In the format provided by the authors and unedited.

# Cu-catalysed intramolecular radical enantioconvergent tertiary $\beta$ -C(*sp*<sup>3</sup>)-H amination of racemic ketones

Chang-Jiang Yang<sup>1,4</sup>, Chi Zhang<sup>1,4</sup>, Qiang-Shuai Gu<sup>®2,4</sup>, Jia-Heng Fang<sup>1</sup>, Xiao-Long Su<sup>3</sup>, Liu Ye<sup>2</sup>, Yan Sun<sup>1</sup>, Yu Tian<sup>1</sup>, Zhong-Liang Li<sup>2</sup> and Xin-Yuan Liu<sup>®1⊠</sup>

<sup>1</sup>Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China. <sup>2</sup>Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. <sup>3</sup>Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China. <sup>4</sup>These authors contributed equally: Chang-Jiang Yang, Chi Zhang, Qiang-Shuai Gu. <sup>See</sup>-mail: liuxy3@sustech.edu.cn

#### **Supplementary Information**

#### Cu-Catalysed intramolecular radical enantioconvergent tertiary

#### $\beta$ -C(sp<sup>3</sup>)–H amination of racemic ketones

Chang-Jiang Yang,<sup>1,4</sup> Chi Zhang,<sup>1,4</sup> Qiang-Shuai Gu,<sup>2,4</sup> Jia-Heng Fang,<sup>1</sup> Xiao-Long Su,<sup>3</sup> Liu Ye,<sup>2</sup> Yan Sun,<sup>1</sup> Yu Tian,<sup>1</sup> Zhong-Liang Li,<sup>2</sup> Xin-Yuan Liu<sup>1</sup>\*

<sup>1</sup>Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.

<sup>2</sup>SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.

<sup>3</sup>Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China. <sup>4</sup>These authors contributed equally: Chang-Jiang Yang, Chi Zhang, Qiang-Shuai Gu. \*Email: <u>liuxy3@sustech.edu.cn</u>.

#### **Table of Contents**

| Supplementary Figures                                                       | 2   |
|-----------------------------------------------------------------------------|-----|
| Supplementary Figure 1                                                      | 2   |
| Supplementary Figure 2                                                      | 3   |
| Supplementary Figure 3                                                      | 4   |
| Supplementary Figure 4                                                      | 5   |
| Supplementary Tables                                                        | 6   |
| Supplementary Table 1                                                       | 6   |
| Supplementary Table 2                                                       | 7   |
| Supplementary Table 3                                                       | 8   |
| Supplementary Table 4                                                       | 9   |
| Supplementary Methods                                                       | 10  |
| General Information                                                         | 10  |
| The Synthesis of Oxidants                                                   | 11  |
| The Synthesis of Racemic Sulfonohydrazones                                  | 13  |
| Enantioconvergent Amination of Racemic Tertiary C(sp <sup>3</sup> )-H Bonds | 62  |
| Procedure for Synthetic Applications                                        | 97  |
| Mechanistic Study                                                           | 105 |
| NMR Spectra                                                                 | 128 |
| HPLC Spectra                                                                | 217 |
| Supplementary References                                                    |     |

#### **Supplementary Figures**



Supplementary Figure 1 Enantioconvergent transformations from racemic tertiary alkyl electrophiles. a, Fu and his coworkers reported the first radical enantioconvergent amination of racemic tertiary chloride with asymmetric copper catalysis under photochemical conditions. b, Jacobsen et al. achieved enantioconvergent allylation of racemic tertiary acetate with hydrogen-bonding organocatalysis together with Lewis acid via a unique  $S_N1$  mechanism. c, Fu et al. reported radical enantioconvergent alkylation of racemic tertiary bromide with asymmetric nickel catalysis. d, Tan et al. disclosed enantioconvergent carbonylthiolation and azidation of tertiary bromide via an unusual  $S_N2X$  mechanism.



Supplementary Figure 2 The X-ray structure of chiral compound 14.



Supplementary Figure 3 The X-ray structure of chiral compound 62.



**Supplementary Figure 4 Mechanistic experiments. a**, The formation of product **3** was totally abolished in the absence of either CuCN or (R)-C**3**, thus suggesting both of the two are indispensable for the reaction initiation. **b**, The reaction was significantly inhibited in the presence of radical inhibitors 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 1,4-benzoquinone (BQ), and butylated hydroxytoluene (BHT), respectively. Thus, the reaction likely proceeds through a radical mechanism. **c**, The enantiomeric excess of product did not significantly change during the reaction. Thus, the same reaction pathway with the same enantiodetermining transition state is likely involved.

#### **Supplementary Tables**

# Supplementary Table 1 The effect of different CPAs and Cu salts in the model reaction

| Ph<br>Racemic A1                                                                                                                                                                                                                                                                                                                                      | Ph    | Ph<br><i>E/Z mixture</i> <b>B1</b><br>(Cu), C<br>PhCO <sub>3</sub> +Bi<br>PhCO <sub>3</sub> +Bi | PA<br>u ( <b>O1)</b> ► Ph | Ts<br>Me<br>Ph Ph  | Me NNHTs<br>Ph<br>1'                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------------------------------------------------------|
| $(P_{1})-C_{1}, Ar = 4-tBuC_{6}H_{4}$ $(P_{1})-C_{2}, Ar = 3,5-Ph_{2}C_{6}H_{3}$ $(P_{1})-C_{4}, Ar = 3,5-Ph_{2}C_{6}H_{3}$ $(P_{1})-C_{4}, Ar = 3,5-Ph_{2}C_{6}H_{3}$ $(P_{1})-C_{5}, Ar = 9-Phenanthryl$ $(P_{1})-C_{6}, Ar = 4-tBuC_{6}H_{4}$ $(P_{1})-C_{6}, Ar = 4-tBuC_{6}H_{4}$ $(S)-C_{7}, Ar = 4-tBuC_{6}H_{4}$ $(S)-C_{8}, Ar = 1-Naphthyl$ |       |                                                                                                 |                           |                    | $ \begin{array}{c}                                     $ |
| Entry <sup>a</sup>                                                                                                                                                                                                                                                                                                                                    | [Cu]  | СРА                                                                                             | Yield                     | d (%) <sup>b</sup> | – Ee (%)°                                                |
| Епиу                                                                                                                                                                                                                                                                                                                                                  | [Cu]  |                                                                                                 | 1                         | 1'                 | Le (70)                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                     | CuI   | ( <i>R</i> )-C1                                                                                 | 12                        | 8                  | 34                                                       |
| 2                                                                                                                                                                                                                                                                                                                                                     | CuI   | ( <i>R</i> )- <b>C2</b>                                                                         | 15                        | 13                 | 51                                                       |
| 3                                                                                                                                                                                                                                                                                                                                                     | CuI   | (R) <b>-C3</b>                                                                                  | 18                        | 9                  | 62                                                       |
| 4                                                                                                                                                                                                                                                                                                                                                     | CuI   | ( <i>R</i> )-C4                                                                                 | 18                        | 12                 | 48                                                       |
| 5                                                                                                                                                                                                                                                                                                                                                     | CuI   | ( <i>R</i> )-C5                                                                                 | 9                         | < 5                | 33                                                       |
| 6                                                                                                                                                                                                                                                                                                                                                     | CuI   | (R) <b>-C6</b>                                                                                  | 13                        | 11                 | 40                                                       |
| 7                                                                                                                                                                                                                                                                                                                                                     | CuI   | ( <i>S</i> )- <b>C</b> 7                                                                        | 15                        | 8                  | 17                                                       |
| 8                                                                                                                                                                                                                                                                                                                                                     | CuI   | (S)-C8                                                                                          | 12                        | 10                 | 31                                                       |
| 9                                                                                                                                                                                                                                                                                                                                                     | CuCl  | (R)-C3                                                                                          | 15                        | 11                 | 53                                                       |
| 10                                                                                                                                                                                                                                                                                                                                                    | CuBr  | (R)-C3                                                                                          | 18                        | 9                  | 54                                                       |
| 11                                                                                                                                                                                                                                                                                                                                                    | CuCN  | (R)-C3                                                                                          | 21                        | < 5                | 71                                                       |
| 12                                                                                                                                                                                                                                                                                                                                                    | CuSCN | (R)-C3                                                                                          | 17                        | 13                 | 43                                                       |
| 13                                                                                                                                                                                                                                                                                                                                                    | CuOAc | (R)-C3                                                                                          | 17                        | 11                 | 52                                                       |
| 14                                                                                                                                                                                                                                                                                                                                                    | CuTc  | (R)-C3                                                                                          | 21                        | 9                  | 53                                                       |

<sup>a</sup>Reaction conditions: ( $\pm$ )-**B1** (0.10 mmol), PhCO<sub>3</sub>*t*-Bu (**O1**, 0.20 mmol), [Cu] (10 mol%) and CPA (15 mol%) in dry AcO*i*-Pr (1.0 mL) at room temperature for 96 h under argon. <sup>b</sup>Isolated yield based on ( $\pm$ )-**B1** is given. <sup>c</sup>Ee value is based on HPLC analysis.



#### Supplementary Table 2 The effect of different E/Z ratios of hydrazone

Reaction conditions: ( $\pm$ )-**B1** (0.10 mmol), Ph(CH<sub>2</sub>)<sub>3</sub>CO<sub>3</sub>*t*-Bu (**O7**, 0.20 mmol), CuCN (10 mol%), and (*R*)-**C3** (15 mol%) in dry *i*-PrCO<sub>2</sub>*i*-Pr (2.0 mL) at 35 °C for 96 h under argon; Isolated yield based on ( $\pm$ )-**B1** is given; Ee value is based on HPLC analysis.

#### Supplementary Table 3 *E*/*Z* isomerization of (*E*)-hydrazone



Conditions: (±)-(*E*)-**B1** (5.0 mg, 0.013 mmol, E/Z > 20:1) with or without **S1-1** (2.1 mg, 0.013 mmol, 1.0 equiv.) in CD<sub>2</sub>Cl<sub>2</sub> (0.6 mL) while sonicating at room temperature.

#### Supplementary Table 4 E/Z isomerization of (E/Z)-hydrazone



Conditions: ( $\pm$ )-(*E*/*Z*)-**B1** (5.0 mg, 0.013 mmol, E/Z 1:1.6) with or without **S1-1** (2.1 mg, 0.013 mmol, 1.0 equiv.) in CD<sub>2</sub>Cl<sub>2</sub> (0.6 mL) while sonicating at room temperature.

#### **Supplementary Methods**

#### **General Information**

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuCN and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> were purchased from Aladdin. Chiral phosphoric acid (CPA) was purchased from Daicel Chiral Technologies (China). Isopropyl isobutyrate (i-PrCO2i-Pr) was purchased from TCI and stored under argon atmosphere. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker DPX-400 spectrometer at 400 MHz for <sup>1</sup>H NMR, 100 MHz for <sup>13</sup>C NMR, 376 MHz for <sup>19</sup>F NMR and 162 MHz for <sup>31</sup>P NMR, respectively, in CDCl<sub>3</sub> with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet; m, multiplet; br, broad), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using SHIMADZU LC-20AD with SPD-20AV detector or Agilent high-performance liquid chromatography (HPLC) with Hatachi detector (at appropriate wavelength). Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Kα radiation.

#### The Synthesis of Oxidants

The peroxides **O1–O4** were purchased from commercial sources. *tert*-Butyl peroxoates **O5–O7** were prepared from the corresponding carboxylic acid **S1** with *tert*-butyl hydroperoxide according to the literature procedure.<sup>1</sup>



#### General procedure for preparation of *tert*-butyl 4-phenylbutaneperoxoate (O7):

To a solution of 4-phenylbutanoic acid **S1-1** (n = 3, 1.64 g, 10 mmol, 1.0 equiv.) and 4-dimethylamino pyridine (DMAP, 0.12 g, 1.0 mmol, 0.1 equiv.) in DCM (40 mL) was dropwise added *tert*-butyl hydroperoxide (TBHP, 70% in H<sub>2</sub>O, 1.42 g, 11 mmol, 1.1 equiv.) at 0 °C. The reaction mixture was stirred for 10 min and then dicyclohexyl carbodiimide (DCC, 2.27 g, 11 mmol, 1.1 equiv.) was added in one portion, the resulting mixture was warmed up to room temperature and stirred for overnight. Upon completion (monitored by TLC), the reaction mixture was filtered through a pad of anhydrous Na<sub>2</sub>SO<sub>4</sub>. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30:1) to give **O7** as a colorless oil (1.98 g, 84% yield).

Ph CO<sub>3</sub>t-Bu

#### tert-Butyl 4-Phenylbutaneperoxoate (O7)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.31 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 2.67 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 7.4 Hz, 2H), 2.04 – 1.95 (m, 2H), 1.32 (s, 9H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>) δ 170.7, 140.9, 128.4, 128.4, 126.0, 83.2, 34.9, 30.5, 26.4, 26.1.

Following the above general procedure, *tert*-butyl 3-phenylpropaneperoxoate (**O6**) was prepared from 3-phenylpropanoic acid **S1-2** (n = 2, 1.50 g, 10 mmol, 1.0 equiv.) with *tert*-butyl hydroperoxide (TBHP, 70% in H<sub>2</sub>O, 1.42 g, 11 mmol, 1.1 equiv.) as a colorless oil (1.93 g, 87% yield).

```
<sup>Dh</sup> CO<sub>3</sub>t-Bu
O6
```

#### 3-Phenylpropaneperoxoate (O6)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 – 7.27 (m, 2H), 7.23 – 7.18 (m, 3H), 2.99 (t, *J* = 7.7 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H), 1.25 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 170.3, 139.8, 128.6, 128.3, 126.5, 83.4, 33.0, 30.8, 26.0.

Following the above general procedure, *tert*-butyl 2-phenylethaneperoxoate **(O5)** was prepared from 2-phenylacetic acid **S1-3** (n = 1, 1.36 g, 10 mmol, 1.0 equiv.) with *tert*-butyl hydroperoxide (TBHP, 70% in H<sub>2</sub>O, 1.42 g, 11 mmol, 1.1 equiv.) as a colorless oil (1.68 g, 81% yield).

Ph<sup>CO</sup><sub>3</sub>t-Bu O5

#### tert-Butyl 2-Phenylethaneperoxoate (O5)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.33 – 7.26 (m, 5H), 3.63 (s, 2H), 1.25 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.9, 132.8, 129.1, 128.6, 127.3, 83.6, 31.1, 26.0.

#### The Synthesis of Racemic Sulfonohydrazones

#### **General procedure 1**

Racemic sulfonohydrazones B1–36, B40 and B42–47 were prepared following the general procedure 1.



The arylsulfonohydrazides were prepared according to the literature method<sup>2</sup> from the corresponding commercially available sulfonyl chlorides with hydrazine monohydrate.



General procedure for preparation of 4-methoxybenzenesulfonohydrazide (Ar = 4-MeOC<sub>6</sub>H<sub>4</sub>) as the typical example:

To a cooled (0 °C) solution of 4-methoxybenzenesulfonyl chloride (2.07 g, 10 mmol, 1.0 equiv.) in THF (40 mL) was dropwise added hydrazine monohydrate (80% in H<sub>2</sub>O, 1.56 g, 25 mmol, 2.5 equiv.) under argon atmosphere. The resulting mixture was warmed up to room temperature and stirred for 1 h. Then the reaction mixture was concentrated under reduced pressure. The residue was diluted with EtOAc (100 mL), washed with water (50 mL  $\times$  2) and brine (50 mL  $\times$  2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by recrystallization from EtOAc/petroleum ether to give 4-methoxybenzenesulfonohydrazide as a white solid (1.57 g, 78% yield).

MeC

#### 4-Methoxybenzenesulfonohydrazide

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.85 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 5.73 (br s, 1H), 3.89 (s, 3H), 3.60 (br s, 2H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.7, 130.5, 127.5, 114.5, 55.7.

**HDMS** (ESD)  $w_1$  (200 km2, 200 kg) 0 105.7, 150.05, 127.05, 111.05, 55.7.

**HRMS** (ESI) m/z calcd. for C<sub>7</sub>H<sub>11</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 203.0485, found 203.0482.

General procedure for preparation of N'-(1,3-diphenylbutylidene)-4-methylbenzene sulfonohydrazide (**B1**, Ar = 4-MeC<sub>6</sub>H<sub>4</sub>, Ar' = Ph) as the typical example:

Synthesis of **S3**: To a solution of 2-phenyl-1-propene **S2** (11.82 g, 100 mmol) in CHCl<sub>3</sub> (150 mL) was added *N*-bromosuccinimide (NBS, 17.80 g, 100 mmol). The resulting mixture was stirred at 65 °C for 12 h. After cooling down to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether as eluent) to give the product **S3** as a pale-yellow oil (16.30 g, 83% yield).

Synthesis of S4-1 (Ar' = Ph)<sup>3</sup>: To a stirring mixture of benzaldehyde (2.12 g, 20 mmol, 1.0 equiv.) and In powder (2.76 g, 24 mmol, 1.2 equiv.) in THF (30 mL) and H<sub>2</sub>O (30 mL) was slowly added S3 (4.73 g, 24 mmol, 1.2 equiv.). The resulting mixture was stirred at 50 °C for 72 h. After cooling down to room temperature, the reaction mixture was quenched by saturated NaHCO<sub>3</sub> (30 mL) and filtered through a short pad of celite. The filtrate was concentrated under reduced pressure to remove the organic solvent. Then the remaining aqueous phase was diluted with EtOAc (100 mL), washed with saturated NaHCO<sub>3</sub> (50 mL) and brine (50 mL × 2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50:1–20:1) to afford the desired product S4-1 as a white solid (3.81 g, 85% yield).



#### 1,3-Diphenylbut-3-en-1-ol (S4-1)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.44 – 7.41 (m, 2H), 7.36 – 7.23 (m, 8H), 5.39 (d, J = 1.2 Hz, 1H), 5.14 (d, J = 0.8 Hz, 1H), 4.70 (dd, J = 9.0, 4.4 Hz, 1H), 2.97 (ddd, J = 14.3, 4.4, 1.2 Hz, 1H), 2.84 (ddd, J = 14.3, 9.0, 0.8 Hz, 1H), 2.29 (br s, 1H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 144.9, 143.9, 140.3, 128.5, 128.3, 127.7, 127.5, 126.2, 125.8, 115.7, 72.0, 45.9.

**HRMS** (ESI) m/z calcd. for C<sub>16</sub>H<sub>16</sub>NaO [M + Na]<sup>+</sup> 247.1093, found 247.1093.

Synthesis of **S5-1** (Ar' = Ph)<sup>3</sup>: To a cooled (0 °C) solution of **S4-1** (2.24 g, 10 mmol, 1.0 equiv.) in anhydrous DCM (40 mL) was added Dess-Martin periodinane (DMP, 5.09 g, 12 mmol, 1.2 equiv.) in portions under argon atmosphere. Then the resulting mixture was warmed up to room temperature and stirred for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NaHCO<sub>3</sub> (30 mL) and filtered through a short pad of celite. The organic layer was separated and the aqueous layer was extracted with DCM (20 mL × 2). The combined organic layers were washed with saturated NaHCO<sub>3</sub> (50 mL) and brine (50 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 25:1) to give the product **S5-1** as a colorless oil (1.92 g, 87% yield).



#### **1,3-Diphenylbut-3-en-1-one (S5-1)** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.04 – 8.00 (m, 2H), 7.62 – 7.57 (m, 1H), 7.51 – 7.44 (m, 4H), 7.38 – 7.28 (m, 3H), 5.65 (br s, 1H), 5.22 (br s, 1H), 4.21 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 197.6, 141.8, 140.2, 136.6, 133.1, 128.6, 128.4, 127.7, 125.8, 116.5, 45.2. HRMS (ESI) *m/z* calcd. for C<sub>16</sub>H<sub>15</sub>O [M + H]<sup>+</sup> 223.1117, found 223.1111.

Synthesis of A1 (Ar' = Ph): To a solution of S5-1 (1.89 g, 8.5 mmol) in EtOH (20 mL) was added Pd/C (10% palladium on carbon, wet with ca. 50% water, 50 mg). Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at room temperature for 3 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30:1) to give the product A1 as a white solid (1.62 g, 85% yield).

#### 1,3-Diphenylbutan-1-one (A1)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 – 7.90 (m, 2H), 7.56 – 7.51 (m, 1H), 7.46 – 7.40 (m, 2H), 7.32 – 7.25 (m, 4H), 7.21 – 7.16 (m, 1H), 3.56 – 3.46 (m, 1H), 3.30 (dd, J = 16.5, 5.7 Hz, 1H), 3.18 (dd, J = 16.5, 8.3 Hz, 1H), 1.34 (d, J = 6.9 Hz, 3H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  199.0, 146.5, 137.2, 132.9, 128.5, 128.5, 128.0, 126.8, 126.2, 47.0, 35.5, 21.8.

**HRMS** (ESI) m/z calcd. for C<sub>16</sub>H<sub>17</sub>O [M + H]<sup>+</sup> 225.1274, found 225.1267.

Synthesis of **B1** (Ar = 4-MeC<sub>6</sub>H<sub>4</sub>, Ar' = Ph)<sup>4</sup>: To a solution of **A1** (0.45 g, 2.0 mmol, 1.0 equiv.) and 4-methylbenzenesulfonohydrazide (0.74 g, 4.0 mmol, 2.0 equiv.) in MeOH (15 mL) was added glacial acetic acid (57  $\mu$ L, 1.0 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B1** as a white solid (0.70 g, 89% yield), an inseparable mixture of *E*/*Z* isomers (3.4:1).



#### *N*'-(1,3-Diphenylbutylidene)-4-methylbenzenesulfonohydrazide (B1)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.3 Hz, 0.58H), 7.66 (d, J = 8.3 Hz, 2H), 7.58 – 7.54 (m, 2H), 7.45 (br s, 0.29H), 7.39 – 7.32 (m, 3.87H), 7.29 – 7.24 (m, 2.58H), 7.19 – 7.11 (m, 3.87H), 7.08 – 7.04 (m, 2H), 7.01 – 6.97 (m, 0.58H), 6.91 – 6.87 (m, 0.58H), 6.85 (br s, 1H), 2.95 – 2.85 (m, 3H), 2.83 – 2.70 (m, 0.87H), 2.44 (s, 0.87H), 2.42 (s, 3H), 1.34 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.9 Hz, 0.87H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 156.7, 155.7, 145.9, 144.7, 143.9, 143.8, 136.4, 135.5, 134.9, 132.8, 129.7, 129.6, 129.5, 129.5, 129.1, 129.0, 128.4, 128.3, 128.3, 127.8, 127.3, 126.9, 126.5, 126.4, 126.1, 46.1, 37.6, 36.9, 36.9, 21.8, 21.6, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 393.1631, found 393.1620.



#### *N*'-(1,3-Diphenylbutylidene)benzenesulfonohydrazide (B2)

White solid, as an inseparable mixture of E/Z isomers (3.5:1), 0.69 g, 91% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 7.3 Hz, 0.58H), 7.78 (d, J = 8.8 Hz, 2H), 7.62 – 7.51 (m, 3.58H), 7.51 – 7.44 (m, 2.29H), 7.41 – 7.30 (m, 3.87 H), 7.20 – 7.09 (m, 3.87H), 7.07 – 7.01 (m, 2H), 7.01 – 6.97 (m, 0.58H), 6.94 (br s, 1H), 6.92 – 6.84 (m, 0.58H), 2.96 – 2.83 (m, 3.29H), 2.80 – 2.70 (m, 0.58H), 1.33 (d, J = 6.5 Hz, 3H), 1.12 (d, J = 6.9 Hz, 0.87H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.0, 156.0, 145.8, 144.6, 138.4, 137.8, 136.3, 133.0, 132.9, 132.7, 129.7, 129.6, 129.5, 128.9, 128.9, 128.5, 128.4, 128.3, 128.2, 127.7, 127.3, 126.8, 126.5, 126.5, 126.4, 126.1, 46.0, 37.6, 36.9, 36.8, 21.7, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 379.1475, found 379.1465.



#### N'-(1,3-Diphenylbutylidene)-4-methoxybenzenesulfonohydrazide (B3)

White solid, as an inseparable mixture of E/Z isomers (3.0:1), 0.78 g, 95% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.8 Hz, 0.66H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.61 – 7.53 (m, 2H), 7.37 (m, 3.99H), 7.22 – 7.14 (m, 3.99H), 7.10 – 7.04 (m, 2H), 7.01 (d, *J* = 7.0 Hz, 0.66H), 6.99 – 6.92 (m, 2.66H), 6.92 – 6.86 (m, 0.66H), 6.63 (br s,

1H), 3.88 (s, 3.99H), 2.91 (m, 3.33H), 2.81 - 2.68 (m, 0.66H), 1.36 (d, J = 6.1 Hz, 3H), 1.15 (d, J = 6.8 Hz, 0.99H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 156.6, 155.7, 145.9, 144.7, 136.4, 132.8, 130.5, 129.9, 129.7, 129.7, 129.6, 129.5, 129.1, 128.4, 128.3, 127.4, 126.9, 126.5, 126.4, 126.1, 114.1, 113.6, 55.6, 46.1, 37.7, 37.1, 36.9, 21.9, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 409.1580, found 409.1569.

#### 4-(*tert*-Butyl)-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B4)

White solid, as an inseparable mixture of E/Z isomers (3.8:1), 0.62 g, 71% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.4 Hz, 0.52H), 7.71 (d, J = 8.4 Hz, 2H), 7.61 – 7.57 (m, 2H), 7.53 (d, J = 8.6 Hz, 0.52H), 7.49 (d, J = 8.6 Hz, 2H), 7.40 – 7.33 (m, 3.78H), 7.20 – 7.14 (m, 0.78H), 7.13 – 7.09 (m, 3H), 7.07 – 7.03 (m, 2H), 7.02 – 6.99 (m, 0.52H), 6.91 – 6.86 (m, 1.52H), 2.96 – 2.85 (m, 3H), 2.85 – 2.70 (m, 0.78H), 1.36 (s, 11.34H), 1.34 (d, J = 6.5 Hz, 3H), 1.10 (d, J = 6.9 Hz, 0.78H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 156.8, 156.7, 155.4, 145.9, 144.6, 136.5, 135.4, 134.9, 132.8, 129.7, 129.6, 129.5, 128.9, 128.4, 128.3, 128.1, 127.6, 127.3, 126.9, 126.6, 126.5, 126.4, 126.1, 125.9, 125.5, 46.1, 37.6, 36.9, 35.1, 31.1, 21.6, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>31</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 435.2101, found 435.2091.



#### N'-(1,3-Diphenylbutylidene)-4-fluorobenzenesulfonohydrazide (B5)

White solid, as an inseparable mixture of E/Z isomers (3.2:1), 0.67 g, 85% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 – 7.83 (m, 0.62H), 7.80 – 7.73 (m, 2H), 7.59 – 7.52 (m, 2H), 7.50 (s, 0.31H), 7.44 – 7.31 (m, 3.93H), 7.22 – 7.11 (m, 6.55H), 7.09 – 6.99 (m, 2.62H), 6.95 – 6.89 (m, 0.62H), 6.79 (br s, 1H), 2.98 – 2.82 (m, 3.31H), 2.82 – 2.69 (m, 0.62H), 1.35 (d, J = 6.5 Hz, 3H), 1.15 (d, J = 6.8 Hz, 0.93H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.3 (d, J = 255.0 Hz), 165.3 (d, J = 255.2 Hz), 157.2, 156.4, 145.7, 144.7, 136.2, 134.4 (d, J = 3.1 Hz), 133.8 (d, J = 3.0 Hz), 132.6, 131.0 (d, J = 9.4 Hz), 130.5 (d, J = 9.4 Hz), 129.8, 129.6, 129.0, 128.5, 128.3, 127.3, 126.8, 126.5, 126.4, 126.1, 116.2 (d, J = 22.6 Hz), 115.7 (d, J = 22.5 Hz), 46.0, 37.7, 37.1, 36.8, 22.0, 21.3.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –104.5 (s, 0.31F), –104.6 (s, 1F). HRMS (ESI) *m/z* calcd. for C<sub>22</sub>H<sub>22</sub>FN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 397.1381, found 397.1371.



#### N'-(1,3-Diphenylbutylidene)-3-fluorobenzenesulfonohydrazide (B6)

White solid, as a single isomer, E/Z > 20:1, 0.72 g, 91% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  7.62 – 7.52 (m, 3H), 7.51 – 7.39 (m, 2H), 7.41 – 7.31 (m, 3H), 7.33 – 7.22 (m, 1H), 7.20 – 7.09 (m, 3H), 7.08 – 7.00 (m, 2H), 6.79 (br s, 1H), 2.96 – 2.84 (m, 3H), 1.41 – 1.31 (d, *J* = 6.3 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 161.9 (d, J = 250.5 Hz), 156.6, 144.6, 139.6 (d, J = 6.9 Hz), 136.1, 130.2 (d, J = 7.5 Hz), 129.8, 129.0, 128.5, 127.4, 126.8, 126.5, 126.4, 124.1 (d, J = 3.4 Hz), 120.1 (d, J = 21.2 Hz), 115.6 (d, J = 24.5 Hz), 37.7, 37.2, 21.3. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -110.4.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>22</sub>FN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 397.1381, found 397.1370.



#### 4-Chloro-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B7)

White solid, as an inseparable mixture of E/Z isomers (2.5:1), 0.72 g, 87% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.7 Hz, 0.80H), 7.68 (d, J = 8.7 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.49 (br s, 0.40H), 7.47 – 7.42 (m, 2.80H), 7.42 – 7.33 (m, 4.20H), 7.21 – 7.11 (m, 4.20H), 7.09 – 7.03 (m, 2H), 7.03 – 6.9 7 (m, 0.80H), 6.94 – 6.87 (m, 0.80H), 6.75 (br s, 1H), 2.95 – 2.86 (m, 3H), 2.85 – 2.71 (m, 1.20H), 1.36 (d, J = 6.6 Hz, 3H), 1.16 (d, J = 6.8 Hz, 1.20H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.3, 156.5, 145.6, 144.6, 139.5, 139.5, 136.9, 136.3, 136.2, 132.6, 129.9, 129.8, 129.7, 129.6, 129.2, 129.2, 129.0, 128.7, 128.5, 128.3, 127.4, 126.8, 126.5, 126.5, 126.4, 126.1, 45.9, 37.7, 37.2, 36.8, 22.1, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 413.1085, found 413.1074.



#### 3-Chloro-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B8)

Slightly yellow solid, as a single isomer, E/Z > 20:1, 0.76 g, 92% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 1.9 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.58 – 7.53 (m, 3H), 7.43 (d, J = 8.0 Hz, 1H), 7.40 – 7.33 (m, 3H), 7.22 – 7.19 (m, 1H), 7.17 – 7.11 (m, 2H), 7.05 – 7.01 (m, 2H), 6.64 (br s, 1H), 2.98 – 2.82 (m, 3H), 1.37 (d, J = 6.3 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 156.8, 144.5, 139.1, 136.1, 134.5, 133.0, 129.9, 129.7, 129.0, 128.5, 128.3, 127.4, 126.6, 126.5, 126.4, 37.7, 37.4, 21.3. HRMS (ESI) *m/z* calcd. for C<sub>22</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 413.1085, found 413.1074.

#### 3-Bromo-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B9)

White solid, as an inseparable mixture of E/Z isomers (1.7:1), 0.81 g, 89% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 – 8.05 (m, 0.59H), 7.88 (s, 1H), 7.81 – 7.76 (m, 0.59H), 7.73 – 7.68 (m, 2.59H), 7.60 – 7.53 (m, 2.59H), 7.42 – 7.34 (m, 6.36H), 7.24 – 7.19 (m, 1.77H), 7.17 – 7.10 (m, 3H), 7.07 – 6.99 (m, 3.18H), 6.95 – 6.89 (m, 1.18H), 6.62 (br s, 1H), 2.94 – 2.85 (m, 3H), 2.84 – 2.70 (m, 1.77H), 1.36 (d, *J* = 5.9 Hz, 3H), 1.16 (d, *J* = 6.8 Hz, 1.77H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.5, 156.8, 145.6, 144.5, 140.1, 139.2, 136.1, 136.0, 135.9, 132.5, 131.1, 130.7, 130.5, 129.9, 129.9, 129.8, 129.5, 129.0, 128.5, 128.2, 127.4, 127.0, 126.8, 126.5, 126.4, 126.3, 126.2, 126.1, 122.8, 122.2, 46.0, 37.7, 37.4, 36.8, 21.8, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>22</sub>BrN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 457.0580, found 457.0579.



#### N'-(1,3-Diphenylbutylidene)-4-(trifluoromethyl)benzenesulfonohydrazide (B10)

White solid, as an inseparable mixture of E/Z isomers (3.0:1), 0.83 g, 93% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 8.3 Hz, 0.66H), 7.87 (d, J = 8.1 Hz, 2H), 7.77 – 7.73 (m, 2.66H), 7.60 – 7.54 (m, 2.33H), 7.44 – 7.35 (m, 3.99H), 7.19 – 7.09 (m, 3.99H), 7.06 – 6.99 (m, 2.66H), 6.94 – 6.91 (m, 0.66H), 6.76 (br s, 1H), 2.95 – 2.87 (m, 3H), 2.87 – 2.72 (m, 0.99H), 1.38 (d, J = 6.3 Hz, 3H), 1.15 (d, J = 6.7 Hz, 0.99H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.6, 156.9, 145.5, 144.6, 142.0, 141.3, 136.1, 134.5 (q, J = 32.7 Hz), 134.5 (q, J = 33.0 Hz), 132.5, 130.0, 129.9, 129.7, 129.0, 128.8, 128.6, 128.3, 128.3, 127.5, 126.8, 126.5, 126.5, 126.4, 126.2, 126.1 (q, J = 3.7 Hz), 125.6 (q, J = 3.6 Hz), 123.3 (q, J = 273.0 Hz), 123.2 (q, J = 273.1 Hz), 45.9, 37.8, 37.3, 36.8, 22.2, 21.4.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 3F), -63.1 (s, 0.99F).

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 447.1349, found 447.1339.



#### *N*-(1,3-Diphenylbutylidene)-3-(trifluoromethyl)benzenesulfonohydrazide (B11)

White solid, as an inseparable mixture of E/Z isomers (8.3:1), 0.76 g, 85% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (s, 0.12H), 8.08 (s, 1H), 8.07 (d, J = 7.9 Hz, 0.12H), 7.95 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 7.8 Hz, 0.12H), 7.85 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.9 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.54 (br s, 0.12H), 7.44 – 7.35 (m, 3.36H), 7.17 – 7.07 (m, 3.36H), 7.04 – 6.99 (m, 2.24H), 6.94 – 6.90 (m, 0.24H), 6.46 (br s, 1H), 2.99 – 2.85 (m, 3H), 2.84 – 2.70 (m, 0.36H), 1.39 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.8 Hz, 0.36H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 157.8, 157.4, 145.7, 144.5, 139.6, 138.7, 136.0, 132.5, 131.7, 131.1, 131.0 (q, *J* = 33.3 Hz), 130.1, 130.0, 129.8, 129.7, 129.6 (q, *J* = 3.5 Hz), 129.2, 129.1, 128.6, 128.3, 127.5, 126.8, 126.5, 126.5, 126.4, 126.2, 125.6 (q, *J* = 3.9 Hz), 123.3 (q, *J* = 272.9 Hz), 46.0, 37.8, 37.7, 36.8, 21.8, 21.3.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –62.6 (s, 3F), –62.7 (s, 0.36F).

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 447.1349, found 447.1340.



#### Methyl 4-((2-(1,3-Diphenylbutylidene)hydrazinyl)sulfonyl)benzoate (B12)

White solid, as an inseparable mixture of E/Z isomers (10:1), 0.83 g, 95% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 0.20H), 7.81 (d, J = 8.4 Hz, 2H), 7.58 – 7.53 (m, 2H), 7.44 – 7.32 (m, 3.30H), 7.19 – 7.11 (m, 3.30H), 7.08 – 7.01 (m, 2H), 7.04 – 6.97 (m, 0.20H), 6.92 – 6.89 (m, 0.20H), 6.76 (br s, 1H), 3.97 (s, 3.30H), 2.97 – 2.87 (m, 3H), 2.84 – 2.71 (m, 0.30H), 1.37 (d, J = 6.1 Hz, 3H), 1.14 (d, J = 6.7 Hz, 0.30H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.7, 157.5, 156.8, 145.6, 144.6, 142.3, 141.6, 136.1, 133.9, 132.5, 130.1, 129.9, 129.6, 129.1, 128.5, 128.3, 128.3, 127.7, 127.5, 126.8, 126.5, 126.5, 126.4, 126.1, 52.6, 46.0, 37.7, 37.3, 36.8, 22.0, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 437.1530, found 437.1530.



#### Methyl 3-((2-(1,3-Diphenylbutylidene)hydrazinyl)sulfonyl)benzoate (B13) White solid, as an inseparable mixture of E/Z isomers (6.1:1), 0.80 g, 92% yield in the

final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (s, 0.16H), 8.48 (s, 1H), 8.28 (d, J = 7.8 Hz, 0.16H), 8.27 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 7.9 Hz, 0.16H), 7.96 (d, J = 7.9 Hz, 1H), 7.64 – 7.54 (m, 3.32H), 7.44 – 7.34 (m, 3.48H), 7.17 – 7.06 (m, 3.48H), 7.04 – 6.99 (m, 2.32H), 6.95 – 6.92 (m, 0.32H), 6.55 (br s, 1H), 4.00 (s, 3H), 3.96 (s, 0.48H), 2.96 – 2.86 (m, 3H), 2.84 – 2.70 (m, 0.48H), 1.38 (d, J = 6.0 Hz, 3H), 1.13 (d, J = 6.8 Hz, 0.48H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.5, 165.4, 157.3, 156.7, 145.7, 144.5, 139.0, 138.2, 136.1, 133.9, 133.8, 132.5, 132.5, 131.9, 131.1, 130.6, 129.9, 129.9, 129.6, 129.5, 129.2, 129.0, 128.9, 128.7, 128.5, 128.3, 127.5, 126.8, 126.6, 126.5, 126.3, 126.1, 52.6, 46.0, 37.7, 37.5, 36.8, 25.7, 21.8, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 437.1530, found 437.1530.



#### 4-Cyano-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B14)

White solid, as an inseparable mixture of E/Z isomers (1.2:1), 0.70 g, 86% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, J = 8.7 Hz, 1.66H), 7.82 (d, J = 8.7 Hz, 2H), 7.79 – 7.75 (m, 3.66H), 7.57 – 7.53 (m, 2H), 7.53 (br s, 0.83H), 7.46 – 7.36 (m, 5.49H), 7.23 – 7.13 (m, 5.49H), 7.09 – 7.00 (m, 3.66H), 6.97 – 6.92 (m, 1.66H), 6.62 (br s, 1H), 2.96 – 2.89 (m, 3H), 2.88 – 2.82 (m, 1.66H), 2.75 (dd, J = 14.4, 7.0 Hz, 0.83H), 1.40 (d, J = 6.4 Hz, 3H), 1.17 (d, J = 6.7 Hz, 2.49H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.8, 157.4, 145.5, 144.7, 142.6, 141.9, 135.9, 132.7, 132.3, 132.2, 130.1, 130.0, 129.7, 129.2, 129.0, 128.6, 128.4, 128.3, 127.5, 126.8, 126.5, 126.2, 117.3, 116.6, 116.5, 45.9, 37.9, 37.5, 36.8, 22.3, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>N<sub>3</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 404.1427, found 404.1423.



#### 3-Cyano-N'-(1,3-diphenylbutylidene)benzenesulfonohydrazide (B15)

White solid, as a single isomer, E/Z > 20:1, 0.74 g, 91% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 8.1 Hz, 1H), 7.93 (s, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.46 – 7.34 (m, 3H), 7.30 – 7.21 (m, 1H), 7.18 (t, J = 7.5 Hz, 2H), 7.05 (d, J = 7.1 Hz, 2H), 6.62 (br s, 1H), 2.99 – 2.85 (m, 3H), 1.40 (d, J = 5.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.5, 144.6, 139.1, 136.0, 135.8, 132.5, 131.8, 130.1, 129.4, 129.2, 128.6, 127.5, 126.5, 117.2, 113.0, 37.8, 37.5, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>N<sub>3</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 404.1427, found 404.1427.



#### N'-(1,3-Diphenylbutylidene)-4-nitrobenzenesulfonohydrazide (B16)

White solid, as an inseparable mixture of E/Z isomers (6.3:1), 0.64 g, 75% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.31 (d, J = 8.9 Hz, 2.32H), 7.99 (d, J = 8.9 Hz, 0.32H), 7.90 (d, J = 8.9 Hz, 2H), 7.60 – 7.53 (m, 2H), 7.46 – 7.35 (m, 3.48H), 7.22 – 7.14 (m, 3.48H), 7.09 – 7.05 (m, 2H), 7.05 – 7.02 (m, 0.32H), 6.98 – 6.93 (m, 0.32H), 6.62 (br s, 1H), 2.98 – 2.88 (m, 3H), 2.86 – 2.73 (m, 0.48H), 1.41 (d, J = 6.2 Hz, 3H), 1.17 (d, J = 6.7 Hz, 0.48H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.9, 157.6, 150.2, 150.2, 145.5, 144.7, 144.1, 143.3, 135.9, 132.3, 130.2, 130.1, 129.7, 129.7, 129.2, 129.0, 128.7, 128.4, 127.6, 126.9, 126.5, 126.5, 126.2, 124.1, 123.6, 45.9, 37.9, 37.6, 36.8, 22.5, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 424.1326, found 424.1313.



#### *N*'-(1,3-Diphenylbutylidene)-3-nitrobenzenesulfonohydrazide (B17)

White solid, as an inseparable mixture of E/Z isomers (4.5:1), 0.69 g, 81% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.70 (s, 0.22H), 8.59 (s, 1H), 8.44 (d, J = 8.2 Hz, 1H), 8.19 (d, J = 8.0 Hz, 0.22H), 8.09 (d, J = 7.9 Hz, 1H), 7.75 – 7.68 (m, 1.22H), 7.63 (br s, 0.22H), 7.61 – 7.57 (m, 2H), 7.44 – 7.35 (m, 3.66H), 7.19 – 7.06 (m, 3.66H), 7.03 (d, J = 7.3 Hz, 2H), 7.01 – 6.96 (m, 0.88H), 6.54 (br s, 1H), 3.00 – 2.87 (m, 3H), 2.88 – 2.81 (m, 0.44H), 2.75 (dd, J = 14.5, 7.5 Hz, 0.22H), 1.40 (d, J = 5.9 Hz, 3H), 1.16 (d, J = 6.7 Hz, 0.66H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 158.0, 157.7, 148.1, 147.7, 145.5, 144.6, 140.4, 139.5, 135.8, 134.0, 133.4, 132.3, 130.3, 130.2, 130.0, 129.7, 129.7, 129.1, 128.6, 128.2, 127.5, 127.4, 126.8, 126.5, 126.4, 126.1, 123.6, 123.0, 45.9, 37.9, 37.7, 36.7, 22.1, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 424.1326, found 424.1313.



*N*'-(1,3-Diphenylbutylidene)-3,5-bis(trifluoromethyl)benzenesulfonohydrazide (B18)

White solid, as an inseparable mixture of E/Z isomers (4.8:1), 0.87 g, 84% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (s, 0.42H), 8.26 (s, 2H), 8.11 (s, 1H), 7.61 (br s, 0.21H), 7.59 – 7.51 (m, 2H), 7.47 – 7.37 (m, 3.63H), 7.18 – 7.04 (m, 3.63H), 7.03 – 6.99 (m, 2.42H), 6.98 – 6.95 (m, 0.42H), 6.24 (br s, 1H), 3.00 – 2.84 (m, 3H), 2.83 – 2.72 (m, 0.63H), 1.42 (d, *J* = 6.5 Hz, 3H), 1.17 (d, *J* = 6.7 Hz, 0.63H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.6, 158.5, 145.5, 144.5, 141.1, 139.9, 135.7, 132.6 (q, *J* = 34.6 Hz), 132.3, 132.1 (q, *J* = 34.4 Hz), 130.4, 130.1, 129.7, 129.1, 128.9 (q, *J* = 3.0 Hz), 128.7, 128.3, 127.5, 126.8, 126.5, 126.5, 126.4, 126.4, 126.3, 122.6 (q, *J* = 273.3 Hz), 122.5 (q, *J* = 273.5 Hz), 46.0, 38.2, 37.9, 36.9, 21.7, 21.2.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –62.8 (s, 6F), –62.9 (s, 1.26F).

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>21</sub>F<sub>6</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 515.1222, found 515.1219.



#### N'-(1,3-Diphenylbutylidene)naphthalene-2-sulfonohydrazide (B19)

White solid, as an inseparable mixture of E/Z isomers (2.2:1), 0.69 g, 80% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (d, J = 1.8 Hz, 0.45H), 8.40 (d, J = 1.8 Hz, 1H), 8.05 – 8.01 (m, 1.45H), 8.00 – 7.94 (m, 2.90H), 7.85 (dd, J = 8.7, 1.8 Hz, 0.45H), 7.82 (dd, J = 8.7, 1.8 Hz, 1H), 7.74 – 7.64 (m, 2.90H), 7.63 (br s, 0.45H), 7.62 – 7.59 (m, 2H), 7.43 – 7.35 (m, 4.35H), 7.12 – 7.06 (m, 1.35H), 7.05 – 7.02 (m, 4.90H), 6.97 – 6.91 (m, 1.90H), 6.88 (br s, 1H), 2.99 – 2.87 (m, 3H), 2.86 – 2.72 (m, 1.35H), 1.38 (d, J = 6.1 Hz, 3H), 1.11 (d, J = 6.8 Hz, 1.35H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.0, 156.0, 145.6, 144.5, 136.3, 135.2, 135.0, 134.9, 134.8, 132.7, 132.1, 131.9, 129.7, 129.7, 129.5, 129.5, 129.3, 129.2, 129.0, 128.9, 128.8, 128.5, 128.4, 128.1, 127.9, 127.5, 127.4, 127.2, 126.7, 126.5, 126.5, 126.3, 126.0, 123.5, 122.6, 46.0, 37.6, 37.1, 36.8, 21.8, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 429.1631, found 429.1634.



4-Methoxy-N'-(1-(3-methoxyphenyl)-3-phenylbutylidene)benzenesulfonohydrazi de (B20)

White solid, as an inseparable mixture of E/Z isomers (2.5:1), 0.47 g, 53% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.8 Hz, 0.80H), 7.71 (d, J = 8.4 Hz, 2H), 7.54 – 7.49 (m, 0.40H), 7.31 – 7.25 (m, 1H), 7.25 – 7.23 (m, 0.40H), 7.19 – 7.05 (m, 8.20H), 7.00 – 6.87 (m, 5.60H), 6.46 (d, J = 7.5 Hz, 0.40H), 6.35 (br s, 0.40H), 3.86

(s, 1.20H), 3.85 (s, 3H), 3.79 (s, 3H), 3.72 (s, 1.20H), 2.95 – 2.86 (m, 3H), 2.84 – 2.68 (m, 1.20H), 1.32 (d, *J* = 6.6 Hz, 3H), 1.14 (d, *J* = 6.9 Hz, 1.20H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 160.2, 159.4, 156.5, 155.4, 145.8, 144.7, 137.8, 134.0, 130.7, 130.4, 129.9, 129.8, 129.4, 129.3, 128.9, 128.2, 127.2, 126.8, 126.4, 126.0, 118.9, 118.4, 115.2, 115.1, 114.1, 113.6, 112.0, 111.9, 55.6, 55.5, 55.2, 55.1, 45.9, 37.5, 36.9, 36.8, 21.8, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 439.1686, found 439.1687.



#### 4-Methoxy-*N*'-(3-phenyl-1-(*o*-tolyl)butylidene)benzenesulfonohydrazide (B21)

Slightly yellow solid, as a single isomer, E/Z > 20:1, 0.29 g, 34% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (br s, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.25 – 7.16 (m, 4H), 7.13 – 7.04 (m, 4H), 7.01 (d, J = 7.4 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.98 – 2.92 (m, 1H), 2.85 – 2.74 (m, 2H), 1.87 (s, 3H), 1.20 (d, J = 6.5 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 158.0, 145.2, 137.1, 136.4, 130.9, 130.3, 129.8, 128.8, 128.3, 128.0, 126.9, 126.6, 125.4, 113.9, 55.6, 38.9, 37.1, 22.5, 20.0. **HRMS** (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 423.1737, found 423.1736.



**4-Methoxy-**N**-(3-phenyl-1-(***m***-tolyl)butylidene)benzenesulfonohydrazide (B22)** White solid, as an inseparable mixture of E/Z isomers (1.4:1), 0.71 g, 84% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.4 Hz, 1.40H), 7.71 (d, J = 8.3 Hz, 2H), 7.42 (br s, 0.70H), 7.37 – 7.33 (m, 2H), 7.28 – 7.21 (m, 2.10H), 7.20 – 7.16 (m, 5H), 7.16 – 7.11 (m, 1.40H), 7.09 – 7.05 (m, 2H), 7.01 (d, J = 7.0 Hz, 1.40H), 6.99 – 6.91 (m, 3.40H), 6.74 (br s, 1H), 6.69 – 6.62 (m, 1.40H), 3.87 (s, 5.10H), 2.98 – 2.83 (m, 3H), 2.81 – 2.68 (m, 2.10H), 2.36 (s, 3H), 2.30 (s, 2.10H), 1.34 (d, J = 5.7 Hz, 3H), 1.15 (d, J = 6.7 Hz, 2.10H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 157.1, 155.8, 146.0, 144.8, 139.4, 137.9, 136.4, 132.8, 130.5, 130.4, 130.4, 130.0, 129.9, 129.5, 129.4, 129.0, 128.3, 127.3, 127.2, 127.0, 126.9, 126.4, 126.0, 123.7, 123.4, 114.1, 113.6, 55.6, 55.6, 46.0, 37.6, 37.1, 36.9, 21.9, 21.5, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 423.1737, found 423.1734.



**4-Methoxy-***N***'-(3-phenyl-1-(***p***-tolyl))butylidene)benzenesulfonohydrazide (B23)** White solid, as an inseparable mixture of E/Z isomers (4.2:1), 0.67 g, 79% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.0 Hz, 0.48H), 7.71 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.3 Hz, 2H), 7.28 – 7.18 (m, 0.48H), 7.20 – 7.11 (m, 5.96H), 7.10 – 7.04 (m, 2H), 7.03 – 6.96 (m, 0.72H), 6.93 (d, J = 8.5 Hz, 2H), 6.81 (br s, 0.24H), 6.79 (br s, 1H), 3.85 (s, 3.72H), 2.93 – 2.84 (m, 3H), 2.81 – 2.68 (m, 0.72H), 2.35 (s, 3.72H), 1.33 (d, J = 5.9 Hz, 3H), 1.13 (d, J = 6.6 Hz, 0.72H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.1, 163.1, 156.9, 155.7, 146.0, 144.8, 139.8, 139.7, 133.6, 130.4, 130.1, 130.0, 129.9, 129.6, 129.5, 129.1, 128.9, 128.2, 127.2, 126.8, 126.4, 126.4, 126.0, 114.0, 113.6, 55.5, 46.0, 37.6, 36.8, 21.7, 21.2, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 423.1737, found 423.1736.



# *N*'-(1-(4-(*tert*-Butyl)phenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydra zide (B24)

White solid, as a single isomer, E/Z > 20:1, 0.61 g, 66% yield in the final step. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.18 – 7.16 (m, 3H), 7.09 – 7.06 (m, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.91 (br s, 1H), 3.85 (s, 3H), 2.96 – 2.79 (m, 3H), 1.32 (d, J = 5.6 Hz, 3H), 1.32 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 155.7, 152.8, 144.8, 133.5, 130.4, 129.5, 128.9, 127.2, 126.4, 126.2, 125.3, 113.6, 55.5, 37.6, 36.8, 34.6, 31.1, 21.2. HRMS (ESI) *m/z* calcd. for C<sub>27</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 465.2206, found 465.2208.



*N*'-(1-([1,1'-Biphenyl]-4-yl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydra zide (B25)

White solid, as an inseparable mixture of E/Z isomers (17.0:1), 0.67 g, 69% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.9 Hz, 0.12H), 7.73 (d, J = 8.9 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.62 – 7.57 (m, 4H), 7.56 – 7.51 (m, 0.18H), 7.48 – 7.43 (m, 2H), 7.39 – 7.34 (m, 1H), 7.21 – 7.17 (m, 3H), 7.16 – 7.13 (m, 0.12H), 7.12 – 7.07 (m, 2H), 7.05 – 7.02 (m, 0.12H), 7.01 – 6.98 (m, 0.12H), 6.95 (d, J = 8.9 Hz, 2H), 6.79 (br s, 1H), 3.88 (s, 0.18H), 3.87 (s, 3H), 3.00 – 2.88 (m, 3H), 2.83 – 2.73 (m, 0.18H), 1.38 (d, J = 6.6 Hz, 3H), 1.17 (d, J = 6.8 Hz, 0.18H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 155.2, 145.9, 144.7, 142.6, 142.3, 140.2, 139.8, 135.3, 131.4, 130.5, 130.0, 129.5, 129.1, 128.9, 128.8, 128.3, 128.2, 127.9, 127.7, 127.4, 127.1, 127.1, 127.0, 126.9, 126.9, 126.5, 126.1, 114.1, 113.7, 55.6, 46.1, 37.7, 37.0, 29.7, 21.9, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 485.1893, found 485.1893.



*N*'-(1-(3-Fluorophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide (B26)

White solid, as an inseparable mixture of E/Z isomers (6.2:1), 0.80 g, 94% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.7 Hz, 0.32H), 7.72 (d, J = 8.8 Hz, 2H), 7.48 (br s, 0.16H), 7.38 – 7.34 (m, 0.16H), 7.33 – 7.29 (m, 2H), 7.28 – 7.25 (m, 0.48H), 7.25 – 7.22 (m, 0.48H), 7.20 – 7.13 (m, 3.48H), 7.09 – 7.02 (m, 4H), 7.01 – 6.94 (m, 3H), 6.69 (d, J = 7.6 Hz, 0.16H), 6.56 (d, J = 8.9 Hz, 0.16H), 3.88 (s, 0.48H), 3.87 (s, 3H), 2.96 – 2.83 (m, 3H), 2.81 – 2.70 (m, 0.48H), 1.34 (d, J = 6.5 Hz, 3H), 1.16 (d, J = 6.9 Hz, 0.48H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.3, 163.0 (d, J = 249.9 Hz), 162.7 (d, J = 245.5 Hz), 155.0, 154.1 (d, J = 2.7 Hz), 145.6, 144.5, 138.8 (d, J = 7.6 Hz), 134.8 (d, J = 6.9 Hz), 131.4 (d, J = 8.2 Hz), 130.4, 130.0, 129.9 (d, J = 8.2 Hz), 129.8, 129.3, 129.0, 128.3, 127.3, 126.8, 126.4, 126.2, 122.3 (d, J = 3.1 Hz), 122.1 (d, J = 2.7 Hz), 116.8 (d, J = 20.9 Hz), 116.4 (d, J = 21.4 Hz), 114.2, 113.8 (d, J = 22.3 Hz), 113.7, 113.4 (d, J = 23.1 Hz), 55.6, 45.9, 37.5, 37.0, 36.9, 21.9, 21.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –109.8 (s, 0.16F), –112.6 (s, 1F).



### *N*'-(1-(4-Fluorophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide (B27)

White solid, as an inseparable mixture of E/Z isomers (7.5:1), 0.73 g, 86% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 7.6 Hz, 0.26H), 7.74 (d, J = 8.2 Hz, 2H), 7.56 (br s, 0.13H), 7.53 – 7.48 (m, 2H), 7.24 (br s, 1H), 7.18 – 7.12 (m, 3.39H), 7.07 – 6.97 (m, 4.52H), 6.95 (d, J = 8.3 Hz, 2H), 6.92 – 6.87 (m, 0.26H), 3.84 (s, 3.39H), 2.93 – 2.80 (m, 3H), 2.81 – 2.68 (m, 0.39H), 1.31 (d, J = 5.6 Hz, 3H), 1.14 (d, J = 6.6 Hz, 0.39H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.4 (d, J = 249.6 Hz), 163.2, 163.1, 162.9 (d, J = 250.6 Hz), 155.7, 154.5, 145.6, 144.5, 132.6 (d, J = 3.2 Hz), 130.3, 129.9, 129.7, 129.4, 128.8, 128.7, 128.4 (d, J = 8.3 Hz), 128.2, 127.1, 126.8, 126.4, 126.0, 116.5 (d, J = 21.8 Hz), 115.2 (d, J = 21.6 Hz), 114.1, 113.7, 55.5, 46.0, 37.4, 36.9, 36.6, 21.8, 21.1.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –109.9 (s, 0.13F), –111.4 (s, 1F). HRMS (ESI) *m/z* calcd. for C<sub>23</sub>H<sub>24</sub>FN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 427.1486, found 427.1487.



# *N*'-(1-(2-Chlorophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide (B28)

White solid, as a single isomer (E/Z > 20:1), 0.54 g, 60% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.72 (m, 2H), 7.61 (br s, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.23 (t, *J* = 7.7 Hz, 1H), 7.19 – 7.14 (m, 3H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.05 – 6.99 (m, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.80 (d, *J* = 6.4 Hz, 1H), 3.88 (s, 3H), 3.01 – 2.89 (m, 2H), 2.86 – 2.77 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 156.5, 144.9, 137.1, 132.1, 130.7, 130.3, 129.7, 129.7, 128.8, 126.9, 126.6, 126.5, 113.9, 55.6, 39.1, 36.9, 22.5.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 443.1191, found 443.1192.



#### N'-(1-(3-Chlorophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide **(B29)**

White solid, as a single isomer (E/Z = 20.1), 0.65 g, 73% yield in the final step. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.1 Hz, 0.10H), 7.73 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 7.8 Hz, 0.10H), 7.48 (br s, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.6Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.20 – 7.10 (m, 4H), 7.08 – 7.02 (m, 2H), 6.96 (d, J= 8.4 Hz, 2H), 6.78 (d, J = 7.9 Hz, 0.10H), 3.87 (s, 3.15H), 2.95 - 2.81 (m, 3H), 2.80 -2.73 (m, 0.15H), 1.33 (d, J = 5.8 Hz, 3H), 1.16 (d, J = 6.6 Hz, 0.15H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 155.6, 154.0, 144.4, 138.3, 134.4, 130.4, 130.0, 129.6, 129.4, 129.2, 129.0, 128.4, 128.3, 127.3, 126.8, 126.7, 126.5, 126.4, 124.5, 114.2, 113.8, 55.6, 37.5, 37.4, 37.0, 36.8, 21.9, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 443.1191, found 443.1189.



#### N'-(1-(4-Chlorophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide **(B30)**

White solid, as a single isomer (E/Z > 20:1), 0.63 g, 71% yield in the final step. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.21 - 7.14 (m, 3H), 7.08 - 7.02 (m, 2H), 6.94 (d, J = 8.3 Hz, 2H),6.91 (br s, 1H), 3.87 (s, 3H), 2.92 - 2.82 (m, 3H), 1.34 (d, J = 5.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 154.3, 144.5, 135.6, 134.9, 130.4, 129.4, 129.1, 128.6, 127.8, 127.4, 126.4, 113.7, 55.6, 37.6, 36.8, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 443.1191, found 443.1192.



#### N'-(1-(3-Bromophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide **(B31)**

White solid, as an inseparable mixture of E/Z isomers (13.5:1), 0.83 g, 86% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.5 Hz, 0.14H), 7.75 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.55 (br s, 0.07H), 7.44 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.34 (br s, 1H), 7.25 – 7.21 (m, 0.21H), 7.19 – 7.14 (m, 4H), 7.07 – 7.01 (m, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 7.6 Hz, 0.07H), 3.86 (s, 0.21H), 3.85 (s, 3H), 2.93 – 2.79 (m, 3H), 2.78 – 2.72 (m, 0.21H), 1.31 (d, J = 6.6 Hz, 3H), 1.15 (d, J = 6.9 Hz, 0.21H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 153.8, 145.4, 144.4, 138.6, 134.8, 132.6, 132.2, 131.0, 130.3, 129.9, 129.8, 129.6, 129.3, 129.1, 128.9, 128.2, 127.2, 126.8, 126.4, 126.1, 125.2, 124.9, 123.5, 122.5, 114.1, 113.8, 55.5, 45.8, 37.3, 37.0, 36.6, 21.9, 21.1.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>BrN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 487.0686, found 487.0684.



# *N*'-(1-(4-Bromophenyl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide (B32)

White solid, as a single isomer (E/Z > 20:1), 0.81 g, 83% yield in the final step. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.20 – 7.14 (m, 3H), 7.07 – 7.03 (m, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.82 (br s, 1H), 3.88 (s, 3H), 2.97 – 2.78 (m, 3H), 1.35 (d, J = 6.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 154.4, 144.5, 135.4, 131.6, 130.4, 129.3, 129.1, 128.0, 127.4, 126.4, 124.0, 113.7, 55.6, 37.6, 36.8, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>BrN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 487.0686, found 487.0685.



# 4-Methoxy-N'-(3-phenyl-1-(3-(trifluoromethyl)phenyl)butylidene)benzenesulfono hydrazide (B33)

White solid, as an inseparable mixture of E/Z isomers (10:1), 0.82 g, 86% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 7.7 Hz, 0.20H), 7.78 (d, J = 8.0 Hz, 2H), 7.68 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1.10H), 7.49 (br s, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.24 (br s, 0.10H), 7.18 – 7.12 (m, 3.30H), 7.09 (d, J = 7.6 Hz, 0.10H), 7.05 – 7.01 (m, 2H), 6.97 (d, J = 8.5 Hz, 2.20H), 3.87 (s, 0.30H), 3.86 (s, 3H), 2.97 – 2.85 (m, 3H), 2.83 – 2.77 (m, 0.30H), 1.33 (d, J = 5.6 Hz, 3H), 1.18 (d, J = 6.5 Hz, 0.30H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.4, 163.3, 155.3, 153.9, 145.3, 144.3, 137.4, 133.9, 130.6 (q, J = 32.7 Hz), 130.4, 130.1, 129.8 (q, J = 36.2 Hz), 129.5, 129.1, 128.9, 128.8, 128.3, 127.2, 126.8, 126.4, 126.2, 125.9 (q, J = 3.6 Hz), 123.9 (q, J = 272.4 Hz), 123.5 (q, J = 3.8 Hz), 114.2, 113.8, 55.6, 55.5, 45.8, 37.3, 36.6, 22.0, 21.1. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  –62.6 (s, 3F), –62.7 (s, 0.30F).

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>24</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 477.1454, found 477.1456.



4-Methoxy-N'-(3-phenyl-1-(4-(trifluoromethyl)phenyl)butylidene)benzenesulfono hydrazide (B34)

White solid, as a single isomer (E/Z > 20:1), 0.71 g, 75% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, *J* = 8.9 Hz, 2H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.06 – 7.04 (m, 2H), 7.03 (br s, 1H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H), 2.94 – 2.87 (m, 3H), 1.36 (d, *J* = 6.1 Hz, 3H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.4, 153.8, 144.4, 139.9, 131.2 (q, *J* = 32.6 Hz), 130.4, 129.3, 129.1, 127.5, 126.8, 126.4, 125.4 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.2 Hz), 113.8, 55.6, 37.6, 36.9, 21.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –62.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>24</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 477.1454, found 477.1455.



Methyl 3-(1-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-3-phenylbutyl)benzoate (B35)

White solid, as a single isomer (E/Z > 20:1), 0.57 g, 61% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.79 – 7.72 (m, 3H), 7.41 (t, J = 7.8 Hz, 1H), 7.18 – 7.15 (m, 3H), 7.10 (br s, 1H), 7.06 – 7.03 (m, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.94 (s, 3H), 3.88 (s, 3H), 2.98 – 2.88 (m, 3H), 1.35 (d, J = 5.5 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.7, 163.4, 154.6, 144.6, 137.0, 130.9, 130.6, 130.4, 129.3, 129.1, 128.7, 127.8, 127.4, 126.5, 113.9, 55.7, 52.3, 37.5, 36.9, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 467.1635, found 467.1636.



# Methyl 4-(1-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-3-phenylbutyl)benzoate (B36)

White solid, as an inseparable mixture of E/Z isomers (10:1), 0.79 g, 85% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.9 Hz, 0.20H), 8.01 (d, *J* = 7.9 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 0.20H), 7.70 (d, *J* = 8.7 Hz, 2H), 7.62 (d, *J* = 7.9 Hz, 2H), 7.20 – 7.15 (m, 3H), 7.18 – 7.13 (m, 0.30H), 7.07 – 7.03 (m, 2H), 7.00 (d, *J* = 8.7 Hz, 0.20H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.90 (br s, 1H), 3.93 (s, 3.30H), 3.90 (s, 0.30H), 3.88 (s, 3H), 2.94 – 2.87 (m, 3H), 2.85 – 2.77 (m, 0.30H), 1.37 (d, *J* = 6.8 Hz, 3H), 1.17 (d, *J* = 6.8 Hz, 0.30H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.6, 163.3, 154.2, 144.5, 140.7, 130.8, 130.7, 130.5, 130.0, 129.7, 129.3, 129.1, 128.4, 127.5, 126.9, 126.8, 126.5, 126.5, 126.2, 114.2, 113.8, 55.6, 52.4, 52.2, 45.9, 37.6, 37.1, 37.0, 22.0, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 467.1635, found 467.1636.



# 4-Methoxy-N'-(1-(naphthalen-2-yl)-3-phenylbutylidene)benzenesulfonohydrazid e (B40)

White solid, as an inseparable mixture of E/Z isomers (5.9:1), 0.85 g, 92% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (br s, 1H), 7.84 – 7.78 (m, 6H), 7.77 – 7.71 (m, 1.02H), 7.63 – 7.56 (m, 0.17H), 7.51 – 7.45 (m, 2.34H), 7.39 – 7.33 (m, 0.17H), 7.24 – 7.19 (m, 1.17H), 7.18 – 7.12 (m, 3.51H), 7.09 – 7.04 (m, 2H), 7.01 – 6.96 (m, 0.68H), 6.93 (d, *J* = 8.6 Hz, 2H), 3.83 (s, 0.51H), 3.81 (s, 3H), 3.06 – 2.91 (m, 3H), 2.90 – 2.79 (m, 0.51H), 1.35 (d, *J* = 5.6 Hz, 3H), 1.17 (d, *J* = 6.2 Hz, 0.51H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 156.8, 155.2, 145.8, 144.7, 133.8, 133.7, 132.7, 130.4, 129.9, 129.5, 129.4, 128.9, 128.5, 128.2, 128.1, 128.0, 127.7, 127.5, 127.3, 127.1, 126.9, 126.8, 126.8, 126.4, 126.3, 126.2, 126.0, 123.9, 123.3, 114.1, 113.7, 55.5, 55.5, 46.0, 37.6, 37.0, 36.5, 21.8, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 459.1737, found 459.1738.



# 4-Methoxy-N'-(3-phenyl-1-(thiophen-3-yl)butylidene)benzenesulfonohydrazide (B42)

Yellow solid, as an inseparable mixture of E/Z isomers (4.5:1), 0.79 g, 95% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.8 Hz, 0.44H), 7.72 (d, J = 8.8 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.25 – 7.20 (m, 1H), 7.18 – 7.15 (m, 3.66H), 7.12 (d, J = 7.0 Hz, 0.22H), 7.10 – 7.06 (m, 2H), 7.01 – 6.96 (m, 0.88H), 6.96 – 6.91 (m, 3H), 6.83 (d, J = 4.9 Hz, 0.22H), 3.84 (s, 3.66H), 3.05 – 2.95 (m, 1H), 2.93 – 2.88 (m, 0.22H), 2.86 – 2.78 (m, 2H), 2.77 – 2.67 (m, 0.44H), 1.34 (d, J = 6.9 Hz, 3H), 1.13 (d, J = 6.9 Hz, 0.66H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 163.1, 152.0, 151.8, 145.8, 144.7, 139.6, 132.7, 130.3, 130.0, 129.7, 129.3, 128.9, 128.2, 127.6, 127.1, 126.7, 126.4, 126.0, 125.8, 125.7, 125.6, 124.3, 114.0, 113.6, 55.5, 46.0, 37.8, 37.7, 37.3, 21.4, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 415.1145, found 415.1144.



# *N*'-(1-(Benzo[*b*]thiophen-5-yl)-3-phenylbutylidene)-4-methoxybenzenesulfonohyd razide (B43)

White solid, as a single isomer (E/Z > 20:1), 0.81 g, 87% yield in the final step. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 – 7.70 (m, 4H), 7.40 (s, 1H), 7.38 – 7.29 (m, 2H), 7.19 – 7.07 (m, 5H), 6.97 (d, J = 9.0 Hz, 2H), 6.65 (br s, 1H), 3.87 (s, 3H), 3.14 – 3.04 (m, 1H), 2.98 – 2.82 (m, 2H), 1.43 (d, J = 7.0 Hz, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.3, 151.5, 144.4, 142.7, 140.4, 139.5, 130.7, 129.1, 127.5, 126.4, 125.7, 124.4, 124.1, 123.4, 122.2, 113.6, 55.6, 38.2, 37.7, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 465.1301, found 465.1305.



# *N*'-(1-(Dibenzo[*b*,*d*]furan-2-yl)-3-phenylbutylidene)-4-methoxybenzenesulfonohy drazide (B44)

White solid, as an inseparable mixture of E/Z isomers (1.9:1), 0.95 g, 95% yield in the

final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 1.6 Hz, 1H), 7.95 – 7.90 (m, 1.04H), 7.86 – 7.81 (m, 1.56H), 7.75 (d, J = 8.9 Hz, 2H), 7.66 (dd, J = 8.8, 1.9 Hz, 1H), 7.58 – 7.56 (m, 1H), 7.56 – 7.52 (m, 1.56H), 7.51 – 7.48 (m, 1.56H), 7.47 – 7.44 (m, 1H), 7.39 – 7.33 (m, 2H), 7.20 – 7.13 (m, 4.56H), 7.10 – 7.06 (m, 2H), 7.02 – 6.99 (m, 1.56H), 6.98 – 6.94 (m, 4H), 3.88 (s, 1.56H), 3.86 (s, 3H), 3.06 – 2.94 (m, 3H), 2.93 – 2.84 (m, 1.56H), 1.38 (d, J = 6.3 Hz, 3H), 1.20 (d, J = 6.8 Hz, 1.56H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.2, 163.2, 156.8, 156.7, 156.5, 156.4, 156.1, 155.8, 145.9, 144.7, 131.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.3, 128.0, 127.5, 127.3, 127.2, 126.9, 126.5, 126.1, 125.9, 125.4, 125.2, 124.2, 123.8, 123.1, 123.1, 122.9, 120.8, 120.6, 119.2, 119.0, 114.1, 113.7, 112.7, 111.8, 111.7, 111.4, 55.6, 55.5, 46.5, 37.6, 37.3, 37.2, 21.9, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 499.1686, found 499.1690.



*N*'-(1-Cyclohexyl-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazide (B45) Colorless oil, as an inseparable mixture of E/Z isomers (2.7:1), 0.63 g, 76% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 8.9 Hz, 0.74H), 7.69 (d, J = 8.9 Hz, 2H), 7.23 – 7.15 (m, 4.11H), 7.14 – 7.11 (m, 0.37H), 7.07 – 7.02 (m, 2.74H), 6.97 (d, J = 8.9 Hz, 0.74H), 6.93 (d, J = 8.9 Hz, 2H), 6.51 (br s, 1H), 3.88 (s, 3H), 3.87 (s, 1.11H), 3.23 – 3.11 (m, 0.37H), 2.99 – 2.82 (m, 1H), 2.43 – 2.36 (m, 2H), 2.35 – 2.27 (m, 0.74H), 1.93 – 1.82 (m, 1H), 1.76 – 1.52 (m, 7.22H), 1.30 (d, J = 7.0 Hz, 3H), 1.26 – 1.12 (m, 6.85H), 1.04 (d, J = 6.8 Hz, 1.11H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.5, 163.1, 162.9, 162.4, 147.1, 144.9, 130.3, 130.2, 129.9, 129.7, 128.8, 128.1, 127.0, 126.9, 126.4, 125.8, 114.0, 113.5, 55.5, 45.2, 40.6, 38.7, 38.4, 37.0, 35.9, 30.5, 30.4, 28.5, 28.1, 26.2, 26.1, 25.9, 25.7, 25.5, 25.5, 21.6, 21.2.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 415.2050, found 415.2048.



# *N*'-(2,2-Dimethyl-5-phenylhexan-3-ylidene)-4-methoxybenzenesulfonohydrazide (B46)

Colorless oil, as a single isomer (E/Z > 20:1), 0.25 g, 32% yield in the final step. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 8.0 Hz, 2H), 7.25 – 7.15 (m, 3H), 7.14 –

7.08 (m, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.29 (br s, 1H), 3.87 (s, 3H), 3.06 – 2.95 (m, 1H), 2.51 – 2.40 (m, 2H), 1.33 (d, J = 6.7 Hz, 3H), 1.04 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.9, 163.0, 145.1, 130.5, 129.6, 129.3, 127.4, 126.5, 113.3, 55.5, 39.3, 37.6, 36.8, 28.5, 22.1.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 389.1893, found 389.1891.



# *N*'-(1-(Adamantan-1-yl)-3-phenylbutylidene)-4-methoxybenzenesulfonohydrazid e (B47)

White solid, as a single isomer (E/Z > 20:1), 0.20 g, 21% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 8.9 Hz, 2H), 7.23 – 7.17 (m, 3H), 7.13 – 7.08 (m, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.23 (br s, 1H), 3.88 (s, 3H), 3.02 – 2.89 (m, 1H), 2.49 – 2.38 (m, 2H), 2.02 – 1.97 (m, 3H), 1.79 – 1.68 (m, 6H), 1.66 – 1.61 (m, 6H), 1.33 (d, J = 7.0 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.9, 145.1, 130.5, 129.6, 129.2, 127.4, 126.5, 113.2, 55.5, 41.1, 40.1, 37.8, 36.5, 35.9, 28.2, 22.1.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>35</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 467.2363, found 467.2366.

General procedure for preparation of B37



According to the **general procedure 1**, substrate A2 was prepared as a slightly yellow solid (2.0 g, 78% yield in the final step).

#### 1-(4-Bromophenyl)-3-phenylbutan-1-one (A2)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.33 – 7.24 (m, 4H), 7.22 – 7.17 (m, 1H), 3.55 – 3.43 (m, 1H), 3.26 (dd, J = 16.5, 5.9 Hz, 1H), 3.14 (dd, J = 16.5, 8.1 Hz, 1H), 1.34 (d, J = 6.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 197.9, 146.2, 135.8, 131.8, 129.5, 128.5, 126.8, 126.3, 46.9, 35.5, 21.8.

**HRMS** (ESI) m/z calcd. for C<sub>16</sub>H<sub>16</sub>BrO [M + H]<sup>+</sup> 303.0379, found 303.0374.

Substrate A3 was prepared according to a modified literature procedure<sup>5</sup>: To a stirring mixture of A2 (0.45 g, 1.5 mmol, 1.0 equiv.), Pd (PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (21.0 mg, 0.03 mmol, 2 mol%) and CuI (2.9 mg, 0.015 mmol, 1 mol%) in Et<sub>3</sub>N (10 mL) was added phenylacetylene (0.2 mL, 1.8 mmol, 1.2 equiv.) via syringe under argon atmosphere. The resulting mixture was stirred at 50 °C for 24 h. After cooling down to room temperature, the reaction mixture was quenched by water (10 mL), filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 80:1–50:1) to afford the product A3 as a slightly yellow solid (0.39 g, 80% yield).

3-Phenyl-1-(4-(phenylethynyl)phenyl)butan-1-one (A3)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.55 – 7.52 (m, 2H), 7.37 – 7.33 (m, 3H), 7.32 – 7.25 (m, 4H), 7.23 – 7.16 (m, 1H), 3.56 – 3.44 (m, 1H), 3.28 (dd, J = 16.5, 5.8 Hz, 1H), 3.16 (dd, J = 16.5, 8.2 Hz, 1H), 1.34 (d, J = 6.9 Hz, 3H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 198.3, 146.4, 136.2, 131.7, 131.7, 128.8, 128.5, 128.4, 128.0, 126.8, 126.3, 122.6, 92.7, 88.6, 47.0, 35.6, 21.9. HRMS (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>21</sub>O [M + H]<sup>+</sup> 325.1587, found 325.1586.

Synthesis of **B37**: To a solution of **A3** (0.32 g, 1.0 mmol, 1.0 equiv.) and 4-methoxy benzenesulfonohydrazide (0.40 g, 2.0 mmol, 2.0 equiv.) in MeOH (10 mL) was added glacial acetic acid (29  $\mu$ L, 0.5 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B37** as a white solid (0.39 g, 76% yield), a single isomer (*E*/*Z* > 20:1).



4-Methoxy-N'-(3-phenyl-1-(4-(phenylethynyl)phenyl)butylidene)benzenesulfonoh ydrazide (B37)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.9 Hz, 2H), 7.57 – 7.52 (m, 4H), 7.49 (d, J = 8.5 Hz, 2H), 7.38 – 7.33 (m, 3H), 7.20 – 7.17 (m, 3H), 7.08 – 7.04 (m, 2H), 6.95 (d, J = 8.9 Hz, 2H), 6.92 (br s, 1H), 3.86 (s, 3H), 2.96 – 2.83 (m, 3H), 1.35 (d, J = 6.5 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 154.6, 144.6, 136.1, 131.6, 130.4, 129.4, 129.0, 128.5, 128.4, 127.3, 126.4, 126.4, 124.5, 122.9, 113.7, 91.1, 88.9, 55.6, 37.6, 36.7, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 509.1893, found 509.1895.

General procedure for preparation of B38



Substrate A4 was prepared according to a modified literature procedure<sup>6</sup>: To a stirring mixture of A2 (0.45 g, 1.5 mmol, 1.0 equiv.), Pd(OAc)<sub>2</sub> (6.7 mg, 0.03 mmol, 2 mol%), PPh<sub>3</sub> (23.6 mg, 0.09 mmol, 6 mol%) and dicyclohexylmethylamine (0.44 g, 2.25 mmol, 1.5 equiv.) in EtOH (6 mL) was added diethylphosphite (0.23 mL, 1.8 mmol, 1.2 equiv.) via syringe under argon atmosphere. The resulting mixture was stirred at 80 °C for 16 h. After cooling down to room temperature, the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL), and the filtrate was concentrated under reduced pressure. The residue was diluted with EtOAc (20 mL), washed with HCl (1 M, 20 mL), saturated NaHCO<sub>3</sub> (20 mL) and brine (20 mL  $\times$  2), respectively. The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 3:1) to afford the product A4 as a white solid (0.45 g, 83% yield).



#### Diethyl (4-(3-Phenylbutanoyl)phenyl)phosphonate (A4)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 – 7.96 (m, 2H), 7.92 – 7.86 (m, 2H), 7.32 – 7.23 (m, 4H), 7.21 – 7.15 (m, 1H), 4.22 – 4.07 (m, 4H), 3.55 – 3.43 (m, 1H), 3.33 (dd, *J* = 16.7, 6.0 Hz, 1H), 3.21 (dd, *J* = 16.7, 7.9 Hz, 1H), 1.42 – 1.29 (m, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.2, 145.8, 139.6 (d, J = 3.0 Hz), 132.9 (d, J = 186.5 Hz), 131.7 (d, J = 9.9 Hz), 128.2, 127.5 (d, J = 15.0 Hz), 126.5, 126.0, 62.1, 62.0, 46.9, 35.2, 21.6, 16.0, 15.9.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 16.8.

**HRMS** (ESI) m/z calcd. for C<sub>20</sub>H<sub>26</sub>O<sub>4</sub>P [M + H]<sup>+</sup> 361.1563, found 361.1561.

Synthesis of **B38**: To a solution of **A4** (0.43 g, 1.2 mmol, 1.0 equiv.) and 4-methoxy benzenesulfonohydrazide (0.49 g, 2.4 mmol, 2.0 equiv.) in MeOH (10 mL) was added glacial acetic acid (35  $\mu$ L, 0.6 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 1:1–1:2) to afford the desired product **B38** as a white solid (0.47 g, 72% yield), a single isomer (*E*/*Z* > 20:1).



Diethyl (4-(1-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-3-phenylbutyl)phenyl) phosphonate (B38)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.92 (br s, 1H), 7.82 – 7.73 (m, 4H), 7.63 – 7.59 (m, 2H), 7.18 – 7.12 (m, 3H), 7.09 – 7.04 (m, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 4.21 – 4.01 (m, 4H), 3.86 (s, 3H), 3.04 – 2.84 (m, 3H), 1.35 – 1.26 (m, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 153.8, 144.5, 140.4 (d, J = 3.3 Hz), 131.6 (d, J = 9.9 Hz), 130.2, 129.4, 128.9 (d, J = 188.5 Hz), 128.7, 127.0, 126.4, 126.3 (d, J = 15.0 Hz), 113.7, 62.1, 62.1, 55.5, 37.2, 36.3, 21.1, 16.2, 16.1.

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 18.0.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>34</sub>N<sub>2</sub>O<sub>6</sub>PS [M + H]<sup>+</sup> 545.1870, found 545.1867.

#### General procedure for preparation of B39



According to the **general procedure 1**, substrate **A5** was prepared as a slightly yellow solid (2.1 g, 81% yield in the final step).

### 1-(3-Bromophenyl)-3-phenylbutan-1-one (A5)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (t, J = 1.8 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.67 – 7.64 (m, 1H), 7.34 – 7.24 (m, 5H), 7.22 – 7.16 (m, 1H), 3.53 – 3.43 (m, 1H), 3.26 (dd, J = 16.6, 5.9 Hz, 1H), 3.14 (dd, J = 16.6, 8.0 Hz, 1H), 1.34 (d, J = 6.9 Hz, 3H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 146.2, 138.9, 135.8, 131.1, 130.1, 128.6, 126.8, 126.5, 126.4, 122.9, 47.1, 35.5, 21.8.

**HRMS** (ESI) m/z calcd. for C<sub>16</sub>H<sub>16</sub>BrO [M + H]<sup>+</sup> 303.0379, found 303.0375.

Substrate A6 was prepared according to a modified literature procedure<sup>7</sup>: To a mixture of A5 (0.91 g, 3.0 mmol, 1.0 equiv.), Pd(OAc)<sub>2</sub> (33.7 mg, 0.15 mmol, 5 mol%) and KOAc (0.88 g, 9.0 mmol, 3.0 equiv.) in anhydrous DMF (12 mL) was added bis(pinacolato)diboron (0.99 g, 3.9 mmol, 1.3 equiv.) in one portion under argon atmosphere. The resulting mixture was stirred at 70 °C for 24 h. After cooling down to room temperature, the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL), and the filtrate was diluted with water (20 mL) and extracted with EtOAc (10 mL × 2). The combined organic layers were washed with water (20 mL × 2) and brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50:1–30:1) to give the product A6 as a colorless oil (0.76 g, 72% yield).



## 3-Phenyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butan-1-one (A6)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (s, 1H), 8.09 – 8.05 (m, 1H), 8.03 – 8.00 (m, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.26 – 7.20 (m, 1H), 3.63 – 3.51 (m, 1H), 3.38 (dd, *J* = 16.8, 5.6 Hz, 1H), 3.27 (dd, *J* = 16.8, 8.3 Hz, 1H), 1.40 (s, 12H), 1.38 (d, *J* = 6.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 199.1, 146.6, 139.2, 136.5, 134.3, 130.6, 128.5, 128.0, 126.9, 126.2, 84.1, 47.1, 35.3, 24.9, 24.8, 21.7.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>28</sub>BO<sub>3</sub> [M + H]<sup>+</sup> 351.2126, found 351.2127.

Synthesis of **B39**: To a solution of **A6** (0.70 g, 2.0 mmol, 1.0 equiv.) and 4-methoxy benzenesulfonohydrazide (0.81 g, 4.0 mmol, 2.0 equiv.) in MeOH (15 mL) was added glacial acetic acid (57  $\mu$ L, 1.0 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B39** as a slightly yellow solid (0.84 g, 79% yield), an inseparable mixture of *E/Z* isomers (4.0:1).



4-Methoxy-*N*'-(3-phenyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl )butylidene)benzenesulfonohydrazide (B39)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.83 – 7.76 (m, 3.75H), 7.66 – 7.61 (m, 1H), 7.40 – 7.37 (m, 0.75H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.18 – 7.14 (m, 3H), 7.14 – 7.11 (m, 0.50H), 7.08 – 7.04 (m, 2H), 7.03 – 6.99 (m, 0.50H), 6.99 – 6.95 (m, 2.50H), 6.91 (br s, 1H), 3.88 (s, 0.75H), 3.86 (s, 3H), 2.98 – 2.85 (m, 3H), 2.85 – 2.70 (m, 0.75H), 1.37 (s, 12H), 1.35 (s, 3.0H), 1.32 (d, *J* = 5.9 Hz, 3H), 1.14 (d, *J* = 6.8 Hz, 0.75H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 156.9, 155.8, 145.9, 144.7, 135.9, 135.7, 132.9, 132.5, 132.1, 130.5, 129.9, 129.8, 129.3, 129.2, 128.9, 128.7, 128.2, 127.8, 127.1, 126.8, 126.4, 126.0, 114.1, 113.6, 84.1, 83.8, 55.6, 55.5, 45.9, 37.4, 36.8, 36.7, 24.9, 24.8, 24.7, 21.8, 21.1.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>36</sub>BN<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 535.2432, found 535.2436.

General procedure for preparation of B41



Substrate A7 was prepared according to a modified literature procedure<sup>8</sup>: To a mixture of A2 (0.61 g, 2.0 mmol, 1.0 equiv.), ferric acetylacetonate (212.0 mg, 0.6 mmol, 30 mol%), CuO (15.9 mg, 0.2 mmol, 10 mol%) and Cs<sub>2</sub>CO<sub>3</sub> (1.30 g, 4.0 mmol, 2.0 equiv.) in anhydrous DMF (5 mL) was added 1*H*-pyrazole (0.20 g, 3.0 mmol, 1.5 equiv.) in one portion under argon atmosphere. The resulting mixture was stirred at 100 °C for 24 h. After cooling down to room temperature, the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL), and the filtrate was diluted with water (20 mL) and extracted with EtOAc (10 mL × 2). The combined organic layers were washed with water (20 mL × 2) and brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–5:1) to give the product **A7** as a white solid (0.38 g, 66% yield).



### 1-(4-(1*H*-Pyrazol-1-yl)phenyl)-3-phenylbutan-1-one (A7)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 8.8 Hz, 2H), 8.00 (d, J = 2.5 Hz, 1H), 7.80 – 7.76 (m, 3H), 7.35 – 7.27 (m, 4H), 7.23 – 7.16 (m, 1H), 6.52 – 6.51 (m, 1H), 3.56 – 3.47 (m, 1H), 3.31 (dd, J = 16.4, 5.9 Hz, 1H), 3.19 (dd, J = 16.4, 8.1 Hz, 1H), 1.36 (d, J = 6.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 197.8, 146.4, 143.2, 142.0, 134.8, 129.7, 128.5, 126.8, 126.3, 118.4, 108.5, 47.0, 35.7, 21.9.

**HRMS** (ESI) m/z calcd. for C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O [M + H]<sup>+</sup> 291.1492, found 291.1491.

Synthesis of **B41**: To a solution of **A7** (0.35 g, 1.2 mmol, 1.0 equiv.) and 4-methoxy benzenesulfonohydrazide (0.49 g, 2.4 mmol, 2.0 equiv.) in MeOH (10 mL) was added glacial acetic acid (35  $\mu$ L, 0.6 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B41** as a white solid (0.31 g, 54% yield), an inseparable mixture of *E/Z* isomers (5.3:1).



*N*'-(1-(4-(1*H*-Pyrazol-1-yl)phenyl)-3-phenylbutylidene)-4-methoxybenzenesulfon ohydrazide (B41)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 2.4 Hz, 1H), 7.93 (d, J = 2.4 Hz, 0.19H), 7.82 (d, J = 8.8 Hz, 0.38H), 7.76 – 7.62 (m, 7H), 7.45 (s, 0.19H), 7.20 – 7.18 (m, 3H), 7.17 – 7.13 (m, 0.38H), 7.08 – 7.04 (m, 2H), 7.02 – 6.98 (m, 0.95H), 6.95 (d, J = 8.8 Hz, 2H), 6.76 (br s, 1H), 6.51 – 6.47 (m, 1H), 3.89 (s, 0.57H), 3.88 (s, 3H), 2.99 – 2.87 (m, 3H), 2.85 – 2.73 (m, 0.57H), 1.37 (d, J = 5.9 Hz, 3H), 1.17 (d, J = 6.9 Hz, 0.57H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 154.6, 145.7, 144.6, 141.5, 140.8, 134.4, 130.5, 130.0, 129.4, 129.1, 128.4, 128.1, 127.7, 127.4, 126.9, 126.7, 126.6, 126.4, 126.2, 119.8, 118.7, 114.1, 113.7, 108.3, 108.0, 55.6, 46.0, 37.6, 37.2, 36.9, 21.9, 21.4.
HRMS (ESI) *m/z* calcd. for C<sub>26</sub>H<sub>27</sub>N<sub>4</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 475.1798, found 475.1803.

### **General procedure 2**

Racemic arylsulfonohydrazones **B48**, **B51**, **B52** and **B57** were prepared according to the general procedure 2.



General procedure for preparation of N'-(1,3-diphenylpentylidene)-4-methoxybenzene sulfonohydrazide (**B51**,  $R^1 = H$ ,  $R^2 = Et$ ) as the typical example:

Synthesis of **S7-1** ( $\mathbb{R}^1 = H$ ,  $\mathbb{R}^2 = Et$ ): To a solution of propiophenone **S6-1** (1.34 g, 10 mmol, 1.0 equiv.) in EtOH (20 mL) was added NaBH<sub>4</sub> (0.45 g, 12 mmol, 1.2 equiv.) in portions at 0 °C. Then the resulting mixture was stirred at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by water (10 mL), filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure to afford the crude alcohol **S7-1** (1.29 g), which was directly used in the next step without further purification.

Synthesis of A8 ( $R^1 = H$ ,  $R^2 = Et$ )<sup>9</sup>: To a solution of the crude alcohol S7-1 obtained above and phenylacetylene (0.88 mL, 8.0 mmol, 1.0 equiv.) in nitromethane (30 mL) was added iron(III) chloride hexahydrate (0.32 g, 1.2 mmol, 0.15 equiv.) in one portion under argon atmosphere. The resulting mixture was stirred at 80 °C for 5 h. After cooling down to room temperature, the reaction mixture was concentrated under reduced pressure to remove the organic solvent. The residue was dissolved in EtOAc (30 mL), filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was successively washed with water (50 mL) and brine (50 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to afford the product A8 as a white solid (0.86 g, 45% yield).

### **1,3-Diphenylpentan-1-one (A8)**

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 – 7.88 (m, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.24 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 3.35 – 3.19 (m, 3H), 1.85 – 1.72 (m, 1H), 1.71 – 1.62 (m, 1H), 0.80 (t, J = 7.4 Hz, 3H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  199.2, 144.6, 137.2, 132.9, 128.5, 128.4, 128.0, 127.6, 126.2, 45.6, 43.0, 29.2, 12.1.

**HRMS** (ESI) m/z calcd. for C<sub>17</sub>H<sub>19</sub>O [M + H]<sup>+</sup> 239.1430, found 239.1429.

Substrate **B51** ( $\mathbb{R}^1 = \mathbb{H}$ ,  $\mathbb{R}^2 = \mathbb{E}t$ ): To a solution of **A8** (0.48 g, 2.0 mmol, 1.0 equiv.) and 4-methoxybenzenesulfonohydrazide (0.81 g, 4.0 mmol, 2.0 equiv.) in MeOH (15 mL) was added glacial acetic acid (57  $\mu$ L, 1.0 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B51** as a white solid (0.75 g, 88% yield), an inseparable mixture of *E/Z* isomers (2.1:1).



### *N*'-(1,3-Diphenylpentylidene)-4-methoxybenzenesulfonohydrazide (B51)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 9.0 Hz, 0.96H), 7.67 (d, J = 8.8 Hz, 2H), 7.56 – 7.53 (m, 2H), 7.40 (br s, 0.48H), 7.37 – 7.32 (m, 4.44H), 7.20 – 7.11 (m, 4.44H), 7.02 – 6.99 (m, 2H), 6.98 – 6.95 (m, 0.96H), 6.94 – 6.91 (m, 2.96H), 6.85 – 6.80 (m, 0.96H), 6.71 (br s, 1H), 3.88 (s, 1.44H), 3.86 (s, 3H), 2.97 (dd, J = 14.0, 4.5 Hz, 1H), 2.88 – 2.72 (m, 1.96H), 2.66 – 2.59 (m, 0.48H), 2.58 – 2.52 (m, 1H), 1.82 – 1.72 (m, 2H), 1.64 – 1.54 (m, 0.48H), 1.52 – 1.40 (m, 0.48H), 0.75 (t, J = 7.3 Hz, 3H), 0.65 (t, J = 7.4 Hz, 1.44H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 163.1, 156.8, 155.9, 143.1, 136.4, 132.8, 130.4, 129.9, 129.8, 129.6, 129.5, 129.4, 129.3, 129.0, 128.4, 128.1, 127.7, 127.3, 127.0, 126.5, 126.4, 126.0, 114.0, 113.6, 55.5, 45.2, 44.4, 44.2, 35.7, 29.0, 28.5, 12.2, 11.7. HRMS (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 423.1737, found 423.1735.



**4-Methoxy-***N***'-(1-phenyl-3-(***m***-tolyl)butylidene)benzenesulfonohydrazide (B48) White solid, as a single isomer (E/Z > 20:1), 0.67 g, 79% yield in the final step.** 

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, J = 8.9 Hz, 2H), 7.57 – 7.52 (m, 2H), 7.36 – 7.31 (m, 3H), 7.08 (br s, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 7.5 Hz, 2H), 3.82 (s, 3H), 2.93 – 2.81 (m, 3H), 2.20 (s, 3H), 1.30 (d, J = 5.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.0, 155.8, 144.7, 138.6, 136.4, 130.2, 129.4, 129.4, 128.8, 128.3, 127.9, 127.1, 126.4, 123.3, 113.6, 55.5, 37.5, 36.7, 21.3, 21.2. HRMS (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 423.1737, found 423.1734.



### *N*'-(1,3-Diphenylheptylidene)-4-methoxybenzenesulfonohydrazide (B52)

White solid, as an inseparable mixture of E/Z isomers (15.9:1), 0.60 g, 67% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.9 Hz, 0.12H), 7.67 (d, J = 8.9 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.39 – 7.32 (m, 3.18H), 7.20 – 7.13 (m, 3.18H), 7.04 – 6.98 (m, 2.12H), 6.93 (d, J = 8.9 Hz, 2H), 6.84 – 6.81 (m, 0.12H), 6.70 (br s, 1H), 3.88 (s, 0.18H), 3.86 (s, 3H), 2.95 (dd, J = 13.9, 4.5 Hz, 1H), 2.88 – 2.81 (m, 1.12H), 2.76 – 2.71 (m, 0.06H), 2.68 – 2.59 (m, 1H), 1.82 – 1.64 (m, 2H), 1.55 – 1.44 (m, 0.12H), 1.27 – 0.98 (m, 4.24H), 0.79 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.3 Hz, 0.18H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.1, 155.9, 143.4, 136.4, 130.4, 129.8, 129.6, 129.4, 129.4, 129.0, 128.4, 128.1, 127.6, 127.3, 126.9, 126.5, 113.6, 55.6, 43.4, 42.6, 35.9, 35.8, 35.3, 29.6, 29.3, 22.5, 22.4, 13.9, 13.8.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 451.2050, found 451.2047.



# *N*'-(5-Chloro-1,3-diphenylpentylidene)-4-methoxybenzenesulfonohydrazide (B57)

Yellow oil, as an inseparable mixture of E/Z isomers (3.1:1), 0.65 g, 71% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.9 Hz, 0.64H), 7.70 (d, J = 8.7 Hz, 2H), 7.55 – 7.49 (m, 2H), 7.48 – 7.45 (m, 0.32H), 7.39 – 7.31 (m, 3.96H), 7.21 – 7.14 (m, 3.96H), 7.05 – 7.01 (m, 3H), 6.99 – 6.96 (m, 1.28H), 6.94 (d, J = 8.7 Hz, 2H), 6.89 – 6.86 (m, 0.64H), 3.88 (s, 0.96H), 3.86 (s, 3H), 3.39 (dt, J = 11.3, 5.7 Hz, 1H), 3.30 (ddd, J = 11.0, 6.8, 4.6 Hz, 0.32H), 3.19 – 3.12 (m, 1H), 3.12 – 3.06 (m, 0.32H), 3.05 – 2.91 (m, 3H), 2.90 – 2.74 (m, 0.96H), 2.28 – 2.18 (m, 1H), 2.16 – 2.07 (m, 1H), 2.04 – 1.94 (m, 0.32H), 1.93 – 1.84 (m, 0.32H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 156.0, 155.0, 142.2, 141.3, 136.1, 132.5, 130.3, 129.9, 129.8, 129.6, 129.6, 129.3, 129.2, 128.5, 128.4, 127.8, 127.5, 127.1, 126.7, 126.5, 126.4, 114.2, 113.7, 55.6, 44.4, 42.6, 42.4, 40.4, 39.5, 38.2, 37.8, 34.9.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>26</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 457.1347, found 457.1345.

### **General procedure 3**

Racemic arylsulfonohydrazones **B49**, **B50** and **B66** were prepared from the reaction of the corresponding arylketone (2.0 mmol, 1.0 equiv.) with 4-methoxybenzene sulfonohydrazide (0.81 g, 4.0 mmol, 2.0 equiv.). The corresponding arylketones are known compounds and were prepared according to the literature procedures<sup>10,11</sup>.



## 4-Methoxy-N'-(1-phenyl-3-(thiophen-2-yl)butylidene)benzenesulfonohydrazide (B49)

Slightly yellow solid, as an inseparable mixture of E/Z isomers (3.0:1), 0.38 g, 46% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 – 7.76 (m, 2.66H), 7.59 – 7.54 (m, 2H), 7.49 (br s, 0.33H), 7.43 – 7.31 (m, 3.99H), 7.11 – 7.03 (m, 2.33H), 7.00 – 6.94 (m, 3.33H), 6.82 – 6.78 (m, 0.33H), 6.77 – 6.73 (m, 0.99H), 6.62 (br s, 1H), 3.87 (s, 3.99H), 3.31 – 3.19 (m, 1.33H), 2.95 – 2.87 (m, 2H), 2.87 – 2.81 (m, 0.33H), 2.79 – 2.68 (m, 0.33H), 1.39 (d, J = 6.5 Hz, 3H), 1.22 (d, J = 6.8 Hz, 0.99H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 155.9, 154.9, 150.0, 148.2, 136.3, 132.6, 130.4, 130.0, 129.9, 129.8, 129.6, 129.6, 129.5, 128.4, 127.1, 126.5, 126.3, 123.6, 122.8, 122.7, 114.1, 113.7, 55.6, 47.0, 37.5, 33.1, 32.2, 22.7.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 415.1145, found 415.1146.



# 4-Methoxy-N'-(1-phenyl-3-(thiophen-3-yl)butylidene)benzenesulfonohydrazide (B50)

Slightly yellow solid, as an inseparable mixture of E/Z isomers (7.7:1), 0.42 g, 51% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.3 Hz, 2.26H), 7.61 – 7.54 (m, 2H), 7.45 (br s, 0.13H), 7.40 – 7.32 (m, 3.39H), 7.17 – 7.13 (m, 1H), 7.09 – 7.06 (m, 0.13H), 7.02 – 6.91 (m, 3.39H), 6.85 (d, J = 6.0 Hz, 2H), 6.81 – 6.70 (m, 0.39H), 3.89 (s, 0.39H), 3.87 (s, 3H), 3.13 – 2.99 (m, 1H), 2.88 (d, J = 7.3 Hz, 2H), 2.84 – 2.67 (m, 0.39H), 1.33 (d, J = 6.7 Hz, 3H), 1.14 (d, J = 6.6 Hz, 0.39H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 156.6, 155.7, 146.7, 145.6, 136.4, 132.7, 130.5, 130.0, 129.7, 129.6, 129.5, 128.4, 126.9, 126.7, 126.5, 125.9, 125.2, 123.6, 120.1, 119.3, 114.2, 113.8, 55.6, 45.8, 36.6, 32.9, 32.2, 21.7, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 415.1145, found 415.1147.



# *N*'-(2-(Cyclohex-2-en-1-yl)-1-phenylethylidene)-4-methoxybenzenesulfonohydraz ide (B66)

White solid, as an inseparable mixture of E/Z isomers (4.4:1), 0.54 g, 70% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 8.7 Hz, 2.46H), 7.91 (br s, 1H), 7.85 (d, J = 8.7 Hz, 0.46H), 7.67 – 7.61 (m, 2H), 7.45 – 7.40 (m, 0.92H), 7.37 – 7.31 (m, 3H), 7.05 (d, J = 6.6 Hz, 0.46H), 6.99 (d, J = 8.7 Hz, 2.46H), 5.70 – 5.64 (m, 1H), 5.63 – 5.58 (m, 0.23H), 5.36 – 5.30 (m, 0.23H), 5.19 – 5.12 (m, 1H), 3.88 (s, 0.69H), 3.85 (s, 3H), 2.60 (d, J = 8.2 Hz, 2H), 2.49 – 2.41 (m, 0.46H), 2.37 – 2.29 (m, 1H), 1.99 – 1.90 (m, 2H), 1.72 – 1.64 (m, 2.46H), 1.51 – 1.42 (m, 1.23H), 1.34 – 1.25 (m, 1.23H), 1.18 – 1.04 (m, 0.46H), 0.99 – 0.87 (m, 0.23H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 163.2, 156.9, 154.4, 136.5, 132.9, 130.2, 130.1, 129.8, 129.7, 129.6, 129.5, 128.9, 128.3, 127.7, 126.6, 126.4, 114.0, 55.6, 44.4, 33.0, 32.5, 32.0, 29.1, 28.6, 25.1, 25.0, 21.1, 20.6.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 385.1580, found 385.1581.

### **General procedure 4**

Racemic arylsulfonohydrazones **B53–56**, **B58** and **B59** were prepared according to the general procedure 4 from the corresponding racemic ketones **A9–14** with 4-methoxy benzenesulfonohydrazide.



Synthesis of A9<sup>12</sup>: To a solution of (*E*)-chalcone (10.41 g, 50 mmol, 1.0 equiv.) and iodine (2.54 g, 10 mmol, 0.2 equiv.) in DCM (200 mL) was slowly added allyl trimethylsilane (11.92 mL, 75 mmol, 1.5 equiv.) via syringe at 0 °C. Then the reaction mixture was stirred at room temperature for 12 h. Upon completion (monitored by TLC), the reaction mixture was quenched by water (100 mL), extracted with DCM (100 mL). The combined organic layers were washed with sodium thiosulphate (15% solution, 100 mL × 2) and brine (100 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50:1–30:1) to give the product **A9** as a white solid (10.36 g, 83% yield).

### 1,3-Diphenylhex-5-en-1-one (A9)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 7.4 Hz, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 7.29 – 7.21 (m, 4H), 7.18 – 7.13 (m, 1H), 5.68 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H), 5.03 – 4.93 (m, 2H), 3.48 (p, J = 7.0 Hz, 1H), 3.33 – 3.24 (m, 2H), 2.53 – 2.39 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 198.8, 144.3, 137.1, 136.2, 132.9, 128.4, 128.3, 127.9, 127.5, 126.3, 116.7, 44.4, 40.6, 40.6.

**HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>19</sub>O [M + H]<sup>+</sup> 251.1430, found 251.1430.

Synthesis of A10<sup>13,14</sup>: To a solution of A9 (1.25 g, 5.0 mmol, 1.0 equiv.) in EtOAc (10 mL) and MeCN (10 mL) was successively added H<sub>2</sub>O (15 mL), NaIO<sub>4</sub> (6.42 g, 30 mmol, 6.0 equiv.) and RuCl<sub>3</sub> (20.7 mg, 0.1 mmol, 2 mol%). The suspension was stirred vigorously at room temperature for 3 h. Then the reaction mixture was quenched by *i*-PrOH (2 mL) and filtered through a short pad of celite to remove the insoluble solids, and the filtrate was concentrated under reduced pressure to remove the organic solvents. The remaining aqueous phase was extracted with EtOAc (40 mL × 2), the combined organic layers were washed with brine (40 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 5:1–3:1) to give the carboxylic acid intermediate **S8** as a white solid (0.96 g, 72% yield).

To a stirring solution of **S8** (0.80 g, 3.0 mmol, 1.0 equiv.) in DCM (18 mL) and MeOH (2 mL) was slowly added TMSCH<sub>2</sub>N<sub>2</sub> (2.0 M solution in hexane, 1.65 mL, 3.3 mmol, 1.1 equiv.) at room temperature under argon atmosphere. The resulting mixture was stirred at room temperature for 0.5 h. Then the reaction mixture was quenched by glacial acetic acid (2 mL), diluted with DCM (10 mL), washed with saturated NaHCO<sub>3</sub> (20 mL  $\times$  2) and brine (20 mL  $\times$  2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 5:1–3:1) to afford the product **A10** as a white solid (0.65 g, 76% yield).

### Methyl 5-Oxo-3,5-diphenylpentanoate (A10)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 – 7.89 (m, 2H), 7.58 – 7.52 (m, 1H), 7.46 – 7.41 (m, 2H), 7.31 – 7.25 (m, 4H), 7.22 – 7.17 (m, 1H), 3.88 (p, *J* = 7.1 Hz, 1H), 3.59 (s, 3H), 3.40 (dd, *J* = 16.9, 7.1 Hz, 1H), 3.33 (dd, *J* = 16.9, 7.1 Hz, 1H), 2.82 (dd, *J* = 15.4, 7.1 Hz, 1H), 2.69 (dd, *J* = 15.4, 7.1 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 198.1, 172.3, 143.3, 136.9, 133.1, 128.6, 128.6, 128.1, 127.3, 126.8, 51.6, 44.5, 40.6, 37.5.

**HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>19</sub>O<sub>3</sub> [M + H]<sup>+</sup> 283.1329, found 283.1329.

Synthesis of A11<sup>15,16</sup>: To a solution of A9 (5.0 g, 20 mmol, 1.0 equiv.) and trimethyl orthoformate (3.28 mL, 30 mmol, 1.5 equiv.) in anhydrous methanol (100 mL) was added *p*-toluenesulfonic acid (34.4 mg, 0.2 mmol, 1 mol%) in one portion at room temperature under argon atmosphere. Then the resulting mixture was stirred at 50 °C for 12 h. After cooling down to room temperature, the reaction mixture was quenched by saturated Na<sub>2</sub>CO<sub>3</sub> (20 mL) and concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (50 mL × 2). The combined organic layers were washed with brine (50 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure to

afford the crude ketal S9 (5.39 g), which was directly used in the next step without further purification.

To a cooled (0  $^{\circ}$ C) solution of the crude ketal **S9** in anhydrous THF (100 mL) was dropwise added borane-THF complex (1.0 M borane solution in THF, 30 mL, 30 mmol, 1.5 equiv.) via syringe under argon atmosphere. The resulting mixture was stirred at 0 °C for 4 h. Then NaOH (3 M, 20 mL) and H<sub>2</sub>O<sub>2</sub> (30% in H<sub>2</sub>O, 25 mL) were added into the reaction mixture, and the resulting solution was warmed up to room temperature and stirred for 3 h. The reaction mixture was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (50 mL  $\times$  3). The combined organic layers were washed with brine (100 mL  $\times$  2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was dissolved in THF (100 mL), then HCl (3 M, 100 mL) was added into the reaction mixture. The resulting mixture was stirred vigorously at room temperature for 1 h. Then the reaction mixture was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (100 mL  $\times$  2). The combined organic layers were washed with brine (100 mL  $\times$  2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 5:1-3:1) to afford the product A11 as a colorless oil (3.12 g, 58% yield over three steps).

#### 6-Hydroxy-1,3-diphenylhexan-1-one (A11)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 – 7.88 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.23 (m, 4H), 7.21 – 7.16 (m, 1H), 3.66 – 3.55 (m, 2H), 3.40 – 3.32 (m, 1H), 3.30 – 3.20 (m, 2H), 1.91 – 1.80 (m, 1H), 1.75 – 1.64 (m, 1H), 1.58 (br s, 1H), 1.52 – 1.38 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 199.1, 144.4, 137.0, 133.0, 128.5, 128.5, 128.0, 127.6, 126.4, 62.5, 45.9, 40.6, 32.2, 30.4.

**HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>21</sub>O<sub>2</sub> [M + H]<sup>+</sup> 269.1536, found 269.1536.

Synthesis of A12: To a solution of A11 (0.81 g, 3.0 mmol, 1.0 equiv.), dimethyl aminopyridine (DMAP, 18.3 mg, 0.15 mmol, 5 mol%) and Et<sub>3</sub>N (0.63 mL, 4.5 mmol, 1.5 equiv.) in anhydrous DCM (20 mL) was dropwise added acetyl chloride (0.26 mL, 3.6 mmol, 1.2 equiv.) via syringe at 0 °C under argon atmosphere. The resulting mixture was warmed up to room temperature and stirred for 1 h. Upon completion (monitored by TLC), the reaction mixture was washed with HCl (1 M, 30 mL  $\times$  2), and the aqueous phase was extracted with DCM (20 mL  $\times$  2). The combined organic layers were washed with brine (50 mL  $\times$  2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the product A12 as a colorless oil (0.87 g, 94% yield).



### 6-Oxo-4,6-diphenylhexyl Acetate (A12)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 – 7.86 (m, 2H), 7.55 – 7.48 (m, 1H), 7.44 – 7.38 (m, 2H), 7.31 – 7.22 (m, 4H), 7.21 – 7.15 (m, 1H), 3.99 (t, *J* = 6.7 Hz, 2H), 3.39 – 3.31 (m, 1H), 3.30 – 3.19 (m, 2H), 1.99 (s, 3H), 1.90 – 1.78 (m, 1H), 1.74 – 1.62 (m, 1H), 1.60 – 1.40 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 198.6, 170.9, 144.1, 137.0, 132.9, 128.4, 128.4, 127.9, 127.4, 126.4, 64.2, 45.8, 40.7, 32.3, 26.5, 20.8.

**HRMS** (ESI) m/z calcd. for C<sub>20</sub>H<sub>23</sub>O<sub>3</sub> [M + H]<sup>+</sup> 311.1642, found 311,1642.

Synthesis of **A13**: To a solution of **A11** (1.07 g, 4.0 mmol, 1.0 equiv.) and Ph<sub>3</sub>P (1.26 g, 4.8 mmol, 1.2 equiv.) in anhydrous THF (40 mL) was added diisopropyl azodicarboxylate (0.95 mL, 4.8 mmol, 1.2 equiv.) at 0 °C under argon atmosphere. The resulting mixture was stirred for 15 min. Then a solution of diphenylphosphoryl azide (1.03 mL, 4.8 mmol, 1.2 equiv.) in anhydrous THF (5 mL) was dropwise added into the reaction mixture over 30 min. The resulting mixture was warmed up to room temperature and stirred for 20 h. Upon completion (monitored by TLC), the reaction mixture was concentrated under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 20:1) to afford the desired product **A13** as a colorless oil (0.91 g, 78% yield).

#### 6-Azido-1,3-diphenylhexan-1-one (A13)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.92 – 7.87 (m, 2H), 7.56 – 7.50 (m, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.31 – 7.23 (m, 4H), 7.21 – 7.17 (m, 1H), 3.38 – 3.24 (m, 3H), 3.24 – 3.14 (m, 2H), 1.89 – 1.78 (m, 1H), 1.75 – 1.64 (m, 1H), 1.57 – 1.36 (m, 2H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 198.7, 144.0, 137.0, 133.0, 128.6, 128.5, 128.0, 127.5, 126.5, 51.3, 45.8, 40.7, 33.1, 26.9.

**HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>20</sub>N<sub>3</sub>O [M + H]<sup>+</sup> 294.1601, found 294.1600.

Synthesis of A14<sup>17</sup>: To a solution of A9 (1.25 g, 5.0 mmol, 1.0 equiv.) in anhydrous toluene (40 mL) was added ethylene glycol (1.40 mL, 25 mmol, 5.0 equiv.) and *p*-toluenesulfonic acid (86.1 mg, 0.5 mmol, 10 mol%). The resulting mixture was heated to reflux with azeotropic distillation of water via Dean-Stark trap for 12 h. After cooling down to room temperature, the reaction mixture was diluted with water (40 mL) and extracted with EtOAc (20 mL × 2). The combined organic layers were washed with water (50 mL) and brine (50 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to give the ketal **S10** as a colorless oil (1.35 g, 92% yield).

To a cooled (0 °C) solution of S10 (1.32 g, 4.5 mmol, 1.0 equiv.) in anhydrous THF

(20 mL) was dropwise added borane-THF complex (1.0 M borane solution in THF, 6.75 mL, 6.75 mmol, 1.5 equiv.) via syringe under argon atmosphere. The resulting mixture was stirred at 0 °C for 4 h. Then NaOH (3 M, 5 mL) and H<sub>2</sub>O<sub>2</sub> (30% in H<sub>2</sub>O, 6 mL) were added into the reaction mixture, and the resulting mixture was warmed up to room temperature and stirred for 3 h. The reaction mixture was extracted with EtOAc (20 mL × 2), the combined organic layers were washed with brine (40 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–3:1) to give the product **S11** as a colorless oil (0.96 g, 68% yield).

To a cooled (0 °C) solution of S11 (0.94 g, 3.0 mmol, 1.0 equiv.) in anhydrous THF (20 mL) was added NaH (60% dispersion in mineral oil, 0.18 g, 4.5 mmol, 1.5 equiv.) in portions under argon atmosphere. The resulting mixture was stirred at 0 °C for 15 min. Then MeI (0.28 mL, 4.5 mmol, 1.5 equiv.) was dropwise added into the reaction mixture, and the resulting mixture was warmed up to room temperature and stirred for 2 h. The reaction mixture was quenched by saturated NH4Cl (10 mL) and concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL  $\times$  2). The combined organic layers were washed with brine (40 mL  $\times$  2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was dissolved in THF (10 mL), then HCl (3 M, 5 mL) was added, and the resulting mixture was stirred vigorously at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL  $\times$  2). The combined organic layers were washed with brine (40 mL  $\times$ 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1-5:1) to afford the product A14 as a colorless oil (0.62 g, 72% yield over two steps).

### 6-Methoxy-1,3-diphenylhexan-1-one (A14)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 – 7.87 (m, 2H), 7.55 – 7.50 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.22 (m, 4H), 7.20 – 7.14 (m, 1H), 3.38 – 3.25 (m, 5H), 3.26 (s, 3H), 1.87 – 1.76 (m, 1H), 1.74 – 1.63 (m, 1H), 1.56 – 1.37 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 199.0, 144.5, 137.1, 132.9, 128.5, 128.5, 128.0, 127.5, 126.3, 72.6, 58.5, 45.9, 41.1, 32.8, 27.6.

**HRMS** (ESI) m/z calcd. for C<sub>19</sub>H<sub>23</sub>O<sub>2</sub> [M + H]<sup>+</sup> 283.1693, found 283.1691.

Substrates **B53–56**, **B58** and **B59** were prepared from the reactions of corresponding ketones A9-14 (2.0 mmol, 1.0 equiv.) with 4-methoxybenzenesulfono-hydrazide (0.81 g, 4.0 mmol, 2.0 equiv.).



## Methyl 5-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-3,5-diphenylpentanoate (B53)

Slightly yellow solid, as an inseparable mixture of E/Z isomers (5.9:1), 0.57 g, 61% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (br s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.7 Hz, 0.34H), 7.41 (d, J = 7.5 Hz, 0.34H), 7.39 (d, J = 7.5 Hz, 2.34H), 7.27 – 7.19 (m, 3H), 7.17 – 7.11 (m, 3.51H), 7.01 (d, J = 7.4 Hz, 0.34H), 6.99 – 6.93 (m, 4.68H), 6.91 – 6.89 (m, 0.34H), 3.88 (s, 0.51H), 3.86 (s, 3H), 3.70 (s, 3H), 3.53 (s, 0.51H), 3.37 – 3.29 (m, 0.17H), 3.25 – 3.16 (m, 1H), 3.08 (dd, J = 14.0, 4.3 Hz, 1H), 2.91 – 2.85 (m, 0.51H), 2.84 – 2.74 (m, 2H), 2.63 – 2.57 (m, 1H), 2.50 (dd, J = 15.5, 8.8 Hz, 0.17H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 173.4, 172.1, 163.2, 163.1, 155.5, 153.5, 142.5, 141.7, 136.3, 132.4, 130.2, 130.1, 129.9, 129.8, 129.5, 129.2, 128.9, 128.3, 128.1, 127.5, 127.3, 126.9, 126.6, 126.5, 126.4, 114.1, 113.8, 55.6, 52.2, 51.4, 43.7, 40.3, 39.0, 38.7, 38.6, 34.2.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 467.1635, found 467.1638.



**6-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-4,6-diphenylhexyl Acetate (B54)** Colorless oil, as an inseparable mixture of *E/Z* isomers (5.6:1), 0.85 g, 86% yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.9 Hz, 0.36H), 7.69 (d, J = 9.0 Hz, 2H), 7.53 – 7.50 (m, 2H), 7.38 – 7.31 (m, 3.54H), 7.20 – 7.12 (m, 3.54H), 7.04 – 6.99 (m, 2H), 6.97 – 6.92 (m, 2.54H), 6.85 – 6.82 (m, 0.36H), 3.93 (t, J = 6.6 Hz, 2H), 3.89 (s, 0.54H), 3.87 (s, 3H), 3.01 – 2.84 (m, 2H), 2.84 – 2.76 (m, 0.54H), 2.76 – 2.65 (m, 1H), 1.98 (s, 3.54H), 1.89 – 1.71 (m, 2H), 1.70 – 1.61 (m, 0.36H), 1.58 – 1.49 (m, 0.36H), 1.46 – 1.33 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.0, 163.1, 156.2, 155.5, 143.3, 142.5, 136.3, 132.7, 130.4, 129.9, 129.6, 129.4, 129.4, 129.1, 128.4, 128.3, 127.6, 127.5, 126.9, 126.5, 126.4, 114.1, 113.6, 64.2, 63.9, 55.6, 44.8, 43.0, 42.3, 35.8, 32.3, 31.7, 26.5, 26.2, 20.8.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 495.1948, found 495.1950.



## 4-Methoxy-*N*'-(6-methoxy-1,3-diphenylhexylidene)benzenesulfonohydrazide (B55)

Yellow oil, as an inseparable mixture of E/Z isomers (3.4:1), 0.78 g, 84% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 9.0 Hz, 0.58H), 7.66 (d, J = 8.9 Hz, 2H), 7.54 – 7.51 (m, 2H), 7.38 – 7.33 (m, 3.87H), 7.18 – 7.12 (m, 3.87H), 7.02 – 6.99 (m, 2H), 6.98 – 6.95 (m, 0.87H), 6.93 (d, J = 8.9 Hz, 2H), 6.84 – 6.81 (m, 0.58H), 6.61 (br s, 1H), 3.89 (s, 0.87H), 3.88 (s, 3H), 3.30 – 3.25 (m, 2H), 3.27 (s, 3H), 3.23 (s, 0.87H), 3.19 (t, J = 6.6 Hz, 0.58H), 2.97 (dd, J = 13.9, 4.2 Hz, 1H), 2.91 – 2.76 (m, 1.58H), 2.75 – 2.64 (m, 1.29H), 1.87 – 1.80 (m, 2H), 1.66 – 1.60 (m, 0.29H), 1.56 – 1.47 (m, 0.29H), 1.40 (td, J = 13.8, 6.4 Hz, 2H), 1.33 – 1.26 (m, 0.58H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 163.1, 156.5, 155.7, 143.7, 143.1, 136.4, 132.8, 130.5, 129.9, 129.6, 129.5, 129.5, 129.2, 128.4, 128.2, 127.7, 127.5, 127.0, 126.5, 126.2, 114.1, 113.6, 72.4, 72.3, 58.6, 58.4, 55.6, 44.8, 43.3, 42.5, 36.0, 32.6, 32.5, 27.6, 27.3.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>31</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 467.1999, found 467.2004.



# *N*'-(6-Hydroxy-1,3-diphenylhexylidene)-4-methoxybenzenesulfonohydrazide (B56)

White solid, as an inseparable mixture of *E*/*Z* isomers (5.6:1), 0.71 g, 78% yield. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.78 (d, *J* = 8.9 Hz, 0.36H), 7.72 (d, *J* = 8.9 Hz, 2H), 7.48 (br s, 0.18H), 7.46 – 7.43 (m, 2H), 7.37 – 7.26 (m, 4.72H), 7.16 – 7.09 (m, 3.54H), 6.99 – 6.93 (m, 4.72H), 6.87 – 6.83 (m, 0.36H), 3.88 (s, 0.54H), 3.86 (s, 3H), 3.84 – 3.82 (m, 0.36H), 3.60 – 3.50 (m, 2H), 3.46 (t, *J* = 6.5 Hz, 0.36H), 2.98 (dd, *J* = 13.4, 4.2 Hz, 1H), 2.87 – 2.73 (m, 2.54H), 1.94 (br s, 1H), 1.85 – 1.77 (m, 2H), 1.71 – 1.64 (m, 0.18H), 1.57 – 1.48 (m, 0.18H), 1.45 – 1.36 (m, 2H), 1.32 – 1.25 (m, 0.36H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 163.1, 156.6, 155.6, 143.7, 143.1, 136.5, 132.8, 130.3, 129.9, 129.8, 129.6, 129.5, 129.4, 129.4, 128.9, 128.2, 128.2, 127.6, 127.2, 127.0, 126.5, 126.2, 114.1, 113.7, 62.5, 62.4, 55.6, 55.6, 44.8, 42.8, 42.2, 35.5, 32.2, 32.0, 30.2, 30.1.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 453.1843, found 453.1840.



N'-(6-Azido-1,3-diphenylhexylidene)-4-methoxybenzenesulfonohydrazide (B58) Slightly yellow oil, as an inseparable mixture of E/Z isomers (4.8:1), 0.45 g, 47% yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.9 Hz, 0.42H), 7.70 (d, J = 8.9 Hz, 2H), 7.52 – 7.49 (m, 2H), 7.47 (br s, 0.21H), 7.38 – 7.31 (m, 3.63H), 7.19 – 7.14 (m, 3.63H), 7.02 – 6.99 (m, 2H), 6.97 – 6.91 (m, 3.63H), 6.86 – 6.83 (m, 0.42H), 3.88 (s, 0.63H), 3.86 (s, 3H), 3.19 – 3.10 (m, 2H), 3.10 – 3.04 (m, 0.42H), 2.95 (dd, J = 14.1, 5.0 Hz, 1H), 2.87 (dd, J = 14.0, 9.8 Hz, 1H), 2.82 – 2.77 (m, 0.42H), 2.75 – 2.62 (m, 1.21H), 1.88 – 1.72 (m, 2H), 1.69 – 1.59 (m, 0.21H), 1.58 – 1.48 (m, 0.21H), 1.41 – 1.26 (m, 2.42H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 156.2, 155.4, 143.1, 142.4, 136.3, 132.6, 130.3, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.4, 128.3, 127.5, 126.9, 126.5, 126.4, 126.3, 114.1, 113.6, 55.5, 51.1, 51.0, 44.8, 43.0, 42.2, 35.8, 32.9, 32.4, 26.8, 26.5.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>28</sub>N<sub>5</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 478.1907, found 478.1907.



*N*'-(1,3-Diphenylhex-5-en-1-ylidene)-4-methoxybenzenesulfonohydrazide (B59) Yellow oil, as an inseparable mixture of *E*/*Z* isomers (2.9:1), 0.72 g, 83% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.77 (d, *J* = 8.9 Hz, 0.70H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.38 – 7.33 (m, 4.05H), 7.35 – 7.32 (m, 0.35H), 7.22 – 7.12 (m, 4.05H), 7.03 – 7.00 (m, 2H), 6.98 – 6.96 (m, 0.70H), 6.97 – 6.92 (m, 2.70H), 6.84 – 6.81 (m, 0.70H), 6.51 (br s, 1H), 5.73 – 5.61 (m, 1H), 5.58 – 5.47 (m, 0.35H), 5.09 – 5.03 (m, 2H), 4.89 – 4.84 (m, 0.70H), 3.88 (s, 4.05H), 3.04 (dd, *J* = 13.6, 3.4 Hz, 1H), 2.98 – 2.88 (m, 0.35H), 2.88 – 2.69 (m, 2.70H), 2.56 – 2.43 (m, 2H), 2.31 – 2.18 (m, 0.70H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 156.4, 155.8, 143.4, 143.1, 136.2, 136.0, 135.6, 132.8, 130.5, 130.0, 129.9, 129.7, 129.5, 129.4, 129.2, 128.4, 128.2, 127.7, 127.6, 126.9, 126.6, 126.5, 126.2, 117.7, 116.5, 114.1, 113.6, 55.6, 43.7, 43.0, 42.2, 40.6, 39.9, 34.8.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 435.1737, found 435.1742.

### **General procedure 5**

Racemic arylsulfonohydrazones **B60–65** were prepared according to the **general procedure 5**. The corresponding cyclic ketones **S12** are commercially available or were easily prepared through the reported procedures<sup>18-20</sup>.



General procedure for preparation of 4-methoxy-N'-(1-phenyl-2-(1,2,3,4-tetrahydro naphthalen-1-yl)ethylidene)benzenesulfonohydrazide **B60** (n = 1, X = CH<sub>2</sub>) as the typical example:

Synthesis of **S13-1** (n = 1, X = CH<sub>2</sub>)<sup>21</sup>: To a suspension of NaH (60% dispersion in mineral oil, 0.50 g, 12.5 mmol, 1.25 equiv.) in anhydrous THF (40 mL) was dropwise added triethyl phosphonoacetate (2.69 g, 12 mmol, 1.2 equiv.) at 0 °C under argon atmosphere. The resulting mixture was warmed up to room temperature and stirred for 1 h. Then 1-tetralone **S12-1** (1.46 g, 10 mmol, 1.0 equiv.) was dropwise added into the reaction mixture, and the resulting mixture was heated to 50 °C and stirred for 8 h. After cooling down to room temperature, the reaction mixture was quenched by saturated NH<sub>4</sub>Cl (20 mL), concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (40 mL × 2). The combined organic layers were washed with brine (40 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether /ethyl acetate 100:1–50:1) to afford the desired product **S13-1** as a colorless oil (1.77 g, 82% yield, as an inseparable mixture of *E*/*Z* isomers and the analytical data were in accordance with those reported in the literature report<sup>22</sup>).

Synthesis of **S14-1** (n = 1, X = CH<sub>2</sub>): To a solution of **S13-1** (1.77 g, 8.2 mmol) in MeOH (20 mL) was added Pd/C (10% palladium on carbon, wet with ca. 50% water, 50 mg). Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at room temperature for 4 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was concentrated under reduced pressure to give **S14-1** as a colorless oil (1.75 g, 98% yield), which was pure enough and used without further purification.



Ethyl 2-(1,2,3,4-Tetrahydronaphthalen-1-yl)acetate (S14-1)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.21 – 7.03 (m, 4H), 4.18 (q, J = 7.1 Hz, 2H), 3.40 – 3.33 (m, 1H), 2.80 – 2.68 (m, 3H), 2.53 (dd, J = 15.2, 9.9 Hz, 1H), 1.99–1.64 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.8, 139.3, 137.1, 129.2, 128.2, 126.0, 125.8, 60.4, 42.0, 34.5, 29.5, 28.1, 19.5, 14.3.

**HRMS** (ESI) m/z calcd. for C<sub>14</sub>H<sub>19</sub>O<sub>2</sub> [M + H]<sup>+</sup> 219.1380, found 219.1381.

Synthesis of **S15-1** (n = 1, X = CH<sub>2</sub>): To a solution of **S14-1** (0.87 g, 4 mmol, 1.0 equiv.) and *N*,*O*-dimethylhydroxylamine hydrochloride (0.78 g, 8 mmol, 2.0 equiv.) in anhydrous THF (20 mL) was dropwise added *i*-PrMgCl (1.3 M solution in THF, 12.3 mL, 16 mmol, 4.0 equiv.) at -20 °C under argon atmosphere. Then the resulting mixture was warmed up to room temperature and stirred for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH<sub>4</sub>Cl (20 mL) and concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure to afford the crude **S15-1** (0.90 g), which was directly used in the next step without further purification.

Synthesis of A15 (n = 1, X = CH<sub>2</sub>): To a cooled (0 °C) solution of the crude S15-1 obtained above in anhydrous THF (20 mL) was dropwise added PhMgBr (3.0 M solution in Et<sub>2</sub>O, 2.67 mL, 8 mmol, 2.0 equiv.) under argon atmosphere. After being stirred at 0 °C for 1 h, the reaction mixture was quenched by saturated NH<sub>4</sub>Cl (20 mL), filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to afford the product A15 as a slightly yellow oil (0.72 g, 72% yield over two steps).

### 1-Phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl)ethanone (A15)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.03 (d, J = 7.6 Hz, 2H), 7.64 – 7.57 (m, 1H), 7.54 – 7.46 (m, 2H), 7.25 – 7.20 (m, 1H), 7.20 – 7.10 (m, 3H), 3.75 – 3.64 (m, 1H), 3.42 – 3.28 (m, 2H), 2.96 – 2.71 (m, 2H), 2.06 – 1.95 (m, 1H), 1.93 – 1.64 (m, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 199.2, 140.0, 137.2, 137.1, 133.0, 129.2, 128.5, 128.3, 128.0, 125.8, 46.1, 33.4, 29.5, 28.2, 19.6. **HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>19</sub>O [M + H]<sup>+</sup> 251.1430, found 251.1430. Synthesis of **B60**: To a solution of **A15** (0.50 g, 2.0 mmol, 1.0 equiv.) and 4-methoxybenzenesulfonohydrazide (0.81 g, 4.0 mmol, 2.0 equiv.) in MeOH (15 mL) was added glacial acetic acid (57  $\mu$ L, 1.0 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B60** as a white solid (0.63 g, 72% yield), an inseparable mixture of *E/Z* isomers (3.2:1).



4-Methoxy-N'-(1-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl)ethylidene)benzen esulfonohydrazide (B60)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.5 Hz, 2.62H), 7.70 – 7.63 (m, 2H), 7.55 (br s, 0.31H), 7.46 – 7.40 (m, 0.93H), 7.38 – 7.33 (m, 3H), 7.11 – 7.05 (m, 2H), 7.05 – 7.01 (m, 1.24H), 6.99 – 6.91 (m, 3.93H), 6.76 (d, J = 7.5 Hz, 1H), 6.70 (t, J = 6.8 Hz, 1H), 3.85 (s, 3.93H), 3.10 – 3.01 (m, 2H), 2.98 – 2.94 (m, 0.31H), 2.87 – 2.79 (m, 1.31H), 2.77 – 2.65 (m, 2.62H), 1.95 – 1.83 (m, 1H), 1.80 – 1.68 (m, 2.62H), 1.66 – 1.57 (m, 1.31H), 1.55 – 1.49 (m, 0.31H), 1.28 – 1.21 (m, 0.31H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 156.8, 156.1, 139.6, 138.0, 137.0, 136.5, 136.4, 132.7, 130.4, 130.0, 129.8, 129.7, 129.6, 129.5, 129.0, 128.4, 128.2, 128.0, 126.6, 126.5, 125.8, 125.6, 125.5, 114.0, 113.7, 55.5, 45.4, 35.0, 34.6, 34.1, 29.3, 28.9, 28.2, 26.8, 19.3, 19.0.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 435.1737, found 435.1740.



## *N*'-(2-(Chroman-4-yl)-1-phenylethylidene)-4-methoxybenzenesulfonohydrazide (B61)

White solid, as an inseparable mixture of E/Z isomers (2.5:1), 0.49 g, 56% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.8 Hz, 2.80H), 7.70 – 7.64 (m, 2H), 7.54 (br s, 0.40H), 7.50 – 7.43 (m, 1.20H), 7.40 – 7.32 (m, 3H), 7.21 (br s, 1H), 7.13 (d, J = 7.3 Hz, 1H), 7.06 (dd, J = 14.1, 6.9 Hz, 1.40H), 6.98 (d, J = 8.8 Hz, 2.80H), 6.91 (d, J = 7.4 Hz, 0.40H), 6.81 (d, J = 8.2 Hz, 1H), 6.79 – 6.72 (m, 1.60H), 6.52 (t, J = 7.4 Hz, 1H), 4.25 – 4.12 (m, 2H), 4.10 – 4.05 (m, 0.80H), 3.88 (s, 4.20H), 3.17 – 3.12 (m, 0.40H), 3.11 – 3.04 (m, 2H), 2.93 (dd, J = 15.5, 3.9 Hz, 0.40H), 2.81 (dd, J = 12.7,

5.9 Hz, 1H), 2.68 (dd, *J* = 15.5, 10.5 Hz, 0.40H), 2.05 – 1.93 (m, 1H), 1.92 – 1.85 (m, 0.40H), 1.76 – 1.70 (m, 1H), 1.69 – 1.63 (m, 0.40H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 155.5, 155.3, 154.5, 154.0, 136.4, 132.6, 130.4, 130.1, 130.0, 129.8, 129.7, 129.5, 128.7, 128.5, 128.5, 128.3, 127.5, 126.6, 126.5, 125.0, 123.4, 120.4, 120.2, 117.2, 116.8, 114.1, 113.9, 63.0, 62.8, 55.6, 44.8, 33.9, 30.8, 30.2, 27.2, 26.2.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 437.1530, found 437.1531.



## *tert*-Butyl 4-(2-(2-((4-Methoxyphenyl)sulfonyl)hydrazono)-2-phenylethyl)-3,4dihydroquinoline-1(2*H*)-carboxylate (B62)

White solid, as an inseparable mixture of E/Z isomers (3.0:1), 0.72 g, 67% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.9 Hz, 0.66H), 7.80 (d, J = 8.9 Hz, 2H), 7.63 (d, J = 8.3 Hz, 1H), 7.60 – 7.54 (m, 2.66H), 7.48 – 7.41 (m, 1H), 7.37 – 7.31 (m, 3.99H), 7.15 – 7.08 (m, 2H), 7.00 – 6.94 (m, 2.66H), 6.91 – 6.85 (m, 0.66H), 6.75 – 6.71 (m, 1H), 6.71 – 6.66 (m, 0.99H), 3.88 (s, 0.99H), 3.87 (s, 3H), 3.83 – 3.77 (m, 1H), 3.68 – 3.62 (m, 0.33H), 3.61 – 3.53 (m, 1.33H), 3.06 – 2.99 (m, 2H), 2.98 – 2.96 (m, 0.33H), 2.88 (dd, J = 15.4, 4.9 Hz, 0.33H), 2.83 – 2.74 (m, 1H), 2.65 (dd, J = 15.4, 9.8 Hz, 0.33H), 1.89 – 1.77 (m, 2.66H), 1.57 (s, 9H), 1.51 (s, 2.97H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.3, 163.2, 155.7, 154.8, 153.8, 153.7, 138.1, 137.7, 136.3, 132.6, 132.6, 131.4, 130.4, 130.1, 130.0, 129.7, 129.7, 129.6, 128.5, 127.1, 127.0, 126.9, 126.6, 126.5, 126.1, 124.6, 124.2, 123.6, 123.3, 114.1, 113.9, 81.5, 80.8, 55.6, 43.3, 42.2, 42.0, 34.2, 33.4, 31.6, 28.8, 28.3, 28.3, 28.0.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>34</sub>N<sub>3</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 536.2214, found 536.2221.



4-Methoxy-N'-(1-phenyl-2-(6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-yl)ethylide ne)benzenesulfonohydrazide (B63)

White solid, as an inseparable mixture of E/Z isomers (2.3:1), 0.58 g, 64% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.9 Hz, 0.86H), 7.67 (d, J = 8.9 Hz, 2H), 7.58 – 7.55 (m, 2H), 7.44 (br s, 0.43H), 7.43 – 7.39 (m, 1.29H), 7.38 – 7.32 (m, 3H), 7.19 (d, J = 7.2 Hz, 1H), 7.13 – 7.09 (m, 1.29H), 7.05 – 7.00 (m, 1H), 6.99 – 6.96 (m, 1.29H), 6.93 (d, J = 8.9 Hz, 2.86H), 6.78 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H),

6.44 (br s, 1H), 3.88 (s, 1.29H), 3.87 (s, 3H), 3.36 – 3.27 (m, 1H), 3.17 – 3.08 (m, 1H), 3.06 – 2.96 (m, 1.72H), 2.95 – 2.82 (m, 2.86H), 2.76 – 2.62 (m, 0.86H), 1.95 – 1.75 (m, 4.29H), 1.73 – 1.64 (m, 2H), 1.55 – 1.41 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 163.1, 157.3, 157.1, 144.2, 142.6, 142.4, 141.5, 136.3, 132.8, 131.1, 130.6, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 128.4, 127.5, 126.6, 126.5, 126.0, 114.1, 113.6, 55.6, 55.6, 44.0, 41.7, 36.6, 35.7, 33.2, 32.4, 31.2, 28.0, 27.6, 26.9.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 449.1893, found 449.1892.



4-Methoxy-N'-(1-phenyl-2-(2,3,4,5-tetrahydrobenzo[*b*]oxepin-5-yl)ethylidene)ben zenesulfonohydrazide (B64)

White solid, as an inseparable mixture of E/Z isomers (8.1:1), 0.75 g, 83% yield in the final step.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.9 Hz, 0.24H), 7.70 (d, J = 8.9 Hz, 2H), 7.53 (br s, 1H), 7.46 – 7.42 (m, 2H), 7.38 – 7.28 (m, 3.36H), 7.08 – 7.03 (m, 0.12H), 6.99 (d, J = 8.9 Hz, 0.24H), 6.96 – 6.86 (m, 4.48H), 6.84 – 6.77 (m, 0.24H), 6.63 – 6.59 (m, 1H), 6.48 – 6.44 (m, 1H), 4.51 (d, J = 12.0 Hz, 1H), 4.20 – 4.11 (m, 0.12H), 3.88 (s, 0.36H), 3.86 (s, 3H), 3.70 – 3.63 (m, 0.12H), 3.61 – 3.52 (m, 2H), 3.13 – 3.07 (m, 0.12H), 3.06 – 3.00 (m, 1H), 2.97 – 2.87 (m, 0.12H), 2.75 (dd, J = 14.1, 4.7 Hz, 1H), 2.47 – 2.33 (m, 1H), 2.11 – 1.99 (m, 1.12H), 1.83 – 1.70 (m, 2.24H), 1.71 – 1.63 (m, 0.48H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 162.9, 159.7, 158.8, 156.6, 155.2, 137.3, 136.3, 135.5, 132.8, 130.2, 130.2, 130.0, 129.9, 129.7, 129.5, 129.4, 128.5, 128.3, 127.6, 126.5, 123.9, 123.5, 122.1, 121.8, 114.1, 113.6, 74.0, 73.5, 55.6, 55.5, 42.0, 40.4, 30.6, 29.7, 29.6, 29.2, 27.5, 26.8.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 451.1686, found 451.1685.



# 4-Methoxy-N'-(1-phenyl-2-(1-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*b*]azepin-5-yl)et hylidene)benzenesulfonohydrazide (B65)

White solid, as an inseparable mixture of E/Z isomers (3.2:1), 0.63 g, 52% yield in the final step.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (br s, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 8.7 Hz, 0.62H), 7.73 (d, J = 8.7 Hz, 2H), 7.66 – 7.61 (m, 2.62H), 7.45 – 7.35 (m, 5.24H), 7.10 – 6.94 (m, 3.93H), 6.88 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 6.6 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 4.39 – 4.31 (m, 1H), 3.88 (s, 0.93H), 3.84 (s, 3H), 3.48 – 3.37 (m, 1H), 3.07 – 2.96 (m, 2.62H), 2.95 – 2.90 (m, 1H), 2.49 (s, 3H), 2.42 (s, 0.93H), 2.35 – 2.20 (m, 1H), 2.10 – 2.01 (m, 1H), 1.82 – 1.68 (m, 2.62H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 162.6, 150.7, 143.7, 143.2, 142.5, 141.0, 139.1, 138.8, 137.0, 131.4, 131.0, 130.1, 130.0, 129.9, 129.6, 129.0, 128.4, 128.2, 128.0, 127.2, 127.1, 126.8, 126.4, 114.2, 113.7, 55.6, 55.5, 51.2, 43.2, 31.9, 30.9, 26.7, 21.57, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>32</sub>H<sub>34</sub>N<sub>3</sub>O<sub>5</sub>S<sub>2</sub> [M + H]<sup>+</sup> 604.1934, found 604.1935.

#### Enantioconvergent Amination of Racemic Tertiary C(sp<sup>3</sup>)-H Bonds

General procedure A: Substrate scope of the N-sulfonylhydrazone moiety (Fig. 2)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with *rac*-**B** (0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.020 mmol, 10 mol%), (*R*)-**C3** (17.8 mg, 0.030 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the reaction mixture was stirred at 35 °C for 96 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–10:1) to afford the desired products 1–47.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

# General procedure B: Substrate scope of the racemic tertiary $C(sp^3)$ -H moiety (Fig. 3a)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with *rac*-**B** (0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.020 mmol, 10 mol%), (*R*)-**C3** (17.8 mg, 0.030 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the reaction mixture was stirred at 35 °C for 96 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1-10:1-5:1) to afford the desired products **48–66**.

*Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.* 

General procedure C: One-pot protocol for the enantioconvergent amination of tertiary  $\beta$ -C(*sp*<sup>3</sup>)-H bonds starting from racemic ketones (Fig. 3b)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with *rac*-**A** (0.20 mmol, 1.0 equiv.), 4-methoxy benzenesulfonohydrazide (40.4 mg, 0.20 mmol, 1.0 equiv.), (*R*)-**C3** (17.8 mg, 0.030 mmol, 15 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL), and the reaction mixture was stirred at 65 °C for 24 h. After cooling down to room temperature, CuCN (1.8 mg, 0.020 mmol, 10 mol%) and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) were sequentially added into the reaction mixture under argon atmosphere. Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 35 °C for 96 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1-10:1) to afford the desired products **3**, **25**, **32**, **36**, **40** and **59**.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

General procedure D: The large-scale reaction (Fig. 3c)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3** (817.0 mg, 2.0 mmol, 1.0 equiv.), CuCN (17.9 mg, 0.20 mmol, 10 mol%), (*R*)-C3 (177.8 mg, 0.30 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (9.6 mg, 0.10 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (40 mL). Then **O7** (945.2 mg, 4.0 mmol, 2.0 equiv.) was slowly added into the mixture via syringe, and the resulting mixture was stirred at 35 °C for 96 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (50 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–10:1) to afford the desired product **3** as a white solid (576.7 mg, 71% yield, 90% ee).

*Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.* 

#### General procedure E: Large-scale reaction using the one-pot protocol (Fig. 3d)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with A1 (449.0 mg, 2.0 mmol, 1.0 equiv.), 4-methoxybenzenesulfonohydrazide (404.5 mg, 2.0 mmol, 1.0 equiv.), (*R*)-C3 (177.8 mg, 0.30 mmol, 15 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (40 mL), and the reaction mixture was stirred at 65 °C for 24 h. After cooling down to room temperature, CuCN (17.9 mg, 0.20 mmol, 10 mol%) and (NH4)<sub>2</sub>CO<sub>3</sub> (9.6 mg, 0.10 mmol, 5 mol%) were sequentially added into the reaction mixture under argon atmosphere. Then O7 (945.2 mg, 4.0 mmol, 2.0 equiv.) was slowly added into the mixture via syringe, and the resulting mixture was filtered through a short pad of celite and rinsed with EtOAc (50 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–10:1) to afford the desired product **3** as a white solid (348.6 mg, 43% yield, 89% ee).

*Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.* 

#### General procedure for the synthesis of racemates 1-66



The racemic products *rac*-1–66 were prepared following the same procedure described above.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with *rac*-**B** (0.10 mmol, 1.0 equiv.), CuI (3.8 mg, 0.020 mmol, 20 mol%), *rac*-**C** (7.0 mg, 0.020 mmol, 20 mol%) and anhydrous DMF (2.0 mL). Then *tert*-butyl peroxybenzoate **O1** (38.8 mg, 0.20 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 40 °C for 24 h. Upon completion (monitored by TLC), the reaction mixture was diluted with water (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with water (20 mL), saturated NaHCO<sub>3</sub> (20 mL × 2) and brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to give the desired racemic products *rac*-**1**-**66**.

### Analytical data for products 1' and 1-66

(E)-N'-(1,3-Diphenylbut-2-en-1-ylidene)-4-methylbenzenesulfonohydrazide (1')

The olefinic side product **1'** is a known compound, and the analytical data were in accordance with those reported in the literature.<sup>23</sup>

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.93 (br s, 1H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.69 – 7.66 (m, 2H), 7.56 – 7.53 (m, 2H), 7.43 – 7.37 (m, 3H), 7.36 – 7.30 (m, 5H), 6.20 (s, 1H), 2.41 (s, 3H), 1.86 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 151.8, 146.1, 144.0, 139.6, 135.6, 135.5, 129.8, 129.5, 128.8, 128.6, 128.4, 127.9, 126.8, 125.8, 115.8, 21.5, 18.1.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 391.1475, found 391.1475.



### (S)-5-Methyl-3,5-diphenyl-1-tosyl-4,5-dihydro-1*H*-pyrazole (1)

According to the general procedure A, substrate B1 (78.5 mg, 0.20 mmol) was employed to yield the product 1 as a white solid (42.2 mg, 54% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 18.90 min, t<sub>R</sub> (minor) = 26.86 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.68 (m, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.41 – 7.38 (m, 3H), 7.34 – 7.31 (m, 2H), 7.25 – 7.19 (m, 3H), 7.13 (d, J = 8.1 Hz, 2H), 3.49 (d, J = 17.2 Hz, 1H), 3.36 (d, J = 17.2 Hz, 1H), 2.36 (s, 3H), 2.02 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 152.5, 143.4, 143.1, 136.9, 131.1, 130.1, 129.0, 128.6, 128.3, 127.6, 127.6, 126.5, 125.8, 71.8, 52.9, 25.3, 21.5.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 391.1475, found 391.1473.



### (S)-5-Methyl-3,5-diphenyl-1-(phenylsulfonyl)-4,5-dihydro-1H-pyrazole (2)

According to the **general procedure A**, substrate **B2** (75.7 mg, 0.20 mmol) was employed to yield the product **2** as a white solid (44.3 mg, 59% yield, 92% ee). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 9.77 min, t<sub>R</sub> (major) = 17.11 min. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 – 7.69 (m, 2H), 7.68 – 7.64 (m, 2H), 7.47 – 7.42 (m, 1H), 7.42 – 7.38 (m, 3H), 7.34 – 7.27 (m, 4H), 7.23 – 7.16 (m, 3H), 3.51 (d, *J* = 17.3 Hz, 1H), 3.38 (d, *J* = 17.3 Hz, 1H), 2.04 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 152.7, 143.1, 139.8, 132.2, 131.0, 130.2, 128.6, 128.3, 128.2, 127.6, 127.4, 126.5, 125.8, 71.8, 52.8, 25.5.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 377.1318, found 377.1318.

## (S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazo le (3)

According to the **general procedure A**, substrate **B3** (81.7 mg, 0.20 mmol) was employed to yield the product **3** as a white solid (69.0 mg, 85% yield, 92% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 16.84 min, t<sub>R</sub> (minor) = 25.44 min.

According to the **general procedure C**, substrate A1 (44.9 mg, 0.20 mmol) was employed to yield the product **3** as a white solid (42.1 mg, 52% yield, 89% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 18.91 min, t<sub>R</sub> (minor) = 29.20 min.

According to the **general procedure D**, substrate **B3** (817.0 mg, 0.20 mmol) was employed to yield the product **3** as a white solid (576.7 mg, 71% yield, 90% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 17.15 min, t<sub>R</sub> (minor) = 25.88 min.

According to the **general procedure E**, substrate A1 (449.0 mg, 0.20 mmol) was employed to yield the product 3 as a white solid (348.6 mg, 43% yield, 89% ee). HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 16.86 min, t<sub>R</sub> (minor) = 25.47 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.66 (m, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.42 – 7.37 (m, 3H), 7.35 – 7.30 (m, 2H), 7.26 – 7.20 (m, 3H), 6.80 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.49 (d, J = 17.2 Hz, 1H), 3.37 (d, J = 17.2 Hz, 1H), 2.03 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.5, 152.5, 143.3, 131.5, 131.0, 130.0, 129.6, 128.5, 128.2, 127.5, 126.4, 125.7, 113.5, 71.7, 55.4, 52.7, 25.2.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 407.1424, found 407.1422.



# (S)-1-((4-(*tert*-Butyl)phenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyra zole (4)

According to the general procedure A, substrate B4 (86.9 mg, 0.20 mmol) was employed to yield the product 4 as a white solid (44.0 mg, 51% yield, 86% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 9.20 min, t<sub>R</sub> (major) = 14.80 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.71 (m, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.43 – 7.40 (m, 3H), 7.33 – 7.26 (m, 4H), 7.23 – 7.13 (m, 3H), 3.51 (d, J = 17.2 Hz, 1H), 3.39 (d, J = 17.2 Hz, 1H), 2.05 (s, 3H), 1.30 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 155.9, 152.5, 143.1, 136.8, 131.2, 130.1, 128.6, 128.2, 127.6, 127.2, 126.6, 125.8, 125.3, 71.7, 52.8, 35.0, 31.1, 25.5.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 433.1944, found 433.1943.



# (*S*)-1-((4-Fluorophenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (5)

According to the **general procedure A**, substrate **B5** (79.3 mg, 0.20 mmol) was employed to yield the product **5** as a slightly yellow solid (50.4 mg, 64% yield, 95% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 10.80 min, t<sub>R</sub> (major) = 20.56 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 – 7.68 (m, 2H), 7.63 – 7.59 (m, 2H), 7.43 – 7.40 (m, 3H), 7.28 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 7.00 – 6.94 (m, 2H), 3.55 (d, *J* = 17.3 Hz, 1H), 3.42 (d, *J* = 17.3 Hz, 1H), 2.08 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 164.8 (d, *J* = 254.3 Hz), 153.1, 142.7, 135.7 (d, *J* = 3.2 Hz), 130.9, 130.3, 130.2 (d, *J* = 9.3 Hz), 128.7, 128.3, 127.8, 126.6, 125.9, 115.5 (d, *J* = 22.5 Hz), 71.7, 52.8, 25.7.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –105.8.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>FN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 395.1224, found 395.1224.



# (S)-1-((3-Fluorophenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (6)

According to the **general procedure A**, substrate **B6** (79.3 mg, 0.20 mmol) was employed to yield the product **6** as a white solid (57.6 mg, 73% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 15.92 min, t<sub>R</sub> (minor) = 20.21 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.69 (m, 2H), 7.46 – 7.40 (m, 4H), 7.31 – 7.27 (m, 1H), 7.26 – 7.18 (m, 5H), 7.17 – 7.10 (m, 2H), 3.57 (d, *J* = 17.4 Hz, 1H), 3.43 (d, *J* = 17.4 Hz, 1H), 2.09 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.8 (d, J = 250.3 Hz), 153.3, 142.5, 141.5 (d, J = 7.0 Hz), 130.8, 130.4, 130.0 (d, J = 7.6 Hz), 128.7, 128.2, 128.0, 126.6, 125.8, 123.2 (d, J = 3.3 Hz), 119.4 (d, J = 21.3 Hz), 114.8 (d, J = 24.8 Hz), 71.7, 52.7, 25.8.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –110.7.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>FN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 395.1224, found 395.1225.



(*S*)-1-((4-Chlorophenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (7)

According to the general procedure A, substrate B7 (82.6 mg, 0.20 mmol) was employed to yield the product 7 as a white solid (38.5 mg, 47% yield, 92% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 11.51 min, t<sub>R</sub> (major) = 19.92 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 – 7.68 (m, 2H), 7.55 – 7.50 (m, 2H), 7.43 – 7.38 (m, 3H), 7.28 – 7.22 (m, 5H), 7.21 – 7.16 (m, 2H), 3.54 (d, *J* = 17.3 Hz, 1H), 3.41 (d, *J* = 17.3 Hz, 1H), 2.07 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.2, 142.7, 138.7, 138.1, 130.8, 130.4, 128.8, 128.7, 128.5, 128.3, 127.8, 126.6, 125.8, 71.7, 52.7, 25.7.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>ClN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 411.0929, found 411.0929.



(S)-1-((3-Chlorophenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (8)

According to the general procedure A, substrate B8 (82.6 mg, 0.20 mmol) was employed to yield the product 8 as a yellow solid (50.2 mg, 61% yield, 92% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 12.31 min, t<sub>R</sub> (major) = 17.28 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.70 (m, 2H), 7.56 (d, J = 7.9 Hz, 1H), 7.45 – 7.41 (m, 3H), 7.40 – 7.36 (m, 2H), 7.26 – 7.20 (m, 4H), 7.19 – 7.14 (m, 2H), 3.58 (d, J = 17.4 Hz, 1H), 3.44 (d, J = 17.4 Hz, 1H), 2.10 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.4, 142.1, 141.1, 134.3, 132.3, 130.8, 130.4, 129.5, 128.7, 128.2, 128.1, 127.4, 126.6, 125.9, 125.5, 71.6, 52.7, 26.0.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>ClN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 411.0929, found 411.0926.



(*S*)-1-((3-Bromophenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (9)

According to the general procedure A, substrate B9 (91.5 mg, 0.20 mmol) was employed to yield the product 9 as a white solid (60.2 mg, 66% yield, 93% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 11.47 min, t<sub>R</sub> (major) = 16.60 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.71 (m, 2H), 7.63 – 7.60 (m, 1H), 7.56 – 7.51 (m, 2H), 7.45 – 7.40 (m, 3H), 7.28 – 7.23 (m, 1H), 7.22 – 7.14 (m, 5H), 3.57 (d, *J* = 17.4 Hz, 1H), 3.44 (d, *J* = 17.4 Hz, 1H), 2.10 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.5, 142.0, 141.2, 135.1, 130.8, 130.4, 130.1, 129.8, 128.7, 128.3, 128.1, 126.6, 125.9, 125.8, 122.2, 71.6, 52.7, 26.0.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>BrN<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 455.0423, found 455.0424.



(S)-5-Methyl-3,5-diphenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-4,5-dihydro-1 *H*-pyrazole (10)

According to the general procedure A, substrate B10 (89.3 mg, 0.20 mmol) was employed to yield the product 10 as a yellow solid (49.7 mg, 56% yield, 96% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 14.05 min, t<sub>R</sub> (major) = 19.25 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.71 (m, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.45 – 7.40 (m, 3H), 7.24 – 7.18 (m, 3H), 7.16 – 7.10 (m, 2H), 3.57 (d, *J* = 17.4 Hz, 1H), 3.45 (d, *J* = 17.4 Hz, 1H), 2.11 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.7, 142.9, 142.3, 133.7 (q, *J* = 32.9 Hz), 130.7, 130.5, 128.7, 128.2, 128.0, 127.7, 126.6, 125.8, 125.4 (q, *J* = 3.7 Hz), 123.3 (q, *J* = 273.0 Hz), 71.7, 52.7, 25.9.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –63.1.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 445.1192, found 445.1189.

(*S*)-5-Methyl-3,5-diphenyl-1-((3-(trifluoromethyl)phenyl)sulfonyl)-4,5-dihydro-1 *H*-pyrazole (11)

According to the **general procedure A**, substrate **B11** (89.3 mg, 0.20 mmol) was employed to yield the product **11** as a white solid (50.6 mg, 57% yield, 95% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 10.17 min, t<sub>R</sub> (major) = 13.55 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.0 Hz, 1H), 7.76 (s, 1H), 7.74 – 7.71 (m, 2H), 7.68 (d, J = 7.9 Hz, 1H), 7.48 – 7.40 (m, 4H), 7.23 – 7.17 (m, 3H), 7.16 – 7.10 (m, 2H), 3.57 (d, J = 17.4 Hz, 1H), 3.45 (d, J = 17.4 Hz, 1H), 2.12 (s, 3H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.7, 142.0, 140.5, 130.9 (q, J = 33.1 Hz), 130.7, 130.5, 129.1, 128.8 (q, J = 3.5 Hz), 128.7, 128.2, 128.1, 126.6, 125.8, 124.4 (q, J = 3.9 Hz), 123.1 (q, J = 273.1 Hz), 71.7, 52.7, 26.0.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –62.6.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 445.1192, found 445.1195.



# Methyl (S)-4-((5-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-1-yl)sulfonyl)benz oate (12)

According to the **general procedure A**, substrate **B12** (87.3 mg, 0.20 mmol) was employed to yield the product **12** as a white solid (49.5 mg, 71% yield, 94% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 19.58 min, t<sub>R</sub> (minor) = 33.80 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 8.4 Hz, 2H), 7.72 – 7.70 (m, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.43 – 7.40 (m, 3H), 7.25 – 7.22 (m, 3H), 7.18 – 7.13 (m, 2H), 3.92 (s, 3H), 3.55 (d, J = 17.4 Hz, 1H), 3.42 (d, J = 17.4 Hz, 1H), 2.08 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.7, 153.4, 143.4, 142.6, 133.1, 130.7, 130.4, 129.5, 128.7, 128.3, 127.9, 127.4, 126.6, 125.8, 71.7, 52.7, 52.5, 25.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 435.1373, found 435.1373.


## Methyl (S)-3-((5-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-1-yl)sulfonyl)benz oate (13)

According to the general procedure A, substrate B13 (87.3 mg, 0.20 mmol) was employed to yield the product 13 as a yellow solid (68.7 mg, 79% yield, 92% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 17.42 min, t<sub>R</sub> (major) = 34.82 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (s, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.76 – 7.72 (m, 2H), 7.44 – 7.37 (m, 4H), 7.25 – 7.20 (m, 2H), 7.19 – 7.10 (m, 3H), 3.93 (s, 3H), 3.55 (d, J = 17.4 Hz, 1H), 3.43 (d, J = 17.4 Hz, 1H), 2.09 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.4, 153.4, 142.3, 140.0, 133.0, 131.3, 130.8, 130.5, 130.4, 128.7, 128.5, 128.5, 128.2, 127.8, 126.6, 125.8, 71.7, 52.6, 52.3, 25.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 435.1373, found 435.1374.



# (S)-4-((5-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-1-yl)sulfonyl)benzonitrile (14)

According to the **general procedure A**, substrate **B14** (80.7 mg, 0.20 mmol) was employed to yield the product **14** as a white solid (57.7 mg, 72% yield, 95% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 13.86 min, t<sub>R</sub> (major) = 20.20 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.70 (m, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.48 – 7.40 (m, 3H), 7.26 – 7.21 (m, 1H), 7.20 – 7.06 (m, 4H), 3.59 (d, *J* = 17.5 Hz, 1H), 3.46 (d, *J* = 17.5 Hz, 1H), 2.11 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.0, 143.4, 142.2, 132.0, 130.6, 130.5, 128.8, 128.3, 128.1, 127.8, 126.6, 125.9, 117.4, 115.6, 71.7, 52.7, 26.0.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>20</sub>N<sub>3</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 402.1271, found 402.1271.



(S)-3-((5-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-1-yl)sulfonyl)benzonitrile (15)

According to the general procedure A, substrate B15 (80.7 mg, 0.20 mmol) was employed to yield the product 15 as a white solid (57.8 mg, 72% yield, 93% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 19.45 min, t<sub>R</sub> (minor) = 28.55 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (d, J = 7.9 Hz, 1H), 7.74 – 7.71 (m, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.48 – 7.40 (m, 5H), 7.35 – 7.26 (m, 1H), 7.18 – 7.09 (m, 4H), 3.62 (d, J = 17.5 Hz, 1H), 3.48 (d, J = 17.5 Hz, 1H), 2.16 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.2, 141.4, 140.7, 135.1, 131.2, 130.7, 130.6, 130.5, 129.2, 128.8, 128.5, 128.2, 126.6, 125.9, 117.2, 112.8, 71.5, 52.5, 26.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>20</sub>N<sub>3</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 402.1271, found 402.1270.



### (*S*)-5-Methyl-1-((4-nitrophenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (16)

According to the general procedure A, substrate B16 (84.7 mg, 0.20 mmol) was employed to yield the product 16 as a yellow solid (29.4 mg, 35% yield, 93% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 22.01 min, t<sub>R</sub> (minor) = 64.51 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.9 Hz, 2H), 7.74 – 7.68 (m, 4H), 7.46 – 7.40 (m, 3H), 7.25 – 7.18 (m, 3H), 7.17 – 7.11 (m, 2H), 3.60 (d, J = 17.5 Hz, 1H), 3.47 (d, J = 17.5 Hz, 1H), 2.13 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.2, 149.5, 144.9, 142.2, 130.7, 130.5, 128.8, 128.5, 128.3, 128.2, 126.7, 125.9, 123.4, 71.7, 52.7, 26.1.

**HRMS** (ESI) m/z calcd. for C<sub>22</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 422.1169, found 422.1159.



### (*S*)-5-Methyl-1-((3-nitrophenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (17)

According to the general procedure A, substrate B17 (84.7 mg, 0.20 mmol) was employed to yield the product 17 as a white solid (40.5 mg, 48% yield, 94% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 29.19 min, t<sub>R</sub> (minor) = 36.94 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.24 (d, *J* = 8.0 Hz, 1H), 8.16 (s, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.77 – 7.73 (m, 2H), 7.51 – 7.43 (m, 4H), 7.16 – 7.11 (m, 3H), 7.09 – 7.03 (m, 2H), 3.61 (d, *J* = 17.5 Hz, 1H), 3.49 (d, *J* = 17.5 Hz, 1H), 2.16 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.5, 147.6, 141.4, 141.0, 132.6, 130.7, 130.4, 129.5, 128.8, 128.2, 128.1, 126.7, 126.2, 125.8, 122.5, 71.6, 52.4, 26.2. HRMS (ESI) *m/z* calcd. for C<sub>22</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 422.1169, found 422.1161.

(*S*)-1-((3,5-Bis(trifluoromethyl)phenyl)sulfonyl)-5-methyl-3,5-diphenyl-4,5-dihyd ro-1*H*-pyrazole (18)

According to the **general procedure A**, substrate **B18** (102.9 mg, 0.20 mmol) was employed to yield the product **18** as a yellow solid (44.1 mg, 43% yield, 86% ee).

**HPLC** analysis: Chiralcel IG (hexane/*i*-PrOH = 95/05, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 8.23 min, t<sub>R</sub> (major) = 11.12 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (s, 2H), 7.89 (s, 1H), 7.74 – 7.71 (m, 2H), 7.47 – 7.41 (m, 3H), 7.21 – 7.17 (m, 1H), 7.14 – 7.04 (m, 4H), 3.61 (d, *J* = 17.5 Hz, 1H), 3.52 (d, *J* = 17.5 Hz, 1H), 2.17 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.8, 141.7, 141.2, 132.0 (q, *J* = 34.4 Hz), 130.8, 130.4, 128.9, 128.7, 128.2, 127.5 (q, *J* = 3.6 Hz), 126.6, 125.8, 125.7 (q, *J* = 3.5 Hz), 122.4 (q, *J* = 273.3 Hz), 71.8, 52.5, 26.2.

<sup>19</sup>**F** NMR (376 MHz, CDCl<sub>3</sub>) δ –62.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>19</sub>F<sub>6</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 513.1066, found 513.1065.

(S)-5-Methyl-1-(naphthalen-2-ylsulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (19)

According to the general procedure A, substrate B19 (85.7 mg, 0.20 mmol) was employed to yield the product 19 as a white solid (52.0 mg, 61% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 16.11 min, t<sub>R</sub> (minor) = 20.70 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (s, 1H), 7.82 – 7.79 (m, 3H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.72 – 7.68 (m, 2H), 7.59 – 7.49 (m, 2H), 7.40 – 7.37 (m, 3H), 7.28 – 7.24 (m, 2H), 7.13 – 7.04 (m, 3H), 3.50 (d, *J* = 17.3 Hz, 1H), 3.38 (d, *J* = 17.3 Hz, 1H), 2.09 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 152.8, 142.6, 136.7, 134.5, 131.8, 131.0, 130.2, 129.4, 128.7, 128.6, 128.5, 128.3, 128.1, 127.8, 127.6, 126.9, 126.5, 125.8, 123.0, 71.7, 52.8, 25.7.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S [M + H]<sup>+</sup> 427.1475, found 427.1473.



(S)-3-(3-Methoxyphenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-d ihydro-1*H*-pyrazole (20)

According to the **general procedure A**, substrate **B20** (87.7 mg, 0.20 mmol) was employed to yield the product **20** as a white solid (69.9 mg, 80% yield, 94% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 23.91 min, t<sub>R</sub> (minor) = 35.25 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, J = 8.9 Hz, 2H), 7.34 – 7.30 (m, 4H), 7.24 – 7.20 (m, 4H), 6.95 (dd, J = 8.1, 2.3 Hz, 1H), 6.79 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.49 (d, J = 17.2 Hz, 1H), 3.35 (d, J = 17.2 Hz, 1H), 2.03 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 159.7, 152.4, 143.3, 132.5, 131.6, 129.7, 129.6, 128.3, 127.6, 125.8, 119.1, 116.0, 113.5, 111.5, 71.8, 55.5, 55.4, 52.9, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 437.1530, found 437.1529.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(*o*-tolyl)-4,5-dihydro-1*H*-pyrazole (21)

According to the general procedure A, substrate B21 (84.5 mg, 0.20 mmol) was employed to yield the product 21 as a white solid (48.6 mg, 58% yield, 88% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 14.30 min, t<sub>R</sub> (major) = 18.13 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (d, J = 8.0 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.32 – 7.23 (m, 6H), 7.22 – 7.17 (m, 1H), 6.81 (d, J = 8.0 Hz, 2H), 3.83 (s, 3H), 3.55 (d, J = 17.0 Hz, 1H), 3.42 (d, J = 17.0 Hz, 1H), 2.65 (s, 3H), 2.06 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 153.3, 143.6, 138.1, 131.8, 131.4, 130.1, 129.9, 129.3, 128.6, 128.3, 127.6, 125.8, 125.8, 113.4, 70.9, 55.5, 55.2, 25.0, 23.6.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 421.1580, found 421.1580.



(*S*)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(*m*-tolyl)-4,5-dihydro-1*H* -pyrazole (22)

According to the general procedure A, substrate B22 (84.5 mg, 0.20 mmol) was

employed to yield the product **22** as a white solid (63.7 mg, 76% yield, 92% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (major) = 21.56 min, t<sub>R</sub> (minor) = 31.27 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.59 (d, J = 8.7 Hz, 2H), 7.54 (s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.23 – 7.19 (m, 4H), 6.79 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H), 3.50 (d, J = 17.2 Hz, 1H), 3.37 (d, J = 17.2 Hz, 1H), 2.38 (s, 3H), 2.03 (s, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 162.6, 152.7, 143.4, 138.3, 131.7, 131.1, 130.9, 129.7, 128.5, 128.3, 127.6, 127.1, 125.8, 123.7, 113.5, 71.6, 55.5, 53.0, 25.3, 21.3. **HRMS** (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 421.1580, found 421.1579.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(*p*-tolyl)-4,5-dihydro-1*H*-pyrazole (23)

According to the general procedure A, substrate B23 (84.5 mg, 0.20 mmol) was employed to yield the product 23 as a white solid (57.8 mg, 69% yield, 93% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 22.26 min, t<sub>R</sub> (minor) = 32.14 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, J = 8.3 Hz, 4H), 7.34 – 7.29 (m, 2H), 7.23 – 7.19 (m, 5H), 6.78 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.48 (d, J = 17.2 Hz, 1H), 3.35 (d, J = 17.2 Hz, 1H), 2.38 (s, 3H), 2.02 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 152.6, 143.4, 140.4, 131.7, 129.7, 129.3, 128.4, 128.2, 127.5, 126.5, 125.8, 113.5, 71.6, 55.5, 52.9, 25.3, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 421.1580, found 421.1582.



(*S*)-3-(4-(*tert*-Butyl)phenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5 -dihydro-1*H*-pyrazole (24)

According to the general procedure A, substrate B24 (92.9 mg, 0.20 mmol) was employed to yield the product 24 as a white solid (47.9 mg, 52% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 17.74 min, t<sub>R</sub> (minor) = 23.78 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.9 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.23 – 7.18 (m, 3H), 6.77 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.49 (d, J = 17.2 Hz, 1H), 3.35 (d, J = 17.2 Hz, 1H), 2.01 (s, 3H), 1.33 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.5, 153.6, 152.5, 143.3, 131.6, 129.7, 128.3, 128.2, 127.5, 126.3, 125.8, 125.5, 113.4, 71.6, 55.5, 52.9, 34.8, 31.1, 25.3. HRMS (ESI) *m/z* calcd. for C<sub>27</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 463.2050, found 463.2051.

(*S*)-3-([1,1'-Biphenyl]-4-yl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5 -dihydro-1*H*-pyrazole (25)

According to the **general procedure A**, substrate **B25** (96.9 mg, 0.20 mmol) was employed to yield the product **25** as a slightly yellow solid (68.7 mg, 71% yield, 94% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 34.54 min, t<sub>R</sub> (minor) = 47.57 min.

According to the **general procedure C**, substrate 1-([1,1'-biphenyl]-4-yl)-3-phenyl butan-1-one (60.1 mg, 0.20 mmol) was employed to yield the product **25** as a slightly yellow solid (52.0 mg, 54% yield, 92% ee). **HPLC** analysis: Chiralcel IC (hexane/ *i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 34.33 min, t<sub>R</sub> (minor) = 47.52 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.3 Hz, 2H), 7.65 – 7.59 (m, 6H), 7.46 (t, J = 7.6 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.36 – 7.32 (m, 2H), 7.26 – 7.20 (m, 3H), 6.80 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H), 3.53 (d, J = 17.2 Hz, 1H), 3.40 (d, J = 17.2 Hz, 1H), 2.05 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 152.2, 143.3, 142.8, 140.1, 131.6, 130.0, 129.7, 128.9, 128.3, 127.8, 127.6, 127.2, 127.0, 125.8, 113.5, 71.8, 55.5, 52.8, 25.3. HRMS (ESI) *m/z* calcd. for C<sub>29</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 483.1737, found 483.1734.



(*S*)-3-(3-Fluorophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (26)

According to the general procedure A, substrate B26 (85.3 mg, 0.20 mmol) was employed to yield the product 26 as a white solid (70.2 mg, 83% yield, 92% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 10.03 min, t<sub>R</sub> (major) = 18.11 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, J = 8.3 Hz, 2H), 7.47 – 7.30 (m, 5H), 7.26 – 7.20 (m, 3H), 7.09 (t, J = 8.2 Hz, 1H), 6.82 (d, J = 8.3 Hz, 2H), 3.82 (s, 3H), 3.47 (d, J = 17.2 Hz, 1H), 3.34 (d, J = 17.2 Hz, 1H), 2.04 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 162.8 (d, *J* = 246.5 Hz), 162.7, 151.3 (d, *J* = 2.9 Hz), 143.2, 133.3 (d, *J* = 8.0 Hz), 131.4, 130.2 (d, *J* = 8.2 Hz), 129.8, 128.3, 127.7, 125.7, 122.2 (d, *J* = 2.8 Hz), 117.0 (d, *J* = 21.6 Hz), 113.6, 113.2 (d, *J* = 22.9 Hz), 72.1, 55.5, 52.7, 25.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –112.2.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>FN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 425.1330, found 425.1330.



(*S*)-3-(4-Fluorophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (27)

According to the **general procedure A**, substrate **B27** (85.3 mg, 0.20 mmol) was employed to yield the product **27** as a white solid (69.5 mg, 82% yield, 93% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 17.29 min, t<sub>R</sub> (minor) = 25.12 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 – 7.65 (m, 2H), 7.59 (d, J = 8.8 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.25 – 7.20 (m, 3H), 7.07 (t, J = 8.5 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.46 (d, J = 17.2 Hz, 1H), 3.34 (d, J = 17.2 Hz, 1H), 2.02 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 163.8 (d, *J* = 251.0 Hz), 162.7, 151.5, 143.3, 131.5, 129.7, 128.4 (d, *J* = 8.4 Hz), 128.3, 127.6, 127.4 (d, *J* = 3.1 Hz), 125.7, 115.7 (d, *J* = 22.0 Hz), 113.5, 71.9, 55.5, 52.9, 25.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –109.7.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>FN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 425.1330, found 425.1328.



(*S*)-3-(2-Chlorophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (28)

According to the general procedure A, substrate B28 (88.6 mg, 0.20 mmol) was employed to yield the product 28 as a white solid (45.7 mg, 52% yield, 81% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 21.98 min, t<sub>R</sub> (minor) = 30.75 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.75 – 7.71 (m, 1H), 7.63 (d, *J* = 8.9 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.34 – 7.29 (m, 2H), 7.28 – 7.24 (m, 3H), 6.82 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 3.68 (d, *J* = 17.6 Hz, 1H), 3.55 (d, *J* = 17.6 Hz, 1H), 2.03 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 152.3, 143.2, 132.8, 131.5, 130.7, 130.7, 130.5, 130.5, 129.9, 128.3, 127.6, 126.9, 125.8, 113.5, 72.5, 55.6, 55.5, 24.8.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 441.1034, found 441.1035.



(*S*)-3-(3-Chlorophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (29)

According to the **general procedure A**, substrate **B29** (88.6 mg, 0.20 mmol) was employed to yield the product **29** as a white solid (64.3 mg, 73% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 19.70 min, t<sub>R</sub> (minor) = 27.26 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (s, 1H), 7.59 (d, J = 8.6 Hz, 2H), 7.55 – 7.52 (m, 1H), 7.38 – 7.29 (m, 4H), 7.26 – 7.21 (m, 3H), 6.82 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.47 (d, J = 17.3 Hz, 1H), 3.34 (d, J = 17.3 Hz, 1H), 2.04 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 162.8, 151.1, 143.2, 134.7, 133.0, 131.5, 130.0, 129.9, 129.7, 128.3, 127.7, 126.4, 125.7, 124.6, 113.6, 72.1, 55.5, 52.7, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 441.1034, found 441.1034.



(*S*)-3-(4-Chlorophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (30)

According to the general procedure A, substrate B30 (88.6 mg, 0.20 mmol) was employed to yield the product 30 as a white solid (62.5 mg, 71% yield, 91% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 18.03 min, t<sub>R</sub> (minor) = 24.59 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 – 7.57 (m, 4H), 7.36 (d, J = 8.6 Hz, 2H), 7.33 – 7.30 (m, 2H), 7.26 – 7.21 (m, 3H), 6.80 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 3.46 (d, J = 17.2 Hz, 1H), 3.34 (d, J = 17.2 Hz, 1H), 2.03 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.3, 143.2, 136.0, 131.5, 129.7, 129.7, 128.9, 128.3, 127.7, 127.7, 125.7, 113.6, 72.0, 55.5, 52.7, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 441.1034, found 441.1035.



(*S*)-3-(3-Bromophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (31)

According to the **general procedure A**, substrate **B31** (97.5 mg, 0.20 mmol) was employed to yield the product **31** as a slightly yellow solid (75.6 mg, 78% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 20.70 min, t<sub>R</sub> (minor) = 28.44 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (s, 1H), 7.59 (d, J = 8.6 Hz, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.26 – 7.21 (m, 4H), 6.82 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.46 (d, J = 17.3 Hz, 1H), 3.34 (d, J = 17.3 Hz, 1H), 2.04 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 150.9, 143.2, 133.2, 132.9, 131.5, 130.1, 129.7, 129.3, 128.3, 127.7, 125.7, 125.0, 122.8, 113.6, 72.1, 55.5, 52.7, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>BrN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 485.0529, found 485.0527.



(*S*)-3-(4-Bromophenyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dih ydro-1*H*-pyrazole (32)

According to the **general procedure A**, substrate **B32** (97.5 mg, 0.20 mmol) was employed to yield the product **32** as a white solid (71.0 mg, 73% yield, 93% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 23.46 min, t<sub>R</sub> (minor) = 31.95 min.

According to the **general procedure C**, substrate 1-(4-bromophenyl)-3-phenyl butan-1-one A2 (60.6 mg, 0.20 mmol) was employed to yield the product 32 as a white solid (36.0 mg, 37% yield, 92% ee). HPLC analysis: Chiralcel IC (hexane/ *i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 23.63 min, t<sub>R</sub> (minor) = 32.39 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 8.6 Hz, 2H), 7.56 – 7.49 (m, 4H), 7.32 – 7.29 (m, 2H), 7.26 – 7.20 (m, 3H), 6.80 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 3.45 (d, J = 17.2 Hz, 1H), 3.33 (d, J = 17.2 Hz, 1H), 2.03 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.4, 143.2, 131.8, 131.4, 130.1, 129.7, 128.3, 127.9, 127.7, 125.7, 124.3, 113.6, 72.1, 55.5, 52.6, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>22</sub>BrN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 485.0529, found 485.0530.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(3-(trifluoromethyl)phen yl)-4,5-dihydro-1*H*-pyrazole (33)

According to the general procedure A, substrate B33 (95.3 mg, 0.20 mmol) was employed to yield the product 33 as a yellow solid (59.6 mg, 63% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 25.74 min, t<sub>R</sub> (minor) = 37.10 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 7.5 Hz, 1H), 7.88 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 8.7 Hz, 2H), 7.53 (t, J = 7.8 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.27 – 7.22 (m, 3H), 6.82 (d, J = 8.7 Hz, 2H), 3.83 (s, 3H), 3.52 (d, J = 17.3 Hz, 1H), 3.40 (d, J = 17.3 Hz, 1H), 2.06 (s, 3H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.8, 150.9, 143.2, 132.1, 131.4, 131.2 (q, J = 32.7 Hz), 129.8, 129.5, 129.2, 128.4, 127.8, 126.5 (q, J = 3.6 Hz), 125.7, 123.7 (q, J = 272.5 Hz), 123.2 (q, J = 3.7 Hz), 113.6, 72.3, 55.5, 52.7, 25.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ –62.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 475.1298, found 475.1299.



(*S*)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(4-(trifluoromethyl)phen yl)-4,5-dihydro-1*H*-pyrazole (34)

According to the general procedure A, substrate B34 (95.3 mg, 0.20 mmol) was employed to yield the product 34 as a white solid (59.5 mg, 63% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 15.12 min, t<sub>R</sub> (minor) = 18.52 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.27 – 7.22 (m, 3H), 6.81 (d, J = 8.5 Hz, 2H), 3.82 (s, 3H), 3.51 (d, J = 17.3 Hz, 1H), 3.39 (d, J = 17.3 Hz, 1H), 2.05 (s, 3H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.8, 150.9, 143.1, 134.5, 131.5 (q, *J* = 32.9 Hz), 131.4, 129.7, 128.4, 127.8, 126.7, 125.7, 125.6 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 272.1 Hz), 113.6, 72.3, 55.5, 52.6, 25.3.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –62.8.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 475.1298, found 475.1300.



Methyl (*S*)-3-(1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-3-yl)benzoate (35)

According to the **general procedure A**, substrate **B35** (93.3 mg, 0.20 mmol) was employed to yield the product **35** as a white solid (70.5 mg, 76% yield, 94% ee). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (minor) = 13.45 min, t<sub>R</sub> (major) = 21.13 min. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H), 7.50 (t, J = 7.8 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.28 – 7.22 (m, 3H), 6.82 (d, J = 8.9 Hz, 2H), 3.93 (s, 3H), 3.82 (s, 3H), 3.55 (d, J = 17.3 Hz, 1H), 3.42 (d, J = 17.3 Hz, 1H), 2.06 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.4, 162.7, 151.6, 143.2, 131.6, 131.5, 131.0, 130.6, 130.6, 129.8, 128.8, 128.3, 127.7, 127.6, 125.8, 113.6, 72.1, 55.5, 52.8, 52.3, 25.3. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 465.1479, found 465.1479.



Methyl (*S*)-4-(1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-3-yl)benzoate (36)

According to the **general procedure A**, substrate **B36** (93.3 mg, 0.20 mmol) was employed to yield the product **36** as a white solid (60.2 mg, 65% yield, 92% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 37.92 min, t<sub>R</sub> (minor) = 53.90 min.

According to the **general procedure C**, substrate methyl 4-(3-phenylbutanoyl) benzoate (56.5 mg, 0.20 mmol) was employed to yield the product **36** as a white solid (43.8 mg, 47% yield, 89% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 38.36 min, t<sub>R</sub> (minor) = 54.51 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.26 – 7.22 (m, 3H), 6.82 (d, *J* = 8.6 Hz, 2H), 3.93 (s, 3H), 3.82 (s, 3H), 3.51 (d, *J* = 17.3 Hz, 1H), 3.39 (d, *J* = 17.3 Hz, 1H), 2.05 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.4, 162.8, 151.3, 143.2, 135.3, 131.4, 131.1, 129.8, 129.8, 128.4, 127.7, 126.3, 125.7, 113.6, 72.3, 55.5, 52.7, 52.3, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 465.1479, found 465.1479.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(4-(phenylethynyl)phenyl)-4,5-dihydro-1*H*-pyrazole (37)

According to the **general procedure A**, substrate **B37** (101.7 mg, 0.20 mmol) was employed to yield the product **37** as a yellow solid (60.0 mg, 59% yield, 93% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 23.01 min, t<sub>R</sub> (minor) = 33.92 min. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 7.55 – 7.52 (m, 4H), 7.36 – 7.31 (m, 5H), 7.26 – 7.23 (m, 3H), 6.81 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.47 (d, J = 17.2 Hz, 1H), 3.35 (d, J = 17.2 Hz, 1H), 2.03 (s, 3H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.7, 143.3, 131.7, 131.6, 131.5, 130.8, 129.7, 128.5, 128.4, 128.3, 127.6, 126.4, 125.8, 124.9, 122.8, 113.6, 91.5, 89.0, 72.0, 55.5, 52.7, 25.3.

**HRMS** (ESI) m/z calcd. for C<sub>31</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 507.1737, found 507.1737.



Diethyl (*S*)-(4-(1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H* -pyrazol-3-yl)phenyl)phosphonate (38)

According to the **general procedure A**, substrate **B38** (108.9 mg, 0.20 mmol) was employed to yield the product **38** as a white solid (68.1 mg, 63% yield, 94% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 40/60, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 59.11 min, t<sub>R</sub> (minor) = 87.47 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 – 7.81 (m, 2H), 7.79 – 7.75 (m, 2H), 7.59 (d, J = 8.9 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.26 – 7.22 (m, 3H), 6.81 (d, J = 8.9 Hz, 2H), 4.23 – 4.01 (m, 4H), 3.82 (s, 3H), 3.50 (d, J = 17.3 Hz, 1H), 3.39 (d, J = 17.3 Hz, 1H), 2.04 (s, 3H), 1.33 (t, J = 7.1 Hz, 6H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.2 (d, *J* = 1.1 Hz), 143.1, 134.7 (d, *J* = 3.3 Hz), 131.9 (d, *J* = 10.3 Hz), 131.3, 129.8 (d, *J* = 188.5 Hz), 129.6, 128.3, 127.6, 126.2 (d, *J* = 15.0 Hz), 125.6, 113.5, 72.2, 62.2, 62.2, 55.5, 52.5, 25.2, 16.3, 16.2.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 17.7.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>32</sub>N<sub>2</sub>O<sub>6</sub>PS [M + H]<sup>+</sup> 543.1713, found 543.1719.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(3-(4,4,5,5-tetramethyl-1, 3,2-dioxaborolan-2-yl)phenyl)-4,5-dihydro-1*H*-pyrazole (39)

According to the **general procedure A**, substrate **B39** (106.9 mg, 0.20 mmol) was employed to yield the product **39** as a slightly yellow solid (70.5 mg, 66% yield, 80% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 22.08 min, t<sub>R</sub> (minor) = 31.30 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.91 (s, 1H), 7.84 (d, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.24 –

7.19 (m, 3H), 6.80 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.56 (d, J = 17.3 Hz, 1H), 3.43 (d, J = 17.3 Hz, 1H), 2.03 (s, 3H), 1.33 (s, 12H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 152.7, 143.4, 136.5, 132.9, 131.7, 130.5, 129.7, 129.1, 128.2, 128.0, 127.5, 125.8, 113.5, 84.0, 71.7, 55.5, 53.0, 25.3, 24.8, 24.8. HRMS (ESI) *m/z* calcd. for C<sub>29</sub>H<sub>34</sub>BN<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 533.2276, found 533.2274.



### (S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-3-(naphthalen-2-yl)-5-phenyl-4,5-di hydro-1*H*-pyrazole (40)

According to the **general procedure A**, substrate **B40** (91.7 mg, 0.20 mmol) was employed to yield the product **40** as a white solid (70.5 mg, 77% yield, 94% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 24.16 min, t<sub>R</sub> (minor) = 31.09 min.

According to the **general procedure C**, substrate 1-(naphthalen-2-yl)-3-phenylbutan-1-one (54.9 mg, 0.20 mmol) was employed to yield the product **40** as a white solid (41.3 mg, 51% yield, 90% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 23.23 min, t<sub>R</sub> (minor) = 29.89 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (dd, J = 8.6, 1.6 Hz, 1H), 7.88 – 7.80 (m, 3H), 7.82 – 7.78 (m, 1H), 7.63 (d, J = 9.0 Hz, 2H), 7.55 – 7.46 (m, 2H), 7.38 – 7.33 (m, 2H), 7.25 – 7.21 (m, 3H), 6.81 (d, J = 9.0 Hz, 2H), 3.82 (s, 3H), 3.63 (d, J = 17.1 Hz, 1H), 3.51 (d, J = 17.1 Hz, 1H), 2.08 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 152.6, 143.4, 134.0, 132.9, 131.6, 129.8, 128.8, 128.4, 128.3, 127.8, 127.6, 127.2, 126.7, 125.9, 123.5, 113.6, 72.0, 55.5, 52.9, 25.4. HRMS (ESI) *m/z* calcd. for C<sub>27</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 457.1580, found 457.1580.



(*S*)-1-(4-(1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyra zol-3-yl)phenyl)-1*H*-pyrazole (41)

According to the **general procedure A**, substrate **B41** (94.9 mg, 0.20 mmol) was employed to yield the product **41** as a white solid (52.2 mg, 55% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 45.76 min, t<sub>R</sub> (minor) = 57.48 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 1.9 Hz, 1H), 7.78 – 7.71 (m, 5H), 7.61 (d, J = 8.8 Hz, 2H), 7.36 – 7.31 (m, 2H), 7.27 – 7.21 (m, 3H), 6.81 (d, J = 8.8 Hz, 2H),

6.49 (br s, 1H), 3.81 (s, 3H), 3.50 (d, *J* = 17.2 Hz, 1H), 3.38 (d, *J* = 17.2 Hz, 1H), 2.04 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.6, 143.3, 141.5, 141.0, 131.5, 129.7, 129.1, 128.3, 127.7, 127.6, 126.6, 125.8, 118.8, 113.6, 108.1, 71.9, 55.5, 52.8, 25.3. HRMS (ESI) *m/z* calcd. for C<sub>26</sub>H<sub>25</sub>N<sub>4</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 473.1642, found 473.1644.

(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-3-(thiophen-3-yl)-4,5-dihy dro-1*H*-pyrazole (42)

According to the **general procedure A**, substrate **B42** (82.9 mg, 0.20 mmol) was employed to yield the product **42** as a slightly red solid (35.5 mg, 43% yield, 78% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 26.48 min, t<sub>R</sub> (minor) = 40.07 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.55 (m, 3H), 7.39 – 7.37 (m, 1H), 7.37 – 7.34 (m, 1H), 7.33 – 7.30 (m, 2H), 7.25 – 7.21 (m, 3H), 6.79 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 3.46 (d, *J* = 17.1 Hz, 1H), 3.33 (d, *J* = 17.1 Hz, 1H), 2.01 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 149.0, 143.3, 133.8, 131.6, 129.7, 128.3, 127.6, 126.6, 125.8, 125.8, 125.3, 113.5, 71.5, 55.5, 53.5, 25.2.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 413.0988, found 413.0986.



(S)-3-(Benzo[b]thiophen-5-yl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazole (43)

According to the **general procedure A**, substrate **B43** (92.9 mg, 0.20 mmol) was employed to yield the product **43** as a white solid (60.3 mg, 65% yield, 93% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 26.48 min, t<sub>R</sub> (minor) = 34.77 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 7.6 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.59 (d, J = 8.9 Hz, 2H), 7.40 – 7.29 (m, 5H), 7.26 – 7.21 (m, 3H), 6.80 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.55 (d, J = 17.0 Hz, 1H), 3.43 (d, J = 17.0 Hz, 1H), 2.05 (s, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.7, 148.6, 142.9, 140.6, 139.2, 135.0, 131.3, 129.8, 128.3, 127.7, 125.9, 125.8, 125.0, 124.7, 124.1, 122.4, 113.5, 72.5, 55.5, 53.0, 25.3. **HRMS** (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 463.1145, found 463.1146.



# (S)-3-(Dibenzo[*b*,*d*]furan-2-yl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazole (44)

According to the general procedure A, substrate B44 (99.7 mg, 0.20 mmol) was employed to yield the product 44 as a white solid (60.8 mg, 61% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 36.99 min, t<sub>R</sub> (minor) = 50.81 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.25 (d, J = 1.5 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.84 (dd, J = 8.6, 1.5 Hz, 1H), 7.64 (d, J = 8.9 Hz, 2H), 7.60 – 7.55 (m, 2H), 7.51 – 7.46 (m, 1H), 7.39 – 7.35 (m, 3H), 7.26 – 7.23 (m, 3H), 6.81 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.62 (d, J = 17.1 Hz, 1H), 3.49 (d, J = 17.1 Hz, 1H), 2.08 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 157.1, 156.6, 152.5, 143.3, 131.7, 129.7, 128.3, 127.7, 127.6, 126.2, 125.8, 124.6, 123.6, 123.1, 120.8, 119.0, 113.6, 111.9, 111.8, 71.8, 55.5, 53.2, 25.4.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 497.1530, found 497.1535.



(S)-3-Cyclohexyl-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazole (45)

According to the general procedure A, substrate B45 (82.9 mg, 0.20 mmol) was employed to yield the product 45 as a white solid (34.5 mg, 42% yield, 79% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (major) = 20.77 min, t<sub>R</sub> (minor) = 28.53 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 9.0 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.19 (m, 3H), 6.79 (d, J = 9.0 Hz, 2H), 3.83 (s, 3H), 3.04 (d, J = 17.4 Hz, 1H), 2.91 (d, J = 17.4 Hz, 1H), 2.42 – 2.35 (m, 1H), 1.88 (s, 3H), 1.87 – 1.65 (m, 5H), 1.39 – 1.16 (m, 5H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.4, 161.1, 143.5, 131.7, 129.7, 128.1, 127.3, 125.7, 113.3, 70.6, 55.5, 53.3, 39.2, 30.1, 30.0, 25.8, 25.6, 25.6, 24.8.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 413.1893, found 413.1891.



### (*S*)-3-(*tert*-Butyl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazole (46)

According to the **general procedure A**, substrate **B46** (77.7 mg, 0.20 mmol) was employed to yield the product **46** as a white solid (43.8 mg, 57% yield, 80% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (major) = 17.40 min, t<sub>R</sub> (minor) = 20.60 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, J = 8.8 Hz, 2H), 7.32 – 7.29 (m, 2H), 7.25 – 7.21 (m, 3H), 6.81 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 3.07 (d, J = 17.2 Hz, 1H), 2.94 (d, J = 17.2 Hz, 1H), 1.85 (s, 3H), 1.18 (s, 9H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 164.1, 162.5, 143.7, 131.8, 129.8, 128.1, 127.3, 125.7, 113.3, 71.5, 55.5, 52.2, 34.1, 27.9, 24.5.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 387.1737, found 387.1734.



(S)-3-(Adamantan-1-yl)-1-((4-methoxyphenyl)sulfonyl)-5-methyl-5-phenyl-4,5-di hydro-1*H*-pyrazole (47)

According to the **general procedure A**, substrate **B47** (93.3 mg, 0.20 mmol) was employed to yield the product **47** as a white solid (60.5 mg, 65% yield, 73% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (major) = 23.70 min, t<sub>R</sub> (minor) = 30.03 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, J = 9.0 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.23 – 7.20 (m, 3H), 6.80 (d, J = 9.0 Hz, 2H), 3.84 (s, 3H), 3.05 (d, J = 17.2 Hz, 1H), 2.93 (d, J = 17.2 Hz, 1H), 2.07 – 2.01 (m, 3H), 1.85 (s, 3H), 1.81 – 1.61 (m, 12H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.2, 162.4, 143.6, 131.7, 129.7, 128.1, 127.3, 125.7, 113.2, 70.8, 55.5, 51.3, 39.9, 36.5, 36.1, 27.9, 24.6.

**HRMS** (ESI) m/z calcd. for C<sub>27</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 465.2206, found 465.2206.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-3-phenyl-5-(*m*-tolyl)-4,5-dihydro-1*H* -pyrazole (48)

According to the **general procedure B**, substrate **B48** (84.5 mg, 0.20 mmol) was employed to yield the product **48** as a yellow solid (68.0 mg, 81% yield, 90% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 24.70 min, t<sub>R</sub> (minor) = 34.79 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.68 (m, 2H), 7.58 (d, J = 9.0 Hz, 2H), 7.41 – 7.38 (m, 3H), 7.17 – 7.10 (m, 2H), 7.05 – 7.01 (m, 2H), 6.79 (d, J = 9.0 Hz, 2H), 3.80 (s, 3H), 3.48 (d, J = 17.3 Hz, 1H), 3.35 (d, J = 17.3 Hz, 1H), 2.20 (s, 3H), 2.02 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.5, 152.4, 143.1, 137.8, 131.6, 131.1, 130.0, 129.6, 128.6, 128.3, 128.1, 126.6, 126.5, 122.8, 113.4, 71.6, 55.5, 52.9, 25.5, 21.4.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 421.1580, found 421.1578.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-3-phenyl-5-(thiophen-2-yl)-4,5-dihy dro-1*H*-pyrazole (49)

According to the general procedure B, substrate B49 (82.9 mg, 0.20 mmol) was employed to yield the product 49 as a white solid (55.8 mg, 68% yield, 70% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 25.98 min, t<sub>R</sub> (minor) = 39.37 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.67 (m, 2H), 7.61 (d, J = 8.9 Hz, 2H), 7.42 – 7.39 (m, 3H), 7.08 (dd, J = 5.1, 0.8 Hz, 1H), 6.98 (dd, J = 3.6, 0.8 Hz, 1H), 6.83 (dd, J = 5.1, 3.6 Hz, 1H), 6.78 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.56 (d, J = 16.9 Hz, 1H), 3.41 (d, J = 16.9 Hz, 1H), 2.17 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 153.2, 146.3, 131.0, 130.9, 130.2, 129.8, 128.6, 126.6, 126.2, 125.5, 125.0, 113.4, 70.1, 55.5, 52.6, 26.6.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 413.0988, found 413.0983.



(S)-1-((4-Methoxyphenyl)sulfonyl)-5-methyl-3-phenyl-5-(thiophen-3-yl)-4,5-dihy dro-1*H*-pyrazole (50)

According to the **general procedure B**, substrate **B50** (82.9 mg, 0.20 mmol) was employed to yield the product **50** as a white solid (59.1 mg, 72% yield, 66% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 26.34 min, t<sub>R</sub> (minor) = 37.44 min. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.69 (m, 2H), 7.52 (d, J = 8.7 Hz, 2H), 7.47 – 7.35 (m, 3H), 7.18 (d, J = 3.0 Hz, 1H), 6.97 (dd, J = 4.8, 3.0 Hz, 1H), 6.76 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 4.8 Hz, 1H), 3.80 (s, 3H), 3.47 (d, J = 17.0 Hz, 1H), 3.36 (d, J = 17.0 Hz, 1H), 2.12 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.5, 153.1, 143.4, 131.1, 131.1, 130.2, 129.5, 128.6, 126.5, 125.8, 125.7, 122.2, 113.4, 69.2, 55.5, 51.2, 26.5.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M + H]<sup>+</sup> 413.0988, found 413.0986.



### (*S*)-5-Ethyl-1-((4-methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (51)

According to the general procedure B, substrate B51 (84.5 mg, 0.20 mmol) was employed to yield the product 51 as a white solid (59.6 mg, 71% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 19.55 min, t<sub>R</sub> (minor) = 44.38 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.72 (m, 2H), 7.43 – 7.40 (m, 3H), 7.32 (d, J = 8.9 Hz, 2H), 7.21 – 7.16 (m, 1H), 7.15 – 7.08 (m, 4H), 6.66 (d, J = 8.9 Hz, 2H), 3.77 (s, 3H), 3.54 (d, J = 17.6 Hz, 1H), 3.45 (d, J = 17.6 Hz, 1H), 2.72 (dq, J = 14.6, 7.3 Hz, 1H), 2.52 (dq, J = 14.6, 7.3 Hz, 1H), 1.08 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.2, 152.2, 141.4, 131.5, 131.0, 130.0, 129.2, 128.6, 128.1, 127.7, 126.5, 126.5, 113.2, 74.9, 55.4, 48.6, 30.2, 9.0.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 421.1580, found 421.1572.



(S)-5-(*n*-Butyl)-1-((4-methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyra zole (52)

According to the general procedure B, substrate B52 (90.1 mg, 0.20 mmol) was employed to yield the product 52 as a white solid (56.7 mg, 63% yield, 89% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 14.16 min, t<sub>R</sub> (minor) = 24.13 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 – 7.71 (m, 2H), 7.43 – 7.40 (m, 3H), 7.32 (d, J = 8.9 Hz, 2H), 7.21 – 7.08 (m, 5H), 6.66 (d, J = 8.9 Hz, 2H), 3.78 (s, 3H), 3.56 (d, J = 17.6 Hz, 1H), 3.47 (d, J = 17.6 Hz, 1H), 2.69 – 2.60 (m, 1H), 2.57 – 2.46 (m, 1H), 1.53 – 1.24 (m, 4H), 0.95 (t, J = 7.0 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.3, 152.2, 141.6, 131.5, 131.1, 130.0, 129.2, 128.6, 128.1, 127.7, 126.6, 126.5, 113.2, 74.5, 55.5, 49.1, 37.5, 26.8, 23.0, 14.1. HRMS (ESI) *m/z* calcd. for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 449.1893, found 449.1886.

Methyl (*R*)-2-(1-((4-Methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyraz ol-5-yl)acetate (53)

According to the general procedure B, substrate B53 (93.3 mg, 0.20 mmol) was employed to yield the product 53 as a white solid (60.2 mg, 65% yield, 96% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 22.24 min, t<sub>R</sub> (major) = 33.12 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 – 7.76 (m, 2H), 7.44 – 7.42 (m, 3H), 7.23 (d, J = 9.0 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.09 – 7.02 (m, 4H), 6.62 (d, J = 9.0 Hz, 2H), 4.13 (d, J = 16.8 Hz, 1H), 3.95 (d, J = 18.0 Hz, 1H), 3.81 (d, J = 18.0 Hz, 1H), 3.77 (s, 3H), 3.68 (s, 3H), 3.48 (d, J = 16.8 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 170.8, 162.4, 154.1, 139.5, 130.8, 130.3, 129.2, 128.7, 128.2, 128.2, 126.7, 126.1, 113.3, 71.5, 55.5, 51.9, 50.5, 43.1.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 465.1479, found 465.1478.



### (S)-3-(1-((4-Methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-5-yl) propyl Acetate (54)

According to the **general procedure B**, substrate **B54** (98.9 mg, 0.20 mmol) was employed to yield the product **54** as a white solid (37.6 mg, 38% yield, 81% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 15.98 min, t<sub>R</sub> (major) = 24.60 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 – 7.69 (m, 2H), 7.44 – 7.38 (m, 3H), 7.29 (d, J = 8.9 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.12 – 7.05 (m, 4H), 6.65 (d, J = 8.9 Hz, 2H), 4.19 (t, J = 6.4 Hz, 2H), 3.76 (s, 3H), 3.53 (d, J = 17.7 Hz, 1H), 3.48 (d, J = 17.7 Hz, 1H), 2.74 (td, J = 13.4, 4.2 Hz, 1H), 2.54 (td, J = 13.4, 4.2 Hz, 1H), 2.06 (s, 3H), 1.92 – 1.80 (m, 1H), 1.79 – 1.67 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.1, 162.4, 152.1, 141.2, 131.3, 130.9, 130.1, 129.2, 128.6, 128.2, 127.9, 126.5, 126.4, 113.3, 73.9, 64.1, 55.5, 49.2, 34.1, 24.1, 21.0. HRMS (ESI) *m/z* calcd. for C<sub>27</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>S [M + H]<sup>+</sup> 493.1792, found 493.1797.



# (*S*)-1-((4-Methoxyphenyl)sulfonyl)-5-(3-methoxypropyl)-3,5-diphenyl-4,5-dihydr o-1*H*-pyrazole (55)

According to the **general procedure B**, substrate **B55** (93.3 mg, 0.20 mmol) was employed to yield the product **55** as a white solid (38.3 mg, 41% yield, 90% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 35.97 min, t<sub>R</sub> (minor) = 44.74 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.74 – 7.71 (m, 2H), 7.43 – 7.39 (m, 3H), 7.32 (d, J = 8.9 Hz, 2H), 7.21 – 7.07 (m, 5H), 6.67 (d, J = 8.9 Hz, 2H), 3.78 (s, 3H), 3.60 – 3.45 (m, 4H), 3.37 (s, 3H), 2.78 – 2.55 (m, 2H), 1.85 – 1.76 (m, 1H), 1.74 – 1.62 (m, 1H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 162.3, 152.2, 141.5, 131.5, 131.0, 130.0, 129.2, 128.6, 128.1, 127.7, 126.5, 126.5, 113.2, 74.3, 72.4, 58.6, 55.4, 49.3, 34.5, 25.0. **HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 465.1843, found 465.1846.



(*S*)-3-(1-((4-Methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-5-yl) propan-1-ol (56)

According to the **general procedure B**, substrate **B56** (90.5 mg, 0.20 mmol) was employed to yield the product **56** as a white solid (32.6 mg, 36% yield, 85% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 21.90 min, t<sub>R</sub> (minor) = 26.01 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.70 (m, 2H), 7.43 – 7.39 (m, 3H), 7.31 (d, J = 9.0 Hz, 2H), 7.20 – 7.16 (m, 1H), 7.15 – 7.07 (m, 4H), 6.67 (d, J = 9.0 Hz, 2H), 3.90 – 3.75 (m, 2H), 3.78 (s, 3H), 3.58 (d, J = 17.6 Hz, 1H), 3.48 (d, J = 17.6 Hz, 1H), 2.82 – 2.72 (m, 1H), 2.65 – 2.53 (m, 1H), 1.87 – 1.76 (m, 2H), 1.75 – 1.64 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.4, 152.3, 141.5, 131.4, 130.9, 130.1, 129.2, 128.6, 128.2, 127.8, 126.5, 126.4, 113.3, 74.2, 62.5, 55.5, 49.3, 34.0, 27.9.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 451.1686, found 451.1680.



(*R*)-5-(2-Chloroethyl)-1-((4-methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1 *H*-pyrazole (57) According to the general procedure B, substrate B57 (91.4 mg, 0.20 mmol) was employed to yield the product 57 as a white solid (50.0 mg, 55% yield, 89% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 14.62 min, t<sub>R</sub> (minor) = 23.58 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.68 (m, 2H), 7.44 – 7.42 (m, 3H), 7.35 (d, J = 8.9 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.18 – 7.07 (m, 4H), 6.69 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 3.77 – 3.61 (m, 3H), 3.53 (d, J = 17.6 Hz, 1H), 3.33 – 3.24 (m, 1H), 3.00 – 2.91 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 152.4, 140.7, 131.0, 130.6, 130.4, 129.3, 128.7, 128.4, 128.2, 126.6, 126.1, 113.4, 73.1, 55.5, 49.2, 40.6, 40.0.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>24</sub>ClN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 455.1191, found 455.1185.



(*S*)-5-(3-Azidopropyl)-1-((4-methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1 *H*-pyrazole (58)

According to the **general procedure B**, substrate **B58** (95.5 mg, 0.20 mmol) was employed to yield the product **58** as a white solid (59.7 mg, 63% yield, 78% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 20.02 min, t<sub>R</sub> (minor) = 27.97 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.72 (m, 2H), 7.45 – 7.40 (m, 3H), 7.31 (d, J = 8.9 Hz, 2H), 7.23 – 7.17 (m, 1H), 7.14 – 7.07 (m, 4H), 6.67 (d, J = 8.9 Hz, 2H), 3.78 (s, 3H), 3.57 – 3.47 (m, 3H), 3.45 – 3.38 (m, 1H), 2.76 (td, J = 13.4, 4.2 Hz, 1H), 2.57 (td, J = 13.4, 4.2 Hz, 1H), 1.92 – 1.80 (m, 1H), 1.74 – 1.62 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.4, 152.2, 141.2, 131.2, 130.8, 130.2, 129.2, 128.7, 128.2, 127.9, 126.5, 126.3, 113.3, 73.9, 55.5, 51.4, 49.2, 34.9, 24.4.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>26</sub>N<sub>5</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 476.1751, found 476.1745.



(*S*)-5-Allyl-1-((4-methoxyphenyl)sulfonyl)-3,5-diphenyl-4,5-dihydro-1*H*-pyrazole (59)

According to the **general procedure B**, substrate **B59** (86.9 mg, 0.20 mmol) was employed to yield the product **59** as a slightly yellow solid (40.8 mg, 47% yield, 92% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 320 nm), t<sub>R</sub> (major) = 17.01 min, t<sub>R</sub> (minor) = 34.98 min.

According to the **general procedure C**, substrate 1,3-diphenylhex-5-en-1-one (50.1 mg, 0.20 mmol) was employed to yield the product **59** as a slightly yellow solid (27.8

mg, 32% yield, 90% ee). **HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 320 nm), t<sub>R</sub> (major) = 17.47 min, t<sub>R</sub> (minor) = 36.67 min. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.70 (m, 2H), 7.43 – 7.39 (m, 3H), 7.33 (d, *J* = 8.9 Hz, 2H), 7.23 – 7.09 (m, 5H), 6.68 (d, *J* = 8.9 Hz, 2H), 5.94 – 5.83 (m, 1H), 5.31 – 5.24 (m, 1H), 5.19 (d, *J* = 10.3 Hz, 1H), 3.79 (s, 3H), 3.65 (d, *J* = 17.6 Hz, 1H), 3.55 (dd, *J* = 14.3, 5.7 Hz, 1H), 3.41 (d, *J* = 17.6 Hz, 1H), 3.20 (dd, *J* = 14.3, 8.1 Hz, 1H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.4, 152.6, 141.3, 133.4, 131.4, 131.0, 130.1, 129.2, 128.6, 128.2, 127.9, 126.5, 126.5, 119.8, 113.3, 73.5, 55.5, 48.8, 42.1. **HRMS** (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 433.1580, found 433.1582.



(S)-2'-((4-Methoxyphenyl)sulfonyl)-5'-phenyl-2',3,4,4'-tetrahydro-2*H*-spiro[naph thalene-1,3'-pyrazole] (60)

According to the **general procedure B**, substrate **B60** (86.9 mg, 0.20 mmol) was employed to yield the product **60** as a white solid (45.6 mg, 53% yield, 89% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 24.84 min, t<sub>R</sub> (minor) = 30.85 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.9 Hz, 2H), 7.68 – 7.64 (m, 2H), 7.39 – 7.35 (m, 3H), 7.17 – 7.12 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H), 3.46 (d, J = 17.2 Hz, 1H), 3.36 (d, J = 17.2 Hz, 1H), 3.05 – 2.93 (m, 1H), 2.85 – 2.76 (m, 2H), 2.10 – 1.97 (m, 2H), 1.84 – 1.71 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 151.2, 139.4, 136.4, 132.3, 131.3, 130.0, 129.9, 128.9, 128.5, 127.2, 126.6, 126.4, 126.4, 113.6, 73.2, 55.5, 52.6, 34.3, 29.2, 20.9. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 433.1580, found 433.1585.



(*R*)-2'-((4-Methoxyphenyl)sulfonyl)-5'-phenyl-2',4'-dihydrospiro[chromane-4,3'-pyrazole] (61)

According to the general procedure B, substrate B61 (87.3 mg, 0.20 mmol) was employed to yield the product 61 as a white solid (53.6 mg, 62% yield, 88% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 24.03 min, t<sub>R</sub> (minor) = 29.67 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, J = 8.9 Hz, 2H), 7.68 – 7.65 (m, 2H), 7.40 – 7.36 (m, 3H), 7.17 – 7.11 (m, 1H), 7.02 (dd, J = 7.8, 1.5 Hz, 1H), 6.89 (d, J = 8.9 Hz, 2H), 6.86 – 6.83 (m, 1H), 6.74 – 6.70 (m, 1H), 4.53 (dt, J = 11.5, 4.0 Hz, 1H), 4.13 (td,

*J* = 11.5, 2.0 Hz, 1H), 3.83 (s, 3H), 3.55 (d, *J* = 17.2 Hz, 1H), 3.39 (d, *J* = 17.2 Hz, 1H), 3.17 – 3.08 (m, 1H), 2.07 – 1.99 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.9, 154.1, 151.4, 131.6, 130.9, 130.2, 130.1, 129.1, 128.6, 127.0, 126.4, 124.7, 120.9, 117.2, 113.7, 68.5, 63.8, 55.5, 52.5, 33.5.

**HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 435.1373, found 435.1372.

*tert*-Butyl (S)-2-((4-Methoxyphenyl)sulfonyl)-5-phenyl-2,2',3',4-tetrahydro-1'H-spiro[pyrazole-3,4'-quinoline]-1'-carboxylate (62)

According to the **general procedure B**, substrate **B62** (107.1 mg, 0.20 mmol) was employed to yield the product **62** as a white solid (59.5 mg, 56% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 29.51 min, t<sub>R</sub> (minor) = 39.13 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 – 7.60 (m, 5H), 7.42 – 7.35 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.76 (t, *J* = 7.5 Hz, 1H), 4.36 (dt, *J* = 13.2, 4.2 Hz, 1H), 3.83 (s, 3H), 3.55 – 3.38 (m, 3H), 3.15 – 3.05 (m, 1H), 2.17 – 2.09 (m, 1H), 1.56 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 153.4, 151.7, 138.1, 131.7, 131.0, 130.9, 130.2, 129.9, 128.6, 127.4, 126.4, 126.2, 124.4, 123.8, 113.6, 81.3, 70.3, 55.5, 52.9, 42.5, 36.0, 28.3.

**HRMS** (ESI) m/z calcd. for C<sub>29</sub>H<sub>31</sub>N<sub>3</sub>NaO<sub>5</sub>S [M + Na]<sup>+</sup> 556.1877, found 556.1879.



(S)-2'-((4-Methoxyphenyl)sulfonyl)-5'-phenyl-2',4',6,7,8,9-hexahydrospiro[benzo[ 7]annulene-5,3'-pyrazole] (63)

According to the **general procedure B**, substrate **B63** (89.7 mg, 0.20 mmol) was employed to yield the product **63** as a white solid (40.0 mg, 45% yield, 93% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 19.63 min, t<sub>R</sub> (minor) = 24.02 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.9 Hz, 2H), 7.71 – 7.66 (m, 2H), 7.41 – 7.34 (m, 4H), 7.15 – 7.08 (m, 2H), 7.08 – 7.02 (m, 1H), 6.88 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H), 3.73 (d, J = 17.2 Hz, 1H), 3.32 (d, J = 17.2 Hz, 1H), 3.20 – 3.11 (m, 1H), 3.03 – 2.93 (m, 1H), 2.80 – 2.68 (m, 1H), 2.04 – 1.68 (m, 5H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 151.8, 143.2, 139.4, 132.4, 131.3, 131.1, 129.9, 129.8, 128.5, 128.2, 127.5, 126.4, 126.4, 113.7, 78.9, 55.5, 48.7, 35.3, 35.3, 26.4, 23.7.

**HRMS** (ESI) m/z calcd. for C<sub>26</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 447.1737, found 447.1735.



(S)-2'-((4-Methoxyphenyl)sulfonyl)-5'-phenyl-2',3,4,4'-tetrahydro-2*H*-spiro[benz o[*b*]oxepine-5,3'-pyrazole] (64)

According to the general procedure B, substrate B64 (90.1 mg, 0.20 mmol) was employed to yield the product 64 as a white solid (48.2 mg, 54% yield, 89% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 17.73 min, t<sub>R</sub> (minor) = 25.07 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 8.9 Hz, 2H), 7.71 – 7.69 (m, 1H), 7.68 – 7.63 (m, 2H), 7.41 – 7.32 (m, 3H), 7.20 (t, J = 6.9 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 7.8 Hz, 1H), 6.97 (d, J = 8.9 Hz, 2H), 4.35 – 4.31 (m, 1H), 3.85 (s, 3H), 3.82 – 3.69 (m, 2H), 3.28 (d, J = 17.5 Hz, 1H), 2.91 (td, J = 13.0, 3.7 Hz, 1H), 2.21 – 2.09 (m, 1H), 2.02 – 1.89 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.9, 156.9, 152.8, 137.5, 132.5, 131.1, 130.0, 129.9, 128.9, 128.5, 128.4, 126.4, 124.1, 122.3, 113.9, 77.2, 72.5, 55.6, 47.1, 33.1, 26.4. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]<sup>+</sup> 449.1530, found 449.1530.



(S)-2'-((4-Methoxyphenyl)sulfonyl)-5'-phenyl-1-tosyl-1,2,2',3,4,4'-hexahydrospiro [benzo[b]azepine-5,3'-pyrazole] (65)

According to the **general procedure B**, substrate **B65** (120.8 mg, 0.20 mmol) was employed to yield the product **65** as a white solid (25.4 mg, 21% yield, 86% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (major) = 32.45 min, t<sub>R</sub> (minor) = 48.74 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.74 – 7.68 (m, 2H), 7.41 – 7.33 (m, 6H), 7.20 – 7.14 (m, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 7.6 Hz, 1H), 4.26 – 4.18 (m, 1H), 3.92 (d, J = 17.9 Hz, 1H), 3.87 (s, 3H), 3.72 (d, J = 17.9 Hz, 1H), 3.05 (t, J = 11.7 Hz, 1H), 2.74 (td, J = 13.4, 3.2 Hz, 1H), 2.48 (s, 3H), 2.38 – 2.26 (m, 1H), 2.08 – 2.02 (m, 1H), 1.91 – 1.81 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.0, 153.8, 143.7, 143.6, 139.3, 137.6, 132.4, 130.9, 130.1, 130.0, 129.0, 128.5, 128.4, 128.2, 127.0, 126.7, 126.6, 114.0, 78.0, 55.6, 50.43, 33.9, 29.7, 26.2, 21.6.

**HRMS** (ESI) m/z calcd. for C<sub>32</sub>H<sub>32</sub>N<sub>3</sub>O<sub>5</sub>S<sub>2</sub> [M + H]<sup>+</sup> 602.1778, found 602.1772.



(S)-1-((4-Methoxyphenyl)sulfonyl)-3-phenyl-1,2-diazaspiro[4.5]deca-2,6-diene (66)

According to the **general procedure B**, substrate **B66** (76.9 mg, 0.20 mmol) was employed to yield the product **66** as a white solid (30.0 mg, 39% yield, 52% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 32.53 min, t<sub>R</sub> (major) = 37.64 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 9.0 Hz, 2H), 7.67 – 7.64 (m, 2H), 7.39 – 7.35 (m, 3H), 6.94 (d, J = 9.0 Hz, 2H), 5.81 (ddd, J = 9.6, 4.9, 2.0 Hz, 1H), 5.59 – 5.54 (m, 1H), 3.85 (s, 3H), 3.18 (d, J = 17.0 Hz, 1H), 3.14 (d, J = 17.0 Hz, 1H), 2.67 – 2.59 (m, 1H), 2.26 – 2.16 (m, 1H), 2.07 – 1.99 (m, 1H), 1.97 – 1.85 (m, 2H), 1.65 – 1.53 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 153.3, 132.0, 131.3, 130.4, 130.0, 129.4, 129.1, 128.5, 126.5, 113.7, 71.4, 55.5, 48.5, 33.8, 24.3, 20.9.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 383.1424, found 383.1424.

#### **Procedure for Synthetic Applications**

#### The synthesis of 67



To a solution of 3 (81.3 mg, 0.20 mmol, 1.0 equiv., 90% ee) in anhydrous THF (4 mL) was added KOH (16.8 mg, 0.30 mmol, 1.5 equiv.) under argon atmosphere. The resulting mixture was stirred at 50 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled to 0 °C, and LiAlH<sub>4</sub> (22.8 mg, 0.60 mmol, 3.0 equiv.) was added in portions under argon atmosphere. The resulting mixture was warmed up to room temperature and stirred for 2 h. Then K<sub>2</sub>CO<sub>3</sub> (138.2 mg, 1.0 mmol, 5.0 equiv.) and acetyl chloride (71.4  $\mu$ L, 1.0 mmol, 5.0 equiv.) were sequentially added into the reaction mixture under argon atmosphere. The resulting mixture was stirred at room temperature for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH<sub>4</sub>Cl (5 mL), filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5  $mL \times 2$ ). The combined organic layers were washed with water (10 mL) and brine (10 mL  $\times$  2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1-10:1) to give 67 as a white solid (39.8 mg, 72% yield, 90% ee).



(S)-1-(5-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazol-1-yl)ethan-1-one (67)

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 300 nm), t<sub>R</sub> (minor) = 5.00 min, t<sub>R</sub> (major) = 6.76 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.67 (m, 2H), 7.42 – 7.38 (m, 3H), 7.35 – 7.28 (m, 4H), 7.24 – 7.20 (m, 1H), 3.44 (d, *J* = 17.6 Hz, 1H), 3.38 (d, *J* = 17.6 Hz, 1H), 2.41 (s, 3H), 2.06 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.8, 151.5, 144.9, 131.5, 130.1, 128.6, 128.6, 127.0, 126.3, 124.4, 67.5, 52.3, 24.5, 23.1.

**HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub>O [M + H]<sup>+</sup> 279.1492, found 279.1487.



To a solution of **67** (55.7 mg, 0.20 mmol, 1.0 equiv., 90% ee) in anhydrous THF (4 mL) was added lithium bis(trimethylsilyl)amide (LiHMDS, 1.0 M solution in THF, 0.40 mL, 0.40 mmol, 2.0 equiv.) at -78 °C under argon atmosphere. The reaction mixture was stirred at -78 °C for 15 min. Then the solution of ethyl chloroformate (38.1  $\mu$ L, 0.40 mmol, 2.0 equiv.) in anhydrous THF (0.6 mL) was dropwise added into the mixture via syringe. The resulting mixture was stirred at -78 °C for 8 h. After warming up to room temperature, the mixture was quenched by saturated NH4Cl (10 mL), filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5 mL × 2). The combined organic layers were washed with brine (10 mL × 2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 5:1) to give **68** as a white solid (57.4 mg, 82% yield, 90% ee).

## Ethyl (*S*)-2-Acetyl-3-methyl-3,5-diphenyl-2,3-dihydro-1*H*-pyrazole-1-carboxylate (68)

**HPLC** analysis: Chiralcel OD-H (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (minor) = 6.05 min, t<sub>R</sub> (major) = 10.04 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 – 7.49 (m, 4H), 7.39 – 7.30 (m, 5H), 7.26 – 7.21 (m, 1H), 6.02 (s, 1H), 3.94 (q, *J* = 6.4 Hz, 2H), 2.34 (s, 3H), 2.08 (s, 3H), 0.90 (t, *J* = 6.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.1, 157.1, 143.2, 142.4, 131.3, 128.9, 128.5, 128.2, 127.4, 126.5, 125.7, 120.4, 73.2, 63.2, 26.8, 22.5, 13.7.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> [M + H]<sup>+</sup> 351.1703, found 351.1700.



To a solution of **68** (35.0 mg, 0.10 mmol, 90% ee) in MeOH (1 mL) was added Pd/C (10% palladium on carbon, wet with ca. 50% water, 10.6 mg, 10 mol%). Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at room temperature for 8 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 5:1-3:1) to give the product **69** as a white solid (32.7 mg, 93% yield, 90% ee, dr > 20:1).



#### Supplementary Figure 5 The NOE of compound 69

Ethyl (3*S*,5*R*)-2-Acetyl-3-methyl-3,5-diphenylpyrazolidine-1-carboxylate (69) HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min,  $\lambda$  = 214 nm), t<sub>R</sub> (major) = 9.32 min, t<sub>R</sub> (minor) = 12.13 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.37 – 7.31 (m, 4H), 7.30 – 7.26 (m, 1H), 7.09 – 7.05 (m, 3H), 6.96 – 6.90 (m, 2H), 5.69 – 5.61 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.81 – 2.72 (m, 2H), 2.15 (s, 3H), 1.86 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 167.4, 158.9, 143.2, 140.2, 128.6, 127.9, 127.4, 126.4, 125.7, 125.3, 66.9, 63.5, 61.3, 51.8, 24.3, 22.7, 14.4. HRMS (ESI) *m/z* calcd. for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> [M + H]<sup>+</sup> 353.1860, found 353.1857.



To a solution of **69** (35.2 mg, 0.10 mmol, 1.0 equiv., 90% ee) in anhydrous THF (2 mL) was added samarium (II) iodide (0.10 M solution in THF, 0.40 mL, 0.40 mmol, 4.0 equiv.) and *tert*-butanol (89.3  $\mu$ L, 1.0 mmol, 10.0 equiv.) under argon atmosphere. The resulting mixture was stirred at 50 °C for 8 h. Upon completion (monitored by TLC), the mixture was quenched by saturated NH<sub>4</sub>Cl (5 mL), filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL × 2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 1:1) to give **70** as a white solid (30.7 mg, 87% yield, 90% ee, dr > 20:1).



#### Ethyl ((1R,3S)-3-Acetamido-1,3-diphenylbutyl)carbamate (70)

**HPLC** analysis: Chiralcel OD-H (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda$  = 214 nm), t<sub>R</sub> (minor) = 7.05 min, t<sub>R</sub> (major) = 8.98 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35 – 720 (m, 10H), 6.85 (br s, 1H), 5.22 (d, *J* = 6.6 Hz, 1H), 4.82 – 4.74 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.72 (dd, *J* = 14.6, 6.6 Hz, 1H), 2.33 (dd, *J* = 14.6, 4.5 Hz, 1H), 1.96 (s, 3H), 1.69 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 170.1, 156.1, 146.2, 143.2, 129.0, 128.4, 127.6, 126.6, 124.6, 60.9, 58.1, 52.4, 47.7, 26.9, 24.1, 14.5.

**HRMS** (ESI) m/z calcd. for C<sub>21</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub> [M + Na]<sup>+</sup> 377.1836, found 377.1835.



To a mixture of **62** (81.3 mg, 0.20 mmol, 1.0 equiv., 86% ee) and cerium chloride (147.9 mg, 0.60 mmol, 3.0 equiv.) in anhydrous THF (2 mL) was dropwise added allylmagnesium bromide (1.0 M solution in Et<sub>2</sub>O, 1.0 mL, 1.0 mmol, 5.0 equiv.) at -78 °C under argon atmosphere. The resulting mixture was stirred at -78 °C for 3 h. After warming up to room temperature, the reaction mixture was quenched by saturated NH<sub>4</sub>Cl (5 mL), filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5 mL × 2). The combined organic layers were washed with brine (10 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to give **71** as two diastereoisomers (39.3 mg, dr = 1.5:1, 49% total yield).



#### Supplementary Figure 6 The NOE of 71-the major isomer



### *tert*-Butyl (3*S*,5*R*)-5-Allyl-5-phenyl-2',3',4,5-tetrahydro-1'*H*-spiro[pyrazole-3,4'-quinoline]-1'-carboxylate

(71-the major isomer: white powder, 23.9 mg, 30% yield, 86% ee)

**HPLC** analysis: Chiralcel OD-3 (hexane/*i*-PrOH = 95/05, flow rate 0.6 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub> (major) = 11.01 min, t<sub>R</sub> (minor) = 13.67 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.2 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.41 – 7.35 (m, 2H), 7.33 – 7.27 (m, 1H), 7.16 – 7.09 (m, 1H), 6.78 – 6.70 (m, 1H), 6.14 (dd, J = 7.9, 1.5 Hz, 1H), 5.64 – 5.51 (m, 1H), 5.15 – 5.05 (m, 2H), 4.17 – 4.05 (m, 1H), 4.01 – 3.89 (m, 1H), 2.88 – 2.72 (m, 2H), 2.38 (ddd, J = 13.6, 8.1, 3.6 Hz, 1H), 2.25 (d, J = 13.4 Hz, 1H), 2.09 (d, J = 13.4 Hz, 1H), 2.02 (ddd, J = 13.6, 7.8, 3.7 Hz, 1H), 1.55 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.4, 143.9, 137.8, 132.8, 129.6, 128.6, 127.6, 127.2, 126.9, 126.0, 124.2, 123.9, 119.6, 99.9, 93.8, 81.3, 47.8, 43.0, 42.2, 35.1, 28.3. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>30</sub>N<sub>3</sub>O<sub>2</sub> [M + H]<sup>+</sup> 404.2333, found 404.2328.



#### Supplementary Figure 7 The NOE of 71-the minor isomer



### *tert*-Butyl (3*S*,5*S*)-5-Allyl-5-phenyl-2',3',4,5-tetrahydro-1'*H*-spiro[pyrazole-3,4'-quinoline]-1'-carboxylate

(71-the minor isomer: white powder, 15.4 mg, 19% yield, 84% ee)

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/01, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 10.51 min, t<sub>R</sub> (minor) = 12.23 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.3 Hz, 1H), 7.44 – 7.32 (m, 4H), 7.31 – 7.22 (m, 2H), 7.08 (td, J = 7.8, 1.1 Hz, 1H), 6.85 (dd, J = 7.8, 1.4 Hz, 1H), 5.80 – 5.67 (m, 1H), 5.16 – 5.02 (m, 2H), 4.05 – 3.92 (m, 1H), 3.60 – 3.48 (m, 1H), 2.98 (dd, J = 14.0, 6.9 Hz, 1H), 2.88 (dd, J = 14.0, 7.6 Hz, 1H), 2.29 (d, J = 13.3 Hz, 1H), 2.06 – 1.92 (m, 2H), 1.51 (s, 9H), 1.36 (ddd, J = 13.6, 5.4, 3.9 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.4, 143.8, 137.9, 132.7, 130.2, 128.6, 127.7, 127.3, 126.8, 125.5, 124.1, 123.7, 119.6, 97.6, 92.4, 81.3, 47.1, 43.6, 41.9, 32.9, 28.3. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>30</sub>N<sub>3</sub>O<sub>2</sub> [M + H]<sup>+</sup> 404.2333, found 404.2329.



Synthesis of **72-the major isomer**: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **71-the major isomer** (23.9 mg, 0.06 mmol, 86% ee) and anhydrous toluene (1 mL). The reaction mixture was stirred at 110 °C for 8 h. After cooling down to room temperature, the reaction mixture was directly purified by flash column chromatography (using petroleum ether to remove the solvent, and then petroleum ether/ethyl acetate 100:1 as eluent) to give **72-the major isomer** as a colorless oil (18.4 mg, 82% yield, 80% ee).



Supplementary Figure 8 The NOE of 72-the major isomer



### *tert*-Butyl (1*S*,2*R*)-2-Allyl-2-phenyl-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-qui noline]-1'-carboxylate

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/01, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 5.06 min, t<sub>R</sub> (minor) = 6.41 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, J = 8.1 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.98 – 6.88 (m, 4H), 6.62 (td, J = 7.6, 1.2 Hz, 1H), 6.34 (dd, J = 7.8, 1.4 Hz, 1H), 5.75 – 5.62 (m, 1H), 4.96 – 4.84 (m, 2H), 4.17 – 4.06 (m, 1H), 3.69 (dt, J = 12.1, 5.0 Hz, 1H), 2.77 (dd, J = 14.2, 6.8 Hz, 1H), 2.43 (dd, J = 14.2, 7.2 Hz, 1H), 2.17 (d, J = 5.0 Hz, 1H), 2.15 (d, J = 5.0 Hz, 1H), 1.91 (d, J = 5.7 Hz, 1H), 1.58 (s, 9H), 0.95 (d, J = 5.7 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.2, 141.4, 139.0, 135.8, 133.6, 130.2, 127.4, 125.8, 125.4, 124.3, 124.2, 122.7, 116.2, 80.5, 44.7, 41.2, 38.3, 30.7, 29.9, 28.5, 20.3.

**HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>29</sub>NNaO<sub>2</sub> [M + Na]<sup>+</sup> 398.2091, found 398.2086.

Synthesis of **72-the minor isomer**: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **71-the minor isomer** (15.4 mg, 0.04 mmol, 84% ee) and anhydrous toluene (1 mL). The reaction mixture was stirred at 110 °C for 8 h. After cooling down to room temperature, the reaction mixture was directly purified by flash column chromatography (using petroleum ether to remove the solvent, and then petroleum ether/ethyl acetate 100:1 as eluent) to give **72-the minor isomer** as a colorless oil (10.6 mg, 74% yield, 84% ee).



#### Supplementary Figure 9 The NOE of 72-the minor isomer



## *tert*-Butyl (1*S*,2*S*)-2-Allyl-2-phenyl-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-qui noline]-1'-carboxylate

**HPLC** analysis: Chiralcel ID (hexane/*i*-PrOH = 99/01, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 5.97 min, t<sub>R</sub> (minor) = 6.89 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 8.0 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.26 – 7.20 (m, 2H), 7.12 – 7.05 (m, 2H), 5.54 – 5.42 (m, 1H), 4.79 – 4.65 (m, 2H), 3.84 – 3.73 (m, 1H), 3.18 – 3.08 (m, 1H), 2.34 (dd, J = 14.8, 5.7 Hz, 1H), 1.94 (dt, J = 13.4, 9.4 Hz, 1H), 1.78 (dd, J = 14.8, 7.4 Hz, 1H), 1.58 (s, 9H), 1.51 (d, J = 5.7 Hz, 1H), 1.32 (dd, J = 5.7, 1.1 Hz, 1H), 1.30 – 1.24 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.2, 141.4, 140.4, 136.0, 134.1, 129.7, 128.0, 126.4, 126.3, 125.4, 124.9, 123.5, 115.8, 80.4, 42.1, 40.7, 37.7, 31.5, 30.8, 28.4, 17.6. HRMS (ESI) *m/z* calcd. for C<sub>25</sub>H<sub>29</sub>NNaO<sub>2</sub> [M + Na]<sup>+</sup> 398.2091, found 398.2086.

#### **Mechanistic Study**

#### (1) Control experiments



#### Control experiment A (Supplementary Figure 4a)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3** (20.40 mg, 0.050 mmol, 1.0 equiv.), (*R*)-C3 (4.45 mg, 0.0075 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (0.24 mg, 0.0025 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (1.0 mL). Then **O7** (23.63 mg, 0.10 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 35 °C for 96 h.

The desired product **3** was not obtained in the absence of CuCN.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3** (20.40 mg, 0.050 mmol, 1.0 equiv.), CuCN (0.45 mg, 0.0050 mmol, 10 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (0.24 mg, 0.0025 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (1.0 mL). Then **O7** (23.63 mg, 0.10 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 35 °C for 96 h.

The desired product **3** was not obtained in the absence of (R)-C**3**.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

#### Control experiment B (Fig. 4f)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 1' (19.52 mg, 0.050 mmol, 1.0 equiv.), CuCN (0.45 mg, 0.0050 mmol, 10 mol%), (*R*)-C3 (4.45 mg, 0.0075 mmol, 15 mol%), (NH4)<sub>2</sub>CO<sub>3</sub> (0.24 mg, 0.0025 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (1.0 mL). Then O7 (23.63 mg, 0.10 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 35 °C for 96 h.

The desired product 1 was not obtained.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **1'** (19.52 mg, 0.050 mmol, 1.0 equiv.), CuCN (0.45 mg, 0.0050 mmol, 10 mol%), (*R*)-C3 (4.45 mg, 0.0075 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (0.24 mg, 0.0025 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (1.0 mL). The reaction mixture was stirred at 35 °C for 96 h.

The desired product 1 was not obtained.

*Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.* 

#### (2) Radical-inhibition experiments (Fig. 4a and Supplementary Figure 4b)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3** (20.40 mg, 0.050 mmol, 1.0 equiv.), CuCN (0.45 mg, 0.0050 mmol, 10 mol%), (*R*)-**C3** (4.45 mg, 0.0075 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (0.24 mg, 0.0025 mmol, 5 mol%), **radical inhibitor** (0.10 mmol, 2.0 equiv.) and *i*-PrCO<sub>2</sub>*i*-Pr (1.0 mL). Then **O7** (23.63 mg, 0.10 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe, and the resulting mixture was stirred at 35 °C for 96 h.

In the presence of 2,2,6,6-tetramethylpiperidinooxy (**TEMPO**, 15.63 mg, 0.10 mmol, 2.0 equiv.) or 1,4-benzoquinone (**BQ**, 10.81 mg, 0.10 mmol, 2.0 equiv.) or butylated hydroxytoluene (**BHT**, 22.04 mg, 0.10 mmol, 2.0 equiv.), the desired reaction was inhibited and no desired product **3** was obtained.

When **TEMPO** used as radical inhibitor, the TEMPO-trapped hydrolyzed product **A1-TEMPO** was detected by HRMS analysis.



Supplementary Figure 10 The HRMS (ESI) spectrum of A1-TEMPO

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.
#### (3) Radical-clock experiment (Fig. 4b)

The synthesis of radical-clock substrate 73



Substrate **S16** is a known compound and was prepared according to the literature procedure<sup>24</sup>.

Synthesis of A16: To a cooled (0 °C) solution of Et<sub>2</sub>Zn (1.0 M solution in toluene, 4.0 mL, 4.0 mmol, 2.0 equiv.) in anhydrous DCM (6 mL) was dropwise added trifluoroacetic acid (TFA, 0.30 mL, 4.0 mmol, 2.0 equiv.). The resulting mixture was stirred at 0 °C for 20 minutes and a solution of CH<sub>2</sub>I<sub>2</sub> (0.32 mL, 4.0 mmol, 2.0 equiv.) in DCM (2.0 mL) was added into the mixture via syringe. Then a solution of S16 (0.6 g, 2.0 mmol, 1.0 equiv) in DCM (2 mL) was dropwise added into the reaction mixture, and the resulting mixture was warmed up to room temperature and stirred for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH4Cl (10 mL) and filtered through a pad of celite. The filtrate was concentrated under reduced pressure, and the residue was dissolved in DCM (20 mL), washed with water (20 mL) and brine (20 mL × 2). The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to afford the product A16 as a slightly yellow oil (0.46 g, 71% yield, as a single isomer, *trans/cis* > 20:1).



### 1,3-Diphenyl-3-(trans-2-phenylcyclopropyl)propan-1-one (A16)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.99 – 7.94 (m, 2H), 7.58 – 7.53 (m, 1H), 7.49 – 7.43 (m, 2H), 7.34 – 7.31 (m, 2H), 7.29 – 7.27 (m, 2H), 7.21 – 7.15 (m, 3H), 7.12 – 7.07 (m, 1H), 6.95 – 6.89 (m, 2H), 3.49 – 3.44 (m, 2H), 2.96 (dt, J = 9.3, 6.9 Hz, 1H), 1.80 – 1.72 (m, 1H), 1.46 – 1.37 (m, 1H), 1.03 – 0.97 (m, 1H), 0.95 – 0.88 (m, 1H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 198.9, 144.1, 142.7, 137.2, 132.9, 128.5, 128.4, 128.1, 128.0, 127.4, 126.2, 126.0, 125.3, 45.7, 45.4, 28.8, 22.6, 15.9. **HRMS** (ESI) *m/z* calcd. for C<sub>24</sub>H<sub>23</sub>O [M + H]<sup>+</sup> 327.1743, found 327.1745. Synthesis of **73**: To a solution of **A16** (0.39 g, 1.2 mmol, 1.0 equiv.) and 4-methoxy benzenesulfonohydrazide (0.49 g, 2.4 mmol, 2.0 equiv.) in MeOH (10 mL) was added glacial acetic acid (35  $\mu$ L, 0.6 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford **73** as a white solid (0.43 g, 70% yield, an inseparable mixture of *E*/*Z* isomers, *E*/*Z* = 8.5:1).



# *N*'-(1,3-Diphenyl-3-(*trans*-2-phenylcyclopropyl)propylidene)-4-methoxybenzene sulfonohydrazide (73)

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, *J* = 8.9 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 0.24H), 7.62 – 7.57 (m, 2H), 7.56 – 7.53 (m, 0.24H), 7.40 – 7.34 (m, 3H), 7.33 – 7.27 (m, 0.48H), 7.19 – 7.13 (m, 5H), 7.11 – 7.06 (m, 3H), 7.03 – 6.98 (m, 0.48H), 6.94 (d, *J* = 8.9 Hz, 2H), 6.93 – 6.92 (m, 0.36H), 6.87 – 6.83 (m, 2H), 6.81 (br s, 1H), 6.59 (br s, 0.12H), 3.87 (s, 0.36H), 3.87 (s, 3H), 3.19 (dd, *J* = 14.0, 5.5 Hz, 1H), 3.06 – 2.99 (m, 1.12H), 2.46 – 2.35 (m, 0.12H), 2.18 (td, *J* = 9.3, 5.6 Hz, 1H), 1.84 – 1.68 (m, 0.60H), 1.62 – 1.55 (m, 1H), 1.50 – 1.42 (m, 1H), 0.97 (dt, *J* = 8.2, 5.2 Hz, 1H), 0.87 – 0.81 (m, 1H), 0.74 – 0.68 (m, 0.12H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 155.5, 143.2, 142.0, 136.4, 130.5, 129.7, 129.5, 129.1, 128.5, 128.2, 127.4, 126.9, 126.5, 126.0, 125.6, 113.7, 55.6, 48.3, 35.2, 27.7, 22.8, 15.9.

**HRMS** (ESI) m/z calcd. for C<sub>31</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 511.2050, found 511.2054.



#### The radical-clock experiment



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **73** (102.1 mg, 0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.02 mmol, 10 mol%), (*R*)-C3 (17.8 mg, 0.03 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.01 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe and the reaction mixture was stirred at 35 °C for 96 h. The reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–10:1) to afford the product **74** as a slightly yellow oil (8.1 mg, 8% yield).



# (2*E*,5*E*)-1-((4-Methoxyphenyl)sulfonyl)-3,5,8-triphenyl-1,4,7,8-tetrahydro-1,2-dia zocine (74)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.50 – 7.47 (m, 2H), 7.43 – 7.38 (m, 3H), 7.35 – 7.28 (m, 4H), 7.21 – 7.15 (m, 4H), 7.14 – 7.09 (m, 4H), 6.66 (d, *J* = 9.1 Hz, 2H), 6.28 – 6.22 (m, 1H), 4.48 (t, *J* = 5.9 Hz, 1H), 3.76 (s, 3H), 3.58 – 3.50 (m, 1H), 3.10 – 2.93 (m, 2H), 2.49 – 2.40 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 141.7, 141.1, 134.8, 133.3, 131.9, 130.0, 129.9, 128.6, 128.5, 128.2, 127.8, 127.4, 126.8, 125.2, 124.3, 113.3, 55.5, 41.5, 33.4, 31.8. HRMS (ESI) *m/z* calcd. for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 509.1893, found 509.1899.







#### (4) Kinetic experiments



The synthesis of deuterated substrates B3-d1 and B26-d1

Synthesis of S17: To a cooled (0 °C) solution of acetophenone (1.17 mL, 10 mmol, 1.0 equiv.) in anhydrous THF (20 mL) was added lithium aluminum deuteride (LiAlD4, 0.50 g, 12 mmol, 1.2 equiv.) in portions under argon atmosphere. Then the resulting mixture was warmed up to room temperature and stirred for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by water (10 mL), filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (20 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure to afford the crude alcohol S17 (1.20 g), which was directly used in the next step without further purification.

Synthesis of A17: To a solution of the crude alcohol S17 (0.60 g) obtained above and phenylacetylene S18 (R = H) (0.44 mL, 4.0 mmol, 1.0 equiv.) in nitromethane (20 mL) was added iron(III) chloride hexahydrate (0.16 g, 0.6 mmol, 15 mol%) in one portion under argon atmosphere. The resulting mixture was stirred at 80 °C for 5 h. After cooling down to room temperature, the reaction mixture was concentrated under reduced pressure to remove the organic solvent. The residue was dissolved in EtOAc (20 mL), filtered through a short pad of celite and rinsed with EtOAc (20 mL). The filtrate was successively washed with water (30 mL) and brine (30 mL × 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100:1–50:1) to afford the product A17 as a white solid (0.51 g, 57% yield).

Synthesis of **B3-***d*<sub>1</sub>: To a solution of **A17** (0.45 g, 2.0 mmol, 1.0 equiv.) and 4-methylbenzenesulfonohydrazide (0.74 g, 4.0 mmol, 2.0 equiv.) in MeOH (15 mL) was added glacial acetic acid (57  $\mu$ L, 1.0 mmol, 0.5 equiv.) via microsyringe. The resulting mixture was stirred at 65 °C for 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 10:1–5:1) to afford the desired product **B3-***d*<sub>1</sub> as a white solid (0.68 g, 83% yield), an inseparable mixture of *E*/*Z* isomers (*E*/*Z* = 4.0:1).



<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.80 (d, J = 8.9 Hz, 0.50H), 7.70 (d, J = 8.9 Hz, 2H), 7.59 – 7.55 (m, 2H), 7.41 – 7.36 (m, 3H), 7.36 – 7.32 (m, 1.0H), 7.31 – 7.28 (m, 0.25H), 7.20 – 7.16 (m, 3H), 7.15 – 7.11 (m, 0.75H), 7.09 – 7.04 (m, 2H), 7.03 – 6.97 (m, 1.0H), 6.94 (d, J = 8.9 Hz, 2H), 6.91 – 6.89 (m, 0.50H), 6.70 (br s, 1H), 3.88 (s, 0.75H), 3.88 (s, 3H), 2.90 (d, J = 14.0 Hz, 1H), 2.86 (d, J = 14.0 Hz, 1H), 2.79 (d, J =14.8 Hz, 0.25H), 2.73 (d, J = 14.8 Hz, 0.25H), 1.35 (s, 3H), 1.14 (s, 0.75H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.2, 156.7, 155.7, 145.9, 144.7, 136.4, 132.8, 130.5,

129.9, 129.7, 129.7, 129.5, 129.5, 129.1, 128.4, 128.3, 127.4, 126.9, 126.5, 126.5, 126.4, 126.1, 114.1, 113.7, 55.6, 45.9, 36.9, 21.7, 21.3.

**HRMS** (ESI) m/z calcd. for C<sub>23</sub>H<sub>24</sub>DN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 410.1643, found: 410.1646.





Synthesis of A18: According to the general procedure for A17, 3-fluorophenyl acetylene S19 (R = 3-F) (0.46 mL, 4.0 mmol, 1.0 equiv.) was employed to afford substrate A18 as a white solid (0.59 g, 61% yield).

Synthesis of **B26-***d*<sub>1</sub>: According to the general procedure for **B3-***d*<sub>1</sub>, substrate **A18** (0.49 g, 2.0 mmol, 1.0 equiv.) was employed to afford the product **B26-***d*<sub>1</sub> as a white solid (0.76 g, 86% yield), an inseparable mixture of E/Z isomers (E/Z = 9.1:1).



<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, J = 8.9 Hz, 0.22H), 7.71 (d, J = 8.9 Hz, 2H), 7.45 (br s, 0.11H), 7.40 – 7.34 (m, 0.22H), 7.33 – 7.29 (m, 2H), 7.27 – 7.24 (m, 1H), 7.20 – 7.16 (m, 3H), 7.16 – 7.13 (m, 0.33H), 7.08 – 7.03 (m, 3H), 7.01 – 6.98 (m, 1H), 6.95 (d, J = 8.9 Hz, 2H), 6.70 – 6.67 (m, 0.11H), 6.58 – 6.54 (m, 0.11H), 3.88 (s, 0.33H), 3.87 (s, 3H), 2.85 (s, 2H), 2.75 (br s, 0.11H), 2.74 (br s, 0.11H), 1.34 (s, 3H), 1.15 (s, 0.33H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.3, 162.8 (d, J = 245.6 Hz), 154.1 (d, J = 2.5 Hz), 144.5, 138.8 (d, J = 7.5 Hz), 131.4 (d, J = 8.6 Hz), 130.4, 130.0, 129.9 (d, J = 8.2 Hz), 129.8, 129.3, 129.1, 128.3, 127.4, 126.8, 126.4, 126.2, 122.3 (d, J = 3.1 Hz), 122.1 (d,

J = 2.6 Hz), 116.8 (d, J = 20.8 Hz), 116.5 (d, J = 21.6 Hz), 114.2, 113.8 (d, J = 22.5 Hz), 113.8, 113.4 (d, J = 23.1 Hz), 55.6, 45.8, 37.3, 37.1, 36.8, 21.8, 21.2. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –109.7 (s, 0.11F), –112.6 (s, 1F). HRMS (ESI) *m/z* calcd. for C<sub>23</sub>H<sub>23</sub>DFN<sub>2</sub>O<sub>3</sub>S [M + H]<sup>+</sup> 428.1549, found 428.1553.







### The KIE experiments (Fig. 4c)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B26** (85.3 mg, 0.20 mmol, 1.0 equiv.) or **B26**- $d_1$  (85.5 mg, 0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.020 mmol, 10 mol%), (*R*)-C3 (17.8 mg, 0.030 mmol, 15 mol%), (NH4)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe. The resulting mixture was stirred at 35 °C.

The reaction progress was monitored by <sup>19</sup>F NMR analysis to determine the yields of product **26**. At specific time intervals (11, 14, 17, 20, 23 h), 0.2 mL of the reaction mixture was taken out via syringe, filtered through a short pad of celite and rinsed with EtOAc (1 mL). The filtrate was concentrated under reduced pressure, and the residue was analyzed with <sup>19</sup>F NMR in CDCl<sub>3</sub> using **2-fluoroacetophenone** as the internal standard. The reaction rate constants were determined by plotting yield of the corresponding product over time (h) and extracting the slope after linear fitting.

 $KIE = K_H/K_D = 0.01303/0.0089 = 1.46.$ 

| Time (h) | Yield of <b>26</b> (reaction of <b>B26</b> ) | Yield of <b>26</b> (reaction of <b>B26-</b> $d_1$ ) |
|----------|----------------------------------------------|-----------------------------------------------------|
| 11       | 0.079                                        | 0.051                                               |
| 14       | 0.114                                        | 0.073                                               |
| 17       | 0.157                                        | 0.106                                               |
| 20       | 0.199                                        | 0.136                                               |
| 23       | 0.232                                        | 0.153                                               |

Supplementary Table 5 Yields of product 26 monitored at specific time intervals during reaction



Supplementary Figure 11 Plots of yield versus reaction time for substrate B26



Supplementary Figure 12 Plots of yield versus reaction time for substrate B26-d1

#### The reaction of B3-d<sub>1</sub> under standard condition (Fig. 4d)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3-** $d_1$  (81.9 mg, 0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.020 mmol, 10 mol%), (*R*)-**C3** (17.8 mg, 0.030 mmol, 15 mol%), (NH4)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then **O7** (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe. The reaction mixture was stirred at 35 °C.

After 48 h, 0.5 mL of the reaction mixture was taken out via syringe, filtered through a short pad of celite and rinsed with EtOAc (2 mL). The filtrate was concentrated under reduced pressure, and the residue was firstly analyzed with <sup>1</sup>H NMR in CDCl<sub>3</sub> to determine the conversion of **B3-d<sub>1</sub>** as 50%. Then the residue was purified by preparative TLC to give product **3** for HPLC analysis and the remaining **B3-d<sub>1</sub>** for NMR analysis.

#### The reactions of *rac-(E)-B3* and chiral (*E)-B3* under standard conditions (Fig. 4e)

The substrates *rac-*(*E*)-**B3** and chiral (*E*)-**B3** (ee > 99%) were separated from *rac-***B3** (*E*/*Z* = 3.0:1) by PRE-HPLC analysis using a preparative Daicel Chiralcel AD-H column (hexane/*i*-PrOH = 60/40, flow rate 8.0 mL/min,  $\lambda$  = 239 nm).

HPLC analysis condition for the remaining material **B3**: Chiralcel AD-H (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda = 239$  nm), t<sub>R</sub> (minor for Z-isomer) = 8.47 min, t<sub>R</sub> (major for Z-isomer) = 9.02 min, t<sub>R</sub> (major for E-isomer) = 13.58 min, t<sub>R</sub> (minor for Z-isomer) = 23.85 min.



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with rac-(E)-**B3** (40.8 mg, 0.10 mmol, 1.0 equiv.), CuCN (0.9 mg, 0.010 mmol, 10 mol%), (R)-C3 (8.9 mg, 0.015 mmol, 15 mol%), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (0.5 mg, 0.0050 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (2.0 mL). Then O7 (47.3 mg, 0.20 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe. The resulting mixture was stirred at 35 °C.

After 48 h, 0.4 mL of the reaction mixture was taken out via syringe, filtered through a short pad of celite and rinsed with EtOAc (2 mL). The filtrate was concentrated under reduced pressure. The residue was firstly analyzed with <sup>1</sup>H NMR in CDCl<sub>3</sub> to determine the ratio of remaining **B3** as 45%. Then the residue was purified by preparative TLC to give the remaining **B3** for HPLC analysis.

The procedure for the reaction of chiral (*E*)-**B3** (ee > 99%) was the same with that described above except that chiral (*E*)-**B3** (40.8 mg, 0.10 mmol, 1.0 equiv.) was used.

Experiment for determining the ee values during reaction (Supplementary Figure 4c)



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B3** (81.7 mg, 0.20 mmol, 1.0 equiv.), CuCN (1.8 mg, 0.020 mmol, 10 mol%), (*R*)-C3 (17.8 mg, 0.030 mmol, 15 mol%), (NH4)<sub>2</sub>CO<sub>3</sub> (1.0 mg, 0.010 mmol, 5 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (4.0 mL). Then O7 (94.5 mg, 0.40 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe. The reaction mixture was stirred at 35 °C.

At specific time intervals (14, 17, 20, 23, 35, 47 h), 0.2 mL of the reaction mixture was taken out via syringe, filtered through a short pad of celite and rinsed with EtOAc (1 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by preparative TLC to give the product **3** for HPLC analysis.

| Time (h)                  | Ee of <b>3</b> (%) |  |
|---------------------------|--------------------|--|
| 14                        | 86                 |  |
| 17                        | 86                 |  |
| 20                        | 88                 |  |
| 23                        | 87                 |  |
| 35                        | 88                 |  |
| 47                        | 89                 |  |
| entaionneric excess (ee)% |                    |  |
| reaction time (h)         |                    |  |

Supplementary Table 6 The ee values of product 3 at different time points during reaction

Supplementary Figure 13 Plots of ee values for 3 at different time points during reaction

#### (5) Control experiments on E/Z ratio of hydrazone

The hydrazones with different E/Z ratios were obtained by recrystallization of an E/Z mixture of **B1** (E/Z 3.4:1, solvent: petroleum ether/ethyl acetate), which was prepared according to the **general procedure 1**.



# **Experiment A (Supplementary Table 2)**

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **B1** (39.3 mg, 0.10 mmol, 1.0 equiv.), CuCN (0.9 mg, 0.010 mmol, 10 mol%), (*R*)-**C3** (8.9 mg, 0.015 mmol, 15 mol%) and *i*-PrCO<sub>2</sub>*i*-Pr (2.0 mL). Then **O7** (47.3 mg, 0.20 mmol, 2.0 equiv.) was slowly added into the mixture via microsyringe. The resulting mixture was stirred at 35 °C for 96 h. Then the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (5 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 20:1–10:1).

The results suggested that the E/Z ratios of substrate **B1** have no significant effects on the reaction outcomes.

## **Experiment B (Supplementary Tables 3 and 4)**



(±)-**B1** (5.0 mg, 0.0127 mmol, 1.0 equiv.) with or without 4-phenylbutanoic acid **S1-1** (2.1 mg, 0.0127 mmol, 1.0 equiv.) was dissolved in CD<sub>2</sub>Cl<sub>2</sub> (0.6 mL) at room temperature in an NMR tube. The NMR tube was immersed in an ultrasonic cleaner filled with water, and sonicated at room temperature for a specified time. Then the mixture was applied to <sup>1</sup>H NMR analysis to obtain the *E/Z* ratio of **B1**. The sample was scanned at certain intervals as shown in the following stacking NMR spectra.



Supplementary Figure 14 The stacking <sup>1</sup>H NMR spectra of (±)-B1 (initial *E*/*Z* ratio > 20:1) with S1-1



Supplementary Figure 15 The stacking <sup>1</sup>H NMR spectra of (±)-B1 (initial E/Z ratio > 20:1) without S1-1



Supplementary Figure 16 The stacking <sup>1</sup>H NMR spectra of (±)-B1 (initial *E*/*Z* ratio > 1:1.6) with S1-1



Supplementary Figure 17 The stacking <sup>1</sup>H NMR spectra of (±)-B1 (initial *E/Z* ratio > 1:1.6) without S1-1

# NMR Spectra
































































---112.23


































































-0.00




























































## HPLC Spectra



Peak Table

| Detector A Chl 300nm |       |           |          |        |
|----------------------|-------|-----------|----------|--------|
|                      | Peak# | Ret. Time | Area     | Area%  |
|                      | 1     | 18.827    | 10501154 | 50.136 |
|                      | 2     | 26.625    | 10444351 | 49.864 |



| 1 | Detect | or A Chl | - 3 | 00nm     |        |
|---|--------|----------|-----|----------|--------|
|   | Peak#  | Ret. Tin | ne  | Area     | Area%  |
|   | 1      | 18.902   |     | 12524064 | 95.960 |
|   | 2      | 26.859   |     | 527207   | 4.040  |



Peak Table

| Detect | or A Ch1 3 | 00nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 9.742      | 8363665 | 50.273 |
| 2      | 17.131     | 8272889 | 49.727 |



| 1 | Detect | or A Ch1 3 | 300nm    |        |
|---|--------|------------|----------|--------|
|   | Peak#  | Ret. Time  | Area     | Area%  |
|   | 1      | 9.768      | 651083   | 4.018  |
|   | 2      | 17.111     | 15554545 | 95.982 |



Peak Table

| 1 | Detect | or A | Ch1 3 | 00nm     |        |
|---|--------|------|-------|----------|--------|
|   | Peak#  | Ret. | Time  | Area     | Area%  |
|   | 1      | 16.  | 826   | 13602864 | 50.074 |
|   | 2      | 25.  | 317   | 13562902 | 49.926 |



| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 16.836     | 20557256 | 95.933 |
| 2      | 25.435     | 871536   | 4.067  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 19.  | 001   | 12038831 | 50.005 |
| 2      | 29.  | 181   | 12036255 | 49.995 |



| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 18.914     | 21547698 | 94.425 |
| 2      | 29.180     | 1272192  | 5.575  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.260     | 13755210 | 50.008 |
| 2      | 26.009     | 13750923 | 49.992 |



| Detector A Chl 300nm |           |          |        |  |  |
|----------------------|-----------|----------|--------|--|--|
| Peak#                | Ret. Time | Area     | Area%  |  |  |
| 1                    | 17.150    | 17015859 | 94.822 |  |  |
| 2                    | 25.877    | 929105   | 5.178  |  |  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 16.  | 826   | 13602864 | 50.074 |
| 2      | 25.  | 317   | 13562902 | 49.926 |

mV



| Detect | or A | Ch1 3 | 300nm    |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 16.  | 861   | 18585045 | 94.428 |
| 2      | 25.  | 472   | 1096663  | 5, 572 |



Peak Table

| Detect | or A Ch1 3 | 00nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 9.168      | 7192282 | 49.972 |
| 2      | 14.848     | 7200207 | 50.028 |



| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 9.197      | 714416  | 7.162  |
| 2      | 14.803     | 9261044 | 92.838 |





| Detector | A | Ch2 | 300nm |
|----------|---|-----|-------|
|          |   |     |       |

| Peak# | Ret. Time | Area    | Area%  |
|-------|-----------|---------|--------|
| 1     | 10.729    | 9227800 | 49.991 |
| 2     | 20.599    | 9230941 | 50.009 |



Peak Table

| Detect | or A Ch2 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 10.799     | 429502   | 2.528  |
| 2      | 20.559     | 16559012 | 97.472 |



Peak Table

| Detect | or A Chl 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 15.901     | 4692427 | 50.005 |
| 2      | 20.107     | 4691561 | 49.995 |



Peak Table

| Detect | or A Chl 3 | 00nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 15.924     | 8558385 | 95.907 |
| 2      | 20.212     | 365282  | 4.093  |



Peak Table

| Detect | or A | Ch2 3 | 300nm   |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
|        |      |       | E001001 | 10 000 |

| 1 | 11.449 | 5631984 | 49.988 |
|---|--------|---------|--------|
| 2 | 20.003 | 5634790 | 50.012 |
|   |        |         |        |



Peak Table

| Detect | or A Ch2 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 11.505     | 544483   | 3.823  |
| 2      | 19.923     | 13697904 | 96.177 |



Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 12.  | 273   | 7307118 | 50.280 |
| 2      | 17.  | 273   | 7225733 | 49.720 |



| Pea | <b>k</b> 1 | ľa | b. | Lе |
|-----|------------|----|----|----|
|     |            |    |    |    |

| Detect | or A Chl 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 12.307     | 436230  | 4.225  |
| 2      | 17.277     | 9887648 | 95.775 |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 11.471     | 5641928 | 50.031 |
| 2      | 16.639     | 5634852 | 49.969 |



Peak Table

| Detect | or A Chl 3 |          |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 11.469     | 384892   | 3.524  |
| 2      | 16.597     | 10538157 | 96.476 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 13.  | 711   | 10710393 | 50.058 |
| 2      | 19.  | 177   | 10685458 | 49.942 |



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 14.048     | 210913   | 1.965  |
| 2      | 19.253     | 10520209 | 98.035 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 10.  | 113   | 10576512 | 49.980 |
| 2      | 13.  | 482   | 10584865 | 50.020 |



| Detect | or A Ch1 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 10.172     | 668093   | 2.571  |
| 2      | 13.548     | 25319530 | 97.429 |



Peak Table

| Detect | or A Ch2 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 19.519     | 7895170 | 49.672 |
| 0      | 22 410     | 7000517 | EO 200 |



| Detect | or A Ch2 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 19.582     | 10506920 | 96.888 |
| 2      | 33.799     | 337523   | 3.112  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.276     | 14128548 | 50.179 |
| 2      | 34.774     | 14027778 | 49.821 |



| D | etect | or A | Ch1 3 | 00nm     |        |
|---|-------|------|-------|----------|--------|
| ] | Peak# | Ret. | Time  | Area     | Area%  |
| Γ | 1     | 17.  | 418   | 817330   | 3.956  |
| Γ | 2     | 34.  | 815   | 19842768 | 96.044 |



Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 13.  | 741   | 6662588 | 50.004 |
| 2      | 20.  | 247   | 6661530 | 49.996 |



Peak Table

| Detect | tor A Ch1 300nm |         |        |  |
|--------|-----------------|---------|--------|--|
| Peak#  | Ret. Time       | Area    | Area%  |  |
| 1      | 13.860          | 208493  | 2.433  |  |
| 2      | 20.201          | 8362493 | 97.567 |  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 19.765     | 10968525 | 49.874 |
| 2      | 28.830     | 11023815 | 50.126 |



| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 19.447     | 30368632 | 96.656 |
| 2      | 28.550     | 1050566  | 3.344  |





| Detector | А | Ch2 | 300r |
|----------|---|-----|------|
| Detetior | n | ULL | 0001 |

| Detect | or A C | h2 3 | 00nm    |        |
|--------|--------|------|---------|--------|
| Peak#  | Ret. 1 | Гіme | Area    | Area%  |
| 1      | 22.0   | 00   | 4505843 | 49.998 |
| 2      | 64.0   | 07   | 4506246 | 50.002 |



Peak Table

| Detect | or A | Ch2 3 | 00nm    |         |
|--------|------|-------|---------|---------|
| Peak#  | Ret. | Time  | Area    | Area%   |
|        | 00   | 007   | 5550000 | 0.0 410 |

| 1 | 22.007 | 5753983 | 96.412 |
|---|--------|---------|--------|
| 2 | 64.506 | 214144  | 3.588  |



Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 28.  | 810   | 5123523 | 50.100 |
| 2      | 36.  | 420   | 5103088 | 49.900 |



| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 29.  | 187   | 9560963 | 97.198 |
| 2      | 36.  | 939   | 275584  | 2.802  |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 8.222      | 4069602 | 49.885 |
| 2      | 11.133     | 4088349 | 50.115 |



Peak Table

| Detect | or A Chl 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 8.228      | 516764  | 7.015  |
| 2      | 11.124     | 6850271 | 92.985 |



Peak Table

| Detect | or A Ch1 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 16.119     | 13816697 | 50.002 |
| 2      | 20.660     | 13815496 | 49.998 |



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 16.110     | 19867808 | 95.755 |
| 2      | 20.702     | 880769   | 4.245  |



Peak Table

| Detect | or A Chl  | 300nm    |        |
|--------|-----------|----------|--------|
| Peak#  | Ret. Time | e Area   | Area%  |
| 1      | 23.944    | 12612629 | 49.982 |
| 2      | 35.144    | 12621885 | 50.018 |



| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 23.908     | 22554770 | 96.946 |
| 2      | 35. 251    | 710604   | 3.054  |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 14.346     | 11318632 | 49.917 |
| 2      | 18.260     | 11356314 | 50.083 |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 14.299     | 649324   | 6.008  |
| 2      | 18.132     | 10157470 | 93.992 |



Peak Table

| Detect | or A | Ch1 2 | 54nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 21.  | 538   | 6421011 | 49.958 |
| 2      | 31.  | 159   | 6431858 | 50.042 |



Peak Table

| Detect | or A Chl 2 | 54nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 21.555     | 9206797 | 95.904 |
| 2      | 31.267     | 393264  | 4.096  |



Peak Table

| Detect | or A Ch1 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 22.262     | 10937410 | 50.040 |
| 2      | 32.008     | 10919890 | 49.960 |



| Detector A Ch1 3 |         |    | Onm      |        |
|------------------|---------|----|----------|--------|
| Peak#            | Ret. Ti | me | Area     | Area%  |
| 1                | 22.25   | 6  | 20522604 | 96.600 |
| 2                | 32.13   | 7  | 722408   | 3.400  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.708     | 14980376 | 50.153 |
| 2      | 23.696     | 14889040 | 49.847 |



Peak Table

| Detect | or A Chl 3 | 00nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 17.737     | 8102321 | 95.905 |
| 2      | 23.782     | 345949  | 4.095  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 34.  | 305   | 28181971 | 50.232 |
| 2      | 47.  | 007   | 27921452 | 49.768 |



Peak Table

| 1 | Detect | or A Ch1 3 | 00nm     |        |
|---|--------|------------|----------|--------|
|   | Peak#  | Ret. Time  | Area     | Area%  |
|   | 1      | 34.537     | 28290481 | 96.992 |
|   | 2      | 47.570     | 877240   | 3.008  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 34.305     | 28181971 | 50.232 |
| 2      | 47.007     | 27921452 | 49.768 |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 34.332     | 44033090 | 95.925 |
| 2      | 47.520     | 1870758  | 4.075  |



Peak Table

| Detect | or A Chl 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 9.980      | 8728772 | 50.001 |
| 2      | 18.205     | 8728313 | 49.999 |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 10.030     | 858208   | 4.110  |
| 2      | 18.112     | 20022521 | 95.890 |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 17.262     | 8641358 | 50.021 |
| 2      | 24.930     | 8634168 | 49.979 |



| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.286     | 14781118 | 96.668 |
| 2      | 25.119     | 509466   | 3.332  |



Peak Table

| Detect | or A Ch | 1 30 | )Onm     |        |
|--------|---------|------|----------|--------|
| Peak#  | Ret. Ti | me   | Area     | Area%  |
| 1      | 21.97   | 3    | 13039248 | 50.879 |
| 2      | 30.69   | 3    | 12588718 | 49.121 |



| Detect | or A Chl 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 21.984     | 6899260 | 90.543 |
| 2      | 30.746     | 720596  | 9.457  |



Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 19.  | 688   | 8796984 | 49.985 |
| 2      | 27.  | 136   | 8802108 | 50.015 |



| ļ | Detect | or A Chl 3 |         |        |
|---|--------|------------|---------|--------|
|   | Peak#  | Ret. Time  | Area    | Area%  |
|   | 1      | 19.702     | 8226320 | 95.065 |
|   | 2      | 27.262     | 427083  | 4.935  |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 18.007     | 9911563 | 50.046 |
| 2      | 24.458     | 9893283 | 49.954 |



Peak Table

| Detect | or A Ch1 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 18.028     | 13850017 | 95.397 |
| 2      | 24.590     | 668256   | 4.603  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 20.  | 619   | 10839552 | 49.964 |
| 2      | 28.  | 223   | 10855040 | 50.036 |



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 20.697     | 13411110 | 94.818 |
| 2      | 28.437     | 732999   | 5.182  |


Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 23.  | 505   | 12398446 | 50.069 |
| 2      | 31.  | 876   | 12364445 | 49.931 |



| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 23.458     | 17175910 | 96.261 |
| 2      | 31.946     | 667226   | 3.739  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 23.  | 505   | 12398446 | 50.069 |
| 2      | 31.  | 876   | 12364445 | 49.931 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 23.  | 625   | 16394274 | 95.764 |
| 2      | 32.  | 391   | 725214   | 4.236  |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 25.726     | 9546005 | 50.007 |
| 2      | 36.876     | 9543486 | 49.993 |



Peak Table

| De | etect | or A |      |          |        |
|----|-------|------|------|----------|--------|
| Ρ  | eak#  | Ret. | Time | Area     | Area%  |
|    | 1     | 25.  | 738  | 27417217 | 94.963 |
| Г  | 2     | 37.  | 098  | 1454165  | 5.037  |



Peak Table

| Detect | or A Ch1 3 | OOnm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 15.173     | 13024230 | 50.015 |
| 2      | 18.530     | 13016512 | 49.985 |



| Detector A Chl 3 |       |           | 300nm   |        |
|------------------|-------|-----------|---------|--------|
|                  | Peak# | Ret. Time | Area    | Area%  |
|                  | 1     | 15.121    | 9857126 | 95.103 |
|                  | 2     | 18.519    | 507573  | 4.897  |



Peak Table

| Detect | or A | Ch1 2 | 54nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 13.  | 633   | 2391155 | 50.231 |
| 2      | 21.  | 610   | 2369203 | 49.769 |



| Detect | or A Chl 2 | 54nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 13.449     | 613406   | 3.230  |
| 2      | 21.127     | 18377657 | 96.770 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 39.  | 094   | 14608455 | 50.007 |
| 2      | 54.  | 602   | 14604350 | 49.993 |



Peak Table

| Detect | or A Chl 3 |          |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 37.919     | 57788203 | 95.905 |
| 2      | 53.895     | 2467207  | 4.095  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 39.  | 094   | 14608455 | 50.007 |
| 2      | 54.  | 602   | 14604350 | 49.993 |



| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 38.356     | 51189196 | 94.429 |
| 2      | 54.507     | 3019993  | 5.571  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 22.  | 888   | 29379355 | 49.994 |
| 2      | 33.  | 458   | 29386515 | 50.006 |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 23.005     | 24547512 | 96.614 |
| 2      | 33.918     | 860306   | 3.386  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 59.371     | 18531109 | 49.963 |
| 2      | 85.934     | 18558311 | 50.037 |



| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 59.107     | 50183991 | 97.052 |
| 2      | 87.471     | 1524612  | 2.948  |



Peak Table

| 1 | Detect | or A Chl 3 | 00nm     |        |
|---|--------|------------|----------|--------|
|   | Peak#  | Ret. Time  | Area     | Area%  |
|   | 1      | 22.133     | 17649853 | 50.175 |
| I | 2      | 31.368     | 17526458 | 49.825 |



| Detect | or A Chl 3 |          |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 22.077     | 13983986 | 89.973 |
| 2      | 31.298     | 1558375  | 10.027 |



Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 24.  | 162   | 3405864 | 50.012 |
| 2      | 31.  | 014   | 3404208 | 49.988 |



Peak Table

| Detect | or A Chl 3 |          |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 24.157     | 14033837 | 96.922 |
| 2      | 31.093     | 445737   | 3.078  |



Peak Table

| Detect | or A Ch1 | 300nm   |        |
|--------|----------|---------|--------|
| Peak#  | Ret. Tim | e Area  | Area%  |
| 1      | 23.262   | 7224292 | 50.064 |
| 2      | 29.810   | 7205687 | 49.936 |



Peak Table

| Det | ect | or A | Ch1 3 | OOnm     |        |
|-----|-----|------|-------|----------|--------|
| Pea | ak# | Ret. | Time  | Area     | Area%  |
| 1   | l   | 23.  | 227   | 33138522 | 94.815 |
| 4   | 2   | 29.  | 887   | 1812181  | 5.185  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 46.  | 391   | 23467222 | 49.913 |
| 2      | 57.  | 638   | 23549111 | 50.087 |



| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 45.758     | 33695174 | 96.046 |
| 2      | 57.479     | 1387003  | 3.954  |



Signal 6: DAD1 F, Sig=300,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area      | Height    | Area    |
|-------|---------|------|--------|-----------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]   | [mAU]     | %       |
|       |         |      |        |           |           |         |
| 1     | 26.535  | BV   | 1.0659 | 3.94327e4 | 552.97876 | 49.9979 |
| 2     | 39.953  | VV   | 1.5984 | 3.94360e4 | 367.94131 | 50.0021 |
|       |         |      |        |           |           |         |
| Total | ls :    |      |        | 7.88687e4 | 920.92007 |         |



Signal 6: DAD1 F, Sig=300,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|-----|------|-------|
 -----|------|-------|
 1
 26.475 MM R
 1.2101 9459.30859
 130.28084
 88.9409

 2
 40.070 VV
 1.2619 1176.18848
 11.26697
 11.0591

 Totals :
 1.06355e4
 141.54781



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 26.379     | 17239124 | 49.969 |
| 2      | 34.536     | 17260831 | 50.031 |



| Detect | or A Chl 3 | OOnm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 26.480     | 31712810 | 96.660 |
| 2      | 34.771     | 1095924  | 3.340  |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 37.001     | 18479092 | 49.997 |
| 2      | 50.590     | 18480984 | 50.003 |



| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 36.991     | 17473779 | 94.768 |
| 2      | 50.805     | 964700   | 5.232  |



Peak Table

| Detect | or A Ch1 2 | 254nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 20.669     | 10741261 | 50.005 |
| 2      | 28.318     | 10739288 | 49.995 |



| Detect | or A Chl 2 | 254nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 20.771     | 7990897 | 89.584 |
| 2      | 28.529     | 929116  | 10.416 |



Peak Table

| Detect | or A Ch1 2 | 254nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 17.431     | 5271976 | 50.029 |
| 2      | 20.581     | 5265855 | 49.971 |



Peak Table

| Detect | or A Chl 2 | 254nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.401     | 16305098 | 89.834 |
| 2      | 20.598     | 1845240  | 10.166 |



Peak Table

| Detect | or A Chl 2 | 254nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 23.812     | 9556490 | 49.987 |
| 2      | 30.033     | 9561425 | 50.013 |



| Detect | or A Chl 2 | 54nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 23.699     | 19801681 | 86.714 |
| 2      | 30.027     | 3033996  | 13.286 |



| Detect | or A | Ch2 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 24.  | 641   | 6950427 | 49.999 |
| 2      | 34.  | 620   | 6950678 | 50.001 |



| Detect | or A Ch2 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 24.698     | 8432217 | 94.978 |
| 2      | 34.785     | 445846  | 5.022  |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 25.  | 979   | 17553692 | 49.973 |
| 2      | 39.  | 219   | 17572482 | 50.027 |



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 25.975     | 16534331 | 85.100 |
| 2      | 39.374     | 2894925  | 14.900 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 25.  | 979   | 24482725 | 50.008 |
| 2      | 36.  | 802   | 24474409 | 49.992 |



Peak Table

| Detect | or A Chl 3 | 00nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 26.336     | 9175954 | 82.789 |
| 2      | 37.437     | 1907529 | 17.211 |



Peak Table

| Detecto | or A | Ch2 | 300nm |
|---------|------|-----|-------|
|         |      |     |       |

| Peak# | Ret. Time | Area    | Area%  |
|-------|-----------|---------|--------|
| 1     | 19.732    | 9819079 | 50.000 |
| 2     | 44.811    | 9819198 | 50.000 |



| Detect | or A Ch2 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 19.548     | 20522697 | 96.034 |
| 2      | 44.375     | 847626   | 3.966  |



Peak Table

| Detect | or A Ch2 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 14.185     | 6284167 | 49.980 |
| 2      | 24.047     | 6289150 | 50.020 |



| Detect | or A Ch2 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 14.164     | 6674588 | 94.316 |
| 2      | 24.128     | 402218  | 5.684  |



Peak Table

| Detect | or A Chl 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 22.296     | 5793688 | 50.067 |
| 2      | 33.485     | 5778141 | 49.933 |



| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 22.242     | 476209   | 2.134  |
| 2      | 33.122     | 21838512 | 97.866 |



Peak Table

| ļ | Detect | or A Chl 3 | 00nm     |        |
|---|--------|------------|----------|--------|
|   | Peak#  | Ret. Time  | Area     | Area%  |
|   | 1      | 16.141     | 19312547 | 50.153 |
|   | 2      | 24.640     | 19194683 | 49.847 |



| D                    |      |     |     |   |
|----------------------|------|-----|-----|---|
| $\nu_{\alpha\alpha}$ |      | 0   | n I | 0 |
| Fea                  | r. 1 | 101 |     |   |
|                      |      |     | ~ - |   |

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 15.975     | 2347358  | 9.338  |
| 2      | 24.601     | 22790414 | 90.662 |



Peak Table

| Detect | or A Ch1 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 36.113     | 4934019 | 50.003 |
| 2      | 44.558     | 4933434 | 49.997 |



| Detector A Ch1 300nm |           |          |        |  |  |
|----------------------|-----------|----------|--------|--|--|
| Peak#                | Ret. Time | Area     | Area%  |  |  |
| 1                    | 35.969    | 12813676 | 94.809 |  |  |
| 2                    | 44.741    | 701576   | 5.191  |  |  |



Peak Table

| Det | tector | - Δ | Ch2 | 30 |
|-----|--------|-----|-----|----|

| Detect | or A | Ch2 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 21.  | 846   | 35512132 | 49.987 |
| 2      | 25.  | 825   | 35529904 | 50.013 |



Peak Table

| Detect | or A Ch2 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 21.904     | 20456793 | 92.503 |
| 2      | 26.009     | 1657903  | 7.497  |



Peak Table

| Detect | or A Ch2 3 | OOnm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 14.546     | 5131878 | 50.134 |
| 2      | 23.336     | 5104538 | 49.866 |



| Detect | or A | Ch2 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 14.  | 624   | 5828562 | 94.493 |
| 2      | 23.  | 578   | 339718  | 5.507  |



Peak Table

| Detect | or A Ch2 3 | 300nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 19.989     | 9716176 | 50.089 |
| 2      | 27.825     | 9681466 | 49.911 |



Peak Table

Detector A Ch2 300nm

| Peak# | Ret. Time | Area     | Area%  |
|-------|-----------|----------|--------|
| 1     | 20.016    | 15754215 | 88.857 |
| 2     | 27.968    | 1975680  | 11.143 |



Peak Table

| Detect | or A Chl 3 | 320nm   |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 17.049     | 9387711 | 49.901 |
| 2      | 34.802     | 9425080 | 50.099 |



| Detect | or A Ch1 3 | 20nm    |        |
|--------|------------|---------|--------|
| Peak#  | Ret. Time  | Area    | Area%  |
| 1      | 17.008     | 5531451 | 95.948 |
| 2      | 34.981     | 233588  | 4.052  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.308     | 17616993 | 49.955 |
| 2      | 36.004     | 17648450 | 50.045 |



Peak Table

| Detect | or A | Ch1 3 | 00nm     |        |
|--------|------|-------|----------|--------|
| Peak#  | Ret. | Time  | Area     | Area%  |
| 1      | 17.  | 474   | 12146541 | 94.943 |
| 2      | 36.  | 672   | 647001   | 5.057  |



Peak Table

| Detect | or A Chl 3 | 00nm     |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 24.718     | 21708117 | 49.966 |
| 2      | 30.603     | 21737589 | 50.034 |



| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 24.844     | 15481160 | 94.540 |
| 2      | 30.850     | 894059   | 5.460  |



Peak Table

| De | etect | or A | Ch1 3 | 00nm     |        |
|----|-------|------|-------|----------|--------|
| Р  | 'eak# | Ret. | Time  | Area     | Area%  |
| Γ  | 1     | 24.  | 093   | 13930984 | 49.873 |
|    | 2     | 29.  | 639   | 14001817 | 50.127 |



| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 24.034     | 20218567 | 94.065 |
| 2      | 29.666     | 1275649  | 5.935  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 29.462     | 22393964 | 49.808 |
| 2      | 38.838     | 22566222 | 50.192 |



Peak Table

| De | etect | or A | Ch1 3 | 00nm     |        |
|----|-------|------|-------|----------|--------|
| Р  | 'eak# | Ret. | Time  | Area     | Area%  |
| Γ  | 1     | 29.  | 510   | 24252973 | 95.935 |
| Γ  | 2     | 39.  | 125   | 1027540  | 4.065  |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 19.633     | 11973190 | 50.050 |
| 2      | 23.942     | 11949144 | 49.950 |



Peak Table

| Detector A Chl 300nm |       |           |          |        |
|----------------------|-------|-----------|----------|--------|
|                      | Peak# | Ret. Time | Area     | Area%  |
|                      | 1     | 19.630    | 23529843 | 96.446 |
|                      | 2     | 24.015    | 866959   | 3.554  |


Peak Table

| Detect | or A | Ch1 3 | 00nm    |        |
|--------|------|-------|---------|--------|
| Peak#  | Ret. | Time  | Area    | Area%  |
| 1      | 17.  | 729   | 8865059 | 49.900 |
| 2      | 25.  | 006   | 8900690 | 50.100 |



Peak Table

| Detect | or A Chl 3 | SOOnm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 17.727     | 15886244 | 94.400 |
| 2      | 25.068     | 942430   | 5.600  |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 33.189     | 22209048 | 50.000 |
| 2      | 52.584     | 22209389 | 50.000 |



Peak Table

| ļ | Detect | or A Chl 3 | OOnm    |        |
|---|--------|------------|---------|--------|
|   | Peak#  | Ret. Time  | Area    | Area%  |
|   | 1      | 32.450     | 7762909 | 93.094 |
|   | 2      | 48.741     | 575839  | 6.906  |



Peak Table

| Detect | or A Chl 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 32.916     | 21191883 | 50.002 |
| 2      | 38.228     | 21189904 | 49.998 |



Peak Table

| Detect | or A Ch1 3 | 300nm    |        |
|--------|------------|----------|--------|
| Peak#  | Ret. Time  | Area     | Area%  |
| 1      | 32.534     | 5413626  | 24.182 |
| 2      | 37.635     | 16973811 | 75.818 |



Signal 7: DAD1 G, Sig=300,4 Ref=360,100

| Peak | RetTime | Тур | be | Width  | Area       | Height    | Area    |
|------|---------|-----|----|--------|------------|-----------|---------|
| #    | [min]   |     |    | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |     | ·- |        |            |           |         |
| 1    | 4.993   | MM  | R  | 0.1359 | 5046.91748 | 618.93799 | 50.0113 |
| 2    | 6.754   | MM  | R  | 0.1771 | 5044.64355 | 474.83377 | 49.9887 |
|      |         |     |    |        |            |           |         |

Totals : 1.00916e4 1093.77176



Signal 7: DAD1 G, Sig=300,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|
 ----|-----|
 -----|
 -----|

 1
 4.998
 MM R
 0.1428
 277.39359
 32.38056
 5.0949

 2
 6.759
 MM R
 0.1809
 5167.17236
 476.04031
 94.9051

 Totals :
 5444.56595
 508.42087



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 6.037   | MM R | 0.2137 | 1666.33423 | 129.97499 | 50.0435 |
| 2    | 10.025  | MM R | 0.3911 | 1663.43774 | 70.89042  | 49.9565 |
|      |         |      |        |            |           |         |

Totals : 3329.77197 200.86541



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|
 ----|-----|
 ----|-----|
 ----|

 1
 6.054 MM R
 0.2358
 217.70305
 15.38709
 5.0439

 2
 10.040 MM R
 0.3886
 4098.46191
 175.75856
 94.9561

Totals : 4316.16496 191.14565



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height    | Area    |
|-------|---------|------|--------|------------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|       |         |      |        |            |           |         |
| 1     | 9.341   | BB   | 0.3614 | 6457.67285 | 275.60062 | 50.0775 |
| 2     | 12.028  | BV   | 0.4372 | 6437.68604 | 213.88199 | 49.9225 |
|       |         |      |        |            |           |         |
| Tota] | s:      |      |        | 1.28954e4  | 489.48260 |         |



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|
 -----|------|
 -----|
 -----|

 1
 9.319
 MM R
 0.3987
 9599.21680
 401.31674
 94.8819

 2
 12.131
 MM R
 0.6332
 517.80170
 13.62902
 5.1181

Totals : 1.01170e4 414.94577



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

| Peak F<br># | RetTime<br>[min] | тур | be | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-------------|------------------|-----|----|----------------|-----------------|-----------------|-----------|
| -           |                  |     |    |                |                 |                 |           |
| 1           | 6.914            | MM  | R  | 0.4829         | 1.10790e4       | 382.36566       | 49.9949   |
| 2           | 8.955            | MM  | R  | 0.5489         | 1.10812e4       | 336.43750       | 50.0051   |
|             |                  |     |    |                |                 |                 |           |
| Totals      | 5:               |     |    |                | 2.21602e4       | 718.80316       |           |



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|------|
 -----|------|
 -----|------|
 -----|

 1
 7.048
 MM R
 0.5339
 591.06030
 18.45221
 4.9490

 2
 8.982
 BV
 0.4778
 1.13519e4
 358.14877
 95.0510

Totals : 1.19430e4 376.60098



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 11.029  | BV   | 0.2939 | 1255.36230 | 63.70195 | 50.1069 |
| 2    | 13.639  | BB   | 0.3446 | 1250.00586 | 53.50371 | 49.8931 |
|      |         |      |        |            |          |         |

Totals : 2505.36816 117.20566



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak       | RetTime          | Туре     | Width            | Area                    | Height                | Area              |
|------------|------------------|----------|------------------|-------------------------|-----------------------|-------------------|
| #          | [min]            |          | [min]            | [mAU*s]                 | [mAU]                 | %                 |
| <br>1<br>2 | 11.011<br>13.669 | мм<br>VV | 0.3309<br>0.3335 | 3876.09546<br>283.29224 | 195.20370<br>12.44654 | 93.1891<br>6.8109 |

Totals :

4159.38770 207.65025



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height    | Area    |
|-------|---------|------|--------|------------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|       |         |      |        |            |           |         |
| 1     | 10.517  | VB   | 0.4730 | 1578.72046 | 51.58894  | 51.5856 |
| 2     | 12.386  | BBA  | 0.4720 | 1481.67188 | 49.67340  | 48.4144 |
|       |         |      |        |            |           |         |
| Total | ls :    |      |        | 3060.39233 | 101.26235 |         |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height    | Area    |
|-------|---------|------|--------|------------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|       |         |      |        |            |           |         |
| 1     | 10.512  | VB   | 0.4125 | 528.95630  | 19.50029  | 7.8937  |
| 2     | 12.268  | BB   | 0.4398 | 6172.04297 | 223.75766 | 92.1063 |
|       |         |      |        |            |           |         |
| Total | ls :    |      |        | 6700.99927 | 243.25795 |         |



Signal 3: DAD1 C, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре       | Width  | Area       | Height    | Area    |
|-------|---------|------------|--------|------------|-----------|---------|
| #     | [min]   |            | [min]  | [mAU*s]    | [mAU]     | %       |
|       |         | <b> </b> · |        |            |           |         |
| 1     | 4.804   | BB         | 0.1284 | 1297.47888 | 153.88597 | 50.7697 |
| 2     | 6.231   | BB         | 0.3239 | 1258.13538 | 60.18726  | 49.2303 |
|       |         |            |        |            |           |         |
| Total | s :     |            |        | 2555.61426 | 214.07323 |         |



Signal 3: DAD1 C, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 5.061   | BB   | 0.1059 | 4636.16309 | 677.26105 | 90.1340 |
| 2    | 6.408   | BB   | 0.2284 | 507.46854  | 34.73858  | 9.8660  |
|      |         |      |        |            |           |         |

Totals :

5143.63162 711.99963



Signal 3: DAD1 C, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 5.956   | BB   | 0.2010 | 591.40784  | 45.09174 | 50.4834 |
| 2     | 6.927   | BB   | 0.2338 | 580.08276  | 38.06323 | 49.5166 |
|       |         |      |        |            |          |         |
| Total | s :     |      |        | 1171.49060 | 83.15497 |         |



Signal 3: DAD1 C, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 5.974   | BB   | 0.2111 | 331.63525  | 24.01363  | 8.0127  |
| 2    | 6.893   | BB   | 0.2303 | 3807.25513 | 251.97247 | 91.9873 |
|      |         |      |        |            |           |         |

Totals : 4138.89038 275.98610

## **Supplementary References**

- 1. Zhu, N., Zhao, J. & Bao, H. Iron catalyzed methylation and ethylation of vinyl arenes. *Chem. Sci.* **8**, 2081–2085 (2017).
- 2. Liu, C., Ding, L., Guo, G., Liu, W. & Yang, F.-L. Palladium-catalyzed direct arylation of indoles with arylsulfonyl hydrazides. *Org. Biomol. Chem.* 14, 2824–2827 (2016).
- 3. Li, X.-T., Gu, Q.-S., Dong, X.-Y., Meng, X. & Liu, X.-Y. A copper catalyst with a cinchona-alkaloid-based sulfonamide ligand for asymmetric radical oxytrifluoromethylation of alkenyl oximes. *Angew. Chem. Int. Ed.* **57**, 7668–7672 (2018).
- Patil, V. S., Pal, S. S., Pathare, R. S., Reddy, L. K. K. & Pathak, A. Molybdenum hexacarbonyl mediated synthesis of indolin-2-one & azaindolin-2-one under catalyst free conditions. *Tetrahedron Lett.* 56, 6370– 6372 (2015).
- 5. Park, J. H., Bhilare, S. V. & Youn, S. W. NHC-catalyzed oxidative cyclization reactions of 2-alkynylbenzaldehydes under aerobic conditions: Synthesis of O-heterocycles. *Org. Lett.* **13**, 2228–2231 (2011).
- 6. Gooßen, L. J. & Dezfuli, M. K. Practical protocol for the palladium-catalyzed synthesis of arylphosphonates from bromoarenes and diethyl phosphite. *Synlett* **2005**, 445–448 (2005).
- Fritton, M. et al. The influence of *ortho*-methyl substitution in organometallic self-assembly a comparative study on Cu(111) *vs.* Ag(111). *Chem. Commun.* 54, 9745–9748 (2018).
- 8. Taillefer, M., Xia, N. & Ouali, A. Efficient iron/copper co-catalyzed arylation of nitrogen nucleophiles. *Angew. Chem. Int. Ed.* **46**, 934–936 (2007).
- 9. Jana, U., Biswas, S. & Maiti, S. Iron(III)-catalyzed addition of benzylic alcohols to aryl alkynes a new synthesis of substituted aryl ketones. *Eur. J. Org. Chem.* **2008**, 5798–5804 (2008).
- Nishimoto, Y., Onishi, Y., Yasuda, M. & Baba, A. α-Alkylation of carbonyl compounds by direct addition of alcohols to enol acetates. *Angew. Chem. Int. Ed.* 48, 9131–9134 (2009).
- Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. W. & Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: Metal-free hydroimination and iminohydroxylation cyclization reactions. *Angew. Chem. Int. Ed.* 54, 14017–14021 (2015).
- Yadav, J. S., Reddy, B. V. S., Sadasiv, K. & Satheesh, G. 1,4-Conjugate addition of allyltrimethylsilane to α,β-unsaturated ketones. *Tetrahedron Lett.* 43, 9695–9697 (2002).
- 13. Chen, H.-B. et al. Expeditious biomimetically-inspired approaches to racemic homocitric acid lactone and per-homocitrate. *Tetrahedron* **63**, 2148–2152 (2007).

- 14. Öberg, C. T. et al. Synthesis, biological evaluation, and structure–activity relationships of 2-[2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication. *J. Med. Chem.* **55**, 3170–3181 (2012).
- 15. Chopin, N. et al. ClickEnam. 1. Synthesis of novel
  1,4-disubsituted-[1,2,3]-triazole-derived β-aminovinyl trifluoromethylated ketones and their copper(II) complexes. *J. Fluorine Chem.* 132, 850–857 (2011).
- 16. Takasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. Total synthesis of  $(\pm)$ -culmorin and  $(\pm)$ -longiborneol: An efficient construction of tricyclo[6.3.0.0<sup>3,9</sup>]undecan-10-one by intramolecular double Michael addition. *J. Org. Chem.* **65**, 4112–4119 (2000).
- Zhang, C., Tian, J., Ren, J. & Wang, Z. Intramolecular parallel [4+3] cycloadditions of cyclopropane 1,1-diesters with [3]dendralenes: Efficient construction of [5.3.0]decane and corresponding polycyclic skeletons. *Chem. Eur. J.* 23, 1231–1236 (2017).
- Zhao, L. et al. Asymmetric synthesis of cyclopentene-fused tetrahydroquinolines via N-heterocyclic carbene catalyzed domino reactions. *Synthesis* 50, 2523–2532 (2018).
- 19. Komagawa, H., Maejima, Y. & Nagano, T. Sodium bromide-catalyzed oxidation of secondary benzylic alcohols using aqueous hydrogen peroxide as terminal oxidant. *Synlett* **27**, 789–793 (2016).
- 20. Tabata, H. et al. Stereochemistry of *N*-benzoyl-5-substituted-1-benzazepines revisited: Synthesis of the conformationally biased derivatives and revision of the reported structure. *J. Org. Chem.* **81**, 3136–3148 (2016).
- 21. Li, B.-S., Wang, Y., Proctor, R. S. J., Jin, Z. & Chi, Y. R. Carbene-catalyzed desymmetrization of 1,3-diols: Access to optically enriched tertiary alkyl chlorides. *Chem. Commun.* **52**, 8313–8316 (2016).
- 22. Nishikawa, K. et al. Design and synthesis of conformationally constrained analogues of *cis*-cinnamic acid and evaluation of their plant growth inhibitory activity. *Phytochemistry* **96**, 223–234 (2013).
- Liu, W., Wang, H., Zhao, H., Li, B. & Chen, S. Y(OTf)<sub>3</sub>-catalyzed cascade propargylic substitution/aza-Meyer–Schuster rearrangement: Stereoselective synthesis of α,β-unsaturated hydrazones and their conversion into pyrazoles. *Synlett* 26, 2170–2174 (2015).
- 24. Koppolu, S. R., Naveen, N. & Balamurugan, R. Triflic acid promoted direct  $\alpha$ -alkylation of unactivated ketones using benzylic alcohols via in situ formed acetals. *J. Org. Chem.* **79**, 6069–6078 (2014).