

Supporting Information

Achiral Pyridine Ligand-Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols

Yong-Feng Cheng⁺, Xiao-Yang Dong⁺, Qiang-Shuai Gu⁺, Zhang-Long Yu, and Xin-Yuan Liu*

anie_201702925_sm_miscellaneous_information.pdf

Scheme S1					S2
Scheme S2					S3
Scheme S3	j				S4
Figure S1.					S5
Figure S2.					S7
Figure S3.		•••••			S8
Table S1					S9
General In	formation				S11
General P	rocedure for the	e Synthe	sis of Substrates		S12
General	Procedure	for	Asymmetric	Intramolecular	Radical
Oxytrifluo	romethylation o	of Alken	es		S24
Mechanist	ic Study				S36
Transform	ation				S45
References	5	•••••			S46
NMR Spec	etra of New Con	npounds	5		S47
HPLC Spe	ectra				

Table of Contents

Scheme S1. Copper/bisoxazoline- or copper/CPA-catalyzed enantioselective oxytrifluoromethylation of 1a

a) Trapping with radical scavengers

b) Control reactions

Scheme S2. a) Radical trapping experiments and b) control reactions

Scheme S3. Asymmetric radical oxytrifluoromethylation of substrates 1za and 1zb

Figure S1. X-ray structure of chiral compound S3V

121-2-20min #15-25 RT: 0.13-0.23 AV: 6 NL: 7.29E8 T: FTMS + p ESI Full ms [200.00-1500.00]

Spectrum a

Spectrum **b**

C28H29CuN2OP: C28 H29 Cu1 N2 O1 P1 pa Chrg 1 503.13080 100₋ 95 90 85 80 75 70 65Ē 60 55 50 45 40 505.12900 35 504.13416 30 25 20 15 10 5 0 506.13235 508.13906 507.13570 ուսեր 504 508 505 506 507 503 m⁄z

Figure S2. Electrospray ionization (ESI) mass spectroscopy (MS) analysis. A solution of **1a** (0.1 mmol), Togni reagent (1.0 equiv), CuBH₄(PPh₃)₂ (1.0 equiv), (*R*)-**A6** (1.0 equiv), and **P1** (1.0 equiv) in AcO*i*Pr (1.0 mL) was stirred for 20 min at room temperature. Then the reaction mixture was analyzed by ESI MS, showing a peak at m/z 503.1305 ascribed to the Cu(I)-**P1** complex. The observed isotopic distribution (spectrum **a**) well matches the calculated one (spectrum **b**).

Figure S3. Mechanistic studies on the effect of pyridine. a) Substituent effect of pyridine on reaction performance. Numbers in parentheses are pKa values reported in literature or predicted by Advanced Chemistry Development (ACD/Labs) Software. b) Retarding effect of pyridine on reaction rate. c) Ee of products measured at different time points during reaction.

entry	additive	рКа
1	OMe	6.80, B. Uno, T. Kawakita, K. Kano, N. Okumura, M. Goto, T. Kubota, <i>Bull. Chem. Soc. Jpn.</i> 1994 , <i>67</i> , 2304.
2		9.12, IH. Um, SJ. Hwang, MH. Baek, E. J. Park, J. Org. Chem. 2006, 71, 9191.
3	N CF3	0.60, predicted, retrieved in Scifinder
4	CF ₃	2.80, predicted, retrieved in Scifinder
5	CF ₃	2.63, M. Taagepera, W. G. Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, <i>J. Am. Chem. Soc.</i> 1972 , <i>94</i> , 1369.
6	N F	-0.43, I. T. Suydam, S. A. Strobel, <i>J. Am. Chem. Soc.</i> 2008 , <i>130</i> , 13639.
7	F N	2.94, I. T. Suydam, S. A. Strobel, J. Am. Chem. Soc. 2008, 130, 13639.
8	+ N	4.95, H. P. Hopkins, Jr., D. V. Jahagirdar, P. S. Moulik, D. H. Aue, H. M. Webb, W. R. Davidson, M. D. Pedley, <i>J. Am. Chem.</i> <i>Soc.</i> 1984 , <i>106</i> , 4341.
9	NO ₂	1.39, M. Taagepera, W. G. Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, <i>J. Am. Chem. Soc.</i> 1972 , <i>94</i> , 1369.
10	OMe N	3.25, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987, 109, 3040.
11	O OMe	3.40, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987, 109, 3040.
12	° L	3.64, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987, 109, 3040.
13	O Ph	3.35, A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964, 3591.
14	O N	3.18, A. Bryson, J. Am. Chem. Soc. 1960, 82, 4871.
15	O Ph	3.18, A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964 , 3591.
16	NH ₂	3.4, E. A. Castro, M. Cubillos, J. G. Santos, <i>J. Org. Chem.</i> 2004 , <i>69</i> , 4802.
17		3.13, predicted, retrieved in Scifinder
18	O N N	4.01, predicted, retrieved in Scifinder

Table S1.	References	for pl	Ka valı	ies of r	ovridine	and its	analogues

19		5.37, E. A. Castro, M. Cubillos, J. G. Santos, J. Org. Chem. 2004,
		69, 4802.

General Information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuBH₄(PPh₃)₂ was purchased from TCI[®]. Chiral phosphoric acid (CPA) was purchased from Daicel Chiral Technologies (China). Isopropyl acetate (AcOiPr) was purchased from Acros[®] (Product Code: 180800010) and transferred under an argon atmosphere. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker DRX-500 and DPX 400 spectrometer at 400 or 500 MHz for ¹H NMR, 100 or 125 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector ($\lambda = 254$ or 214 nm). Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Ka radiation.

General Procedure for the Synthesis of Substrates

General synthesis of substrates 1a-1f

Synthesis of substrates S-1a–1f. Methyl carboxylates (6.32 mL, 50.0 mmol) was added to a solution of LDA [generated in situ from *n*-BuLi (27.0 mL in *n*-Hexane, 2.4 M, 65.0 mmol) and diisopropylamine (9.0 mL, 65.0 mmol) in THF (50.0 mL)] at -78 °C and the reaction mixture was stirred under the same conditions for 45 min. To the resulting solution was added (3-bromoprop-1-en-2-yl)benzene (11.0 g, 55.0 mmol). Upon completion, the solution was warmed to room temperature and stirred overnight. Then the reaction was quenched with sat. NH4Cl and the organic solvent was removed under reduced pressure. Next, CH₂Cl₂ (40.0 mL) was added and the organic layer was separated. This organic layer was washed with water (3 × 40.0 mL), dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 50/1) to give S-1a–1f.

Synthesis of substrates **1a–1f**. To a suspension of LiAlH₄ (3.04g, 80.0 mmol) in Et₂O (50.0 mL) at 0 °C was slowly added a solution of **S-1a–1f** (40.0 mmol) in Et₂O (20.0 mL). Then the reaction mixture was warmed to room temperature and stirred for 2 h. Next, it was quenched by slow, portionwise addition of water (4.0 mL) in Na₂SO₄ (32.0 g) at 0 °C. Upon completion, the mixture was warmed to room temperature, stirred for additional 30 minutes, filtered, and concentrated. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10/1) to give **1a–1f**.

(1-(2-phenylallyl)cyclohexyl)methanol (1a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39–7.37 (m, 2H), 7.30–7.27 (m, 2H), 7.24–7.21 (m, 1H), 5.23 (d, *J* = 2.0 Hz, 1H), 5.10 (s, 1H), 3.20 (s, 2H), 2.58 (s, 2H), 1.42–1.35 (m, 6H), 1.24–1.22 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 143.6, 128.2, 127.2, 126.2, 116.9, 67.3, 40.7, 38.6, 32.7, 26.2, 21.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O[M + H]^+ 231.1743$, found 231.1742.

(1-(2-phenylallyl)cyclopropyl)methanol (1b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.42–7.39 (m, 2H), 7.34–7.29 (m, 2H), 7.28–7.24 (m, 1H), 5.31 (d, *J* = 1.6 Hz, 1H), 5.18 (s, 1H), 3.37 (s, 2H), 2.66 (s, 2H), 0.37 (d, *J* = 2.2 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 146.6, 142.2, 128.2, 127.4, 126.3, 114.6, 68.7, 38.9, 21.5, 9.9.

HRMS (ESI) m/z calcd. for $C_{13}H_{17}O[M + H]^+$ 189.1274, found 189.1273.

(1-(2-phenylallyl)cyclobutyl)methanol (1c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.40–7.37 (m, 2H), 7.33–7.29 (m, 2H), 7.27–7.23 (m, 1H), 5.25 (d, *J* = 1.8 Hz, 1H), 5.09-5.08 (m, 1H), 3.45 (d, *J* = 5.7 Hz, 2H), 2.73 (d, *J* = 0.7 Hz, 2H), 1.82–1.61 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 142.8, 128.3, 127.3, 126.4, 115.6, 67.6, 43.5, 42.2, 28.5, 15.4.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}O[M + H]^+ 203.1430$, found 203.1431.

(1-(2-phenylallyl)cyclopentyl)methanol (1d)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.9 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27–7.24 (m, 1H), 5.22 (s, 1H), 5.12 (s, 1H), 3.20 (d, J = 5.3 Hz, 2H), 2.63 (s, 2H), 1.58–1.49 (m, 4H), 1.37–1.25 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 147.8, 143.3, 128.3, 127.3, 126.4, 116.6, 67.7, 48.4, 41.9, 34.4, 24.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}O[M + H]^+ 217.1587$, found 217.1586.

(1-(2-phenylallyl)cycloheptyl)methanol (1e)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40–7.37 (m, 2H), 7.34–7.29 (m, 2H), 7.28–7.23 (m, 1H), 5.24 (d, *J* = 2.0 Hz, 1H), 5.10–5.09 (m, 1H), 3.08 (d, *J* = 4.5 Hz, 2H), 2.52 (s, 2H), 1.46–1.26 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.2, 143.6, 128.4, 127.4, 126.3, 117.4, 68.0, 42.3, 42.1, 34.8, 31.3, 22.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}O [M + H]^+ 245.1900$, found 245.1899.

2,2-dimethyl-4-phenylpent-4-en-1-ol (1f)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40–7.37 (m, 2H), 7.33–7.29 (m, 2H), 7.27–7.23 (m, 1H), 5.26 (d, *J* = 2.0 Hz, 1H), 5.08–5.07 (m, 1H), 3.17 (s, 2H), 2.53 (s, 2H), 0.79 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 143.4, 128.3, 127.3, 126.4, 116.8, 71.3, 43.7, 36.5, 24.6.

HRMS (ESI) m/z calcd. for C₁₃H₁₉O [M + H]⁺ 191.1430, found 191.1427.

General synthesis of substrates 1g-1v

Synthesis of substrate **S-1g**. Methyl cyclopentanecarboxylate (6.32 mL, 50.0 mmol) was added to a solution of LDA [generated in situ from *n*-BuLi (27.0 mL in *n*-Hexane, 2.4 M, 65.0 mmol) and diisopropylamine (9.0 mL, 65.0 mmol) in THF (50.0 mL)] at -78 °C and the reaction mixture was stirred under the same conditions for 45 min. To the reaction solution was added 2,3-dibromoprop-1-ene (11.0 g, 55.0 mmol). Upon completion, the solution was warmed to room temperature and stirred overnight. Then the reaction was quenched with sat. NH₄Cl and the organic solvent was removed under reduced pressure. Next, CH₂Cl₂ (40.0 mL) was added and the organic layer was separated. This organic layer was washed with water (3 × 40.0 mL), dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 100/1 to 50/1) to give **S-1g** (9.88 g, 80%).

Synthesis of substrate **S-2g**. To a suspension of LiAlH₄ (3.04g, 80.0 mmol) in Et₂O (50.0 mL) at 0 °C was slowly added a solution of **S-1g** (40.0 mmol) in Et₂O (20.0 mL). Then, the reaction mixture was warmed to room temperature and stirred for additional 2 h. Upon completion, the reaction mixture was quenched by slow, portionwise addition of water (4.0 mL) in Na₂SO₄ (32.0 g) at 0 °C. The resulting mixture was warmed to room temperature, stirred for additional 30 minutes, filtered, and concentrated under reduce pressure to afford **S-2g**, which was directly used in the next reaction without further purification.

General synthesis of substrates 1g-1v. To a solution of S-2g (1.1 g, 5.0 mmol), arylboronic acids (7.5)mmol), K₂CO₃ (2.1)g, 15.0 mmol) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, 190.7 mg, 0.4 mmol) in CH₃CN/H₂O (6.0 mL/2.0 mL) was added Pd(OAc)₂ (45.0 mg 0.2 mmol). The flask was evacuated and then backfilled with argon three times. Upon completion, the reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. After cooled to room temperature, the mixture was extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo* to afford a crude product, which was purified by flash chromatography to give **1g–1v** as a liquid.

(1-(2-(o-tolyl)allyl)cyclopentyl)methanol (1g)

¹**H NMR** (400 MHz, CDCl₃) δ 7.19–7.12 (m, 4H), 5.27–5.26 (m, 1H), 5.00 (d, J = 2.2 Hz, 1H), 3.22 (d, J = 5.8 Hz, 2H), 2.56 (s, 2H), 2.36 (s, 3H), 1.61–1.49 (m, 4H), 1.36–1.31 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.8, 143.4, 134.5, 130.6, 128.2, 126.9, 125.6, 118.3, 67.8, 48.4, 44.2, 34.8, 24.7, 20.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O[M + H]^+ 231.1743$, found 231.1738.

(1-(2-(m-tolyl)allyl)cyclopentyl)methanol (1h)

¹**H** NMR (500 MHz, CDCl₃) δ 7.22–7.18 (m, 3H), 7.08 (d, J = 6.9 Hz, 1H), 5.21 (s, 1H), 5.10 (s, 1H), 3.20 (d, J = 5.9 Hz, 2H), 2.62 (s, 2H), 2.35 (s, 3H), 1.59–1.51 (m, 4H), 1.38–1.30 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 147.9, 143.3, 137.9, 128.3, 128.1, 127.1, 123.4, 116.4, 67.8, 48.5, 42.0, 34.5, 24.5, 21.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O[M + H]^+ 231.1743$, found 231.1742.

(1-(2-(p-tolyl)allyl)cyclopentyl)methanol (1i)

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.20 (s, 1H), 5.07 (s, 1H), 3.20 (d, *J* = 5.9 Hz, 2H), 2.61 (s, 2H), 2.34 (s, 3H), 1.60–1.49 (m, 4H), 1.38–1.28 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 147.6, 140.4, 137.1, 129.1, 126.2, 115.9, 67.8, 48.5, 41.9, 34.5, 24.4, 21.1.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O[M + H]^+ 231.1743$, found 231.1738.

(1-(2-(3,5-dimethylphenyl)allyl)cyclopentyl)methanol (1j)

¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (s, 2H), 6.91 (s, 1H), 5.19 (d, *J* = 2.0 Hz, 1H), 5.07–5.06 (m, 1H), 3.19 (d, *J* = 6.2 Hz, 2H), 2.60 (s, 2H), 2.31 (s, 6H), 1.59–1.49 (m, 4H), 1.37–1.32 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.4, 137.9, 129.1, 124.2, 116.1, 67.8, 48.6, 42.1, 34.5, 24.5, 21.3.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}O[M + H]^+ 245.1900$, found 245.1894.

(1-(2-(naphthalen-2-yl)allyl)cyclopentyl)methanol (1k)

¹**H** NMR (500 MHz, CDCl₃) δ 7.84–7.79 (m, 4H), 7.55 (dd, J = 8.5, 1.8 Hz, 1H), 7.49–7.43 (m, 2H), 5.37 (d, J = 1.8 Hz, 1H), 5.23–5.22 (m, 1H), 3.24 (d, J = 6.0 Hz, 2H), 2.76 (s, 2H), 1.57–1.49 (m, 4H), 1.43–1.29 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 147.7, 140.7, 133.3, 132.7, 128.1, 127.9, 127.6, 126.2, 125.8, 125.0, 124.9, 117.2, 67.8, 48.5, 41.9, 34.5, 24.5.

HRMS (ESI) m/z calcd. for $C_{19}H_{23}O[M + H]^+ 267.1743$, found 267.1735.

(1-(2-([1,1'-biphenyl]-3-yl)allyl)cyclopentyl)methanol (11)

¹**H** NMR (500 MHz, CDCl₃) δ 7.61–7.60 (m, 3H), 7.50 (d, *J* = 6.8 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.41–7.34 (m, 3H), 5.30 (s, 1H), 5.17 (s, 1H), 3.25 (d, *J* = 5.8 Hz, 2H), 2.69 (s, 2H), 1.64–1.53 (m, 4H), 1.40–1.32 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 147.8, 143.8, 141.3, 141.0, 128.8, 127.4, 127.2, 126.2, 125.3(4), 125.3(1), 116.9, 67.8, 48.5, 42.0, 34.5, 24.5.

HRMS (ESI) m/z calcd. for $C_{21}H_{25}O[M + H]^+$ 293.1900, found 293.1898.

(1-(2-(3-methoxyphenyl)allyl)cyclopentyl)methanol (1m)

¹**H NMR** (400 MHz, CDCl₃) δ 7.26–7.22 (m, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.93–6.92 (m, 1H), 6.82 (dd, J = 8.1, 2.3 Hz, 1H), 5.24 (d, J = 1.9 Hz, 1H), 5.12–5.11 (m, 1H), 3.82 (s, 3H), 3.21 (d, J = 6.2 Hz, 2H), 2.62 (s, 2H), 1.59–1.49 (m, 4H), 1.39–1.30 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.6, 147.6, 144.9, 129.4, 118.8, 116.7, 112.5, 112.4, 67.8, 55.2, 48.5, 42.0, 34.4, 24.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O_2 [M + H]^+ 247.1693$, found 247.1685.

ethyl 3-(3-(1-(hydroxymethyl)cyclopentyl)prop-1-en-2-yl)benzoate (1n)

¹**H** NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 5.30 (s, 1H), 5.19 (s, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.24 (d, J = 5.7 Hz, 2H), 2.68 (s, 2H), 1.59–1.49 (m, 4H), 1.41 (t, J = 7.1 Hz, 3H), 1.33-1.31 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 166.6, 146.9, 143.6, 130.8, 130.5, 128.4, 128.3, 127.5, 117.6, 67.6, 61.1, 48.3, 41.7, 34.4, 24.4, 14.3.

HRMS (ESI) m/z calcd. for $C_{18}H_{25}O_3 [M + H]^+ 289.1798$, found 289.1789.

(1-(2-(3-fluorophenyl)allyl)cyclopentyl)methanol (10)

¹**H** NMR (500 MHz, CDCl₃) δ 7.30–7.26 (m, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.09 (d, J = 10.3 Hz, 1H), 6.97–6.94 (m, 1H), 5.27 (s, 1H), 5.16 (s, 1H), 3.24 (d, J = 5.6 Hz, 2H), 2.62 (s, 2H), 1.58–1.53 (m, 4H), 1.34–1.31 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 162.7 (d, J = 245.5 Hz), 146.6, 145.7 (d, J = 7.3 Hz), 129.7 (d, J = 8.5 Hz), 122.0 (d, J = 2.6 Hz), 117.5, 114.1 (d, J = 21.0 Hz), 113.4 (d, J = 21.5 Hz), 67.7, 48.3, 41.7, 34.3, 24.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –113.3 (ddd, *J* = 10.3, 8.5, 6.0 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₅H₂₀FO [M + H]⁺ 235.1493, found 235.1491.

(1-(2-(3-(trifluoromethyl)phenyl)allyl)cyclopentyl)methanol (1p)

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 5.30 (d, *J* = 1.6 Hz, 1H), 5.21 (s, 1H), 3.24 (s, 2H), 2.67 (s, 2H), 1.59–1.49 (m, 4H), 1.33–1.29 (m, 4H).

¹³**C** NMR (125 MHz, CDCl₃) δ 146.4, 144.1, 130.6 (d, J = 3.5 Hz), 129.7, 128.7, 124.1 (d, J = 270.0 Hz), 123.9 (q, J = 3.8 Hz), 123.2 (q, J = 3.8 Hz), 118.1, 67.5, 48.2, 41.4, 34.3, 24.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.6 (s, 3F)

HRMS (ESI) m/z calcd. for $C_{16}H_{20}F_{3}O[M + H]^+ 285.1461$, found 285.1452.

3-(3-(1-(hydroxymethyl)cyclopentyl)prop-1-en-2-yl)benzonitrile (1q)

¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (t, *J* = 1.5 Hz, 1H), 7.65–7.62 (m, 1H), 7.54 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 5.29 (d, *J* = 1.5 Hz, 1H), 5.23 (s, 1H), 3.24 (s, 2H), 2.65 (s, 2H), 1.59–1.51 (m, 4H), 1.32–1.27 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 144.5, 130.8, 130.6, 130.1, 129.0, 118.8, 118.7, 112.2, 67.3, 48.1, 41.2, 34.2, 24.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{20}NO [M + H]^+ 242.1539$, found 242.1532.

3-(3-(1-(hydroxymethyl)cyclopentyl)prop-1-en-2-yl)benzaldehyde (1r)

¹**H NMR** (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.91 (t, J = 1.5 Hz, 1H), 7.79–7.76 (m, 1H), 7.69–7.66 (m, 1H), 7.49 (t, J = 7.6 Hz, 1H), 5.33 (d, J = 1.6 Hz, 1H), 5.22 (s, 1H), 3.25 (s, 2H), 2.70 (s, 2H), 1.60–1.49 (m, 4H), 1.33–1.29 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 192.4, 146.4, 144.3, 136.3, 132.5, 128.9, 128.6, 127.5, 118.0, 67.5, 48.2, 41.4, 34.3, 24.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}O_2 [M + H]^+ 245.1536$, found 245.1529.

(1-(2-(3-nitrophenyl)allyl)cyclopentyl)methanol (1s)

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (t, *J* = 2.0 Hz, 1H), 8.13–8.10 (m, 1H), 7.75–7.73 (m, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 5.37 (d, *J* = 1.4 Hz, 1H), 5.28 (s, 1H), 3.26 (s, 2H), 2.70 (s, 2H), 1.60–1.51 (m, 4H), 1.34–1.29 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 148.2, 145.6, 145.0, 132.5, 129.1, 122.0, 121.3, 119.0, 67.41, 48.3, 41.3, 34.3, 24.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{20}NO_3 [M + H]^+ 262.1438$, found 262.1433.

(3-(3-(1-(hydroxymethyl)cyclopentyl)prop-1-en-2-yl)phenyl)methanol (1t) ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.32–7.31 (m, 2H), 7.28–7.25 (m, 1H), 5.25 (d, *J* = 1.9 Hz, 1H), 5.13–5.12 (m, 1H), 4.69 (d, *J* = 2.2 Hz, 2H), 3.17 (s, 2H), 2.65 (s, 2H), 1.98 (br s, 1H), 1.59–1.51 (m, 4H), 1.38–1.30 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.6, 141.0, 128.6, 126.0, 125.7, 125.0, 116.7, 67.7, 65.2, 48.4, 41.8, 34.5, 24.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}O_2 [M + H]^+ 247.1693$, found 247.1690.

3-(3-(1-(hydroxymethyl)cyclopentyl)prop-1-en-2-yl)-N,N-dimethylbenzamide (1u)

¹**H** NMR (500 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.29 (dt, *J* = 7.5, 1.3 Hz, 1H), 5.26 (d, *J* = 1.8 Hz, 1H), 5.15 (s, 1H), 3.19 (s, 2H), 3.11 (s, 3H), 2.98 (s, 3H), 2.65 (s, 2H), 1.57–1.49 (m, 4H), 1.33–1.29 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 171.6, 147.0, 143.4, 136.2, 128.3, 127.5, 125.7, 125.1, 117.3, 67.5, 48.2, 41.5, 39.5, 35.3, 34.3, 24.4.

HRMS (ESI) m/z calcd. for $C_{18}H_{26}O_2 [M + H]^+ 288.1958$, found 288.1953.

(1-(2-(4-(trifluoromethyl)phenyl)allyl)cyclopentyl)methanol (1v)

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 5.30 (d, *J* = 1.7 Hz, 1H), 5.22 (s, 1H), 3.24 (d, *J* = 5.4 Hz, 2H), 2.67 (s, 2H), 1.58–1.51 (m, 4H), 1.33–1.29 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 146.9, 146.6, 129.3 (q, *J* = 32.1 Hz), 126.7, 125.2 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 271.4 Hz), 118.5, 67.6, 48.3, 41.5, 34.3, 24.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.4 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{16}H_{20}F_{3}O[M + H]^+$ 285.1461, found 285.1454.

Synthesis of substrate 1w

Compound **S-1w** was synthesized according to the procedures previously reported by Liu.^[1]

Substrate 1w was synthesized according to the same procedures for the synthesis of substrates 1a–1f.

(1-(2-(4-bromophenyl)allyl)cyclopentyl)methanol (1w)

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 5.23 (d, *J* = 1.7 Hz, 1H), 5.13 (s, 1H), 3.22 (s, 2H), 2.61 (s, 2H), 1.57–1.50 (m, 4H), 1.33–1.30 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 146.7, 142.2, 131.4, 128.1, 121.2, 117.2, 67.7, 48.3, 41.6, 34.3, 24.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{20}BrO [M + H]^+$ 295.0692, found 295.0685.

Synthesis of substrates 1x and 1y

Substrates S-1x and S-1y were synthesized according to a literature report.^[2] Substrates 1x and 1y were synthesized according to the same procedures for the synthesis of substrates 1g-1v.

(*E*)-(1-(2-(3-styrylphenyl)allyl)cyclopentyl)methanol (1x)

¹**H NMR** (400 MHz, CDCl₃) δ 7.52–7.50 (m, 3H), 7.42–7.41 (m, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.29–7.21 (m, 3H), 7.11 (s, 2H), 5.27 (d, *J* = 1.7 Hz, 1H), 5.14 (s, 1H), 3.22 (s, 2H), 2.66 (s, 2H), 1.57–1.51 (m, 4H), 1.36–1.33 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.6, 143.7, 137.3, 137.1, 128.9, 128.6(1), 128.5(9), 128.5, 127.6, 126.5, 125.7, 125.3, 124.7, 116.8, 67.7, 48.4, 41.9, 34.4, 24.4.

HRMS (ESI) m/z calcd. for $C_{23}H_{27}O [M + H]^+ 319.2056$, found 319.2050.

(1-(2-(3-(phenylethynyl)phenyl)allyl)cyclopentyl)methanol (1y)

¹**H NMR** (400 MHz, CDCl₃) δ 7.57–7.53 (m, 3H), 7.45–7.42 (m, 1H), 7.37–7.28 (m, 5H), 5.27 (d, *J* = 1.8 Hz, 1H), 5.16 (s, 1H), 3.25 (s, 2H), 2.65 (s, 2H), 1.61–1.51 (m, 4H), 1.36–1.33 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.1, 143.6, 131.6, 130.4, 129.6, 128.3(3), 128.2(9), 126.4, 123.3, 123.1, 117.3, 89.4, 89.3, 67.7, 48.4, 41.8, 34.4, 24.5.

HRMS (ESI) m/z calcd. for $C_{23}H_{25}O [M + H]^+ 317.1900$, found 317.1893.

Synthesis of substrate 1z

Substrate 1z was synthesized according to reported procedures.^[3]

4-(naphthalen-2-yl)pent-4-en-1-ol (1z)^[4]

¹**H** NMR (500 MHz, CDCl₃) δ 7.82–7.77 (m, 4H), 7.56 (dd, J = 8.6, 1.6 Hz, 1H), 7.47–7.41 (m, 2H), 5.43 (s, 1H), 5.18 (s, 1H), 3.66 (t, J = 6.4 Hz, 2H), 2.70 (t, J = 7.6 Hz, 2H), 1.78–1.72 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 147.7, 138.1, 133.3, 132.7, 128.1, 127.8, 127.5, 126.1, 125.8, 124.7, 124.6, 113.1, 62.3, 31.5, 31.1.

HRMS (ESI) m/z calcd. for $C_{15}H_{17}O [M + H]^+ 213.1274$, found 213.1271.

Synthesis of substrate 1za

Substrate 1za was synthesized according to the same procedures for the synthesis of substrates 1g–1v.

(1-(2-(quinolin-6-yl)allyl)cyclopentyl)methanol (1za)

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.82–7.78 (m, 2H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 5.40 (d, J = 1.7 Hz, 1H), 5.27 (d, J = 0.4 Hz, 1H), 3.26 (d, J = 2.3 Hz, 2H), 2.77 (s, 2H), 1.89 (br s, 1H), 1.60–1.48 (m, 4H), 1.37–1.32 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.2, 147.7, 147.0, 141.5, 136.2, 129.3, 128.8, 128.1, 124.6, 121.4, 118.1, 67.7, 48.4, 41.7, 34.4, 24.5.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}NO [M + H]^+ 268.1696$, found 268.1693.

Synthesis of substrate 1zb

To a solution of 3-oxaspiro[5.5]undecane-2,4-dione (1.82 g, 10.0 mmol) and benzene (0.98 mL, 11.0 mmol) in dry DCM (20.0 mL) at 0 °C was slowly added AlCl₃ (2.93 g, 22.0 mmol). Upon completion, the mixture was warmed to room temperature and stirred for additional 2 h. Then the reaction was quenched by slow, sequential addition of 1 M HCl to adjust the pH to 1. The reaction mixture was next extracted three times using DCM. The collected organic layer was washed with saturated sodium chloride, dried with Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography to give **S-1zb-1** as a yellow oil (2.28 g, 88 %).

To a solution of **S-1zb-1** (944.0 mg, 3.63 mmol) in dry DCM (10.0 mL) was added dicyclohexylcarbodiimide (823.8 mg, 4.0 mmol), DMAP(43.9 mg, 0.36 mmol), and EtOH (0.2 mL, 4.0 mmol) at 4 °C. Upon completion, the mixture was warmed to room temperature and stirred for additional 2 h. Then the reaction mixture was directly concentrated and the residue was purified by silica gel column chromatography to give **S-1zb-2** as a yellow oil (1.04 g, 99%).

To a slurry of methyltriphenylphosphonium bromide (1.87 g, 5.25 mmol) in dry THF (10.0 mL) at 0 °C was added *t*-BuOK (2.4 M in THF, 2.2 mL, 5.25 mmol). The resulting solution was stirred at 0 °C for 1 h, at which time **S-1zb-2** (1.01 g, 3.5 mmol) in THF (5.0 mL) was added via syringe. The reaction mixture was stirred at 0 °C for 1 h and then at room temperature overnight. The reaction was quenched by the addition of saturated aq. NH4Cl and the resulting salts were dissolved by adding a minimum amount of H₂O. The THF was removed *in vacuo* and the aqueous layer was extracted with DCM for three times. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography to afford **S-1zb-3** (743.0 mg, 74%) as a colorless oil.

To a suspension of LiAlH₄ (197.6 mg, 5.2 mmol) in dry Et₂O (10.0 mL) at 0 °C was slowly added a solution of **S-1zb-3** (740.0 mg, 2.6 mmol) in dry Et₂O (10.0 mL). Upon completion, the mixture was warmed to room temperature and stirred for additional 2 h. Then the reaction mixture was quenched by slow, sequential addition of water (0.5 mL) in Na₂SO₄ (4.0 g). The reaction mixture was next warmed to room temperature, stirred for additional 30 minutes, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford **1zb** as a colorless oil (609.0 mg, 96%).

2-(1-(2-phenylallyl)cyclohexyl)ethan-1-ol (1zb)

¹**H** NMR (400 MHz, CDCl₃) δ 7.41–7.38 (m, 2H), 7.35–7.31 (m, 2H), 7.29–7.25 (m, 1H), 5.26 (d, *J* = 2.0 Hz, 1H), 5.09–5.08 (m, 1H), 3.56 (t, *J* = 8.0 Hz, 2H), 2.55 (s, 2H), 1.51–1.17 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 144.2, 128.1, 127.0, 126.6, 117.2, 59.0, 43.9, 38.6, 36.2, 36.1, 26.1, 21.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}O [M + H]^+ 245.1900$, found 245.1899.

General Procedure for Asymmetric Intramolecular Radical Oxytrifluoromethylation of Alkenes

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1** (0.2 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol %), chiral phosphoric acid (R)-A6 (18.0 mg, 0.03 mmol, 15 mol %), P1 (4.6 mg, 0.026 mmol, 13 mol%), Togni's reagent 2a (99.0 mg, 0.3 mmol, 1.5 equiv), HFIP (18.0 mg, 0.08 mmol, 40 mol%, whenever necessary) and AcO*i*Pr/*c*-Hexane (9:1, 2.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. Upon completion (monitored by LC-MS), the solvent was removed *in vacuo*, and the residue was purified by a silica gel chromatography to afford the desired product **3**.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

The racemate was prepared by following the same procedure described above using substrate **1** (0.2 mmol, 1.0 equiv), Togni's reagent **2b** (95.4 mg, 0.3 mmol, 1.5 equiv) CuI (7.6 mg, 0.04 mmol, 20 mol %) and diphenyl phosphate (10.0 mg, 0.04 mmol, 20 mol %) at 25 or 40 °C in EtOAc (2.0 mL) for 12–24 h. Upon completion (monitored by TLC), the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography to afford the desired product.

Note: Since the reaction is sensitive to water and air, the Schlenk tube and the reagents must be dried prior to use.

(*R*)-3-phenyl-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.5]decane (3A)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 14.46 min, t_R (minor) = 16.93 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43–7.36 (m, 2H), 7.35–7.27 (m, 2H), 7.24–7.18 (m, 1H), 3.77 (d, *J* = 8.7 Hz, 1H), 3.59 (d, *J* = 8.8 Hz, 1H), 2.65 (dd, *J* = 10.8, 0.9 Hz, 1H), 2.59 (dd, *J* = 10.7, 1.2 Hz, 1H), 2.33 (d, *J* = 13.0 Hz, 1H), 2.06 (d, *J* = 13.0 Hz, 1H), 1.54–1.48 (m, 2H), 1.47–1.41 (m, 2H), 1.36–1.23 (m, 4H), 1.15–1.12 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.9, 128.1, 126.9, 125.3, 125.2 (q, *J* = 276.7 Hz), 83.0 (q, *J* = 2.0 Hz), 77.5, 51.1, 46.6 (q, *J* = 25.8 Hz), 44.3, 37.5, 36.0, 25.7, 23.9, 23.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.4 (t, J = 10.7 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₁₇H₂₂F₃O [M + H]⁺ 299.1617, found 299.1613.

(R)-6-phenyl-6-(2,2,2-trifluoroethyl)-5-oxaspiro[2.4]heptane (3B)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 10.24 min, *t*_R (minor) = 14.48 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.42–7.40 (m, 2H), 7.36–7.33 (m, 2H), 7.28–7.25 (m, 1H), 3.90 (d, *J* = 8.0 Hz, 1H), 3.79 (d, *J* = 8.0 Hz, 1H), 2.84–2.70 (m, 2H), 2.34 (d, *J* = 12.4 Hz, 1H), 2.26 (d, *J* = 12.4 Hz, 1H), 0.69–0.62 (m, 2H), 0.44–0.37 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 144.5, 128.1, 127.1, 125.4 (q, J = 276.6 Hz), 125.1, 83.8 (q, J = 2.0 Hz), 74.5, 47.1 (q, J = 1.1 Hz), 45.0 (q, J = 26.0 Hz), 21.6, 10.8, 10.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.8 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{14}H_{16}F_{3}O [M + H]^+ 257.1148$, found 257.1137.

(*R*)-7-phenyl-7-(2,2,2-trifluoroethyl)-6-oxaspiro[3.4]octane (3C)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 8.14 min, *t*_R (minor) = 10.01 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 7.9 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 4.01 (d, *J* = 8.5 Hz, 1H), 3.91 (d, *J* = 8.5 Hz, 1H), 2.71–2.56 (m, 2H), 2.48 (d, *J* = 12.7 Hz, 1H), 2.34 (d, *J* = 12.7 Hz, 1H), 2.10–2.04 (m, 2H), 1.80–1.74 (m, 2H), 1.70–1.69 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 144.8, 128.0, 126.9, 125.3 (q, *J* = 276.8 Hz), 125.1, 83.1 (q, *J* = 2.0 Hz), 79.2, 51.8 (q, *J* = 0.8 Hz), 46.1, 45.6 (q, *J* = 25.9 Hz), 32.9, 32.3, 16.6.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.4 (t, *J* = 10.8 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{15}H_{18}F_{3}O [M + H]^+ 271.1304$, found 271.1298.

(*R*)-3-phenyl-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3D)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 7.81 min, *t*_R (minor) = 9.59 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42–7.34 (m, 2H), 7.35–7.31 (m, 2H), 7.26–7.22 (m, 1H), 3.80 (d, *J* = 8.3 Hz, 1H), 3.66 (d, *J* = 8.3 Hz, 1H), 2.69 (d, *J* = 10.7 Hz, 1H), 2.64 (d, *J* = 10.7 Hz, 1H), 2.40 (d, *J* = 12.7 Hz, 1H), 2.30 (d, *J* = 12.7 Hz, 1H), 1.78–1.72 (m, 1H), 1.64–1.43 (m, 5H), 1.35–1.18 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.2, 128.1, 126.9, 125.4 (q, *J* = 276.8 Hz), 125.3, 83.1 (q, *J* = 2.0 Hz), 78.7, 52.0 (q, *J* = 0.9 Hz), 51.0, 46.2 (q, *J* = 26.0 Hz), 38.0, 37.3, 24.6, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.4 (t, *J* = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{16}H_{20}F_{3}O[M + H]^+$ 285.1461, found 285.1455.

(R)-3-phenyl-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.6]undecane (3E)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 7.88 min, *t*_R (minor) = 9.24 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 3.73 (d, *J* = 8.6 Hz, 1H), 3.57 (d, *J* = 8.6 Hz, 1H), 2.67 (dd, *J* = 10.7, 3.1 Hz, 1H), 2.62 (dd, *J* = 10.7, 3.4 Hz, 1H), 2.36 (d, *J* = 13.0 Hz, 1H), 2.14 (d, *J* = 13.0 Hz, 1H), 1.77–1.73 (m, 1H), 1.64–1.41 (m, 6H), 1.38–1.26 (m, 5H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.1, 128.1, 126.9, 125.3, 125.2 (q, *J* = 276.9 Hz), 83.3 (q, *J* = 2.0 Hz), 78.9, 52.9 (q, *J* = 0.5 Hz), 47.7, 46.6 (q, *J* = 25.8 Hz), 40.3, 38.8, 29.2, 24.2, 23.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.4 (t, J = 10.7 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₁₈H₂₄F₃O [M + H]⁺ 313.1774, found 313.1766.

(*R*)-4,4-dimethyl-2-phenyl-2-(2,2,2-trifluoroethyl)tetrahydrofuran (3F)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 6.51 min, *t*_R (minor) = 7.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42–7.40 (m, 2H), 7.35–7.31 (m, 2H), 7.26–7.22 (m, 1H), 3.71 (d, *J* = 8.5 Hz, 1H), 3.58 (d, *J* = 8.5 Hz, 1H), 2.71–2.67 (m, 1H), 2.65–2.60 (m, 1H), 2.30 (d, *J* = 12.9 Hz, 1H), 2.15 (d, *J* = 12.9 Hz, 1H), 1.17 (s, 3H), 0.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.2, 128.1, 126.9, 125.3, 125.2 (q, J = 276.8 Hz), 83.5 (q, J = 2.0 Hz), 79.6, 53.5 (q, J = 1.1 Hz), 46.6 (q, J = 25.8 Hz), 40.2, 27.8, 26.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.4 (t, J = 10.7 Hz, 3F).

(R)-3-(o-tolyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3G)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 16.76 min, t_R (minor) = 15.82 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (d, J = 7.0 Hz, 1H), 7.20–7.15 (m, 3H), 3.79 (d, J = 8.3 Hz, 1H), 3.60 (d, J = 8.4 Hz, 1H), 2.88–2.67 (m, 2H), 2.37 (s, 3H), 2.34 (s, 2H), 1.85–1.82 (m, 1H), 1.70–1.48 (m, 5H), 1.44–1.38 (m, 1H), 1.36–1.30 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 143.0, 133.4, 131.9, 127.1, 125.7, 125.5, 125.4 (q, J = 277.0 Hz), 83.0, 77.8, 52.8, 51.2, 43.9 (q, J = 25.6 Hz), 38.2, 36.4, 24.8, 24.6, 21.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.7 (t, J = 10.8 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{17}H_{22}F_{3}O[M + H]^+$ 299.1617, found 299.1610.

(R)-3-(m-tolyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3H)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 6.05 min, t_R (minor) = 7.33 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.22–7.17 (m, 3H), 7.05 (d, *J* = 7.0 Hz, 1H), 3.79 (d, *J* = 8.3 Hz, 1H), 3.66 (d, *J* = 8.3 Hz, 1H), 2.68 (d, *J* = 10.7 Hz, 1H), 2.63 (d, *J* = 10.7 Hz, 1H), 2.38 (d, *J* = 12.9 Hz, 1H), 2.36 (s, 3H), 2.29 (d, *J* = 12.8 Hz, 1H), 1.78–1.73 (m, 1H), 1.63–1.46 (m, 5H), 1.36–1.31 (m, 1H), 1.27–1.21 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.3, 137.6, 127.9, 127.6, 125.9, 125.3 (q, *J* = 276.8 Hz), 122.3, 83.1 (q, *J* = 2.0 Hz), 78.7, 51.9, 51.1, 46.2 (q, *J* = 25.6 Hz), 38.0, 37.3, 24.6, 24.5, 21.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, J = 10.7 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₁₇H₂₂F₃O [M + H]⁺ 299.1617, found 299.1611.

(R)-3-(p-tolyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3I)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 6.84 min, *t*_R (minor) = 10.45 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 7.5 Hz, 2H), 7.14 (d, J = 7.7 Hz, 2H), 3.78 (d, J = 8.3 Hz, 1H), 3.64 (d, J = 8.3 Hz, 1H), 2.67 (d, J = 10.7 Hz, 1H), 2.63 (d, J =

10.8 Hz, 1H), 2.38 (d, J = 12.7 Hz, 1H), 2.33 (s, 3H), 2.27 (d, J = 12.7 Hz, 1H), 1.76–1.71 (m, 1H), 1.64–1.45 (m, 5H), 1.35–1.29 (m, 1H), 1.26–1.20 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 142.2, 136.5, 128.8, 125.3 (q, J = 276.8 Hz), 125.2, 83.1 (q, J = 2.0 Hz), 78.6, 51.9, 51.1, 46.2 (q, J = 25.6 Hz), 38.1, 37.3, 24.6, 24.5, 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, J = 10.8 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₁₇H₂₂F₃O [M + H]⁺ 299.1617, found 299.1610.

(*R*)-3-(3-methoxyphenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3J) HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 4.58 min, *t*_R (minor) = 5.53 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.25 (t, *J* = 7.5 Hz, 1H), 7.02 (s, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 3.81–3.79 (m, 4H), 3.67 (d, *J* = 8.3 Hz, 1H), 2.68 (d, *J* = 10.6 Hz, 1H), 2.64 (d, *J* = 10.7 Hz, 1H), 2.39 (d, *J* = 12.7 Hz, 1H), 2.29 (d, *J* = 12.7 Hz, 1H), 1.75–1.73 (m, 1H), 1.62–1.48 (m, 5H), 1.37–1.33 (m, 1H), 1.27–1.22 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 159.4, 147.1, 129.1, 125.3 (q, *J* = 276.9 Hz), 117.8, 111.9, 111.3, 83.1 (q, *J* = 1.9 Hz), 78.8, 55.2, 52.0, 51.0, 46.2 (q, *J* = 25.9 Hz), 38.0, 37.3, 24.6, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.4 (t, J = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{17}H_{22}F_{3}O_{2}$ [M + H]⁺ 315.1566, found 315.1559.

(*R*)-3-([1,1'-biphenyl]-3-yl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3K) HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 9.26 min, t_R (minor) = 11.07 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.61 (d, J = 9.4 Hz, 2H), 7.49–7.33 (m, 6H), 3.82 (d, J = 8.3 Hz, 1H), 3.69 (d, J = 8.3 Hz, 1H), 2.74 (d, J = 10.7 Hz, 1H), 2.69 (d, J = 10.7 Hz, 1H), 2.45 (d, J = 12.8 Hz, 1H), 2.34 (d, J = 12.8 Hz, 1H), 1.80–1.73 (m, 1H), 1.64–1.46 (m, 5H), 1.38–1.32 (m, 1H), 1.28–1.22 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.8, 141.2, 141.0, 128.7, 128.5, 127.3, 127.2, 125.7, 125.3 (q, *J* = 276.9 Hz), 124.3, 124.1, 83.2 (q, *J* = 1.9 Hz), 78.8, 52.1, 51.1, 46.2 (q, *J* = 25.9 Hz), 38.0, 37.3, 24.7, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.2 (t, *J* = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{22}H_{24}F_{3}O[M + H]^+$ 361.1774, found 361.1766.

(*R*)-3-(3-fluorophenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3L)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 209 nm), *t*_R (major) = 8.11 min, *t*_R (minor) = 10.86 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32–7.27 (m, 1H), 7.18–7.14 (m, 2H), 6.94 (t, *J* = 8.3 Hz, 1H), 3.80 (d, *J* = 8.4 Hz, 1H), 3.67 (d, *J* = 8.4 Hz, 1H), 2.68 (d, *J* = 10.6 Hz, 1H), 2.63 (d, *J* = 10.6 Hz, 1H), 2.36 (d, *J* = 12.8 Hz, 1H), 2.29 (d, *J* = 12.8 Hz, 1H), 1.77–1.72 (m, 1H), 1.63–1.47 (m, 5H), 1.36–1.31 (m, 1H), 1.26–1.19 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 162.8 (d, J = 243.9 Hz), 148.1 (d, J = 6.6 Hz), 129.6 (d, J = 8.1 Hz), 125.1 (q, J = 276.9 Hz), 121.0 (d, J = 2.7 Hz), 113.8 (d, J = 21.0 Hz), 112.6 (d, J = 22.8 Hz), 82.8, 78.9, 52.2, 51.0, 46.1 (q, J = 26.0 Hz), 37.8, 37.3, 24.7, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.4 (t, *J* = 10.6 Hz, 3F), –113.05 (ddd, *J* = 10.3, 8.3, 5.7 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{16}H_{19}F_4O [M + H]^+ 303.1367$, found 303.1356.

(*R*)-3-(2,2,2-trifluoroethyl)-3-(3-(trifluoromethyl)phenyl)-2-oxaspiro[4.4]nonane (3M)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 5.70 min, *t*_R (minor) = 6.46 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 3.82 (d, J = 8.4 Hz, 1H), 3.67 (d, J = 8.4 Hz, 1H), 2.72–2.65 (m, 2H), 2.39–2.33 (m, 2H), 1.77–1.73 (m, 1H), 1.64–1.46 (m, 5H), 1.35–1.29 (m, 1H), 1.22–1.16 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 146.4, 130.5 (q, J = 31.9 Hz), 128.8, 128.6, 125.1 (q, J = 276.9 Hz), 124.1 (q, J = 270.8 Hz), 123.9 (q, J = 3.8 Hz), 122.2 (q, J = 3.9 Hz), 82.8, (q, J = 1.9 Hz), 78.9, 52.3, 51.1, 46.1 (q, J = 26.1 Hz), 37.8, 37.3, 24.7, 24.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.3 (t, J = 10.6 Hz, 3F), -62.5 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{17}H_{19}F_6O [M + H]^+$ 353.1335, found 353.1323.

(*R*)-3-(4-bromophenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3N) HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 7.79 min, *t*_R (minor) = 10.51 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 3.79 (d, *J* = 8.4 Hz, 1H), 3.64 (d, *J* = 8.4 Hz, 1H), 2.66 (dd, *J* = 10.7, 1.6 Hz, 1H), 2.62 (dd, *J* = 10.7, 2.0 Hz, 1H), 2.34 (d, *J* = 12.8 Hz, 1H), 2.28 (d, *J* = 12.8 Hz, 1H), 1.76–1.71 (m, 1H), 1.64–1.45 (m, 5H), 1.34–1.29 (m, 1H), 1.23–1.17 (m, 1H).

¹³**C** NMR (125 MHz, CDCl₃) δ 144.3, 131.2, 127.2, 125.1 (q, *J* = 276.8 Hz), 120.9, 82.8 (q, *J* = 2.1 Hz), 78.8, 52.1, 51.0, 46.1 (q, *J* = 26.0 Hz), 37.8, 37.4, 24.6, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{16}H_{19}F_3BrO [M + H]^+$ 363.0566, found 363.0553.

(*R*)-3-(2,2,2-trifluoroethyl)-3-(4-(trifluoromethyl)phenyl)-2-oxaspiro[4.4]nonane (3O)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 6.30 min, t_R (minor) = 6.98 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 3.82 (d, J = 8.4 Hz, 1H), 3.67 (d, J = 8.4 Hz, 1H), 2.70 (dd, J = 10.6, 1.8 Hz, 1H), 2.66 (dd, J = 10.6, 2.2 Hz, 1H), 2.37 (d, J = 12.8 Hz, 1H), 2.33 (d, J = 12.9 Hz, 1H), 1.78–1.73 (m, 1H), 1.66–1.46 (m, 5H), 1.35–1.29 (m, 1H), 1.22–1.16 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 149.3, 129.3 (q, *J* = 32.2 Hz), 125.8, 125.1 (q, *J* = 3.8 Hz), 125.06 (q, *J* = 276.8 Hz), 124.1 (q, *J* = 270.2 Hz), 82.9 (q, *J* = 1.9 Hz), 78.9, 52.4, 51.1, 46.1 (q, *J* = 26.1 Hz), 37.7, 37.3, 24.7, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, J = 10.6 Hz, 3F), –62.4 (s, 3F). **HRMS** (ESI) m/z calcd. for C₁₇H₁₉F₆O [M + H]⁺ 353.1335, found 353.1319.

(*R*)-3-(3,5-dimethylphenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3P)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 5.71 min, t_R (minor) = 6.74 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.00 (s, 2H), 6.87 (s, 1H), 3.79 (d, J = 8.3 Hz, 1H), 3.66 (d, J = 8.3 Hz, 1H), 2.66 (d, J = 10.7 Hz, 1H), 2.62 (d, J = 10.8 Hz, 1H), 2.37 (d, J = 12.8 Hz, 1H), 2.31 (s, 6H), 2.28 (d, J = 12.8 Hz, 1H), 1.78–1.73 (m, 1H), 1.66–1.46 (m, 5H), 1.38–1.33 (m, 1H), 1.29–1.24 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.4, 137.5, 128.5, 125.3 (q, *J* = 276.9 Hz), 122.9, 83.1 (q, *J* = 1.9 Hz), 78.7, 51.9, 51.1, 46.1 (q, *J* = 25.6 Hz), 38.0, 37.2, 24.6, 24.5, 21.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{18}H_{24}F_{3}O[M + H]^+$ 313.1774, found 313.1767.

(*R*)-3-(naphthalen-2-yl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3Q)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 9.60 min, t_R (minor) = 10.40 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.86–7.81 (m, 3H), 7.50–7.45 (m, 3H), 3.86 (d, J = 8.4 Hz, 1H), 3.74 (d, J = 8.4 Hz, 1H), 2.78 (d, J = 10.7 Hz, 1H), 2.74 (d, J = 10.7 Hz, 1H), 2.50 (d, J = 12.8 Hz, 1H), 2.37 (d, J = 12.8 Hz, 1H), 1.80–1.75 (m, 1H), 1.65–1.43 (m, 5H), 1.34–1.29 (m, 1H), 1.23–1.17 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 142.5, 133.0, 132.4, 128.2, 127.9, 127.5, 126.1, 125.8, 125.3 (q, *J* = 276.9 Hz), 123.9, 123.8, 83.3 (q, *J* = 1.9 Hz), 78.9, 52.0, 51.1, 46.1 (q, *J* = 25.8 Hz), 38.0, 37.3, 24.6, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.3 (t, J = 10.7 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{20}H_{22}F_{3}O[M + H]^+$ 335.1617, found 335.1605.

(*R*)-ethyl 3-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)benzoate (3R) HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 5.29 min, t_R (minor) = 6.25 min.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (t, J = 1.7 Hz, 1H), 7.95–7.93 (m, 1H), 7.68–7.66 (m, 1H), 7.41 (t, J = 7.8 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.82 (d, J = 8.4 Hz, 1H), 3.68 (d, J = 8.4 Hz, 1H), 2.72 (d, J = 10.6 Hz, 1H), 2.67 (d, J = 10.6 Hz, 1H), 2.41 (d, J = 12.8 Hz, 1H), 2.34 (d, J = 12.8 Hz, 1H), 1.77–1.74 (m, 1H), 1.64–1.46 (m, 5H), 1.41 (t, J = 7.1 Hz, 3H), 1.34–1.29 (m, 1H), 1.22–1.16 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 166.6, 145.7, 130.4, 129.8, 128.2, 128.1, 126.5, 125.2 (q, *J* = 276.9 Hz), 82.9 (q, *J* = 2.0 Hz), 78.9, 61.0, 52.3, 51.0, 46.1 (q, *J* = 25.9 Hz), 37.8, 37.3, 24.7, 24.5, 14.3.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.3 (t, J = 10.7 Hz, 3F). HRMS (ESI) m/z calcd. for C₁₉H₂₄F₃O₃ [M + H]⁺ 357.1672, found 357.1667.

(*R*)-*N*,*N*-dimethyl-3-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)benzamid e (3S)

HPLC analysis: Chiralcel AS3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 16.09 min, t_R (minor) = 12.92 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.46–7.43 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.32 (dt, *J* = 7.4, 1.3 Hz, 1H), 3.80 (d, *J* = 8.4 Hz, 1H), 3.65 (d, *J* = 8.4 Hz, 1H), 3.11 (s, 3H), 2.93 (s, 3H), 2.70 (dd, *J* = 10.7, 1.2 Hz, 1H), 2.66 (dd, *J* = 10.7, 1.5 Hz, 1H), 2.39 (d, *J* = 12.8 Hz, 1H), 2.28 (d, *J* = 12.8 Hz, 1H), 1.78–1.72 (m, 1H), 1.64–1.45 (m, 5H), 1.35–1.30 (m, 1H), 1.24–1.19 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 171.7, 145.2, 136.2, 128.4, 126.5, 125.7, 125.2 (q, *J* = 276.8 Hz), 123.9, 82.9 (q, *J* = 2.0 Hz), 78.8, 52.5, 51.0, 46.2 (q, *J* = 25.9 Hz), 39.4, 37.9, 37.2, 35.3, 24.6, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.3 (t, J = 10.6 Hz, 3F). HRMS (ESI) m/z calcd. for C₁₉H₂₅F₃NO₂ [M + H]⁺ 356.1832, found 356.1825.

(R)-3-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)benzonitrile (3T)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 15.73 min, t_R (minor) = 16.55 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 3.82 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 8.5 Hz, 1H), 2.72–2.63 (m, 2H), 2.33 (s, 2H), 1.78–1.73 (m, 1H), 1.67–1.48 (m, 5H), 1.34–1.29 (m, 1H), 1.20–1.15 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 146.8, 130.7, 129.9, 129.2, 129.0, 124.9 (q, *J* = 276.8 Hz), 118.9, 112.3, 82.5 (q, *J* = 2.0 Hz), 78.9, 52.4, 51.0, 45.9 (q, *J* = 26.1 Hz), 37.6, 37.3, 24.6, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.5 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{17}H_{19}F_3NO [M + H]^+ 310.1413$, found 310.1406.

(*R*)-3-(3-nitrophenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3U)

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 15.76 min, t_R (minor) = 14.97 min.

¹**H** NMR (500 MHz, CDCl₃) δ 8.30 (t, *J* = 1.9 Hz, 1H), 8.14–8.12 (m, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 3.84 (d, *J* = 8.5 Hz, 1H), 3.70 (d, *J* = 8.5 Hz, 1H), 2.75–2.68 (m, 2H), 2.38 (s, 2H), 1.81–1.74 (m, 1H), 1.67–1.48 (m, 5H), 1.35–1.30 (m, 1H), 1.21–1.15 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 148.2, 147.6, 131.6, 129.2, 124.9 (q, *J* = 276.8 Hz), 122.2, 120.6, 82.6 (q, *J* = 2.0 Hz), 79.0, 52.6, 51.1, 46.0 (q, *J* = 26.3 Hz), 37.5, 37.3, 24.7, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.3 (t, *J* = 10.5 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{16}H_{19}F_3NO_3 [M + H]^+$ 330.1312, found 330.1306.

(R)-3-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)benzaldehyde (3V)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 6.02 min, *t*_R (minor) = 6.83 min.

¹**H** NMR (500 MHz, CDCl₃) δ 10.04 (s, 1H), 7.94 (s, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 3.83 (d, J = 8.4 Hz, 1H), 3.69 (d, J = 8.4 Hz, 1H), 2.74–2.68 (m, 2H), 2.41 (d, J = 12.8 Hz, 1H), 2.35 (d, J = 12.8 Hz, 1H), 1.80–1.73 (m, 1H), 1.63–1.46 (m, 5H), 1.34–1.29 (m, 1H), 1.21–1.16 (m, 1H).

¹³**C** NMR (125 MHz, CDCl₃) δ 192.4, 146.6, 136.3, 131.5, 128.9, 128.6, 126.5, 125.1 (q, J = 277.0 Hz), 82.8 (q, J = 2.0 Hz), 78.9, 52.5, 51.1, 46.1 (q, J = 26.0 Hz), 37.7, 37.3, 24.7, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.3 (t, *J* = 10.6 Hz, 3F).

HRMS (ESI) m/z calcd. for C₁₇H₂₀F₃O₂ [M+H]⁺ 313.1410, found 313.1403.

(*R*)-(3-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)phenyl)methanol (3W) HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 8.81 min, t_R (minor) = 10.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.33–7.32 (m, 2H), 7.26–7.24 (m, 1H), 4.69 (s, 2H), 3.79 (d, J = 8.4 Hz, 1H), 3.66 (d, J = 8.4 Hz, 1H), 2.70 (d, J = 10.7 Hz, 1H), 2.64 (d, J = 10.7 Hz, 1H), 2.39 (d, J = 12.8 Hz, 1H), 2.30 (d, J = 12.8 Hz, 1H), 2.04 (br s, 1H), 1.78–1.72 (m, 1H), 1.67–1.44 (m, 5H), 1.36–1.29 (m, 1H), 1.26–1.19 (m, 1H).

¹³**C** NMR (125 MHz, CDCl₃) δ 145.6, 140.8, 128.3, 125.5, 125.2 (q, *J* = 276.8 Hz), 124.6, 123.7, 83.1 (q, *J* = 1.8 Hz), 78.7, 65.3, 52.1, 51.0, 46.1 (q, *J* = 25.8 Hz), 37.9, 37.2, 24.6, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.6 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₁₇H₂₂F₃O₂ [M + H]⁺ 315.1566, found 315.1556.

(*R*,*E*)-3-(3-styrylphenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3X) HPLC analysis: Chiralcel OJH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 280 nm), *t*_R (major) = 6.88 min, *t*_R (minor) = 8.66 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (s, 1H), 7.52 (d, J = 7.3 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.38–7.31 (m, 3H), 7.28–7.25 (m, 2H), 7.13 (s, 2H), 3.83 (d, J = 8.4 Hz, 1H), 3.70 (d, J = 8.4 Hz, 1H), 2.72 (d, J = 10.7 Hz, 1H), 2.68 (d, J = 10.7 Hz, 1H), 2.43 (d, J = 12.8 Hz, 1H), 2.33 (d, J = 12.8 Hz, 1H), 1.78–1.75 (m, 1H), 1.66–1.47 (m, 5H), 1.38–1.33 (m, 1H), 1.28–1.22 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.8, 137.3, 137.2, 128.8, 128.7, 128.6, 128.4, 127.6, 126.5, 125.3 (q, *J* = 276.8 Hz), 125.0, 124.7, 123.4, 83.1 (q, *J* = 2.1 Hz), 78.8, 52.0, 51.1, 46.1 (q, *J* = 25.8 Hz), 38.0, 37.3, 24.7, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, J = 10.7 Hz, 3F). **HRMS** (ESI) m/z calcd. for C₂₄H₂₆F₃O [M + H]⁺ 387.1930, found 387.1925.

(*R*)-3-(3-(phenylethynyl)phenyl)-3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonane (3Y)

HPLC analysis: Chiralcel OJH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 280 nm), *t*_R (major) = 5.88 min, *t*_R (minor) = 7.44 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.55–7.53 (m, 2H), 7.43–7.31 (m, 6H), 3.81 (d, J = 8.4 Hz, 1H), 3.69 (d, J = 8.4 Hz, 1H), 2.70 (d, J = 10.6 Hz, 1H), 2.66 (d, J = 10.7 Hz, 1H), 2.40 (d, J = 12.8 Hz, 1H), 2.31 (d, J = 12.8 Hz, 1H), 1.77–1.73 (m, 1H), 1.66–1.46 (m, 5H), 1.38–1.32 (m, 1H), 1.26–1.20 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.6, 131.6, 130.2, 128.5, 128.3, 128.2, 128.1, 125.4, 125.2 (q, *J* = 276.8 Hz), 123.2, 123.0, 89.5, 89.3, 82.9 (q, *J* = 1.9 Hz), 78.9, 52.1, 51.1, 46.1 (q, *J* = 25.9 Hz), 37.9, 37.3, 24.7, 24.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.6 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{24}H_{24}F_{3}O [M + H]^+$ 385.1774, found 385.1769.

(*R*)-2-(naphthalen-2-yl)-2-(2,2,2-trifluoroethyl)tetrahydrofuran (3Z)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 10.88 min, t_R (minor) = 11.77 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 1.2 Hz, 1H), 7.86–7.82 (m, 3H), 7.49–7.44 (m, 3H), 4.12–4.07 (m, 1H), 4.01–3.97 (m, 1H), 2.84–2.69 (m, 2H), 2.46–2.41 (m, 1H), 2.33–2.27 (m, 1H), 2.05–1.97 (m, 1H), 1.85–1.76 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 141.8, 133.1, 132.5, 128.2, 128.1, 127.5, 126.2, 125.9, 125.4 (q, *J* = 276.6 Hz), 123.9, 123.5, 83.07 (q, *J* = 2.0 Hz), 67.9, 45.0 (q, *J* = 26.1 Hz), 38.1, 25.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -60.4 (t, *J* = 10.8 Hz, 3F).

(*R*)-6-(3-(2,2,2-trifluoroethyl)-2-oxaspiro[4.4]nonan-3-yl)quinoline (3ZA)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 7.92 min, *t*_R (minor) = 8.69 min.

¹**H** NMR (500 MHz, CDCl₃) δ 8.91 (dd, J = 4.1, 1.5 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 1.9 Hz, 1H), 7.68 (dd, J = 8.8, 2.0 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 3.88 (d, J = 8.4 Hz, 1H), 3.75 (d, J = 8.4 Hz, 1H), 2.78 (q, J = 10.6 Hz, 2H), 2.49 (d, J = 12.8 Hz, 1H), 2.38 (d, J = 12.8 Hz, 1H), 1.80–1.75 (m, 1H), 1.66–1.44 (m, 5H), 1.35–1.30 (m, 1H), 1.22–1.16 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 150.4, 147.4, 143.3, 136.3, 129.4, 127.8, 127.4, 125.2 (q, *J* = 277.5 Hz), 123.8, 121.3, 83.1 (q, *J* = 2.0 Hz), 78.9, 52.3, 51.1, 45.9 (q, *J* = 25.0 Hz), 37.8, 37.3, 24.6, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, J = 10.6 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{19}H_{21}F_3NO [M + H]^+ 336.1570$, found 336.1566.

(R)-2-phenyl-2-(2,2,2-trifluoroethyl)-3-oxaspiro[5.5]undecane (3ZB)

HPLC analysis: Chiralcel OD3 (*n*-Hexane, flow rate 1.0 mL/min, $\lambda = 209$ nm), t_R (major) = 16.0 min, t_R (minor) = 12.5 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.29–7.26 (m, 1H), 3.78–3.76 (m, 2H), 2.49–2.42 (m, 3H), 1.63 (d, J = 14.3 Hz, 1H), 1.56–1.28 (m, 11H), 1.18–1.09 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 142.1, 128.1, 127.0, 126.0, 125.2 (q, *J* = 239.2 Hz), 75.1, 58.9, 49.8 (q, *J* = 25.5 Hz), 42.6, 33.5, 31.5, 26.3, 21.6, 21.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –59.3 (t, J = 11.0 Hz, 3F).

HRMS (ESI) m/z calcd. for $C_{18}H_{24}F_{3}O[M + H]^+$ 313.1774, found 313.1770.
Mechanistic Study

Radical trapping experiments (Scheme S2a)

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1** (0.05 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (3.0 mg, 0.005 mmol, 10 mol %), chiral phosphoric acid (*R*)-A6 (4.5 mg, 0.0075 mmol, 15 mol %), **P1** (1.2 mg, 0.0065 mmol, 13 mol %), Togni's reagent **2a** (24.8 mg, 0.075 mmol, 1.5 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 11.7 mg, 0.075 mmol, 1.5 equiv) or 1,4-benzoquinone (BQ, 8.1 mg, 0.075 mmol, 1.5 equiv) and AcO*i*Pr/*c*-Hexane (9:1, 0.5 mL) at 25 °C, and the sealed tube was then stirred at 25 °C for 36 h. PhOCF₃ (internal standard, 0.05 mmol, 1.0 equiv) was added to the reaction mixture. Yield was calculated based on ¹⁹F NMR analysis of the crude product.

Radical clock experiment (eq 1)

Synthesis of substrate 4.

Acetone (20.0 ml, 200.0 mmol), benzaldehyde (10.0 ml, 100.0 mmol) and water (80.0 mL) were mixed in a 250 mL 3-neck flask fitted with a dropping funnel and an argon inlet. Then the mixture was cooled to 0 °C in an ice/water bath followed by addition of sodium hydroxide solution (4.0 mL, 10%) over 30 min. Upon completion, the reaction mixture was warmed to room temperature and stirred for additional two hours. The reaction mixture was extracted three times using ethyl acetate (3×100 mL). The collected organic layer was washed with 300 mL saturated sodium chloride until the solution was neutral. The solution was dried with anhydrous sodium sulfate. After evaporation under reduced pressure, a yellow liquid was obtained. Yield: 13.5 g (92.7 %). The product was used directly in the next step reaction.^[5]

A mixture of Me₃S(O)I (13.2 g, 60.0 mmol) and *t*-BuOK (6.72 g, 60.0 mmol) in dry DMSO (60 mL) was stirred at 60 °C for 15 min to achieve a clear solution. Then **S1** (7.3 g, 50 mmol) was added to the mixture at 60 °C over 30 min. Upon completion, the mixture was treated with brine (50 mL) and extracted with diethyl ether (2 × 30 mL). The combined organic extracts were washed successively with water (2 × 50 mL) and brine (1 × 50 mL), dried over anhydr. MgSO4, filtered, and evaporated in *vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 30/1 to 20/1) to give **S2** (3.2 g, 40%) as a liquid.^[6]

To a solution of S2 (3.2 g, 20.0 mmol) and triethylamine (8.3 mL, 60.0 mmol) in DCM (40.0 mL) was added *tert*-butyldimethylsilyltrifluoromethane sulfonate (6.88 mL, 30.0 mmol) dropwise under argon atmosphere at rt. Upon completion, the stirring was continued under the same conditions until the completion of the reaction as indicated by TLC staining. Then the reaction mixture was diluted with DCM and washed with a 1:1 mixture of water and saturated NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated to afford the silyl enol ether S3 as a

heavy oil. The silyl enol ether **S3** was next taken in DCM (40.0 mL) and solid NBS (3.54 g, 20.0 mmol) was added. The reaction mixture was stirred until the full conversion of **S3** as monitored by TLC staining. The mixture was loaded to a silica gel column for chromatography (eluent: petroleum ether/EtOAc = 25/1) to afford **S4** (3.2 g, 67%, two steps).^[7]

To a solution of **S4** (1.67 g, 7.0 mmol) in DMF (30.0 mL) was added NaOAc (2.87 g, 35 mmol). The reaction mixture was stirred at room temperature for 2 h and then was quenched by the addition of 1N HCl. The solution was extracted with EtOAc (30.0 mL) three times and the combined organic layer was washed with 1N HCl, dried over Na₂SO₄, and then concentrated *in vacuo*. The crude product was purified by flash chromatography (eluent: petroleum ether/EtOAc = 50/1 to 8/1) to afford **S5** (1.31 g, 86%) as a colorless oil.^[8]

To a slurry of methyltriphenylphosphonium bromide (2.32 g, 6.5 mmol) in THF (15.0 mL) at 0 °C was added n-BuLi (2.4 M, 2.7 mL, 6.5 mmol). The resulting solution was stirred at 0 °C for 1 h, at which time S5 (1.09 g, 5.0 mmol) in THF (5.0 mL) was added via syringe. The reaction mixture was stirred at 0 °C for 1 h and then at room temperature for 2 h. The reaction was guenched by the addition of saturated aq. NH4Cl and the resulting solid salts were dissolved by adding a minimum amount of H2O. The THF was removed in vacuo and the aqueous layer was extracted with DCM for three times. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. Then the residue S6 was dissolved in THF (20.0 mL) and to this solution was added aq. LiOH (1 M, 15.0 mL, 15.0 mmol). The reaction mixture was stirred at room temperature for 1 h, at which time it was acidified to pH 1 by the addition of 1 M aq. HCl. The solution was diluted with EtOAc and the two layers were separated. The aqueous layer was saturated with NaCl and extracted with EtOAc three times. The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography (eluent: petroleum ether/EtOAc = 30/1 to 10/1) to afford **S7** (522.0 mg, 60 %) as a colorless oil.^[8]

To a solution of **S7** (348.0 mg, 2.0 mmol) in anhydr. DCM (10.0 mL) was added CBr₄ (796.0 mg, 2.4 mmol) and PPh₃ (631.0 mg, 2.4 mmol). The reaction mixture was stirred under argon for 2 h. Then the solvent was removed *in vacuo*. The crude product was purified by column chromatography with pure petroleum ether to afford **S8** (426.0 mg, 90%).^[9]

Methyl cyclopentanecarboxylate (0.17 mL, 1.36 mmol) was added to a solution of LDA [generated in situ from *n*-BuLi (0.625 mL in *n*-Hexane, 2.4 M, 1.5 mmol) and diisopropylamine (0.2 mL, 1.5 mmol) in THF (20.0 mL)] at -78 °C and the resulting mixture was stirred under the same conditions for 45 min. To the resulting solution was added **S8** (355.5 mg, 1.5 mmol) at -78 °C. Upon completion, the solution was warmed to room temperature and stirred overnight. CH₂Cl₂ (5.0 mL) was added and the resulting biphasic mixture washed with water (3 × 5.0 mL), dried (Na₂SO₄) and

concentrated. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 100/1 to 50/1) to give **S9** (340.8 mg, 80%) as a liquid.

To a suspension of LiAlH₄ (76.0 mg, 2.0 mmol) in Et₂O (5.0 mL) at 0 °C was slowly added a solution of **S9** (284.0 mg, 1.0 mmol) in Et₂O (5.0 mL). Upon completion, the mixture was warmed to room temperature and stirred for additional 2 h. The reaction mixture was quenched by slow, portionwise addition of water (0.1 mL) in Na₂SO₄ (0.8 g) at 0 °C. Then the reaction mixture was warmed to room temperature, stirred for additional 30 minutes, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20/1 to 5/1) to give **4** (204.8 mg, 80%) as a colorless oil.

(1-(2-(2-phenylcyclopropyl)allyl)cyclopentyl)methanol (4)

¹**H** NMR (400 MHz, CDCl₃) δ 7.27–7.24 (m, 2H), 7.17–7.13 (m, 1H), 7.08–7.06 (m, 2H), 4.75 (d, J = 5.6 Hz, 2H), 3.41 (s, 2H), 2.35–2.26 (m, 2H), 1.95–1.90 (m, 1H), 1.65–1.42 (m, 9H), 1.25–1.14 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 149.2, 142.7, 128.3, 125.6, 125.5, 108.9, 68.1, 48.0, 45.2, 34.9, 34.8, 29.1, 27.5, 24.6, 24.5, 17.7.

HRMS (ESI) m/z calcd. for $C_{18}H_{25}O [M + H]^+ 257.1900$, found 257.1895.

Radical clock experiment: Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **4** (0.1 mmol, 1.0 equiv), Togni's reagent **2b** (47.7 mg, 0.15 mmol, 1.5 equiv), CuBH₄(PPh₃)₂ (6.0 mg, 0.01 mmol, 10 mol %), chiral phosphoric acid (*R*)-**A6** (9.0 mg, 0.015 mmol, 15 mol %), **P1** (2.3 mg, 0.013 mmol, 13 mol %), and AcO*i*Pr/*c*-Hexane (9:1, 1.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C for 3 d. The reaction mixture was concentrated and the residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5/1) to give **6** (17.2 mg, 30%) as a colorless oil. *Note: Since the reaction is sensitive to water and air, the Schlenk tube and the*

reagents must be dried prior to use.

6,6,6-trifluoro-4-((1-(hydroxymethyl)cyclopentyl)methyl)-1-phenylhex-3-en-1-yl 2-iodobenzoate (6)

¹**H** NMR (500 MHz, CDCl₃) δ 8.03–8.01 (m, 1H), 7.88 (dd, J = 7.8, 1.6 Hz, 0.8H), 7.85 (dd, J = 7.8, 1.6 Hz, 0.2H), 7.49–7.35 (m, 6H), 7.18 (td, J = 7.7, 1.7 Hz, 1H),

6.06 (t, J = 6.7 Hz, 1H), 5.59 (t, J = 7.2 Hz, 1H), 3.31 (s, 0.4H), 3.16 (s, 1.6H), 2.98–2.77 (m, 4H), 2.27 (s, 0.4H), 2.21 (s, 1.6H), 1.67–1.28 (m, 8H).

¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 165.4, 141.5, 141.4, 139.34, 139.30, 134.8, 134.6, 132.8, 132.7, 131.1, 131.0, 130.2, 130.1, 129.6, 128.6, 128.5, 128.4, 128.2, 127.9, 126.7, 126.6, 126.3 (q, *J* = 276.6 Hz), 94.2, 67.4, 66.9, 48.8, 48.3, 43.5, 41.5 (q, *J* = 34.0 Hz), 36.6, 35.5, 35.4, 35.3, 35.0, 34.7, 34.6, 34.5, 24.2, 24.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.9 (t, J = 10.9 Hz), -64.7 (t, J = 10.9 Hz).

HRMS (ESI) m/z calcd. for $C_{26}H_{29}O_3F_3I [M + H]^+ 573.1108$, found 573.1106.

Substituent effect of pyridine on reaction performance (Figure S3a).

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1a** (11.5 mg, 0.05 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (3.0 mg, 0.005 mmol, 10 mol %), chiral phosphoric acid (*R*)-A6 (4.5 mg, 0.0075 mmol, 15 mol %), Lewis base (0.0065 mmol, 13 mol%), Togni's reagent **2a** (24.8 mg, 0.075 mmol, 1.5 equiv) and AcO*i*Pr (0.5 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. The reaction mixture was concentrated after 36 h. The yields were determined by ¹⁹F NMR spectroscopy using PhOCF₃ (8.1 mg, 0.05 mmol, 1.0 equiv.) as internal standard. The ee values were determined by HPLC after isolation of products by preparative TLC.

entry	additive	pKa
1	OMe	6.80, B. Uno, T. Kawakita, K. Kano, N. Okumura, M. Goto, T. Kubota, <i>Bull. Chem. Soc. Jpn.</i> 1994 , 67, 2304.
2	>-{	9.12, IH. Um, SJ. Hwang, MH. Baek, E. J. Park, <i>J. Org. Chem.</i> 2006 , <i>71</i> , 9191.
3	N CF3	0.60, predicted, retrieved in Scifinder
4	CF ₃	2.80, predicted, retrieved in Scifinder
5	CF ₃	2.63, M. Taagepera, W. G. Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, <i>J. Am. Chem. Soc.</i> 1972 , <i>94</i> , 1369.
6	N F	-0.43, I. T. Suydam, S. A. Strobel, J. Am. Chem. Soc. 2008, 130, 13639.
7	F	2.94, I. T. Suydam, S. A. Strobel, J. Am. Chem. Soc. 2008, 130, 13639.
8		4.95, H. P. Hopkins, Jr., D. V. Jahagirdar, P. S. Moulik, D. H. Aue, H. M. Webb, W. R. Davidson, M. D. Pedley, <i>J. Am. Chem.</i> <i>Soc.</i> 1984 , <i>106</i> , 4341.
9	NO ₂	1.39, M. Taagepera, W. G. Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, <i>J. Am. Chem. Soc.</i> 1972 , <i>94</i> , 1369.
10	OMe	3.25, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987, 109, 3040.
11	O N	3.40, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987 , 109, 3040.
12	¢ ↓ ↓ ∠	3.64, E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 1987 , 109, 3040.
13	O N N	3.35, A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964, 3591.
14	o L z	3.18, A. Bryson, J. Am. Chem. Soc. 1960, 82, 4871.
15	O Ph	3.18, A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964, 3591.
16	NH ₂	3.4, E. A. Castro, M. Cubillos, J. G. Santos, J. Org. Chem. 2004, 69, 4802.
17		3.13, predicted, retrieved in Scifinder
18		4.01, predicted, retrieved in Scifinder
19		5.37, E. A. Castro, M. Cubillos, J. G. Santos, <i>J. Org. Chem.</i> 2004 , <i>69</i> , 4802.

Table S1. References for pKa values of pyridine and its analogues

Retarding effect of pyridine on reaction rate (Figure S3b).

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1a** (46 mg, 0.2 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol %), chiral phosphoric acid (*R*)-**A6** (18.0 mg, 0.03 mmol, 15 mol %), with or without **P1** (4.6 mg, 0.026 mmol, 13 mol %), Togni's reagent **2a** (99.0 mg, 0.3 mmol, 1.5 equiv), PhOCF₃ (32.4 mg, 0.2 mmol, 1.0 equiv.) and AcO*i*Pr/*c*-Hexane (9:1, 2.0 mL) at 10 °C, and the sealed tube was then stirred at 10 °C. After 3 mins, the reaction mixture turned clear. The reaction progress was monitored by ¹⁹F NMR spectroscopy to determine the yields by taking 25 µL of the reaction mixture at specific time intervals (0.19, 0.38, 0.75, 1.5, 3, 6, 12, 24 h for reaction without pyridine; 0.19, 0.38, 0.75, 1.5, 3, 6, 12, 24 and 48 h for reaction with pyridine) and dissolving it in CDCl₃.

Ee of products measured at different time points during reaction (Figure S3c)

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1a** (46 mg, 0.2 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol %), chiral phosphoric acid (*R*)-**A6** (18.0 mg, 0.03 mmol, 15 mol %), **P1** (4.6 mg, 0.026 mmol, 13 mol %), Togni's reagent **2a** (99.0 mg, 0.3 mmol, 1.5 equiv) and AcO*i*Pr/*c*-Hexane (9:1, 2.0 mL) at 25 °C, and the sealed tube was then stirred at 25 °C. After 3 mins, the reaction mixture turned clear. The ee values at different time points during reaction were measured by taking 100 µL of the reaction mixture each time for preparative TLC purification and HPLC analysis.

Transformation

Synthesis of **S3V**: Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **3V** (93.6 mg, 0.3 mmol), 2,4-dinitrophenylhydrazine (59.4 mg, 0.3 mmol), AcOH (3.6 mg, 0.06 mmol) and EtOH (3 mL). The sealed tube was then stirred at 80 °C for 6 h. The reaction mixture was concentrated and the residue was purified by silica gel column chromatography (eluent: DCM/MeOH = 5/1) to give **S3V** (125.5 mg, 85%) as a red solid.

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 370 nm), *t*_R (major) = 52.44 min, *t*_R (minor) = 49.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 11.34 (s, 1H), 9.16 (d, J = 2.5 Hz, 1H), 8.38 (dd, J = 9.5, 2.2 Hz, 1H), 8.16–8.10 (m, 2H), 7.83 (s, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.50–7.43 (m, 2H), 3.85 (d, J = 8.4 Hz, 1H), 3.71 (d, J = 8.4 Hz, 1H), 2.75 (d, J = 10.6 Hz, 1H), 2.70 (d, J = 10.7 Hz, 1H), 2.43 (d, J = 12.8 Hz, 1H), 2.36 (d, J = 12.8 Hz, 1H), 1.68–1.50 (m, 7H), 1.39–1.33 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 148.1, 146.4, 144.8, 138.2, 133.0, 130.0, 129.3, 128.8, 128.1, 126.2, 125.2 (q, *J* = 276.9 Hz), 124.7, 123.5, 116.8, 82.9 (q, *J* = 1.9 Hz), 78.9, 52.3, 51.1, 46.1 (q, *J* = 25.9 Hz), 37. 8, 37.3, 24.7, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –60.3 (t, *J* = 10.6 Hz).

HRMS (ESI) m/z calcd. for $C_{23}H_{22}N_4O_5F_3$ [M – H]⁺ 491.1548, found 491.1552.

References

- [1] N.-Y. Yang, Z.-L. Li, L. Ye, B. Tan, X.-Y. Liu, Chem. Commun. 2016, 52, 9052.
- [2] X. Yan, X. Cui, L.-S. Li, J. Am. Chem. Soc. 2010, 132, 5944.
- [3] L. Zhou, J. Chen, C. K. Tan, Y.-Y. Yeung, J. Am. Chem. Soc. 2011, 133, 9164.
- [4] J. Mo, L. Xu, J. Ruan, S. Liu, J. Xiao, Chem. Commun. 2006, 3591.
- [5] J. Li, J. P. He, ACS Macro Lett. 2015, 4, 372.
- [6] J. A. Ciaccio, C. E. Aman, Synth. Commun. 2006, 36, 1333.
- [7] S. Ahmad, S. C. Wu, S. V. O'Neil, K. Ngu, K. S. Atwal, WO0127107A2. 2001.
- [8] N. De Rycke, J. D. St Denis, J. M. E. Hughes, K. A. Rosadiuk, J. L. Gleason, Synlett 2014, 25, 2802.
- [9] P. B. Huleatt, M. L. Khoo, Y. Y. Chua, T. W. Tan, R. S. Liew, B. Balogh, R. Deme, F. Gölöncsér, K. Magyar, D. P. Sheela, H. K. Ho, B. Sperlágh, P. Mátyus, C. L. L. Chai, *J. Med. Chem.* 2015, 58, 1400.

NMR Spectra of New Compounds

-70 -80 f1 (ppm)

-90

-100

-110

-120

-130

-140

-150

0

-10

-20

-30

-40

-50

-60

 $\underbrace{ \left\{ \begin{smallmatrix} +60.718 \\ -60.747 \\ -60.775 \end{smallmatrix} \right\} }_{-60.775}$

 $\underbrace{ \{ -60.123 \\ -60.151 \\ -60.180 \\ -60.180 \\ \} }_{-60.180}$

90 80 f1 (ppm)
$\underbrace{\{+60.252\}_{-60.281\}_{-60.309\}$

S74

S75

-60.248 -60.276 -60.304

S78

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.001	BB	0.2631	2192.45459	127.20431	49.9179
2	16.286	BB	0.3049	2199.66406	110.20741	50.0821
Tota	ls :			4392.11865	237.41172	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.462	BB	0.2891	1184.07837	62.46677	96.2962
2	16.934	BB	0.3193	45.54252	2.14847	3.7038
Tota]	ls :			1229.62089	64.61523	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	10.235	BB	0.2275	4896.98535	325.47366	96.6533
2	14.484	BB	0.2917	169.56030	8.84221	3.3467
Total	ls :			5066.54565	334.31588	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.550	BB	0.1538	2172.76050	215.23274	49.9055
2	9.239	BB	0.1914	2180.99292	174.98257	50.0945

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	7.884 9.241	BB BB	0.1888 0.1930	2673.96143 135.18243	215.42506 10.73204	95.1878 4.8122
Total	s :			2809.14386	226.15710	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.575	VB	0.0896	1551.50708	267.85944	49.9028
2	5.515	BB	0.1035	1557.55139	234.53851	50.0972

Totals :

3109.05847 502.39795

Totals :	3963,88246	692,79861

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak Re # [tTime min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	 5.703 6.455	· BV VB	0.1178 0.1493	2295.92920 123.00082	291.85461 12.23243	94.9151 5.0849
Totals	:			2418.93002	304.08705	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.066	BV	0.1072	937.63562	134.71248	49.9314
2	6.618	VB	0.1137	940.21167	125.05933	50.0686

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.304	BV	0.1099	1017.49957	141.43526	89.9596
	6.978	VB	0.1172	113.56362	14.52431	10.0404

Totals :

1131.06319 155.95957

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTi	ime Type	Width	Area	Height	Area
# [mir]	[min]	[mAU*s]	[mAU]	%
1 9.5	599 BV	0.1934	5505.76123	441.74200	97.4606
2 10.3	897 VB	0.2155	143.45569	10.11380	2.5394

Totals : 5649.21692 451.85580

4

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

5

Area

[min] [mAU*s]

0.1195 19.32079

6

Height

[mAU]

2.46238

0.1042 690.75647 103.10551 97.2791

710.07726 105.56789

Area

%

2.7209

min

3

Peak RetTime Type Width

2

[min]

2

Totals :

1 5.293 VB

6.251 BB

ò

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.842	BB	0.5462	6940.84961	183.93640	49.8134
2	16.036	BB	0.6795	6992.85791	149.01588	50.1866
Tota]	ls :			1.39337e4	332.95229	

otals :	3119.31380	176.73451

2 6.829 VB 0.1374 392.57413 42.63604	ł .
--------------------------------------	-----

Totals	:	

1.07751e4 1267.52739

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	48.429	BB	1.0252	3682.18457	54.15947	49.4735
2	51.850	BB	1.0464	3760.55151	54.67761	50.5265
Tota]	ls :			7442.73608	108.83708	

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 49.547 MM R	1.4798	290.23489	3.26881	3.7403
2 52.436 BB	1.1617	7469.38623	96.21148	96.2597
Totals :		7759.62112	99.48029	