = 15.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 3H), 7.43 (s, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.29 (m, 3H), 7.28 – 7.24 (m, 1H), 3.81 (t, *J* = 6.8 Hz, 1H), 2.00 – 1.79 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.0, 131.7, 128.4, 128.2, 127.7, 127.6, 126.7, 123.9, 91.5, 83.4, 40.0, 31.7, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₇ [M + H]⁺ 221.1325, found 221.1323.

(*R*)-1-Methoxy-4-(3-phenylpent-1-yn-1-yl)benzene (3)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-methoxybenzene S3 (26.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 3 as a colorless oil (33.0 mg, 66% yield, 95% ee).

 $[\alpha]_{\rm D}^{25} = -5.0$ (c 1.4, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_{R} (minor) = 18.67

min, $t_{\rm R}$ (major) = 19.31min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.87 – 6.77 (m, 2H), 3.80 (s, 3H), 3.79 – 3.74 (m, 1H), 1.93 – 1.77 (m, 2H), 1.05 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.2, 142.3, 133.0, 128.4, 127.6, 126.6, 116.0, 113.8, 89.9, 83.1, 55.3, 40.0, 31.8, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1429.

(*R*)-1-Methoxy-3-(3-phenylpent-1-yn-1-yl)benzene (4)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-3-methoxybenzene **S4** (26.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **4** as a colorless oil (47.0 mg, 94% yield, 96% ee).

 $[\alpha]_{D}^{27} = -6.5$ (*c* 2.9, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 8.78 min, t_R (major) = 10.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.43 (m, 2H), 7.43 – 7.35 (m, 2H), 7.32 – 7.22 (m, 2H), 7.10–7.07 (m, 1H), 7.07 – 7.00 (m, 1H), 6.93 – 6.86 (m, 1H), 3.91 – 3.76 (m, 1H), 3.84 (s, 3H), 2.06 – 1.77 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.9, 129.2, 128.4, 127.5, 126.6, 124.8, 124.2, 116.5, 114.3, 91.3, 83.2, 55.2, 39.9, 31.6, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1434.

(*R*)-1-Methoxy-2-(3-phenylpent-1-yn-1-yl)benzene (5)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-2-methoxybenzene **S5** (26.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **5** as a colorless oil (42.0 mg, 84% yield, 97% ee).

 $[\alpha]_{D}^{27} = -2.8 \ (c \ 3.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), *t*_R (minor) = 22.55 min, *t*_R (major) = 33.92 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.42 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.28 – 7.20 (m, 2H), 6.94 – 6.82 (m, 2H), 3.91 – 3.82 (m, 1H), 3.87 (s, 3H), 1.98 – 1.79 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.1, 142.1, 133.5, 129.0, 128.3, 127.6, 126.5, 120.3, 113.0, 110.6, 95.6, 79.6, 55.8, 40.2, 31.8, 11.7.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1433.

(*R*)-1-Methyl-4-(3-phenylpent-1-yn-1-yl)benzene (6)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-methylbenzene **S6** (23.2 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **6** as a colorless oil (36.6 mg, 78% yield, 97% ee).

 $[\alpha]_{D}^{27} = -11$ (*c* 1.7, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 26.02 min, t_R (major) = 30.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.8 Hz, 2H), 7.43 – 7.34 (m, 4H), 7.31 – 7.25 (m, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 3.83 (t, *J* = 7.0 Hz, 1H), 2.38 (s, 3H), 1.97 – 1.82 (m, 2H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.1, 137.7, 131.5, 128.9, 128.4, 127.5, 126.6, 120.7, 90.6, 83.4, 40.0, 31.7, 21.4, 11.8.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1481.

(*R*)-4-(3-Phenylpent-1-yn-1-yl)aniline (7)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 4-ethynylaniline **S7** (23.4 mg, 0.20 mmol, 1.0 equiv.) and after completion of reaction (monitored by TLC), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 7 as a colorless oil (41.0 mg, 87% yield, 97% ee).

 $[\alpha]_{D}^{27} = -18 (c 4.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 35.08 min, t_R (major) = 37.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.41 (m, 2H), 7.41 – 7.32 (m, 2H), 7.32 – 7.24 (m, 3H), 6.67 – 6.57 (m, 2H), 3.85 – 3.66 (m, 3H), 1.93 – 1.81 (m, 2H), 1.08 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.1, 142.4, 132.8, 128.3, 127.6, 126.5, 114.7, 113.4, 88.9, 83.6, 40.0, 31.8, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₈N [M + H]⁺ 236.1434, found 236.1432.

(*R*)-1-Fluoro-4-(3-phenylpent-1-yn-1-yl)benzene (8)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-fluorobenzene **S8** (24.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **8** as a colorless oil (39.6 mg, 83% yield, 96% ee).

 $[\alpha]_{D}^{27} = -19 (c \ 0.40, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 16.85 min, t_R (major) = 18.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 4H), 7.37 – 7.29 (m, 2H), 7.28 – 7.21 (m, 1H), 7.04 – 6.94 (m, 2H), 3.83 – 3.71 (m, 1H), 1.94 – 1.77 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.2 (d, *J* = 248.4 Hz), 141.9, 133.4 (d, *J* = 8.4 Hz), 128.4, 127.5, 126.7, 119.9 (d, *J* = 3.4 Hz), 115.4 (d, *J* = 22.1 Hz), 91.1 (d, *J* = 1.5 Hz), 82.2, 39.9, 31.6, 11.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –112.02 – –112.12 (m, 1F).

HRMS (ESI) m/z calcd. for C₁₇H₁₆F [M + H]⁺ 239.1231, found 239.1229.

(R)-1-Fluoro-3-(3-phenylpent-1-yn-1-yl)benzene (9)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-3-fluorobenzene **S9** (24.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **9** as a colorless oil (46.5 mg, 98% yield, 96% ee).

 $[\alpha]_{\rm D}^{27} = -13$ (c 1.5, CH₂Cl₂).

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 99.8/0.2, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 8.53 min, $t_{\rm R}$ (major) = 9.20 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.37 – 7.30 (m, 2H), 7.28 – 7.19 (m, 3H), 7.17 – 7.11 (m, 1H), 7.02 – 6.94 (m, 1H), 3.78 (t, *J* = 7.2 Hz, 1H), 1.94 – 1.79 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 246.1 Hz), 141.7, 129.7 (d, J = 8.7 Hz), 128.5, 127.5, 126.8, 125.7 (d, J = 9.5 Hz), 118.4 (d, J = 22.5 Hz), 115.0 (d, J = 21.2 Hz), 92.6, 82.2 (d, J = 3.4 Hz), 39.9, 31.5, 11.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –113.3 (td, *J* = 9.0, 5.3 Hz, 1F).

HRMS (ESI) m/z calcd. for C₁₇H₁₆F [M + H]⁺ 239.1231, found 239.1230.

(*R*)-1-Fluoro-2-(3-phenylpent-1-yn-1-yl)benzene (10)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-2-fluorobenzene **S10** (24.0 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **10** as a colorless oil (44.6 mg, 94% yield, 97% ee).

 $[\alpha]_{D}^{27} = -11$ (c 2.6, CH₂Cl₂).

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 99.8/0.2, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 10.49 min, t_R (major) = 11.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 3H), 7.38 – 7.30 (m, 2H), 7.29 – 7.21 (m, 2H), 7.09 – 7.02 (m, 2H), 3.83 (t, *J* = 7.0 Hz, 1H), 1.93 – 1.81 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 250.6 Hz), 141.6, 133.5 (d, J = 1.4 Hz), 129.3 (d, J = 7.9 Hz), 128.4, 127.5, 126.7, 123.8 (d, J = 3.7 Hz), 115.4 (d, J = 21.1 Hz), 112.3 (d, J = 15.8 Hz), 96.9 (d, J = 3.3 Hz), 76.7, 40.1, 31.6, 11.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –110.46 – –110.55 (m, 1F).

HRMS (ESI) m/z calcd. for C₁₇H₁₆F [M + H]⁺ 239.1231, found 239.1225.

(*R*)-1-Chloro-4-(3-phenylpent-1-yn-1-yl)benzene (11)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv..) and 1-chloro-4-ethynylbenzene **S11** (27.3 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **11** as a colorless oil (41.0 mg, 81% yield, 97% ee).

 $[\alpha]_{D}^{27} = -5.4$ (*c* 3.3, CH₂Cl₂).

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 13.57 min, *t*_R (major) = 15.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 6H), 7.29 – 7.22 (m, 3H), 3.77 (t, *J* = 7.0 Hz, 1H), 1.94 – 1.78 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.7, 133.6, 132.9, 128.51, 128.50, 127.5, 126.7, 122.3, 92.5, 82.2, 40.0, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Cl [M + H]⁺ 255.0935, found 255.0937.

(*R*)-1-Chloro-3-(3-phenylpent-1-yn-1-yl)benzene (12)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-chloro-3-ethynylbenzene S12 (27.3 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product 12 as a colorless oil (50.0 mg, 98% yield, 94% ee).

 $[\alpha]_{D}^{27} = -10 \ (c \ 2.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel ODH (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.43 min, t_R (major) = 11.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.28 (m, 6H), 7.28 – 7.17 (m, 3H), 3.77 (t, *J* = 6.8 Hz, 1H), 1.94 – 1.77 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.6, 134.0, 131.5, 129.8, 129.4, 128.5, 128.0, 127.5, 126.8, 125.5, 92.9, 82.0, 39.9, 31.5, 11.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Cl [M + H]⁺ 255.0935, found 255.0933.

(*R*)-1-Bromo-4-(3-phenylpent-1-yn-1-yl)benzene (13)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-bromo-4-ethynylbenzene S13 (36.2 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product 13 as a colorless oil (57.0 mg, 96% yield, 97% ee).

 $[\alpha]_{D}^{27} = -8.2 (c 4.4, CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 14.73 min, t_R (major) = 17.19 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.37 (m, 4H), 7.37 – 7.27 (m, 4H), 7.27 – 7.22 (m, 1H), 3.76 (t, *J* = 7.0 Hz, 1H), 1.92 – 1.77 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.7, 133.1, 131.4, 128.5, 127.5, 126.7, 122.8, 121.8, 92.8, 82.3, 40.0, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Br [M + H]⁺ 299.0435 and 301.0415, found 299.0428 and 301.0408.

(*R*)-1-Bromo-3-(3-phenylpent-1-yn-1-yl)benzene (14)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-bromo-3-ethynylbenzene **S14** (36.2 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **14** as a colorless oil (57.0 mg, 96% yield, 94% ee).

 $[\alpha]_{D}^{27} = -8.2$ (*c* 4.4, CH₂Cl₂).

HPLC analysis: Chiralcel ODH (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.43 min, t_R (major) = 11.49 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 1H), 7.46 – 7.29 (m, 6H), 7.29 – 7.21 (m, 1H), 7.18 – 7.10 (m, 1H), 3.77 (t, *J* = 7.0 Hz, 1H), 1.93 – 1.78 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.6, 134.4, 130.9, 130.2, 129.6, 128.5, 127.5, 126.7, 125.8, 122.0, 93.0, 81.9, 39.9, 31.5, 11.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Br [M + H]⁺ 299.0435, found 299.0430.

(*R*)-1-(3-Phenylpent-1-yn-1-yl)-4-(trifluoromethyl)benzene (15)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-(trifluoromethyl)benzene **S15** (34.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **15** as a colorless oil (48.1 mg, 84% yield, 97% ee).

 $[\alpha]_{D}^{27} = -2.4$ (*c* 4.0, CH₂Cl₂).

HPLC analysis: Chiralcel IG (hexane, flow rate 0.3 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.70 min, t_R (major) = 17.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 4H), 7.44 – 7.38 (m, 2H), 7.38 – 7.31 (m, 2H), 7.29 – 7.23 (m, 1H), 3.80 (t, *J* = 7.0 Hz, 1H), 1.95 – 1.80 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.5, 131.9, 129.5 (q, *J* = 32.5 Hz), 128.6, 127.7 (d, *J* = 1.4 Hz), 127.5, 126.9, 125.2 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 272.1 Hz), 94.3, 82.2, 40.0, 31.5, 11.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃ [M + H]⁺ 289.1199, found 289.1192.

(*R*)-4-(3-Phenylpent-1-yn-1-yl)benzonitrile (16)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 4-ethynylbenzonitrile **S16** (25.4 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **16** as a colorless oil (47.7 mg, 97% yield, 96% ee).

 $[\alpha]_{D}^{27} = -19 (c 3.0, CH_2Cl_2).$

HPLC analysis: Chiralcel AS3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 15.37 min, t_R (major) = 20.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.46 – 7.36 (m, 4H), 7.33 – 7.27 (m, 1H), 3.84 (t, *J* = 7.1 Hz, 1H), 1.98 – 1.86 (m, 2H), 1.09 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.1, 132.1, 131.9, 128.7, 128.5, 127.4, 126.9, 118.5, 111.0, 96.6, 81.9, 40.0, 31.3, 11.8.

HRMS (ESI) m/z calcd. for C₁₈H₁₆N [M + H]⁺ 246.1277, found 246.1274.

(*R*)-4-(3-Phenylpent-1-yn-1-yl)benzaldehyde (17)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 4-ethynylbenzaldehyde (26.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **17** as a colorless oil (48.0 mg, 97% yield, 96% ee).

 $[\alpha]_{D}^{27} = -22 (c 4.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 40.38 min, t_R (major) = 44.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.90 – 7.80 (m, 2H), 7.66 – 7.58 (m, 2H), 7.49 – 7.34 (m, 4H), 7.34 – 7.27 (m, 1H), 3.85 (t, *J* = 7.0 Hz, 1H), 2.03 – 1.82 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.5, 141.4, 135.1, 132.2, 130.3, 129.5, 128.6, 127.5, 126.9, 96.2, 82.7, 40.1, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O [M + H]⁺ 249.1274, found 249.1273.

(*R*)-2-(3-Phenylpent-1-yn-1-yl)benzaldehyde (18)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynylbenzaldehyde **S18** (26.0 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **18** as a colorless oil (39.0 mg, 79% yield, 91% ee).

 $[\alpha]_{D}^{27} = -23 (c \ 1.5, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 19.32 min, t_R (major) = 20.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.58 (d, J = 0.7 Hz, 1H), 7.97 – 7.85 (m, 1H), 7.60 – 7.45 (m, 2H), 7.44 – 7.31 (m, 5H), 7.29 – 7.23 (m, 1H), 3.85 (t, J = 7.1 Hz, 1H), 1.99 – 1.85 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 141.2, 136.0, 133.7, 133.4, 128.6, 128.1, 127.5, 127.4, 127.0, 126.9, 99.2, 78.9, 40.2, 31.4, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O [M + H]⁺ 249.1274, found 249.1279.

Methyl (*R*)-4-(3-phenylpent-1-yn-1-yl)benzoate (19)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and methyl 4-ethynylbenzoate **S19** (32.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to yield the product **19** as a colorless oil (51.2 mg, 92% yield, 96% ee).

 $[\alpha]_{D}^{27} = -26 (c \ 1.6, CH_2Cl_2).$

HPLC analysis: Chiralcel IF (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 29.10 min, t_R (major) = 32.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.94 (m, 2H), 7.54 – 7.47 (m, 2H), 7.45 – 7.38 (m, 2H), 7.37 – 7.29 (m, 2H), 7.28 – 7.22 (m, 1H), 3.90 (s, 3H), 3.80 (t, *J* = 7.0 Hz, 1H), 1.94 – 1.82 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.7, 141.6, 131.6, 129.4, 129.1, 128.7, 128.5, 127.5, 126.8, 95.0, 82.8, 52.2, 40.1, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380, found 279.1378.

(*R*)-1-Nitro-4-(3-phenylpent-1-yn-1-yl)benzene (20)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-nitrobenzene **S20** (29.4 mg, 0.20 mmol, 1.0 equiv.) at -10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **20** as a colorless oil (50.0 mg, 94% yield, 98% ee).

 $[\alpha]_{D}^{27} = -20$ (*c* 3.3, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 230 nm), t_R (minor) = 29.20 min, t_R (major) = 31.13 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 – 8.11 (m, 2H), 7.60 – 7.54 (m, 2H), 7.47 – 7.36 (m, 4H), 7.35 – 7.26 (m, 1H), 3.86 (t, *J* = 7.1 Hz, 1H), 2.02 – 1.86 (m, 2H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.8, 141.1, 132.4, 130.9, 128.6, 127.5, 127.0, 123.5, 97.7, 81.8, 40.2, 31.4, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₆NO₂ [M + H]⁺ 266.1176, found 266.1176.

(*R*)-4,4,5,5-Tetramethyl-2-(4-(3-phenylpent-1-yn-1-yl)phenyl)-1,3,2-dioxaborolane (21)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-(4-ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **S21** (45.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **21** as a colorless oil (65.0 mg, 94% yield, 96% ee).

 $[\alpha]_{D}^{27} = -29 (c \ 1.5, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 18.44 min, t_R (minor) = 22.31 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.8 Hz, 2H), 7.48 – 7.38 (m, 4H), 7.37 – 7.30 (m, 2H), 7.27 – 7.20 (m, 1H), 3.79 (t, J = 7.0 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.34 (s, 12H), 1.05 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 134.5, 130.8, 128.4, 127.5, 126.7, 126.6, 92.9, 83.9, 83.5, 40.0, 31.6, 24.9, 11.9.

¹¹**B** NMR (128 MHz, CDCl₃) δ 31.5.

HRMS (ESI) m/z calcd. for C₂₃H₂₈BO₂ [M + H]⁺ 347.2177, found 347.2175.

(*R*)-1-(3-Phenylpent-1-yn-1-yl)-4-vinylbenzene (22)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynyl-4-vinylbenzene S22 (25.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 22 as a colorless oil (38.0 mg, 77% yield, 96% ee).

 $[\alpha]_D^{27} = +0.61 \ (c \ 1.8, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 7.88 min, t_R (minor) = 8.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 4H), 7.40 – 7.33 (m, 4H), 7.32 – 7.24 (m, 1H), 6.72 (dd, J = 17.6, 10.9 Hz, 1H), 5.78 (d, J = 17.6 Hz, 1H), 5.30 (d, J = 10.9 Hz, 1H), 3.82 (t, J = 7.0 Hz, 1H), 1.97 – 1.80 (m, 2H), 1.09 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.0, 136.9, 136.3, 131.8, 128.4, 127.6, 126.7, 126.0, 123.2, 114.4, 92.2, 83.4, 40.1, 31.7, 11.9.

HRMS (ESI) m/z calcd. for C₁₉H₁₉ [M + H]⁺ 247.1481, found 247.1481.

(*R*)-1-Ethynyl-4-(3-phenylpent-1-yn-1-yl)benzene (23)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1,4-diethynylbenzene **S23** (25.2 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 99/1) to yield the product **23** as a colorless oil (31.7 mg, 65% yield, 96% ee).

 $[\alpha]_{D}^{27} = -0.90 \ (c \ 4.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AY3 (hexane, flow rate 0.6 mL/min, $\lambda = 254$ nm), t_R (minor) = 13.38 min, t_R (major) = 15.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 6H), 7.41 – 7.35 (m, 2H), 7.32 – 7.26 (m, 1H), 3.83 (t, *J* = 7.6 Hz, 1H), 3.18 (s, 1H), 1.96 – 1.85 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.7, 132.0, 131.6, 128.5, 127.5, 126.8, 124.4, 121.3, 93.8, 83.4, 82.9, 78.5, 40.1, 31.6, 11.9.

HRMS (ESI) *m/z* calcd. for C₁₉H₁₇ [M+H]⁺ 245.1325, found 245.1321.

(R)-2-Methoxy-6-(3-phenylpent-1-yn-1-yl)naphthalene (24)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynyl-6-methoxynaphthalene **S24** (36.4 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **24** as an amorphous powder (56.0 mg, 93% yield, 97% ee).

 $[\alpha]_{D}^{27} = -17 (c \ 0.67, CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 31.22 min, t_R (minor) = 44.53 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.66 (t, J = 8.6 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.39 – 7.29 (m, 2H), 7.28 – 7.22 (m, 1H), 7.13 (dd, J = 8.9, 2.5 Hz, 1H), 7.09 (d, J = 2.4 Hz, 1H), 3.90 (s, 3H), 3.83 (t, J = 7.0 Hz, 1H), 1.97 – 1.83 (m, 2H), 1.09 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.0, 142.1, 133.8, 131.0, 129.3, 129.1, 128.5, 128.4, 127.6, 126.6, 119.2, 118.8, 105.7, 91.0, 83.8, 55.3, 40.1, 31.7, 11.9.

HRMS (ESI) m/z calcd. for C₂₂H₂₁O [M + H]⁺ 301.1587, found 301.1584.

(R)-5-(3-Phenylpent-1-yn-1-yl)benzo[d][1,3]dioxole (25)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 5-ethynylbenzo[d][1,3]dioxole **S25** (29.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **25** as a colorless oil (39.7 mg, 75% yield, 98% ee).

 $[\alpha]_{D}^{27} = -6.2$ (*c* 1.4, CH₂Cl₂).

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 19.52 min, *t*_R (major) = 27.61 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.36 – 7.29 (m, 2H), 7.27 – 7.20 (m, 1H), 6.96 (dd, J = 8.0, 1.6 Hz, 1H), 6.90 (d, J = 1.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.94 (s, 2H), 3.75 (dd, J = 7.7, 6.3 Hz, 1H), 1.93 – 1.75 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.4, 147.3, 142.1, 128.4, 127.6, 126.6, 126.0, 117.1, 111.8, 108.3, 101.2, 89.7, 83.1, 40.0, 31.7, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223, found 265.1222.

(*R*)-1-(3-Phenylpent-1-yn-1-yl)ferrocene (26)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 1-ethynylferrocene **S26** (42.0 mg, 0.20 mmol, 1.0 equiv.) for 28 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **26** as a colorless oil (58.0 mg, 88% yield, 98% ee).

 $[\alpha]_{D}^{27} = -0.25 \ (c \ 4.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 36.68 min, t_R (minor) = 43.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.42 – 7.35 (m, 2H), 7.32 – 7.25 (m, 1H), 4.48 – 4.41 (m, 2H), 4.24 (s, 5H), 4.21 – 4.19 (m, 2H), 3.73 (dd, *J* = 8.0, 6.0 Hz, 1H), 1.96 – 1.78 (m, 2H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.4, 128.4, 127.6, 126.6, 87.5, 81.3, 71.3, 69.8, 68.3, 66.3, 40.1, 31.8, 11.9.

HRMS (ESI) *m/z* calcd. for C₂₁H₂₀Fe [M]⁺ 328.0909, found 328.0906.

(*R*)-3-(3-Phenylpent-1-yn-1-yl)pyridine (27)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 3-ethynylpyridine **S27** (20.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **27** as a colorless oil (38.0 mg, 86% yield, 95% ee).

 $[\alpha]_D^{27} = -15.6 \ (c \ 0.66, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.39 min, t_R (minor) = 13.45 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.51 (s, 1H), 7.72 (dt, *J* = 7.9, 1.8 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.38 – 7.31 (m, 2H), 7.29 – 7.20 (m, 2H), 3.80 (t, *J* = 7.1 Hz, 1H), 1.94 – 1.82 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 152.4, 148.1, 141.4, 138.5, 128.5, 127.5, 126.8, 122.9, 95.2, 80.0, 40.0, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₆H₁₆N [M + H]⁺ 222.1277, found 222.1277.

(*R*)-2-(3-Phenylpent-1-yn-1-yl)benzo[*d*]oxazole (28)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynylbenzo[*d*]oxazole **S28** (28.6 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **28** as a colorless oil (45.9 mg, 88% yield, 97% ee).

 $[\alpha]_{D}^{27} = -1.2 (c \ 1.9, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 19.70 min, t_R (major) = 29.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.71 (m, 1H), 7.53 – 7.49 (m, 1H), 7.43 – 7.32 (m, 6H), 7.31 – 7.27 (m, 1H), 3.87 (t, *J* = 7.1 Hz, 1H), 2.03 – 1.90 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.7, 140.9, 139.7, 128.7, 127.6, 127.2, 126.1, 124.9, 120.3, 110.5, 97.1, 71.9, 39.9, 30.9, 11.8.

HRMS (ESI) m/z calcd. for C₁₈H₁₆NO [M + H]⁺ 262.1226, found 262.1226.

(*R*)-2-(3-Phenylpent-1-yn-1-yl)benzo[*d*]thiazole (29)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynylbenzo[*d*]thiazole **S29** (31.8 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **29** as a colorless oil (55.0 mg, 99% yield, 96% ee).

 $[\alpha]_{D}^{27} = -12 (c 3.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 98/2, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 32.68 min, t_R (minor) = 35.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 8.05 (m, 1H), 7.89 – 7.82 (m, 1H), 7.56 – 7.50 (m, 1H), 7.48 – 7.42 (m, 3H), 7.42 – 7.35 (m, 2H), 7.34 – 7.27 (m, 1H), 3.91 (t, *J* = 7.1 Hz, 1H), 2.07 – 1.90 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.8, 149.0, 140.2, 135.2, 128.7, 127.6, 127.1, 126.6, 126.0, 123.5, 121.3, 99.6, 77.1, 40.2, 31.1, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₆NS [M + H]⁺ 278.0998, found 278.0998.

(*R*)-4-(3-Phenylpent-1-yn-1-yl)quinoline (30)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 4-ethynylquinoline **S30** (30.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **30** as a colorless oil (54.0 mg, 99% yield, 94% ee).

 $[\alpha]_{\rm D}^{27} = -10 \ (c \ 2.5, \ {\rm CH}_2{\rm Cl}_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 98/2, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 29.85 min, t_R (minor) = 32.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 4.5 Hz, 1H), 8.33 – 8.23 (m, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.72 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.58 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.41 – 7.34 (m, 2H), 7.32 – 7.23 (m, 1H), 3.96 (t, J = 7.0 Hz, 1H), 1.98 (p, J = 7.3 Hz, 2H), 1.13 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.8, 148.1, 141.2, 130.4, 129.82, 129.76, 128.7, 128.2, 127.6, 127.1, 127.0, 126.1, 123.8, 101.8, 79.4, 40.4, 31.6, 12.0.

HRMS (ESI) m/z calcd. for C₂₀H₁₈N [M + H]⁺ 272.1434, found 272.1433.

(*R*)-2-(3-Phenylpent-1-yn-1-yl)pyrimidine (31)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynylpyrimidine **S31** (20.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **31** as a colorless oil (43.0 mg, 97% yield, 97% ee).

 $[\alpha]_{D}^{27} = -3.8 (c 2.1, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.09 min, t_R (minor) = 10.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 5.0 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.36 – 7.31 (m, 2H), 7.27 – 7.19 (m, 2H), 3.84 (t, J = 7.2 Hz, 1H), 2.01 – 1.87 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.2, 153.3, 140.5, 128.6, 127.6, 126.9, 119.6, 91.4, 82.4, 39.8, 31.1, 11.9.

HRMS (ESI) m/z calcd. for C₁₅H₁₅N₂ [M + H]⁺ 223.1230, found 223.1229.

(*R*)-3-(3-Phenylpent-1-yn-1-yl)imidazo[1,2-*b*]pyridazine (32)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 3-ethynylimidazo[1,2-*b*]pyridazine **S32** (28.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **32** as a colorless oil (47.5 mg, 91% yield, 96% ee).

 $[\alpha]_{D}^{27} = +7.8 \ (c \ 2.5, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 33.91 min, t_R (major) = 40.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (dd, *J* = 4.4, 1.6 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.49 – 7.45 (m, 2H), 7.38 – 7.33 (m, 2H), 7.28 – 7.23 (m, 1H), 7.04 (dd, *J* = 9.1, 4.4 Hz, 1H), 3.97 (t, *J* = 7.0 Hz, 1H), 1.96 (p, *J* = 7.3 Hz, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.6, 141.2, 139.1, 137.8, 128.5, 127.6, 126.8, 125.7, 117.1, 113.6, 101.5, 70.0, 40.4, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₆N₃ [M + H]⁺ 262.1339, found 262.1337.

(*R*)-5-(3-Phenylpent-1-yn-1-yl)pyrazolo[1,5-*a*]pyrimidine (33)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 5-ethynylpyrazolo[1,5-*a*]pyrimidine **S33** (28.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **33** as a colorless oil (51.7 mg, 99% yield, 96% ee).

 $[\alpha]_{D}^{27} = -28 (c 2.3, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 29.14 min, t_R (major) = 32.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (dd, J = 7.2, 1.0 Hz, 1H), 8.11 (d, J = 2.3 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.37 – 7.32 (m, 2H), 7.28 – 7.23 (m, 1H), 6.84 (d, J = 7.2 Hz, 1H), 6.67 (dd, J = 2.3, 0.9 Hz, 1H), 3.84 (t, J = 7.1 Hz, 1H), 2.02 – 1.87 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 145.6, 142.6, 140.5, 134.5, 128.6, 127.6, 127.0, 110.9, 97.3, 96.1, 82.0, 40.0, 31.1, 11.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₆N₃ [M + H]⁺ 262.1339, found 262.1337.

(*R*)-2-(3-Phenylpent-1-yn-1-yl)thiophene (34)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-ethynylthiophene **S34** (21.2 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **34** as a colorless oil (41.0 mg, 91% yield, 97% ee).

 $[\alpha]_{\rm D}^{27} = -13$ (*c* 1.1, CH₂Cl₂).

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.86 min, t_R (major) = 12.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.29 (m, 2H), 7.27 – 7.22 (m, 1H), 7.22 – 7.13 (m, 2H), 6.95 (dd, *J* = 5.2, 3.6 Hz, 1H), 3.79 (t, *J* = 7.0 Hz, 1H), 1.93 – 1.78 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.6, 131.2, 128.4, 127.5, 126.8, 126.7, 126.2, 123.9, 95.4, 76.4, 40.2, 31.5, 11.9.

HRMS (ESI) m/z calcd. for C₁₅H₁₅S [M + H]⁺ 227.0889, found 227.0889.

(*R*)-Hex-2-yne-1,4-diyldibenzene (35)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and prop-2-yn-1-ylbenzene S35 (23.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product 35 as a colorless oil (43.0 mg, 92% yield, 96% ee).

 $[\alpha]_{D}^{27} = -2.3 \ (c \ 3.3, CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 214 nm), t_R (major) = 15.50 min, t_R (minor) = 17.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 4H), 7.35 – 7.28 (m, 4H), 7.25 – 7.19 (m, 2H), 3.68 (d, J = 1.8 Hz, 2H), 3.65 – 3.58 (m, 1H), 1.84 – 1.73 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.5, 137.4, 128.4, 128.3, 127.8, 127.5, 126.5, 126.4, 84.0, 80.5, 39.6, 31.8, 25.3, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1481.

(*R*)-(6-Cyclohexylhex-4-yn-3-yl)benzene (36)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.), prop-2-yn-1-ylcyclohexane **S36** (24.4 mg, 0.20 mmol, 1.0 equiv.), and KO'Bu (44.8 mg, 0.40 mmol, 2.0 equiv.) instead of Cs₂CO₃ for 36 h, the reaction mixture was purified by column
chromatography on silica gel (cyclohexane) to yield the product **36** as a colorless oil (42.2 mg, 88% yield, 98% ee).

 $[\alpha]_D^{27} = +0.50 \ (c \ 0.40, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (minor) = 19.98 min, t_R (major) = 26.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 4H), 7.27 – 7.21 (m, 1H), 3.64 – 3.56 (m, 1H), 2.17 (dd, J = 6.6, 2.3 Hz, 2H), 1.92 – 1.64 (m, 7H), 1.58 – 1.45 (m, 1H), 1.36 – 1.06 (m, 5H), 1.02 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.9, 128.3, 127.5, 126.4, 82.4, 82.1, 39.5, 37.7, 32.8, 32.0, 26.7, 26.4, 26.2, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₂₅ [M + H]⁺ 241.1951, found 241.1950.

(*R*)-(1-(Cyclohex-1-en-1-yl)pent-1-yn-3-yl)benzene (37)

According to General procedure B with (1-bromopropyl)benzene S2 (39.6 mg, 0.20 mmol, 1.0 equiv.) and 1-ethynylcyclohex-1-ene S37 (31.8 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product 37 as a colorless oil (33.1 mg, 74% yield, 97% ee).

 $[\alpha]_{D}^{27} = -4.0 \ (c \ 2.4, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.2 mL/min, $\lambda = 230$ nm), t_R (minor) = 23.22 min, t_R (major) = 24.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 4H), 7.28 – 7.22 (m, 1H), 6.15 – 6.09 (m, 1H), 3.75 – 3.67 (m, 1H), 2.23 – 2.16 (m, 2H), 2.16 – 2.08 (m, 2H), 1.86 – 1.75 (m, 2H), 1.70 – 1.59 (m, 4H), 1.03 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 133.5, 128.3, 127.5, 126.4, 120.9, 88.5, 85.2, 39.8, 31.8, 29. 6, 25.6, 22.4, 21.6, 11.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₁ [M + H]⁺ 225.1638, found 225.1638.

(*R*)-(1-Cyclopropylpent-1-yn-3-yl)benzene (38)

According to General procedure B with (1-bromopropyl)benzene S2 (39.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylcyclopropane S38 (19.8 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product 38 as a colorless oil (29.8 mg, 81% yield, 97% ee).

 $[\alpha]_{D}^{27} = +1.3$ (*c* 2.3, CH₂Cl₂).

HPLC analysis: Chiralcel IG (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (minor) = 17.83 min, t_R (major) = 22.16 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.26 – 7.20 (m, 1H), 3.53 (ddd, *J* = 7.9, 6.0,

1.8 Hz, 1H), 1.83 – 1.65 (m, 2H), 1.36– 1.26 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H), 0.81 – 0.74 (m, 2H), 0.72 – 0.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.3, 127.5, 126.4, 86.3, 76.9, 39.4, 31.8, 11.8, 8.24, 8.17, -0.3.

HRMS (ESI) m/z calcd. for C₁₄H₁₇ [M + H]⁺ 185.1325, found 185.1325.

(*R*)-(9-Chloronon-4-yn-3-yl)benzene (39)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 6-chlorohex-1-yne **S39** (23.3 mg, 0.20 mmol, 1.0 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **39** as a colorless oil (41.0 mg, 88% yield, 97% ee).

 $[\alpha]_{D}^{27} = +1.3$ (c 2.3, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.5 mL/min, $\lambda = 214$ nm), t_R (minor) = 22.13 min, t_R (major) = 29.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 4H), 7.28 – 7.21 (m, 1H), 3.60 (t, *J* = 6.6 Hz, 2H), 3.59 – 3.52 (m, 1H), 2.32 (td, *J* = 7.0, 2.2 Hz, 2H), 2.00 – 1.89 (m, 2H), 1.83 – 1.67 (m, 4H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.6, 128.3, 127.4, 126.5, 82.4, 82.2, 44.7, 39.5, 31.8, 31.6, 26.2, 18.2, 11.8.

HRMS (ESI) m/z calcd. for C₁₅H₂₀Cl [M + H]⁺ 235.1248, found 235.1247.

(*R*)-*N*-(4-Methoxyphenyl)-7-phenylnon-5-ynamide (40)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and *N*-(4-methoxyphenyl)hex-5-ynamide **S40** (43.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **40** as a colorless oil (52.0 mg, 78% yield, 97% ee).

 $[\alpha]_{D}^{27} = +4.1 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 32.97 min, t_R (major) = 44.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 6H), 7.28 – 7.22 (m, 1H), 7.13 (br s, 1H), 6.89 – 6.83 (m, 2H), 3.81 (s, 3H), 3.61 – 3.53 (m, 1H), 2.49 (t, *J* = 7.3 Hz, 2H), 2.39 (td, *J* = 6.8, 2.2 Hz, 2H), 1.97 (p, *J* = 7.0 Hz, 2H), 1.83 – 1.72 (m, 2H), 1.01 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 156.3, 142.6, 130.9, 128.4, 127.4, 126.6, 121.7, 114.1, 83.2, 81.9, 55.5, 39.5, 36.1, 31.7, 24.7, 18.2, 11.9.

HRMS (ESI) m/z calcd. for C₂₂H₂₆NO₂ [M + H]⁺ 336.1958, found 336.1957.

(R)-2-(5-Phenylhept-3-yn-1-yl)isoindoline-1,3-dione (41)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2-(but-3-yn-1-yl)isoindoline-1,3-dione **S41** (39.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **41** as a colorless oil (61.0 mg, 96% yield, 97% ee).

 $[\alpha]_{D}^{27} = -1.2$ (*c* 4.4, CH₂Cl₂).

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 15.77 min, t_R (major) = 17.71 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.83 (m, 2H), 7.78 – 7.69 (m, 2H), 7.31 – 7.14 (m, 5H), 3.91 (t, *J* = 7.1 Hz, 2H), 3.52 – 3.44 (m, 1H), 2.69 (td, *J* = 7.1, 2.2 Hz, 2H), 1.77 – 1.59 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 142.2, 133.9, 132.1, 128.2, 127.4, 126.4, 123.3, 83.9, 78.7, 39.3, 37.1, 31.5, 18.7, 11.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NO₂ [M + H]⁺ 318.1489, found 318.1487.

(*R*)-9-(4-Phenylhex-2-yn-1-yl)-9*H*-carbazole (42)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (41.0 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **42** as a colorless oil (63.0 mg, 98% yield, 98% ee).

 $[\alpha]_{D}^{27} = +28 \ (c \ 3.1, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 26.12 min, t_R (major) = 34.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 2H), 7.65 – 7.49 (m, 4H), 7.41 – 7.21 (m, 7H), 5.15 (d, J = 2.1 Hz, 2H), 3.62 – 3.51 (m, 1H), 1.85 – 1.63 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.6, 140.1, 128.4, 127.5, 126.7, 125.8, 123.2, 120.4, 119.3, 109.0, 86.1, 77.0, 39.3, 33.0, 31.3, 11.7.

HRMS (ESI) m/z calcd. for C₂₄H₂₂N [M + H]⁺ 324.1747, found 324.1745.

(*R*)-2,2,6-Triphenyloct-4-ynenitrile (43)

According to General procedure A with (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) and 2,2-diphenylpent-4-ynenitrile S43 (46.2 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the

reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **43** as a colorless oil (69.0 mg, 99% yield, 96% ee).

 $[\alpha]_{D}^{27} = -8.0 \ (c \ 1.9, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 12.24 min, t_R (minor) = 15.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.33 (m, 10H), 7.31 – 7.19 (m, 3H), 7.19 – 7.13 (m, 2H), 3.55 – 3.47 (m, 1H), 3.36 (d, J = 2.1 Hz, 2H), 1.78 – 1.57 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.8, 139.3, 139.2, 128.8, 128.3, 128.18, 128.16, 127.5, 127.3, 127.2, 126.5, 122.0, 86.9, 77.3, 51.8, 39.4, 31.6, 31.5, 11.6.

HRMS (ESI) m/z calcd. for C₂₆H₂₄N [M + H]⁺ 350.1903, found 350.1902.

(*R*)-(6,6-Diethoxyhex-4-yn-3-yl)benzene (44)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and 3,3-diethoxyprop-1-yne **S44** (25.6 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **44** as a colorless oil (45.0 mg, 91% yield, 96% ee).

 $[\alpha]_{D}^{27} = -2.0$ (*c* 2.8, CH₂Cl₂).

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 16.70 min, t_R (minor) = 22.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.30 – 7.22 (m, 1H), 5.37 (d, J = 1.4 Hz, 1H), 3.87 – 3.73 (m, 2H), 3.71 – 3.56 (m, 3H), 1.83 (p, J = 7.3 Hz, 2H), 1.26 (td, J = 7.1, 3.3 Hz, 6H), 1.01 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.3, 128.4, 127.5, 126.7, 91.6, 87.5, 78.6, 60.73, 60.66, 39.3, 31.3, 15.15, 15.13, 11.8.

HRMS (ESI) m/z calcd. for C₁₆H₂₃O₂ [M + H]⁺ 247.1693, found 247.1693.

(*R*)-5-Phenylhept-3-yn-1-ol (45)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and but-3-yn-1-ol **S45** (14 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **45** as a colorless oil (34.0 mg, 90% yield, 98% ee).

 $[\alpha]_{D}^{27} = +1.6 \ (c \ 2.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 34.03 min, t_R (minor) = 44.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 4H), 7.26 – 7.18 (m, 1H), 3.79 – 3.66 (m, 2H), 3.60 – 3.50 (m, 1H), 2.52 (td, *J* = 6.2, 2.2 Hz, 2H), 1.85 – 1.65 (m, 3H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 128.4, 127.4, 126.6, 84.2, 79.2, 61.4, 39.4, 31.7, 23.3, 11.8.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O [M + H]⁺ 189.1274, found 189.1274.

(*R*)-4-Phenylhex-2-yn-1-yl acetate (46)

According to **General procedure B** with (1-bromopropyl)benzene **S2** (39.6 mg, 0.20 mmol, 1.0 equiv.) and prop-2-yn-1-yl acetate **S46** (29.4 mg, 0.30 mmol, 1.5 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **46** as a colorless oil (42.3 mg, 98% yield, 97% ee).

 $[\alpha]_{D}^{27} = +3.9 (c 2.9, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 26.51min, t_R (minor) = 30.44 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 4H), 7.27 – 7.20 (m, 1H), 4.74 (d, *J* = 2.1 Hz, 2H), 3.64 – 3.56 (m, 1H), 2.09 (s, 3H), 1.78 (p, *J* = 7.2 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 141.4, 128.5, 127.5, 126.7, 88.8, 76.8, 52.8, 39.4, 31.3, 20.8, 11.8.

HRMS (ESI) m/z calcd. for C₁₄H₁₇O₂ [M + H]⁺ 217.1223, found 217.1225.

(*R*)-(6-Phenoxyhex-4-yn-3-yl)benzene (47)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and (prop-2-yn-1-yloxy)benzene **S47** (26.4 mg, 0.20 mmol, 1.0 equiv.) for 18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1) to yield the product **47** as a colorless oil (49.5 mg, 98% yield, 96% ee).

 $[\alpha]_{D}^{27} = +0.50 \ (c \ 4.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 15.24 min, t_R (major) = 17.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 6H), 7.30 – 7.22 (m, 1H), 7.09 – 6.99 (m, 3H), 4.81 (d, J = 1.9 Hz, 2H), 3.70 – 3.59 (m, 1H), 1.89 – 1.72 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.8, 141.5, 129.4, 128.4, 127.5, 126.7, 121.3, 115.2, 89.5, 77.9, 56.5, 39.5, 31.4, 11.7.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1431.

(*R*)-(4-(*tert*-Butyl)phenyl)(4-phenylhex-2-yn-1-yl)sulfane (48)

According to **General procedure A** with (1-bromopropyl)benzene **S2** (59.4 mg, 0.30 mmol, 1.5 equiv.) and (4-(*tert*-butyl)phenyl)(prop-2-yn-1-yl)sulfane **S48** (40.8 mg, 0.20 mmol, 1.0 equiv.) for

18 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **48** as a colorless oil (61.0 mg, 95% yield, 97% ee).

 $[\alpha]_{D}^{27} = -3.9 \ (c \ 2.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (minor) = 26.53 min, t_R (major) = 30.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 1H), 7.48 – 7.44 (m, 1H), 7.35 – 7.17 (m, 7H), 3.78 (d, J = 2.2 Hz, 2H), 3.58 (ddt, J = 8.2, 6.0, 2.2 Hz, 1H), 1.84 – 1.69 (m, 2H), 1.56 (s, 9H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.3, 141.9, 134.6, 133.2, 128.3, 127.5, 126.8, 126.6, 126.5, 126.4, 85.3, 78.6, 39.5, 36.6, 31.5, 30.7, 25.0, 11.8.

HRMS (ESI) m/z calcd. for C₂₂H₂₇S [M + H]⁺ 323.1828, found 323.1825.

(*R*)-(3-(4-Isobutylphenyl)but-1-yn-1-yl)trimethylsilane (49)

According to **General procedure B** with 1-(1-bromoethyl)-4-isobutylbenzene **S127-3** (48.0 mg, 0.20 mmol, 1.0 equiv.) and ethynyltrimethylsilane **S49** (29.4 mg, 0.30 mmol, 1.5 equiv.) for 18 h, the reaction mixture was filtered and washed by petroleum ether. The filtrate was concentrated under reduced pressure and the crude product **49** was obtained as a colorless oil (51.0 mg, 99% crude yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 3.84 (q, J = 7.1 Hz, 1H), 2.53 (d, J = 7.2 Hz, 2H), 1.93 (dp, J = 13.5, 6.8 Hz, 1H), 1.54 (d, J = 7.1 Hz, 3H), 0.98 (d, J = 6.7 Hz, 7H), 0.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 139.9, 129.2, 126.6, 109.8, 86.0, 45.1, 32.5, 30.3, 24.7, 22.48, 22.46, 0.3.

(S)-1-(But-3-yn-2-yl)-4-isobutylbenzene (S135-1)

The crude product **49** obtained above was dissolved in MeOH (1.0 mL), treated with K_2CO_3 (55.2 mg, 0.40 mmol, 2.0 equiv.), and stirred at room temperature for 3 h. After completion of reaction (monitored by TLC), the mixture was concentrated under reduced pressure and purified by column chromatography to yield **S135-1** as a colorless oil (33.9 mg, 91% yield, 95% ee).

 $[\alpha]_{D}^{27} = -5.2 \ (c \ 6.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (major) = 18.13 min, t_R (minor) = 23.43 min.

According to **General procedure B** with (1-bromopropyl)benzene **S2** (39.6 mg, 0.20 mmol, 1.0 equiv.) and propyne (0.5 mL, 1.0 M in THF, 0.50 mmol, 2.5 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (cyclohexane) to yield the product **50** as a colorless oil (27.8 mg, 88% yield, 97% ee).

 $[\alpha]_{D}^{27} = +19 (c \ 0.80, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (minor) = 24.67 min, t_R (major) = 26.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 4H), 7.27 – 7.21 (m, 1H), 3.60 – 3.47 (m, 1H), 1.90 (d, *J* = 2.4 Hz, 3H), 1.84 – 1.68 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.3, 127.5, 126.4, 80.8, 78.3, 39.5, 31.7, 11.9, 3.7.

HRMS (ESI) m/z calcd. for C₁₂H₁₅ [M + H]⁺ 159.1168, found 159.1169.

(S)-1-(3-(but-3-yn-2-yl)phenyl)ethan-1-one (51)

According to **General procedure C** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **S93** (45.2 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **51** as a colorless oil (33.0 mg, 96% yield, 96% ee).

 $[\alpha]_{D}^{27} = +15 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.3/0.7, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 38.82 min, t_R (major) = 43.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (t, J = 1.8 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.68 – 7.61 (m, 1H), 7.46 (t, J = 7.7 Hz, 1H), 3.86 (qd, J = 7.2, 2.5 Hz, 1H), 2.64 (s, 3H), 2.33 (d, J = 2.5 Hz, 1H), 1.56 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.1, 143.3, 137.5, 131.6, 128.9, 127.0, 126.7, 86.4, 70.8, 31.6, 26.7, 24.2.

HRMS (ESI) m/z calcd. for C₁₂H₁₃O [M + H]⁺ 173.0961, found 173.0961.

(S)-5-Phenylhept-6-ynenitrile (52)

According to **General procedure C** with 5-bromo-5-phenylpentanenitrile **S75** (47.4 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1) to yield the product **52** as a

colorless oil (28.2 mg, 77% yield, 95% ee).

 $[\alpha]_{D}^{27} = +8.6 \ (c \ 1.2, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 11.88 min, t_R (major) = 12.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.25 (m, 5H), 3.73 (ddd, *J* = 8.3, 5.8, 2.5 Hz, 1H), 2.39 (t, *J* = 6.9 Hz, 2H), 2.34 (d, *J* = 2.5 Hz, 1H), 2.01 – 1.75 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 128.7, 127.3, 127.2, 119.3, 84.6, 72.0, 36.9, 36.8, 23.0, 16.9. HRMS (ESI) *m/z* calcd. for C₁₃H₁₄N [M + H]⁺ 184.1121, found 184.1120.

(S)-2-(but-3-yn-2-yl)naphthalene (53)

According to **General procedure** C with 2-(1-bromoethyl)naphthalene **S98** (46.8 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1) to yield the product **53** as a colorless oil (25.6 mg, 71% yield, 93% ee).

 $[\alpha]_{D}^{27} = +1.2$ (*c* 2.2, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, $\lambda = 254$ nm), t_R (minor) = 18.49 min, t_R (major) = 21.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.78 (m, 4H), 7.60 – 7.41 (m, 3H), 3.97 (qd, *J* = 7.1, 2.5 Hz, 1H), 2.36 (d, *J* = 2.5 Hz, 1H), 1.63 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.0, 133.5, 132.4, 128.3, 127.8, 127.6, 126.1, 125.7, 125.4, 125.1, 87.1, 70.4, 31.8, 24.1.

HRMS (ESI) m/z calcd. for C₁₄H₁₃ [M + H]⁺ 181.1012, found 181.1011.

(*R*)-1-(3-(1-(1-Tosyl-1*H*-1,2,3-triazol-4-yl)ethyl)phenyl)ethan-1-one (54)

According to **General procedure C** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **S93** (47.4 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 18 h, the reaction mixture was filtered and concentrated. Without further purification, the residue was dissolved in toluene (2.0 mL) under argon atmosphere, and then, 4-methylbenzenesulfonyl azide (39.4 mg, 0.20 mmol, 1.0 equiv.) and copper thiophene-2-carboxylate (1.91 mg, 0.010 mmol, 5.0 mol%) were added. The reaction mixture was stirred under the same conditions for 3 h, and then, was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **54** as a yellow amorphous powder (59.8 mg, 81% yield over two steps, 95% ee).

 $[\alpha]_{D}^{27} = +8.2$ (c 0.60, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, λ = 240 nm), *t*_R (minor) = 63.56 min, *t*_R (major) = 67.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.88 – 7.82 (m, 2H), 7.77 (s, 1H), 7.49 (dt, J = 7.7, 1.6 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.40 (d, J = 8.2 Hz, 2H), 4.34 (q, J = 7.2 Hz, 1H), 2.60 (s, 3H), 2.46 (s, 3H), 1.72 (d, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 198.0, 151.7, 147.3, 144.1, 137.6, 133.0, 132.3, 130.4, 129.1, 128.7, 127.2, 127.0, 120.3, 37.0, 26.7, 21.9, 21.1.

HRMS (ESI) m/z calcd. for C₁₉H₂₀N₃O₃S [M + H]⁺ 370.1220, found 370.1217.

1-(3-((2*R***,5***R***)-5-Phenylhept-3-yn-2-yl)phenyl)ethan-1-one (55)**

According to **General procedure C** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **S93** (47.4 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 18 h, the reaction mixture was filtered and concentrated. Without further purification, the residue was directly used in the next step. To a mixture of L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), copper thiophene-2-carboxylate (1.91 mg, 0.010 mmol, 5.0 mol%), and anhydrous cesium carbonate (130.4 mg, 0.40 mmol, 2.0 equiv.) in diethyl ether (4.0 mL) were added the residue obtained above and (1-bromopropyl)benzene S2 (59.4 mg, 0.30 mmol, 1.5 equiv.) sequentially under argon atmosphere, and the reaction mixture was stirred at room temperature for 72 h. After completion of reaction, the reaction was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 55 as a colorless oil (39.4 mg, 68% yield over two steps, 95% ee). The diastereomeric ratio was roughly estimated by HPLC to be larger than 20:1.

 $[\alpha]_{D}^{27} = +2.8 \ (c \ 1.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AZ3 (hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, λ = 240 nm), t_R (major) = 18.96 min, t_R (minor) = 24.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 2H), 7.28 – 7.22 (m, 1H), 3.92 (q, J = 7.0 Hz, 1H), 3.66 (t, J = 6.9 Hz, 1H), 2.61 (s, 3H), 1.89 – 1.75 (m, 2H), 1.56 (d, J = 7.1 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.2, 144.6, 142.4, 137.4, 131.7, 128.7, 128.4, 127.5, 126.9, 126.58, 126.55, 85.2, 84.5, 39.5, 32.0, 31.8, 26.7, 24.9, 11.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₃O [M + H]⁺ 291.1743, found 291.1740.

1-(3-((2*R*,5*S*)-5-(Benzo[*b*]thiophen-3-yl)hept-3-yn-2-yl)phenyl)ethan-1-one (56)

According to **General procedure C** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **S93** (47.4 mg, 0.20 mmol, 1.0 equiv.) and acetylene (1 atm) for 18 h, the reaction mixture was filtered and concentrated. Without further purification, the residue was directly used in the next step. To a

mixture of L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), copper thiophene-2-carboxylate (1.91 mg, 0.01 mmol, 5.0 mol%), and anhydrous cesium carbonate (130.4 mg, 0.4 mmol, 2.0 equiv.) in diethyl ether (4.0 mL) were added the residue obtained above and 3-(1-bromopropyl)benzo[*b*]thiophene S104 (76.2 mg, 0.30 mmol, 1.5 equiv.) sequentially under argon atmosphere, and the reaction mixture was stirred at room temperature for 72 h. After completion of reaction, the reaction was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 56 as a yellow oil (33.9 mg, 49% yield over two steps, 95% ee). The diastereomeric ratio was roughly estimated by HPLC to be larger than 20:1.

 $[\alpha]_{D}^{27} = +6.4 \ (c \ 0.50, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (minor) = 29.15 min, *t*_R (major) = 46.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (t, J = 1.9 Hz, 1H), 7.92 – 7.82 (m, 3H), 7.67 – 7.61 (m, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.41 – 7.35 (m, 3H), 4.10 – 4.03 (m, 1H), 3.92 (qd, J = 7.2, 2.1 Hz, 1H), 2.56 (s, 3H), 2.10 – 1.84 (m, 2H), 1.56 (d, J = 7.1 Hz, 3H), 1.11 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.2, 144.4, 140.9, 137.5, 137.4, 136.5, 131.7, 128.8, 126.8, 126.6, 124.2, 123.8, 123.0, 122.5, 122.0, 85.0, 83.7, 33.7, 32.0, 29.0, 26.7, 24.8, 11.9.

HRMS (ESI) m/z calcd. for C₂₃H₂₃OS $[M + H]^+$ 347.1464, found 347.1463.

Asymmetric Sonogashira C(sp)–C(sp³) cross-coupling: Scope of secondary alkyl halides

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 5.0 mol%), L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). Then, alkyl halide (0.20 mmol, 1.0 equiv.) and alkyne (0.30 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 24 to 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by Et₂O or petroleum ether. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (3.8 mg, 0.020 mmol, 10.0 mol%), L*13 (25.1 mg, 0.03 mmol, 15.0 mol%), Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). Then, alkyl halide (0.20 mmol, 1.0 equiv.) and alkyne (0.30 mmol, 1.5 equiv.) were sequentially added into the mixture, which was stirred at room temperature for 24 to 72 h afterwards. Upon completion (monitored by TLC), the precipitate was filtered off and washed by Et₂O or petroleum ether. The filtrate was concentrated and the residues was purified by column chromatography on silica gel to afford the desired product.

Note: Most of the products were unstable in neat state in air after purification, and should be stored in solvent (CH₂Cl₂ or Et₂O) at -10 °C. Their characterization by NMR, HPLC or HRMS should be done as soon as possible. Meanwhile, the reaction is sensitive to water and air, and thus, Schlenk tubes and the reagents must be dried prior to use.

The racemates of products were prepared following the same procedure described above using CuTc (1.9 mg, 0.010 mmol, 5.0 mol%) and L_{rac} (5.6 mg, 0.015 mmol, 7.5 mol%) as catalyst and ligand, respectively, at room temperature in anhydrous Et₂O (4.0 mL) for 24 to 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed with Et₂O, the filtrate was concentrated, and the residue was purified by column chromatography on silica gel to afford the desired product.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

(*R*)-But-1-yne-1,3-diyldibenzene (1)

According to **General procedure B** with (1-bromoethyl)benzene **S1-1** (37.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **1** as a colorless oil (30.9 mg, 75% yield, 94% ee).

 $[\alpha]_{D}^{27} = -29 (c 1.4, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.30 min, t_R (major) = 17.52 min.

According to **General procedure D** with (1-chloroethyl)benzene **S1-3** (28.1 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **1** as a colorless oil (28.9 mg, 70% yield, 94% ee).

 $[\alpha]_{D}^{27} = -30 \ (c \ 1.2, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 11.99 min, *t*_R (major) = 16.61 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 4H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.26 – 7.24 (m, 1H), 4.00 (q, *J* = 7.1 Hz, 1H), 1.59 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 131.6, 128.6, 128.2, 127.8, 127.0 126.7, 123.7, 92.6, 82.4, 32.5, 24.6.

HRMS (ESI) m/z calcd. for C₁₆H₁₅ [M + H]⁺ 207.1168, found 207.1161.

(*R*)-Hex-1-yne-1,3-diyldibenzene (57)

According to **General procedure B** with (1-bromobutyl)benzene **S57** (42.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **57** as a colorless oil (36.0 mg, 77% yield, 96% ee).

 $[\alpha]_{D}^{27} = -10 \ (c \ 2.1, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.04 min, t_R (major) = 13.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 4H), 7.33 (t, J = 7.6 Hz, 2H), 7.30 – 7.20 (m, 4H), 3.84 (dd, J = 8.2, 6.3 Hz, 1H), 1.89 – 1.71 (m, 2H), 1.63 – 1.42 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.4, 131.7, 128.5, 128.2, 127.7, 127.5, 126.7, 123.9, 91.7, 83.2, 40.9, 38.2, 20.7, 13.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1479.

(R)-Hept-1-yne-1,3-diyldibenzene (58)

According to **General procedure B** with (1-bromopentyl)benzene **S58** (45.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **58** as a colorless oil (34.7 mg, 70% yield, 96% ee).

 $[\alpha]_{D}^{27} = -9.4$ (*c* 2.1, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.83 min, t_R (major) = 14.51 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 3H), 7.41 (d, J = 0.5 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 3.83 (t, J = 7.2 Hz, 1H), 1.91 – 1.75 (m, 2H), 1.58 – 1.40 (m, 2H), 1.40 – 1.28 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 131.7, 128.5, 128.2, 127.7, 127.5, 126.7, 123.9, 91.8, 83.2, 38.48, 38.47, 29.7, 22.5, 14.1.

HRMS (ESI) m/z calcd. for C₁₉H₂₁ [M + H]⁺ 249.1638, found 249.1632.

(*R*)-Oct-1-yne-1,3-diyldibenzene (59)

According to **General procedure B** with (1-bromohexyl)benzene **S59** (48.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **59** as a colorless oil (34.1 mg, 65% yield, 96% ee).

 $[\alpha]_{D}^{27} = -7.5 \ (c \ 2.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.91 min, t_R (major) = 15.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 3H), 7.40 (d, J = 0.7 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.25 – 7.20 (m, 1H), 3.83 (dd, J = 7.9, 6.5 Hz, 1H), 1.88 – 1.71 (m, 2H), 1.61 – 1.39 (m, 2H), 1.35 – 1.23 (m, 4H), 0.93 – 0.80 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 131.7, 128.5, 128.2, 127.7, 127.5, 126.7, 123.9, 91.8, 83.2, 38.7, 38.5, 31.6, 27.2, 22.6, 14.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₃ [M + H]⁺ 263.1794, found 263.1794.

(*R*)-But-3-yne-1,2,4-triyltribenzene (60)

According to **General procedure B** with (1-bromoethane-1,2-diyl)dibenzene **S60** (52.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the

product 60 as a colorless oil (35.0 mg, 62% yield, 92% ee).

 $[\alpha]_{D}^{27} = +35 (c \ 1.5, CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.76 min, t_R (minor) = 14.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 3H), 7.34 (d, *J* = 0.9 Hz, 1H), 7.31 (dd, *J* = 6.9, 1.8 Hz, 2H), 7.29 – 7.23 (m, 6H), 7.23 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 4.07 (t, *J* = 7.3 Hz, 1H), 3.10 (d, *J* = 7.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 139.0, 131.6, 129.6, 128.5, 128.3, 128.1, 127.9, 127.8, 127.0, 126.5, 123.7, 91.1, 84.4, 45.2, 40.9.

HRMS (ESI) m/z calcd. for C₂₂H₁₉ [M + H]⁺ 283.1481, found 283.1477.

(*R*)-Pent-1-yne-1,3,5-triyltribenzene (61)

According to **General procedure B** with (1-bromopropane-1,3-diyl)dibenzene **S61** (55.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **61** as a colorless oil (42.0 mg, 71% yield, 94% ee).

 $[\alpha]_{D}^{27} = +31 \ (c \ 2.4, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 26.12 min, *t*_R (major) = 27.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.38 – 7.27 (m, 6H), 7.26 (d, *J* = 1.6 Hz, 1H), 7.24 – 7.15 (m, 4H), 3.84 (t, *J* = 7.2 Hz, 1H), 2.93 – 2.74 (m, 2H), 2.27 – 1.99 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 141.7, 131.7, 128.6, 128.5, 128.3, 127.9, 127.6, 126.9, 126.0, 123.8, 91.2, 83.9, 40.2, 37.8, 33.7.

HRMS (ESI) m/z calcd. for C₂₃H₂₁ [M + H]⁺ 283.1638, found 283.1633.

(*R*)-Hex-1-yne-1,3,6-triyltribenzene (62)

According to **General procedure B** with (1-bromobutane-1,4-diyl)dibenzene **S62** (57.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **62** as a colorless oil (32.2 mg, 52% yield, 95% ee).

 $[\alpha]_{D}^{27} = +1.0 \ (c \ 1.8, CH_2Cl_2).$

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 4.65 min, t_R (major) = 6.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.40 (d, J = 1.4 Hz, 1H), 7.39 – 7.37 (m, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.29 – 7.20 (m, 6H), 7.19 – 7.13 (m, 3H), 3.86 (t, J = 6.7 Hz, 1H), 2.74 – 2.55 (m, 2H), 1.97 – 1.72 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 142.1, 131.7, 128.6, 128.5, 128.4, 128.3, 127.8, 127.5, 126.8, 125.8, 123.8, 91.5, 83.4, 38.4, 38.2, 35.6, 29.2. HRMS (ESI) *m/z* calcd. for C₂₄H₂₃ [M + H]⁺ 311.1794, found 311.1793.

(*R*)-(5-Methylhex-1-yne-1,3-diyl)dibenzene (63)

According to **General procedure B** with (1-bromo-3-methylbutyl)benzene **S63** (45.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **63** as a colorless oil (34.7 mg, 70% yield, 96% ee).

 $[\alpha]_{D}^{27} = -11 \ (c \ 2.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.18 min, t_R (major) = 11.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 4H), 7.33 (t, J = 7.5 Hz, 2H), 7.30 – 7.21 (m, 4H), 3.88 (dd, J = 9.7, 6.1 Hz, 1H), 1.99 – 1.85 (m, 1H), 1.80 (ddd, J = 13.2, 9.7, 5.4 Hz, 1H), 1.57 (ddd, J = 13.2, 8.5, 6.1 Hz, 1H), 0.98 (dd, J = 8.4, 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 142.7, 131.7, 128.6, 128.2, 127.7, 127.5, 126.7, 123.9, 91.7, 83.0, 48.1, 36.6, 26.2, 23.1, 21.9.

HRMS (ESI) m/z calcd. for C₁₉H₂₁ [M + H]⁺ 249.1638, found 249.1634.

(*R*)-(4-Methylpent-1-yne-1,3-diyl)dibenzene (64)

According to General procedure B with (1-bromo-2-methylpropyl)benzene S64 (42.6 mg, 0.20 mmol, 1.0 equiv.), ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.), and L*8 (9.2 mg, 0.015 mmol, 7.5 mol%) instead of L*13 for 24 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 64 as a colorless oil (37.9 mg, 81% yield, 98% ee).

 $[\alpha]_{D}^{27} = -34 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.14 min, t_R (major) = 10.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.40 (d, *J* = 7.4 Hz, 2H), 7.35 – 7.27 (m, 5H), 7.24 (t, *J* = 7.2 Hz, 1H), 3.73 (d, *J* = 5.9 Hz, 1H), 2.05 (dq, *J* = 13.1, 6.5 Hz, 1H), 1.04 (d, *J* = 6.7 Hz, 3H), 0.99 (d, *J* = 6.7 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.1, 131.7, 128.25, 128.22, 127.7, 126.6, 124.0, 90.2, 84.3, 45.8, 35.2, 21.3, 18.7.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1478.

(*R*)-(4,4-Dimethylpent-1-yne-1,3-diyl)dibenzene (65)

According to **General procedure B** with (1-bromo-2,2-dimethylpropyl)benzene **S65** (45.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **65** as a colorless oil (14.9 mg, 30% yield, 96% ee).

 $[\alpha]_{D}^{27} = -15 (c 1.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 15.55 min, t_R (major) = 16.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.26 (m, 5H), 7.26 – 7.22 (m, 1H), 3.62 (s, 1H), 1.04 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.4, 131.6, 129.7, 128.2, 127.6, 126.7, 124.0, 91.4, 83.7, 50.3, 35.5, 27.8.

HRMS (ESI) m/z calcd. for C₁₉H₂₁ [M + H]⁺ 249.1638, found 249.1632.

(*R*)-(3-Cyclobutylprop-1-yne-1,3-diyl)dibenzene (66)

According to General procedure B with (bromo(cyclobutyl)methyl)benzene S66 (45.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 66 as a colorless oil (35.9 mg, 73% yield, 96% ee).

 $[\alpha]_{D}^{27} = +19 (c 2.1, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 99.8/0.2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 5.15 min, *t*_R (minor) = 5.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.37 (d, *J* = 7.4 Hz, 2H), 7.34 – 7.26 (m, 5H), 7.25 – 7.19 (m, 1H), 3.80 (d, *J* = 7.7 Hz, 1H), 2.67 (h, *J* = 8.1 Hz, 1H), 2.13 – 2.00 (m, 2H), 1.99 – 1.88 (m, 2H), 1.86 – 1.75 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.8, 131.8, 128.4, 128.2, 127.8, 127.6, 126.7, 123.9, 90.2, 83.7, 44.1, 42.2, 26.7, 26.0, 17.6.

HRMS (ESI) m/z calcd. for C₁₉H₁₉ [M + H]⁺ 247.1481, found 247.1486.

(R)-(3-Cyclopentylprop-1-yne-1,3-diyl)dibenzene (67)

According to **General procedure B** with (bromo(cyclopentyl)methyl)benzene **S67** (47.8 mg, 0.20 mmol, 1.0 equiv.), ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.), and L*8 (9.2 mg, 0.015 mmol, 7.5 mol%) instead of L*13 for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **67** as a colorless oil (41.1 mg,

79% yield, 96% ee).

 $[\alpha]_{D}^{27} = -1.1$ (*c* 2.9, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.22 min, t_R (major) = 10.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 3H), 7.39 (s, 1H), 7.35 – 7.25 (m, 5H), 7.25 – 7.21 (m, 1H), 3.78 (d, J = 7.3 Hz, 1H), 2.32 – 2.17 (m, 1H), 2.33 – 2.18 (m, 1H), 1.85 – 1.72 (m, 1H), 1.72 – 1.54 (m, 5H), 1.47 – 1.38 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.0, 131.7, 128.3, 128.2, 127.9, 127.7, 126.6, 124.0, 91.2, 83.3, 47.3, 43.3, 31.2, 30.0, 25.4, 25.2.

HRMS (ESI) m/z calcd. for C₂₀H₂₁ [M + H]⁺ 261.1638, found 261.1636.

(*R*)-(3-Cyclohexylprop-1-yne-1,3-diyl)dibenzene (68)

According to **General procedure B** with (bromo(cyclohexyl)methyl)benzene **S68** (50.6 mg, 0.20 mmol, 1.0 equiv.), ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.), and **L*8** (9.2 mg, 0.015 mmol, 7.5 mol%) instead of **L*13** for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **68** as a colorless oil (44.9 mg, 82% yield, 98% ee).

 $[\alpha]_{D}^{27} = -10 (c \ 1.6, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 8.62 min, *t*_R (major) = 11.41 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.41 – 7.35 (m, 2H), 7.35 – 7.26 (m, 5H), 7.26 – 7.21 (m, 1H), 3.68 (d, *J* = 6.2 Hz, 1H), 1.86 (s, 1H), 1.80 – 1.75 (m, 2H), 1.70 – 1.55 (m, 3H), 1.27 – 1.09 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 140.9, 131.7, 128.4, 128.25, 128.22, 127.7, 126.6, 124.0, 90.8, 84.1, 45.2, 44.7, 31.7, 29.6, 26.5, 26.4, 26.3.

HRMS (ESI) m/z calcd. for C₂₁H₂₃ [M + H]⁺ 275.1794, found 275.1793.

(R)-Hex-5-en-1-yne-1,3-diyldibenzene (69)

According to General procedure B with (1-bromobut-3-en-1-yl)benzene S69 (42.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 69 as a colorless oil (29.7 mg, 64% yield, 96% ee).

 $[\alpha]_{D}^{27} = -2.2 \ (c \ 1.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.62 min, t_R (major) = 13.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 4H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.26 – 7.23 (m, 1H), 5.92 (ddt, *J* = 17.1, 10.2, 7.0 Hz, 1H), 5.15 – 5.02 (m, 2H), 3.92 (t, *J* = 7.1 Hz, 1H), 2.59 (t, *J* = 7.1 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 135.5, 131.7, 128.5, 128.2, 127.8, 127.6, 126.9, 123.7, 117.1, 91.0, 83.8, 42.8, 38.6. HRMS (ESI) *m/z* calcd. for C₁₈H₁₇ [M + H]⁺ 233.1325, found 233.1321.

(R)-Oct-7-en-1-yne-1,3-diyldibenzene (70)

According to **General procedure B** with (1-bromohex-5-en-1-yl)benzene **S70** (47.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **70** as a colorless oil (39.1 mg, 75% yield, 96% ee).

 $[\alpha]_{D}^{27} = -6.0 \ (c \ 2.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 10.61 min, *t*_R (major) = 21.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 3H), 7.40 (s, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.26 – 7.17 (m, 1H), 5.80 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.01 (ddd, *J* = 17.1, 3.4, 1.6 Hz, 1H), 4.97 – 4.92 (m, 1H), 3.84 (t, *J* = 7.2 Hz, 1H), 2.18 – 2.04 (m, 2H), 1.90 – 1.77 (m, 2H), 1.73 – 1.43 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 138.6, 131.7, 128.5, 128.2, 127.8, 127.5, 126.7, 123.8, 114.7, 91.5, 83.3, 38.3, 38.1, 33.5, 26.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₁ [M + H]⁺ 261.1638, found 261.1638.

Ethyl (*R*)-3,5-diphenylpent-4-ynoate (71)

According to General procedure B with ethyl 3-bromo-3-phenylpropanoate S71 (51.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product 71 as a colorless oil (18.9 mg, 34% yield, 92% ee).

 $[\alpha]_{D}^{27} = -12 (c \ 0.80, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 5.17 min, *t*_R (minor) = 7.75 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 7.4 Hz, 2H), 7.43 – 7.38 (m, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.31 – 7.25 (m, 4H), 4.38 (t, J = 7.6 Hz, 1H), 4.19 – 4.10 (m, 2H), 2.90 (dd, J = 15.1, 8.4 Hz, 1H), 2.79 (dd, J = 15.1, 6.9 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 140.5, 131.7, 128.7, 128.2, 128.0, 127.5, 127.3, 123.3, 89.9, 83.6, 60.7, 43.4, 34.9, 14.2.

HRMS (ESI) m/z calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380, found 279.1377.

Ethyl (R)-4,6-diphenylhex-5-ynoate (72)

According to **General procedure B** with ethyl 4-bromo-4-phenylbutanoate **S72** (54.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **72** as a colorless oil (50.2 mg, 86% yield, 86% ee).

 $[\alpha]_{D}^{27} = -1.7$ (*c* 4.5, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.56 min, t_R (major) = 10.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 4H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.24 (m, 4H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.98 (dd, *J* = 8.4, 5.9 Hz, 1H), 2.66 – 2.45 (m, 2H), 2.28 – 2.08 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 141.2, 131.7, 128.6, 128.3, 128.0, 127.6, 127.0, 123.5, 90.3, 84.1, 60.5, 37.6, 33.4, 32.0, 14.3.

HRMS (ESI) m/z calcd. for C₂₀H₂₁O₂ [M + H]⁺ 293.1536, found 293.1533.

Ethyl (*R*)-5,7-diphenylhept-6-ynoate (73)

According to **General procedure B** with ethyl 5-bromo-5-phenylpentanoate **S73** (57.1 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **73** as a colorless oil (45.9 mg, 75% yield, 92% ee).

 $[\alpha]_D^{27} = -7.0 \ (c \ 3.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.93 min, t_R (major) = 11.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 4.1 Hz, 1H), 7.44 – 7.42 (m, 2H), 7.41 (s, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.30 – 7.27 (m, 3H), 7.26 – 7.21 (m, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.86 (t, J = 6.5 Hz, 1H), 2.35 (t, J = 6.9 Hz, 2H), 1.95 – 1.78 (m, 4H), 1.23 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.4, 141.8, 131.7, 128.6, 128.2, 127.8, 127.5, 126.8, 123.7, 91.0, 83.6, 60.3, 38.2, 37.9, 34.0, 22.9, 14.3.

HRMS (ESI) m/z calcd. for C₂₁H₂₃O₂ [M + H]⁺ 307.1693, found 307.1687.

(*R*)-1,5,7-Triphenylhept-6-yn-1-one (74)

According to **General procedure B** with 5-bromo-1,5-diphenylpentan-1-one **S74** (63.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction

mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 15/1) to yield the product 74 as a colorless oil (56.8 mg, 84% yield, 92% ee).

 $[\alpha]_{D}^{27} = -3.6 \ (c \ 3.6, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 9.16 min, *t*_R (major) = 18.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.55 (ddd, J = 6.8, 4.0, 1.2 Hz, 1H), 7.50 – 7.42 (m, 6H), 7.36 (t, J = 7.5 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.27 – 7.24 (m, 1H), 3.94 (t, J = 6.7 Hz, 1H), 3.11 – 2.93 (m, 2H), 2.10 – 1.87 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 200.0, 141.9, 137.0, 133.0, 131.7, 128.61, 128.60, 128.2, 128.1, 127.8, 127.5, 126.8, 123.7, 91.2, 83.7, 38.3, 38.2, 38.1, 22.3.

HRMS (ESI) m/z calcd. for C₂₅H₂₃O [M + H]⁺ 339.1743, found 339.1743.

(*R*)-5,7-Diphenylhept-6-ynenitrile (75)

According to **General procedure B** with 5-bromo-5-phenylpentanenitrile **S75** (47.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 8/1) to yield the product **75** as a colorless oil (43.0 mg, 83% yield, 94% ee).

 $[\alpha]_{D}^{27} = -7.6 \ (c \ 3.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.97 min, t_R (major) = 14.98 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.28 (m, 3H), 7.27 – 7.23 (m, 1H), 3.90 (dd, *J* = 7.8, 6.0 Hz, 1H), 2.36 (t, *J* = 7.0 Hz, 2H), 2.02 – 1.92 (m, 2H), 1.91 – 1.78 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.0, 131.7, 128.7, 128.3, 128.1, 127.4, 127.1, 123.3, 119.5, 90.1, 84.2, 37.7, 37.2, 23.2, 17.0.

HRMS (ESI) m/z calcd. for C₁₉H₁₈N [M + H]⁺ 260.1434, found 260.1437.

(*R*)-2-(3,5-Diphenylpent-4-yn-1-yl)-5,5-dimethyl-1,3-dioxane (76)

According to **General procedure B** with 2-(3-bromo-3-phenylpropyl)-5,5-dimethyl-1,3-dioxane **S76** (62.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **76** as a colorless oil (49.4 mg, 74% yield, 94% ee).

 $[\alpha]_{D}^{27} = -2.1$ (*c* 3.5, CH₂Cl₂).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 17.29 min, t_R (major) = 18.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 4H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.21 (m, 4H), 4.45 (t, *J* = 4.6 Hz, 1H), 3.92 – 3.83 (m, 1H), 3.60 (d, *J* = 3.1 Hz, 1H), 3.58 (d, *J* = 2.9 Hz, 1H),

3.41 (d, *J* = 3.0 Hz, 1H), 3.38 (d, *J* = 3.0 Hz, 1H), 2.04 – 1.88 (m, 3H), 1.88 – 1.75 (m, 1H), 1.18 (s, 3H), 0.70 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.9, 131.7, 128.5, 128.2, 127.7, 127.6, 126.8, 123.7, 101.9, 91.1, 83.6, 77.2, 38.2, 32.9, 32.7, 30.2, 23.0, 21.9.

HRMS (ESI) m/z calcd. for C₂₃H₂₇O₂ [M + H]⁺ 335.2006, found 335.1998.

(*R*)-*tert*-Butyl((4,6-diphenylhex-5-yn-1-yl)oxy)diphenylsilane (77)

According to **General procedure B** with (4-bromo-4-phenylbutoxy)(*tert*-butyl)diphenylsilane S77 (93.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 77 as a colorless oil (81.1 mg, 83% yield, 95% ee).

 $[\alpha]_{D}^{27} = -2.2 \ (c \ 2.2, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.3/0.7, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 7.80 min, t_R (major) = 9.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.69 – 7.61 (m, 4H), 7.43 – 7.41 (m, 3H), 7.39 (d, *J* = 5.3 Hz, 3H), 7.36 – 7.31 (m, 6H), 7.30 – 7.21 (m, 4H), 3.87 (t, *J* = 7.6 Hz, 1H), 3.79 – 3.63 (m, 2H), 2.01 – 1.85 (m, 2H), 1.85 – 1.68 (m, 2H), 1.04 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.1, 135.6, 134.01, 134.00, 131.7, 129.6, 128.5, 128.2, 127.7, 127.6, 127.5, 126.7, 123.8, 91.5, 83.4, 63.6, 38.0, 34.9, 30.3, 26.9, 19.3.

HRMS (ESI) m/z calcd. for C₃₄H₃₇OSi [M + H]⁺ 489.2608, found 489.2600.

(*R*)-(6-Methoxyhex-1-yne-1,3-diyl)dibenzene (78)

According to General procedure B with (1-bromo-4-methoxybutyl)benzene S78 (48.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 50/1) to yield the product 78 as a colorless oil (43.8 mg, 83% yield, 95% ee).

 $[\alpha]_{D}^{27} = -11 \ (c \ 3.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 97/3, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 14.89 min, t_R (major) = 16.42 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 4H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.20 (m, 4H), 3.87 (dd, *J* = 7.8, 6.2 Hz, 1H), 3.46 – 3.35 (m, 2H), 3.31 (s, 3H), 1.98 – 1.69 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 142.0, 131.7, 128.5, 128.2, 127.8, 127.5, 126.8, 123.8, 91.3, 83.5, 72.5, 58.6, 38.2, 35.3, 27.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₁O [M + H]⁺ 265.1587, found 265.1585.

(*R*)-(5-(Phenylsulfonyl)pent-1-yne-1,3-diyl)dibenzene (79)

According to **General procedure B** with (1-bromo-3-(phenylsulfonyl)propyl)benzene **S79** (67.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 8/1) to yield the product **79** as a colorless oil (66.2 mg, 92% yield, 80% ee). $[\alpha]_D^{27} = -0.60$ (*c* 5.5, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.02 min, t_R (major) = 10.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.88 (t, *J* = 1.6 Hz, 1H), 7.69 – 7.59 (m, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 4H), 7.31 – 7.29 (m, 3H), 7.29 – 7.23 (m, 1H), 4.00 (dd, *J* = 8.2, 5.8 Hz, 1H), 3.36 – 3.21 (m, 2H), 2.33 – 2.08 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 139.8, 139.0, 133.8, 131.7, 129.4, 128.8, 128.33, 128.28, 128.0, 127.44, 127.38, 122.9, 88.8, 84.9, 54.0, 36.9, 31.1.

HRMS (ESI) m/z calcd. for C₂₃H₂₁O₂S [M + H]⁺ 361.1257, found 361.1255.

(*R*)-(5-Bromopent-1-yne-1,3-diyl)dibenzene (80)

According to **General procedure B** with (1,3-dibromopropyl)benzene **S80** (55.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **80** as a colorless oil (45.9 mg, 77% yield, 96% ee).

 $[\alpha]_{D}^{27} = +8.8 \ (c \ 3.3, CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.15 min, t_R (minor) = 10.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.44 (d, J = 2.6 Hz, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.33 – 7.25 (m, 4H), 4.13 (dd, J = 8.5, 6.2 Hz, 1H), 3.64 (ddd, J = 10.0, 7.7, 6.6 Hz, 1H), 3.48 (dt, J = 10.1, 6.2 Hz, 1H), 2.44 – 2.21 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 131.7, 128.8, 128.3, 128.1, 127.6, 127.2, 123.3, 89.7, 84.1, 41.2, 36.9, 31.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Br [M + H]⁺ 299.0430, found 299.0426.

(R)-(5-Chloropent-1-yne-1,3-diyl)dibenzene (81)

According to **General procedure B** with (1-bromo-3-chloropropyl)benzene **S81** (54.9 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction

mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **81** as a colorless oil (39.6 mg, 78% yield, 97% ee).

 $[\alpha]_{D}^{27} = +6.2 \ (c \ 3.5, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 16.07 min, t_R (major) = 16.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.24 (m, 4H), 4.14 (dd, *J* = 8.5, 6.3 Hz, 1H), 3.78 (ddd, *J* = 10.9, 7.6, 6.3 Hz, 1H), 3.64 – 3.55 (m, 1H), 2.35 – 2.16 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.7, 131.7, 128.8, 128.3, 128.1, 127.6, 127.2, 123.3, 89.8, 84.0, 42.7, 41.1, 35.7.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Cl [M + H]⁺ 255.0935, found 255.0933.

(*R*)-9-(4-phenyl-4-(trimethylsilyl)but-2-yn-1-yl)-9*H*-carbazole (82)

According to **General procedure A** with (bromo(phenyl)methyl)trimethylsilane **S82** (72.6 mg, 0.30 mmol, 1.5 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (41.0 mg, 0.20 mmol, 1.0 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **82** as a colorless oil (63.1 mg, 86% yield, 97% ee). $[\alpha]_{D}^{27} = -3.7$ (*c* 1.1, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 18.73 min, t_R (minor) = 20.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.8 Hz, 2H), 7.62 – 7.50 (m, 4H), 7.34 – 7.29 (m, 2H), 7.28 – 7.22 (m, 2H), 7.17 – 7.08 (m, 3H), 5.18 (d, *J* = 2.2 Hz, 2H), 3.09 (t, *J* = 2.4 Hz, 1H), -0.11 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.2, 138.9, 128.1, 126.9, 125.8, 125.1, 123.3, 120.4, 119.3, 109.1, 84.6, 76.8, 33.1, 29.3, -3.4.

HRMS (ESI) m/z calcd. for C₂₅H₂₆NSi [M + H]⁺ 368.1829, found 368.1827.

(*R*)-1-Methyl-4-(1-phenylpent-1-yn-3-yl)benzene (83)

According to **General procedure B** with 1-(1-bromopropyl)-4-methylbenzene **S83** (42.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **83** as a colorless oil (39.8 mg, 85% yield, 96% ee).

 $[\alpha]_{\rm D}^{27} = -2.6$ (*c* 2.6, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R

 $(minor) = 9.24 min, t_{R} (major) = 15.76 min.$

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 4.5 Hz, 1H), 7.43 (d, J = 1.9 Hz, 1H), 7.34 – 7.26 (m, 5H), 7.15 (d, J = 7.9 Hz, 2H), 3.75 (t, J = 7.0 Hz, 1H), 2.34 (s, 3H), 1.90 – 1.79 (m, 2H), 1.05 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.1, 136.2, 131.7, 129.1, 128.2, 127.7, 127.4, 123.9, 91.7, 83.2, 39.6, 31.7, 21.1, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1480.

(R)-1-Methyl-3-(1-phenylpent-1-yn-3-yl)benzene (84)

According to **General procedure B** with 1-(1-bromopropyl)-3-methylbenzene **S84** (42.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **84** as a colorless oil (37.0 mg, 79% yield, 93% ee).

 $[\alpha]_{D}^{27} = -10 \ (c \ 2.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.82 min, t_R (major) = 13.69 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.33 – 7.28 (m, 3H), 7.26 – 7.21 (m, 3H), 7.10 – 7.04 (m, 1H), 3.76 (dd, *J* = 7.6, 6.4 Hz, 1H), 2.38 (s, 3H), 1.93 – 1.81 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 142.0, 138.0, 131.7, 128.34, 128.31, 128.2, 127.7, 127.4, 124.6, 123.9, 91.7, 83.3, 39.9, 31.7, 21.5, 12.0.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1481.

(S)-1-Methyl-2-(1-phenylpent-1-yn-3-yl)benzene (85)

According to **General procedure B** with 1-(1-bromopropyl)-2-methylbenzene **S85** (42.6 mg, 0.20 mmol, 1.0 equiv.), ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.), and L*8 (9.2 mg, 0.015 mmol, 7.5 mol%) instead of L*13 for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **85** as a colorless oil (20.1 mg, 43% yield, 95% ee).

 $[\alpha]_{D}^{27} = -11$ (*c* 0.80, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.66 min, *t*_R (minor) = 10.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.34 – 7.27 (m, 3H), 7.25 – 7.18 (m, 1H), 7.18 – 7.13 (m, 2H), 3.97 (dd, *J* = 8.3, 5.8 Hz, 1H), 2.39 (s, 3H), 1.91 – 1.74 (m, 2H), 1.12 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.3, 134.9, 131.6, 130.4, 128.2, 127.7, 126.6, 126.2, 123.9, 91.9, 82.7, 36.5, 30.1, 19.3, 12.2.

HRMS (ESI) m/z calcd. for C₁₈H₁₉ [M + H]⁺ 235.1481, found 235.1480.

(R)-1-Methoxy-3-(1-phenylpent-1-yn-3-yl)benzene (86)

According to **General procedure B** with 1-(1-bromopropyl)-3-methoxybenzene **S86** (45.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 100/1) to yield the product **86** as a colorless oil (35.0 mg, 70% yield, 96% ee).

 $[\alpha]_{D}^{27} = -6.8 (c \ 1.4, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 4.89 min, t_R (major) = 5.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.40 (m, 2H), 7.39 – 7.27 (m, 4H), 7.03 (d, *J* = 6.1 Hz, 2H), 6.85 – 6.77 (m, 1H), 3.84 (s, 3H), 3.79 (t, *J* = 7.0 Hz, 1H), 1.97 – 1.83 (m, 2H), 1.09 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.7, 143.7, 131.7, 129.4, 128.2, 127.7, 123.9, 120.0, 113.5, 111.9, 91.4, 83.5, 55.2, 40.0, 31.6, 11.9.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1425.

(*R*)-*N*-(3-(4-Phenylbut-3-yn-2-yl)phenyl)acetamide (87)

According to **General procedure B** with *N*-(3-(1-bromoethyl)phenyl)acetamide **S87** (48.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 10/1) to yield the product **87** as a colorless oil (47.3 mg, 90% yield, 90% ee).

 $[\alpha]_{D}^{27} = -4.4$ (*c* 3.9, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.96 min, t_R (major) = 14.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.49 – 7.43 (m, 3H), 7.40 (s, 1H), 7.33 – 7.26 (m, 4H), 7.19 (d, *J* = 7.7 Hz, 1H), 3.96 (q, *J* = 7.1 Hz, 1H), 2.16 (s, 3H), 1.57 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 144.3, 138.1, 131.7, 129.2, 128.2, 127.8, 123.6, 122.9, 118.4, 118.3, 92.3, 82.6, 32.4, 24.6, 24.4.

HRMS (ESI) m/z calcd. for C₁₈H₁₈NO [M + H]⁺ 264.1383, found 264.1382.

(*R*)-3-(4-Phenylbut-3-yn-2-yl)phenyl acetate (88)

According to **General procedure B** with 3-(1-bromoethyl)phenyl acetate **S88** (48.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **88** as a colorless oil (50.1 mg, 95% yield, 92% ee).

 $[\alpha]_{D}^{27} = -10 (c 4.5, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.84 min, t_R (major) = 8.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 4.3 Hz, 1H), 7.45 (t, J = 2.7 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.33 – 7.29 (m, 3H), 7.21 (d, J = 1.8 Hz, 1H), 7.03 – 6.99 (m, 1H), 4.01 (q, J = 7.1 Hz, 1H), 2.31 (s, 3H), 1.60 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 150.9, 145.0, 131.7, 129.5, 128.3, 127.9, 124.5, 123.6, 120.2, 119.9, 92.0, 82.8, 32.3, 24.3, 21.2.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223, found 265.1221.

(*R*)-1-Bromo-4-(1-phenylpent-1-yn-3-yl)benzene (89)

According to **General procedure B** with 1-bromo-4-(1-bromopropyl)benzene **S89** (55.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **89** as a colorless oil (50.0 mg, 84% yield, 96% ee).

 $[\alpha]_{D}^{27} = -6.5 \ (c \ 4.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.93 min, t_R (major) = 23.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.47 (m, 1H), 7.46 (d, J = 2.1 Hz, 2H), 7.44 (t, J = 2.8 Hz, 1H), 7.31 (t, J = 3.7 Hz, 3H), 7.29 (d, J = 2.4 Hz, 2H), 3.76 (t, J = 7.2 Hz, 1H), 1.91 – 1.75 (m, 2H), 1.05 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.1, 131.7, 131.5, 129.3, 128.3, 127.9, 123.6, 120.5, 90.7, 83.7, 39.4, 31.5, 11.7.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Br [M + H]⁺ 299.0430, found 299.0430.

(*R*)-1-Bromo-3-(1-phenylpent-1-yn-3-yl)benzene (90)

According to **General procedure B** with 1-bromo-3-(1-bromopropyl)benzene **S90** (55.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **90** as a colorless oil (36.9 mg, 62% yield, 95% ee).

 $[\alpha]_{D}^{27} = -3.0 \ (c \ 2.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.81 min, t_R (major) = 16.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (t, J = 1.7 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.45 (t, J = 2.8 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.21 (t, J = 7.8 Hz, 1H), 3.76 (t, J = 7.6 Hz, 1H), 1.97 – 1.72 (m, 2H), 1.06 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.3, 131.7, 130.7, 130.0, 129.8, 128.3, 127.9, 126.3, 123.5, 122.5, 90.5, 83.9, 39.6, 31.6, 11.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₆Br [M + H]⁺ 299.0430, found 299.0425.

(S)-1-Bromo-2-(4-phenylbut-3-yn-2-yl)benzene (91)

According to **General procedure B** with 1-bromo-2-(1-bromoethyl)benzene **S91** (52.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **91** as a colorless oil (21.6 mg, 38% yield, 95% ee).

 $[\alpha]_{D}^{27} = -19 (c \ 1.3, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.23 min, *t*_R (minor) = 9.18 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.56 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.48 (d, *J* = 4.1 Hz, 1H), 7.46 (t, *J* = 2.8 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.13 (td, *J* = 7.8, 1.6 Hz, 1H), 4.45 (q, *J* = 7.0 Hz, 1H), 1.57 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.4, 132.9, 131.7, 128.8, 128.4, 128.3, 127.9, 123.6, 123.1, 92.0, 82.6, 32.4, 23.1.

HRMS (ESI) m/z calcd. for C₁₆H₁₄Br [M + H]⁺ 285.0273, found 285.0277.

(*R*)-3-(4-Phenylbut-3-yn-2-yl)benzaldehyde (92)

According to **General procedure B** with 3-(1-bromoethyl)benzaldehyde **S92** (42.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **92** as a colorless oil (31.8 mg, 68% yield, 90% ee).

 $[\alpha]_{D}^{27} = -5.5 (c 2.7, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.80 min, t_R (minor) = 9.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.97 (s, 1H), 7.85 – 7.71 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.45 (t, *J* = 2.7 Hz, 1H), 7.35 – 7.26 (m, 3H), 4.08 (q, *J* = 7.1 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.3, 144.5, 136.8, 133.2, 131.7, 129.3, 128.4, 128.3, 128.1, 128.0, 123.4, 91.6, 83.1, 32.3, 24.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₅O [M + H]⁺ 235.1117, found 235.1115.

(*R*)-1-(3-(4-Phenylbut-3-yn-2-yl)phenyl)ethan-1-one (93)

According to **General procedure B** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **S93** (45.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **93** as a colorless oil (47.1 mg, 95% yield, 93% ee).

 $[\alpha]_{D}^{27} = -13$ (*c* 4.4, CH₂Cl₂).

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 17.45 min, t_R (major) = 20.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 1.7 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.53 – 7.41 (m, 3H), 7.39 – 7.27 (m, 3H), 4.06 (q, *J* = 7.1 Hz, 1H), 2.63 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.1, 144.0, 137.5, 131.8, 131.6, 128.9, 128.3, 128.0, 126.9, 126.8, 123.5, 91.9, 83.0, 32.4, 26.8, 24.4.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O [M + H]⁺ 249.1274, found 249.1272.

Methyl (*R*)-3-(4-phenylbut-3-yn-2-yl)benzoate (94)

According to **General procedure B** with methyl-3-(1-bromoethyl)benzoate **S94** (48.6 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **94** as a colorless oil (48.0 mg, 91% yield, 89% ee).

 $[\alpha]_{D}^{27} = -9.3$ (c 3.7, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.82 min, t_R (major) = 9.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H). 7.47 – 7.41 (m, 3H), 7.38 – 7.28 (m, 3H), 4.05 (q, J = 7.1 Hz, 1H), 3.93 (s, 3H), 1.61 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 143.7, 131.7, 131.6, 130.5, 128.7, 128.3, 128.2, 128.0, 127.9, 123.5, 91.9, 82.9, 52.2, 32.4, 24.4.

HRMS (ESI) m/z calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223, found 265.1221.

(R)-3-(5-(9H-Carbazol-9-yl)pent-3-yn-2-yl)benzonitrile (95)

According to **General procedure B** with 3-(1-bromoethyl)benzonitrile **S95** (42.0 mg, 0.20 mmol, 1.0 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (61.5 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **95** as a colorless oil (58.8 mg, 88% yield, 84% ee). $|\alpha|_{D^{27}} = +15$ (*c* 3.9, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 16.97 min, t_R (major) = 18.84 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (t, J = 0.9 Hz, 1H), 8.11 (t, J = 0.9 Hz, 1H), 7.60 (t, J = 1.7 Hz, 1H), 7.55 – 7.44 (m, 6H), 7.33 (t, J = 7.8 Hz, 1H), 7.31 – 7.26 (m, 2H), 5.11 (d, J = 2.0 Hz, 2H), 3.72 (qt, J = 7.0, 1.7 Hz, 1H), 1.40 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.2, 139.9, 131.5, 130.5, 129.3, 125.9, 123.3, 120.5, 119.5, 118.8, 112.6, 108.8, 85.6, 77.4, 32.8, 31.5, 23.9.

HRMS (ESI) m/z calcd. for C₂₄H₁₉N₂ [M + H]⁺ 335.1543, found 335.1542.

(*R*)-1-(1-Phenylpent-1-yn-3-yl)-4-(trifluoromethyl)benzene (96)

According to **General procedure B** with 1-(1-bromopropyl)-4-(trifluoromethyl)benzene **S96** (53.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **96** as a colorless oil (39.7 mg, 69% yield, 96% ee).

$$[\alpha]_{D}^{27} = -11$$
 (*c* 2.8, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.52 min, t_R (major) = 19.36 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 3.7 Hz, 1H), 7.45 (t, *J* = 2.9 Hz, 1H), 7.36 – 7.29 (m, 3H), 3.86 (t, *J* = 5.6 Hz, 1H), 1.96 – 1.82 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 146.1, 131.7, 129.0 (q, *J* = 32.5 Hz), 128.3, 128.0, 127.9, 125.4 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 274.6 Hz), 123.4, 90.3, 84.0, 39.8, 31.5, 11.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.3 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃ [M + H]⁺ 289.1199, found 289.1201.

(*R*)-1-(1-Phenylpent-1-yn-3-yl)-3,5-bis(trifluoromethyl)benzene (97)

According to **General procedure B** with 1-(1-bromopropyl)-3,5-bis(trifluoromethyl)benzene **S97** (67.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **97** as a colorless oil (52.7 mg, 74% yield, 94% ee).

 $[\alpha]_{D}^{27} = -1.2$ (*c* 2.3, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.36 min, t_R (minor) = 17.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.79 (s, 1H), 7.54 – 7.43 (m, 2H), 7.36 – 7.30 (m, 3H), 3.95 (dd, J = 8.0, 6.0 Hz, 1H), 2.04 – 1.75 (m, 2H), 1.10 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.6, 131.74 (q, *J* = 32.5 Hz), 131.68, 128.4, 128.3, 127.8, 123.4 (q, *J* = 274.6 Hz), 123.0, 121.0 – 120.8 (m), 89.0, 84.9, 39.8, 31.5, 11.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 6F).

HRMS (ESI) m/z calcd. for C₁₉H₁₅F₆ [M + H]⁺ 357.1072, found 357.1065.

(*R*)-2-(4-Phenylbut-3-yn-2-yl)naphthalene (98)

According to **General procedure B** with 2-(1-bromoethyl)naphthalene **S98** (47.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **98** as a colorless oil (43.0 mg, 84% yield, 90% ee).

 $[\alpha]_{D}^{27} = -16 (c 3.3, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 4.82 min, t_R (major) = 5.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.88 – 7.83 (m, 3H), 7.61 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.56 – 7.43 (m, 4H), 7.40 – 7.28 (m, 3H), 4.18 (q, *J* = 7.1 Hz, 1H), 1.70 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.7, 133.6, 132.5, 131.7, 128.34, 128.29, 127.9, 127.8, 127.7, 126.1, 125.6, 125.2, 123.8, 92.6, 82.7, 32.7, 24.4.

HRMS (ESI) m/z calcd. for C₂₀H₁₇ [M + H]⁺ 257.1325, found 257.1322.

(*R*)- 5-(4-Phenylbut-3-yn-2-yl)benzo[*d*][1,3]dioxole (99)

According to **General procedure B** with 5-(1-bromoethyl)benzo[d][1,3]dioxole **S99** (45.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **99** as a colorless oil (25.0 mg, 50% yield, 91% ee).

 $[\alpha]_{D}^{27} = -0.77 \ (c \ 1.8, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 20.33 min, t_R (minor) = 23.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.35 – 7.29 (m, 3H), 7.00 (d, *J* = 1.6 Hz, 1H), 6.92 (dd, *J* = 8.0, 1.6Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 5.98 (s, 2H), 3.94 (q, *J* = 7.2 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 146.3, 137.4, 131.6, 128.2, 127.8, 123.7, 119.9, 108.2, 107.6, 101.0, 92.6, 82.4, 32.2, 24.7.

HRMS (ESI) m/z calcd. for C₁₇H₁₅O₂ [M + H]⁺ 251.1067, found 251.1065

(*R*)-1-(4-(1-Phenylpent-1-yn-3-yl)phenyl)-1*H*-pyrazole (100)

According to **General procedure B** with 1-(4-(1-bromopropyl)phenyl)-1*H*-pyrazole **S100** (52.8 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 10/1) to yield the product **100** as a colorless oil (45.8 mg, 80% yield, 96% ee). $[\alpha]_{D}^{27} = -1.6$ (*c* 4.3, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (minor) = 17.73 min, *t*_R (major) = 19.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 2.3 Hz, 1H), 7.72 (d, *J* = 1.2 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 4.2 Hz, 1H), 7.46 (d, *J* = 1.9 Hz, 1H), 7.36 – 7.27 (m, 3H), 6.46 (t, *J* = 2.0 Hz, 1H), 3.84 (t, *J* = 6.9 Hz, 1H), 1.95 – 1.78 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 140.4, 138.9, 131.7, 128.6, 128.2, 127.8, 126.7, 123.7, 119.3, 107.5, 91.0, 83.7, 39.4, 31.6, 11.7.

HRMS (ESI) m/z calcd. for C₂₀H₁₉N₂ [M + H]⁺ 287.1543, found 287.1541.

(S)-3-(1-Phenylpent-1-yn-3-yl)pyridine (101)

According to **General procedure B** with 3-(1-bromopropyl)pyridine **S101** (40.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 15/1) to yield the product **101** as a colorless oil (34.0 mg, 77% yield, 97% ee).

 $[\alpha]_{D}^{27} = -1.6$ (*c* 1.9, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.01 min, t_R (major) = 9.10min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 1.9 Hz, 1H), 8.50 (dd, *J* = 4.7, 1.4 Hz, 1H), 7.76 (dt, *J* = 7.9, 1.9 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.34 – 7.25 (m, 4H), 3.82 (t, *J* = 7.2 Hz, 1H), 1.95 – 1.76 (m, 2H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 149.2, 148.2, 137.5, 135.1, 131.7, 128.3, 128.0, 123.4, 123.3, 89.9, 84.0, 37.5, 31.4, 11.7.

HRMS (ESI) m/z calcd. for C₁₆H₁₆N [M + H]⁺ 222.1277, found 222.1276.

(S)-2-Bromo-5-(4-phenylbut-3-yn-2-yl)pyridine (102)

According to **General procedure B** with 2-bromo-5-(1-bromoethyl)pyridine **S102** (53.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **102** as a colorless oil (37.6 mg, 66% yield, 93% ee).

 $[\alpha]_{D}^{27} = -0.96 \ (c \ 2.6, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.41 min, t_R (major) = 9.24 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 2.6 Hz, 1H), 7.67 (dd, *J* = 8.2, 2.6 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.35 – 7.27 (m, 3H), 3.98 (q, *J* = 7.1 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 149.0, 140.3, 138.2, 137.4, 131.6, 128.3, 128.2, 128.0, 123.0, 90.4, 83.4, 29.6, 24.1.

HRMS (ESI) m/z calcd. for C₁₅H₁₃BrN [M + H]⁺ 286.0226, found 286.0224.

(S)-9-(4-(5-Bromopyridin-3-yl)pent-2-yn-1-yl)-9H-carbazole (103)

According to **General procedure B** with 3-bromo-5-(1-bromoethyl)pyridine **S103** (53.0 mg, 0.20 mmol, 1.0 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (61.5 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **103** as a colorless oil (59.9 mg, 77% yield, 87% ee). $[\alpha]_{D}^{27} = +31$ (*c* 2.6, CH₂Cl₂).

HPLC analysis: Chiralcel ID (hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 26.47 min, t_R (minor) = 31.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 2.2 Hz, 1H), 8.43 (d, J = 1.9 Hz, 1H), 8.12 (dt, J = 7.8, 0.9 Hz, 2H), 7.75 (td, J = 2.1, 0.6 Hz, 1H), 7.56 – 7.46 (m, 4H), 7.32 – 7.27 (m, 2H), 5.09 (d, J = 2.1 Hz, 2H), 3.78 – 3.64 (m, 1H), 1.41 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.3, 146.8, 140.1, 140.0, 137.1, 126.0, 123.3, 120.8, 120.5, 119.6, 108.8, 85.0, 77.6, 32.8, 29.3, 23.8.

HRMS (ESI) m/z calcd. for C₂₂H₁₈BrN₂ [M + H]⁺ 389.0648, found 389.0641.

(S)-9-(4-(Benzo[b]thiophen-3-yl)hex-2-yn-1-yl)-9H-carbazole (104)

According to **General procedure B** with 3-(1-bromopropyl)benzo[*b*]thiophene **S104** (51.0 mg, 0.20 mmol, 1.0 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (61.5 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **104** as a colorless oil (59.1 mg, 78% yield, 99% ee). $[\alpha]_{D}^{27} = +19$ (*c* 3.0, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 17.41 min, t_R (minor) = 20.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 7.8, 1.3 Hz, 2H), 7.88 (dd, J = 7.2, 1.5 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.59 – 7.49 (m, 4H), 7.40 – 7.29 (m, 4H), 7.24 (s, 1H), 5.13 (d, J = 2.0 Hz, 2H), 3.95 (td, J = 5.6, 2.4 Hz, 1H), 2.00 – 1.77 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 140.1, 137.4, 135.6, 125.8, 124.3, 123.9, 123.3, 123.0, 122.7, 121.9, 120.4, 119.4, 108.9, 85.2, 76.8, 33.5, 32.9, 28.6, 11.8.

HRMS (ESI) m/z calcd. for C₂₆H₂₂NS [M + H]⁺ 380.1467, found 380.1461.

(S)-3-(4-Phenylbut-3-yn-2-yl)thiophene (105)

According to General procedure B with 3-(1-bromoethyl)thiophene S105 (38.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene S1-2 (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 105 as a colorless oil (36.9 mg, 87% yield, 92% ee).

 $[\alpha]_{D}^{27} = -9.3$ (*c* 1.4, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.4 mL/min, $\lambda = 254$ nm), t_R (minor) = 11.03 min, t_R (major) = 11.95 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 2H), 7.35 – 7.31 (m, 4H), 7.28 – 7.25 (m, 1H), 7.17 (dd, J = 4.9 Hz, 1H), 4.09 (q, J = 7.2 Hz, 1H), 1.63 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.7, 131.6, 128.2, 127.8, 126.9, 125.9, 123.6, 120.3, 92.4, 81.8, 27.9, 23.2.

HRMS (ESI) m/z calcd. for C₁₄H₁₃S [M + H]⁺ 213.0732, found 213.0729.

(S)-9-(4-(Benzofuran-3-yl)hex-2-yn-1-yl)-9H-carbazole (106)

According to **General procedure B** with 3-(1-bromopropyl)benzofuran **S106** (47.8 mg, 0.20 mmol, 1.0 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (61.5 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **106** as a colorless oil (55.2 mg, 76% yield, 98% ee). $[\alpha]_{D}^{27} = +28$ (*c* 1.5, CH₂Cl₂).

HPLC analysis: Chiralcel AS3 (hexane/*i*-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.36 min, t_R (major) = 10.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.09 (m, 2H), 7.59 – 7.48 (m, 6H), 7.44 (s, 1H), 7.36 – 7.29 (m, 3H), 7.23 – 7.15 (m, 1H), 5.13 (d, *J* = 2.0 Hz, 2H), 3.83 – 3.69 (m, 1H), 1.99 – 1.76 (m, 2H), 0.99 (td, *J* = 7.2, 1.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.6, 141.7, 140.0, 126.6, 125.8, 124.3, 123.3, 122.4, 120.44,

120.40, 120.1, 119.4, 111.6, 108.9, 84.7, 76.4, 32.8, 29.4, 28.3, 11.6.

HRMS (ESI) m/z calcd. for C₂₆H₂₂NO [M + H]⁺ 364.1696, found 364.1688.

(S)-3-(4-Phenylbut-3-yn-2-yl)quinoline (107)

According to **General procedure D** with 3-(1-bromoethyl)quinoline **S107** (47.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 10/1) to yield the product **107** as a colorless oil (32.9 mg, 64% yield, 90% ee).

 $[\alpha]_{D}^{27} = +6.7 (c 2.1, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 14.05 min, t_R (major) = 18.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.01 (d, J = 2.1 Hz, 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.69 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.52 – 7.44 (m, 2H), 7.39 – 7.27 (m, 3H), 4.21 (q, J = 7.1 Hz, 1H), 1.70 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.6, 147.2, 135.9, 133.1, 131.7 129.2, 129.1, 128.3, 128.1, 128.0, 127.7, 126.8, 123.3, 91.1, 83.4, 30.4, 24.1.

HRMS (ESI) m/z calcd. for C₁₉H₁₆N [M + H]⁺ 258.1277, found 258.1276.

(S)-4-(4-Phenylbut-3-yn-2-yl)thiazole (108)

According to **General procedure B** with 4-(1-bromoethyl)thiazole **S108** (38.4 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 20/1) to yield the product **108** as a colorless oil (26.0 mg, 61% yield, 82% ee).

 $[\alpha]_{D}^{27} = -6.1$ (*c* 2.4, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 6.00 min, t_R (major) = 7.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 2.0 Hz, 1H), 7.47 (d, J = 3.7 Hz, 1H), 7.45 (t, J = 2.9 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.33 – 7.27 (m, 3H), 4.25 (q, J = 7.1 Hz, 1H), 1.69 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.7, 153.1, 131.7, 128.2, 128.0, 123.4, 113.6, 91.2, 82.4, 29.3, 22.1.

HRMS (ESI) m/z calcd. for C₁₃H₁₂NS [M + H]⁺ 214.0685, found 214.0684.

(S)-5-(1-Phenylpent-1-yn-3-yl)pyrimidine (109)

According to **General procedure B** with 5-(1-bromopropyl)pyrimidine **S109** (40.2 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc= 10/1) to yield the product **109** as a colorless oil (31.1 mg, 70% yield, 97% ee).

 $[\alpha]_{D}^{27} = -1.1$ (*c* 2.8, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.17 min, t_R (major) = 13.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.80 (s, 2H), 7.51 – 7.38 (m, 2H), 7.34 – 7.27 (m, 3H), 3.84 (dd, J = 7.6, 6.4 Hz, 1H), 1.96 – 1.79 (m, 2H), 1.09 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 157.4, 156.1, 135.2, 131.7, 128.4, 128.3, 122.8, 88.2, 84.8, 35.4, 31.1, 11.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₅N₂ [M + H]⁺ 223.1230, found 223.1230.

(R)-3-Cyclopropylprop-1-yne-1,3-diyl)dibenzene (110)

According to **General procedure D** with (chloro(cyclopropyl)methyl)benzene **S110** (33.3 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **110** as a colorless oil (24.1 mg, 52% yield, 92% ee).

 $[\alpha]_{D}^{27} = +21 \ (c \ 0.63, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 7.57 min, t_R (major) = 8.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.46 – 7.41 (m, 2H), 7.38 – 7.33 (m, 2H), 7.31 – 7.26 (m, 4H), 3.69 (d, J = 6.6 Hz, 1H), 1.24 – 1.19 (m, 1H), 0.71 – 0.42 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.2, 131.8, 128.6, 128.3, 127.9, 127.7, 127.0, 123.8, 89.7, 83.4, 41.5, 17.6, 4.2, 3.3.

HRMS (ESI) m/z calcd. for C₁₈H₁₇ [M + H]⁺ 233.1325, found 233.1320.

(S)-9-(4-Phenethyl-6-(triisopropylsilyl)hexa-2,5-diyn-1-yl)-9H-carbazole (111)

According to **General Procedure A** with (3-bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane **S111** (83.8 mg, 0.30 mmol, 1.5 equiv), 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (41.1 mg, 0.20 mmol, 1.0 equiv.), CuTc (3.0 mg, 0.016 mmol, 8.0 mol%), and L*13 (20.1 mg, 0.024 mmol, 12 mol%) in CH₂Cl₂ (4 mL) for 40 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **111** as a slight yellow oil (93.7 mg, 93% yield, 96% ee).

 $[\alpha]_{D}^{27} = -6.4 \ (c \ 3.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 16.73 min, t_R (major) = 17.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (dt, *J* = 7.8, 1.0 Hz, 2H), 7.73 – 7.39 (m, 4H), 7.31 – 7.09 (m, 5H), 7.09 – 6.83 (m, 2H), 5.05 (d, *J* = 2.1 Hz, 2H), 3.59 – 3.13 (m, 1H), 2.84 – 2.54 (m, 2H), 1.91 (q, *J* = 7.5 Hz, 2H), 1.05 (s, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 141.1, 140.1, 128.7, 128.5, 126.1, 125.9, 123.3, 120.5, 119.5, 109.0, 105.5, 82.5, 82.3, 75.4, 37.6, 33.0, 32.9, 23.9, 18.8, 11.3.

HRMS (ESI) m/z calcd. for C₃₅H₄₂NSi $[M + H]^+$ 504.3081, found 504.3079.

(S)-9-(4-Phenethyl-6-(triethylsilyl)hexa-2,5-diyn-1-yl)-9H-carbazole (112)

According to General Procedure A with (3-bromo-5-phenylpent-1-yn-1-yl)triethylsilane S112

(101.2 mg, 0.30 mmol, 1.5 equiv), 9-(prop-2-yn-1-yl)-9*H*-carbazole S42 (41.1 mg, 0.20 mmol, 1.0 equiv.), CuTc (3.0 mg, 0.016 mmol, 8.0 mol%), and L*13 (20.1 mg, 0.024 mmol, 12 mol%) in CH₂Cl₂ (4 mL) for 40 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product 112 as a slight yellow oil (76.6 mg, 83% yield, 92% ee).

 $[\alpha]_{D}^{27} = -5.7$ (*c* 2.7, CH₂Cl₂).

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 214 nm), t_R (minor) = 18.78 min, t_R (major) = 21.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (dt, *J* = 7.8, 0.9 Hz, 2H), 7.54 – 7.43 (m, 4H), 7.29 – 7.17 (m, 4H), 7.17 – 7.11 (m, 1H), 7.04 – 6.99 (m, 2H), 5.06 (d, *J* = 2.1 Hz, 2H), 3.37 – 3.23 (m, 1H), 2.77 – 2.60 (m, 2H), 1.91 (q, *J* = 7.5 Hz, 2H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.58 (q, *J* = 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 140.1, 128. 7, 128.5, 126.1, 125.9, 123.3, 120.5, 119.5, 109.0, 104.9, 83.5, 82.4, 75.6, 37.5, 32.9, 23.8, 7.6, 4.5.

HRMS (ESI) m/z calcd. for C₃₂H₃₆NSi [M + H]⁺ 462.2612, found 462.2608.

(*R*)-9-(7,7-Dimethyl-4-phenethylocta-2,5-diyn-1-yl)-9*H*-carbazole (113)

According to **General Procedure A** with (3-bromo-6,6-dimethylhept-4-yn-1-yl)benzene **S113** (83.8 mg, 0.30 mmol, 1.5 equiv), 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (41.1 mg, 0.20 mmol, 1.0 equiv.), CuTc (3.0 mg, 0.016 mmol, 8.0 mol%), and L*13 (20.1 mg, 0.024 mmol, 12 mol%) in CH₂Cl₂ for 40 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **113** as a slight yellow oil (67.8 mg, 84% yield, 91% ee).

 $[\alpha]_{D}^{27} = -5.8$ (*c* 2.3, CH₂Cl₂).

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 97/3, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 11.79 min, t_R (major) = 14.11 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (dt, *J* = 7.8, 1.0 Hz, 2H), 7.53 – 7.42 (m, 4H), 7.27 – 7.16 (m, 4H), 7.16 – 7.10 (m, 1H), 7.04 – 6.96 (m, 2H), 5.02 (d, *J* = 2.1 Hz, 2H), 3.27 – 3.16 (m, 1H), 2.72 – 2.57 (m, 2H), 1.86 (q, *J* = 7.5 Hz, 2H), 1.19 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.1, 128.7, 128.4, 126.0, 125.9, 123.3, 120.5, 119.5, 109.1, 90.4, 83.5, 76.2, 75.0, 37.8, 33.0, 31.2, 27.5, 22.7.

HRMS (ESI) m/z calcd. for $C_{30}H_{30}N [M + H]^+ 404.2373$, found 404.2370.

(*R*,*E*)- (5-((4-Bromophenyl)ethynyl)hept-3-ene-1,7-diyl)dibenzene (114)

According to **General Procedure B** with (*E*)-(5-bromohept-3-ene-1,7-diyl)dibenzene **S114** (65.8 mg, 0.20 mmol, 1.0 equiv), 1-bromo-4-ethynylbenzene **S13** (72.4 mg, 0.40 mmol, 2.0 equiv.), and Cu(PPh₃)₃Br (9.3 mg, 0.010 mmol, 5.0 mol%) in dioxane (4.0 mL) for 24 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether = 100) to yield the product **114** as a colorless oil (83 mg, 97% yield, E:Z = 4:1, 76% ee of the major product).

R

 $[\alpha]_{D}^{27} = -8.2 (c \ 1.2, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.16 min, t_R (minor) = 20.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.30 – 7.23 (m, 6H), 7.21 – 7.16 (m, 6H), 5.77 (dtd, *J* = 15.0, 6.7, 1.3 Hz, 1H), 5.55 – 5.23 (m, 1H), 3.20 (q, *J* = 6.8 Hz, 1H), 2.89 – 2.61 (m, 4H), 2.53 – 2.24 (m, 2H), 2.01 – 1.73 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.7(9), 141.7(5), 133.1, 131.4, 130.9, 129.8, 128.5(3), 128.5(0), 128.4, 128.3, 125.9, 125.8, 122.8, 121.8, 92.3, 82.5, 77.3, 37.3, 35.8, 34.5, 34.1, 33.2. **HRMS** (ESI) m/z calcd. for C₂₇H₂₆Br [M + H]⁺ 429.1212, found 429.1208.

(S)-5-(9H-Carbazol-9-yl)-2-cyclohexylpent-3-ynenitrile (115)

According to **General procedure A** with 2-bromo-2-cyclohexylacetonitrile **S115** (60.3 mg, 0.30 mmol, 1.5 equiv.) and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (41.0 mg, 0.20 mmol, 1.0 equiv.) at -40 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **115** as a colorless oil (39.8 mg, 61% yield, 77% ee).

 $[\alpha]_{D}^{27} = -2.8 (c 1.1, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 24.98 min, t_R (minor) = 34.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.7 Hz, 2H), 7.57 – 7.45 (m, 4H), 7.34 – 7.28 (m, 2H), 5.11 – 5.07 (m, 2H), 3.37 – 7.27 (m, 1H), 1.84 – 1.62 (m, 6H), 1.25 – 1.04 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 139.9, 125.9, 123.3, 120.5, 119.7, 116.6, 108.8, 79.1, 75.6, 40.7, 32.5, 30.0, 29.9, 29.8, 25.6, 25.5.

HRMS (ESI) m/z calcd. for C₂₃H₂₃N₂ [M + H]⁺ 327.1856, found 327.1850.

(S)-5-(9H-Carbazol-9-yl)-2-ethyl-N-methyl-N-phenylpent-3-ynamide (116)

According to **General Procedure B** with 2-bromo-*N*-methyl-*N*-phenylbutanamide **S116** (51.2 mg, 0.20 mmol, 1.0 equiv) and and 9-(prop-2-yn-1-yl)-9*H*-carbazole **S42** (61.5 mg, 0.30 mmol, 1.5 equiv.) for 40 h except that CuTc (3.0 mg, 0.016 mmol, 8.0 mol%), L*13 (20.1 mg, 0.024 mmol, 12.0 mol%) were used, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate= 5/1) to yield the product **116** as a colorless oil (70.2 mg, 92% yield, 86% ee).

 $[\alpha]_D^{27} = -143.4$ (*c* 2.2, CH₂Cl₂).

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 20.76 min, t_R (minor) = 23.44 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (dt, *J* = 7.8, 1.0 Hz, 2H), 7.52 – 7.44 (m, 4H), 7.29 – 7.23 (m, 2H), 7.14 (tt, *J* = 7.4, 1.3 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 2H), 6.94 – 6.87 (m, 2H), 5.00 (t, *J* = 2.0 Hz, 2H), 3.19 (s, 3H), 3.00 – 2.89 (m, 1H), 1.84 – 1.72 (m, 1H), 1.68 – 1.59 (m, 1H), 0.77 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 143.1, 140.0, 129.7, 127.9, 127.2, 125.8, 123.2, 120.4, 119.4, 109.0, 82. 6, 76.4, 37.8, 37.1, 32.8, 25.8, 11.8.

HRMS (ESI) m/z calcd. for $C_{26}H_{25}N_2O [M + H]^+ 381.1961$, found 381.1957.

Procedure for synthetic applications

Synthesis of derivatives of bioactive or functional molecules The synthesis of 117

To a solution of 5-oxo-5-phenylpentanoic acid (1.92 g, 10.0 mmol, 1.0 equiv.) in a mixture of CH₂Cl₂ (8.0 mL) and CH₃CN (8.0 mL) were added *L*-menthol (1.56 g, 10.0 mmol, 1.0 equiv.), dicyclohexylcarbodiimide (2.20 g, 11.0 mmol, 1.1 equiv.), and DMAP (122.0 mg, 1.0 mmol, 0.1 equiv.) sequentially at room temperature. The reaction mixture was stirred overnight. Water was added and the mixture was extracted with EtOAc three times. The combined organic layer was filtered through a short pad of silica gel and rinsed with elution (petroleum ether/EtOAc = 2/1). The filtrate was evaporated under reduced pressure to afford the crude product **S117-2** (2.10 g) as a colorless oil, which was directly used without further purification.

To a cooled solution of **S117-2** (1.00 g, crude product) in MeOH (15.0 mL) was added NaBH₄ (240.0 mg, 6.4 mmol) at 0 °C. The reaction mixture was stirred for 30 min, and then was quenched by saturated NH₄Cl. CH₂Cl₂ was used to extract the product from the aqueous layer three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was dissolved in anhydrous CH₂Cl₂ and cooled down to 0 °C. To this cooled solution was added PBr₃ (0.58 g, 2.1 mmol, 0.7 equiv.). The reaction mixture was stirred for 30 min and quenched by water. CH₂Cl₂ was used to extract the product from the aqueous layer three times. The combined organic layer was dried over anhydrous 0.7 equiv.). The reaction mixture was stirred for 30 min and quenched by water. CH₂Cl₂ was used to extract the product from the aqueous layer three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography to afford **S117-1** as a sticky oil (0.80 g, a mixture of diastereomers, 40% overall yield).

(1R,2R,5R)-2-Isopropyl-5-methylcyclohexyl 5-bromo-5-phenylpentanoat (S117-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 4.98 – 4.94 (m, 1H), 4.76 – 4.65 (m, 1H), 2.36 – 2.29 (m, 3H), 2.24 – 2.15 (m, 1H), 2.00 – 1.94 (m, 2H), 1.90 – 1.81 (m, 2H), 1.72 – 1.61 (m, 3H), 1.55 – 1.33 (m, 2H), 1.14 – 0.86 (m, 8H), 0.75 (t, *J* = 5.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 141.9, 141.8, 128.7, 128.4, 127.2, 74.2, 60.4, 54.8, 54.7, 46.9, 40.9, 39.2(5), 39.2(2), 34.2, 33.7, 33.7, 31.3, 26.2, 26.2, 23.8, 23.7, 23.3, 22.0, 20.7, 16.2.

HRMS (ESI) m/z calcd. for C₂₁H₃₁O₂ [M – Br]⁺ 315.2319, found 315.2313.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (R)-5,7-diphenylhept-6-ynoate (117)

According to **General procedure B** with **S117-1** (80.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (31.0 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9/1) to yield the product **117** as a colorless oil (62.0 mg, 75% yield, dr > 20:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

$$[\alpha]_{D}^{27} = -15$$
 (*c* 4.6, CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.42 (m, 4H), 7.40 – 7.27 (m, 6H), 4.71 (td, *J* = 10.9, 4.4 Hz, 1H), 3.97 – 3.85 (m, 1H), 2.42 – 2.33 (m, 2H), 2.04 – 1.98 (m, 1H), 1.98 – 1.82 (m, 5H), 1.74 – 1.66 (m, 2H), 1.57 – 1.46 (m, 1H), 1.44 – 1.35 (m, 1H), 1.14 – 0.96 (m, 2H), 0.93 (d, *J* = 6.5 Hz, 3H), 0.90 (d, *J* = 7.0 Hz, 3H), 0.87 – 0.82 (m, 1H), 0.77 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 141.8, 131.6, 128.5, 128.2, 127.8, 127.4, 126.8, 123.6, 90.9, 83.6, 74.1, 47.0, 40.9, 38.1, 37.9, 34.3, 34.2, 31.4, 26.2, 23.4, 23.0, 22.0, 20.7, 16.2. **HRMS** (ESI) *m/z* calcd. for C₂₉H₃₇O₂ [M + H]⁺ 417.2788, found 417.2778.

The synthesis of 118

(8*R*,9*S*,13*S*,14*S*)-3-(1-Bromoethyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (S118-1)

To a stirred solution of **S118-2**¹⁹ (0.56 g, 2.0 mmol, 1.0 equiv.) and silica gel (1.0 g) in CH₂Cl₂ (5.0 mL) was added a solution of PBr₃ (0.54 g, 2.0 mmol, 1.0 equiv.) in CH₂Cl₂ (2.0 mL) at room temperature. The reaction mixture was stirred for 20 min, filtered, and rinsed with CH₂Cl₂. The filtrate was washed with saturated NaHCO₃ and brine sequentially. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated to afford the product **S118-1** as a sticky solid

(0.71 g, 95% yield, dr = 1:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 2H), 7.20 (s, 1H), 5.24 – 5.20 (m, 1H), 2.96 – 2.93 (m, 2H), 2.57 – 1.95 (m, 10H), 1.71 – 1.43 (m, 6H), 0.93 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 220.9, 140.7, 140.1, 136.9, 136.8, 127.3, 125.7, 124.2, 124.1, 50.4, 49.8, 49.7, 47.9, 44.4, 38.0, 35.8, 31.5, 29.4, 26.7, 26.7, 26.4, 25.6, 21.6, 13.8. **HRMS** (ESI) m/z calcd. for C₂₀H₂₅O [M – Br]⁺ 281.1900, found 281.1893.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-((*R*)-4-phenylbut-3-yn-2-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (118)

According to **General procedure B** with **S118-1** (72.0 mg, 0.20 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (31.0 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9/1) to yield the product **118** as a colorless oil (66.0 mg, 87% yield, dr > 20:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

 $[\alpha]_{D}^{27} = +46$ (*c* 3.2, CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 2H), 7.36 – 7.26 (m, 5H), 7.22 (s, 1H), 3.96 (q, J = 7.1 Hz, 1H), 2.98 (dd, J = 9.0, 4.2 Hz, 2H), 2.63 – 2.44 (m, 2H), 2.34 (td, J = 10.9, 4.3 Hz, 1H), 2.23 – 2.15 (m, 1H), 2.13 – 1.98 (m, 3H), 1.72 – 1.44 (m, 9H), 0.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 220.9, 140.8, 138.1, 136.6, 131.6, 128.2, 127.7, 127.5, 125.6, 124.4, 123.8, 92.8, 82.2, 50.5, 48.0, 44.3, 38.2, 35.9, 32.0, 31.6, 29.5, 26.5, 25.7, 24.4, 21.6, 13.8. **HRMS** (ESI) *m*/*z* calcd. for C₂₈H₃₁O [M + H]⁺ 383.2369, found 383.2364.

The synthesis of 119

4-(1-Bromoethyl)benzyl(2*S*,5*R*)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate 4,4-dioxide (S119-1)

To a solution of sulbactam (70.0 mg, 0.30 mmol, 1.0 equiv.) in DMF (2.0 mL) was added K_2CO_3 (42.0 mg, 0.30 mmol, 1.0 equiv.) and **S119-2** (83.0 mg, 0.30 mmol, 1.0 equiv.). The reaction mixture was stirred for 3 h and quenched with water. Et₂O was added and the organic layer was washed with water two times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product **S119-1** as a sticky oil (88.0 mg, a mixture of diastereomers, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 5.29 – 5.14 (m, 3H), 4.62 (dd, *J* = 4.3, 2.1 Hz, 1H), 4.43 (s, 1H), 3.59 – 3.36 (m, 2H), 2.05 (d, *J* = 6.9 Hz, 3H), 1.58 (s, 3H), 1.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 166.8, 144.1, 134.4, 129.1, 127.3, 67.6, 63.2, 62.8, 61.1, 48.6, 38.3, 26.7, 20.2, 18.6.

HRMS (ESI) m/z calcd. for C₁₇H₂₁BrNO₅S [M + H]⁺ 430.0318, found 430.0308.

4-((*R*)-4-(4-Cyanophenyl)but-3-yn-2-yl)benzyl (2*S*,5*R*)-3,3-dimethyl-7-oxo-4-thia-1azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (119)

According to **General procedure B** with **S119-1** (43.0 mg, 0.10 mmol, 1.0 equiv.) and 1-ethynyl-4-cyanobenzene **S16** (16.0 mg, 0.15 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **119** as a colorless oil (24.0 mg, 50% yield, dr > 20:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

 $[\alpha]_{D}^{27} = +132 (c 1.1, CH_2Cl_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 2H), 7.57 – 7.50 (m, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 5.34 – 5.15 (m, 2H), 4.62 (dd, J = 4.1, 2.2 Hz, 1H), 4.43 (s, 1H), 4.04 (q, J = 7.1 Hz, 1H), 3.58 – 3.38 (m, 2H), 1.66 – 1.57 (m, 6H), 1.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 166.8, 143.5, 133.0, 132.1, 131.9, 129.2, 128.4, 127.3, 118.5, 111.2, 96.9, 81.3, 67.8, 63.2, 62.7, 61.10, 38.35, 32.3, 24.0, 20.1, 18.6.

HRMS (ESI) m/z calcd. for C₂₆H₂₅N₂O₅S [M + H]⁺ 477.1479, found 477.1464.

The synthesis of 120

3-(1-Bromoethyl)phenyl5-((*3aR*,4*S*,6*aS*)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4-yl)pentanoate (S120-1)

To a solution of biotin (0.97 g, 4.0 mmol, 1.0 equiv.) and 1-(3-hydroxyphenyl)ethan-1-one (0.60 g, 4.4 mmol, 1.1 equiv.) in CH₂Cl₂ (20.0 mL) were added sequentially DCC (0.90 g, 4.4 mmol, 1.1 equiv.) and DMAP (50.0 mg, 0.40 mmol, 0.1 equiv.) at room temperature. The reaction mixture was stirred for 12 h, then quenched by water, and extracted with EtOAc three times. The combined organic layer was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford a residue, which was filtered through a short pad of silica gel and rinsed with EtOAc. The filtrate was concentrated to afford the crude product **S120-2** (0.80 g), which was directly used without further purification.

To a cooled solution of **S120-2** (0.80 g, crude product) in MeOH (15.0 mL) was added NaBH₄ (80.0 mg, 2.1 mmol) at 0 °C. The reaction mixture was stirred for 30 min, then quenched by saturated NH₄Cl, and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was dissolved in anhydrous CH₂Cl₂ (15.0 mL) and cooled down to 0 °C. To this cooled solution was added PBr₃ (0.19 g, 0.7 mmol) and the reaction mixture was stirred for 30 min. After completion of reaction, the reaction was quenched by water and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was quenched by water and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography to afford **S120-1** as a sticky oil (0.20 g, 10% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 2H), 7.19 (s, J = 1.9 Hz, 1H), 7.05 – 7.02 (m, 1H), 6.06 (s, 0.75H), 5.89 (s, 0.25H), 5.48 (s, 1H), 5.20 (q, J = 6.9 Hz, 0.75H), 5.09 (q, J = 6.9 Hz, 0.25H), 4.53 – 4.50 (m, 1H), 4.35 – 4.30 (m, 1H), 3.24 – 3.14 (m, 1H), 2.94 – 2.89 (m, 1H), 2.76

-2.72 (m, 1H), 2.61 (t, *J* = 7.5 Hz, 1.5H), 2.35 (t, *J* = 7.5 Hz, 0.5H), 2.05 (d, *J* = 6.9 Hz, 2H), 1.85 (d, *J* = 6.9 Hz, 1H), 1.83 - 1.65 (m, 4H), 1.60 - 1.46 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 163.8, 150.7, 144.8, 129.6, 124.2, 121.6, 120.1, 62.0, 60.1, 55.5, 48.4, 40.6, 34.0, 28.4, 28.3, 26.7, 24.7. HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₄BrN₂O₃S [M + H]⁺ 427.0686, found 427.0679.

3-((*R*)-4-Phenylbut-3-yn-2-yl)phenyl-5-((3*aR*,4*S*,6*aS*)-2-oxohexahydro-1*H*-thieno[3,4 - *d*]imidazol-4-yl)pentanoate (120)

According to **General procedure B** with **S120-1** (43.0 mg, 0.10 mmol, 1.0 equiv.) and ethynylbenzene **S1-2** (15.3 mg, 0.15 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 98/2) to yield the product **120** as a colorless oil (11.0 mg, 25% yield, dr > 20:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

 $[\alpha]_D^{27} = +12 \ (c \ 0.90, \ CH_2Cl_2).$

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (dd, J = 6.6, 2.9 Hz, 2H), 7.39 – 7.30 (m, 5H), 7.18 (s, 1H), 7.00 (d, J = 7.7 Hz, 1H), 5.65 (s, 1H), 5.13 (s, 1H), 4.51 (d, J = 12.7 Hz, 1H), 4.33 (d, J = 12.5 Hz, 1H), 4.01 (q, J = 7.1 Hz, 1H), 3.20 (t, J = 6.7 Hz, 1H), 2.92 (dd, J = 12.9, 5.2 Hz, 1H), 2.75 (d, J = 12.8 Hz, 1H), 2.62 (t, J = 7.4 Hz, 2H), 1.87 – 1.76 (m, 4H), 1.62 – 1.53 (m, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 172.2, 163.4, 150.8, 145.0, 131.7, 129.5, 128.2, 127.9, 124.5, 128.2, 128.2, 127.9, 124.5, 128.2

 $\begin{array}{c} \text{NMR} (126 \text{ MHz}, \text{CDC1}_3) & 1/2.2, 163.4, 150.8, 145.0, 131.7, 129.5, 128.2, 127.9, 124.5, \\ 123.5, 120.1, 119.9, 92.0, 82.7, 62.0, 60.1, 55.4, 40.6, 34.0, 32.3, 28.4, 28.3, 24.7, 24.3. \\ \begin{array}{c} \text{NMR} (126 \text{ MHz}, \text{CDC1}_3) & 1/2.2, 163.4, 150.8, 145.0, 131.7, 129.5, 128.2, 127.9, 124.5, \\ 123.5, 120.1, 119.9, 92.0, 82.7, 62.0, 60.1, 55.4, 40.6, 34.0, 32.3, 28.4, 28.3, 24.7, 24.3. \\ \begin{array}{c} \text{NMR} (126 \text{ MHz}, \text{CDC1}_3) & 1/2.2, 163.4, 150.8, 145.0, 131.7, 129.5, 128.2, 127.9, 124.5, \\ 123.5, 120.1, 119.9, 92.0, 82.7, 62.0, 60.1, 55.4, 40.6, 34.0, 32.3, 28.4, 28.3, 24.7, 24.3. \\ \begin{array}{c} \text{NMR} (126 \text{ MHz}, \text{CDC1}_3) & 1/2.2, 163.4, 150.8, 145.0, 129.5, \\ 123.5, 120.1, 119.9, 92.0, 82.7, 62.0, 60.1, 55.4, 40.6, 34.0, 32.3, 28.4, 28.3, 24.7, 24.3. \\ \begin{array}{c} \text{NMR} (126 \text{ MHz}, \text{CDC1}_3) & 1/2.2, 163.4, 150.8, 140.1 \\ 120.1, 120.$

HRMS (ESI) m/z calcd. for C₂₆H₂₉N₂O₃S [M + H]⁺ 449.1893, found 449.1884.

OH NaBH, ΟН dioxane/H₂O, reflux EtOH, rt EtO₂ EtO₂C S121-3 ОН Br Ph ----- PBr_3 CuTc , L*13, Cs₂CO₃ CH₂Cl₂, 0 °C to rt Et₂O, rt EtO₂C EtO₂C EtO₂C S121-2 S121-1 121

The synthesis of 121

Ethyl 4'-(1-bromopentyl)-[1,1'-biphenyl]-4-carboxylate (S121-1)

To a mixture of (4-(ethoxycarbonyl)phenyl)boronic acid (2.3 g, 12.0 mmol, 1.2 equiv.), 1-(4bromophenyl)pentan-1-one (2.41 g, 10.0 mmol, 1.0 equiv.), and K_2CO_3 (4.14 g, 30.0 mmol, 3.0 equiv.) in a mixed solvent of H₂O (15.0 mL) and dioxane (15.0 mL) was added Pd/C (100.0 mg, 10% *w/w* Pd on carbon,0.094 mmol, 1 mol%) under argon atmosphere and the mixture was refluxed for 4 h. After completion of reaction, the mixture was cooled to room temperature, diluted with EtOAc and water, and then, extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the coupling product **S121-3** as a white solid (2.5 g, 81%).

According to *Method b* of General procedure 4 with S121-3 (1.6 g, 5.0 mmol, 1.0 equiv.), S121-1 was obtained as a white solid (1.7 g, 92% crude yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 5.03 (t, J = 7.6 Hz, 1H), 4.43 (q, J = 7.2 Hz, 2H), 2.41 – 2.28 (m, 1H), 2.26 – 2.15 (m, 1H), 1.61 – 1.26 (m, 7H), 0.94 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 144.8, 142.3, 139.9, 130.1, 129.5, 127.9, 127.6, 126.9, 61.0, 55.2, 39.6, 30.4, 22.1, 14.4, 13.9.

HRMS (ESI) m/z calcd. for C₂₀H₂₄BrO₂ [M + H]⁺ 375.0954, found 375.0954. **HRMS** (ESI) m/z calcd. for C₂₀H₂₃O₂ [M - Br]⁺ 295.1693, found 295.1693.

Ethyl (*R*)-4'-(1-phenylhept-1-yn-3-yl)-[1,1'-biphenyl]-4-carboxylate (121)

121

According to **General procedure B** with ethynylbenzene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) and ethyl 4'-(1-bromopentyl)-[1,1'-biphenyl]-4-carboxylate **S121-1** (75.0 mg, 0.20 mmol, 1.0 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **121** as a colorless oil (65.7 mg, 83% yield, 96% ee).

 $[\alpha]_{D}^{27} = -3.5$ (*c* 3.4, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.76 min, t_R (major) = 10.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.47 - 7.45 (m, 2H), 7.33 - 7.24 (m, 3H), 4.39 (q, *J* = 7.1 Hz, 2H), 7.47 - 7.45 (m, 2H), 7.38 - 7.24 (m, 3H), 4.39 (q, *J* = 7.1 Hz), 7.47 - 7.45 (m, 2H), 7.48 - 7.24 (m, 3H), 4.39 (q, *J* = 7.1 Hz), 7.47 - 7.45 (m, 2H), 7.48 - 7.24 (m, 3H), 4.39 (q, *J* = 7.1 Hz), 7.48 - 7.45 (m, 2H), 7.48 - 7.24 (m, 3H), 4.39 (q, *J* = 7.1 Hz), 7.48 - 7.48

2H), 3.88 (t, J = 7.2 Hz, 1H), 1.94 – 1.79 (m, 2H), 1.59 – 1.44 (m, 2H), 1.40 (t, J = 7.1 Hz, 4H), 1.38 – 1.32 (m, 1H), 0.92 (t, J = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 166.6, 145.3, 142.5, 138.4, 131.7, 130.1, 129.2, 128.3, 128.1, 127.8, 127.4, 126.9, 123.8, 91.5, 83.4, 61.0, 38.4, 38.2, 29.7, 22.5, 14.4, 14.1. HRMS (ESI) *m/z* calcd. for C₂₈H₂₉O₂ [M + H]⁺ 397.2162, found 397.2162.

The synthesis of C(sp³)-C(sp) drug and drug leads The synthesis of AMG 837(122)

To a solution of 4-hydroxybenzaldehyde **S122-5** (3.7 g, 30 mmol, 1.0 equiv.) in THF (30.0 mL) were added sequentially Et_3N (6.2 mL, 45 mmol, 1.5 equiv.) and pivaloyl chloride **S122-6** (5.5 mL, 45 mmol, 1.5 equiv.) at 0 °C. Then, the reaction mixture was warmed up to room temperature and

stirred for 2 h. After completion of reaction, the reaction was quenched by saturated NH₄Cl and extracted with EtOAc three times. The organic layer was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography on silica gel (petroleum ether/EtOAc = 8/1) to yield the desired product **S122-7** (6.1 g, 98% yield).

To a suspension of activated Zn power (1.10 g, 17.0 mmol, 1.7 equiv.) in dry THF (20.0 mL) was added TMSCl (70 μ L, 0.50 mmol) and the reaction mixture was refluxed for 30 min. After that, ethyl 2-bromoacetate (1.30 mL, 12.0 mmol, 1.2 equiv.) was added dropwise to the suspension at 40 °C and the stirring was continued for another 30 min under the same conditions. Then, 4-formylphenyl pivalate **S122-7** (2.10 g, 10.0 mmol, 1.0 equiv.) was slowly added to the suspension and the reaction mixture was stirred at room temperature for 8 h. After completion of reaction, the reaction mixture was quenched by saturated NH₄Cl and extracted with EtOAc three times. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated, and the residue was purified by column chromatography (petroleum ether/EtOAc = 5/1) to yield the desired product **S122-8** (1.30 g, 43% yield). The analytic data were consistent with those in literature²¹.

To a solution of 4-(3-ethoxy-1-hydroxy-3-oxopropyl)phenyl pivalate **S122-8** (588.0 mg, 2.0 mmol, 1.0 equiv.) in CH₂Cl₂ (6.0 mL) was slowly added PBr₃ (0.13 mL, 1.4 mmol) at 0 °C. Then, the reaction mixture was warmed up to room temperature and stirred for another 3 h. After completion of reaction, the reaction was quenched by saturated Na₂CO₃ and extracted with CH₂Cl₂ three times. The organic layer was washed by brine, dried over anhydrous Na₂SO₄, filtered through a pad of silica gel, and concentrated under reduced pressure to afford the crude product **S122-9** (678.3 mg, 95% yield), which was directly used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 5.40 (dd, J = 8.8, 6.4 Hz, 1H), 4.20 – 4.06 (m, 2H), 3.32 (dd, J = 16.2, 8.9 Hz, 1H), 3.18 (dd, J = 16.1, 6.3 Hz, 1H), 1.35 (s, 9H), 1.23 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.8, 169.5, 151.1, 138.1, 128.3, 121.9, 61.1, 47.2, 45.0, 39.1, 27.1, 14.1.

HRMS (ESI) m/z calcd. for C₁₆H₂₁O₄ [M – Br]⁺ 277.1434, found 277.1429.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (15.2 mg, 0.080 mmol, 20.0 mol%), L*16 (97.0 mg, 0.12 mmol, 30.0 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 2.0 equiv.), and anhydrous Et₂O (8.0 mL). Then, 4-(1-bromo-3-ethoxy-3-oxopropyl)phenyl pivalate S122-9 (143.0 mg, 0.40 mmol, 1.0 equiv.) and propyne (1.0 M in THF, 2.0 mL, 2.0 mmol, 5.0 equiv.) were added sequentially and the reaction mixture was stirred at room temperature for 72 h. Upon completion, the precipitate was filtered off and washed by Et₂O. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to afford an inseparable mixture of products S122-10 and S122-10'.

To a solution of the mixture of S122-10 and S122-10' in EtOH (4.0 mL) was added K_2CO_3 powder (165.6 mg, 1.2 mmol, 3.0 equiv.) in one portion and the reaction mixture was stirred at room

temperature for 4 h. Upon completion, the reaction mixture was diluted with EtOAc and washed by 1.0 M HCl followed by brine. The organic layer was separated, dried over Na₂SO₄, filtered, and concentrated to afford an inseparable mixture of products **S122-11** and **S122-11'**.

(S)-Ethyl-3-(4-((4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)methoxy)phenyl)hex-4-ynoate (S122-12)

S122-12

To a solution of the mixture of **S122-11** and **S122-11'** in acetone (4.0 mL) were added 3-(bromomethyl)-4'-(trifluoromethyl)-1,1'-biphenyl **S122-4** (138.6 mg, 0.44 mmol, 1.1 equiv.) and Cs₂CO₃ powder (143.4 mg, 0.44 mmol, 1.1 equiv.) and the reaction mixture was stirred at room temperature for 24 h. After completion of reaction, the solvent was removed under reduced pressure. The residue was diluted with water and EtOAc and the aqueous layer was extracted with EtOAc three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield product **S122-12** (50.3 mg, 27% yield over three steps, 83% ee). $|\alpha|_D^{27} = +4.5$ (*c* 0.71, CH₂Cl₂).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.77 min, t_R (major) = 11.98 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (s, 4H), 7.66 (s, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.31 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H), 5.12 (s, 2H), 4.19 – 4.01 (m, 3H), 2.75 (dd, J = 15.1, 8.4 Hz, 1H), 2.65 (dd, J = 15.1, 7.0 Hz, 1H), 1.83 (d, J = 2.2 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 171.2, 157.7, 144.4, 140.2, 137.9, 133.8, 129.5 (q, *J* = 32.4 Hz), 129.3, 128.5, 127.5, 127.3, 126.9, 126.3, 125.8 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 271.9 Hz), 114.9, 79.6, 78.8, 69.9, 60.6, 43.6, 33.5, 14.2, 3.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.4 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₈H₂₆F₃O₃ [M + H]⁺ 467.1829, found 467.1820.

(S)-3-(4-((4'-(Trifluoromethyl)-[1,1'-biphenyl]-3-yl)methoxy)phenyl)hex-4-ynoic acid (122 (AMG 837))

122 (AMG 837)

A mixture of **S122-12** (30.0 mg, 0.064 mmol) and NaOH (10% in water, 0.070 mL, 0.19 mmol, 3.0 equiv.) in EtOH (1.0 mL) was stirred at room temperature for 5 h. After completion of reaction, the pH of the reaction mixture was adjusted to 1~2 with 3.0 M HCl. The aqueous phase was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the desired product **122 (AMG 837)** (25.9 mg, 92% yield). $|\alpha|_{D}^{27} = +4.3$ (*c* 0.75, CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (s, 4H), 7.67 (s, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.55 – 7.44 (., 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 7.9 Hz, 2H), 5.13 (s, 2H), 4.08 (s, 1H), 2.83 (dd, J = 15.6, 8.4 Hz, 1H), 2.73 (dd, J = 15.7, 6.6 Hz, 1H), 1.85 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.3, 157.8, 144.4, 140.2, 137.9, 133.4, 129.5 (q, *J* = 32.0 Hz), 129.3, 128.5, 127.5, 127.3, 126.9, 126.4, 125.8 (q, *J* = 3.6 Hz), 124.3 (q, *J* = 270.3 Hz), 115.0, 79.4, 79.2, 69.9, 43.3, 33.2, 3.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.3 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₆H₂₂F₃O₃ [M + H]⁺ 439.1516, found 439.1506.

The synthesis of 123

According to **General procedure A** with (1-bromoethyl)benzene **S1-1** (55.2 mg, 0.30 mmol, 1.5 equiv.) and 5-ethynylpyrazolo[1,5-*a*]pyrimidine **S33** (28.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **123** as a colorless oil (34.1 mg, 69% yield, 93% ee).

 $[\alpha]_{D}^{27} = -8.1 \ (c \ 0.70, \text{CH}_2\text{Cl}_2).$

HPLC analysis: Chiralcel AD3 (hexane/*i*-PrOH = 95/5, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 52.07 min, t_R (major) = 54.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 7.2 Hz, 1H), 8.18 – 8.07 (m, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.30 – 7.25 (m, 1H), 6.86 (d, J = 7.0 Hz, 1H), 6.68 (s, 1H), 4.05 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 145.7, 142.5, 141.8, 134.5, 128.8, 127.1, 127.0, 110.8, 97.3, 97.0, 81.0, 32.5, 23.8.

HRMS (ESI) m/z calcd. for C₁₆H₁₃N₃ [M + H]⁺ 248.1182, found 248.1180.

The synthesis of 124 (UCP1172)

6-Ethyl-5-iodopyrimidine-2,4-diamine (S124-6)²²

A mixture of 2,4-diamino-6-ethylpyrimidine **S124-5** (0.54 g, 3.9 mmol, 1.0 equiv.) and *N*-iodosuccinimide (884.0 mg, 3.9 mmol, 1.0 equiv.) in MeOH (10.0 mL) was stirred at room temperature for 30 min. After completion of reaction, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the product **S124-6** as a white solid (0.73 g, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.52 (br s, 2H), 5.12 (br s, 2H), 2.72 (q, *J* = 7.5 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.4, 172.8, 162.7, 162.1, 34.4, 12.4.

6-Ethyl-5-ethynylpyrimidine-2,4-diamine (S124-7)

Followed the General procedure 2 with S124-6 (0.66 g, 2.5 mmol, 1.0 equiv.), S124-7 was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 1/4) as a brown powder (0.27 g, 66% yield).

¹**H** NMR (400 MHz, CD₃OD) δ 3.84 (s, 1H), 2.54 (q, *J* = 7.7 Hz, 2H), 1.10 (t, *J* = 7.7 Hz, 3H). ¹³**C** NMR (100 MHz, CD₃OD) δ 173.1, 165.1, 161.2, 88.2, 86.4, 76.2, 28.7, 11.7. HRMS (ESI) *m/z* calcd. for C₈H₁₄N₄ [M + H]⁺ 163.0978, found 163.0977.

1-(3-Bromo-5-methoxyphenyl)ethanol (S124-2)

S124-2

To a solution of 3-bromo-5-methoxybenzaldehyde **S124-1** (0.68 g, 3.0 mmol, 1.0 equiv.) in dry THF (5.0 mL) was slowly added methylmagnesium bromide (3.6 mL, 1.0 M in THF, 3.6 mmol, 1.2 equiv.) at 0 °C under argon atmosphere. The reaction mixture was warmed up to room temperature and stirred for 1 h until the aldehyde was completely consumed (monitored by TLC). The reaction mixture was quenched by 3.0 M HCl and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford the **S124-2** as a colorless oil (0.63 g, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 (s, 1H), 6.98 – 6.93 (m, 1H), 6.87 – 6.83 (m, 1H), 4.82 (q, J = 6.4 Hz, 1H), 3.80 (s, 3H), 1.46 (d, J = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.5, 149.1, 122.8, 120.9, 115.9, 110.2, 69.8, 55.5, 25.2.

Methyl 3'-(1-hydroxyethyl)-5'-methoxy-[1,1'-biphenyl]-4-carboxylate (S124-3)

To a mixture of (4-(methoxycarbonyl)phenyl)boronic acid (0.43 g, 2.4 mmol, 1.2 equiv.), 1-(3bromo-5-methoxyphenyl)ethan-1-ol **S124-2** (0.46 g, 2.0 mmol, 1.0 equiv.), and Cs₂CO₃ (1.3 g, 4.0 mmol, 2.0 equiv.) in dioxane (10.0 mL) was added Pd/C (100 mg, 10% *w/w* Pd on carbon, 0.09 mmol, 5 mol%) under argon atmosphere. Then, the reaction mixture was stirred at 100 °C for 4 h. After completion of reaction, the reaction mixture was cooled to room temperature, diluted with EtOAc and water, and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product **S124-3** was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) as a white solid (0.46 g, 81% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 8.02 (m, 2H), 7.70 – 7.56 (m, 2H), 7.20 (s, 1H), 7.04 (s, 1H), 6.97 (s, 1H), 4.98 – 4.91 (m, 1H), 3.98 – 3.92 (m, 3H), 3.90 – 3.85 (m, 3H), 1.57 – 1.55 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 160.3, 148.3, 145.4, 141.6, 130.1, 129.0, 127.1, 116.8, 112.0, 110.6, 70.3, 55.4, 52.2, 25.4.

Methyl 3'-(1-bromoethyl)-5'-methoxy-[1,1'-biphenyl]-4-carboxylate (S124-4)

To a solution of methyl 3'-(1-hydroxyethyl)-5'-methoxy-[1,1'-biphenyl]-4-carboxylate **S124-3** (0.46 g, 1.6 mmol, 1.0 equiv.) in CH₂Cl₂ (9.0 mL) was added PBr₃ (0.30 g, 1.1 mmol, 0.7 equiv.) at 0 °C. The reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the reaction mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the corresponding crude product **S124-4** (0.50 g, 90% crude yield), which was directly used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 7.9 Hz, 2H), 7.70 – 7.58 (m, 2H), 7.26 (d, J = 1.5 Hz, 1H), 7.10 – 7.05 (m, 2H), 5.21 (q, J = 6.2 Hz, 1H), 3.92 (s, 3H), 3.84 (s, 3H), 2.06 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 160.2, 145.3, 144.9, 141.7, 130.1, 129.2, 127.1, 118.2, 112.9, 112.2, 55.4, 52.1, 49.2, 26.9.

(*R*)-Methyl-3'-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl)-5'-methoxy-[1,1'biphenyl]-4-carboxylate (S124-8)

According to General procedure B with S124-4 (34.8 mg, 0.10 mmol, 1.0 equiv.) and S124-7 (24.3 mg, 0.15 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield a mixture of product S124-8 (92% ee) and S124-7. An analytically pure sample of S124-8 was obtained by preparative TLC for NMR and HPLC analysis.

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 0.7 mL/min, λ = 270 nm), t_R (minor) = 31.69 min, t_R (major) = 45.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.25 (s, 1H), 7.03 (d, *J* = 5.3 Hz, 2H), 5.40 – 5.30 (m, 4H), 4.09 (q, *J* = 7.1 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.64 (d, *J* = 7.0 Hz, 3H), 1.24 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 166.9, 164.2, 160.4, 160.0, 145.5, 145.4, 141.9, 130.1, 129.2, 127.1, 118.4, 112.3, 111.3, 101.6, 90.6, 75.0, 55.5, 52.2, 33.2, 29.1, 24.7, 12.6. **HRMS** (ESI) *m/z* calcd. for C₂₅H₂₇N₄O₃ $[M + H]^+$ 431.2078, found 431.2078.

(*R*)-3'-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl)-5'-methoxy-[1,1'-biphenyl]-4carboxylic acid (124 (UCP1172))

To a solution of the mixture of **S124-8** (ca. 0.050 mmol) and **S124-7** obtained above in a mixed solvent of THF (0.5 mL) and water (0.5 mL) was added LiOH·H₂O (10.5 mg, 0.25 mmol, 5.0 equiv.) with vigorous stirring. The resulting reaction mixture was stirred at room temperature for 5 h. After completion of reaction (monitored by TLC), the mixture was diluted with EtOAc and water and extracted with EtOAc three times. The combined organic layer was washed by brine and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (MeOH/EtOAc = 1/50) to afford the product **124 (UCP1172)** as a white powder (12.3 mg, 59% yield over two steps).

 $[\alpha]_{\rm D}^{27} = -2.2$ (*c* 0.090, CH₂Cl₂).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 7.8 Hz, 2H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.36 (s, 1H),

7.11 (s, 1H), 7.06 (s, 1H), 6.27 (br s, 2H), 6.17 (br s, 2H), 4.15 (q, J = 6.9 Hz, 1H), 3.84 (s, 3H), 2.56 (q, J = 7.6 Hz, 2H), 1.56 (d, J = 7.1 Hz, 3H), 1.11 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.1, 164.7, 161.7, 160.4, 146.4, 141.6, 130.3, 126.8, 118.3, 112.6, 110.9, 100.9, 88.2, 76.6, 55.7, 32.8, 29.4, 25.1, 12.9. HRMS (ESI) *m*/*z* calcd. for C₂₄H₂₅N₄O₃ [M + H]⁺ 417.1921, found 417.1922.

The synthesis of chiral C(sp³)–C(sp²) and C(sp³)–C(sp³) bonds in drugs and natural products The synthesis of Z-alkene (125)

To a flamed Schlenk tube charged with a stir bar were added NaO'Bu (19.2 mg, 0.20 mmol, 2.0 equiv.), **42** (98% ee, 32.3 mg, 0.10 mmol, 1.0 equiv.), Pd(OAc)₂ (1.12 mg, 0.005 mmol, 5 mol%), L (3.8 mg, 0.010 mmol, 10 mol%), IPrCuCl (4.88 mg, 0.010 mmol, 10 mol%), TMDSO (1,1,3,3-tetramethyldisiloxane) (26.8 mg, 0.20 mmol, 2.0 equiv.), MeOH (16.0 mg, 0.50 mmol, 5.0 equiv.), and toluene (1.0 mL). The reaction mixture was stirred at 60 °C for 4 h. Upon completion, the reaction mixture was filtered through a short plug of silica gel eluted with EtOAc (1.5 mL) and purified by column chromatography (petroleum ether) to afford **125** as a slight yellow oil (*Z*:*E* = 25:1, 24.1 mg, 74% yield, 98% ee).

(S,Z)-9-(4-Phenylhex-2-en-1-yl)-9H-carbazole (125)

 $[\alpha]_{D}^{27} = +15 (c \ 1.9, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 16.60 min, t_R (minor) = 22.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.7 Hz, 2H), 7.48 – 7.39 (m, 4H), 7.36 – 7.23 (m, 7H), 5.89 – 5.80 (m, 1H), 5.63 – 5.53 (m, 1H), 5.05 (ddd, *J* = 16.8, 5.9, 2.0 Hz, 1H), 4.95 (ddd, *J* = 16.8, 6.3, 1.9 Hz, 1H), 3.74 (dd, *J* = 16.9, 7.5 Hz, 1H), 1.94-1.78 (m, 2H), 1.03 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144. 7, 140.2, 136.4, 128.8, 127.6, 126.4, 125.6, 125.5, 123.0, 120.4, 119.0, 108.8, 46.0, 40.6, 30.5, 12.3.

HRMS (ESI) m/z calcd. for C₂₄H₂₄N [M + H]⁺ 326.1903, found 326.1896.

The synthesis of *E*-alkene (126)

To a flamed Schlenk tube charged with a stir bar were added NaO'Bu (57.6 mg, 0.60 mmol, 6.0 equiv.), **2** (22.0 mg, 0.10 mmol, 1.0 equiv.), Pd(OAc)₂ (3.36 mg, 0.015 mmol, 15 mol%), L (11.4 mg, 0.030 mmol, 30 mol%), IPrCuCl (14.6 mg, 0.03 mmol, 30 mol%), PhSiH₃ (64.9 mg, 0.60 mmol, 6.0 equiv.), MeOH (48.0 mg, 1.5 mmol, 15 equiv.), and toluene (1.0 mL). The reaction mixture was stirred at 120 °C for 48 h. Upon completion, the reaction mixture was filtered through a short plug of silica gel eluted with EtOAc (1.5 mL) and purified by column chromatography (petroleum ether) to afford **126** as a slight yellow oil (*Z*:*E* = 1:10, 14.4 mg, 65% yield, 96% ee).

(S,E)-Pent-1-ene-1,3-diyldibenzene (126)

 $[\alpha]_{D}^{27} = -24 (c \ 0.71, CH_2Cl_2).$

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.85 min, t_R (minor) = 16.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.08 (m, 10H), 6.42 – 6.29 (m, 2H), 3.31 (q, *J* = 7.3 Hz, 1H), 1.89 – 1.72 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 137.7, 134.3, 129.5, 128.5, 127.7, 127.0, 126.20, 126.15, 51.0, 28.8, 12.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₉ [M + H]⁺ 223.1481, found 223.1478.

The synthesis of (S)-ibuprofen (127) and (R)-ibuprofen (135)

To a stirred solution of 1-(4-isobutylphenyl)ethanone **S127-1** (176.1 mg, 1.0 mmol, 1.0 equiv.) in ethanol (5.0 mL) was carefully added NaBH₄ (76.0 mg, 2.0 mmol, 2.0 equiv.) at 0 °C. The reaction mixture was stirred under the same conditions. After completion of reaction (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl, extracted with EtOAc three times, and the organic layer was dried over Na₂SO₄. The residue was filtered through a pad of silica gel and the filtrate was concentrated to afford the crude product **S127-2** as a colorless oil (171.0 mg, 96% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 4.96 – 4.82 (m, 1H), 2.50 (d, *J* = 7.1 Hz, 2H), 1.98 – 1.81 (m, 1H), 1.52 (d, *J* = 6.5 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 143.1, 141.0, 129.2, 125.2, 70.3, 45.1, 30.3, 25.0, 22.4.

1-(1-Bromoethyl)-4-isobutylbenzene (S127-3)

To a solution of 1-(4-isobutylphenyl)ethanol **S127-2** (178.0 mg, 1.0 mmol, 1.0 equiv.) in CH₂Cl₂ (5.0 mL) was added dropwise phosphorus tribromide (189.7 mg, 0.70 mmol, 0.7 equiv.) at 0 °C under argon atmosphere with vigorous stirring. Then, the mixture was naturally warmed up to room temperature and stirred overnight. The reaction was quenched by water and extracted with petroleum ether three times. The organic layer was washed by brine and filtered through a pad of silica gel. The filtrate was concentrated to afford the crude product **S127-3** as a colorless liquid (220.8 mg, 92% yield), which was directly used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 5.26 (q, J = 6.9 Hz, 1H), 2.49 (d, J = 7.2 Hz, 2H), 2.08 (d, J = 6.9 Hz, 3H), 1.89 (dp, J = 13.6, 6.7 Hz, 1H), 0.94 (d, J = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 142.1, 140.5, 129.4, 126.6, 50.0, 45.1, 30.2, 26.8, 22.4. HRMS (ESI) *m/z* calcd. for C₁₂H₁₇ [M – Br]⁺ 161.1325, found 161.1324.

(R)-1-(But-3-yn-2-yl)-4-isobutylbenzene (S127-4)

According to the **General procedure** C with 1-(1-bromoethyl)-4-isobutylbenzene S127-3 (48.0 mg, 0.20 mmol, 1.0 equiv.) and L*15 (12.5 mg, 0.015 mmol, 7.5 mol%) instead of L*13, S127-4 was obtained by column chromatography on silica gel (cyclohexane) as a colorless oil (30.0 mg, 81% yield over two steps, 83% ee).

 $[\alpha]_{D}^{25} = -5.2 \ (c \ 6.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (minor) = 15.81 min, t_R (major) = 21.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 3.78 (qd, *J* = 7.2, 2.5 Hz, 1H), 2.49 (d, *J* = 7.1 Hz, 2H), 2.28 (d, *J* = 2.5 Hz, 1H), 1.87 (tp, *J* = 12.9, 6.6 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.2, 139.9, 129.3, 126.5, 87.4, 69.9, 45.0, 31.2, 30.2, 24.2, 22.40, 22.39.

HRMS (ESI) m/z calcd. for C₁₄H₁₉ [M + H]⁺ 187.1481, found 187.1482.

(S)-1-(But-3-yn-2-yl)-4-isobutylbenzene (S135-1)

According to the General procedure C with 1-(1-bromoethyl)-4-isobutylbenzene S127-3 (48.0 mg, 0.20 mmol, 1.0 equiv.), 135-1 was obtained by column chromatography on silica gel

(cyclohexane) as a colorless oil (32.0 mg, 86% yield over two steps, 96% ee). $[\alpha]_D^{25} = +2.3$ (*c* 0.90, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (major) = 15.56 min, t_R (minor) = 21.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 3.78 (qd, *J* = 7.2, 2.5 Hz, 1H), 2.49 (d, *J* = 7.1 Hz, 2H), 2.28 (d, *J* = 2.5 Hz, 1H), 1.87 (tp, *J* = 12.9, 6.6 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.2, 139.9, 129.3, 126.5, 87.4, 69.9, 45.0, 31.2, 30.2, 24.2, 22.40, 22.39.

HRMS (ESI) m/z calcd. for C₁₄H₁₉ [M + H]⁺ 187.1481, found 187.1482.

General procedure for the oxidation of S127-4 or 135-1:

To a mixture of RuCl₃ (1.5 mg, 0.010 mmol, 5.0 mol%) and sodium periodate (171.0 mg, 0.80 mmol, 4.0 equiv.) in a mixed solvent of CCl₄ (0.4 mL) and water (0.6 mL) was added a solution of 1-(but-3-yn-2-yl)-4-isobutylbenzene **S127-4** or **135-1** (37.2 mg, 0.20 mmol, 1.0 equiv.) in MeCN (0.4 mL) in one portion. The reaction mixture was stirred at room temperature for 2 h, and then, was concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the product.

(S)-2-(4-Isobutylphenyl)propanoic acid (127 ((S)-ibuprofen))

127 ((S)-ibuprofen)

According to the procedure described above with S127-4, 127 ((S)-ibuprofen) was obtained as a white solid (34.2 mg, 83% yield).

 $[\alpha]_{D}^{25} = +40 \ (c \ 1.1, \ CH_2Cl_2).$

(*R*)-2-(4-Isobutylphenyl)propanoic acid (135 ((*R*)-ibuprofen))

135 ((*R*)-ibuprofen)

According to the procedure described above with 135-1, 135 ((R)-ibuprofen) was obtained as a white solid (37.1 mg, 90% yield).

 $[\alpha]_{p}^{25} = -40$ (*c* 4.1, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 3.74 (q, J = 7.1 Hz, 1H), 2.49 (d, J = 7.1 Hz, 2H), 1.96 – 1.80 (m, 1H), 1.54 (d, J = 7.2 Hz, 3H), 0.94 (d, J = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 181.0, 140.9, 137.0, 129.4, 127.3, 45.1, 45.0, 30.2, 22.4, 18.1. HRMS (ESI) *m/z* calcd. for C₁₃H₁₉O₂ [M + H]⁺ 207.1380, found 207.1379.

General procedure for esterification:

To a solution of ibuprofen (41.2 mg, 0.20 mmol, 1.0 equiv.) in MeOH (1.0 mL) was added SOCl₂ (119.0 mg, 1.0 mmol, 5.0 equiv.) dropwise at 0 °C. Then, the reaction mixture was warmed up to

room temperature and stirred for another 3 h. After completion of reaction, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the product.

(S)-Methyl 2-(4-isobutylphenyl)propanoate ((S)-S127-5)

According to the procedure described above with **127** ((*S*)-**ibuprofen**), **S127-5** was obtained as a colorless oil (44.0 mg, quantitative yield, 82% ee).

 $[\alpha]_{\rm D}^{25} = +53$ (c 7.1, CH₂Cl₂).

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 12.97 min, t_R (minor) = 14.34 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 3.75 (q, J = 7.2 Hz, 1H), 3.69 (s, 2H), 2.50 (d, J = 7.2 Hz, 1H), 1.54 (d, J = 7.2 Hz, 2H), 0.95 (d, J = 6.7 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 175.2, 140.5, 137.8, 129.4, 127.2, 51.9, 45.09, 45.05, 30.2, 22.4, 18.7.

HRMS (ESI) m/z calcd. for C₁₄H₂₁O₂ [M + H]⁺ 221.1536, found 221.1535.

(*R*)-Methyl 2-(4-isobutylphenyl)propanoate (S135-2)

According to the procedure described above with 135 ((R)-ibuprofen), S135-2 was obtained as a colorless oil (44.0 mg, quantitative yield, 94% ee).

 $[\alpha]_{D}^{25} = -91 \ (c \ 6.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 16.04 min, t_R (major) = 20.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 3.75 (q, J = 7.2 Hz, 1H), 3.69 (s, 2H), 2.50 (d, J = 7.2 Hz, 1H), 1.54 (d, J = 7.2 Hz, 2H), 0.95 (d, J = 6.7 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 175.2, 140.5, 137.8, 129.4, 127.2, 51.9, 45.09, 45.05, 30.2, 22.4, 18.7.

HRMS (ESI) m/z calcd. for C₁₄H₂₁O₂ [M + H]⁺ 221.1536, found 221.1535.

The synthesis of 128 and 137

1-(1-Bromoethyl)-4-methylbenzene (S128-3)

S128-3

According to **General Procedure 3** with 1-(*p*-tolyl)ethan-1-one **S128-1** (1.34 g, 10.0 mmol, 1.0 equiv.) and MeOH (30 mL) instead of ethanol as the solvent for the first reduction step, the crude product **S128-3** was obtained as a colorless oil (1.78 g, 90% crude yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 5.29 (q, *J* = 6.9 Hz, 1H), 2.42 (s, 3H), 2.12 (dd, *J* = 7.0, 0.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 138.3, 129.4, 126.8, 49.9, 26.9, 21.3. HRMS (ESI) m/z calcd. for C₉H₁₁ [M – Br]⁺ 119.0855, found 119.0853.

Me

(R)-1-(5,5-Diethoxypent-3-yn-2-yl)-4-methylbenzene (S128-4)

According to General procedure B with 1-(1-bromoethyl)-4-methylbenzene S128-3 (39.6 mg, 0.20 mmol, 1.0 equiv.) and 3,3-diethoxyprop-1-yne S44 (38.4 mg, 0.30 mmol, 1.5 equiv.) for 36 h, the crude product S128-4 was obtained without column purification as a colorless oil (47.2 mg, 96% crude yield, 93% ee).

 $[\alpha]_{D}^{27} = -2.6 (c \ 1.8, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 210 nm), t_R (major) = 4.82 min, t_R (minor) = 5.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 5.34 (s, 1H), 3.84 – 3.74 (m, 3H), 3.66 – 3.58 (m, 2H), 2.35 (s, 3H), 1.51 (d, *J* = 7.2 Hz, 3H), 1.31 – 1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl3) δ 139.6, 136.3, 129.2, 126.8, 91.6, 88.8, 77.5, 60.7, 31.4, 24.2, 21.0, 15.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}NaO_2 [M + Na]^+ 269.1512$, found 269.1510.

(S)-1-(5,5-Diethoxypent-3-yn-2-yl)-4-methylbenzene (S137-1)

According to General Procedure B with 1-(1-bromoethyl)-4-methylbenzene S128-3 (39.6 mg, 0.20 mmol, 1.0 equiv.), 3,3-diethoxyprop-1-yne S44 (38.4 mg, 0.30 mmol, 1.5 equiv.), and L*15 (12.5 mg, 0.015 mmol, 7.5 mol%) instead of L*15 for 36 h, the crude S137-1 was obtained without column purification as a colorless oil (47.2 mg, 94% yield, 87% ee).

$$[\alpha]_{D}^{27} = +16 (c 2.7, CH_2Cl_2).$$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 210 nm), t_R (minor) = 4.74 min, t_R (major) = 5.71 min.

(S)-4-(p-Tolyl)pentanal (128)

To a mixture of Pd/C (50.0 mg, 10% *w/w* Pd on carbon, 0.047 mmol, 23 mol%) and Cs₂CO₃ (130.0 mg, 0.40 mmol, 2.0 equiv.) in EtOH (2.0 mL) was added **S128-4**(49.2 mg, 0.20 mmol, 1.0 equiv.) under argon atmosphere. Then, the reaction flask was evacuated and refilled with hydrogen through a balloon. The resulting reaction mixture was stirred under the hydrogen atmosphere at room temperature for 12 h. After completion, the reaction mixture was filtered and rinsed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was dissolved in a mixture of THF (1.0 mL) and H₂O (1.0 mL) followed by the addition of two drops of 1.0 M HCl. Then, the reaction mixture was stirred until the acetal intermediate was completely consumed (monitored by TLC). The reaction mixture was diluted with EtOAc, washed by water and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford **128** as a colorless oil (31.7 mg, 90% yield). Due to the instability of **128**, its enantiomeric excess was determined by HPLC to be 89% after reduction with NaBH₄, as described below. $|\alpha|_D^{27} = +34$ (*c* 1.8, CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 9.70 (t, J = 1.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 2.76 – 2.66 (m, 1H), 2.40 – 2.29 (m, 2H), 2.34 (s, 3H), 2.03 – 1.81 (m, 2H), 1.29 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.5, 143.0, 135.8, 129.2, 126.9, 42.2, 38.9, 30.4, 22.4, 21.0. **HRMS** (ESI) m/z calcd. for C₁₂H₁₆NaO [M + Na]⁺ 199.1093, found 199.1094.

Reduction of 128

To a solution of **128** (17.6 mg, 0.1 mmol, 1.0 equiv.) in MeOH (1.0 mL) was added NaBH₄ (4.6 mg, 0.12 mmol, 1.2 equiv.) and the mixture was stirred at room temperature for 2 h. After completion of reaction (monitored by TLC), the reaction mixture was quenched by water, diluted with CH₂Cl₂, and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford **128'** (17.0 mg, 96% crude yield, 89% ee).

 $[\alpha]_{D}^{27} = +17 (c \ 1.2, CH_2Cl_2).$

HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm), t_R (minor) = 5.42 min, t_R (major) = 6.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.14 – 7.02 (m, 4H), 3.57 (t, J = 6.5 Hz, 2H), 2.72 – 2.60 (m, 1H), 2.31 (s, 3H), 1.68 – 1.58 (m, 2H), 1.56 – 1.37 (m, 3H), 1.24 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 135.4, 129.1, 126.9, 63.1, 39.4, 34.4, 31.0, 22.6, 21.0.

(R)-4-(p-Tolyl)pentanal (S137-3)

According to the same procedure as that described for **128** with **S137-1** (49.2 mg, 0.20 mmol, 1.0 equiv.) instead of **S128-4**, **S137-3** was obtained as a colorless oil (32.4 mg, 92% yield). $|\alpha|_{D^{27}} = -11$ (*c* 1.2, CH₂Cl₂).

The synthesis of 137

(*R*)-4-(*p*-Tolyl)pentanoic acid (137)

To a solution of aldehyde **S137-3** (26.4 mg, 0.15 mmol. 1.0 equiv.) in a mixed solvent of THF and H₂O (THF/H₂O = 3/1, v/v, 8.0 mL) was sequentially added a solution of AgNO₃ (63.8 mg, 0.38 mmol, 2.5 equiv.) in H₂O (1.0 mL) and aqueous NaOH (2.5 mL, 10% m/v) with vigorously stirring. Then, the reaction mixture was stirred at room temperature for 2 h. After completion, the reaction mixture was filtered and washed by water. The filtrate was washed with Et₂O three times, acidified to pH = 1 with conc. hydrochloric acid at 0 °C, and extracted with CH₂Cl₂ four times. The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1) to give **137** (21.6 mg, 75% yield) as a yellow oil. For convenience, the enantiomeric excess of **137** was determined to be -83% after reduction with lithium aluminum hydride.

 $[\alpha]_{D}^{27} = -14$ (*c* 1.8, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 7.06 – 7.01 (m, 2H), 7.01 – 6.96 (m, 2H), 2.67 – 2.56 (m, 1H), 2.24 (s, 3H), 2.18 – 2.11 (m, 2H), 1.90 – 1.72 (m, 2H), 1.18 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 180.3, 143.0, 135.8, 129.2, 126.9, 38.9, 33.0, 32.3, 22.3, 21.0. HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO [M + Na]⁺ 215.1043, found 215.1044.

HRMS (ESI) m/z calcd. for C12H16NaO [M + Na] 215.1043, found 215

To a solution of **137** (38.4 mg, 0.2 mmol, 1.0 equiv.) in THF (2.0 mL) was added LiAlH₄ (15.2 mg, 0.4 mmol, 2.0 equiv.) at 0 $^{\circ}$ C and the resulting reaction mixture was stirred at rt for 2 h. After completion of reaction (monitored by TLC), the reaction mixture was quenched with Na₂SO₄·xH₂O and filtered. The filtrate was concentrated under reduced pressure to afford the corresponding alcohol **137** (35.0 mg, 90% crude yield, 83% ee).

HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm), $t_{\rm R}$ (major) = 5.42 min, $t_{\rm R}$ (minor) = 6.68 min.

 $[\alpha]_{D}^{27} = -6.8 \ (c \ 0.19, \ CH_2Cl_2).$

The synthesis of 129, 136, 138, 139, (+)-methylaristelegone A, and (-)-aristelegone B

The synthesis of substrate S129-3

To a solution of 3-methoxy-4-methylbenzaldehyde **S129-1** (0.75 g, 5.0 mmol, 1.0 equiv.) in THF (10 mL) was slowly added methylmagnesium chloride (2.0 mL, 3.0 M in THF, 6.0 mmol, 1.2 equiv.) at -78 °C under argon atmosphere. The reaction mixture was then warmed up to room temperature and stirred for 1 h until the aldehyde was completely consumed (monitored by TLC). The reaction mixture was quenched by 3.0 M HCl and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford **S129-2** as a colorless oil (0.80 g, 96% yield).

1-(3-Methoxy-4-methylphenyl)ethan-1-ol (S129-2)

¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (d, J = 7.6 Hz, 1H), 6.88 (d, J = 1.6 Hz, 1H), 6.83 (dd, J = 7.6, 1.6 Hz, 1H), 4.85 (q, J = 6.4 Hz, 1H), 3.84 (s, 3H), 2.21 (d, J = 0.8 Hz, 3H), 1.49 (d, J = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.9, 145.0, 130.6, 125.9, 117.2, 107.1, 70.5, 55.4, 25.3, 16.1.

To a solution of 1-(3-methoxy-4-methylphenyl)ethan-1-ol **S129-2** (0.50 g, 3.0 mmol, 1.0 equiv.) in CH₂Cl₂ (10.0 mL) was added dropwise PBr₃ (0.20 mL, 2.1 mmol, 0.70 equiv.) at 0 °C. The reaction mixture was stirred at this temperature for 2 h, then quenched by water, and extracted with CH₂Cl₂ three times. The combined organic phase was dried over Na₂SO₄, filtered through a pad of silica gel, and concentrated under reduced pressure to afford the crude product **S129-3** (0.64 g, 93% yield) as a white solid, which was directly used in the next step without further purification.

4-(1-Bromoethyl)-2-methoxy-1-methylbenzene (S129-3)

¹**H** NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 7.5 Hz, 1H), 6.94 (dd, J = 7.5, 1.8 Hz, 1H), 6.91 (d, J = 1.7 Hz, 1H), 5.22 (q, J = 6.9 Hz, 1H), 3.86 (s, 3H), 2.21 (s, 3H), 2.06 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 142.2, 130.7, 127.3, 118.5, 108.6, 55.4, 50.4, 27.0, 16.2. HRMS (ESI) m/z calcd. for C₁₀H₁₃O [M – Br]⁺ 149.0961, found 149.0966.

A 10 mL Schlenk tube was sequentially charged with CuTc (3.82 mg, 0.020 mmol, 5.0 mol%), L*16 (24.2 mg, 0.030 mmol, 7.5 mol%), and Cs₂CO₃ (260.8 mg, 0.80 mmol, 2.0 equiv.). Then, the tube was evacuated and refilled with argon three times. Next, anhydrous Et₂O (8.0 mL), 4-(1-bromoethyl)-2-methoxy-1-methylbenzene S129-3 (91.2 mg, 0.40 mmol, 1.0 equiv.), and 3,3-diethoxyprop-1-yne S44 (76.8 mg, 0.60 mmol, 1.5 equiv.) were sequentially added under an argon flow. Upon completion, the reaction mixture was stirred at room temperature for 18 h. After completion of reaction (monitored by TLC), the reaction mixture was filtered through a silica gel pad to remove insoluble solid and rinsed by CH₂Cl₂. The filtrate was concentrated under reduced pressure then purified by column chromatography on silica gel (petroleum ether) to afford S129-4 as a colorless oil (99.5 mg, 90% yield, 84% ee)

 $[\alpha]_{D}^{27} = -4.9 \ (c \ 1.6, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 214 nm), t_R (minor) = 13.79 min, t_R (major) = 15.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, J = 7.5 Hz, 1H), 6.86 (s, 1H), 6.84 (d, J = 7.7 Hz, 1H), 5.32 (s, 1H), 3.83 (s, 3H), 3.81 – 3.70 (m, 3H), 3.66 – 3.53 (m, 2H), 2.18 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H), 1.23 (td, J = 7.1, 3.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 157.9, 141.6, 130.7, 125.1, 118.7, 108.9, 91.7, 89.0, 77.7, 60.84, 60.81, 55.4, 31.9, 24.3, 16.0, 15.3. HRMS (ESI) *m/z* calcd. for C₁₇H₂₅O₃ [M + H]⁺ 277.1798, found 277.1796.

(R)-4-(5,5-Diethoxypentan-2-yl)-2-methoxy-1-methylbenzene (S129-5)

A mixture of **S129-4** (83.0 mg, 0.30 mmol, 1.0 equiv.), Cs_2CO_3 (48.9 mg, 0.15 mmol, 0.50 equiv.), and Pd/C (20.0 mg, 10% *w/w* Pd on carbon, 0.019 mmol, 6 mol%) in a mixture of THF and MeOH (1/3 *v/v*, 10.0 mL) was hydrogenated with a hydrogen balloon for 24 h. Then, the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc. After concentration, the crude **S129-5** was obtained as a colorless oil (80.0 mg, 95% yield), which was directly used in the next step without further purification.

(R)-7-Methoxy-1,6-dimethyl-1,2-dihydronaphthalene (129)

To a stirred solution of **S129-5** (56.0 mg, 0.20 mmol, 1.0 equiv.) in THF (6.0 mL) was dropwise added HCl (2.0 mL, 2.0 M, 4.0 mmol, 20 equiv.) at room temperature and the reaction mixture was stirred at 35 °C for 1 h. Upon completion, the reaction mixture was quenched by saturated NaHCO₃ at 0 °C and extracted with EtOAc three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to afford **129** (33.0 mg, 88% yield, 83% ee) as a colorless oil.

 $[\alpha]_{D}^{27} = +29 \ (c \ 0.42, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 270 nm), t_R (minor) = 26.19 min, t_R (major) = 35.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.67 (s, 1H), 6.37 (d, J = 9.5 Hz, 1H), 5.85 – 5.75 (m, 1H), 3.84 (s, 3H), 2.95 – 2.82 (m, 1H), 2.50 – 2.40 (m, 1H), 2.18 (s, 3H), 2.15 – 2.03 (m, 1H), 1.23 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.0, 139.5, 128.8, 126.9, 126.0, 124.3, 124.1, 108.7, 55.6, 32.2, 31.3, 20.5, 15.9.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O [M + H]⁺ 189.1274, found 189.1274.

(*R*)-4-(3-Methoxy-4-methylphenyl)pentanal (136)

To a stirred solution of **S129-5** (78.0 mg, 0.28 mmol, 1.0 equiv.) in THF (10.0 mL) were dropwise added HCl (3.0 mL, 0.50 M, 1.5 mmol, 5 equiv.) at 0 °C and the reaction mixture was stirred under the same conditions for 4 h. Upon completion, the reaction mixture was quenched by saturated NaHCO₃ at 0 °C and extracted with EtOAc. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to afford the **136** (46.2 mg, 80%, 85% ee) as a colorless oil.

 $[\alpha]_{D}^{27} = -12$ (*c* 2.8, CH₂Cl₂).

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 280 nm), t_R (major) = 42.70 min, t_R (minor) = 47.03 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 7.2 Hz, 1H),

6.63 (s, 1H), 3.83 (s, 3H), 2.73 – 2.64 (m, 1H), 2.41 – 2.26 (m, 2H), 2.19 (s, 3H), 2.00 – 1.79 (m, 2H), 1.28 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.7, 157.9, 145.1, 130.7, 124.6, 118.7, 108.9, 55.4, 42.4, 39.5, 30.5, 22.6, 16.0.

HRMS (ESI) m/z calcd. for C₁₃H₁₉O₂ [M + H]⁺ 207.1380, found 207.1381.

(R)-4-(3-Methoxy-4-methylphenyl)pentanoic acid (S129-6)

To a solution of **136** (41.0 mg, 0.20 mmol, 1.0 equiv.) in a mixture of CH₃CN, 'BuOH, and H₂O (2/2/1 v/v/v, 10.0 mL) were sequentially added NaH₂PO₄ (72.0 mg, 0.60 mmol, 3.0 equiv.) and NaClO₂ (89.5 mg, 1.2 mmol, 6.0 equiv.). The resulting reaction mixture was stirred at room temperature for 2 h. Upon completion, the reaction mixture was diluted with EtOAc, washed with saturated Na₂S₂O₃ and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂/MeOH = 10/1) to afford **S129-6** (40.0 mg, 90% yield) as a colorless oil. The analytic data were consistent with those reported^{23,24}. [α] $\rho^{27} = -19$ (*c* 1.8, CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 7.4 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 6.64 (s, 1H), 3.82 (s, 3H), 2.76 – 2.64 (m, 1H), 2.25 (t, J = 7.6 Hz, 2H), 2.18 (s, 3H), 2.00 – 1.83 (m, 2H), 1.27 (d, J = 7.4 Hz, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 179.7, 157.9, 145.1, 130.7, 124.6, 118.8, 109.0, 55.4, 39.5, 33.1, 32.4, 22.4, 16.0.

HRMS (ESI) m/z calcd. for C₁₃H₁₉O₃ [M + H]⁺ 223.1329, found 223.1327.

(*R*)-6-Methoxy-4,7-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one ((+)-methylaristelegone A)

Ö (+)-methylaristelegone A

To a flask containing the (*R*)-S129-6 (44.4 mg, 0.20 mmol, 1.0 equiv.) were added a mixture of trifluoroacetic acid (22.8 mg, 0.20 mmol, 1.0 equiv.) and trifluoroacetic anhydride (168.0 mg, 0.80 mmol, 4.0 equiv.) at 0 °C under argon atmosphere. The resulting reaction mixture was stirred under the same conditions until completion of reaction (monitored by TLC). Then, the reaction mixture was quenched by saturated NaHCO₃ at 0 °C and extracted with Et₂O three times. The combined organic layer was washed by brine, dried over the Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford (+)-methylaristelegone A (32.6 mg, 65% yield, 82% ee) was obtained as a white solid. The analytic data were consistent with those reported²⁴.

 $[\alpha]_{D}^{27} = +14 \ (c \ 0.50, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 19.97 min, t_R (major) = 21.44 min.

¹**H** NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.67 (s, 1H), 6.37 (d, *J* = 9.5 Hz, 1H), 5.85 – 5.75 (m, 1H), 3.84 (s, 3H), 2.95 – 2.82 (m, 1H), 2.50 – 2.40 (m, 1H), 2.18 (s, 3H), 2.15 – 2.03 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 157.0, 139.5, 128.8, 126.9, 126.0, 124.3, 124.1, 108.7, 55.6, 32.2, 31.3, 20.5, 15.9.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O₂ [M + H]⁺ 205.1223, found 205.1222.

(2*S*,4*R*)-2-Hydroxy-6-methoxy-4,7-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one ((–)-aristelegone B)

To a mixture of (+)-methylaristelegone A (36.8 mg, 0.18 mmol, 1.0 equiv.) and KOH (56.0 mg, 1.0 mmol, 10.0 equiv.) in MeOH (0.5 mL) was added PhI(OCOCF₃)₂ (51.6 mg, 0.12 mmol, 1.2 equiv.) under argon atmosphere at 0 °C. The resulting reaction mixture was then naturally warmed up to the room temperature and stirred for 3 h. After completion of reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the residue was purified by semi-preparative HPLC purification to afford (–)-aristelegone B as a white solid (27.0 mg, 68%, 81% ee).

 $[\alpha]_{D}^{27} = -0.50 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OJ3 (hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 270 nm), t_R (major) = 12.27 min, t_R (minor) = 14.60 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 6.77 (s, 1H), 4.33 (dd, *J* = 13.5, 5.3 Hz, 1H), 3.96 – 3.88 (m, 4H), 3.25 – 3.06 (m, 1H), 2.54 – 2.43 (m, 1H), 2.21 (s, 3H), 1.76 (q, *J* = 12.6 Hz, 1H), 1.45 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 198.7, 163.1, 149.2, 129.9, 126.2, 122.9, 107.1, 73.1, 55.6, 41.0, 31.8, 20.7, 15.9.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O₃ [M + H]⁺ 221.1172, found 221.1170.

A 10 mL Schlenk tube was sequentially charged with CuTc (1.91 mg, 0.010 mmol, 5.0 mol%), L*13 (12.5 mg, 0.015 mmol, 7.5 mol%), and Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.). Then, the tube was evacuated and refilled with argon three times. Next, anhydrous Et₂O (4.0 mL), 4-(1-bromoethyl)-2-methoxy-1-methylbenzene **S129-3** (45.6 mg, 0.20 mmol, 1.0 equiv.), and 3,3-diethoxyprop-1-yne **S44** (38.4 mg, 0.30 mmol, 1.5 equiv.) were sequentially added under an argon flow. Upon completion, the reaction mixture was stirred at room temperature for 18 h. After completion of reaction (monitored by TLC), the reaction mixture was filtered through a silica gel pad to remove insoluble solid and rinsed by CH₂Cl₂. The filtrate was concentrated under reduced pressure to afford the crude **S138-1** (94% ee), which was directly used in the next without further purification.

HPLC analysis: Chiralcel IG (hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 254 nm), t_R (major) = 13.59 min, t_R (minor) = 14.94 min.

Crude ¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (d, *J* = 7.5 Hz, 1H), 6.92 – 6.85 (m, 2H), 5.36 (s, 1H), 3.87 (s, 3H), 3.85 – 3.74 (m, 3H), 3.71 – 3.56 (m, 2H), 2.23 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H), 1.27 (td, *J* = 7.1, 3.0 Hz, 8H).

Crude¹³**C NMR** (100 MHz, CDCl₃) δ 157.8, 141.5, 130.6, 125.0, 118.6, 108.7, 91.6, 88.9, 60.7, 60.7, 55.2, 31.8, 24.2, 15.9, 15.2.

(*R*)-4-(3-Methoxy-4-methylphenyl)pent-2-ynal (S138-2)

To a solution of the crude (*R*)-**S138-1** obtained above (ca. 0.20 mmol) in THF (2.0 mL) was added dropwise HCl (1.0 M, 0.10 mL, 0.10 mmol, 0.50 equiv.) at 0 °C and the resulting reaction mixture

was stirred at 0 °C for 6 h. After completion of reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure to afford the crude product **S138-2**, which was directly used in the next step without further purification.

(R)-4-(3-Methoxy-4-methylphenyl)pent-2-ynoic acid (S138-3)

To a solution of the crude **S138-2** obtained above in a mixture of H_{2O} (2.0 mL) and 'BuOH (2.0 mL) were sequentially added 2-methylbut-2-ene (0.28 g, 4.0 mmol, 20.0 equiv.), NaH₂PO₄ (0.12 g, 1.0 mmol, 5.0 equiv.), and NaClO₂ (68.0 mg, 80% purity, 0.60 mmol, 3.0 equiv.). Upon completion, the reaction mixture was stirred at room temperature until the starting material was completely consumed (monitored by TLC). Then, the reaction mixture was diluted with EtOAc and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product **S138-3**, which was directly used in the next step without further purification.

(S)-4-(3-Methoxy-4-methylphenyl)pentanoic acid (S138-4)

S138-4

To a two-neck flask containing Pd/C (50 mg, 10% w/w Pd on carbon, 0.047 mmol, 23 mol%) was added a solution of the crude **S138-3** obtained above (ca. 0.20 mmol) in a mixture of THF (1.0 mL) and water (1.0 mL) via syringe and the resulting mixture was stirred under an atmosphere of hydrogen gas provided by a hydrogen balloon at room temperature overnight. After completion of reaction (monitored by TLC), the reaction mixture was filtered and concentrated under reduced pressure to afford the crude product **S138-4**, which was directly used in the next step without further purification.

(S)-6-Methoxy-4,7-dimethyl-3,4-dihydronaphthalen-1(2H)-one (138)

To a flask containing the crude **S138-4** obtained above (ca. 0.20 mmol) were added a mixture of trifluoroacetic acid (22.8 mg, 0.20 mmol, 1.0 equiv.) and trifluoroacetic anhydride (168.0 mg, 0.80 mmol, 4.0 equiv.) at 0 °C under argon atmosphere. The resulting reaction mixture was stirred under the same conditions until completion of reaction (monitored by TLC). Then, the reaction mixture was quenched by saturated NaHCO₃ at 0 °C and extracted with Et₂O three times. The combined organic layer was washed by brine, dried over the Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum
ether/EtOAc = 5/1) to afford **138** as a white powder (16.3 mg, 80% yield over five steps, 89% ee). $[\alpha]_D^{25} = -22$ (*c* 0.40, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 98/2, flow rate 0.3 mL/min, λ = 270 nm), t_R (major) = 29.56 min, t_R (minor) = 32.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 6.70 (s, 1H), 3.92 (s, 3H), 3.14 – 3.00 (m, 1H), 2.66 (dddd, J = 78.8, 17.3, 8.6, 4.9 Hz, 2H), 2.30 – 2.23 (m, 1H), 2.22 (s, 3H), 1.98 – 1.84 (m, 1H), 1.41 (d, J = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 197.5, 162.2, 149.5, 129.6, 125.5, 124.8, 107.6, 55.5, 35.9, 33.1, 30.8, 20.8, 15.8.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O₂ [M + H]⁺ 205.1223, found 205.1222.

(2R,4S)-2-Hydroxy-6-methoxy-4,7-dimethyl-3,4-dihydronaphthalen-1(2H)-one (139)

To a mixture of **138** (21.0 mg, 0.10 mol, 1.0 equiv.) and KOH (56.0 mg, 1.0 mmol, 10.0 equiv.) in MeOH (0.5 mL) was added PhI(OCOCF₃)₂ (51.6 mg, 0.12 mmol, 1.2 equiv.) under argon atmosphere at 0 °C. The resulting reaction mixture was then naturally warmed up to the room temperature and stirred for 3 h. After completion of reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford **139** as a white solid (56% yield, 6.7:1.0 dr, 89% ee).

 $[\alpha]_{D}^{25} = +21$ (*c* 0.20, CH₂Cl₂).

HPLC analysis: Chiralcel OZ3 (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 37.34 min, t_R (minor) = 42.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 6.80 (s, 1H), 4.36 (dd, J = 13.4, 5.3 Hz, 1H), 3.94 (s, 3H), 3.24 – 3.13 (m, 1H), 2.51 (dt, J = 12.5, 4.7 Hz, 1H), 2.24 (s, 3H), 1.78 (q, J = 12.6 Hz, 1H), 1.48 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.5, 162.9, 149.1, 129.7, 126.1, 107.0, 73.0, 55.5, 40.8, 31.6, 20.5, 15.8.

HRMS (ESI) m/z calcd. for C₁₃H₁₇O₃ [M + H]⁺ 221.1172, found 221.1170.

The synthesis of 130

(*S*)-3-(*p*-Tolyl)butanal (130)

According to General procedure C with 1-(1-bromoethyl)-4-methylbenzene S128-3 (39.6 mg, 0.20 mmol, 1.0 equiv.), the crude product S130-1 was obtained as a colorless oil, which was directly used in the next step without further purification.

To a Schlenk tube containing $[CpRu(MeCN)_3]PF_6$ (1.7 mg, 0.0040 mmol, 2.0 mol%) and 5,5'bis(trifluoromethyl)-2,2'-bipyridine L (1.2 mg, 0.0040 mmol, 2.0 mol%) was added a solution of the crude **S130-1** (ca. 0.20 mmol) in a mixture of NMP (0.8 mL) and water (0.2 mL) under argon atmosphere and the reaction mixture was stirred at 25 °C overnight. After completion of reaction (monitored by TLC), the reaction mixture was diluted by EtOAc, washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to afford **130** as a colorless oil (22.0 mg, 68% over two steps). Due to the instability of aldehyde **130**, its enantiomeric excess was determined to be 98% ee after reduction with NaBH₄.

$[\alpha]_{D}^{27} = +40 \ (c \ 0.4, \ CH_2Cl_2).$

¹**H NMR** (400 MHz, CDCl₃) δ 9.73 (t, *J* = 2.1 Hz, 1H), 7.14 (s, 4H), 3.39 – 3.23 (m, 1H), 2.79 – 2.60 (m, 2H), 2.34 (s, 3H), 1.32 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.1, 142.4, 136.1, 129.3, 126.6, 51.8, 33.9, 22.3, 21.0. HRMS (ESI) *m/z* calcd. for C₁₁H₁₄NaO [M + Na]⁺ 185.0937, found 185.0938.

(S)-3-(p-Tolyl)butan-1-ol (130')

To a solution of aldehyde **130** (16.2 mg, 0.10 mmol, 1.0 equiv.) in EtOH (1.0 mL) was added NaBH₄ (7.6 mg, 0.20 mmol, 2.0 equiv.) and the resulting reaction mixture was stirred at room temperature for 3 h. After completion of reaction (monitored by TLC), the reaction mixture was quenched by water and extracted with EtOAc three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford **130'** as a colorless oil (14.9 mg, 91% yield, 98% ee).

 $[\alpha]_{D}^{27} = +13 \ (c \ 0.31, CH_2Cl_2).$

HPLC analysis: Chiralcel AY3 (hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 20.81 min, t_R (major) = 22.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (s, 4H), 3.62 - 3.49 (m, 2H), 2.91 - 2.80 (m, 1H), 2.32 (s, 3H), 1.91 - 1.77 (m, 2H), 1.26 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.8, 135.6, 129.2, 126.8, 61.3, 41.0, 36.1, 22.6, 21.0. **HRMS** (ESI) *m/z* calcd. for C₁₁H₁₆NaO [M + Na]⁺ 187.1093, found 187.1093.

Assignment of absolute stereochemistry Method I: The synthesis of ibuprofen derivatives

The absolute configuration was determined by comparing HPLC traces of prepared **S127-5** and the one derived from commercial (*S*)-**ibuprofen**(**127**) (*purchased from Shanghai Bidepharm technology Ltd.*), as shown below. Accordingly, L***13** leads to coupling product **S135-1** of the *S* absolute configuration and L***15** leads to coupling product **S127-4** of the *R* absolute configuration. DADI C, Sig=214,4 Ref=360,100 (D:CHEM11...ZYF\ZYF-IBUROPHEN 2018-09-08 10-09-22\ZYF-304-0.J3-990105-1.D)

Entry	Sample	Absolute configuration	Ee/%
1	(<i>S</i>)- S127-5 derived from commercial (<i>S</i>)- ibuprofen	S	-99
2	Prepared S135-2	R	94
3	Prepared S127-5	S	-82

Method II: The synthesis of AMG 837

The absolute configuration could also be determined by comparing HPLC traces or specific optical rotations of prepared S122-12 and AMG 837 (122) with the commercial ones (*purchased from*

WuXi AppTec with >99% *purity*), respectively, as shown below. Accordingly, L*16 leads to coupling product S122-12 of the S absolute configuration.

Entry	Sample	Ee/%	Configuration	$[\alpha]_D^{27}$
1	Prepared S122-12	-83	S	+4.5 (<i>c</i> 0.71, CH ₂ Cl ₂)
2	Commercial S1229-12	-99	S	+5.5 (<i>c</i> 2.8, CH ₂ Cl ₂)
3	Prepared AMG 837 (122)		S	+4.3 (<i>c</i> 0.75, CH ₂ Cl ₂)
4	Commercial AMG 837 (122)		S	+7.5 (c 0.91, CH ₂ Cl ₂)*

Reported specific optical rotation of* **AMG 837 of the *S* absolution configuration: $[\alpha]_D^{22} = +10.9$ (*c* 0.44, CHCl₃, >99% ee)²⁵.

Mechanistic study Control experiment with copper phenylacetylide

Copper phenylacetylide was synthesized according to literature²⁶.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with copper phenylacetylide (16.5 mg, 0.10 mmol, 1.0 equiv.), (1-bromopropyl)benzene **S2** (19.9 mg, 0.10 mmol, 1.0 equiv.), **L*8** (61.1 mg, 0.10 mmol, 1.0 equiv.), and anhydrous Et₂O (2.0 mL). The resulting reaction mixture was stirred at room temperature for 12 h. Upon completion of reaction (monitored by TLC), the reaction mixture was filtered and washed by Et₂O. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether) to afford **2** (18.0 mg, 82% yield, 88% ee). **HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 4.84 min, *t*_R (major) = 5.63 min.

The procedure for the reaction without L*8 was the same with that described above except that L*8 was not added. No desired product 2 was observed.

Control experiment with TEMPO

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with (1-bromopropyl)benzene **S2** (39.8 mg, 0.20 mmol, 1.0 equiv.), phenylacetylene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.), CuTc (1.9 mg, 0.010 mmol, 5.0 mol%), (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (37.4 mg, 0.24 mmol, 1.2 equiv.), L*8 (9.2 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (130.4 mg, 0.40 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). The resulting reaction mixture was stirred at room temperature for 72 h. Upon completion, the reaction was filtered and washed by Et₂O. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford **131** (ca. 5.5 mg, ca. 10% yield)²⁷ with a trace amount of impurities. No product **2** was observed.

2,2,6,6-Tetramethyl-1-(1-phenylpropoxy)piperidine (131)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 1H), 7.31 – 7.27 (m, 3H), 7.25 – 7.19 (m, 1H), 4.53 (dd, J = 9.5, 3.9 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.84 – 1.75 (m, 1H), 1.49 (br s, 3H), 1.36 – 1.23 (m, 6H), 1.17 (br s, 3H), 1.01 (br s, 3H), 0.89 – 0.84 (m, 1H), 0.66 (t, J = 7.5 Hz, 3H), 0.58 (br s, 2H).

HRMS (ESI) m/z calcd. for C₁₈H₃₀NO [M + H]⁺ 276.2321, found 276.2313.

The synthesis of 132

S132-3 was prepared according to a reported procedure from 5-hexyn-1- $ol^{28,29}$.

(Z)-(6-Bromohex-1-ene-1,6-diyl)dibenzene (132)

According to *Method b* of General procedure 4 with S132-3 (0.52 g, 3.0 mmol, 1.0 equiv.) and phenylmagnesium bromide (3.6 mL, 1.0 M in Et₂O, 3.6 mmol, 1.2 equiv.), 132 was obtained as a colorless oil (0.69 g, 73% crude yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.26 (m, 10H), 6.52 (d, *J* = 11.5 Hz, 1H), 5.75 – 5.62 (m, 1H), 4.98 (t, *J* = 7.6 Hz, 1H), 2.49 – 2.40 (m, 2H), 2.40 – 2.32 (m, 1H), 2.30 – 2.18 (m, 1H), 1.78 – 1.65 (m, 1H), 1.62 – 1.48 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 137.6, 132.0, 129.7, 128.82, 128.77, 128.4, 128.3, 127.3, 126.7, 55.4, 39.5, 28.5, 27.8.

HRMS (ESI) m/z calcd. For C₁₈H₁₉ [M – Br]⁺ 235.1481, found 235.1479.

Radical clock experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.01 mmol, 5.0 mol%), L*8 (9.2 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (130.4 mg, 0.4 mmol, 2.0 equiv.), and anhydrous Et₂O (4.0 mL). Then, (*Z*)-(6-bromohex-1-ene-1,6-diyl)dibenzene **132** (63.0 mg, 0.20 mmol, 1.0 equiv.) and phenylacetylene **S1-2** (30.6 mg, 0.30 mmol, 1.5 equiv.) were sequentially added and the resulting reaction mixture was stirred at room temperature for 72 h. Upon completion of reaction (monitored by TLC), the reaction

mixture was filtered and washed with petroleum ether. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford **133** as a colorless oil (51.0 mg, 76% yield).

(3-(2-Phenylcyclopentyl)prop-1-yne-1,3-diyl)dibenzene (133)

¹**H** NMR (400 MHz, CDCl₃) (a mixture of diastereomers) δ 7.56 – 7.53 (m, 1H), 7.44 – 7.38 (m, 1H), 7.37 – 7.34 (m, 5H), 7.33 (d, J = 4.2 Hz, 2H), 7.31 (d, J = 2.3 Hz, 1H), 7.30 (d, J = 2.2 Hz, 1H), 7.27 (s, 1H), 7.26 – 7.22 (m, 2H), 7.22 – 7.18 (m, 1H), 3.93 (d, J = 3.9 Hz, 0.73H), 3.53 (d, J = 6.3 Hz, 0.27H), 3.21 – 3.11 (m, 1H), 2.36 – 2.23 (m, 1H), 2.21 – 2.15 (m, 1H), 2.13 – 1.99 (m, 1H), 1.97 – 1.84 (m, 1H), 1.84 – 1.75 (m, 2H), 1.71 – 1.58 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (a mixture of diastereomers) δ 144.6, 142.8, 142.0, 141.6, 131.8, 131.5, 129.0, 128.6, 128.33, 128.29, 128.24, 128.22, 128.1, 128.0, 127.9, 127.7, 127.6, 126.51, 126.46, 126.3, 126.1, 124.0, 123.9, 91.7, 89.0, 84.9, 83.6, 55.1, 50.9, 50.6, 48.8, 39.9, 39.3, 34.9, 31.8, 28.7, 27.2, 24.2, 23.8.

HRMS (ESI) m/z calcd. for C₁₆H₂₅ [M + H]⁺ 337.1951, found 337.1946.

ICP-MS analysis Analysis of the crude reaction mixture

The reaction was run on a 0.10 mmol scale under the standard conditions for 12 h. Upon completion, the reaction mixture was evaporated under reduced pressure. The residue thus obtained was mixed with concentrated HNO₃ (4 mL) and heated at 90 °C for 2 h until a clear solution was obtained. Next, the solution was diluted with HNO₃ (2%) to a total volume of 50 mL. The resulting solution was subjected to ICP-MS analysis.

Contents of trace meta	l im	purities	in	the	crude	reaction	mixture

Element	Percentage (<i>w</i> / <i>w</i> Cu%)
Fe	1
Со	0.03
Ni	0.08
Pd	0.005

Analysis of CuTc catalyst

A mixture of CuTc (25 mg) and concentrated HNO₃ (1 mL) was heated at 50 $^{\circ}$ C for 0.5 h until a clear solution was obtained. The solution was next diluted with HNO₃ (2%) to a total volume of 50 mL. The resulting solution was subjected to ICP-MS analysis.

Element	Percentage (<i>w</i> / <i>w</i> Cu%)
Fe	0.1
Со	0.006
Ni	0.01
Pd	0.004

Contents of trace metal impurities in the CuTc catalyst

Trace metal control experiments

Reaction note:

All the equipments used (Schlenk tube, magnetic stir bar, *etc.*) were new in order to reduce the background contents of trace metals as much as possible.

Preparation of metal stock solutions:

 $Pd(PPh_3)_4$ (3.5 mg) was dissolved in 10.0 mL of toluene. For reactions containing 100, 1000, and 10000 ppm of Pd, 1, 10, and 100 μ L of the Pd stock solutions were added with Hamilton syringes to the reaction mixture, respectively

FeCl₃ (9.0 mg) was weighed in a glovebox, and then dissolved in 10.0 mL of toluene. The mixture was ultrasonicated for 0.5 h. For the reaction containing 100000 ppm of Fe, 100 μ L of the Fe stock solution was added with a Hamilton syringe to the reaction mixture.

Ni(acac)₂ (1.4 mg) was dissolved in 1.0 mL of toluene and the mixture was ultrasonicated for 0.5 h. For the reaction containing 100000 ppm of Ni, 100 μ L of the Ni stock solution was added with a Hamilton syringe to the reaction mixture.

General procedure E with metal additives

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (0.95 mg, 0.0050 mmol, 5.0 mol%), L*13 (6.3 mg, 0.0075 mmol, 7.5 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 equiv.), and anhydrous Et₂O (2.0 mL). Then, 1-phenylpropyl bromide (19.9 mg, 0.10 mmol, 1.0 equiv.), phenylacetylene (15.3 mg, 0.15 mmol, 1.5 equiv.), and a metal solution mentioned above were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 2 h. Upon completion, the reaction mixture was concentrated, and then 1,3,5-trimethoxybenzene (5.6 mg, 0.033 mmol, 0.033 equiv.) was added as an internal standard to obtain conversion and yield with ¹H-NMR analysis. Then the residue was purified by column chromatography on silica gel to afford the desired product for determination of ee with HPLC analysis.

General procedure F with other metal catalysts

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with the corresponding metal catalyst [M] (0.0050 mmol, 5.0 mol%), L*8 (4.6 mg, 0.0075 mmol, 7.5 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 equiv.), and anhydrous Et₂O (2.0 mL). Then, 1-phenylpropyl bromide (19.9 mg, 0.10 mmol, 1.0 equiv.) and phenylacetylene (15.3 mg,

0.15 mmol, 1.5 equiv.) were added sequentially and the reaction mixture was stirred at room temperature for 24 h. Upon completion, the reaction mixture was concentrated and then, 1,3,5-trimethoxybenzene (5.6 mg, 0.033 mmol, 0.033 equiv.) was added as an internal standard to obtain conversion and yield with ¹H NMR. Then, the residue was purified by column chromatography on silica gel to afford the desired product for determination of ee with HPLC analysis.

Effects of Pd additive

According to **General procedure E**, 100, 1000, and 10000 ppm of Pd(PPh₃)₄ were added to the reaction mixture, respectively. After 2 h, the reaction results were as follows.

Entry	[Pd] (ppm)	Conversion (%)	Yield (%)	Ee (%)
1	0	45	43	97
2	100	42	41	97
3	1000	46	45	97
4	10000	48	41	97

Catalytic performance of Pd catalysts

$$\begin{array}{c} Br \\ Ph \end{array} + Ph \end{array} + \begin{array}{c} [Pd] (5.0 \text{ mol}\%), L*8 (7.5 \text{ mol}\%) \\ \hline Cs_2CO_3, Et_2O, 28 ^{\circ}C, 24 \text{ h} \end{array} + \begin{array}{c} Ph \\ Ph \end{array}$$

According to **General procedure F**, Pd(PPh₃)₄ (5.8 mg), Pd(PPh₃)₂Cl₂ (3.5 mg), Pd₂(dba)₃ (2.3 mg), and Pd(OAc)₂ (1.1 mg) were used as metal catalysts instead of CuTc. The reaction results were as follows.

Entry	[Pd]	Conversion (%)	Ee (%)
1	Pd(PPh ₃) ₄	0	/
2	Pd(PPh ₃) ₂ Cl ₂	0	/
3	Pd ₂ (dba) ₃	0	/
4	$Pd(OAc)_2$	0	/

Effects of [Fe] and [Ni] additives

According to **General procedure E**, 100000 ppm of FeCl₃ and 100000 ppm of Ni(acac)₂ were added to the reaction mixtures, respectively. After 2 h, the reaction results were as follows.

Entry	[M]	Conversion (%)	Yield (%)	Ee (%)
1	none	47	46	97
2	FeCl ₃	50	46	97
3	Ni(acac) ₂	58	47	97

Effects of [Co] additive

According to **General procedure E**, 100000 ppm of Co(PPh₃)₃Cl (0.48 mg) was added to the reaction mixture. After 2 h, the reaction results were as follows.

Entry	[M]	Conversion (%)	Yield (%)	Ee (%)
1	none	58	52	97
2	Co(PPh3)3Cl	60	54	97

Catalytic performance of other transition metal catalysts

According to **General procedure F**, FeCl₃ (0.81 mg), Co(PPh₃)₃Cl (4.4 mg), NiCl₂ (0.65 mg), NiBr₂ (1.1 mg), Ni(PCy₃)₂Cl₂ (3.4 mg), and Ni(PPh₃)₂Cl₂ (3.3 mg) were used as metal catalysts, respectively, instead of CuTc. The reaction results were as follows.

Entry	[M]	Conversion (%)	Ee (%)
1	FeCl ₃	0	/
2	Co(PPh ₃) ₃ Cl	0	/

3	NiCl ₂	0	/
4	NiBr ₂	0	/
5	Ni(PCy ₃) ₂ Cl ₂	0	/
6	Ni(PPh3)2Cl2	0	/

Experiments with racemic and enantioenriched alkyl bromide S1-1

According to **General procedure A** with (1-bromoethyl)benzene (\pm)-**S1-1** (57.0 mg, 0.30 mmol, 1.5 equiv.), 4-ethynylbenzonitrile **S16** (25.0 mg, 0.20 mmol, 1.0 equiv.), and **L*14** (9.0 mg, 0.015 mmol, 7.5 mol%) instead of **L*13** for facile determination of yield by ¹H NMR, **134** (44.0 mg, 89% yield, 68% ee) was obtained.

(*R*)-4-(3-phenylbut-1-yn-1-yl)benzonitrile (134)

 $[\alpha]_{D}^{27} = -3.3 \ (c \ 4.4, \ CH_2Cl_2).$

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.02 min, t_R (major) = 13.70 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.56 – 7.50 (m, 2H), 7.48 – 7.42 (m, 2H), 7.40 – 7.36 (m, 2H), 7.33 – 7.27 (m, 1H), 4.03 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.5, 132.2, 131.9, 128.7, 127.0, 126.9, 118.6, 111.1, 97.6, 81.1, 32.6, 24.1.

HRMS (ESI) m/z calcd. for C₁₇H₁₄N [M + H]⁺ 232.1121, found 232.1117.

An oven-dried Schlenk tube was sequentially charged with CuTc (3.8 mg, 0.02 mmol, 20 mol%), L*14 (18.0 mg, 0.030 mmol, 30 mol%), and Cs₂CO₃ (65 mg, 0.20 mmol, 2.0 equiv.). The tube was evacuated and back-filled with argon three times. Then, Et₂O (4.0 mL), S16 (13.0 mg, 0.10 mmol, 1.0 equiv.), and 1-phenylethyl bromide (\pm)-S1-1 (18.0 mg, 0.10 mmol, 1.0 equiv.) were added under argon atmosphere. The resulting mixture was stirred at room temperature for 2 h. Upon completion, two aliquots of the reaction mixture (0.2 mL) were taken out. One aliquot was quenched with H₂O and extracted with Et₂O. The combined organic layer was concentrated to afford crude product 134 together with remaining S1-1 for the determination of ee values. Meanwhile, the other aliquot was concentrated and the residue was analyzed by ¹H NMR with 4-bromo-*N*,*N*-dimethylaniline as an internal standard.

The procedure for the reaction with (*R*)-1-phenylethyl bromide³⁰ (*R*)-**S1-1** was the same with that for (\pm)-**S1-1** described above except that (*R*)-**S1-1** (18.0 mg, 75% ee, 0.10 mmol, 1.0 equiv.) was used instead of (\pm)-**S1-1**.

Reaction time	Yield of 134	ee of remaining S1-1	ee of 134
2 h	31%	75%	72%

Kinetic Studies

Experiment for determining the dependence of reaction rate on the concentration of alkyl bromide

An oven-dried Schlenk tube was sequentially charged with CuTc (1.9 mg, 0.010 mmol), L*14 (9.0 mg, 0.015 mmol), Cs₂CO₃ (65 mg, 0.20 mmol), and 4-bromo-*N*,*N*-dimethylaniline (20 mg, 0.10 mmol, as an internal standard). The tube was evacuated and back-filled with argon three times. Then, Et₂O (4.0 mL), phenylacetylene **S1-2** (0.11 mL, 0.10 g, 1.0 mmol), and 1-phenylpropyl bromide **S2** (19.9 – 59.7 mg, 0.10 – 0.30 mmol) were added under argon atmosphere. The resulting reaction mixture was stirred at room temperature. An aliquot of the reaction mixture (0.2 mL) was taken out at 6, 12, 18, 24, 30, and 36 min, respectively, and quenched with H₂O immediately. The reaction mixture was next extracted with Et₂O and the combined organic layer was concentrated. The residue was analyzed by ¹H NMR spectroscopy.

Supplementary Table 9	. The molar	· concentrations	of product 2	2 ([2]/M)	with	different	initial
concentrations of 1-pheny	lpropyl broi	mide (S2) at diff	erent time in	tervals			

Times (s)	0.025 M [S2]	0.0375 M [S2]	0.050 M [S2]	0.075 M [S2]
360	0.00042	0.00056	0.00052	0.00088
720	0.00098	0.00110	0.00103	0.00140
1080	0.00142	0.00230	0.00230	0.00290
1440	0.00158	0.00310	0.00350	0.00360
1800	0.00223	0.00450	0.00460	0.00680
2160				0.00910

Supplementary Table 10. The k_{in} values at different initial concentrations of 1-phenylpropyl bromide (S2)

[S2] (M)	<i>k</i> _{in} (Ms ⁻¹)
0.0250	$1.17 imes 10^{-6}$
0.0375	$2.74 imes 10^{-6}$
0.0500	2.95×10^{-6}
0.0750	$4.60 imes 10^{-6}$

Supplementary Fig. 10. Plot of k_{in} versus [S2] from the reactions with 0.025 M, 0.0375 M, 0.050 M, and 0.075 M of 1-phenylpropyl bromide S2.

Experiment for determining the dependence of reaction rate on the concentration of CuTc

An oven-dried Schlenk tube was sequentially charged with CuTc (x mmol, x = 0.0050 - 0.020, 5.0 - 20 mol%) and L*14 (1.5x mmol, 7.5 - 30 mol%), Cs₂CO₃ (65.0 mg, 0.20 mmol, 2.0 equiv.), and 4-bromo-*N*,*N*-dimethylaniline (20 mg, 0.10 mmol, as an internal standard). The tube was evacuated and back-filled with argon three times. Then, Et₂O (4.0 mL), phenylacetylene S1-2 (16 μ L, 15 mg, 0.15 mmol, 1.5 equiv.), and 1-phenylpropyl bromide S2 (20 mg, 0.10 mmol, 1.0 equiv.) were added under argon atmosphere. The resulting reaction mixture was stirred at room temperature. An aliquot of the reaction mixture (0.2 mL) was taken out at 12, 18, 24, 30, and 36 min, respectively, and quenched with H₂O immediately. The reaction mixture was extracted with Et₂O and the combined organic layer was concentrated. The residue was analyzed by ¹H NMR spectroscopy. (For the reaction with 0.0050 mmol CuTc, the reaction times were 20, 40, 60, and 80 min, respectively)

Supplementary Table 11. The molar concentrations of product 2 ([2]/M) in with difference 0.00125 M initial concentration of CuTc/ligand at different time intervals

Reaction time (s)	0.00125 M [CuTc]		
1200	0.00034		

2400	0.00130
3600	0.00370
4800	0.00410

Supplementary Table 12. The molar concentrations of product 2 ([2]/M) with different initial concentrations of CuTc at different time intervals

Reaction time (s)	0.0025 M [CuTc]	0.00375 M [CuTc]	0.0050 M [CuTc]
720	0.00054	0.00105	0.00105
1080	0.00093	0.00190	0.00210
1440	0.00165	0.00300	0.00310
1800	0.00220	0.00350	0.00420
2160	0.00290	0.00430	

Supplementary Table 13. The	k_{in} values at c	different initial	concentrations	of CuTc
-----------------------------	----------------------	-------------------	----------------	---------

[CuTc] (M)	$k_{\rm in}~({\rm Ms}^{-1})$
0.00125	$1.14 imes10^{-6}$
0.00250	$1.66 imes 10^{-6}$
0.00375	$2.25 imes10^{-6}$
0.00500	$2.90 imes10^{-6}$

Supplementary Fig. 11. Plot of k_{in} versus [CuTc] from the reactions with 0.00125 M, 0.00250 M, 0.00375 M, and 0.00500 M of CuTc.

Experiment for determining the dependence of reaction rate on the concentration of alkyne

An oven-dried Schlenk tube was sequentially charged with CuTc (1.9 mg, 0.010 mmol, 0.10 equiv.), L*14 (9.0 mg, 0.015 mmol, 0.15 equiv.), Cs_2CO_3 (65 mg, 0.20 mmol, 2.0 equiv.), and 4-bromo-*N*,*N*-dimethylaniline (20 mg, 0.10 mmol, as an internal standard). The tube was evacuated and back-filled with argon three times. Then, Et₂O (4.0 mL), phenylacetylene **S1-2** (0.050 mmol to 0.30 mmol), and 1-phenylpropyl bromide **S2** (0.20 g, 1.0 mmol, 1.0 equiv.) were added under argon atmosphere. An aliquot of the reaction mixture (0.2 mL) was taken out at 12, 18, 24, 30, and 36 min, respectively, and quenched with H₂O immediately. The reaction mixture was extracted with Et₂O and the combined organic layer was concentrated. The residue was analyzed by ¹H NMR spectroscopy. (For the reaction with 0.050 mmol phenylacetylene **S1-2**, the reaction times were 10, 20, 30, 40, 50, and 60 min, respectively)

Supplementary Table 14. The molar concentrations of product **2** (**[2**]/M) with 0.0125 M initial concentration of phenylacetylene **S1-2** at different time intervals

Reaction times (s)	0.0125 M [S1-2]
600	0.00078
1200	0.00104
1800	0.00160
2400	0.00200
3000	0.00220
3600	0.00240

Supplementary Table 15. The molar concentrations of product 2 ([2]/M) with different initial concentrations of phenylacetylene S1-2 at different time intervals

Reaction time (s)	0.0250 M [S1-2]	0.0375 M [S1-2]	0.00561 M [S1-2]	0.0750 M [S1-2]
720	0.00047	0.00105	0.00084	0.00087
1080	0.00101	0.00180	0.00130	0.00150
1440	0.00170	0.00250	0.00170	0.00230
1800	0.00230	0.00370	0.00270	0.00310
2160	0.00300	0.00450	0.00410	0.00370

Supplementary Table 16. The k_{in} value of product in different concentration of CuTc

[S1-2] (M)	$k_{\rm in}~({\rm Ms}^{-1})$
0.0125	$0.57 imes10^{-6}$
0.0250	$1.76 imes 10^{-6}$
0.0375	$2.44 imes 10^{-6}$

Supplementary Fig. 12. Plot of k_{in} versus [S1-2] from the reactions with 0.125 M, 0.025 M, 0.0375 M, 0.056 M, and 0.075 M of phenylacetylene S1-2.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (gpm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (gpm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

100 90 f1 (ppm)

70 60

0 190 180

130 120

-1

ò

60 50

40 30 20 10

0 -1

100 90 f1 (ppm)

0 190 180 170

150 140

160

130 120 110

0 -1 190 180 140 130 120 110 100 90 f1 (ppm)

HPLC spectra

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.129 BB	0.1995	264.39798	20.36222	49.6549
2	17.415 BB	0.2685	268.07257	15.29708	50.3451
Total	ls :		532.47055	35.65929	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Height Width Area Area [min] [min] # [mAU*s] [mAU] % 1 12.299 VV 0.2033 135.53612 10.17958 2.9601 0.3088 4443.17236 218.92792 97.0399 17.517 BB 2

Totals :

4578.70848 229.10750

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.784	VB	0.1978	3060.64697	238.29568	49.8762
2	17.003	BB	0.2900	3075.84229	164.62596	50.1238

Totals :

6136.48926 402.92165

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.992	VB	0.2023	245.09161	18.53197	3.2485
2	16.606	BB	0.2912	7299.59521	381.52097	96.7515
Total	ls :			7544.68683	400.05294	

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.647	BB	0.2434	1224.23206	77.01841	49.5488
2	15.857	BBA	0.3628	1246.52661	52.91837	50.4512

Totals :

2470.75867 129.93678

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] # % 0.2467 402.50595 10.570 BV 25.14823 1 1.5798 15.331 BV 0.4757 2.50764e4 2 804.44165 98.4202 Totals : 2.54789e4 829.58988

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.888	BB	0.2787	8593.72168	475.91660	50.3738
2	19.902	BB	0.1562	8466.16895	896.19354	49.6262
Tota]	ls :			1.70599e4	1372.11014	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.669	MM R	0.2662	17.26094	1.08052	2.3802
2	19.309	BB	0.0912	707.91315	126.76484	97.6198
Tota]	ls :			725.17408	127.84535	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.290	BB	0.1628	922.52661	87.63383	49.7885
2	10.927	BB	0.2149	930.36481	67.46291	50.2115

Totals : 1852	2.89142	155.09673
---------------	---------	-----------

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 1 8.778 BB 0.1276 151.30748 18.09315 1.9187 2 10.575 VB 0.1555 7734.43506 768.07104 98.0813 Totals : 7885.74254 786.16420

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.715	BB	0.7679	4.11060e4	850.49390	49.7388
2	34.380	BB	0.8143	4.15377e4	793.98975	50.2612

8.26437e4 1644.48364

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.553	BB	0.7284	557.75629	11.77877	1.5274
2	33.922	BB	0.8115	3.59579e4	695.11975	98.4726
Tota]	ls :			3.65156e4	706.89852	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.941	BB	0.4187	6493.12158	240.71945	49.9693
2	31.604	BB	0.5459	6501.08838	184.13448	50.0307
Tota]	ls :			1.29942e4	424.85393	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.020	BB	0.4095	933.37164	35.18318	1.6755
2	30.944	BB	0.6492	5.47731e4	1221.27087	98.3245
Tota]	ls :			5.57064e4	1256.45406	

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	35.410	BB	0.5249	5960.94629	177.01788	50.0406	
2	37.842	BB	0.5389	5951.26904	167.34419	49.9594	
Tota]	ls :			1.19122e4	344.36208		

DAD1 A, Sig=254,4 Ref=360,100 (D:\DATA\ZY...YF-224B-242E-OD3-1 2018-08-06 12-35-46\ZYF-242E-OD3-970310.D) mAU 140 -37.231 120 -100 -80 -60 -H₂N 40 -35.078 20 0 15 10 20 25 35 40 min 30

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] # % 1 35.078 BB 0.3249 44.51665 1.67032 1.3474 2 37.231 BB 0.5234 3259.37622 94.26747 98.6526 Totals : 3303.89287 95.93779

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.707	VB	0.5267	1.03530e4	299.92587	49.8251	
2	18.995	BB	0.6445	1.04257e4	244.01630	50.1749	

Totals :

2.07786e4 543.94217

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	16.845	BB	0.5055	138.54382	4.21442	1.9388
2	18.966	BB	0.6443	7007.41699	164.05574	98.0612
Total	ls :			7145.96082	168.27016	

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.660	BV	0.1917	9875.91406	801.61652	49.4401	
2	9.382	VB	0.2131	1.00996e4	731.20892	50.5599	

Totals :

1.99755e4 1532.82544

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.530	BB	0.1641	128.66992	12.29945	2.0138
2	9.195	BB	0.1886	6260.73535	519.36041	97.9862
Total	s :			6389.40527	531.65986	

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.616	BV	0.2541	1.10557e4	678.34991	49.3877	
2	11.545	VB	0.2829	1.13298e4	620.94147	50.6123	

Totals :

2.23855e4 1299.29138

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.494	BB	0.1990	70.79667	5.39749	1.6716
2	11.324	BB	0.2362	4164.48486	275.74173	98.3284
Total	ls :			4235.28153	281.13922	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.391	BB	0.6864	1.24058e4	272.87119	49.7185
2	15.858	BB	0.6009	1.25463e4	314.83203	50.2815

Totals :

2.49522e4 587.70322

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] % # [mAU*s] [mAU] 1 13.574 BB 0.5746 248.60632 6.49450 1.3432 2 15.779 BB 0.6264 1.82604e4 438.00558 98.6568 Totals : 1.85090e4 444.50009

Totals :

3.17764e4 2057.35626

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area [mAll*s]	Height [mAU]	Area %
					[]	
1	10.432	BB	0.1957	255.07809	20.15316	2.8271
2	11.488	BB	0.2255	8767.37891	603.60968	97.1729
Tota]	ls :			9022.45700	623.76284	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.532	BB	0.7503	1.42013e4	281.61133	50.0256
2	17.279	BB	0.7165	1.41868e4	296.32831	49.9744

Totals :

2.83881e4 577.93964

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 14.725
 BB
 0.7411
 386.64621
 7.81661
 1.5678

 2
 17.190
 BB
 0.7567
 2.42747e4
 477.81192
 98.4322

 Totals :
 2.46613e4
 485.62853

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.766	BV	0.2198	1.41134e4	981.53076	49.9526
2	11.688	VB	0.2435	1.41402e4	889.38660	50.0474

2.82536e4 1870.91736

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.432	BB	0.1957	255.07809	20.15316	2.8271
2	11.488	BB	0.2255	8767.37891	603.60968	97.1729
Tota]	ls :			9022.45700	623.76284	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.100	BV	0.3058	5201.87012	261.75916	50.5184
2	17.312	VB	0.4606	5095.11914	165.78093	49.4816

Totals :

1.02970e4 427.54008

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.703	BB	0.3317	44.80248	2.01245	1.4837
2	17.379	MM R	0.8416	2974.74976	58.91287	98.5163
Tota]	ls :			3019.55223	60.92532	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.533	BB	0.6888	1.60558e4	358.30255	50.3634
2	19.613	BB	0.1823	1.58241e4	1196.18945	49.6366

Totals :

3.18798e4 1554.49200

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.369	BB	0.6798	2195.66357	49.46752	2.1473
2	20.432	BB	0.8196	1.00057e5	1825.01074	97.8527
Tota]	ls :			1.02252e5	1874.47826	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.361	BB	0.9562	2.49682e4	396.73505	50.0192
2	44.938	MM R	1.2491	2.49491e4	332.89548	49.9808
Total	ls :			4.99173e4	729.63052	

```
Totals :
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.377	BB	0.9014	901.57147	14.57962	1.7510
2	44.137	MM R	1.4176	5.05867e4	594.73804	98.2490
Tota]	ls :			5.14882e4	609.31766	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.308	BB	0.3399	5357.65869	246.15463	49.8181
2	20.845	BB	0.3616	5396.77490	230.12372	50.1819

Totals :

1.07544e4 476.27835

DAD1 A, Sig=254,4 Ref=360,100 (D:\DATA\ZYF\ZYF-247C-222E 2018-07-31 09-40-41\ZYF-247C-IE-990104.D)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.315	BB	0.3324	1677.26501	78.79146	4.5529
2	20.772	BB	0.3716	3.51618e4	1456.74829	95.4471
Total	ls :			3.68391e4	1535.53975	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.738	MM R	0.7342	2.32970e4	528.85754	49.8738
2	32.643	MM R	0.8873	2.34149e4	439.81506	50.1262

Totals :

4.67118e4 968.67261

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.099	BB	0.4415	462.92401	13.86570	1.7602
2	32.491	BB	0.6409	2.58367e4	619.04327	98.2398
Total	ls :			2.62996e4	632.90898	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-				
1	29.328	MM	R	0.5631	1.64566e4	487.05371	50.0507
2	31.461	MM	R	0.5928	1.64233e4	461.71606	49.9493

```
Totals :
```

3.28799e4 948.76978

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.201	BV	0.4991	488.16226	15.26644	0.9912
2	31.133	MM R	0.6846	4.87633e4	1187.12793	99.0088
Total	ls :			4.92514e4	1202.39437	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	18.754	BV	0.3538	1.55617e4	662.97375	49.4436
2	22.606	VB	0.4353	1.59120e4	547.14362	50.5564
Tota]	ls :			3.14737e4	1210.11737	


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.442	BB	0.4168	5.23371e4	1868.56177	97.8485
2	22.308	MM R	0.5131	1150.80811	37.38110	2.1515

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.896	W	0.1448	4418.32617	457.16644	49.9387
2	8.491	VB	0.1507	4429.17041	442.85693	50.0613

8847.49658 900.02338

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.884	W	0.1785	93.61378	7.77233	1.8127
2	8.498	VB	0.1709	5070.62842	445.25797	98.1873
Total	s :			5164.24220	453.03029	

==== Shimadzu LabSolutions Analysis Report ====

Sample Name	: IzI-7-89-racemic AY3 100-0 06ml 50	min	Sample ID
Vial#	: 1-40	Injection Volume	: 3 uL
Date Acquired	: 2018/8/14 12:50:34	Acquired by	: System Administrator
Date Processed	: 2018/11/22 16:22:05	Modified by	: System Administrator
Data Filename	: D:\LZL\IzI-7-89-racemic AY3 100-0 (06ml 50 min.lcd	
Method Filename	: D:\LZL\AY3 100-0 06ml 50 min.lcm		
Batch Filename	:		

==== Shimadzu LabSolutions Analysis Report ====

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.423	BB	1.1557	1.61906e4	196.83044	49.8795
2	44.087	BB	1.3113	1.62688e4	147.67677	50.1205
Tota]	ls :			3.24593e4	344.50722	

DAD1 A, Sig=254,4 Ref=360,100 (D:\DATA\ZYF\ZYF-242F-215E-OJ3 2018-07-25 10-21-59\ZYF-242F-OJ3-980210.D)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.221	BB	1.1887	4.41599e4	508.72049	98.4446
2	44.529	BB	1.1343	697.72070	7.24030	1.5554
Tota]	ls :			4.48576e4	515.96079	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.427	BB	0.5476	1.11598e4	313.23969	50.0848
2	27.572	BB	0.7945	1.11220e4	213.24927	49.9152
Total	ls :			2.22818e4	526.48895	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.523	BB	0.3328	44.99253	1.63610	1.2364
2	27.612	BB	0.7352	3593.90259	70.92384	98.7636
Total	ls :			3638.89512	72.55993	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.431	BB	1.0686	7913.17285	89.05843	50.4011
2	43.320	BB	1.1777	7787.23535	79.02314	49.5989

Totals : 1.57004e4

DAD1 A, Sig=254,4 Ref=360,100 (D:\DATA\ZYF\ZYF-235B-247E-OJ3 2018-07-25 18-11-31\ZYF-247E-OJ3-990103.D)

168.08157

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.675	MM R	1.5154	3.13142e4	344.39029	98.7594
2	43.212	MM R	1.2402	393.35709	5.28621	1.2406
Tota]	ls :			3.17076e4	349.67650	

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-				
1	12.735	MM	R	0.3041	2778.11670	152.26492	50.0591
2	13.677	MM	R	0.3271	2771.55420	141.19966	49.9409

Totals :

5549.67090 293.46458

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 12.392 BV 0.3014 1.58896e4 815.07422 97.7355 2 13.454 VB 0.3341 368.15637 16.51166 2.2645 Totals : 1.62578e4 831.58588

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
19.871	BB	0.3835	2.15508e4	839.45325	50.1782
29.241	BB	0.5765	2.13978e4	561.61377	49.8218
	RetTime [min] 19.871 29.241	RetTime Type [min] 19.871 BB 29.241 BB	RetTime Type Width [min] [min] 19.871 BB 0.3835 29.241 BB 0.5765	RetTime Type Width Area [min] [min] [mAU*s] 19.871 BB 0.3835 2.15508e4 29.241 BB 0.5765 2.13978e4	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 19.871 BB 0.3835 2.15508e4 839.45325 29.241 BB 0.5765 2.13978e4 561.61377

Totals :

4.29486e4 1401.06702

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.704	BB	0.4147	608.64178	22.28293	1.7184
2	29.055	BB	0.6019	3.48101e4	875.39990	98.2816
Tota]	ls :			3.54188e4	897.68284	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.606	BB	0.5466	2.01726e4	575.92828	50.0468
2	35.215	BB	0.5957	2.01348e4	524.71289	49.9532

Totals :

4.03074e4 1100.64117

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.678	BB	0.5311	2.66145e4	774.03754	98.1579
2	35.491	BB	0.5445	499.46088	14.40484	1.8421
Tota]	ls :			2.71140e4	788.44238	

Totals :

1.33409e4 325.88338

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.852	BB	0.6415	3.56214e4	828.75372	96.8548
2	32.118	BV	0.5275	1156.73889	27.12849	3.1452
Tota]	ls :			3.67781e4	855.88221	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.243	BV	0.2504	4515.66309	260.29944	50.0169
2	10.595	BB	0.3272	4512.60303	198.51224	49.9831

Totals :

9028.26611 458.81168

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.091	BV	0.2587	3.56787e4	1975.26855	98.5700
2	10.382	W	0.3114	517.60181	23.45664	1.4300
Total	ls :			3.61963e4	1998.72519	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.995	BB	0.6663	2090.99023	45.14823	50.1121
2	37.534	BB	0.8265	2081.63281	36.32701	49.8879

Totals :

4172.62305 81.47523

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.906	BB	0.6798	2180.35547	42.69677	1.8941
2	40.597	MM R	1.1406	1.12932e5	1650.13416	98.1059
Tota]	ls :			1.15112e5	1692.83093	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.071	BB	0.5068	1.16266e4	336.71359	49.9456
2	32.322	BV	0.6515	1.16520e4	262.66809	50.0544

Totals :

2.32786e4 599.38168

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	29.137	BB	0.4667	568,98859	14.99488	1.8931
2	32.455	VB	0.6689	2.94863e4	635.95776	98.1069
Tota]	ls :			3.00553e4	650.95265	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.974	BV	0.2704	8578.38379	484.86606	49.9233
2	13.173	VB	0.2964	8604.74805	443.42398	50.0767

Totals :

1.71831e4 928.29004

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.857	BB	0.2353	243.06520	15.81790	1.6421
2	12.840	BB	0.2802	1.45587e4	800.34314	98.3579
Tota]	ls :			1.48017e4	816.16104	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.418	W	0.3918	1.92898e4	745.61151	49.7638
2	16.682	FM R	0.4395	1.94729e4	738.36646	50.2362

Totals :

3.87627e4 1483.97797

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.501	BB	0.4038	9210.27051	353.68369	97.9846
2	17.035	MM R	0.4483	189.44368	7.04302	2.0154
Total	ls :			9399.71419	360.72670	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.982	BB	0.4219	3054.34082	108.67959	49.7819
2	26.577	BB	0.5961	3081.09985	77.79543	50.2181

Totals :

6135.44067 186.47502

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.978	MM R	0.3700	446.15106	20.09427	1.0309
2	26.489	BB	0.6375	4.28300e4	1016.56030	98.9691
Total	le •			4 3276104	1036 65457	

Signal 2: DAD1 B, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.226	BV	0.4403	2.95642e4	1037.87671	49.8504
2	24.971	VB	0.5057	2.97416e4	918.63763	50.1496

Totals :

5.93058e4 1956.51434

Signal 2: DAD1 B, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.221	BB	0.4468	512.88031	17.87194	1.3513
2	24.848	BB	0.4919	3.74429e4	1187.43506	98.6487
Tota]	ls :			3.79558e4	1205.30700	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.146	BB	0.3567	3547.48193	150.65921	50.0770
2	20.959	BBA	0.5768	3536.57666	90.71382	49.9230

Totals :

7084.05859 241.37303

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.832	BB	0.3681	169.98508	6.97980	1.4048
2	22.156	BBA	0.6585	1.19301e4	265.38165	98.5952
Tota]	ls :			1.21000e4	272.36146	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.598	BB	0.3061	3367.44287	172.20221	49.8659
2	28.640	BB	0.4014	3385.55469	131.91463	50.1341

Totals :

6752.99756 304.11684

Signal 3: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.128	VB	0.4530	373.95935	13.26077	1.4734
2	29.060	BB	0.6296	2.50061e4	629.31921	98.5266
Tota]	ls :			2.53800e4	642,57998	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	34.251	MM R	2.9729	6672.92529	37.40999	49.7914
2	47.118	MM R	3.3674	6728.82813	33.30407	50.2086

Totals :

1.34018e4 70.71405

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.967	MM R	2.7888	696.95215	4.16515	1.2720
2	44.030	MM R	3.5534	5.40954e4	253.72458	98.7280
Tota]	ls :			5.47923e4	257.88973	

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.924	BV	0.5589	3.24391e4	886.42572	49.8960
2	16.897	VB	0.6741	3.25744e4	750.87933	50.1040

Totals :

6.50135e4 1637.30505

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.770	BB	0.4580	926.71851	29.53647	1.6700
2	17.707	BB	0.6775	5.45639e4	1220.71472	98.3300
Tota]	ls :			5.54907e4	1250.25119	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.483	BB	0.8992	1.18750e4	196.46379	49.8476
2	35.500	BB	0.8719	1.19476e4	202.62947	50.1524
Total	s •			2.38226e4	399,09326	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.115	BB	0.7071	492.66336	8.29301	1.0248
2	34.752	BB	0.9350	4.75801e4	759.34204	98.9752
Total	ls :			4.80728e4	767.63505	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.035	BB	0.2658	8966.57813	493.94589	50.0661
2	15.293	BV	0.3378	8942.89648	389.58029	49.9339

Totals :

1.79095e4 883.52618

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.244	W	0.3077	4.73083e4	2077.49316	97.8243
2	15.719	W	0.3494	1052.15979	43.94050	2.1757
Total	ls :			4.83604e4	2121.43367	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.314	BV	0.3167	2.45554e4	972.11029	49.9843
2	23.536	MM R	1.6456	2.45708e4	248.84756	50.0157

Totals :

4.91262e4 1220.95786

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 16.702 BB 0.2596 5.32252e4 2507.62939 98.0054 2 22.805 MM R 1.4143 1083.23572 12.76550 1.9946 Totals : 5.43084e4 2520.39490

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	34.055	BB	0.8362	4217.30127	76.85201	50.1884	
2	44.530	BB	1.0097	4185.63330	62.47102	49.8116	

8402.93457 139.32303

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	34.027	BB	0.8641	1.78390e4	320.13788	98.8404
2	44.667	BB	0.7036	209.29718	3.54072	1.1596
Tota]	ls :			1.80483e4	323.67860	

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.893	BB	0.6337	2.77644e4	680.97668	50.0291
2	30.889	BB	0.6817	2.77320e4	632.25671	49.9709

Totals :

5.54964e4 1313.23340

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.510	BB	0.7480	8.70670e4	1853.46350	98.3176
2	30.443	BB	0.6882	1489.87512	33.54101	1.6824
Tota]	ls :			8.85569e4	1887.00451	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.254	BV	0.2244	1.15893e4	812.61871	49.8796
2	17.407	W	0.2507	1.16453e4	712.29321	50.1204

Totals :

2.32346e4 1524.91193

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.237	W	0.2105	773.69470	54.88098	1.9216
2	17.355	BV	0.2860	3.94884e4	1872.67419	98.0784
Total	s :			4.02621e4	1927.55518	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-1-				
1	26.549	MM	R	0.5038	6576.79785	217.57635	50.1743
2	32.005	MM	R	0.4955	6531.11377	219.66495	49.8257

```
Totals :
```

1.31079e4 437.24130

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.526	BB	0.3374	1079.75671	38.95827	1.7462
2	30.943	W	0.6010	6.07539e4	1310.22034	98.2538
Total	ls :			6.18336e4	1349.17860	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.714	BV	0.4184	7.49801e4	2799.94263	49.5595
2	23.328	BB	0.5570	7.63130e4	2135.12793	50.4405

Totals :

1.51293e5 4935.07056

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	18.131	BB	0.3964	3.80441e4	1497.36194	97.4156
2	23.431	MM R	0.5122	1009.30011	32.84372	2.5844
Total	s :			3,90534e4	1530,20565	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.146	BV	0.5422	7884.64355	223.16814	49.9327
2	27.067	VB	0.5966	7905.88721	204.71608	50.0673

Totals :

427.88422

1.57905e4

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.670	BB	0.4709	80.24489	2.52385	1.3903
2	26.483	BB	0.5550	5691.55957	158.49454	98.6097
Total	s:			5771.80446	161,01839	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.876	BV	0.9034	1031.06531	17.60242	50.0711
2	43.712	VB	1.0167	1028.13843	15.68589	49.9289
Tota]	ls :			2059.20374	33.28831	

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	38.824	BB	0.8935	84.85453	1.44420	2.0043
2	43.461	BB	1.0603	4148.79688	60.17645	97.9957
Tota]	ls :			4233.65141	61.62065	

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.850	BV	0.1865	4421.74561	367.10599	49.3257
2	12.493	W	0.1997	4542.64746	349.33694	50.6743

Totals :

8964.39307 716.44293

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.879	BV	0.1801	651.14355	55.81726	2.5655
2	12.517	W	0.2302	2.47293e4	1714.79480	97.4345
Tota]	ls :			2.53805e4	1770.61206	

DAD1 A, Sig=254,4 Ref=360,100 (D:\CHEM32\1\DATA\WFL\YF-327D-od3-9901-03.D)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.524	BV	0.8232	6487.49854	123.03183	49.7340
2	21.149	VB	0.8227	6556.90332	122.83845	50.2660
Tota	ls :			1.30444e4	245.87028	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	18.489	BV	0.7350	165.46567	3.26630	3.6071
2	21.053	VB	0.7714	4421.75586	89.03152	96.3929
Total	.s :			4587.22153	92.29782	

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	63.093	BB	1.1233	7697.03076	103.05814	50.3305
2	67.801	BB	1.4719	7595.93750	74.35125	49.6695
Total	ls :			1.52930e4	177.40939	

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	63.558	BB	0.9025	379.83737	5.04419	2.2728
2	67.303	BB	1.4738	1.63328e4	157.75995	97.7272
Tota]	ls :			1.67126e4	162.80414	

Signal 3: DAD1 C, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.915	W	0.3614	529.38959	22.43040	26.6730
2	19.816	VB	0.3901	471.39404	18.44934	23.7510
3	24.644	BB	0.4656	507.72324	16.65811	25.5814
4	27.011	BB	0.4987	476.23013	14.36609	23.9946

Totals :

1984.73700 71.90393

Signal 3: DAD1 C, Sig=240,4 Ref=360,100

Peak	RetTime	Тур	е	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-1				
1	18.961	MM	R	0.4005	4415.10303	183.72699	95.0861
2	19.748	MM	R	0.1342	8.07137	7.39303e-1	0.1738
3	24.704	BB		0.4383	109.25283	3.59805	2.3529
4	27.190	BB		0.4711	110.84118	3.34058	2.3871

Totals :

4643.26840 191.40492

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.267	BV	0.5480	849.17456	24.04538	23.1842
2	29.592	VB	0.5206	983.61786	29.23291	26.8548
3	31.082	BB	0.5536	838.41919	23.20208	22.8905
4	47.625	BB	0.8495	991.52002	17.91926	27.0705
Total	s:			3662.73163	94.39963	

Totals :

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.226	BB	0.4288	109.24695	4.18188	1.9969
2	29.152	BB	0.5614	135.96524	3.72877	2.4853
3	31.037	BB	0.6233	139.98323	3.33750	2.5587
4	46.894	MM R	1.0052	5085.59180	84.32143	92.9590
Tota]	s :			5470.78722	95.56959	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

7029.23242 579.35059

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 9.039 VB R 0.1448 642.49323 65.93994 1.9333 2 13.815 BB 0.3682 3.25905e4 1347.44873 98.0667

Totals : 3.32329e4 1413.38867

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.630	BV	0.1405	2800.01538	306.65811	49.2534	
2	14.322	BB	0.2508	2884.90625	176.43123	50.7466	

5684.92163 483.08934

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 8.834 BV 0.1421 71.05782 7.67225 1.8168 2 14.509 BB 0.2480 3840.02075 235.75974 98.1832

Totals :

3911.07857 243.43198

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.824	VV	0.1480	6407.71045	667.49701	49.0971
2	15.032	BV	0.2782	6643.39746	361.78152	50.9029

1.30511e4 1029.27853

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.906	BB	0.1460	34.94700	3.63885	2.0489
2	15.150	BB	0.2491	1670.71729	103.07497	97.9511

Totals : 1705.66428 106.71382

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.845	BV	0.4654	5199.83887	170.69756	49.8204
2	14.353	VB	0.6053	5237.32715	131.31052	50.1796

Totals :

1.04372e4 302.00807

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Ty	/pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.761 BV	0.4419	3719.47998	128.41241	96.1026
2	14.372 VE	0.7014	150.84100	3.16855	3.8974
Tota]	ls :		3870.32098	131.58096	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.094	BV	0.4107	1549.11328	57.07290	49.8971
2	27.250	VBA	0.1273	1555.50476	175.67784	50.1029

Totals :

3104.61804 232.75074

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.124	BV	0.4026	103.57114	3.89071	2.7995
2	27.235	VBA	0.1764	3596.06128	321.63211	97.2005
Tota]	ls :			3699.63242	325.52282	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.682	BV	0.0910	2748.42749	478.47278	49.6870
2	6.912	VV	0.1246	2783.05933	350.52350	50.3130

Totals :

5531.48682 828.99628

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.653	VB	0.1123	453.27383	62.70433	2.6662
2	6.809	BB	0.1621	1.65474e4	1634.02283	97.3338
Total	s :			1.70007e4	1696.72715	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.156	BV	0.1390	4228.69922	460.92819	49.3894	
2	11.809	BV	0.2013	4333.25830	325.59735	50.6106	

8561.95752 786.52554

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] # [min] [mAU] % 8.180 BV 0.1464 20.03817 1 2.08067 1.9417 2 11.855 BB 0.1929 1011.95392 80.34559 98.0583 Totals : 1031.99209 82.42625

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.123	BV	0.2116	1172.66895	83.61730	49.4600
2	10.725	VB	0.2492	1198.27429	73.10712	50.5400

Totals :

2370.94324 156.72442

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.144	BB	0.2064	26.47406	1.97528	0.8670
2	10.674	BB	0.2392	3027.19824	194.92703	99.1330

Totals : 3053.67230 196.90231

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	15.686	MF R	0.2487	3874.16528	259.59927	49.3543	
2	16.259	FM R	0.2724	3975.53979	243.22359	50.6457	

7849.70508 502.82286

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.549	BV	0.2203	132.32033	9.39441	2.0006
2	16.035	VB	0.2506	6481.84570	392.64679	97.9994
Tota]	ls :			6614.16603	402.04120	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.186	BV	0.1437	1597.34106	166.84236	49.4560
2	5.683	VB	0.1693	1632.48413	145.08865	50.5440

3229.82520 311.93102

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.145	BV	0.1437	3211.51978	335.30856	97.8519
2	5.617	VB	0.1825	70.49967	5.39355	2.1481

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.195	VB	0.1489	1996.21326	206.22379	49.5912
2	10.588	BV	0.1700	2029.12329	182.10483	50.4088

4025.33655 388.32861

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.222	MM R	0.1590	45.31701	4.75155	1.8313
2	10.571	MM R	0.1855	2429.30908	218.25255	98.1687

Totals : 2474.62609 223.00410

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.715	BV	0.1438	2810.19873	298.69604	49.5390	
2	11.625	BV	0.1914	2862.50659	229.60918	50.4610	

Totals :

5672.70532 528.30522

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.617	BB	0.1471	43.20060	4.53612	1.0121
2	11.406	BV	0.1908	4225.07422	340.38824	98.9879
Total	ls :			4268.27482	344.92436	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
11.715	BB	0.1782	332.11545	28.44024	49.7807
13.663	BB	0.2013	335.04193	25.82912	50.2193
	RetTime [min] 11.715 13.663	RetTime Type [min] 11.715 BB 13.663 BB	RetTime Type Width [min] [min] 11.715 BB 0.1782 13.663 BB 0.2013	RetTime TypeWidthArea[min][min][mAU*s]11.715BB0.1782332.1154513.663BB0.2013335.04193	RetTime TypeWidthAreaHeight[min][min][mAU*s][mAU]11.715BB0.1782332.1154528.4402413.663BB0.2013335.0419325.82912

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.618	BB	0.1762	103.25012	9.11395	2.0168
2	13.430	BB	0.2068	5016.31787	373.16656	97.9832
Tota]	ls :			5119.56799	382.28052	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.526	MM R	0.2040	1.76476e4	1441.89697	48.5799
2	21.361	MM R	0.5239	1.86793e4	594.21759	51.4201

Totals :

3.63269e4 2036.11456

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.613	BV	0.1621	111.89137	10.68883	1.9971
2	21.672	BB	0.3687	5490.84375	223.45345	98.0029
Tota]	ls :			5602,73512	234,14227	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.338	MM R	0.1158	1055.06970	151.88887	49.9253
2	7.955	BV	0.1481	1058.22754	106.38145	50.0747

Totals :

2113.29724 258.27032

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.175	BV	0.1055	2944.85498	421.80933	95.9238
2	7.746	MM R	0.1609	125.13839	12.96452	4.0762
Total	s :			3069.99337	434.77385	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.393	VB	0.2042	3606.80981	269.40469	49.9173
2	9.996	BV	0.2466	3618.76685	223.82932	50.0827

Totals :

7225.57666 493.23401

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.556	MM R	0.2325	109.63827	7.85782	6.9051
2	10.318	MM R	0.2677	1478.14124	92.04308	93.0949
Tota]	ls:			1587.77950	99.90089	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.972	BB	0.1615	6263.23730	582.44818	49.7253
2	11.513	VV	0.2389	6332.43457	395.29041	50.2747

Totals :

1.25957e4 977.73859

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.930	VV	0.1707	196.86623	17.30227	3.9851
2	11.482	BB	0.2474	4743.17627	289.06384	96.0149
Tota]	ls :			4940.04250	306.36611	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	9.068	BV	0.2181	1.41108e4	991.26245	49.5502	
2	17.906	BV	0.3450	1.43670e4	642.23199	50.4498	

Totals :

2.84777e4 1633.49445

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.160	BB	0.1613	762.71191	73.34933	3.9893
2	18.185	BB	0.3547	1.83560e4	797.00592	96.0107
Total	ls :			1.91187e4	870.35526	


```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.026	BV	0.2099	1.45434e4	1022.50031	49.5945	
2	14.967	MM R	0.3623	1.47812e4	679.99146	50.4055	

Totals :

2.93247e4 1702.49176

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.974	BB	0.1996	189.63519	13.86204	3.2472
2	14.984	BV	0.3145	5650.36328	267.48099	96.7528
Tota]	s:			5839.99847	281.34303	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.162	MM R	0.6265	4036.53271	107.38785	49.3428
2	18.801	MM R	0.4414	4144.05762	156.46883	50.6572

Totals :

8180.59033 263.85667

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.287	BV	0.4931	169.26418	4.92276	2.8272
2	18.516	VB	0.4645	5817.77100	189.33855	97.1728
Total	ls :			5987.03517	194.26130	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.805	VV	0.1371	6595.20313	746.07758	50.1534
2	9.818	BB	0.1622	6554.85986	625.85046	49.8466

1.31501e4 1371.92804

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.799	MF	0.1363	86.99709	10.63763	2.2940
2	9.805	BB	0.1587	3705.33228	358.25650	97.7060
Total	s :			3792.32937	368.89413	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
	-				
14.967	BV	0.2327	2763.48169	184.58707	49.5310
16.534	VV	0.2556	2815.81128	169.69910	50.4690
	RetTime [min] 14.967 16.534	RetTime Type [min] - 14.967 BV 16.534 VV	RetTime Type Width [min] [min] 14.967 BV 0.2327 16.534 VV 0.2556	RetTime Type Width Area [min] [mAU*s] 14.967 BV 0.2327 2763.48169 16.534 VV 0.2556 2815.81128	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 14.967 BV 0.2327 2763.48169 184.58707 16.534 VV 0.2556 2815.81128 169.69910

5579.29297 354.28616

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.889	BV	0.2349	210.04489	13.69742	2.5125
2	16.417	VV	0.2573	8149.89844	491.97894	97.4875
Tota]	ls :			8359.94333	505.67636	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.039	BV	0.1784	2291.22583	198.92213	49.6302
2	10.325	VV	0.2047	2325.37402	175.32954	50.3698

Totals :

4616.59985 374.25168

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.023	VB	0.1764	189.19994	16.66546	9.9106
2	10.324	BB	0.2017	1719.86365	132.28712	90.0894
Tota]	ls :			1909.06358	148.95259	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.197	BB	0.2324	9327.83398	617.03815	49.6820
2	10.676	BB	0.2802	9447.23145	519.44867	50.3180

Totals :

1.87751e4 1136.48682

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.152	BB	0.2288	5283.96582	356.81369	97.8010
2	10.655	BB	0.2741	118.80792	6.59794	2.1990
Tota]	ls :			5402.77374	363.41163	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.974	MM R	0.3610	1.23580e4	570.50580	49.6302
2	17.290	MM R	0.3928	1.25421e4	532.14966	50.3698

Totals :

2.49001e4 1102.65546

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.068	BB	0.2569	328.00027	19.43730	1.7370
2	16.954	BV	0.3750	1.85555e4	728.83557	98.2630
Tota]	ls :			1.88835e4	748.27287	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.068	BB	0.3303	2092.41455	96.76926	50.0383
2	20.712	BB	0.3619	2089.20923	88.35926	49.9617

Totals :

4181.62378 185.12852

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.726	BB	0.3659	2.58934e4	1071.63269	98.7026
2	20.466	BB	0.3590	340.34872	14.54276	1.2974

```
Totals :
```

2.62338e4 1086.17545

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.061	BB	0.1385	450.21799	50.25706	50.1925
2	15.325	BB	0.2553	446.76471	27.24672	49.8075

Totals :

896.98270 77.50378

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	9.244 VB	0.1472	134.76401	14.14410	2.1948
2	15.761 BB	0.2744	6005.36963	332.95587	97.8052
Total	ls :		6140.13364	347.09998	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.701	BV	0.1862	1.09750e4	900.47235	49.1974
2	13.581	BV	0.2556	1.13331e4	662.50806	50.8026

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.822	BV	0.1683	175.41963	15.95358	3.4599
2	13.687	BB	0.2319	4894.71094	320.93167	96.5401
Total	ls :			5070.13057	336.88525	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.810	BB	0.1399	634.85712	69.97263	49.4331
2	11.055	BB	0.1719	649.41779	57.42860	50.5669

Totals :

1284.27490 127.40123

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.658	BV	0.1390	1385.34070	153.88037	97.5293
2	10.848	VB	0.1710	35.09517	3.17505	2.4707

Totals :

1420.43587 157.05542

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.843	BB	0.0976	1.21210e4	1975.27771	49.3886
2	5.467	BV	0.1046	1.24211e4	1893.02734	50.6114

2.45421e4 3868.30505

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.894	BB	0.0957	80.47669	12.41076	1.8394
2	5.547	BV	0.0986	4294.78223	671.68512	98.1606
Total	s :			4375.25892	684.09588	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.177	BB	0.3426	3046.11914	133.29784	49.9921
2	14.888	BB	0.4003	3047.08716	115.32556	50.0079

Totals :

6093.20630 248.62340

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.957	BB	0.3268	277.64099	11.96029	4.9473
2	14.663	BB	0.4011	5334.34863	201.35074	95.0527
Total	ls :			5611.98962	213.31103	

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.897	BB	0.1302	652.20728	77.49670	50.0211
2	8.616	BB	0.1442	651.65643	70.25856	49.9789

Totals :

1303.86371 147.75526

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.838	VV	0.1336	1285.73230	147.62207	3.7954
2	8.475	VB	0.2226	3.25906e4	2427.29565	96.2046
Total	s :			3.38763e4	2574.91772	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.940	BV	0.2088	4625.80273	339.76202	49.3917
2	24.161	MM R	0.4852	4739.73682	162.79475	50.6083

Totals :

9365.53955 502.55678

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.934 VB	0.1921	328.11060	26.56098	1.9128
2	23.050 BV	0.5129	1.68253e4	466.42291	98.0872
Tota]	ls :		1.71534e4	492.98389	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.531	BV	0.2087	2796.47754	205.63589	49.7589
2	16.697	BV	0.3149	2823.57275	136.74744	50.2411

Totals :

5620.05029 342.38333

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] # [mAU] % 1 12.811 BB 0.2042 43.58640 3.29702 2.7493 2 16.940 BV 0.2954 1541.77209 79.78614 97.2507 Totals : 1585.35849 83.08316

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.291	BB	0.1275	1650.12219	197.51003	49.7205
2	9.240	BV	0.1417	1668.67407	180.69342	50.2795

Totals :

3318.79626 378.20345

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.226	BB	0.1296	3635.26807	434.59790	97.3157
2	9.185	BV	0.1354	100.27347	11.54084	2.6843
Total	s :			3735.54153	446.13874	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.910	BV	0.1630	1.43477e4	1361.10132	50.0713
2	9.733	VV	0.1792	1.43068e4	1253.41797	49.9287

Totals :

2.86545e4 2614.51929

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.804	VB	0.1536	1503.58728	151.75322	95.1781
2	9.631	BB	0.1669	76.17422	7.11587	4.8219

Totals :

1579.76150 158.86909

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.379	BB	0.4329	5190.33008	183.00511	49.8764
2	20.320	BV	0.5185	5216.05176	154.25903	50.1236

Totals : 1.04064e4 337.26414

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.449	BB	0.4418	458.36240	15.73718	3.2650
2	20.284	BV	0.5362	1.35805e4	388.11813	96.7350
Tota]	ls :			1.40388e4	403.85532	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.777	MM R	0.1601	1.65449e4	1722.80652	49.2560
2	9.302	MM R	0.1949	1.70447e4	1457.61633	50.7440

Totals: 3.35896e4 3180.42285

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] # % 0.1305 596.22595 7.819 BB 70.63197 1 5.4423 2 9.383 BB 0.1720 1.03592e4 944.25189 94.5577 Totals : 1.09554e4 1014.88386

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.926	BB	0.3470	2360.33618	104.70464	49.8958	
2	18.979	BV	0.4075	2370.19336	89.93477	50.1042	

Totals :

4730.52954 194.63940

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.971	BB	0.3367	359.10321	16.58188	7.8249
2	18.843	BV	0.4105	4230.14307	156.94539	92.1751

Totals :

4589.24628 173.52727

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.468	VV	0.1848	4341.11328	364.85193	49.0781
2	19.607	BB	0.3487	4504.19482	192.67992	50.9219

Totals :

8845.30811 557.53185

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 11.516 VB 0.1798 207.21509 17.79824 1.7977 19.360 BB 412.07855 2 0.3985 1.13193e4 98.2023 Totals : 1.15265e4 429.87680

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.408	BV	0.1055	1380.25549	202.63139	49.6513
2	17.687	MM R	0.3054	1399.64307	76.38766	50.3487

Totals :

2779.89856 279.01906

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.359	BB	0.1063	3227.74927	469 .01 553	97.2253
2	17.387	BB	0.2707	92.11673	5.30189	2.7747
Tota]	ls :			3319.86600	474.31743	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.825	BV	0.0782	8157.84814	1635.51770	49.4101
2	5.086	VB	0.0837	8352.65039	1580.15552	50.5899

1.65105e4 3215.67322

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.816	BV	0.0821	136.40704	25.61650	5.1663
2	5.076	VV	0.0804	2503.90503	483.93454	94.8337
Total	s :			2640.31207	509.55104	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.488	BV	0.8596	5265.90967	90.39780	48.9067
2	23.179	VBA	1.0297	5501.34521	77.35395	51.0933
Tota]	s:			1.07673e4	167.75175	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.329	MM	0.9338	2960.61768	52.84401	95.6588
2	23.584	MM	0.9753	134.36031	2.29604	4.3412
Tota]	ls :			3094.97798	55.14005	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.636	BB	0.2594	3851.31396	229.92250	49.9683
2	19.906	BB	0.2952	3856.20557	201.54102	50.0317

7707.51953 431.46352

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.730	BB	0.2610	151.05272	8.94683	1.8717
2	19.992	BB	0.2972	7919.12012	413.98062	98.1283
Tota]	ls :			8070.17284	422.92745	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.024	BB	0.1538	3339.50024	314.63614	50.2950	
2	9.108	BB	0.1728	3300.32324	277.31552	49.7050	

6639.82349 591.95166

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.014	VV	0.1600	51.00438	4.64731	1.4455
2	9.096	BB	0.1775	3477.59863	282.75851	98.5545
Total	s :			3528.60301	287.40582	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.372	VB	0.1788	6325.94141	524.04596	50.0854
2	9.188	BB	0.1955	6304.37988	479.23672	49.9146

Totals :

1.26303e4 1003.28268

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.407	BV	0.1617	50.17692	4.44553	3.2750
2	9.235	VB	0.1914	1481.93958	114.17977	96.7250
Total	s :			1532.11650	118.62530	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.603	BB	0.6468	4247.18408	99.33396	50.0965
2	30.550	BB	0.9090	4230.81787	67.52043	49.9035

Totals :

8478.00195 166.85439

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.465	BB	0.9670	1215.83826	16.98841	93.3530
2	31.048	MM	1.3253	86.57066	1.08871	6.6470
Tota]	ls :			1302.40892	18.07712	

Totals :

2678.88410 97.55705

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.041	VV	0.1960	1.29174e4	1032.18884	49.8887
2	11.967	VB	0.2080	1.29750e4	982.76196	50.1113

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.034	BB	0.1690	244.14145	22.42584	4.1524
2	11.953	BB	0.1906	5635.44629	454.75473	95.8476
Tota]	ls :			5879.58774	477.18057	

5258.16342 292.82058

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.475	VV	0.2759	3583.96753	201.12248	49.9480
2	18.930	MM R	0.3926	3591.43408	152.47926	50.0520

7175.40161 353.60175

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.048	MM R	0.2786	62.86724	3.76037	5.0686
2	18.301	BB	0.3614	1177.45117	50.62039	94.9314
Tota]	ls :			1240.31842	54.38076	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.110	BB	0.1197	4252.19824	518.57141	49.4286
2	7.240	BB	0.1463	4350.50635	436.45572	50.5714

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.125	BV	0.2460	2534.44775	154.03815	49.5753
2	13.681	MM R	0.3476	2577.87183	123.61256	50.4247

Totals :

5112.31958 277.65070

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	11.167	MM R	0.2757	15.74029	9.51566e-1	1.5755
2	13.729	BB	0.3180	983.30457	46.26448	98.4245
Tota]	ls :			999.04486	47.21604	

Totals :

2794.18143 105.35046

95.9021

8805.43652 409.60016

1.10651e4 390.64268

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.777 BV	0.2370	1886.52405	111.70656	3.9817
2	21.281 VB	0.8778	4.54928e4	749.83270	96.0183
Total	ls :		4.73794e4	861.53926	

Реак	Retlime	туре	ωιατη	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	11.787	BV	0.2447	1479.19055	91.46500	4.4295	
2	14.111	BV	0.3044	3.19148e4	1602.15845	95.5705	

Totals :

3.33940e4 1693.62345

Totals :

4785.93152 223.67568

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.968	VV	0.6702	5545.03955	123.88957	50.0653
2	34.211	BB	1.0192	5530.56885	80.32954	49.9347

1.10756e4 204.21911

Signal 2: DAD1 B, Sig=230,4 Ref=275,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	24.981	BB	0.6529	5117.39648	117.77612	88.4608
2	34.360	BB	0.8152	667.53156	10.85860	11.5392
Total	ls :			5784.92804	128.63471	

DAD1 C, Sig=214,4 Ref=360,100 (D:\CHEM\DATA\WANGFL\FL-10-22A-IG-9010-08 DAT.D)

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.713	BB	0.5408	3119.88599	89.92107	49.7442
2	23.237	MM R	0.6521	3151.97656	80.56358	50.2558

6271.86255 170.48465

2	23.437 MF R	0.6735 2793.50098	69.12454	7.1367

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.645	BB	0.1744	5424.28223	457.11203	49.9918
2	10.594	BB	0.2909	5426.07178	276.57697	50.0082

Totals :

1.08504e4 733.68900

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.762	BB	0.1893	211.64348	16.75782	2.0454
2	10.875	BB	0.3160	1.01358e4	480.69107	97.9546
Tota]	ls :			1.03475e4	497.44889	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.780	BB	0.2755	1732.62378	95.55478	49.8964
2	12.110	BB	0.3152	1739.81921	84.84905	50.1036

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.766	BV	0.2644	1174.35913	67.68858	8.6326
2	11.983	VB	0.3107	1.24295e4	602.48096	91.3674
Tota]	ls :			1.36038e4	670.16953	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.852	MM R	0.2807	24.54374	1.45736	0.4327
2	12.085	MM R	0.3282	5647.03662	286.77472	99.5673

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak ketrime Type width Area Height	Area
# [min] [min] [mAU*s] [mAU]	%
1 52.327 BB 1.0174 4901.61475 72.44415	50.0276
2 55.165 BB 1.0676 4896.20459 67.87166	49.9724

Totals :

9797.81934 140.31581

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	52.071	BV	1.0748	6052.77002	85.61668	3.5671
2	54.796	VBA	1.2369	1.63630e5	1958.19946	96.4329

Totals : 1.69682e5 2043.81615

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.971	MM R	3.5332	6422.60840	30.29618	50.0799
2	46.516	MM R	3.9681	6402.11914	26.89009	49.9201
Tota]	ls :			1.28247e4	57.18626	

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.688	MM R	2.7067	684.36041	4.21393	3.8116
2	45.123	MM R	3.4092	1.72702e4	84.42842	96.1884
Tota]	ls :			1.79545e4	88,64235	

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.782	BV	0.4103	5.61162e4	2195.06421	48.4662
2	21.544	MM	0.5385	5.96681e4	1846.71960	51.5338

1.15784e5 4041.78381

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.813	VB	0.3306	1258.59875	57.23086	8.5591
2	21.569	BB	0.4451	1.34463e4	459.89804	91.4409
Tota]	ls :			1.47049e4	517.12890	

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.558	BB	0.3258	1.22469e4	572.04364	97.7744
2	21.370	BB	0.4269	278.77255	9.32173	2.2256

Totals : 1.25257e4 581.36537

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 16.100 BB 0.3460 5.16688e4 2300.85547 99.6764 20.954 BB 0.4904 167.73508 2 5.28337 0.3236

Totals : 5.18366e4 2306.13884

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.998	BB	0.2686	2.31393e4	1332.23669	50.0044
2	14.302	BB	0.3180	2.31352e4	1124.75562	49.9956

Totals : 4.62744e4 2456.99231

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.967	BB	0.3001	7968.88916	407.65662	90.8971
2	14.341	BB	0.3267	798.04718	37.73350	9.1029
Tota]	ls :			8766,93634	445.39011	

Totals :

2996.89035 333.75897

Totals :

9754.78662 790.93695


```
Totals :
```

6737.59747 712.24059

Tota	lc	•
i U L a	12	•

2.89557e4 1534.64297

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.629	BB	0.3255	559.35809	26.79470	50.2263
2	14.922	MM R	0.3554	554.31683	25.99382	49.7737

Totals :

1113.67493 52.78853

DAD1 A, Sig=254,4 Ref=360,100 (D:\CHEM\DATA\ZYF\ZYF-358-IG 2018-11-07 19-11-55\ZYF-358-IG-990104.D)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.587	BB	0.3810	2161.59302	88.48470	97.1823
2	14.942	BB	0.3605	62.67313	2.66418	2.8177
Tota]	ls :			2224.26614	91.14888	

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.640	BB	0.7394	1.13860e4	231.65884	49.9846
2	32.406	BB	0.8116	1.13930e4	213.13380	50.0154

Totals :

2.27790e4 444.79265

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.560	BB	0.7883	3.65100e4	702.49487	94.5256
2	32.479	BB	0.7989	2114.44141	37.09962	5.4744
Total	ls :			3.86245e4	739.59449	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
					[]	
1	37.635	BV	0.6444	1799.26563	41.61333	42.6211
2	40.211	VB	0.6589	313.35535	6.73366	7.4228
3	42.915	BV	0.7167	1791.30078	37.53936	42.4324
4	45.013	VB	0.7039	317.62006	5.90146	7.5238

Totals :

4221.54181 91.78781

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.335	W	0.6500	3023.52832	70.27174	82.4961
2	39.902	VB	0.6812	438.57040	9.52470	11.9663
3	42.796	BV	0.5886	172.92241	3.65070	4.7181
4	44.847	VB	0.6480	30.03448	5.57949e-1	0.8195

3665.05561 84.00509

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.185	MF R	0.7615	807.29089	17.66849	8.2508
2	35.319	MF R	0.9770	8977.05664	153.13568	91.7492
Tota]	s:			9784.34753	170.80417	

1.5662 705.83331

2 46.530 MM

1386.01825 16.05372

7.51125

50.9253

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 42.696 MM 1.3630 4470.64648 54.66646 92.4403 2 47.026 MM 1.5909 365.60876 3.83033 7.5597

Totals :

4836.25525 58.49678

456

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.295	MF R	0.5162	3.03759e4	980.84656	49.5674
2	22.829	FM R	0.7099	3.09061e4	725.62122	50.4326
Total	ls :			6.12819e4	1706.46777	

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] # [min] [min] % 1 20.809 BB 0.5776 85.75143 1.83379 1.0504 2 22.801 MF R 0.7793 8077.85498 172.75610 98.9496 Totals : 8163.60641 174.58990

459

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.900	BV	0.0793	1985.84436	390.98450	49.7979
2	5.786	BB	0.0940	2001.96509	333.73199	50.2021

Totals :

3987.80945 724.71649

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.841	BB	0.0731	300.78320	63.71975	5.8303
2	5.626	BV	0.0866	4858.16064	877.14264	94.1697
Total	s :			5158.94385	940.86239	

==== Shimadzu LabSolutions Analysis Report ====

==== Shimadzu LabSolutions Analysis Report ====

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Sig	Туре	Area [mAU*s]	Height [mAU]	Area %
1	8.258	1	MM	1665.57874	138.41049	49.3480
2	15.389	1	MM	1709.59375	41.99697	50.6520

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Sig	Туре	Area	Height	Area
#	[min]			[mAU*s]	[mAU]	%
1	8.219	1	MM	2146.52734	170.89351	87.6687
2	15.343	1	MM	301.92722	7.21739	12.3313

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Sig	Туре	Area [mAU*s]	Height [mAU]	Area %
1	7.885	1	MM	166.17976	16.28563	50.7657
2	15.650	1	BB	161.16673	3.49884	49.2343

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Sig	Туре	Area	Height	Area
#	[min]			[mAU*s]	[mAU]	%
1	7.864	1	BB	968.83099	94.12112	87.5570
2	15.586	1	BB	137.68405	3.13706	12.4430

Supplementary references

- 1. Chang, S. *et al.* Catalytic one-pot synthesis of cyclic amidines by virtue of tandem reactions involving intramolecular hydroamination under mild conditions. *J. Am. Chem. Soc.* **128**, 12366–12367 (2006).
- 2. Molloy, B. B. & Schmiegel, K. K. Aryloxyphenylpropylamines. US patent US4313896 (1982).
- 3. Vakalopoulos, A. *et al.* Substituted dicyanopyridines as adenosine receptor stimulators and their preparation and use for the treatment of cardiovascular diseases. PCT patent WO2012000945A1 (2012).
- 4. Binder, J. T., Cordier, C. J. & Fu, G. C. Catalytic enantioselective cross-couplings of secondary alkyl electrophiles with secondary alkylmetal nucleophiles: Negishi reactions of racemic benzylic bromides with achiral alkylzinc reagents. *J. Am. Chem. Soc.* **134**, 17003–17006 (2012).
- 5. Ochiai, H., Nishihara, T., Tamaru, Y. & Yoshida, Z. Titanium(IV)-mediated aldol-type condensation of zinc esters and zinc ketones with carbonyl electrophiles. *J. Org. Chem.* **53**, 1343–1344 (1988).
- 6. Streuff, J., Feurer, M., Bichovski, P., Frey, G. & Gellrich, U. Enantioselective titanium(III)-catalyzed reductive cyclization of ketonitriles. *Angew. Chem. Int. Ed.* **51**, 8661–8664 (2012).
- 7. Stowell, J. C. & Polito, M. A. A facile procedure for producing γ-halo butyraldehyde acetals. *J. Org. Chem.* **57**, 2195–2196 (1992).
- 8. Yang, D. & Micalizio, G. C. Convergent and stereodivergent synthesis of complex 1-aza-7-oxabicyclo[2.2.1]heptanes. *J. Am. Chem. Soc.* **133**, 9216–9219 (2011).
- 9. Uyeda, C. & Jacobsen, E. N. Enantioselective Claisen rearrangements with a hydrogenbond donor catalyst. *J. Am. Chem. Soc.* **130**, 9228–9229 (2008).
- 10. Huy, P. H. & Koskinen, A. M. P. Efficient, stereodivergent access to 3-piperidinols by traceless P(OEt)₃ cyclodehydration. *Org. Lett.* **15**, 5178–5181 (2013).
- 11. Huy, P. H., Motsch, S. & Kappler, S. M. Formamides as Lewis base catalysts in S_N reactions—efficient transformation of alcohols into chlorides, amines, and ethers. *Angew. Chem. Int. Ed.* **55**, 10145–10149 (2016).
- 12. Carretero, J. C., Rojo, J., Diaz, N., Hamdouchi, C. & Poveda, A. New one-step process for the synthesis of functionalized 1,6-dioxaspiro[4,5]decanes. *Tetrahedron* **51**, 8507–8524 (1995).
- 13. Zhao, L. *et al.* Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. *J. Med. Chem.* **56**, 3833–3851 (2013).
- 14. Bennett, C. J. *et al.* Potential therapeutic antioxidants that combine the radical scavenging ability of myricetin and the lipophilic chain of vitamin E to effectively inhibit microsomal lipid peroxidation. *Bioorg. Med. Chem.* **12**, 2079–2098 (2004).
- 15. Uchiyama, M. *et al.* Highly enantioselective reduction of symmetrical diacetylaromatics with baker's yeast. *Tetrahedron: Asymmetry* **8**, 3467–3474 (1997).
- 16. Sivaraman, K. K. *et al.* Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. *J. Med. Chem.* **56**, 5213–5217 (2013).
- Hosseini, S. N., Johnston, J. R. & West, F. G. Evidence for heterolytic cleavage of a cyclic oxonium ylide: implications for the mechanism of the Stevens [1,2]-shift. *Chem. Commun.* 53, 12654–12656 (2017).

- 18. Smith, S. W. & Fu, G. C. Nickel-catalyzed Negishi cross-couplings of secondary nucleophiles with secondary propargylic electrophiles at room temperature. *Angew. Chem. Int. Ed.* **47**, 9334–9336 (2008).
- 19. Crespin, L., Biancalana, L., Morack, T., Blakemore, D. C. & Ley, S. V. One-pot acidcatalyzed ring-opening/cyclization/oxidation of aziridines with *N*-tosylhydrazones: access to 1,2,4-triazines. *Org. Lett.* **19**, 1084–1087 (2017).
- 20. Trost, B. M., Masters, J. T., Taft, B. R. & Lumb, J.-P. Asymmetric synthesis of chiral β -alkynyl carbonyl and sulfonyl derivatives via sequential palladium and copper catalysis. *Chem. Sci.* **7**, 6217–6231 (2016).
- 21. Nelson, H. M., Williams, B. D., Miro, J. & Toste, F. D. Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. *J. Am. Chem. Soc.* **137**, 3213–3216 (2015).
- 22. Cloudsdale, I. S. *et al.* Design, synthesis and biological evaluation of renin inhibitors guided by simulated annealing of chemical potential simulations. *Bioorg. Med. Chem.* **25**, 3947–3963 (2017).
- 23. Chavan, S. P., Thakkar, M. & Kalkote, U. R. The first enantiospecific synthesis of (–)heritol: absolute configuration determination. *Tetrahedron Lett.* **48**, 643–646 (2007).
- 24. Song, S., Zhu, S.-F., Yang, S., Li, S. & Zhou, Q.-L. Enantioselective iridium-catalyzed hydrogenation of β , γ -unsaturated carboxylic acids: an efficient approach to chiral 4-alkyl-4-aryl butanoic acids. *Angew. Chem. Int. Ed.* **51**, 2708–2711 (2012).
- 25. Yazaki, R., Kumagai, N. & Shibasaki, M. Enantioselective synthesis of a GPR40 agonist AMG 837 via catalytic asymmetric conjugate addition of terminal alkyne to α,β -unsaturated thioamide. *Org. Lett.* **13**, 952–955 (2011).
- 26. Sagadevan, A., Ragupathi, A. & Hwang, K. C. Photoinduced copper-catalyzed regioselective synthesis of indoles: three-component coupling of arylamines, terminal alkynes, and quinones. *Angew. Chem. Int. Ed.* **54**, 13896–13901 (2015).
- 27. Connolly, T. J., Baldovi, M. V., Mohtat, N. & Scaiano, J. C. Photochemical synthesis of TEMPO-capped initiators for "living" free radical polymerization. *Tetrahedron Lett.* **37**, 4919–4922 (1996).
- 28. Petrignet, J., Boudhar, A., Blond, G. & Suffert, J. Step-economical synthesis of taxol-like tricycles through a palladium-catalyzed domino reaction. *Angew. Chem. Int. Ed.* **50**, 3285–3289 (2011).
- 29. Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between vinyl and benzyl electrophiles. *J. Am. Chem. Soc.* **136**, 14365–14368 (2014).
- 30. Li, C. *et al.* Transition-metal-free stereospecific cross-coupling with alkenylboronic acids as nucleophiles. *J. Am. Chem. Soc.* 138, 10774–10777 (2016).