In the format provided by the authors and unedited.

Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(ı)/CPA cooperative catalysis

Yong-Feng Cheng[®]^{1,2,5}, Ji-Ren Liu^{3,5}, Qiang-Shuai Gu[®]^{2,4,5}, Zhang-Long Yu^{1,2,5}, Jian Wang^{1,2}, Zhong-Liang Li^{2,4}, Jun-Qian Bian^{1,2}, Han-Tao Wen^{1,2}, Xiao-Jing Wang^{1,2}, Xin Hong[®]³[™] and Xin-Yuan Liu[®]^{1,2}[™]

¹Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China. ²Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. ³Department of Chemistry, Zhejiang University, Hangzhou, China. ⁴Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China. ⁵These authors contributed equally: Yong-Feng Cheng, Ji-Ren Liu, Qiang-Shuai Gu, Zhang-Long Yu. ^{See}-mail: hxchem@zju.edu.cn; liuxy3@sustech.edu.cn

Supplementary Information

Catalytic enantioselective desymmetrising functionalization of alkyl

radicals via Cu(I)/CPA cooperative catalysis

Yong-Feng Cheng,^{1,4} Ji-Ren Liu,^{2,4} Qiang-Shuai Gu,^{3,4} Zhang-Long Yu,^{1,4} Jian Wang,¹ Zhong-Liang Li,³ Jun-Qian Bian,¹ Han-Tao Wen,¹ Xiao-Jing Wang,¹ Xin Hong,²* Xin-Yuan Liu¹*

Table of Contents

1. Supplementary Figures	3
Supplementary Figure 1	3
Supplementary Figure 2	4
Supplementary Figure 3	5
Supplementary Figure 4	6
Supplementary Figure 5	7
Supplementary Figure 6	8
Supplementary Figure 7	9
Supplementary Figure 8	10
Supplementary Figure 9	11
2. Supplementary Tables	12
Supplementary Table 1	12
Supplementary Table 2	13
Supplementary Table 3	14
Supplementary Table 4	15
3. Supplementary Methods	16
3.1 General Information	16
3.2 General Procedure for the Synthesis of Substrates	17
3.3 General Procedure A	34
3.4 General Procedure B	46
3.5 General Procedure C	57
3.6 Procedure for the Synthesis of 7	59
3.7 Transformation and Determination of Absolute Configurations	60
3.8 Mechanistic Study	66
3.9 Computational Study	69
3.9.1 Computational Details	69
3.9.2 Alternative Pathway Involving Radical Substitution	69
3.9.3 Located Conformers of C-O Bonding Transition State	70

3.9.4 Calculations of π - π Interaction	
3.9.5 Table of Energies	
3.10 NMR Spectra	
3.11 HPLC Spectra	
4. Supplementary References	

1. Supplementary Figures

Supplementary Figure 1. X-ray of chiral compound 3A'

Supplementary Figure 2. X-ray of chiral compound 6

Supplementary Figure 3. X-ray of compound 8A

Supplementary Figure 4. Energy difference between Int16, Int16-Triplet and C–O bonding transition state TS17. Computed spin density of benzyl radical and copper in Int16-Triplet are labelled as numbers in the structure. Free energies are compared to Int16.

Supplementary Figure 5. Located conformers of C–O bond formation transition state leading to major product 3A. Free energies are compared to TS17. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

Supplementary Figure 6. Located conformers of C–O bond formation transition state leading to diastereoisomer minor product A. Free energies are compared to TS17. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

Supplementary Figure 7. Located conformers of C–O bond formation transition state leading to diastereoisomer minor product B. Free energies are compared to TS17. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

Supplementary Figure 8. Located conformers of C–O bond formation transition state leading to enantiomer minor product C. Free energies are compared to TS17. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

а

Supplementary Figure 9. π - π interaction in TS17. a, Structure of π - π interacting fragments from TS17. b, Visual representation and interaction energy of π - π interaction between the fragments.

2. Supplementary Tables

Supplementary Table 1. Optimization of reaction conditions for other parameters^a

		F ₃ C-	CO [Cu] (10 mol%) (<i>P</i>)- A8 (15 mol%) Lewis Base Solvent, rt, 72 h		— ОН 	
	(<i>P</i>)-A8: R = 1	R 0P 0-P 0H R				
Entry	[Cu]	Solvent	LB	Yield (%)	Dr	Ee (%)
1	CuBH ₄ (PPh ₃) ₂	AcO ^{<i>i</i>} Pr	-	25	4:1	39/5
2 ^b	CuBH ₄ (PPh ₃) ₂	AcO ^{<i>i</i>} Pr	-	85	3:1	38/5
3 ^b	Cu(CH ₃ CN) ₄ BF ₄	AcO ^{<i>i</i>} Pr	-	45	2:1	38/-7
4 ^b	Cu ₂ O	AcO ^{<i>i</i>} Pr	-	90	4:1	43/15
5 ^b	CuI	AcO ^{<i>i</i>} Pr	-	81	2:1	22/10
6 ^b	CuCl	AcO ^{<i>i</i>} Pr	-	93	2:1	36/7
7 ^b	CuTc	AcO ^{<i>i</i>} Pr	-	62	2:1	39/7
8	Cu ₂ O	AcO ⁱ Pr	P7 (40 mol%)	86	>20:1	91/-
9	Cu ₂ O	PhMe	P7 (40 mol%)	55	>20:1	69/-
10	Cu ₂ O	DCM	P7 (40 mol%)	77	>20:1	70/-
11	Cu ₂ O	THF	P7 (40 mol%)	75	1:4	30/5
12	Cu ₂ O	MeCN	P7 (40 mol%)	70	1:4	47/16

^aReaction conditions: **1a** (0.05 mmol), **2a** (0.075 mmol), Cu^I (10 mol%), (*R*)-**A8** (15 mol%) and solvent (0.5 mL) at rt for 3 d; Yield and dr values were based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; Ee value was based on HPLC analysis. ^b50 °C.

Supplementary Table 2. Optimization of reaction conditions to access two congested quaternary stereocenters with CF₃ radical^a

	$H = \frac{H}{2}$	+ CF_3SO_2C 2b (P_1 -A5: $R = 4$ - $^{L}B_1$ (P_1 -A5: $R = 4$ - $^{L}B_1$	$CH = \begin{bmatrix} Cu \\ OPA \\ (15) \\ Ag_2CO_3 \\ CH_2CI_2, 2C $	0 mol%) 5 mol%) 0.6 eq.) °C, 72 h F3C Ph F3C Ph 5 F3C Ph 5 5 0 0 ≈ p 0 0 ≈ p 0 0 ≈ p		
Entry	(<i>R</i>)- A3: R = 9-Anth	(<i>R</i>)-A6: R = SIPh (<i>R</i>)-A7: R = 9-An	s solvent	(R, H)-A9	Dr	Ee (%)
1	CuBr	(R)-A1	CH2Ch	89	4.1	20
2	CuBr	(R)- A3		78	3.1	32
2	CuDr	(R) - AS		78	2.1	52 22
3	CuDr	(R)-AS		/1	5.1 2.1	22
4	CuBr	(R)-A0		83	5:1	30 22
3	CuBr	(K)-A/	CH_2Cl_2	80	5:1	23
6	Cul	(<i>R</i> , <i>R</i>)- A9	CH_2CI_2	84	10:1	74
7	CuCl	(<i>R</i> , <i>R</i>)- A9	CH_2Cl_2	86	10:1	83
8	CuBr	(<i>R</i> , <i>R</i>)-A9	CH_2Cl_2	83	9:1	80
9	CuOAc	(<i>R</i> , <i>R</i>)-A9	CH_2Cl_2	68	8:1	58
10	Cu ₂ O	(<i>R</i> , <i>R</i>)-A9	CH_2Cl_2	74	6:1	53
11	CuBr·SMe ₂	(<i>R</i> , <i>R</i>)-A9	CH_2Cl_2	84	11:1	78

^aReaction conditions: **4a** (0.025 mmol), **2b** (0.03 mmol), Cu^I (10 mol%), Ag₂CO₃ (0.015 mmol), CPA (15 mol%) and solvent (0.3 mL) at 20 °C for 3 d under argon; Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; Dr and ee values were determined by ¹H NMR and HPLC analysis, respectively.

Supplementary Table 3. Optimization of reaction conditions to access two congested quaternary stereocenters with C₄F₉ radical^a

	Ph Ph + 4a	[Cu] (10 m (<i>R</i>)-A9 (15 r Ag ₂ CO ₃ (0.6 2c Solvent, rt,	ol%) nol%) 5 eq.) 72 h Ph 5Ac	Ph OH	
Entry	[Cu]	Solvent	Yield (%)	Dr	Ee (%)
1	CuI	^{<i>i</i>} PrCO ₂ Et	96	15:1	79
2	CuCl	ⁱ PrCO ₂ Et	95	11:1	71
3	CuBr	ⁱ PrCO ₂ Et	97	13:1	82
4	CuOAc	ⁱ PrCO ₂ Et	93	6:1	64
5	CuBr	EtOAc	95	12:1	85
6	CuBr	CH ₃ CN	57	3:1	8
7	CuBr	CH_2Cl_2	96	>20:1	93
8	CuBr	CHCl ₃	96	18:1	85
9	CuBr	CCl ₄	94	16:1	76
10	CuBr	THF	62	4:1	31

^aReaction conditions: **4a** (0.025 mmol), **2c** (0.03 mmol), Cu^I (10 mol%), (*R*,*R*)-**A9** (15 mol%), Ag₂CO₃ (0.015 mmol), and solvent (0.3 mL) at rt for 3 d under argon; Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; Dr and ee values were determined by ¹H NMR and HPLC analysis, respectively.

Supplementary Table 4. Optimization of reaction conditions of *meso* olefinic 1,3-diol^a

entry	[Cu]	solvent	ligand	yield (%)	dr	ee (%)
1	CuBH ₄ (PPh ₃) ₂	AcO <i>i</i> Pr	-	82	1:3	7/72
2	CuBH ₄ (PPh ₃) ₂	PhCF ₃	-	45	1:2	2/55
3	CuBH ₄ (PPh ₃) ₂	DCE	-	40	2:1	12/20
4	CuBH ₄ (PPh ₃) ₂	CHCl ₃	-	81	1:2	2/67
5	CuBH ₄ (PPh ₃) ₂	CCl ₄	-	91	1:5	13/90
6	CuBH ₄ (PPh ₃) ₂	MTBE	-	70	1:3	0/80
7	CuCl	CCl ₄	-	56	5:1	11/5
8	CuI	CCl ₄	-	50	5:1	0/10
9	Cu ₂ O	CCl ₄	-	58	2:1	10/6
10	CuTc	CCl ₄	-	70	3:1	27/26
11	CuTc	CCl ₄	PPh3 (20 mol%)	82	1:6	4/91

^aReaction conditions: **8a** (0.05 mmol), **2a** (0.075 mmol), Cu^I (10 mol%), (*R*,*R*)-**A9** (15 mol%) and solvent (0.5 mL) at r.t for 3 d; Yield based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; dr and ee values were determined by ¹H NMR and HPLC analysis, respectively.

3. Supplementary Methods

3.1 General Information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Chiral phosphoric acid (**CPA**) was purchased from Daicel Chiral Technologies (China). Extra dry solvents were purchased from Acros[®] and J&K[®]. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). ¹H, ¹³C, ¹⁹F and 2D-NMR spectra were recorded on Bruker Avance-400 or 500 spectrometers. Mass spectrometric data were obtained using Bruker Apex IV RTMS. Circular dichroism (CD) spectra were recorded on an Applied PhotoPhysics Chirascan CD spectropolarimeter, using a 1 mm quartz cuvette. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector, column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Kα radiation.

3.2 General Procedure for the Synthesis of Substrates

Synthesis of substrates **1A–1M**, **1S–1U**, **4A–4F**, **4I–4P** (According to literature procedures with minor revision¹):

Synthesis of substrate **S2**: To a suspension of NaH (60% dispensed in mineral oil, 2.4 eq.) in dry THF at 0 °C was slowly added the corresponding ester **S1** (1.0 eq.). After stirring for 30 min, ethyl carbonate (3.0 eq.) was added dropwise. The mixture was warmed to rt and then heated to reflux under inert atmosphere for 24 h. After cooled to rt, saturated NH4Cl (aq.) was carefully added to the above reaction solution to quench the reaction and the mixture was extracted with EtOAc (3x). The combined organic layers were dried over Na₂SO₄, filtered and then concentrated. The crude product **S2** was used directly in the next step without further purification.

Synthesis of substrate **S3**: To a suspension of NaH (60% dispensed in mineral oil, 1.2 eq.) in dry THF (20 mL) at 0 °C was slowly added **S2** (1.0 eq.). After stirring for 30 min, 2,3-dibromopropene (1.0 eq.) was added dropwise. The reaction mixture was warmed to rt and stirred overnight. Then the reaction was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/ EtOAc ~ 20:1) to give **S3**.

Synthesis of substrates S4: To a solution of S3 (1.0 eq.), arylboronic acids (1.5 eq.), K_2CO_3 (3.0 eq.) and 2-dicyclohexylphosphino-2 ' ,4 ' ,6 ' -triisopropylbiphenyl (X-Phos, 0.08 eq.) in CH₃CN/H₂O (v/v = 3/1) was added Pd(OAc)₂ (0.04 eq.). The flask was evacuated and then backfilled with argon three times. Then the reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. After cooling to rt, the mixture was extracted with CH₂Cl₂ (3x). The combined organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by flash chromatography to give S4.

Synthesis of substrates 1A–1M, 1S-1U, 4A-4F, 4I-4P: To a suspension of LiAlH₄ (4.0 eq.) in Et₂O at 0 °C was slowly added a solution of S4 (1.0 eq.) in Et₂O. Then the reaction mixture was warmed to rt and stirred for 2 h. Next, it was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon

completion, the mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc ~ 2/1) to give **1A–1M**, **1S-1U**, **4A-4F**, **4I-4P**.

Synthesis of substrates 1N–1R, 3G, 3H (According to literature procedures with minor revision¹):

Synthesis of substrate S5: To a suspension of LiAlH₄ (4.0 eq.) in Et₂O at 0 °C was slowly added a solution of S3 (1.0 eq.) in Et₂O. Then the reaction mixture was warmed to rt and stirred for 2 h. Next, it was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon completion, the mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The crude product S5 was used directly in the next step.

Synthesis of substrate **S6**: To a solution of **S5** (1.0 eq.) and 4-(dimethylamino)pyridine (DMAP, 0.1 eq.) in CH₂Cl₂ at 0 °C was slowly added acetyl chloride (2.2 eq.). The reaction mixture was stirred at rt for additional 4 h. Upon completion, water was added and the aqueous layer was extracted with CH₂Cl₂ (3x). The combined organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5/1) to give **S6** as an oil.

Synthesis of substrates **S7**: To a solution of **S6** (1.0 eq.), arylboronic acids (1.5 eq.), K_2CO_3 (3.0 eq.) and 2-dicyclohexylphosphino-2 ' ,4 ' ,6 ' -triisopropylbiphenyl (X-Phos, 0.08 eq.) in CH₃CN/H₂O (v/v = 3/1) was added Pd(OAc)₂ (0.04 eq.). The flask was evacuated and then backfilled with argon three times. Then the reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. After cooled to rt, the mixture was extracted with CH₂Cl₂ (3x). The combined organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by flash chromatography to give **S7**.

Synthesis of substrates **1N-1R**, **3G**, **3H**: To a solution of **S7** (1.0 eq.) in MeOH/H₂O (v/v = 1/1) was added NaOH (2.2 eq.). The reaction mixture was stirred at rt. Upon completion, water was added and the aqueous layer was extracted with ethyl acetate (3x). The combined organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography

to give **1N-1R**, **3G**, **3H**.

Synthesis of substrate 1V

Synthesis of substrate S8: To a stirred solution of Ph₃PMeBr (10.0 g, 28.0 mmol) in THF (40 mL) at 0 °C was added *n*-BuLi (10.5 mL in *n*-Hexane, 2.4 M, 25.2 mmol) dropwise over 30 min. The reaction mixture was stirred for 2 hours at rt. 1-(Adamantan-1-yl)ethanone (2.5 g, 14 mmol) in THF (5 mL) was added dropwise to the cooled reaction mixture at 0 °C. The reaction was then stirred at rt for 72 h, quenched with saturated NH₄Cl, and extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to yield S8 as a colorless oil (2.34 g, 13.3 mmol, 95%).

Synthesis of substrate **S9**: To a solution of **S8** (2.34 g, 13.3 mmol) in dry THF (40 mL) in an oven-dried flask were added *N*-bromosuccinimide (2.5 g, 14 mmol) and *p*-toluenesulfonic acid (PTSA) (0.23 g, 1.3 mmol). The resulting mixture was refluxed at 100 °C for 4 h. The mixture was then cooled to rt, diluted with petroleum ether (15 mL/mmol), and washed by H₂O (15 mL \times 3). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography over silica gel using petroleum ether as eluent afforded **S9** as a yellow oil which was used directly in the next step without further purification.

Synthesis of substrate **S10**: To a suspension of NaH (60% dispensed in mineral oil, 0.38 g, 16 mmol) in dry THF (60 mL) at 0 °C was slowly added diethyl malonate (2.0 mL, 13 mmol). After stirring for 30 min, **S9** was added dropwise. The reaction mixture was warmed to rt and stirred overnight. Then the reaction was quenched with saturated NH4Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc $\approx 20/1$) to give **S10** (3.6 g, 11 mmol, 81% yield in two steps).

Synthesis of substrate 1V: To a suspension of LiAlH₄ (4.0 eq.) in Et₂O at 0 °C was slowly added a solution of S10 (3.6 g, 11 mmol) in Et₂O. Then the reaction mixture was warmed to rt and stirred for 2 h. Next, it was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon completion, the mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated.

The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc $\approx 2/1$) to give **1V** as a white solid (2.32 g, 9.3 mmol, 86%).

Synthesis of substrates **8A** and **8B**

Synthesis of substrate **S11** (According to literature procedures with minor revision²): To a cooled (0 °C) solution of 1,3-cyclohexanedione (11.2 g, 100 mmol) in water (20 mL) were added dropwise *N*,*N*-diisopropylethylamine (DIPEA) (19.8 mL, 120 mmol) and 2,3-dibromopropene (8.3 mL, 80 mmol). The mixture was warm to rt and stirred for 48 h. The reaction mixture was diluted with EtOAc (300 mL) and washed with 1N HCl (2 x 100 mL), water (2 x 100 mL), and then brine (2 x 100 mL). The mixture was dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 1/1) to give **S11** (11.6 g, 50.0 mmol) as a yellow solid in 63% yield.

Synthesis of substrate **S12** (According to literature procedures with minor revision³): To a solution of **S11** (11.6 g, 50 mmol) in THF (150 mL) at rt were added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (9.0 mL, 60 mmol) and anhydrous LiI (8.04 g, 60 mmol) and the resulting mixture was stirred for 30 min at rt followed by addition of ethyl bromoacetate (11.1 mL, 100 mmol). The reaction mixture was then warmed to 65 °C and stirred for 24 h at that temperature. Upon completion, the reaction mixture was cooled to rt, and brine (150 mL) was added followed by extraction with ethyl acetate (3 x 200 mL). The combined organic extracts were dried(Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 3/1) to give **S12** (10.3 g, 32.5 mmol) as a yellow solid in 65% yield.

Synthesis of substrates S13

To a solution of **S12** (1.0 eq.), arylboronic acid (1.5 eq.), and K_2CO_3 (3.0 eq.) in THF/H₂O (v/v = 3/1) was added PdCl₂(PPh₃)₂ (0.1 eq.). The flask was evacuated and then backfilled with argon three times. Then the reaction mixture was stirred at rt for 10 h under argon atmosphere. The mixture was extracted with CH₂Cl₂ (3x). The combined organic layer was washed with brine, dried (Na₂SO₄), and concentrated *in*

vacuo. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 4/1) to give S13.

Synthesis of substrates **8** (According to literature procedures with minor revision³): To a solution of **S13** (1.0 eq.) in THF (0.1 M) at 0 °C was slowly added LiAlH(O'Bu)₃ (1.1 M in THF, 2.5 eq.). The resulting solution was stirred at 0 °C for 0.5 h and then at 25 °C for 2 h. Upon completion, the reaction was quenched by saturated NH4Cl (aq.). Then EtOAc was added and the reaction mixture was acidified to pH 5 by slow addition of 1N HCl to facilitate the removal of the aluminum salt. After stirring for 10 min, the mixture was extract with EtOAc (3x). The combined organic extracts were washed with saturated NaHCO₃ (aq.), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 3/1) to give **8**.

2-(2-phenylallyl)propane-1,3-diol (1A)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40–7.37 (m, 2H), 7.34–7.30 (m, 2H), 7.28–7.24 (m, 1H), 5.32 (d, *J* = 1.4 Hz, 1H), 5.09 (d, *J* = 1.1 Hz, 1H), 3.73–3.70 (m, 2H), 3.62–3.57 (m, 2H), 2.79 (brs, 2H), 2.50 (d, *J* = 7.4 Hz, 2H), 1.85–1.80 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.1, 140.4, 128.4, 127.6, 126.2, 114.3, 65.3, 40.0, 33.8.

HRMS (ESI) calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1043, found: 215.1040.

2-(2-(*o*-tolyl)allyl)propane-1,3-diol (1B)

¹**H** NMR (400 MHz, CDCl₃) δ 7.17–7.11 (m, 3H), 7.08 (d, *J* = 7.0 Hz, 1H), 5.23 (s, 1H), 4.97 (s, 1H), 3.77 (dd, *J* = 10.7, 3.4 Hz, 2H), 3.63 (dd, *J* = 10.3, 7.5 Hz, 2H), 2.60 (brs, 2H), 2.34 (d, *J* = 7.1 Hz, 2H), 2.31 (s, 3H) 1.79–1.74 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 147.4, 142.0, 134.8, 130.3, 128.3, 127.0, 125.5, 116.2, 65.7, 39.8, 35.9, 19.9.

HRMS (ESI) calcd for C₁₃H₁₈NaO₂ [M+Na]⁺ 229.1199, found: 229.1197.

2-(2-(*m***-tolyl)allyl)propane-1,3-diol (1C)** ¹**H NMR** (400 MHz, CDCl₃) δ 7.27–7.16 (m, 3H), 7.08 (d, *J* = 7.0 Hz, 1H), 5.29 (s, 1H), 5.07 (s, 1H), 3.74–3.71 (m, 2H), 3.65–3.58 (m, 2H), 2.79 (brs, 2H), 2.48 (d, *J* = 6.7 Hz, 2H), 2.35 (s, 3H), 1.85–1.82 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.3, 140.5, 137.9, 128.3, 128.2, 126.9, 123.3, 114.1, 65.3, 40.0, 33.9, 21.4.

HRMS (ESI) calcd for C₁₃H₁₈NaO₂ [M+Na]⁺ 229.1199, found: 229.1198.

2-(2-(p-tolyl)allyl)propane-1,3-diol (1D)

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 5.27 (d, J = 1.6 Hz, 1H), 5.02 (d, J = 1.2 Hz, 1H), 3.65 (dd, J = 10.8, 3.9 Hz, 2H), 3.53 (dd, J = 10.8, 7.0 Hz, 2H), 3.37 (brs, 2H), 2.43 (d, J = 7.3 Hz, 2H), 2.31 (s, 3H), 1.83–1.74 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.8, 137.5, 137.2, 129.0, 125.9, 113.4, 64.7, 40.0, 33.8, 20.9.

HRMS (ESI) calcd for C₁₃H₁₈NaO₂ [M+Na]⁺ 229.1199, found: 229.1197.

2-(2-(3-methoxyphenyl)allyl)propane-1,3-diol (1E)

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (t, *J* = 7.9 Hz, 1H), 6.98 (d, *J* = 7.7 Hz, 1H), 6.93 (s, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 5.32 (s, 1H), 5.09 (s, 1H), 3.81 (s, 3H), 3.74–3.72 (m, 2H), 3.63–3.59 (m, 2H), 2.78 (brs, 2H), 2.48 (d, *J* = 7.3 Hz, 2H), 1.88–1.80 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.5, 146.1, 142.1, 129.4, 118.7, 114.5, 112.6, 112.3, 65.3, 55.2, 40.1, 33.9.

HRMS (ESI) calcd for C₁₃H₁₈NaO₃ [M+Na]⁺ 245.1148, found: 245.1145.

2-(2-([1,1'-biphenyl]-3-yl)allyl)propane-1,3-diol (1F)

¹**H** NMR (400 MHz, CDCl₃) δ 7.60–7.58 (m, 3H), 7.51–7.33 (m, 6H), 5.38 (s, 1H), 5.14 (s, 1H), 3.76 (dd, J = 10.7, 3.8 Hz, 2H), 3.64 (dd, J = 10.7, 7.0 Hz, 2H), 2.56 (d, J = 7.4 Hz, 2H), 2.50 (brs, 2H), 1.91–1.85 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 141.4, 141.1, 141.0, 128.8, 128.7, 127.4, 127.2, 126.5, 125.13, 125.09, 114.7, 65.5, 40.1, 33.9.

2-(2-(3-fluorophenyl)allyl)propane-1,3-diol (1G)

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 14.4, 7.5 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 10.4 Hz, 1H), 6.94 (t, J = 8.1 Hz, 1H), 5.33 (s, 1H), 5.11 (s, 1H), 3.66 (dd, J = 10.7, 3.6 Hz, 2H), 3.57–3.53 (m, 4H), 2.44 (d, J = 7.3 Hz, 2H), 1.78–1.75 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, *J* = 243.8 Hz), 144.9 (d, *J* = 2.0 Hz), 142.8 (d, *J* = 7.3 Hz), 129.8 (d, *J* = 8.4 Hz), 121.8 (d, *J* = 2.7 Hz), 115.2, 114.3 (d, *J* = 21.0 Hz), 113.0 (d, *J* = 21.6 Hz), 64.4, 39.9, 33.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.12 – -113.19 (m, 1F).

HRMS (ESI) calcd for C₁₂H₁₅FNaO₂ [M+Na]⁺ 233.0948, found: 233.0946.

2-(2-(4-fluorophenyl)allyl)propane-1,3-diol (1H)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38–7.34 (m, 2H), 7.01 (t, J = 8.1 Hz, 2H), 5.27 (s, 1H), 5.08 (s, 1H), 3.75–3.72 (m, 2H), 3.64–3.59 (m, 2H), 2.75 (brs, 2H), 2.48 (d, J = 7.3 Hz, 2H), 1.86–1.78 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 245.1 Hz), 145.1, 136.5, 127.8 (d, *J* = 8.0 Hz), 115.2 (d, *J* = 21.2 Hz), 114.3, 65.3, 40.0, 33.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.76 – -114.84 (m, 1F).

HRMS (ESI) calcd for C₁₂H₁₅FNaO₂ [M+Na]⁺ 233.0948, found: 233.0945.

2-(2-(3-iodophenyl)allyl)propane-1,3-diol (11)

Diisobutyl aluminium hydride (DIBAH) (8.0 eq.) was used instead of LiAlH₄ in the reduction step.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 7.7 Hz, 1H), 5.31 (s, 1H), 5.13 (s, 1H), 3.77–3.73 (m, 2H), 3.66–3.60 (m, 2H), 2.62–2.41 (m, 4H), 1.82 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.9, 142.9, 136.5, 135.2, 130.1, 125.4, 115.50, 94.6, 65.4, 39.9, 33.7.

HRMS (ESI) calcd for $C_{12}H_{16}IO_2 [M+H]^+ 319.0189$, found: 319.0187.

2-(2-(3-(trifluoromethyl)phenyl)allyl)propane-1,3-diol (1J)

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 5.37 (s, 1H), 5.17 (s, 1H), 3.69 (d, J = 6.6 Hz, 2H), 3.59 (d, J = 6.3 Hz, 2H), 3.40 (s, 2H), 2.50 (d, J = 6.9 Hz, 2H), 1.81–1.74 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.9, 141.4, 130.7 (q, J = 31.9 Hz), 129.4, 128.9, 124.2 (q, J = 3.6 Hz), 124.1 (d, J = 270.7 Hz), 122.8 (q, J = 3.8 Hz), 115.8, 64.6, 39.9, 33.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.6 (s, 3F).

HRMS (ESI) calcd for C₁₃H₁₅F₃NaO₂ [M+Na]⁺ 283.0916, found: 283.0912.

2-(2-(3,5-dimethylphenyl)allyl)propane-1,3-diol (1K)

¹**H** NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.91 (s, 1H), 5.27 (s, 1H), 5.04 (s, 1H), 3.71 (dd, J = 10.7, 3.3 Hz, 2H), 3.59 (dd, J = 10.5, 7.3 Hz, 2H), 2.96 (brs, 2H), 2.45 (d, J = 7.4 Hz, 2H), 2.30 (s, 6H), 1.86–1.80 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.4, 140.6, 137.8, 129.2, 124.0, 113.9, 65.2, 39.9, 33.9, 21.3.

HRMS (ESI) calcd for C₁₄H₂₀NaO₂ [M+Na]⁺ 243.1356, found: 243.1354.

2-(2-(naphthalen-2-yl)allyl)propane-1,3-diol (1L)

¹**H NMR** (400 MHz, CDCl₃) δ 7.81–7.78 (m, 4H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.47–7.43 (m, 2H), 5.46 (s, 1H), 5.19 (s, 1H), 3.76 (d, *J* = 11.0 Hz, 2H), 3.67–3.63 (m, 2H), 2.62 (d, *J* = 7.3 Hz, 2H), 2.40 (brs, 2H), 1.88 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.1, 137.8, 133.3, 132.8, 128.1, 128.0, 127.5, 126.2, 125.9, 124.9, 124.6, 114.9, 65.6, 40.2, 33.9.

HRMS (ESI) calcd for C₁₆H₁₈NaO₂ [M+Na]⁺ 265.1199, found: 265.1195.

2-(2-(naphthalen-1-yl)allyl)propane-1,3-diol (1M)

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (dd, J = 6.1, 3.6 Hz, 1H), 7.85 (dd, J = 6.3, 3.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.49–7.46 (m, 2H), 7.45–7.40 (m, 1H), 7.29 (d, J = 7.0 Hz, 1H), 5.46 (s, 1H), 5.20 (d, J = 1.6 Hz, 1H), 3.80 (d, J = 10.5 Hz, 2H), 3.69–3.65 (m, 2H), 2.56 (d, J = 7.2 Hz, 2H), 2.13 (brs, 2H), 1.81–1.75 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.2, 140.3, 133.8, 131.1, 128.4, 127.5, 125.9, 125.7, 125.5, 125.2, 125.1, 117.7, 65.9, 40.2, 36.8.

HRMS (ESI) calcd for C₁₆H₁₈NaO₂ [M+Na]⁺ 265.1199, found: 265.1196.

ethyl 3-(5-hydroxy-4-(hydroxymethyl)pent-1-en-2-yl)benzoate (1N)

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 5.37 (s, 1H), 5.15 (s, 1H), 4.35 (q, *J* = 6.8 Hz, 2H), 3.91 (brs, 2H), 3.69–3.66 (m, 2H), 3.60–3.56 (m, 2H), 2.52 (d, *J* = 7.0 Hz, 2H), 1.78 (s, 1H), 1.38 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 145.1, 140.7, 136.0, 130.4, 128.3, 128.2, 127.0, 115.0, 63.8, 61.0, 40.0, 33.4, 14.0.

HRMS (ESI) calcd for C₁₅H₂₀NaO₄ [M+Na]⁺ 287.1254, found: 287.1250.

3-(5-hydroxy-4-(hydroxymethyl)pent-1-en-2-yl)-N,N-dimethylbenzamide (10)

¹**H NMR** (400 MHz, CDCl₃) δ 7.46–7.43 (m, 2H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 5.33 (s, 1H), 5.12 (s, 1H), 3.63 (d, *J* = 10.7 Hz, 2H), 3.55–3.51 (m, 2H), 3.45 (brs, 2H), 3.10 (s, 3H), 2.99 (s, 3H), 2.48 (d, *J* = 7.3 Hz, 2H), 1.75 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 145.7, 141.1, 136.0, 128.4, 127.6, 125.8, 124.9, 115.0, 64.6, 40.3, 39.6, 35.4, 33.8.

HRMS (ESI) calcd for C₁₅H₂₁NNaO₃ [M+Na]⁺ 286.1414, found: 286.1410.

3-(5-hydroxy-4-(hydroxymethyl)pent-1-en-2-yl)benzonitrile (1P)

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 5.39 (s, 1H), 5.23 (s, 1H), 3.77 (d, J = 10.5 Hz, 2H), 3.68–3.64 (m, 2H), 2.55 (d, J = 7.4 Hz, 2H), 2.48 (brs, 2H), 1.81 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.9, 131.0, 130.6, 129.8, 129.3, 118.8, 116.5, 112.6, 65.2, 39.9, 33.5.

HRMS (ESI) calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺ 240.0995, found: 240.0993.

2-(2-(3-nitrophenyl)allyl)propane-1,3-diol (1Q)

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.13 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 5.47 (s, 1H), 5.27 (s, 1H), 3.79–3.76 (m, 2H), 3.68–3.64 (m, 2H), 2.59–2.57 (m, 4H), 1.82 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 148.4, 144.2, 142.3, 132.2, 129.4, 122.3, 121.0, 116.8, 65.0, 40.0, 33.4.

HRMS (ESI) calcd for C₁₂H₁₅NNaO₄ [M+Na]⁺ 260.0893, found: 260.0891.

3-(5-hydroxy-4-(hydroxymethyl)pent-1-en-2-yl)benzaldehyde (1R)

¹**H** NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.89 (s, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 5.40 (s, 1H), 5.19 (s, 1H), 3.71 (d, J = 10.5 Hz, 2H), 3.63–3.59 (m, 2H), 3.33 (brs, 2H), 2.54 (d, J = 7.2 Hz, 2H), 1.80–1.79 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 192.6, 144.9, 141.5, 136.3, 132.2, 129.14, 129.11, 126.9, 115.7, 64.6, 40.0, 33.5.

HRMS (ESI) calcd for C₁₃H₁₆NaO₃ [M+Na]⁺ 243.0992, found: 243.0989.

2-(2-(3-(hydroxymethyl)phenyl)allyl)propane-1,3-diol (1S)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.33–7.29 (m, 2H), 7.26–7.24 (m, 1H), 5.33 (s, 1H), 5.11 (s, 1H), 4.67 (s, 2H), 3.72 (dd, J = 10.7, 3.8 Hz, 2H), 3.61 (dd, J = 10.6, 7.1 Hz, 2H), 2.52–2.50 (m, 4H), 1.85–1.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 141.0, 140.9, 128.7, 126.3, 125.5, 124.9, 114.6, 65.5, 65.2, 40.2, 34.0.

HRMS (ESI) calcd for C₁₃H₁₈NaO₃ [M+Na]⁺ 245.1148, found: 245.1145.

(E)-2-(2-(3-styrylphenyl)allyl)propane-1,3-diol (1T)

¹**H** NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 3H), 7.39 (d, J = 7.0 Hz, 1H), 7.32 (t, J = 7.3 Hz, 2H), 7.26–7.24 (m, 3H), 7.08 (s, 2H), 5.32 (s, 1H), 5.08 (s, 1H), 3.67 (dd, J = 10.6, 3.4 Hz, 2H), 3.57–3.53 (m, 2H), 3.24 (brs, 2H), 2.47 (d, J = 7.1 Hz, 2H), 1.79 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.0, 141.0, 137.3, 137.0, 128.9, 128.64, 128.57, 128.4, 127.6, 126.4, 125.4, 124.5, 114.5, 64.7, 40.0, 33.8.

HRMS (ESI) calcd for C₂₀H₂₂NaO₂ [M+Na]⁺ 317.1512, found: 317.1508.

2-(2-(3-(phenylethynyl)phenyl)allyl)propane-1,3-diol (1U)

¹**H** NMR (400 MHz, CDCl₃) δ 7.59–7.56 (m, 3H), 7.49–7.46 (m, 1H), 7.42–7.31 (m, 5H), 5.38 (d, *J* = 1.2 Hz, 1H), 5.18 (s, 1H), 3.82 (d, *J* = 10.3 Hz, 2H), 3.72–3.68 (m, 2H), 2.57 (d, *J* = 7.4 Hz, 2H), 2.20 (brs, 2H), 1.92–1.83 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6, 140.8, 131.6, 130.7, 129.4, 128.5, 128.3, 126.2, 123.4, 123.1, 115.1, 89.5, 89.2, 65.7, 40.0, 33.8.

HRMS (ESI) calcd for C₂₀H₂₁O₂ [M+H]⁺ 293.1536, found: 293.1533.

2-(2-(adamantan-1-yl)allyl)propane-1,3-diol (1V)

¹**H NMR** (400 MHz, CDCl₃) δ 4.92 (s, 1H), 4.78 (d, J = 1.2 Hz, 1H), 3.84 (d, J = 10.1 Hz, 2H), 3.68–3.63 (m, 2H), 2.58 (brs, 2H), 2.10–2.03 (m, 1H), 2.00–1.96 (m, 5H), 1.74–1.63 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 155.5, 107.9, 66.4, 41.04, 41.02, 38.0, 36.9, 28.61, 28.59.

HRMS (ESI) calcd for C₁₆H₂₇O₂ [M+H]⁺ 251.2006, found: 251.2003.

2-phenyl-2-(2-phenylallyl)propane-1,3-diol (4A)

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, J = 8.6 Hz, 2H), 7.18– 7.16 (m, 3H), 7.10–7.07 (m, 3H), 7.00 (d, J = 8.6 Hz, 2H), 5.06 (d, J = 1.6 Hz, 1H), 4.73 (s, 1H), 3.82 (d, J = 11.2 Hz, 2H), 3.73 (d, J = 11.2 Hz, 2H), 2.79 (brs, 2H), 2.71 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.6, 142.3, 140.0, 131.1, 129.0, 128.1, 127.1, 126.2, 120.2, 117.7, 67.1, 47.6, 40.5.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₂ [M+Na]⁺ 291.1356, found 291.1351.

2-phenyl-2-(2-(m-tolyl)allyl)propane-1,3-diol (4B)

¹**H** NMR (400 MHz, CDCl₃) δ 7.28–7.26 (m, 4H), 7.19–7.15 (m, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.04–6.97 (m, 3H), 5.10 (d, *J* = 1.8 Hz, 1H), 4.76–5.75 (m, 1H), 3.97 (dd, *J* = 11.3, 5.3 Hz, 2H), 3.88 (dd, *J* = 11.3, 6.0 Hz, 2H), 2.85 (s, 2H), 2.28 (s, 3H), 2.04 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 142.6, 141.1, 137.8, 128.4, 128.14, 128.08, 127.10, 127.06, 126.5, 123.3, 117.5, 67.8, 48.2, 40.6, 21.4.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NaO₂ [M+Na]⁺ 305.1512, found 305.1505.

2-(2-(3-methoxyphenyl)allyl)-2-phenylpropane-1,3-diol (4C)

¹**H NMR** (400 MHz, CDCl₃) δ 7.29–7.28 (m, 4H), 7.21–7.14 (m, 2H), 6.84–6.82 (m, 1H), 6.77–6.72 (m, 2H), 5.12 (d, J = 1.7 Hz, 1H), 4.77 (s, 1H), 4.00 (dd, J = 11.3, 5.3 Hz, 2H), 3.90 (dd, J = 11.3, 6.1 Hz, 2H), 3.77 (s, 3H), 2.86 (s, 2H), 1.99 (br s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.3, 144.8, 144.2, 141.0, 129.2, 128.4, 127.1, 126.5, 118.8, 117.8, 112.6, 112.3, 67.7, 55.2, 48.2, 40.5.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NaO₃ [M+Na]⁺ 321.1461, found 321.1457.

2-(2-(3-fluorophenyl)allyl)-2-phenylpropane-1,3-diol (4D)

¹**H NMR** (400 MHz, CDCl₃) δ 7.22–7.15 (m, 6H), 7.00 (d, J = 7.8 Hz, 1H), 6.92 (d, J = 11.1 Hz, 1H), 6.83 (t, J = 8.2 Hz, 1H), 5.11 (s, 1H), 4.79 (s, 1H), 3.91 (d, J = 11.1 Hz, 2H), 3.84 (d, J = 11.2 Hz, 2H), 2.81 (s, 2H), 2.35 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 243.8 Hz), 144.9 (d, *J* = 7.5 Hz), 143.9, 140.6, 129.5 (d, *J* = 8.4 Hz), 128.4, 127.1, 126.6, 122.0 (d, *J* = 2.8 Hz), 118.5, 113.9 (d, *J* = 21.1 Hz), 113.3 (d, *J* = 21.7 Hz), 67.7, 48.0, 40.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.92 - -112.98 (m, 1F).

HRMS (ESI) m/z calcd. for C₁₈H₁₉FNaO₂ [M+Na]⁺ 309.1261, found 309.1257.

2-(2-(3-iodophenyl)allyl)-2-phenylpropane-1,3-diol (4E)

Diisobutyl aluminium hydride (DIBAH) (8.0 eq.) was used instead of LiAlH₄ in the reduction step.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, J = 7.9 Hz, 1H), 7.36 (s, 1H), 7.21–7.16 (m, 2H), 7.12–7.08 (m, 3H), 7.05 (d, J = 7.9 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 5.06 (s, 1H), 4.82 (s, 1H), 3.92 (d, J = 10.8 Hz, 2H), 3.82 (d, J = 11.2 Hz, 2H), 2.74 (s, 2H), 2.66 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 143.7, 140.3, 135.7, 135.3, 129.5, 128.2, 126.9, 126.6, 125.5, 118.4, 94.1, 67.2, 47.5, 40.2.

HRMS (ESI) m/z calcd. for C₁₈H₁₉INaO₂ [M+Na]⁺ 417.0322, found 417.0316.

2-phenyl-2-(2-(3-(trifluoromethyl)phenyl)allyl)propane-1,3-diol (4F)

¹**H NMR** (400 MHz, CDCl₃) δ 7.36–7.34 (m, 1H), 7.27–7.21 (m, 3H), 7.17–7.12 (m, 4H), 7.09–7.05 (m, 1H), 5.15 (d, *J* = 1.6 Hz, 1H), 4.96 (s, 1H), 4.02 (d, *J* = 10.8 Hz, 2H), 3.91 (d, *J* = 10.8 Hz, 2H), 2.86 (s, 2H), 2.32 (brs, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.1, 143.2, 140.1, 130.1 (q, *J* = 32.1 Hz), 129.6, 128.4, 128.3, 127.0, 126.6, 124.0 (q, *J* = 270.8 Hz), 123.6 (q, *J* = 3.6 Hz), 123.1 (q, *J* = 3.9 Hz), 118.9, 67.5, 47.5, 40.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.6 (s, 3F).

1-(3-(5-hydroxy-4-(hydroxymethyl)-4-phenylpent-1-en-2-yl)phenyl)ethan-1-one (4G)

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.58 (s, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 4.3 Hz, 4H), 7.05–7.00 (m, 1H), 5.13 (d, J = 1.3 Hz, 1H), 4.91 (s, 1H), 3.95 (d, J = 11.1 Hz, 2H), 3.86 (d, J = 11.1 Hz, 2H), 2.91 (brs, 2H), 2.86 (s, 2H), 2.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.3, 144.3, 142.9, 140.6, 136.4, 131.0, 128.11, 128.06, 126.9, 126.7, 126.2, 126.1, 118.3, 67.2, 47.4, 40.2, 26.6.

HRMS (ESI) m/z calcd. for C₂₀H₂₂NaO₃ [M+Na]⁺ 333.1461, found 333.1456.

methyl 3-(5-hydroxy-4-(hydroxymethyl)-4-phenylpent-1-en-2-yl)benzoate (4H) ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.74 (s, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.14–7.13 (m, 4H), 7.08–7.02 (m, 1H), 5.14 (s, 1H), 4.89 (s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.95 (d, *J* = 11.1 Hz, 2H), 3.86 (d, *J* = 11.1 Hz, 2H), 3.08 (brs, 2H), 2.85 (s, 2H), 1.40 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 144.2, 142.7, 140.6, 130.7, 129.8, 128.0, 127.80, 127.78, 127.3, 126.9, 126.1, 118.1, 67.0, 60.9, 47.4, 40.2, 14.2.

HRMS (ESI) m/z calcd. for $C_{21}H_{24}NaO_4 [M+Na]^+ 363.1567$, found 363.1561.

2-(2-(furan-3-yl)allyl)-2-phenylpropane-1,3-diol (4I)

¹**H** NMR (400 MHz, CDCl₃) δ 7.29–7.21 (m, 5H), 7.19–7.14 (m, 2H), 6.33 (dd, J = 2.0, 0.9 Hz, 1H), 5.15 (d, J = 1.4 Hz, 1H), 4.50 (s, 1H), 3.96 (d, J = 11.2 Hz, 2H), 3.87 (d, J = 11.2 Hz, 2H), 2.98 (brs, 2H), 2.57 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.8, 141.3, 139.1, 134.7, 128.3, 127.8, 127.1, 126.4, 114.7, 108.1, 66.8, 47.5, 39.6.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₃ [M+Na]⁺ 281.1148, found 281.1143.

2-(2-bromophenyl)-2-(2-phenylallyl)propane-1,3-diol (4J)

Diisobutyl aluminium hydride (DIBAH) (8.0 eq.) was used instead of LiAlH₄ in the reduction step.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.0, 0.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.13–7.08 (m, 6H), 6.97 (dd, J = 7.2, 1.6 Hz, 1H), 5.05 (d, J = 1.8 Hz, 1H), 4.93 (s, 1H), 4.46 (d, J = 11.6 Hz, 2H), 3.92 (d, J = 11.2 Hz, 2H), 3.14 (s, 2H), 2.34 (brs, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 142.3, 138.4, 135.7, 131.9, 128.3, 128.0, 127.2, 127.1, 126.3, 122.4, 117.4, 68.0, 50.0, 36.5.

HRMS (ESI) m/z calcd. for C₁₈H₁₉BrNaO₂ [M+Na]⁺ 369.0461, found 369.0456.

2-(3-bromophenyl)-2-(2-phenylallyl)propane-1,3-diol (4K)

Diisobutyl aluminium hydride (DIBAH) (8.0 eq.) was used instead of LiAlH₄ in the reduction step.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23–7.14 (m, 5H), 7.10–7.07 (m, 3H), 7.02 (t, *J* = 8.0 Hz, 1H), 5.08 (s, 1H), 4.78 (s, 1H), 3.83 (d, *J* = 11.2 Hz, 2H), 3.75 (d, *J* = 11.2 Hz, 2H), 2.83 (brs, 2H), 2.73 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 143.5, 142.2, 130.5, 129.6, 129.3, 128.0, 127.2, 126.2, 125.8, 122.4, 117.7, 67.0, 47.8, 40.4.

HRMS (ESI) m/z calcd. for C₁₈H₁₉BrNaO₂ [M+Na]⁺ 369.0461, found 369.0456.

2-(4-bromophenyl)-2-(2-phenylallyl)propane-1,3-diol (4L)

Diisobutyl aluminium hydride (DIBAH) (8.0 eq.) was used instead of LiAlH₄ in the reduction step.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.21–7.19 (m, 3H), 7.14–7.12 (m, 2H), 7.07 (d, J = 8.2 Hz, 2H), 5.10 (s, 1H), 4.77 (s, 1H), 3.90 (d, J = 11.2 Hz, 2H), 3.82 (d, J = 11.2 Hz, 2H), 2.78 (s, 2H), 2.29 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.4, 140.1, 131.3, 129.0, 128.2, 127.2, 126.3, 120.4, 117.9, 67.6, 47.9, 40.6.

HRMS (ESI) m/z calcd. for C₁₈H₁₉BrNaO₂ [M+Na]⁺ 369.0461, found 369.0456.

2-(2-phenylallyl)-2-(3-(trifluoromethyl)phenyl)propane-1,3-diol (4M)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44–7.29 (m, 4H), 7.16–7.14 (m, 3H), 7.11–7.08 (m, 2H), 5.10 (s, 1H), 4.81 (s, 1H), 4.03–4.00 (m, 2H), 3.95–3.89 (m, 2H), 2.84 (d, *J* = 6.7 Hz, 2H), 2.30 (brs, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 144.7, 142.13, 142.09, 130.7, 130.4 (q, *J* = 31.6 Hz), 128.6, 128.2, 127.3, 126.2, 124.1 (q, *J* = 270.8 Hz), 124.1 (q, *J* = 3.8 Hz), 123.2 (q, *J* = 3.9 Hz), 117.9, 67.6, 47.9, 40.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₉H₁₉F₃NaO₂ [M+Na]⁺ 359.1229, found 359.1225.

2-(naphthalen-2-yl)-2-(2-phenylallyl)propane-1,3-diol (4N)

¹**H NMR** (400 MHz, CDCl₃) δ 7.88–7.74 (m, 4H), 7.65 (s, 1H), 7.46–7.44 (m, 3H), 7.21–7.12 (m, 4H), 5.07 (s,1H), 4.77 (s, 1H), 4.10–4.07 (m, 2H), 3.99–3.95 (m, 2H), 2.95 (d, *J* = 3.6 Hz, 2H), 2.05 (brs, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 144.9, 142.6, 138.3, 133.3, 132.0, 128.2, 128.1, 128.0, 127.31, 127.25, 126.5, 126.3, 125.9, 125.8, 124.9, 117.8, 67.9, 48.5, 40.3. HRMS (ESI) m/z calcd. for C₂₂H₂₂NaO₂ [M+Na]⁺ 341.1512, found 341.1507.

2-(2-phenylallyl)-2-(thiophen-3-yl)propane-1,3-diol (4O)

¹**H NMR** (400 MHz, CDCl₃) δ 7.23–7.18 (m, 6H), 6.98–6.93 (m, 2H), 5.15 (d, *J* = 1.6 Hz, 1H), 4.85 (s, 1H), 3.86–3.80 (m, 4H), 2.87 (s, 2H), 2.07 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 142.6, 142.4, 128.2, 127.3, 126.2, 125.6, 121.5, 117.7, 67.6, 47.3, 39.7.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂S [M+Na]⁺ 297.0920, found 297.0916.

2-(furan-3-yl)-2-(2-phenylallyl)propane-1,3-diol (4P)

¹**H** NMR (400 MHz, CDCl₃) δ 7.26–7.19 (m, 6H), 7.10 (s, 1H), 6.21 (s, 1H), 5.18 (d, J = 1.6 Hz, 1H), 4.93 (s, 1H), 3.64 (s, 4H), 2.77 (s, 2H), 2.52 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.8, 142.7, 139.6, 128.1, 127.2, 126.2, 125.6, 117.7, 108.8, 66.7, 44.1, 38.9.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}NaO_3 [M+Na]^+ 281.1148$, found 281.1144.

ethyl 2-(-2,6-dihydroxy-1-(2-phenylallyl)cyclohexyl)acetate (8A)

¹**H NMR** (400 MHz, DMSO) δ 7.41 (d, J = 7.3 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 7.24–7.19 (m, 1H), 5.30–5.24 (m, 2H), 4.68 (brs, 2H), 3.82 (q, J = 7.1 Hz, 2H), 3.71–3.67 (m, 2H), 2.90 (s, 2H), 2.21 (s, 2H), 1.71–1.66 (m, 1H), 1.59–1.53 (m, 2H), 1.50–1.42 (m, 2H), 1.21–1.13 (m, 1H), 1.05 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO, 80 °C) δ 171.7, 147.3, 144.0, 128.2, 127.2, 126.9, 118.2, 71.5, 59.6, 45.0, 36.5, 33.6, 29.3, 16.8, 14.4.

HRMS (ESI) m/z calcd. for C₁₉H₂₇O₄ [M+H]⁺ 319.1904, found 319.1904.

The relative configuration of **8A** was determined by X-ray experiment (see Supplementary Figure 3).

ethyl 2-(1-(2-([1,1'-biphenyl]-3-yl)allyl)-2,6-dihydroxycyclohexyl)acetate (8B)

¹**H NMR** (400 MHz, DMSO) δ 7.72–7.68 (m, 3H), 7.53 (dt, J = 7.1, 1.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.43–7.33 (m, 3H), 5.37 (d, J = 2.2 Hz, 1H), 5.33 (d, J = 1.9 Hz, 1H), 4.80 (brs, 2H), 3.81–3.75 (m, 4H), 2.99 (s, 2H), 2.27 (s, 2H), 1.72 (s, 1H), 1.62–1.57 (m, 2H), 1.54–1.46 (m, 2H), 1.23–1.14 (m, 1H), 1.02 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO, 80 °C) δ 171.7, 147.1, 144.6, 141.1, 140.3, 129.2, 128.8, 127.7, 127.2, 126.1, 125.7, 125.6, 118.6, 71.6, 59.6, 45.0, 36.6, 33.8, 29.3, 16.6, 14.3.

HRMS (ESI) m/z calcd. for $C_{25}H_{31}O_4 [M+H]^+ 395.2217$, found 395.2218.

3.3 General Procedure A: Cu/CPA-catalyzed enantioselective desymmetrising radical oxytrifluoromethylation of olefinic 1,3-diols

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate 1 (0.2 mmol, 1.0 eq.), Cu₂O (2.9 mg, 0.02 mmol, 10 mol%), chiral phosphoric acid (*R*)-A8 (21.6 mg, 0.03 mmol, 15 mol%), P7 (30.9 mg, 0.08 mmol, 40 mol%), Togni's reagent 2a (99.0 mg, 0.3 mmol, 1.5 eq.), and AcO'Pr (2.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by a silica gel chromatography to afford the desired product 3.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

The racemate was prepared by following the same procedure as described above using substrate 1 (0.1 mmol, 1.0 eq.), Togni's reagent 2a (49.5 mg, 0.15 mmol, 1.5 eq.) CuI (3.8 mg, 0.02 mmol, 20 mol%) and diphenyl phosphate (5.0 mg, 0.02 mmol, 20 mol%) at 25 °C in EtOAc (1.0 mL). Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography to afford the desired product 3 as an inseparable mixture of diastereomers.

((2*S*,4*R*)-2-phenyl-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3A) Product 3A was obtained as a colorless oil in 79% (41.0 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_D^{27} = -42 \ (c \ 1.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, λ = 210 nm), *t*_R (major) = 32.12 min, *t*_R (minor) = 28.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40–7.33 (m, 4H), 7.26 (t, *J* = 7.0 Hz, 1H), 3.98 (t, *J* = 8.4 Hz, 1H), 3.78 (t, *J* = 7.9 Hz, 1H), 3.67–3.59 (m, 2H), 2.73 (d, *J* = 10.8 Hz, 1H), 2.67 (d, *J* = 10.8 Hz, 1H), 2.57 (dd, *J* = 12.3, 7.4 Hz, 1H), 2.38–2.29 (m, 1H), 1.95 (dd, *J* = 12.0, 10.0 Hz, 1H), 1.89 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 128.3, 127.3, 125.26 (q, *J* = 276.6 Hz), 125.21, 83.4 (q, *J* = 2.1 Hz), 69.7, 64.4, 45.4 (q, *J* = 26.4 Hz), 40.9, 40.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C13H15F3NaO2 [M+Na]⁺ 283.0916, found: 283.0914.

((2*S*,4*R*)-2-(*o*-tolyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3B)

Product **3B** was obtained as a colorless oil in 66% (36.2 mg, 0.13 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -40 \ (c \ 0.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 35.09 min, t_R (minor) = 39.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57–7.54 (m, 1H), 7.20–7.17 (m, 3H), 3.98 (t, *J* = 8.1 Hz, 1H), 3.84 (t, *J* = 8.8 Hz, 1H), 3.66 (d, *J* = 6.6 Hz, 2H), 2.88–2.73 (m, 2H), 2.59 (dd, *J* = 12.5, 7.8 Hz, 1H), 2.42 (s, 3H), 2.39–2.32 (m, 1H), 2.04 (dd, *J* = 12.5, 7.9 Hz, 1H), 1.68 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 133.7, 132.3, 127.5, 125.9, 125.8, 125.4 (q, J = 276.7 Hz), 83.6 (q, J = 2.0 Hz), 69.4, 64.4, 43.5 (q, J = 26.2 Hz), 41.4, 40.8, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.8 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₇F₃NaO₂ [M+Na]⁺ 297.1073, found: 297.1070.

((2S,4R)-2-(m-tolyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3C)

Product **3C** was obtained as a colorless oil in 73% (40.0 mg, 0.15 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -16 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 96/4, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 32.89 min, t_R (minor) = 31.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25–7.16 (m, 3H), 7.07 (d, *J* = 7.2 Hz, 1H), 3.98 (t, *J* = 8.4 Hz, 1H), 3.77 (t, *J* = 7.9 Hz, 1H), 3.67–3.59 (m, 2H), 2.71 (d, *J* = 10.8 Hz, 1H),
2.66 (d, J = 10.8 Hz, 1H), 2.56 (dd, J = 12.3, 7.4 Hz, 1H), 2.38–2.30 (m, 4H), 1.97–1.91 (m, 1H), 1.86 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 143.6, 137.9, 128.1, 128.0, 125.8, 125.3 (q, J = 276.5 Hz), 122.3, 83.4 (q, J = 2.1 Hz), 69.7, 64.4, 45.4 (q, J = 26.3 Hz), 40.9, 40.8, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₇F₃NaO₂ [M+Na]⁺ 297.1073, found: 297.1072.

((2S,4R)-2-(p-tolyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3D)

Product **3D** was obtained as a colorless oil in 80% (43.8 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -25 \ (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 30.76 min, t_R (minor) = 38.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 3.96 (t, J = 8.4 Hz, 1H), 3.78 (t, J = 8.4 Hz, 1H), 3.69–3.61 (m, 2H), 2.71 (d, J = 10.8 Hz, 1H), 2.66 (d, J = 10.8 Hz, 1H), 2.57 (dd, J = 12.3, 7.5 Hz, 1H), 2.39–2.32 (m, 4H), 1.93 (dd, J = 12.3, 9.6 Hz, 1H), 1.62 (brs, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 140.4, 137.0, 129.0, 125.3 (q, J = 276.6 Hz), 125.2, 83.4 (q, J = 2.6 Hz), 69.6, 64.6, 45.5 (q, J = 26.3 Hz), 40.9, 40.8 (q, J = 1.2 Hz), 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.5 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₇F₃NaO₂ [M+Na]⁺ 297.1073, found: 297.1071.

((2*S*,4*R*)-2-(3-methoxyphenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)metha nol (3E)

Product **3E** was obtained as a colorless oil in 83% (48.1 mg, 0.17 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -23 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 210 nm), *t*_R (major) = 40.77 min, *t*_R (minor) = 44.54 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 8.0 Hz, 1H), 6.98 (t, *J* = 2.1 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 6.81 (dd, *J* = 8.2, 2.5 Hz, 1H), 4.00 (t, *J* = 8.4 Hz, 1H), 3.82 (s, 3H), 3.81–3.77 (m, 1H), 3.69–3.61 (m, 2H), 2.72 (dd, *J* = 10.8, 1.8 Hz, 1H), 2.66 (dd,

J = 10.8, 1.5 Hz, 1H), 2.56 (dd, *J* = 12.3, 7.4 Hz, 1H), 2.42–2.30 (m, 1H), 1.95 (dd, *J* = 12.3, 9.6 Hz, 1H), 1.64 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.6, 145.4, 129.4, 125.3 (q, *J* = 276.6 Hz), 117.6, 112.3, 111.4, 83.4 (q, *J* = 2.2 Hz), 69.8, 64.4, 55.2, 45.3 (q, *J* = 26.4 Hz), 40.91 (q, *J* = 1.2 Hz), 40.86.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.5 (t, *J* = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₇F₃NaO₃ [M+Na]⁺ 313.1022, found: 313.1018.

((2*S*,4*R*)-2-([1,1'-biphenyl]-3-yl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)met hanol (3F)

Product **3F** was obtained as a colorless oil in 80% (53.8 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -52 (c 1.5, CHCl_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 24.14 min, *t*_R (minor) = 32.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64–7.58 (m, 3H), 7.51–7.34 (m, 6H), 4.03 (t, J = 8.4 Hz, 1H), 3.82 (dd, J = 8.7, 7.2 Hz, 1H), 3.70–3.62 (m, 2H), 2.78 (dd, J = 10.7, 2.0 Hz, 1H), 2.72 (dd, J = 10.8, 1.7 Hz, 1H), 2.63 (dd, J = 12.3, 7.4 Hz, 1H), 2.44–2.33 (m, 1H), 2.00 (dd, J = 12.4, 9.6 Hz, 1H), 1.65 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.1, 141.3, 141.0, 128.7, 127.4, 127.2, 126.2, 125.3 (q, *J* = 276.5 Hz), 124.2, 124.1, 83.5 (q, *J* = 2.3 Hz), 69.8, 64.4, 45.5 (q, *J* = 26.5 Hz), 41.0, 40.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.3 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₉H₁₉F₃NaO₂ [M+Na]⁺ 359.1229, found: 359.1226.

((2*S*,4*R*)-2-(3-fluorophenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methano l (3G)

Product **3G** was obtained as a colorless oil in 72% (40.0 mg, 0.14 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -26$ (*c* 1.2, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 22.04 min, t_R (minor) = 20.59 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34–7.29 (m, 1H), 7.16–7.14 (m, 2H), 6.96 (t, *J* = 7.9 Hz, 1H), 3.99 (t, *J* = 8.4 Hz, 1H), 3.80 (t, *J* = 8.0 Hz, 1H), 3.69–3.62 (m, 2H), 2.72 (d, *J* = 10.6 Hz, 1H), 2.67 (d, *J* = 10.7 Hz, 1H), 2.54 (dd, *J* = 12.4, 7.4 Hz, 1H), 2.39–2.31 (m, 1H), 1.97 (t, *J* = 10.8 Hz, 1H), 1.68 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 244.3 Hz), 146.4 (d, *J* = 6.2 Hz), 129.9 (d, *J* = 8.0 Hz), 125.1 (q, *J* = 276.3 Hz), 120.9 (d, *J* = 2.9 Hz), 114.2 (d, *J* = 21.0 Hz), 112.6 (d, *J* = 22.7 Hz), 83.1 (q, *J* = 1.8 Hz), 69.8, 64.2, 45.3 (q, *J* = 26.7 Hz), 41.2, 40.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.5 (t, J = 10.8 Hz, 3F), -112.7–-112.8 (m, 1F). **HRMS** (ESI) calcd for C₁₃H₁₄F₄NaO₂ [M+Na]⁺ 301.0822, found: 301.0822.

((2*S*,4*R*)-2-(4-fluorophenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methano l (3H)

Product **3H** was obtained as a colorless oil in 76% (42.3 mg, 0.15 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_D^{27} = -28 (c \ 1.0, \text{CHCl}_3).$

HPLC analysis: Chiralcel AS3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 22.39 min, t_R (minor) = 24.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40–7.34 (m, 2H), 7.06–7.00 (m, 2H), 3.96 (t, *J* = 8.4 Hz, 1H), 3.79 (dd, *J* = 8.7, 7.1 Hz, 1H), 3.70–3.62 (m, 2H), 2.71 (d, *J* = 10.7 Hz, 1H), 2.66 (d, *J* = 10.8 Hz, 1H), 2.56 (dd, *J* = 12.4, 7.4 Hz, 1H), 2.40–2.31 (m, 1H), 1.94 (dd, *J* = 12.4, 9.6 Hz, 1H), 1.65 (brs, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 244.5 Hz), 139.0 (d, J = 3.1 Hz), 127.1 (d, J = 8.0 Hz), 125.2 (q, J = 276.4 Hz), 115.1 (d, J = 21.3 Hz), 83.1 (q, J = 2.2 Hz), 69.6, 64.4, 45.6 (q, J = 26.3 Hz), 41.1, 40.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.5 (t, J = 10.8 Hz, 3F), -115.60–-115.64 (m, 1F). HRMS (ESI) calcd for C₁₃H₁₄F₄NaO₂ [M+Na]⁺ 301.0822, found: 301.0822.

((2*S*,4*R*)-2-(3-iodophenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3I)

Product **3I** was obtained as a colorless oil in 72% (55.6 mg, 0.14 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -20 (c \ 1.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 230 nm), *t*_R (major) = 12.33 min, *t*_R (minor) = 14.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 3.99 (t, J = 8.4 Hz, 1H), 3.79 (t, J = 8.0 Hz, 1H), 3.69–3.62 (m, 2H), 2.70 (d, J = 10.7 Hz, 1H), 2.65 (d, J = 10.7 Hz, 1H), 2.52 (dd, J = 12.4, 7.4 Hz, 1H), 2.40–2.29 (m, 1H), 1.96 (dd, J = 12.1, 10.0 Hz, 1H), 1.65 (brs, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.1, 136.4, 134.4, 130.1, 125.1 (q, J = 276.6 Hz), 124.6, 94.4, 82.9 (q, J = 2.2 Hz), 69.8, 64.2, 45.3 (q, J = 26.6 Hz), 41.0 (q, J = 1.1 Hz), 40.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.7 Hz, 3F). **HRMS** (ESI) calcd for C₁₃H₁₄F₃INaO₂ [M+Na]⁺ 408.9883, found: 408.9883.

((2*S*,4*R*)-2-(2,2,2-trifluoroethyl)-2-(3-(trifluoromethyl)phenyl)tetrahydrofuran-4-yl)methanol (3J)

Product **3J** was obtained as a colorless oil in 65% (42.6 mg, 0.13 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -22 (c 1.3, CHCl_3).$

HPLC analysis: Chiralcel AS3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 29.85 min, t_R (minor) = 31.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 4.00 (t, J = 8.4 Hz, 1H), 3.83 (dd, J = 8.7, 7.4 Hz, 1H), 3.71–3.64 (m, 2H), 2.75 (d, J = 10.6 Hz, 1H), 2.69 (d, J = 10.7 Hz, 1H), 2.57 (dd, J = 12.5, 7.4 Hz, 1H), 2.40–2.28 (m, 1H), 2.02 (dd, J = 12.5, 9.7 Hz, 1H), 1.64 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 130.8 (q, *J* = 32.0 Hz), 128.9, 128.8, 125.1 (q, *J* = 276.5 Hz), 124.3 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 270.6 Hz), 122.2 (q, *J* = 3.7 Hz), 83.2 (q, *J* = 2.4 Hz), 69.9, 64.1, 45.4 (q, *J* = 26.7 Hz), 41.3 (q, *J* = 1.6 Hz), 40.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.5 (t, *J* = 10.7 Hz, 3F), -62.5 (s, 3F).

HRMS (ESI) calcd for $C_{14}H_{15}F_6O_2$ [M+H]⁺ 329.0971, found: 329.0967.

hanol (3K)

Product **3K** was obtained as a colorless oil in 80% (46.1 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_D^{27} = -22 \ (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 26.57 min, t_R (minor) = 33.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.90 (s, 1H), 4.00 (t, J = 8.3 Hz, 1H), 3.77 (t, J = 7.9 Hz, 1H), 3.68–3.61 (m, 2H), 2.70 (d, J = 10.8 Hz, 1H), 2.65 (d, J = 10.8 Hz, 1H), 2.54 (dd, J = 12.3, 7.4 Hz, 1H), 2.40–2.32 (m, 7H), 1.94 (t, J = 11.2 Hz, 1H), 1.71 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 143.7, 137.7, 128.9, 125.3 (q, *J* = 276.4 Hz), 122.9, 83.4 (q, *J* = 2.2 Hz), 69.7, 64.5, 45.3 (q, *J* = 26.2 Hz), 40.9, 40.7, 21.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₅H₁₉F₃NaO₂ [M+Na]⁺ 311.1229, found: 311.1225.

((2S,4R)-2-(naphthalen-2-yl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methan ol (3L)

Product **3L** was obtained as a colorless oil in 74% (45.9 mg, 0.15 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -11 \ (c \ 0.4, \text{CHCl}_3).$

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 94/6, flow rate 0.5 mL/min, λ = 270 nm), t_R (major) = 32.51 min, t_R (minor) = 27.45 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.85–7.82 (m, 3H), 7.52–7.45 (m, 3H), 4.06 (t, J = 8.4 Hz, 1H), 3.85 (dd, J = 8.7, 7.2 Hz, 1H), 3.72–3.64 (m, 2H), 2.83 (d, J = 10.8 Hz, 1H), 2.77 (d, J = 10.8 Hz, 1H), 2.70 (dd, J = 12.4, 7.4 Hz, 1H), 2.44–2.32 (m, 1H), 2.03 (dd, J = 12.4, 9.7 Hz, 1H), 1.58 (brs, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 140.7, 133.0, 132.5, 128.20, 128.16, 127.5, 126.3, 126.1, 125.2 (q, *J* = 276.4 Hz), 124.2, 123.4, 83.6 (q, *J* = 1.8 Hz), 69.8, 64.5, 45.3 (q, *J* = 26.5 Hz), 40.9.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.6 Hz, 3F).

HRMS (ESI) calcd for C₁₇H₁₇F₃NaO₂ [M+Na]⁺ 333.1073, found: 333.1069.

((2*S*,4*R*)-2-(naphthalen-1-yl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methan ol (3M)

Product **3M** was obtained as a colorless oil in 65% (40.3 mg, 0.13 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -20$ (*c* 0.4, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 270 nm), *t*_R (major) = 12.41 min, *t*_R (minor) = 16.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.54–7.43 (m, 3H), 4.07 (t, *J* = 8.0 Hz, 1H), 3.91 (dd, *J* = 8.7, 6.1 Hz, 1H), 3.68 (d, *J* = 6.5 Hz, 2H), 3.11–3.00 (m, 2H), 2.91 (dd, *J* = 12.1, 7.3 Hz, 1H), 2.40–2.26 (m, 2H), 1.82 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 138.9, 134.8, 129.7, 129.4, 128.8, 125.9, 125.5 (q, *J* = 276.8 Hz) 125.10, 125.07, 124.5, 123.9, 83.7 (q, *J* = 1.8 Hz), 69.1, 64.4, 44.3 (q, *J* = 26.2 Hz), 41.6, 40.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.6 (t, J = 10.9 Hz, 3F).

HRMS (ESI) calcd for $C_{17}H_{17}F_3NaO_2 [M+Na]^+ 333.1073$, found: 333.1072.

Ethyl 3-((2*S*,4*R*)-4-(hydroxymethyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-2-yl) benzoate (3N)

Product **3N** was obtained as a colorless oil in 70% (46.5 mg, 0.14 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 3/1) following the general procedure.

 $[\alpha]_D^{27} = -25 \ (c \ 1.0, \text{CHCl}_3).$

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 17.18 min, t_R (minor) = 19.10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (t, J = 1.8 Hz, 1H), 7.96 (dt, J = 7.8, 1.4 Hz, 1H), 7.65–7.62 (m, 1H), 7.43 (t, J = 7.8 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.00 (t, J = 8.4 Hz, 1H), 3.82 (dd, J = 8.7, 7.3 Hz, 1H), 3.70–3.63 (m, 2H), 2.76 (dd, J = 10.7, 1.8 Hz, 1H), 2.70 (dd, J = 10.7, 1.6 Hz, 1H), 2.60 (dd, J = 12.5, 7.4 Hz, 1H), 2.37–2.28 (m, 1H), 2.00 (dd, J = 12.4, 9.7 Hz, 1H), 1.78 (brs, 1H), 1.41 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 166.5, 144.0, 130.6, 129.8, 128.6, 128.4, 126.4, 125.1 (q, *J* = 276.5 Hz), 83.3 (q, *J* = 1.8 Hz), 69.8, 64.2, 61.1, 45.3 (q, *J* = 26.6 Hz), 41.2, 40.7, 14.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F). **HRMS** (ESI) calcd for C₁₆H₁₉F₃NaO₄ [M+Na]⁺ 355.1128, found: 355.1123.

3-((2*S*,4*R*)-4-(hydroxymethyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-2-yl)-N,N-dimethylbenzamide (**3O**)

Product **3O** was obtained as a yellow oil in 75% (49.6 mg, 0.15 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 1/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{D}^{27} = -26 (c \ 1.0, \text{CHCl}_3).$

HPLC analysis: Chiralcel INB (*n*-Hexane/*i*-PrOH = 75/25, flow rate 0.3 mL/min, λ = 230 nm), t_R (major) = 27.51 min, t_R (minor) = 40.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45–7.38 (m, 3H), 7.32 (d, J = 7.3 Hz, 1H), 3.96 (t, J = 8.4 Hz, 1H), 3.78 (dd, J = 8.7, 7.2 Hz, 1H), 3.63–3.56 (m, 2H), 3.11 (s, 3H), 2.93 (s, 3H), 2.74 (dd, J = 10.7, 3.0 Hz, 1H), 2.68 (dd, J = 10.7, 2.7 Hz, 1H), 2.55 (dd, J = 12.4, 7.3 Hz, 1H), 2.33–2.24 (m, 1H), 1.93 (dd, J = 12.4, 9.6 Hz, 1H), 1.26 (brs, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 143.7, 136.3, 128.6, 126.5, 126.0, 125.2 (q, J = 276.5 Hz), 123.9, 83.2 (q, J = 1.5 Hz), 69.9, 64.0, 45.5 (q, J = 26.5 Hz), 41.5, 40.7, 39.4, 35.3.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₆H₂₁F₃NO₃ [M+H]⁺ 332.1468, found: 332.1463.

3-((2*S*,4*R*)-4-(hydroxymethyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-2-yl)benzo nitrile (**3**P)

Product **3P** was obtained as a colorless oil in 84% (47.9 mg, 0.17 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 3/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_{p}^{27} = -35 (c \ 1.3, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 210 nm), *t*_R (major) = 33.39 min, *t*_R (minor) = 35.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 3.99 (t, J = 8.4 Hz, 1H), 3.84 (t, J = 8.0 Hz, 1H), 3.67 (d, J = 6.3 Hz, 2H), 2.74 (d, J = 10.6 Hz, 1H), 2.69 (d, J = 10.6 Hz, 1H), 2.53 (dd, J = 12.5, 7.4 Hz, 1H), 2.38–2.27 (m, 1H), 2.03 (dd, J = 12.6, 9.6 Hz, 1H), 1.78 (brs, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.2, 131.1, 129.9, 129.22, 129.18, 124.9 (q, *J* = 276.6 Hz), 118.7, 112.5, 82.9 (q, *J* = 2.3 Hz), 69.9, 63.8, 45.3 (q, *J* = 26.9 Hz), 41.4, 40.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.7 Hz, 3F).

HRMS (ESI) calcd for C₁₃H₁₄F₃NNaO₂ [M+Na]⁺ 308.0869, found: 308.0864.

((2*S*,4*R*)-2-(3-nitrophenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3Q)

Product **3Q** was obtained as a yellow oil in 82% (50.0 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 1/1) following the general procedure.

 $[\alpha]_{p}^{27} = -26 (c \ 1.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel OJ-H (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 50.29 min, t_R (minor) = 58.03 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.86 (t, J = 8.2 Hz, 1H), 3.68 (d, J = 6.3 Hz, 2H), 2.79 (d, J = 10.6 Hz, 1H), 2.73 (d, J = 10.6 Hz, 1H), 2.59 (dd, J = 12.6, 7.4 Hz, 1H), 2.38–2.31 (m, 1H), 2.07 (t, J = 10.0 Hz, 1H), 1.82 (brs, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 148.4, 146.0, 131.6, 129.4, 124.9 (q, J = 276.5 Hz), 122.5, 120.6, 83.0 (q, J = 1.8 Hz), 70.0, 63.8, 45.3 (q, J = 26.8 Hz), 41.6, 40.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.6 Hz, 3F).

HRMS (ESI) calcd for C₁₃H₁₅F₃NO₄ [M+H]⁺ 306.0948, found: 306.0944.

3-((2*S*,4*R*)-4-(hydroxymethyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-2-yl)benzal dehyde (3R)

Product **3R** was obtained as a colorless oil in 71% (40.9 mg, 0.14 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 2/1) following the general procedure, except that the reaction was stirred at 50 °C.

 $[\alpha]_D^{27} = -45 \ (c \ 3.1, \text{CHCl}_3).$

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 29.33 min, *t*_R (minor) = 33.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.93 (s, 1H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 4.01 (t, *J* = 8.4 Hz, 1H), 3.84 (t, *J* = 8.0 Hz, 1H), 3.71–3.64 (m, 2H), 2.77 (d, *J* = 10.6 Hz, 1H), 2.72 (d, *J* = 10.7 Hz, 1H),

2.61 (dd, *J* = 12.5, 7.4 Hz, 1H), 2.40–2.29 (m, 1H), 2.02 (t, *J* = 9.6 Hz, 1H), 1.94 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 192.3, 144.9, 136.4, 131.5, 129.1, 129.0, 126.4, 125.1 (q, J = 276.3 Hz), 83.1 (q, J = 2.6 Hz), 69.9, 64.1, 45.4 (q, J = 26.6 Hz), 41.4, 40.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.6 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₆F₃O₃ [M+H]⁺ 289.1046, found: 289.1042.

(3-((2*S*,4*R*)-4-(hydroxymethyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-2-yl)phen yl)methanol (3S)

Product **3S** was obtained as a colorless oil in 79% (45.8 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 1/1) following the general procedure.

 $[\alpha]_D^{27} = -13$ (*c* 0.6, CHCl₃).

HPLC analysis: Chiralcel AS3 (*n*-Hexane/*i*-PrOH = 87/13, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 29.11 min, t_R (minor) = 26.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.37–7.31 (m, 2H), 7.28–7.26 (m, 1H), 4.70 (s, 2H), 3.98 (t, J = 8.4 Hz, 1H), 3.78 (dd, J = 8.7, 7.3 Hz, 1H), 3.68–3.59 (m, 2H), 2.73 (dd, J = 10.8, 1.6 Hz, 1H), 2.68 (dd, J = 10.7, 1.3 Hz, 1H), 2.57 (dd, J =12.3, 7.4 Hz, 1H), 2.39–2.28 (m, 1H), 1.95 (dd, J = 12.4, 9.7 Hz, 1H), 1.87 (brs, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.0, 140.9, 128.5, 125.9, 125.2 (q, J = 276.5 Hz), 124.6, 123.7, 83.4 (q, J = 2.3 Hz), 69.8, 65.2, 64.4, 45.4 (q, J = 26.5 Hz), 41.1, 40.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₁₄H₁₈F₃O₃ [M+H]⁺ 291.1203, found: 291.1200.

((2*S*,4*R*)-2-(3-((*E*)-styryl)phenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)met hanol (3T)

Product **3T** was obtained as a colorless oil in 70% (50.7 mg, 0.14 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -10 \ (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel ID (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 210 nm), t_R (major) = 29.11 min, t_R (minor) = 26.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56–7.51 (m, 3H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.39–7.33 (m, 3H), 7.28–7.25 (m, 2H), 7.13 (s, 2H), 4.04 (t, *J* = 8.5 Hz, 1H), 3.82 (t, *J* = 8.0 Hz,

1H), 3.71–3.63 (m, 2H), 2.76 (d, J = 10.8 Hz, 1H), 2.71 (d, J = 10.7 Hz, 1H), 2.61 (dd, J = 12.4, 7.4 Hz, 1H), 2.44–2.30 (m, 1H), 1.99 (t, J = 10.4 Hz, 1H), 1.72 (brs, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 144.1, 137.4, 137.1, 129.0, 128.7, 128.5, 127.7, 126.5, 125.4, 125.3 (q, J = 276.5 Hz), 124.6, 123.4, 83.4 (q, J = 2.4 Hz), 69.8, 64.4, 45.4 (q, J = 26.4 Hz), 40.94, 40.87.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) calcd for C₂₁H₂₁F₃NaO₂ [M+Na]⁺ 385.1386, found: 385.1379.

((2*S*,4*R*)-2-(3-(phenylethynyl)phenyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (3U)

Product **3U** was obtained as a colorless oil in 78% (56.2 mg, 0.16 mmol) yield in a 0.20 mmol scale synthesis by column chromatography (PE/EA = 4/1) following the general procedure.

 $[\alpha]_{D}^{27} = -8 (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel OJ-H (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.4 mL/min, λ = 280 nm), t_R (major) = 37.18 min, t_R (minor) = 30.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58–7.53 (m, 3H), 7.45 (dt, J = 7.1, 1.6 Hz, 1H), 7.39–7.32 (m, 5H), 4.02 (t, J = 8.4 Hz, 1H), 3.81 (dd, J = 8.7, 7.3 Hz, 1H), 3.70–3.63 (m, 2H), 2.74 (dd, J = 10.7, 1.5 Hz, 1H), 2.69 (dd, J = 10.7, 1.2 Hz, 1H), 2.59 (dd, J = 12.4, 7.4 Hz, 1H), 2.42–2.33 (m, 1H), 1.98 (dd, J = 12.4, 9.7 Hz, 1H), 1.62 (brs, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.9, 131.6, 130.6, 128.5, 128.41, 128.35, 125.3, 125.2 (q, J = 276.6 Hz), 123.3, 123.0, 89.5, 89.2, 83.2 (q, J = 2.1 Hz), 69.8, 64.3, 45.3 (q, J = 26.3 Hz), 41.0, 40.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.7 Hz, 3F).

HRMS (ESI) calcd for C₂₁H₂₀F₃O₂ [M+H]⁺ 361.1410, found: 361.1406.

3.4 General Procedure B: Cu/CPA-catalyzed enantioselective desymmetrising radical oxy-perfluoroalkylation of olefinic 1,3-diols

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **4** (0.1 mmol, 1.0 eq.), CuBr (1.4 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (R,R)-**A9** (11.1 mg, 0.015 mmol, 15 mol%), **2b** (20.2 mg, 0.12 mmol, 1.2 eq.) or **2c** (38.2 mg, 0.12 mmol, 1.2 eq.), Ag₂CO₃ (16.5 mg, 0.06 mmol, 0.6 eq.) and CH₂Cl₂(1.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by a silica gel chromatography to afford the desired product **5**.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

The racemate was prepared by following the same procedure as described above using substrate 1 (0.1 mmol, 1.0 eq.), **2b** or **2c** (0.12 mmol, 1.2 eq.), CuI (3.8 mg, 0.02 mmol, 20 mol%), diphenyl phosphate (5.0 mg, 0.02 mmol, 20 mol%), and Ag₂CO₃ (16.5 mg, 0.06 mmol, 0.6 eq.) at 25 °C in CH₂Cl₂ (1.0 mL). Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography to afford the desired product **5** as a mixture of diastereomers (very similar Rf values).

((2*R*,4*S*)-2,4-diphenyl-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)methanol (5Ab)

Product **5Ab** was obtained as a white solid (m.p. 101 °C) in 96% (32.3 mg, 0.10 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -12 (c \ 0.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 37.56 min, t_R (minor) = 50.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53–7.45 (m, 2H), 7.40–7.36 (m, 4H), 7.32–7.26 (m, 2H), 7.23–7.18 (m, 2H), 4.41 (d, *J* = 9.1 Hz, 1H), 4.26 (d, *J* = 9.0 Hz, 1H), 3.44 (d, *J* = 10.7 Hz, 1H), 3.35 (d, *J* = 10.8 Hz, 1H), 2.83 (d, *J* = 13.1 Hz, 1H), 2.68–2.57 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 144.8, 143.0, 128.8, 128.3, 127.2, 127.1, 127.0, 125.0, 124.99 (q, *J* = 276.8 Hz), 83.1 (q, *J* = 1.9 Hz), 73.2, 68.7, 54.0, 47.5, 45.6 (q, *J* = 25.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.5 (t, J = 10.5 Hz, 3F).

HRMS (ESI) calcd for C₁₉H₂₀O₂F₃ [M+H]⁺ 337.1410, found: 337.1398.

Another product **5Ab** was obtained in 65% yield (determined by ¹H NMR using CH₂Br₂ as an internal standard) in a 0.025 mmol scale synthesis with moderate dr (12:1) and poor ee (32%) following general procedure A using the Togni's reagent **2a** as the •CF₃ radical precursor.

((2*R*,4*S*)-4-phenyl-2-(m-tolyl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran-4-yl)metha nol (5Bb)

Product **5Bb** was obtained as a white solid (m.p. 104 °C) in 91% (31.8 mg, 0.09 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -10 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 28.03 min, t_R (minor) = 25.91 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 6.9 Hz, 2H), 7.31–7.25 (m, 4H), 7.20 (d, J = 7.8 Hz, 2H), 7.08–7.04 (m, 1H), 4.42 (d, J = 9.0 Hz, 1H), 4.26 (d, J = 8.8 Hz, 1H), 3.45 (d, J = 10.7 Hz, 1H), 3.36 (d, J = 10.0 Hz, 1H), 2.80 (d, J = 13.1 Hz, 1H), 2.68–2.56 (m, 3H), 2.38 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 144.9, 143.0, 137.9, 128.8, 128.2, 127.9, 127.1, 127.0, 125.6, 125.0 (q, *J* = 277.0 Hz), 122.1, 83.1 (q, *J* = 1.9 Hz), 73.2, 68.7, 54.0, 47.5, 45.6 (q, *J* = 25.8 Hz), 21.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI) calcd for C₂₀H₂₂O₂F₃ [M+H]⁺ 351.1566, found: 351.1557.

((2*R*,4*S*)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2,4-diphenyltetrahydrofuran-4-yl) methanol (5Ac)

Product **5Ac** was obtained as a white solid (m.p. 130 °C) in 80% (38.9 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -6 (c \ 0.3, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 97/3, flow rate 0.4 mL/min, λ = 214 nm), t_R (major) = 19.83 min, t_R (minor) = 18.19 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.7 Hz, 4H), 7.33–7.26 (m, 2H), 7.19 (d, J = 7.3 Hz, 2H), 4.41 (d, J = 9.0 Hz, 1H), 4.27 (d, J = 9.0 Hz, 1H), 3.42 (d, J = 10.8 Hz, 1H), 3.32 (d, J = 10.8 Hz, 1H), 2.88 (d, J = 13.1 Hz, 1H), 2.66–2.54 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.2, 142.9, 128.8, 128.3, 127.2, 127.1, 127.0, 125.0, 121.1–106.3 (m), 83.7, 73.1, 68.6, 54.1, 47.9, 41.7 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.8 – -113.0 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₂H₂₀O₂F₉ [M+H]⁺ 487.1314, found: 487.1306.

((2*R*,4*S*)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyl-2-(m-tolyl)tetrahydrofur an-4-yl)methanol (5Bc)

Product **5Bc** was obtained as a white solid (m.p. 143 °C) in 75% (37.5 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -18 (c \ 1.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 214 nm), t_R (major) = 25.92 min, t_R (minor) = 22.33 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.37 (t, J = 7.6 Hz, 2H), 7.33 (s, 1H), 7.31–7.23 (m, 3H), 7.21–7.18 (m, 2H), 7.09 (d, J = 7.0 Hz, 1H), 4.41 (d, J = 9.0 Hz, 1H), 4.27 (d, J = 9.0 Hz, 1H), 3.44 (d, J = 10.8 Hz, 1H), 3.34 (d, J = 10.8 Hz, 1H), 2.85 (d, J = 13.1 Hz, 1H), 2.67–2.52 (m, 3H), 2.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.3, 143.0, 137.9, 128.8, 128.2, 127.9, 127.1, 127.0, 125.6, 122.0, 120.7–106.3 (m), 83.8, 73.1, 68.6, 54.0, 47.9, 41.6 (t, *J* = 19.6 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 - -81.2 (m, 3F), -110.8 - -113.0 (m, 2F), -124.6 - -124.7 (m, 2F), -125.8 - -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₃H₂₂O₂F₉ [M+H]⁺ 501.1471, found: 501.1462.

((2*R*,4*S*)-2-(3-methoxyphenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyltetr ahydrofuran-4-yl)methanol (5C)

Product **5C** was obtained as a white solid (m.p. 146 °C) in 82% (42.3 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -12 \ (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 15.96 min, t_R (minor) = 14.87 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.6 Hz, 2H), 7.33–7.26 (m, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.12 (s, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 4.41 (d, *J* = 9.0 Hz, 1H), 4.27 (d, *J* = 9.0 Hz, 1H), 3.83 (s, 3H), 3.45 (d, *J* = 10.8 Hz, 1H), 3.36 (d, *J* = 10.8 Hz, 1H), 2.87 (d, *J* = 13.1 Hz, 1H), 2.62–2.55 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 159.6, 147.0, 142.9, 129.4, 128.8, 127.1, 127.0, 121.0–106.3 (m), 117.4, 112.3, 111.1, 83.7, 73.2, 68.6, 55.2, 54.0, 47.9, 41.6 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.9 – -113.1 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₃H₂₂O₃F₉ [M+H]⁺ 517.1420, found: 517.1408.

((2*R*,4*S*)-2-(3-fluorophenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyltetrah ydrofuran-4-yl)methanol (5D)

Product **5D** was obtained as a white solid (m.p. 134 °C) in 81% (40.8 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -10 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 12.86 min, t_R (minor) = 10.72 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.6 Hz, 2H), 7.36–7.23 (m, 4H), 7.19 (d, *J* = 7.2 Hz, 2H), 6.97 (td, *J* = 8.3, 1.9 Hz, 1H), 4.42 (d, *J* = 9.1 Hz, 1H), 4.27 (d, *J* = 9.1 Hz, 1H), 3.44 (d, *J* = 10.8 Hz, 1H), 3.34 (d, *J* = 10.8 Hz, 1H), 2.85 (d, *J* = 13.2 Hz, 1H), 2.62–2.54 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 162.8 (d, J = 245.7 Hz), 148.0 (d, J = 6.7 Hz), 142.7, 129.9 (d, J = 8.1 Hz), 128.8, 127.2, 126.9, 120.7 (d, J = 2.9 Hz), 114.2 (d, J = 21.2 Hz), 112.4 (d, J = 23.0 Hz), 121.1–106.3 (m), 83.3 (d, J = 2.1 Hz), 73.2, 68.5, 54.0, 48.1, 41.5 (t, J = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.8 – -112.9 (m, 2F), -112.4 – -112.5 (m, 1F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₂H₁₉O₂F₁₀ [M+H]⁺ 505.1220, found: 505.1214.

((2*R*,4*S*)-2-(3-iodophenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyltetrahy drofuran-4-yl)methanol (5E)

Product **5E** was obtained as a white solid (m.p. 166 °C) in 72% (44.1 mg, 0.07 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -7$ (*c* 0.3, CHCl₃).

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 240 nm), t_R (major) = 15.88 min, t_R (minor) = 13.89 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.11 (t, J = 7.8 Hz, 1H), 4.41 (d, J = 9.1 Hz, 1H), 4.26 (d, J = 9.0 Hz, 1H), 3.43 (d, J = 10.7 Hz, 1H), 3.34 (d, J = 10.8 Hz, 1H), 2.81 (d, J = 13.2 Hz, 1H), 2.68–2.46 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 147.6, 142.6, 136.4, 134.1, 130.0, 128.8, 127.2, 126.9, 124.4, 120.9–106.0 (m), 94.4, 83.1, 73.1, 68.5, 54.0, 48.0, 41.5 (t, J = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.08 – -81.13 (m, 3F), -110.7 – -112.7 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for $C_{22}H_{19}O_2F_9I [M+H]^+ 613.0281$, found: 613.0265.

((2*R*,4*S*)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyl-2-(3-(trifluoromethyl)ph enyl)tetrahydrofuran-4-yl)methanol (5F)

Product **5F** was obtained as a white solid (m.p. 140 °C) in 55% (30.5 mg, 0.06 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -12 (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 34.40 min, t_R (minor) = 27.45 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.24–7.17 (m, 2H), 4.44 (d, J = 9.1 Hz, 1H), 4.30 (d, J = 9.1 Hz, 1H), 3.43 (d, J = 10.8 Hz, 1H), 3.33 (d, J = 10.8 Hz, 1H), 2.85 (d, J = 13.2 Hz, 1H), 2.70–2.51 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 146.3, 142.4, 130.8 (q, J = 32.3 Hz), 128.9, 128.8, 128.5, 127.3, 127.0, 124.2 (q, J = 3.8 Hz), 124.1 (q, J = 270.8 Hz), 122.0 (q, J = 3.4 Hz), 120.9–106.0 (m), 83.4, 73.2, 68.6, 54.1, 48.2, 41.6 (t, J = 19.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s, 3F), -81.1 - -81.2 (m, 3F), -110.7 - -112.6 (m,

2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F). HRMS (ESI) calcd for C₂₃H₂₂F₁₂NO₂ [M+NH₄]⁺ 572.1453, found: 572.1446.

1-(3-((2*R*,4*S*)-4-(hydroxymethyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenylt etrahydrofuran-2-yl)phenyl)ethan-1-one (5G)

Product **5G** was obtained as a white solid (m.p. 98 °C) in 85% (44.9 mg, 0.09 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 2/1) following the general procedure.

 $[\alpha]_{D}^{27} = -8 (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 240 nm), *t*_R (major) = 23.02 min, *t*_R (minor) = 14.90 min.

¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.23–7.17 (m, 2H), 4.45 (d, J = 9.1 Hz, 1H), 4.29 (d, J = 9.1 Hz, 1H), 3.42 (d, J = 10.8 Hz, 1H), 3.32 (d, J = 10.8 Hz, 1H), 2.88 (d, J = 13.2 Hz, 1H), 2.69–2.54 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 198.1, 146.0, 142.6, 137.1, 129.9, 128.8, 128.6, 127.5, 127.2, 127.0, 124.7, 120.9–106.0 (m), 83.5, 73.1, 68.5, 54.1, 48.3, 41.5 (t, J = 19.6 Hz), 26.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 - -81.2 (m, 3F), -110.7 - -112.6 (m, 2F), -124.62 - -124.64 (m, 2F), -125.86 - -125.92 (m, 2F).

HRMS (ESI) calcd for C₂₄H₂₂O₃F₉ [M+H]⁺ 529.1420, found: 529.1408.

ethyl

3-((2*R*,4*S*)-4-(hydroxymethyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyltetr ahydrofuran-2-yl)benzoate (5H)

Product **5H** was obtained as a white solid (m.p. 133 °C) in 59% (32.9 mg, 0.06 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 2/1) following the general procedure.

 $[\alpha]_D^{27} = -12 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 240 nm), t_R (major) = 32.88 min, t_R (minor) = 17.22 min.

¹**H** NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 2H), 4.45 (d, *J* = 9.1 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.29 (d, *J* = 7.1 Hz, 2H), 4.29 (d,

= 9.1 Hz, 1H), 3.42 (d, *J* = 10.8 Hz, 1H), 3.33 (d, *J* = 10.8 Hz, 1H), 2.88 (d, *J* = 13.2 Hz, 1H), 2.69–2.56 (m, 3H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.5, 145.7, 142.6, 130.6, 129.5, 128.8, 128.5, 128.4, 127.2, 127.0, 126.2, 120.9–106.0 (m), 83.5, 73.1, 68.6, 61.1, 54.1, 48.3, 41.5 (t, *J* = 19.6 Hz), 14.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 - -81.2 (m, 3F), -110.8 - -112.6 (m, 2F), -124.61 - -124.63 (m, 2F), -125.8 - -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₅H₂₄O₄F₉ [M+H]⁺ 559.1525, found: 59.1516.

((2*R*,4*S*)-2-(furan-3-yl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-4-phenyltetrahydro furan-4-yl)methanol (5I)

Product **5I** was obtained as a white solid (m.p. 115 °C) in 46% (21.9 mg, 0.05 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -13 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 23.29 min, t_R (minor) = 13.97 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.41 (t, J = 1.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 7.2 Hz, 2H), 6.42 (s, 1H), 4.35 (d, J = 9.0 Hz, 1H), 4.15 (d, J = 9.0 Hz, 1H), 3.60 (d, J = 10.8 Hz, 1H), 3.54 (d, J = 10.8 Hz, 1H), 2.82 (d, J = 13.2 Hz, 1H), 2.67–2.44 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.5, 142.9, 138.6, 130.5, 128.8, 127.2, 126.9, 120.7–106.4 (m), 108.7, 79.8, 73.0, 68.6, 54.5, 46.4, 41.6 (t, *J* = 19.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.07 – -81.12 (m, 3F), -110.6 – -113.4 (m, 2F), -124.7 – -124.8 (m, 2F), -125.8 – -126.0 (m, 2F).

HRMS (ESI) calcd for C₂₀H₁₈O₃F₉ [M+H]⁺ 477.1107, found: 477.1104.

((2*R*,4*S*)-4-(2-bromophenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyltetrah ydrofuran-4-yl)methanol (5J)

Product **5J** was obtained as a white solid (m.p. 115 °C) in 88% (49.7 mg, 0.09 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -10 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ =

230 nm), t_R (major) = 13.27 min, t_R (minor) = 11.27 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 7.1 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.30 (dt, J = 15.5, 7.2 Hz, 2H), 7.20–7.11 (m, 2H), 4.69 (d, J = 9.2 Hz, 1H), 4.34 (d, J = 9.2 Hz, 1H), 3.64–3.52 (m, 2H), 3.17 (d, J = 13.3 Hz, 1H), 2.73–2.57 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.2, 141.0, 135.1, 131.0, 128.8, 128.3, 127.3, 127.2, 124.9, 122.2, 121.0–106.3 (m), 83.4, 72.9, 64.5, 55.1, 48.3, 41.2 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.3 – -81.4 (m, 3F), -111.1 – -113.1 (m, 2F), -124.8 (s, 2F), -126.0 – -126.1 (m, 2F).

HRMS (ESI) calcd for C₂₂H₁₉O₂BrF₉ [M+H]⁺ 565.0419, found: 565.0407.

((2*R*,4*S*)-4-(3-bromophenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyltetrah ydrofuran-4-yl)methanol (5K)

Product **5K** was obtained as a white solid (m.p. 115 °C) in 73% (41.2 mg, 0.07 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -20$ (*c* 1.2, CHCl₃).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 18.97 min, t_R (minor) = 16.41 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 2H), 7.45–7.32 (m, 4H), 7.31–7.22 (m, 2H), 7.13 (d, J = 7.8 Hz, 1H), 4.37 (d, J = 9.1 Hz, 1H), 4.22 (d, J = 9.1 Hz, 1H), 3.41 (d, J = 10.8 Hz, 1H), 3.32 (d, J = 10.8 Hz, 1H), 2.88 (d, J = 13.2 Hz, 1H), 2.65–2.55 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.5, 145.0, 130.2, 128.4, 127.3, 125.6, 125.0, 122.9, 120.8–106.6 (m), 83.7, 72.9, 68.2, 53.9, 47.7, 41.7 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 - -81.2 (m, 3F), -110.8 - -113.0 (m, 2F), -124.56 - -124.64 (m, 2F), -125.8 - -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₂H₁₉O₂BrF₉ [M+H]⁺ 565.0419, found: 565.0406.

((2*R*,4*S*)-4-(4-bromophenyl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyltetrah ydrofuran-4-yl)methanol (5L)

Product 5L was obtained as a white solid (m.p. 118 °C) in 86% (48.6 mg, 0.09 mmol)

yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -18 (c \ 1.3, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 97/3, flow rate 0.4 mL/min, $\lambda = 214$ nm), t_R (major) = 21.23 min, t_R (minor) = 16.21 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.50–7.48 (m, 4H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.35 (d, *J* = 9.0 Hz, 1H), 4.20 (d, *J* = 9.0 Hz, 1H), 3.38 (d, *J* = 10.5 Hz, 1H), 3.29 (d, *J* = 10.6 Hz, 1H), 2.87 (d, *J* = 13.1 Hz, 1H), 2.69–2.50 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.0, 142.2, 131.8, 131.7, 128.7, 128.4, 127.3, 124.9, 121.0, 120.8–106.3 (m), 83.8, 73.0, 68.1, 53.7, 47.7, 41.7 (t, *J* = 19.5 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.7 – -113.0 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₂H₁₉O₂BrF₉ [M+H]⁺ 565.0419, found: 565.0407.

((2*R*,4*S*)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyl-4-(3-(trifluoromethyl)ph enyl)tetrahydrofuran-4-yl)methanol (5M)

Product **5M** was obtained as a white solid (m.p. 120 °C) in 80% (44.3 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -10 \ (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 97/3, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 29.91 min, t_R (minor) = 17.47 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 7.8 Hz, 1H), 7.54–7.47 (m, 3H), 7.45 (s, 1H), 7.42–7.36 (m, 3H), 7.32–7.27 (m, 1H), 4.41 (d, J = 9.1 Hz, 1H), 4.26 (d, J = 9.1 Hz, 1H), 3.46 (d, J = 10.8 Hz, 1H), 3.37 (d, J = 10.8 Hz, 1H), 2.94 (d, J = 13.1 Hz, 1H), 2.68–2.51 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.0, 144.3, 131.0 (q, J = 32.2 Hz), 130.5, 129.1, 128.4, 127.4, 125.0, 124.0 (q, J = 270.9 Hz), 123.9 (q, J = 3.8 Hz), 123.7 (q, J = 3.8 Hz), 120.9–106.3 (m), 83.8, 73.1, 68.0, 54.0, 47.7, 41.8 (t, J = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.6 (s, 3F), -81.1 – -81.2 (m, 3F), -110.8 – -113.0 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₃H₁₉O₂F₁₂ [M+H]⁺ 555.1188, found: 555.1185.

((2*R*,4*S*)-4-(naphthalen-2-yl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyltetra hydrofuran-4-yl)methanol (5N)

Product **5N** was obtained as a white solid (m.p. 110 °C) in 64% (34.3 mg, 0.06 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -12 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 22.45 min, t_R (minor) = 12.71 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.88–7.80 (m, 3H), 7.64 (d, J = 1.4 Hz, 1H), 7.58–7.48 (m, 4H), 7.39 (t, J = 7.7 Hz, 2H), 7.33–7.27 (m, 2H), 4.51 (d, J = 9.0 Hz, 1H), 4.39 (d, J = 9.0 Hz, 1H), 3.50 (d, J = 10.9 Hz, 1H), 3.41 (d, J = 10.9 Hz, 1H), 2.97 (d, J = 13.1 Hz, 1H), 2.73 (d, J = 13.1 Hz, 1H), 2.68–2.56 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.2, 140.2, 133.1, 132.3, 128.7, 128.4, 127.8, 127.5, 127.3, 126.5, 126.1, 125.7, 125.0, 119.7–107.8 (m), 83.8, 73.2, 68.4, 54.2, 48.0, 41.7 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.8 – -112.9 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₆H₂₅O₂NF₉ [M+NH₄]⁺ 554.1736, found: 554.1730.

((2*R*,4*S*)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyl-4-(thiophen-3-yl)tetrahy drofuran-4-yl)methanol (5O)

Product **5O** was obtained as a white solid (m.p. 117 °C) in 93% (45.7 mg, 0.09 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_D^{27} = -8 (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel OX3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 240 nm), t_R (major) = 30.95 min, t_R (minor) = 32.71 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.48 (d, J = 7.6 Hz, 2H), 7.40–7.33 (m, 3H), 7.28 (t, J = 7.3 Hz, 1H), 7.15–7.08 (m, 1H), 7.05–6.99 (m, 1H), 4.30–4.22 (m, 2H), 3.44 (d, J = 10.8 Hz, 1H), 3.40 (d, J = 10.8 Hz, 1H), 2.79 (d, J = 13.2 Hz, 1H), 2.66–2.52 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 144.9, 143.8, 128.3, 127.3, 126.8, 126.3, 125.0, 120.9, 120.8–106.3 (m), 83.8, 74.0, 68.0, 52.1, 48.7, 41.6 (t, J = 19.5 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.8 – -113.0 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for $C_{20}H_{18}O_2F_9S [M+H]^+ 493.0878$, found: 493.0868.

((2R,4S)-4-(furan-3-yl)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-2-phenyltetrahydro furan-4-yl)methanol (5P)

Product **5P** was obtained as a white solid (m.p. 115 °C) in 53% (25.2 mg, 0.05 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = -15 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 26.91 min, t_R (minor) = 37.68 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.49–7.44 (m, 3H), 7.42–7.35 (m, 3H), 7.30–7.26 (m, 1H), 6.36 (dd, J = 1.8, 1.0 Hz, 1H), 4.17–4.10 (m, 2H), 3.43 (d, J = 10.9 Hz, 1H), 3.39 (d, J = 10.7 Hz, 1H), 2.71 (d, J = 13.3 Hz, 1H), 2.66–2.56 (m, 2H), 2.51 (d, J = 13.2 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 144.8, 144.0, 139.0, 128.4, 127.6, 127.3, 125.0, 120.7–106.4 (m), 109.1, 83.9, 74.1, 67.5, 48.5, 48.4, 41.6 (t, *J* = 19.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.1 – -81.2 (m, 3F), -110.7 – -113.0 (m, 2F), -124.6 – -124.7 (m, 2F), -125.8 – -125.9 (m, 2F).

HRMS (ESI) calcd for C₂₀H₁₈O₃F₉ [M+H]⁺ 477.1107, found: 477.1102.

3.5 General Procedure C: Cu/CPA-catalyzed enantioselective desymmetrising radical oxytrifluoromethylation of *meso* olefinic 1,3-diols

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **8** (0.1 mmol, 1.0 eq.), CuTc (1.9 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (R,R)-A9 (11.1 mg, 0.015 mmol, 15 mol%), **2a** (49.5 mg, 0.15 mmol, 1.5 eq.), PPh₃ (5.2 mg, 0.02 mmol, 20 mol%) and CCl₄ (1.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by a silica gel chromatography to afford the desired product **9**.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

The racemate was prepared by following the same procedure as described above using substrate **8** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol, 1.5 eq.), $CuBH_4(PPh_3)_2$ (12.0 mg, 0.02 mmol, 20 mol%), and diphenyl phosphate (5.0 mg, 0.02 mmol, 20 mol%) at 25 °C in CCl₄ (1.0 mL). Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography to afford the desired product **9** as a mixture of diastereomers (very similar Rf values).

ethyl

2-(4-hydroxy-2-phenyl-2-(2,2,2-trifluoroethyl)hexahydrobenzofuran-3a(4H)-yl)a cetate (9A)

Product **9A** was obtained as a white solid in 80% (30.9 mg, 0.08 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general

procedure.

 $[\alpha]_D^{27} = +20 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 18.24 min, t_R (minor) = 21.51 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 4.28–4.15 (m, 2H), 3.99–3.96 (m, 1H), 3.73–3.69 (m, 1H), 3.19 (brs, 1H), 2.85–2.79 (m, 2H), 2.75 (d, J = 13.8 Hz, 1H), 2.69–2.65 (m, 1H), 2.60 (d, J = 15.0 Hz, 1H), 2.46 (d, J = 14.0 Hz, 1H), 1.68–1.58 (m, 3H), 1.48–1.36 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.25–1.18 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 146.2, 128.0, 127.0, 125.1, 125.0 (q, *J* = 276.8 Hz), 82.6, 81.6 (q, *J* = 2.1 Hz), 73.9, 61.3, 49.7, 46.6 (q, *J* = 25.4 Hz), 44.1, 43.4, 28.9, 27.0, 16.9, 14.1.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.5 Hz, 3F).

HRMS (ESI) calcd for $C_{20}H_{26}F_3O_4$ [M+H]⁺ 387.1778, found: 387.1778.

ethyl

2-(2-([1,1'-biphenyl]-3-yl)-4-hydroxy-2-(2,2,2-trifluoroethyl)hexahydrobenzofura n-3a(4H)-yl)acetate (9B)

Product **9B** was obtained as a white solid in 71% (32.8 mg, 0.07 mmol) yield in a 0.10 mmol scale synthesis by column chromatography (PE/EA = 6/1) following the general procedure.

 $[\alpha]_{D}^{27} = +7 (c \ 0.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, $\lambda = 254$ nm), t_R (major) = 18.09 min, t_R (minor) = 19.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.60–7.57 (m, 2H), 7.50–7.38 (m, 5H), 7.37–7.32 (m, 1H), 4.27–4.17 (m, 2H), 4.00 (dd, *J* = 7.6, 4.7 Hz, 1H), 3.73 (dd, *J* = 8.9, 3.9 Hz, 1H), 3.21 (brs, 1H), 2.85 (d, *J* = 15.0 Hz, 1H), 2.80 (d, *J* = 14.0 Hz, 1H), 2.74–2.66 (m, 1H), 2.61 (d, *J* = 15.0 Hz, 1H), 2.50 (d, *J* = 13.9 Hz, 1H), 1.72–1.59 (m, 3H), 1.52–1.35 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.26–1.18 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 173.2, 146.9, 141.1, 140.9, 128.7, 128.4, 127.3, 127.2, 125.8, 125.0 (q, *J* = 276.8 Hz), 124.1, 124.0, 82.8, 81.7 (q, *J* = 1.9 Hz), 74.1, 61.3, 49.9, 46.7 (q, *J* = 25.4 Hz), 43.9, 43.5, 28.9, 27.2, 17.1, 14.1.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.3 (t, J = 10.5 Hz, 3F).

HRMS (ESI) calcd for C₂₆H₃₀F₃O₄ [M+H]⁺ 463.2091, found: 463.2091.

3.6 Procedure for the Synthesis of 7

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **4a** (0.1 mmol, 1.0 eq.), CuBH₄(PPh₃)₂ (6.0 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (R)-A10 (9.7 mg, 0.015 mmol, 15 mol%), 2d (43.4 mg, 0.15 mmol, 1.5 eq.), and CCl₄ (1.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. After 6 d, the solvent was removed *in vacuo*, and the residue was purified by a silica gel chromatography to afford the desired product 7 (24.1 mg) as two separable diastereomers and the data of the major diastereomer (a colorless oil) was shown.

 $[\alpha]_{D}^{27} = -6 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 94/6, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 30.96 min, t_R (minor) = 27.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50–7.44 (m, 2H), 7.41–7.32 (m, 4H), 7.31–7.24 (m, 2H), 7.21–7.14 (m, 2H), 4.45 (d, *J* = 8.7 Hz, 1H), 4.24 (d, *J* = 8.7 Hz, 1H), 3.44–3.25 (m, 4H), 2.70 (d, *J* = 12.8 Hz, 1H), 2.61 (d, *J* = 12.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 144.3, 142.8, 128.7, 128.4, 127.4, 127.0, 126.98, 125.0, 86.8, 73.6, 68.3, 60.3, 54.4, 43.1.

HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+H–N₂]⁺ 282.1489, found: 282.1486.

3.7 Transformation and Determination of Absolute Configurations

To a solution of **3A** (26 mg, 0.1 mmol, 1.0 eq.) and Et₃N (28 μ L, 0.2 mmol, 2.0 eq.) in DCM (2 mL) was added PhSO₂Cl (15 μ L, 0.12 mmol, 1.2 eq.). The mixture was stirred for 2 d at rt. Saturated NaHCO₃ (aq.) was added to quench the reaction. The aqueous layer was extracted with EtOAc (3x) and the combined organic layer was dried over Na₂SO₄. The solvent was removed *in vacuo*, and the residue was purified by silica gel chromatography to afford the desired product **3A'** (28.4 mg) as a white solid (m.p. 135 °C).

 $[\alpha]_{D}^{27} = -13 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 31.39 min, t_R (minor) = 18.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.70–7.66 (m, 1H), 7.59–7.55 (m, 2H), 7.37–7.32 (m, 4H), 7.29–7.25 (m, 1H), 4.07–3.99 (m, 2H), 3.89 (dd, *J* = 9.0, 8.0 Hz, 1H), 3.66 (dd, *J* = 9.0, 6.7 Hz, 1H), 2.69–2.55 (m, 3H), 2.53–2.41 (m, 1H), 1.87 (dd, *J* = 12.3, 9.3 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.8, 135.7, 134.0, 129.4, 128.5, 127.8, 127.6, 125.2, 125.1 (q, *J* = 276.5 Hz), 83.5 (q, *J* = 1.9 Hz), 71.3, 68.8, 45.4 (q, *J* = 26.7 Hz), 40.6, 38.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.5 (t, J = 10.8 Hz, 3F).

HRMS (ESI) m/z calcd. for C₁₉H₂₀F₃O₄S [M+H]⁺ 401.1029, found 401.1024.

The absolute configuration of **3A** was assigned as 2S,4R by comparing with that of its sulfonylated derivative **3A'**. The absolute configuration of **3A'** was determined as 2S,4S through an X-ray experiment (see Supplementary Figure 1). The absolute configurations of **3B–3U** were assigned by analogy.

6 was synthesized according to the procedure previously reported.⁴

To a solution of **5J** (44 mg, 0.08 mmol) in toluene (2 mL) were added NaH (60% dispensed in mineral oil, ca. 13 mg, 0.32 mmol, 4.0 eq.) and CuI (ca. 5.0 mg, 0.026 mmol, 30 mol%). The solution was heated to 80 °C for 72 h. The solvent was removed under reduced pressure. The residue was purified by chromatography to give **6** (24.5 mg) as a white solid (m.p. 82 °C).

 $[\alpha]_D^{27} = -23 \ (c \ 0.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 43.15 min, t_R (minor) = 51.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.16 (t, *J* = 7.7 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.19 (d, *J* = 9.1 Hz, 1H), 4.10 (d, *J* = 9.1 Hz, 1H), 3.97 (d, *J* = 9.5 Hz, 1H), 3.78 (d, *J* = 9.5 Hz, 1H), 2.90–2.60 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 159.7, 143.6, 129.6, 129.1, 128.5, 127.7, 125.3, 122.7, 121.1, 109.8, 120.0–106.1 (m), 84.7, 82.8, 79.1, 53.3, 52.5, 41.7 (t, J = 19.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (t, J = 9.9 Hz, 3F), -110.1 – -113.0 (m, 2F),

-124.4 - -124.5 (m, 2F), -125.7 - -125.8 (m, 2F).

HRMS (ESI) calcd for C₂₂H₁₈O₂F₉ [M+H]⁺ 485.1158, found: 485.1148.

The relative configuration of 6 was determined by 2D-NMR (Supplementary Figure 10).

Supplementary Figure 10. The NOE of compound 6

The absolute configuration of 6 was determined by ECD

Conformations of (2S,4R)-6 was searched using Conflex 7 (Rev. D). Initial low-energy conformers with larger than 1% distribution in Gibb's free energy were geometry optimization and frequency calculation chosen for at the M062X/6-311++G(d,p) level in acetonitrile solvent by a self-consistent reaction field (SCRF) using the SMD implicit solvent model with Gaussian 16.⁵ Then, conformers with distinct conformations were further subjected to TD-DFT calculation at the same level as aforementioned for dipole and rotational strengths of the first 40 excited states in the UV range. Next, ECD spectra of (2S,4R)-6 (Supplementary Figure 11) was calculated from excitation energies and rotational strengths as averages weighed on Boltzmann conformer relative populations as a sum of Gaussian functions centered at the wavelength of each transition with appropriate widths of the band at half-height using SpecDis (version 1.71), respectively.

Samples of compounds **6** for ECD were dissolved in MeCN, and spectra were acquired in a 1.0-mm pathlength cuvette, respectively. The UV and ECD spectra were recorded using a Chirascan® Spectrophotometer with the following instrumental parameters: 185–350 nm with a 1 nm step and a 2 nm bandwidth with data averaging

over 1.0 sec per point. Three spectral acquisitions were taken for each sample and were averaged and smoothed thereafter.

Supplementary Figure 11. Comparison of the calculated ECD of compound (2S,4R)-6 with the experimental one of compound 6. Width of the band at half-height σ : 0.3 eV; Shift: 2 nm.

The calculated spectrum for (2S,4R)-6 was opposite to the experimental one, and thus, the absolute configuration of compound 6 was assigned to 2*R* and 4*S*, accordingly. The absolute configurations of products 5 and 7 were assigned by analogue to that of 6.

The relative and absolute configuration of 6 were further confirmed by X-ray crystallographic analysis (Supplementary Figure 2).

Supplementary Table 5. Energies of calculated conformers of (2S,4R)-6. Energies (E) (in Hartree) of the structures calculated at the M062X/6-311++G(d,p)-SMD(Acetonitrile) level of theory.

Structure	E
Conformer 1	-1897.5029516
Conformer 2	-1897.5006310
Conformer 3	-1897.5014146
Conformer 4	-1897.5007358
Conformer 5	-1897.5005500
Conformer 6	-1897.5012383
Conformer 7	-1897.501049
Conformer 8	-1897.5003922

Conformer 9	-1897.501967
Conformer 10	-1897.4991605
Conformer 11	-1897.4999599

10 was synthesized according to the procedure previously reported.⁶

To a solution of 9 (1.0 eq.) in CH_2Cl_2 (0.05 M), PTSA (1.0 eq.) was added. The solution stirred at rt for 24 h. The solvent was removed under reduced pressure. The residue was purified by chromatography to give 10 as separable diastereomers.

8-phenyl-8-(2,2,2-trifluoroethyl)hexahydro-5H-benzo[2,1-b:6,1-b']difuran-2(1H)one (10A)

Product **10A** was obtained as a white solid in 63% (17.2 mg, 0.051 mmol) yield by column chromatography (PE/EA = 6/1) following the general procedure.

HPLC analysis: Chiralcel AZ3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 49.45 min, t_R (minor) = 36.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41–7.32 (m, 4H), 7.30–7.27 (m, 1H), 4.49 (t, J = 5.4 Hz, 1H), 4.23 (dd, J = 12.0, 5.8 Hz, 1H), 2.81 (d, J = 15.9 Hz, 1H), 2.78–2.65 (m, 3H), 2.62 (d, J = 13.6 Hz, 1H), 2.22 (d, J = 13.6 Hz, 1H), 2.06–1.98 (m, 1H), 1.79–1.73 (m, 1H), 1.64–1.58 (m, 2H), 1.46–1.38 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.7, 145.8, 128.2, 127.3, 124.9, 124.8 (q, *J* = 276.8 Hz), 83.4 (q, *J* = 2.1 Hz), 81.6, 81.5, 52.3, 46.3 (q, *J* = 26.1 Hz), 43.3, 28.2, 20.8, 17.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.2 (t, *J* = 10.3 Hz, 3F). HRMS (ESI) calcd for C₁₈H₂₀F₃O₃ [M+H]⁺ 341.1359, found: 341.1365.

8-([1,1'-biphenyl]-3-yl)-8-(2,2,2-trifluoroethyl)hexahydro-5H-benzo[2,1-b:6,1-b'] difuran-2(1H)-one (10B)

Product **10B** was obtained as a white solid in 75% (22.1 mg, 0.053 mmol) yield by column chromatography (PE/EA = 6/1) following the general procedure.

HPLC analysis: Chiralcel ID (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 29.38 min, t_R (minor) = 21.65 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.47–7.41 (m, 3H), 7.36 (t, J = 8.6 Hz, 2H), 4.52–4.50 (m, 1H), 4.24 (dd, J = 11.6, 5.7 Hz, 1H), 2.83 (d, J = 16.0 Hz, 1H), 2.80–2.71 (m, 3H), 2.68 (d, J = 13.6 Hz, 1H), 2.27 (d, J = 13.6 Hz, 1H), 2.07–2.01 (m, 1H), 1.81–1.76 (m, 1H), 1.67–1.63 (m, 2H), 1.49–1.39 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 146.4, 141.2, 140.9, 128.8, 128.7, 127.5, 127.2, 126.2, 123.9, 123.7, 83.5 (q, *J* = 1.8 Hz), 81.7, 81.6, 52.4, 46.3 (q, *J* = 25.8 Hz), 44.8, 43.3, 28.2, 20.9, 17.8.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.1 (t, J = 10.2 Hz, 3F).

HRMS (ESI) calcd for C₂₄H₂₄F₃O₃ [M+H]⁺ 417.1672, found: 417.1670.

The relative configuration of **10A** was determined by 2D-NMR (Supplementary Figure 12).

Supplementary Figure 12. The NOE of compound 10A

The absolute configuration of 10A was determined by ECD

Conformations of (1R,2S,3S,4R)-10A was searched using Conflex 7 (Rev. D). Initial low-energy conformers with larger than 1% distribution in Gibb's free energy were chosen for geometry optimization and frequency calculation at the M062X/6-311++G(d,p) level in acetonitrile solvent by a self-consistent reaction field (SCRF) using the SMD implicit solvent model with Gaussian 16.⁵ Then, conformers with distinct conformations were further subjected to TD-DFT calculation at the same level as aforementioned for dipole and rotational strengths of the first 40 excited states in the UV range. Next, ECD spectra of (1R, 2S, 3S, 4R)-10A (Supplementary Figure 13) were calculated from excitation energies and rotational strengths as averages weighed on Boltzmann conformer relative populations as a sum of Gaussian functions centered at the wavelength of each transition with appropriate widths of the band at half-height using SpecDis (version 1.71), respectively.

Samples of compounds **10A** for ECD were dissolved in MeCN, and spectra were acquired in a 1.0-mm pathlength cuvette, respectively. The UV and ECD spectra were recorded using a Chirascan® Spectrophotometer with the following instrumental parameters: 185–350 nm with a 1 nm step and a 2 nm bandwidth with data averaging over 1.0 sec per point. Three spectral acquisitions were taken for each sample and were averaged and smoothed thereafter.

Supplementary Figure 13. Comparison of the calculated ECD of compound (1R,2S,3S,4R)-10A with the experimental one of compound 10A. Width of the band at half-height σ : 0.25 eV; Shift: 0 nm.

The calculated spectrum for (1R,2S,3S,4R)-10A was opposite to the experimental one, and thus, the absolute configuration of compound 10A was assigned to 1S,2R,3R,4S accordingly. The absolute configurations of products 9 and 10B were assigned by analogue to that of 10A.

Supplementary Table 6. Energies of calculated conformers of (1R,2S,3S,4R)-10A. Energies (*E*) (in Hartree) of the structures calculated at the M062X/6-311++G(d,p)-SMD(Acetonitrile) level of theory.

Structure	E
Conformer 1	-1222.4993174
Conformer 2	-1222.5008069
Conformer 3	-1222.5011999
Conformer 4	-1222.5029266

3.8 Mechanistic Study

a) Radical trapping experiments

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1a** (19.2 mg, 0.1 mmol, 1.0 eq.), Cu₂O (1.4 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (*R*)-**A8** (10.8 mg, 0.015 mmol, 15 mol%), **P7** (15.4 mg, 0.04 mmol, 40 mol%), Togni's reagent **2a** (49.5 mg, 0.15 mmol, 1.5 eq.), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 23.4 mg, 0.15 mmol, 1.5 eq.) or butylated hydroxytoluene (BHT, 33.0 mg, 0.15 mmol, 1.5 eq.), and AcO'Pr (1.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C for 72 h. PhOCF₃ (internal standard, 0.10 mmol, 1.0 eq.) was added to the reaction mixture. Yield was calculated based on ¹⁹F NMR analysis of the crude product.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

b) Linear effect experiments

These reactions were conducted according to the general procedure C. The catalysts with different *ee* values were prepared by mixing (*R*)-**A8** (99% *ee*) and (*S*)-**A8** (99% *ee*) in appropriate ratios. The product was separated by preparative TLC. The ee values of products was then determined by HPLC, which indicated a linear relationship between ee values of products and corresponding catalysts.

3.9 Computational Study

3.9.1 Computational Details

All density functional theory (DFT) calculations were performed using Gaussian 16 program ⁵ with the default ultrafine integral grid parameters. Geometry optimizations were conducted with B3LYP functional,^{7,8} with LANL2DZ basis set^{9–12} for the copper as well as bromine atom and 6-31G* basis set for other atoms. Frequency analysis was also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Single-point energies and solvent effects were evaluated with B3LYP functional and SDD basis set^{9,13–17} for the copper as well as bromine atom and 6-311+G(d,p) basis set for other atoms. The solvation energies were calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model.¹⁸ Also, geometry optimization, frequency analysis and single point energy of open-shell local minimums were calculated with unrestricted DFT methods, while same computations for closed-shell transition states and local minimum were performed with restricted DFT methods.

Both geometry optimizations and single-point energy calculations include the empirical dispersion corrections.¹⁹ Empirical dispersion corrections employed the D3 version of Grimme's dispersion corrections with Becke-Johnson damping.²⁰

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT \ln(c_s/c_g)$ is added to energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.04087 mol/L at 298.15 K), and R is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol was used.

Independent Gradient Model (IGM)²¹ analysis was performed with Multiwfn²² software package, using high quality grid option to generate files for further ploting, and the visualization of IGM analysis results are presented with VMD²³ visualization software. The 3D diagrams of optimized structures shown in the main text and Supplementary Figures 5–8 and 9a were generated with CYLview software.²⁴ The 3D diagram of Supplementary Figure 9b was generated with VMD.

3.9.2 Alternative Pathway Involving Radical Substitution

The triplet state of Int16 (Int16-Triplet) is 5.8 kcal/mol less favorable than the singlet state Int16, which is higher in free energy as compared to the closed-shell C–O bond formation transition state TS17 (Supplementary Figure 4). This indicates that the radical substitution pathway (path a, Fig 3) involving diradical species is unlikely. In addition, the RHF wavefunction stability was confirmed for closed-shell transition state TS17, which excludes the existence of the corresponding open-shell

singlet diradical state. Therefore, C–O bond formation proceed via the close-shell transition state **TS17**, instead of the radical substitution pathway (path a, Fig 3).

3.9.3 Located Conformers of C–O Bonding Transition State

See Supplementary Figures 5–8.

3.9.4 Calculations of π – π Interaction

Calculations of π - π interaction between the interacting fragments were performed at B3LYP-D3(BJ)/6-311+G(d,p) level of theory in gas-phase. The stabilization energy of intramolecular π - π interactions ($\Delta E_{\pi-\pi}$) was calculated using Gaussian 16⁵ by defining pyridine as fragment-1 and benzene as fragment-2.

 $\Delta E_{\pi-\pi} = E_{\text{complex}} - E_{\text{separate}} = E_{\text{complex}} - (E_{\text{fragment-1}} + E_{\text{fragment-2}})$

 E_{complex} refers to the gas-phase single point energy of the interacting benzene and pyridine fragments. The geometry of the interacting fragments was taken from the optimized geometry of **TS17**, with appended C–H bonds (1.086Å for C(sp^2)–H bond both on pyridine and benzene fragments). $E_{\text{separate}}(E_{\text{fragment-1}} \text{ and } E_{\text{fragment-2}}))$ refers to the gas phase energies of each fragment. Supplementary Figure 9 includes the geometry of the interacting fragments from **TS17**. The interacting energy between these two fragments is 1.7 kcal/mol.

3.9.5 Table of Energies

Supplementary Table 7. Energies in Fig. 4, Fig. 5, and Supplementary Figures 4 to 8. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Propyl Ethanoate)//B3LYP-D3(BJ)/6-31G (d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	Ε	Н	G	Imaginary Frequency
Int12	0.274936	0.293432	0.227017	-955.327939	-955.034507	-955.100922	
Int13	1.970986	2.084677	1.813142	-5068.262546	-5066.177869	-5066.449404	
Int14	1.742439	1.845289	1.600379	-4829.528505	-4827.683216	-4827.928126	
TS15	1.741194	1.843766	1.597279	-4829.523391	-4827.679625	-4827.926112	29.8 <i>i</i>
Int16	1.741819	1.845268	1.595028	-4829.522656	-4827.677388	-4827.927628	

Int16-Triplet	1.741011	1.843963	1.597370	-4829.515692	-4827.671729	-4827.918322	
TS17	1.742511	1.844997	1.600049	-4829.522021	-4827.677024	-4827.921972	39.9 <i>i</i>
Int18	0.507369	0.539871	0.439369	-1404.912642	-1404.372771	-1404.473273	
3A	0.265969	0.283115	0.220877	-954.749710	-954.466595	-954.528833	
(<i>R</i>)-A8	0.963839	1.016959	0.878394	-2469.828876	-2468.811917	-2468.950482	
P7	0.504703	0.533157	0.445327	-1194.054491	-1193.521334	-1193.609164	
TS17-a	1.741763	1.844334	1.599122	-4829.515486	-4827.671152	-4827.916364	85.9 <i>i</i>
ТS17-b	1.742801	1.844947	1.601932	-4829.513596	-4827.668649	-4827.911664	50.1 <i>i</i>
ТS17-с	1.740464	1.843146	1.596231	-4829.507800	-4827.664654	-4827.911569	53.5 <i>i</i>
TS17-S1	1.741978	1.844762	1.598634	-4829.514107	-4827.669345	-4827.915473	26.4 <i>i</i>
TS17-S2	1.741979	1.844717	1.599092	-4829.511830	-4827.667113	-4827.912738	21.6 <i>i</i>
TS17-S3	1.741870	1.844814	1.597425	-4829.512677	-4827.667863	-4827.915252	43.9 <i>i</i>
TS17-S4	1.741854	1.844930	1.595773	-4829.506763	-4827.661833	-4827.910990	44.6 <i>i</i>
TS17-S5	1.741309	1.844287	1.594813	-4829.504223	-4827.659936	-4827.909410	84.2 <i>i</i>
TS17-S6	1.741769	1.844524	1.597440	-4829.502876	-4827.658352	-4827.905436	57.2 <i>i</i>
TS17-S7	1.741230	1.843552	1.599951	-4829.490265	-4827.646713	-4827.890314	19.6 <i>i</i>
TS17-S8	1.739442	1.842009	1.591987	-4829.495218	-4827.653209	-4827.903231	56.0 <i>i</i>
TS17-S9	1.739940	1.842294	1.596903	-4829.496964	-4827.654670	-4827.900061	48.6 <i>i</i>
TS17-S10	1.740513	1.842815	1.596511	-4829.502149	-4827.659334	-4827.905638	34.7 <i>i</i>
TS17-S11	1.742046	1.844352	1.599411	-4829.512765	-4827.668413	-4827.913354	31.6 <i>i</i>
TS17-S12	1.741108	1.843948	1.595912	-4829.506984	-4827.663036	-4827.911072	20.8 <i>i</i>
TS17-S13	1.742256	1.844372	1.600358	-4829.509971	-4827.665599	-4827.909613	61.1 <i>i</i>
TS17-S14	1.742162	1.844283	1.601309	-4829.507999	-4827.663716	-4827.906690	48.8 <i>i</i>
TS17-S15	1.741069	1.843378	1.597488	-4829.502477	-4827.659099	-4827.904989	56.6 <i>i</i>

Supplementary Table 8. Energies in Fig. 5. Gas-phase energies (*E*) (in Hartree) of the structures calculated at the B3LYP-D3(BJ)/-311+G(d,p)-SDD level of theory.

Structure	E
TS17	-4829.451737
TS17-a	-4829.443054
ТS17-b	-4829.443669
TS17-c	-4829.427385

Supplementary Table 9. Energies in Supplementary Figure 9. Gas-phase energies (E) (in Hartree) of the structures calculated at the B3LYP-D3(BJ)/6-311+G(d,p) level of theory.

Structure	E
π–π Interacting Fragment	-480.697730
Fragment-1	-248.367468
Fragment-2	-232.327526
3.10 NMR Spectra

-60.395 -60.424 -60.463

 $\stackrel{60.376}{\leftarrow}_{60.404}^{-60.404}$

3.11 HPLC Spectra

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.776	BB	0.4312	7832.41064	269.35770	27.6681
2	27.788	BB	0.5012	6401.87988	183.40504	22.6147
3	31.661	BB	0.5559	6430.34521	168.98978	22.7153
4	42.309	BV	0.7556	7643.79492	122.56849	27.0018

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.030	BB	0.5032	2332.72583	63.99904	4.3285
2	32.117	BB	0.6255	5.15592e4	1098.69238	95.6715

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.318	BV	0.6216	4715.81445	113.29609	24.2037
2	35.296	VB	0.6901	5082.25537	110.19418	26.0844
3	39.404	BB	0.7573	4950.78271	98.01073	25.4096
4	43.142	BB	0.8366	4735.04053	84.64616	24.3023

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.086	VB	0.7042	1.52618e4	324.79858	94.2937
2	39.374	BB	0.7639	923.59308	17.96148	5.7063

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.191	BB	0.4792	1.27556e4	409.77777	27.3005
2	31.290	BV	0.5114	1.05017e4	317.89600	22.4765
3	32.727	VB	0.5389	1.05232e4	301.72339	22.5227
4	36.427	BB	0.5945	1.29424e4	335.13528	27.7003

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.515	BB	0.4762	256.61758	8.17579	4.6134
2	32.890	BB	0.5372	5305.77246	152.76756	95.3866

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.717	BV	0.7435	1.44980e4	304.48126	49.8485
2	33.192	VB	0.6456	8259.14258	190.59329	28.3974
3	39.549	BB	0.7705	6327.00537	120.90569	21.7541

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.755	VV	0.5564	8650.73242	231.26132	92.7450
2	38.795	BB	0.7070	676.70099	14.22559	7.2550

Note: After optimization of separation conditions (including: Chiralcel OD3, OX3, AZ3, AD3, OJ, IA, IB, IC, ID, IE, IF, IG, INB), we can't get four peaks with baseline separation.

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.732	BB	0.5523	8890.76465	230.33232	24.9599
2	40.587	BV	0.7206	9084.07129	151.70471	25.5026
3	44.250	VV	0.7189	8859.50586	146.62712	24.8722
4	68.756	VB	1.1190	8785.79297	92.16798	24.6652

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.774	VB	0.7348	2.44316e4	423.62390	94.4906
2	44.541	VB	0.6265	1424.51721	26.78223	5.5094

Signal 2: DAD1 B, Sig=254,4 Ref=off

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
24.328	BB	0.4942	7916.67725	239.14812	24.8806
26.472	BB	0.5572	8016.65137	215.91626	25.1948
32.062	BB	0.6883	7887.99902	172.24448	24.7905
35.232	BB	0.8156	7997.35059	148.65404	25.1341
	RetTime [min] 24.328 26.472 32.062 35.232	RetTime Type [min] 24.328 BB 26.472 BB 32.062 BB 35.232 BB	RetTime Type Width [min] [min] 24.328 BB 0.4942 26.472 BB 0.5572 32.062 BB 0.6883 35.232 BB 0.8156	RetTime TypeWidthArea[min][min][mAU*s]24.328BB0.49427916.6772526.472BB0.55728016.6513732.062BB0.68837887.9990235.232BB0.81567997.35059	RetTime TypeWidthAreaHeight[min][min][mAU*s][mAU]24.328BB0.49427916.67725239.1481226.472BB0.55728016.65137215.9162632.062BB0.68837887.99902172.2444835.232BB0.81567997.35059148.65404

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.140	BB	0.5653	6.60372e4	1786.21167	93.7558
2	32.043	BB	0.6892	4398.13672	96.23405	6.2442

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.414	BB	0.3630	5423.03418	223.57651	15.4518
2	20.499	BV	0.4029	1.19839e4	444.03601	34.1456
3	21.972	VB	0.4357	1.22535e4	420.81927	34.9139
4	27.727	BB	0.5259	5435.95996	154.71121	15.4887

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak RetTime Type Width Height Area Area [mAU] [mAU*s] # [min] [min] % 1 20.589 BB 0.4413 1104.66089 35.47834 4.9698 2 22.038 BB 0.4530 2.11229e4 702.04468 95.0302

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.379	BB	0.6271	425.91620	10.03658	22.2108
2	24.454	MF R	0.7304	419.83649	9.58037	21.8937
3	25.888	FM R	0.8207	545.67218	11.08137	28.4558
4	31.706	BB	0.7037	526.18506	11.33258	27.4396

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.391	BB	0.5864	4719.39160	117.55672	94.7710
2	24.516	BB	0.5557	260.39276	6.87731	5.2290

Signal 2: DAD1 B, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.307	BB	0.2625	1801.91406	98.01627	49.8121
2	14.315	BV	0.2185	758.74152	53.17480	20.9747
3	14.954	VB	0.2367	1056.76599	69.76019	29.2132

Signal 2: DAD1 B, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.331	BB	0.1968	8751.74512	686.28955	94.3810
2	14.972	VB	0.2357	521.03735	33.82175	5.6190

Note: After optimization of separation conditions (including: Chiralcel OD3, OX3, AZ3, AD3, OJ, IA, IB, IC, ID, IE, IF, IG, INB), we can't get four peaks with baseline separation.

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.819	BB	0.6472	1706.06812	40.03271	32.1944
2	31.598	BV	0.6608	1422.37878	32.87266	26.8410
3	32.530	VB	0.7312	1168.40137	22.82427	22.0484
4	40.641	BB	0.9116	1002.41919	16.62072	18.9162

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.850	BB	0.6715	9097.26465	205.90417	96.1598
2	31.689	BB	0.6792	363.30606	7.91904	3.8402

Note: After optimization of separation conditions (including: Chiralcel OD3, OX3, AZ3, AD3, OJ, IA, IB, IC, ID, IE, IF, IG, INB), we can't get four peaks with baseline separation.

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.175	BB	0.4999	3229.19263	100.22009	21.2715
2	28.362	BB	0.5305	4376.09521	128.10056	28.8264
3	33.324	BV	0.6319	3190.23193	77.88022	21.0148
4	34.643	VB	0.6812	4385.33545	99.70003	28.8873

Signal 2: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.566	BB	0.5034	4004.66479	123.14342	94.5660
2	33.798	BB	0.4946	230.11752	5.85391	5.4340

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.578	BB	0.5288	1462.77075	41.53974	30.2617
2	27.360	BB	0.5404	896.18024	23.52889	18.5401
3	32.384	MF R	0.7465	900.14117	20.09689	18.6221
4	33.961	FM R	0.8462	1574.63953	31.01422	32.5761

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.447	BB	0.4569	173.75227	4.79350	5.1454
2	32.508	BB	0.6988	3203.10181	65.01263	94.8546

Signal 4: DAD1 D, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.348	BB	0.2570	990.13824	58.05747	20.6816
2	13.953	BB	0.2942	1407.07654	71.30643	29.3905
3	16.421	BB	0.3772	994.99902	39.05983	20.7832
4	25.566	BB	0.5744	1395.31287	36.13934	29.1448

Signal 4: DAD1 D, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.407	BB	0.2499	2343.66992	138.13795	95.3553
2	16.418	BB	0.3432	114.15810	4.70307	4.6447

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.101	BB	0.2613	1226.34900	72.50307	26.9080
2	17.195	BB	0.2748	1038.21423	58.02138	22.7800
3	19.062	BV	0.3070	1033.42871	52.19687	22.6750
4	20.334	VB	0.3424	1259.56824	57.31629	27.6369

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.178	BB	0.2837	6402.46045	349.51114	95.2072
2	19.104	BB	0.3138	322.30734	16.21937	4.7928

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.422	BV	0.4541	2888.37305	97.35933	28.9419
2	28.266	VV	0.4616	2045.13611	67.09267	20.4926
3	29.046	VB	0.4984	2132.29932	65.06158	21.3659
4	40.105	BB	0.6830	2914.08765	65.50219	29.1996

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.507	BB	0.4627	1820.39429	59.87878	92.2240
2	40.322	BB	0.6264	153.48993	3.19557	7.7760

Signal 3: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.031	BB	0.5820	1386.39111	33.83682	14.7700
2	33.506	BB	0.6489	3320.67065	73.52528	35.3770
3	35.756	BB	0.7107	3298.15356	68.87752	35.1371
4	41.040	BB	0.7349	1381.30188	24.98699	14.7158

Signal 3: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.385	VB	0.7204	2.94386e4	615.02112	95.3996
2	35.787	BB	0.6606	1419.61267	30.74841	4.6004

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	52.074	BB	1.0501	2573.68628	34.91041	34.5234
2	58.267	MF R	1.4067	2556.06396	30.28464	34.2870
3	60.835	FM R	1.4692	1194.39771	13.54933	16.0216
4	72.032	BB	1.2018	1130.75537	11.10645	15.1679

Signal 4: DAD1 D, Sig=214,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 50.289 BB 1.3383 1.10497e5 1114.88184 1 95.7497 2 58.026 BB 1.2013 4904.92188 59.90464 4.2503

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.459	BB	0.5353	1148.85205	31.51655	33.4789
2	31.485	BB	0.5365	583.11511	16.02670	16.9926
3	33.123	BB	0.5898	1080.65222	27.30252	31.4914
4	35.163	BB	0.6149	618.95508	14.65069	18.0371

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.333	BB	0.5934	9221.75684	233.15775	93.6158
2	33.002	BB	0.6310	628.88556	14.76334	6.3842

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.832	BB	0.5406	327.26776	9.07821	11.9675
2	26.199	BB	0.7261	887.52356	17.54707	32.4549
3	29.086	BB	0.8790	1016.68719	16.27104	37.1781
4	39.898	BB	1.0117	503.15900	6.43905	18.3995

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.271	BB	0.6571	516.67053	11.30738	5.7885
2	29.105	BB	0.8966	8409.12500	134.28697	94.2115

Signal 5: DAD1 F, Sig=300,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.210	BV	0.6394	6934.98486	166.68021	22.9154
2	30.912	VV	0.6936	7867.49902	174.63292	25.9967
3	32.416	VB	0.7585	8384.78320	166.21631	27.7060
4	44.430	BB	1.3419	7076.17383	78.18159	23.3819

Signal 5: DAD1 F, Sig=300,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.168	BB	0.6200	6500.63477	160.69235	93.0830
2	44.729	MM R	1.5209	483.06427	5.29353	6.9170

Signal 6: DAD1 F, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.184	BB	0.9066	1.77471e4	258.62656	28.4453
2	33.973	BB	0.9212	1.52612e4	202.51894	24.4609
3	37.616	BB	1.0846	1.51869e4	165.80392	24.3418
4	40.988	BB	1.1687	1.41951e4	143.66489	22.7521

Signal 6: DAD1 F, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.205	BB	0.8291	3769.14990	55.30339	4.8614
2	37.176	BB	1.3077	7.37635e4	727.02332	95.1386

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.970	VB	0.3041	7150.91748	347.52399	26.9857
2	17.899	BB	0.3508	6109.56836	259.34238	23.0559
3	21.579	BB	0.4335	7097.41357	245.33479	26.7838
4	31.575	BB	0.7205	6140.98682	128.73430	23.1745

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.988	BB	0.3473	1237.77209	52.83893	4.4523
2	31.389	BB	0.8203	2.65632e4	493.21371	95.5477

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.622	BV	0.3836	1.45073e4	580.33557	17.7850
2	19.716	VB	0.4198	1.47489e4	538.11884	18.0812
3	37.487	BB	0.7432	2.63039e4	546.78882	32.2467
4	49.693	BB	1.0427	2.60106e4	379.92642	31.8872

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.558	BB	0.6921	9179.86816	203.58214	91.5879
2	50.379	BB	0.9844	843.15137	12.93593	8.4121

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.906	BB	0.6301	745.15533	17.73863	6.0732
2	28.026	BB	0.7751	1.15244e4	220.74930	93.9268

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.194	BV	0.3292	1229.13330	55.32826	10.2677
2	14.340	VB	0.3743	1480.94006	56.77795	12.3712
3	18.237	BB	0.4414	4602.87061	152.80943	38.4505
4	19.898	BB	0.4862	4657.94287	141.45708	38.9106

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.196	BB	0.4399	409.71252	13.81825	3.3551
2	19.832	BB	0.4810	1.18019e4	363.26782	96.6449

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.664	BV	0.3153	3697.66089	180.30026	15.6553
2	20.288	VB	0.3469	3696.87402	165.30608	15.6519
3	22.499	BB	0.3860	8189.42285	329.48044	34.6726
4	26.258	VB	0.4387	8035.30908	285.18555	34.0201

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.332	BB	0.3667	378.52457	16.07704	9.4936
2	25.918	BB	0.4240	3608.61108	131.56493	90.5064

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.206	BB	0.2452	5608.22461	357.20148	12.5922
2	11.984	BB	0.2530	5453.67188	336.72153	12.2452
3	14.854	VV	0.2977	1.66094e4	866.41919	37.2932
4	16.014	VB	0.3204	1.68660e4	811.81787	37.8694

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.869	BB	0.3013	1189.32849	61.57537	2.1228
2	15.958	BB	0.3585	5.48382e4	2382.93262	97.8772

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.590	VV	0.1963	7053.53516	562.54340	23.9881
2	10.021	VV	0.2015	6929.28662	526.63977	23.5656
3	10.724	VB	0.2106	7786.35156	565.65210	26.4803
4	12.872	VB	0.2499	7635.10352	474.07016	25.9660

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.721	BB	0.2264	848.36475	57.42447	4.7439
2	12.862	VB	0.2679	1.70351e4	984.38892	95.2561

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.143	VB	0.2618	2667.36597	158.89479	26.6834
2	13.045	BV	0.2645	2631.02441	154.65254	26.3199
3	13.886	VB	0.2781	2347.58838	130.36530	23.4845
4	15.894	BB	0.3218	2350.36523	113.38927	23.5122

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.894	BB	0.2710	124.02787	7.05961	3.0789
2	15.878	BB	0.3334	3904.22559	181.19975	96.9211

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.263	BB	0.5770	2540.52808	64.85359	27.2182
2	27.399	BB	0.6517	2053.85059	47.01408	22.0041
3	32.723	BV	0.7193	2454.64917	50.48459	26.2981
4	34.273	VB	0.8542	2284.90967	38.62454	24.4796

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	27.453	MM R	0.6737	60.16660	1.48841	2.3693
2	34.398	BB	0.8263	2479.22559	44.20940	97.6307
Total	ls :			2539.39219	45.69781	

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.343	BB	0.2049	7347.87451	546.20404	22.2892
2	12.969	BB	0.2534	7445.48096	449.16904	22.5852
3	14.921	BB	0.2765	9111.44531	509.92374	27.6388
4	23.215	BB	0.5391	9061.33496	260.96198	27.4868

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.898	BB	0.2819	1340.89160	73.14252	4.6260
2	23.017	BB	0.5522	2.76451e4	774.97345	95.3740

÷

Signal 7: DAD1 G, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.319	BB	0.2995	3470.48730	181.13857	17.8569
2	14.886	BB	0.3452	3489.75488	157.06197	17.9560
3	17.189	BB	0.3786	6256.15820	256.42615	32.1902
4	32.994	BB	0.6244	6218.60254	149.78398	31.9969

Signal 7: DAD1 G, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.224	BB	0.3848	731.03217	29.12525	6.0324
2	32.881	BB	0.7902	1.13874e4	219.14478	93.9676

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.063	BV	0.2305	934.55804	63.94017	5.2386
2	10.433	VB	0.2327	964.03540	64.37975	5.4038
3	13.971	BB	0.2645	8013.96533	470.98416	44.9217
4	23.365	BB	0.4116	7927.28467	298.75360	44.4358

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.972	BB	0.2748	1241.39148	69.37071	7.4920
2	23.294	BB	0.4206	1.53283e4	561.27380	92.5080

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.489	VV	0.2612	1047.10266	61.94609	15.0802
2	10.187	VB	0.2450	987.80627	63.65491	14.2262
3	11.260	BB	0.2755	2451.54907	137.86864	35.3069
4	13.308	BB	0.3250	2457.09204	116.99845	35.3867

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.267	BB	0.2880	230.08131	12.42473	1.7599
2	13.268	BB	0.3465	1.28437e4	570.83929	98.2401

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.349 BB	0.4800	2183.48486	67.39267	11.5544
2	14.067 BB	0.5072	2199.93677	66.28188	11.6414
Peak I	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
3	16.732 BB	0.5683	7160.52148	192.34320	37.8914
4	19.310 BB	0.6698	7353.54004	171.63928	38.9128

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.414	BB	0.4569	185.27548	5.06389	7.6569
2	18.972	BB	0.5983	2234.45874	53.16476	92.3431

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.685	BV	0.4709	4969.02490	159.72894	12.9884
2	15.137	VV	0.4412	4621.37451	161.79559	12.0797
3	16.170	VV	0.4561	1.43397e4	480.62531	37.4823
4	21.206	BB	0.5443	1.43273e4	395.84415	37.4497

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.213	BB	0.4169	181.52084	6.28635	3.1198
2	21.232	BB	0.5429	5636.83936	156.98082	96.8802

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.421	BB	0.5972	4139.50049	102.49366	40.9273
2	20.725	BB	0.8546	1805.44568	29.31186	17.8505
3	29.945	BB	1.0226	4169.32568	59.56519	41.2222

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.469	BB	0.6004	529.50562	12.96813	4.8556
2	29.910	BB	1.0123	1.03755e4	148.29305	95.1444

Note: After optimization of separation conditions (including: Chiralcel OD3, OX3, AZ3, AD3, OJ, IA, IB, IC, ID, IE, IF, IG, INB), we can't get four peaks with baseline separation.

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.728	BB	0.4172	1.64340e4	582.35168	35.5455
2	14.985	BB	0.5278	1.26978e4	354.55963	27.4645
3	22.455	BB	0.9964	1.71018e4	255.68063	36.9900

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.711	BB	0.4160	5701.07227	201.54233	10.7637
2	22.447	BB	1.0219	4.72649e4	687.64966	89.2363

Note: After optimization of separation conditions (including: Chiralcel OD3, OX3, AZ3, AD3, OJ, IA, IB, IC, ID, IE, IF, IG, INB), we can't get four peaks with baseline separation.

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.682	BB	0.4346	743.52649	27.05840	8.7236
2	19.992	BB	0.4587	746.46185	25.40870	8.7580
3	30.900	BB	0.5613	3508.49805	97.16048	41.1643
4	32.651	BB	0.5897	3524.67285	91.84053	41.3541

Signal 2: DAD1 B, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.953	BB	0.5999	7015.03857	181.09589	96.1810
2	32.710	BB	0.5634	278.53830	7.23088	3.8190

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.143	BV	0.2935	2942.49121	154.95357	11.4775
2	10.861	VB	0.3141	2611.55005	126.87960	10.1866
3	26.220	BB	1.0466	9910.73047	134.04820	38.6578
4	37.166	MF R	1.8203	1.01723e4	93.13791	39.6781

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.911	BB	0.8369	4544.39453	81.20930	94.3267
2	37.681	MM R	1.4884	273.32385	3.06064	5.6733

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	44.264	BB	0.8965	2288.64233	35.10999	49.2617
2	50.755	BB	1.0137	2357.24023	28.18594	50.7383

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	43.154	BB	1.0972	1.81360e4	234.77402	98.7594
2	51.187	BB	0.6637	227.81531	4.02867	1.2406

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.838	BV	0.6519	6174.74854	125.51701	50.9451
2	31.602	VB	0.6822	5945.65820	105.07405	49.0549

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-				
1	27.464	MF	R	0.8212	2.80822e4	569.94427	26.7075
2	30.956	VB		0.7246	7.70650e4	1261.69507	73.2925

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.831	BV	0.2703	3065.69165	176.78943	37.1871
2	16.728	VB	0.2909	3131.94775	166.91808	37.9908
3	18.406	BV	0.3073	1026.49622	51.76733	12.4515
4	21.798	VV	0.3605	1019.82300	43.65857	12.3705

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.236	VB	0.3666	1.33195e4	565.80438	95.1925
2	21.508	BB	0.4523	672.67065	22.53261	4.8075

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.163	VV	0.3424	1297.08643	59.47280	13.4070
2	18.027	VB	0.3742	3386.44873	140.99812	35.0032
3	19.590	BV	0.3669	3491.32251	140.01476	36.0872
4	20.686	VB	0.4250	1499.81384	53.50762	15.5025

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.090	BB	0.3497	1494.51404	66.63515	97.9794
2	19.786	BB	0.2826	30.82079	1.31886	2.0206

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.472	BB	0.6783	4606.78125	100.58542	39.1079
2	36.711	BB	0.7624	1303.94421	23.53449	11.0694
3	43.881	BB	0.9839	4644.99170	67.57496	39.4323
4	49.806	BB	1.2342	1223.94995	11.81860	10.3904

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.968	FM R	1.0642	245.64742	3.84720	4.4797
2	49.450	BB	1.3097	5237.92432	47.16376	95.5203

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.578	BB	0.4902	943.87634	29.11529	51.5869
2	28.930	BB	0.7247	885.80566	18.63152	48.4131

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.653	BB	0.4323	199.29295	7.30433	2.1200
2	29.382	BB	0.7799	9201.46973	178.94145	97.8800

4. Supplementary References

- Ke, Z., Tan, C. K., Chen, F. & Yeung, Y.-Y. Catalytic asymmetric bromoetherification and desymmetrization of olefinic 1,3-diols with C₂-symmetric sulfides. J. Am. Chem. Soc. 136, 5627–5630 (2014).
- 2. Yu, B. et al. An efficient method for construction of the angularly fused 6,3,5-tricyclic skeleton of mycorrhizin a and its analogues. *Org. Lett.* **11**, 629–632 (2009).
- Nicolaou, K. C., Pfefferkorn, J. A., Kim, S. & Wei, H. X. Synthesis of the fully functionalized bicyclic core of garsubellin a. *J. Am. Chem. Soc.* 121, 4724–4725 (1999).
- Zi, W. & Toste, F. D. Gold(I)-catalyzed enantioselective desymmetrization of 1,3-diols through intramolecular hydroalkoxylation of allenes. *Angew. Chem. Int. Ed.* 54, 14447–14451 (2015).
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. Gaussian 16, Revision A.03 (Gausian, Inc., Wallingford CT, 2016).
- 6. Kato, M. et al. The use of 4,4-disubstituted nopinones for natural-product synthesis. Synthesis of elemanoid sesquiterpenes. J. Org. Chem. 56, 7071–7076 (1991).
- Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 37, 785–789 (1988).
- 8. Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 5652 (1993).
- 9. Dunning, T. H. & Hay, P. J. in *Methods of Electronic Structure Theory* (ed. Schaefer III, H. F.) 1–27 (Plenum Press, New York, 1977).
- Hay, P. J. & Wadt, W. R. *Ab initio* effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. *J. Chem. Phys.* 82, 270–283 (1985).

- 11. Wadt, W. R. & Hay, P. J. *Ab initio* effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. *J. Chem. Phys.* **82**, 284–298 (1985).
- Hay, P. J. & Wadt, W. R. *Ab initio* effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* 82, 299–310 (1985).
- 13. Stoll, H. et al. Cu and Ag as one valence electron atoms: CI results and quadrupole corrections for Cu₂, Ag₂, CuH, and AgH. J. Chem. Phys. **81**, 2732–2736 (1984).
- 14. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy adjusted *ab initio* pseudopotentials for the first row transition elements. *J. Chem. Phys.* **86**, 866 872 (1987).
- Häussermann, U. et al. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials: All-electron and pseudopotential benchmark calculations for Hg, HgH and their cations. *Mol. Phys.* 78, 1211–1224 (1993).
- Igel-Mann, G., Stoll, H. & Preuss, H. Pseudopotentials for main group elements (IIIa through VIIa). *Mol. Phys.* 65, 1321–1328 (1988).
- Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).
- Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* 113, 6378–6396 (2009).
- 19. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).
- Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
- 21. Lefebvre, C. et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. *Phys. Chem. Chem. Phys.* **19**, 17928–17936 (2017).
- 22. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. **33**, 580–592 (2012).
- 23. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
- 24. Legault, C. Y. CYLview, 1.0b (Université de Sherbrooke, Québec, Montreal, Canada, 2009); http://www.cylview.org.