

Supporting Information

Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C–H Bonds

Liu Ye+, Yu Tian+, Xiang Meng, Qiang-Shuai Gu, and Xin-Yuan Liu*

anie_201911742_sm_miscellaneous_information.pdf

Supporting Information

Table of contents

Tables S1-S4, Figures S1-S3, Schemes S1-S2	S2
General Information	S13
Experimental Section and Characterization Data of Substrates	S13
Procedure for Enantioselective Radical Allylic C-H Amination under	S35
Conditions A and Conditions B	
Characterization Data of Products 2	S36
Procedure for Enantioselective Radical Benzylic C-H Amination	S41
Characterization Data of Products 4	S43
Preparative Scale Reaction and Transformation	S53
Mechanistic Studies	S55
References	S61
NMR Spectra of new compounds	S62
HPLC spectra of products	S115

Table S1 Optimization of reaction conditions of enantioselective allylic C–H bond amination^{*a*}

 [(F	PG NH H H Ia $R)-C3: Ar = 4$	O O P O O P O O P O O P O O P O O P O O P O O P O O O P O O O O O O O O O O	/le oxidant (2.0	nol%), additive) equiv), DCM t, 36 h 	2 2	a CF ₃ CF ₃ O N-OH	OMe
entry	[Cu]	CPA	R-NHPI	oxidant	additive	yield(%) ^b	er ^c
1	CuTc	(<i>R</i>)-C1		O2 , O1 <i>etc</i>		0	N.A.
2	CuTc	(<i>R</i>)-C1	NHPI	02		64	60:40
3	CuTc	(<i>R</i>)-C1	4-Me-NHPI	02		50	71:29
4	CuTc	(<i>R</i>)-C1	4-OMe-NHPI	02		72	75:25
5	CuTc	(<i>R</i>)-C2	4-OMe-NHPI	02		78	69:31
6	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	02		72	87:13
7	CuTc	(R)-C3	4-OMe-NHPI	01		79	88:12
8	CuTc	(R)-C3	4-OMe-NHPI	03		82	86:14
9	CuTc	(R)-C3	4-OMe-NHPI	04		60(75)	86:14
10	CuTc	(R)-C3	4-OMe-NHPI	03	ZnO(1.5)	77	87:13
11^d	CuTc	(R)-C3	4-OMe-NHPI	03	ZnO(1.5)	65	90:10
12^{d}	CuOAc	(R)-C3	4-OMe-NHPI	03	ZnO(1.5)	76 ^{<i>h</i>}	93:7
$13^{d,e}$	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	70	93:7
14 ^f	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	60(90)	93:7
15 ^f	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03		45(70)	83:17
16 ^{<i>d</i>}		(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	0	N.A.
17^{d}	CuOAc	(R)-C3 ^g	4-OMe-NHPI	03		76 ^h	95:5

^{*a*} Reaction was performed on a 0.025 mmol scale. ^{*b*} Ratio was determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. ^{*c*}er value was determined by HPLC. ^{*d*} Reaction temperature was 10 °C, 72 h. ^{*e*} 30% mol (*R*)-C3 were added. ^{*f*} Reaction temperature was 0 °C.^{*g*}15% mol of [(R)-C₃]₂Zn was used. ^{*h*} Isolated yield. Reaction conversion was shown in parentheses. CuTc = Copper thiophene-2-carboxylate. N.A. = not available.

	PG NH H		(10 mol%), CPA (20 NHPI (20 mol%), ad ixidant (2.0 equiv), E Ar, rt, 36 h	ditive 🖌 🗡	PG J 2a Ar	Ar = 3-0Me-0	C ₆ H₄;
H ₈ -BIN	OL-CPAs:	٨٣	(
		`OH	,	kidant: 0 R = Bn, O1 R = cycloper 0 R = Me, O3 R = Et, O4		PG = CF Q R	CF ₃
entry	[Cu]	CPA	R-NHPI	oxidant	additive	yield(%) ^b	er^c
1	CuTe	(<i>R</i>)-C1		02, 01,		0	N.A.
				LPO,			
				DTBP,			
				PIDA, etc.			
2	CuTc	(<i>R</i>)-C1	NHPI	02		64	60:40
3	CuTc	(<i>R</i>)-C1	4-Me-NHPI	02		50	71:29
4	CuTc	(<i>R</i>)-C1	4-OMe-NHPI	02		72	75:25
5	CuTc	(<i>R</i>)-C2	4-OMe-NHPI	02		78	69:31
6	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	02		72	87:13
7	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	01		79	88:12
8	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03		82	86:14
9	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	04		60(75)	86:14
10	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	CaO(1.5)	69	84:16
11	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	MgO(1.5)	63	90:10
12	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	77	87:13
13 ^d	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	MgO(1.5)	65	83:17
14^d	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	75	90:10
15^{d}	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.0)	70	91:9
16^{d}	CuTc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(0.5)	62(85)	92:8
17^{d}	CuOAc	(<i>R</i>)-C3	4-OMe-	03	ZnO(1.5)	40(60)	91:9
			NHPI(10%)				
18^{d}	CuOAc	(<i>R</i>)-C3	4-OMe-	03	ZnO(1.5)	63(90)	91:9
-			NHPI(30%)				
19 ^d	CuOAc		4-OMe-NHPI	03	ZnO(1.5)	25(50)	N.A.
20^{d}	CuOAc		4-OMe-NHPI	03		18(40)	N.A.
21^{d}	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	76	93:7
22 ^e	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	60(90)	93:7
23 ^d	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	70	93:7

Table S2 Detailed screening of reaction conditions of enantioselective allylic C–H bond amination.

		(30%)					
24^d	CuOAc	(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	60(90)	93:7
25^d		(<i>R</i>)-C3	4-OMe-NHPI	03	ZnO(1.5)	0	N.A.
26^d	CuOAc	(R) -C 3^{f}	4-OMe-NHPI	03		76	95:5
		(15%)					
27^d	CuOAc	(R)-C3 ^f	4-OMe-NHPI	03		74	95:5
		(20%)					
28^d	CuOAc	(R) -C 3^{f}	4-OMe-NHPI	03		74	93:7
		(10%)					

^{*a*} Reaction was performed on a 0.025 mmol scale. ^{*b*} Ratio was determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. ^{*c*}er value was determined by HPLC. ^{*d*} Reaction temperature was 10 °C, 72 h. ^{*e*} Reaction temperature was 0 °C. ^{*f*}(*R*)-**C3** was pre-treated with 0.5 equiv. of ZnEt₂. ^{*g*} Isolated yield. Reaction conversion was shown in parentheses. N.A. = not available.

 \checkmark	PG NH H H 1a	u] (10 mol%), CP <u>R-NHPI (20 mol%</u> O3 (2.0 equiv Ar, rt, 36	6), additive 🔶 🔶	PG PG 2a	(Ar = 3-0N	Ле-С ₆ Н ₄)
-BINOL-C	O P O (R)-C O P OH (R)-C	1: Ar = Ph 2: Ar = 4-OMe-Ph 3: Ar = 4-CF ₃ -Ph	Oxidant: O R = Bn, C R = cyclo $R = cyclo R = Me,R = Et, C$	pentyl, O2 O O O O R	PG = O X2 N R T R R-NHI	CF ₃ CF ₃ O N-OH
entry	[Cu]	CPA	R-NHPI	additive	yield(%) ^b	er ^c
1	CuTc	(R)-C3	4-OMe-NHPI	ZnO(1.5)	65	91:9
2	CuCN	(R)-C3	4-OMe-NHPI	ZnO(1.5)	30(50)	80:20
3	CuBr	(<i>R</i>)-C3	4-OMe-NHPI	ZnO(1.5)	78	89:11
4	CuCl	(R)-C3	4-OMe-NHPI	ZnO(1.5)	72	90:10
5	Cu ₂ S	(R)-C3	4-OMe-NHPI	ZnO(1.5)	28(40)	72:28
6	CuOAc	(R)-C3	4-OMe-NHPI	ZnO(1.5)	76	93:7
7^c	CuOAc(15%)	(<i>R</i>)- C3 (30%)	4-OMe-NHPI	ZnO(1.5)	68(90)	90:10
8^d	CuOAc(5%)	(<i>R</i>)- C3 (10%)	4-OMe-NHPI	ZnO(1.5)	62(80)	92:8
9^d	CuOAc(5%)	(R)-C3(15%)	4-OMe-NHPI	ZnO(1.5)	60(78)	85:15
10^d	CuOAc(10%)	(<i>R</i>)- C3 (10%)	4-OMe-NHPI	ZnO(1.5)	60(78)	90:10
11^d	CuOAc(10%)	(R)-C3(15%)	4-OMe-NHPI	ZnO(1.5)	60(80)	87:13
12^{d}	CuOAc(15%)	(<i>R</i>)- C3 (10%)	4-OMe-NHPI	ZnO(1.5)	61(81)	82:18
13 ^{<i>d</i>}	CuOAc(10%)	(<i>R</i>)-C3(25%)	4-OMe-NHPI	ZnO(1.5)	60(80)	92:8

Table S3 Reaction conditions screening of enantioselective allylic C-H bond amination

^{*a*} Reaction was performed on a 0.025 mmol scale. ^{*b*} Ratio was determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. ^{*c*}-5 °C. ^{*d*} 0 °C. Reaction conversion was shown in parentheses. N.A. = not available.

Table S4 Optimization of reaction conditions of enantioselective benzylic C–H bond amination^{*a*}

	$\begin{array}{c} PG \\ NH \\ H \\ H \\ Ph \end{array} \begin{array}{c} CuTc, (R)-C3 \\ NHPI, ZnO \\ oxidant, DCM \\ 20 ^{\circ}C, Ar, 72 h \end{array} \begin{array}{c} N \\ Aa \end{array}$	+ L	N ^{PG} H H O + PINO Ph 5B	(a)
\ 	PG CuTc (10 mol%) (<i>R</i>)-C3 (20 mol%) R-NHPI (35 mol%) O4 (2.0 equiv.) ZnO (1.5 equiv.), DCM (0.01 M) 20 °C, Ar, 72 h	Aa PG +	PG H O 5A	PINO 5B
CPA:	Ar $Original (R)-C1: Ar = Ph$ $(R)-C2: Ar = 4-OMe-Ph$ $(R)-C3: Ar = 4-CF_3-Ph$ Ar	dant: O R = Bn, O1 R = cyclopen R = Me, O3 R = Et, O4	$PG = 0$ $\frac{2}{2} N$ $R + R$ $R + R$ $R + R$	CF ₃ CF ₃ O N-OH
entry	Variation from standard conditions	Conv. (%)	Yield of $2a/(5A/5B)^b$	ee (%) ^c
1	without 4-OMe-NHPI	<5%	trace(-/-)	N.A.
2	NHPI instead of 4-OMe-NHPI	40	1/2.8	87
3	4-Me-NHPI instead of 4-OMe-NHPI	42	1/2.0	92
4	3-F-NHPI instead of 4-OMe-NHPI	50	1/1.5	70
5	O1 instead of O4	40	30(6/4)	70
6	O2 instead of O4	42	33(4/2)	85
7	O3 instead of O4	43	34(6/4)	81
8	without (R) -C3	20	10(4/5)	N.A.
9	(R)-C1 instead of (R) -C3	30	24(2/3)	84
10	(<i>R</i>)-C2 instead of (<i>R</i>)-C3	34	27(4/-)	81
11	none	35	30(2/-)	94
12	without ZnO	20	15(3/-)	86
13^d	$(CPA)_2$ Zn instead of (<i>R</i>)-C3 and ZnO	30	22(2/-)	98
14	without CuTc	<5%	trace(-/-)	N.A.
15^{e}	4-OMe-NHPI (1.0 equiv), O4 (3.0	55	$40(-/-)(67^{f})$	90
16 ^{<i>d,g</i>}	equiv) 4-OMe-NHPI (1.0 equiv), O4 (3.0 equiv)	50	38(3/4)(76 ^f)	88

^{*a*} Reaction was performed on a 0.025 mmol scale. ^{*b*} Ratio was determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. ^{*c*}ee value on HPLC. ^{*d*} Zinc phosphate (20 mol%) was used. ^{*e*} (*R*)-C3 (5 mol%) was added at 12 h and 36 h respectively and NaSbF₆ (1.0 equiv) was added.

Reaction was performed on a 0.1 mmol scale and reaction time was 7 days. ^{*f*}Isolated yield in parentheses was based on recovered starting material. ^{*g*} (*R*)-C3 (5 mol%) was added at 18 h and 40 h respectively. Reaction was performed on a 0.1 mmol scale and reaction time was 7 days. N.A. = not available.

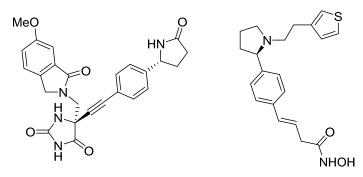
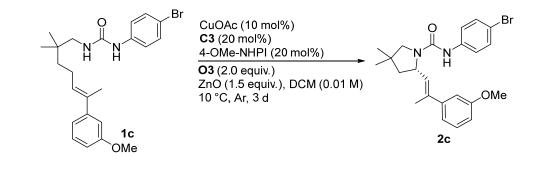



Figure S1 Bioactive molecules containing chiral α-aryl pyrrolidines with olefin or alkyne functional groups at para position

ee of C3 (%)	1^{st} run ee 2c (%)	2 nd run ee 2c (%)	3 rd ee 2c (%)	average (%)
0	-3.1	-1.0	4.3	0.07
20(R)	25.9	26.6	27.0	26.5
40(R)	55.3	51.9	53.0	53.4
60(R)	66.5	66.4	63.0	65.3
80(<i>R</i>)	77.0	75.7	76.0	76.2
99(<i>R</i>)	86.0	86.0	86.0	86.0

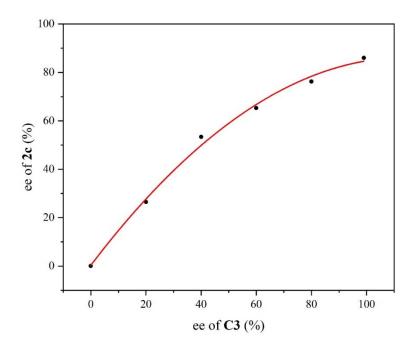
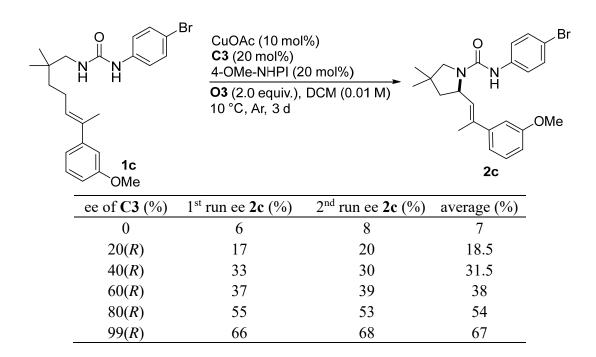
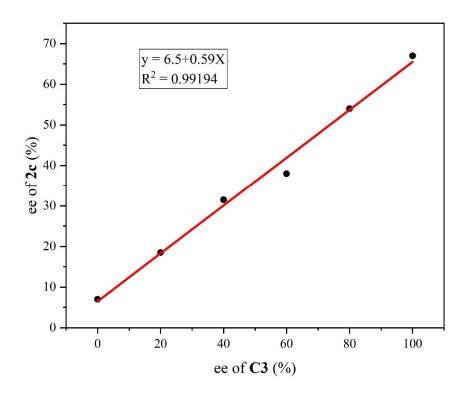
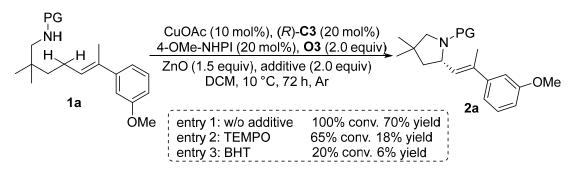
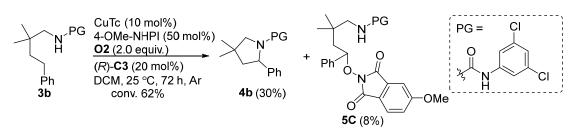
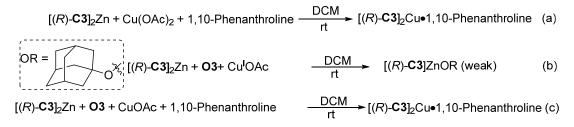
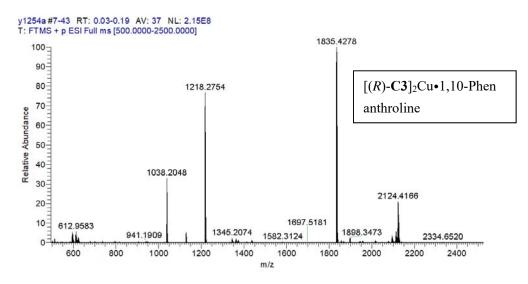



Figure S2 Non-linear effect experiments in the presence of ZnO

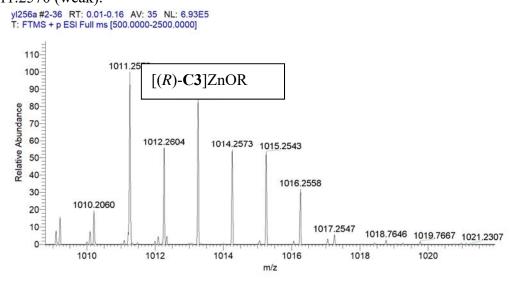





Figure S3 Linear effect experiments without ZnO

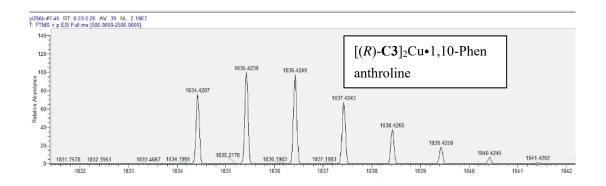
Scheme S1 Control experiments with radical inhibitors



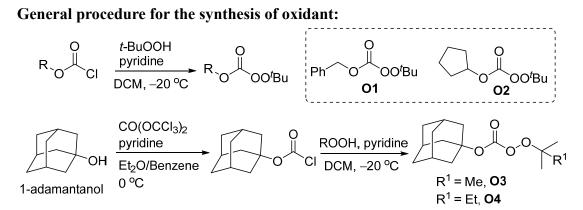
Scheme S2 Benzylic C-H amination of 3b



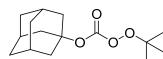
Scheme S3 Transmetallation between Cu(II) and (CPA)₂Zn


Scheme S3-a: To a flame-dried Schlenk tube equipped with a magnetic stir bar were added [(R)-C3]₂Zn (6.23 mg, 1.5 equiv.), Cu(OAc)₂ (0.46 mg 1.0 equiv.) and 1,10-Phenanthroline (0.54 mg, 1.2 equiv.). The tube was evacuated and backfilled with argon for three times, then dry DCM (0.5 mL) was added *via* syringe. The tube was stirred at rt overnight. The reaction mixture was evaporated and the sample was analyzed by ESI-MS. The following peaks were observed: **HRMS** (ESI) m/z calcd. for C₁₀₄H₇₇F₁₂N₂O₈P₂Cu [M+H]⁺ 1834.4254, found 1834.4246.

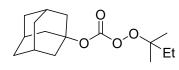
Scheme S3-b: To a flame-dried Schlenk tube equipped with a magnetic stir bar were added [(R)-C3]₂Zn (8.3 mg, 1.5 equiv.), CuOAc (0.62 mg 1.5 equiv.) and O3 (0.9 mg, 1.0 equiv.). The tube was evacuated and backfilled with argon for three times, then dry DCM (0.5 mL) was added *via* syringe. The tube was stirred at rt for 3 h. The reaction mixture was evaporated and the sample was analyzed by ESI-MS. The following peaks were observed: **HRMS** (ESI) m/z calcd. for C₅₆H₅₀F₆O₅PZn [M+H]⁺ 1011.2586, found 1011.2570 (weak).



Scheme S3-c: To a flame-dried Schlenk tube equipped with a magnetic stir bar were added [(R)-C3]₂Zn (8.3 mg, 1.5 equiv.), CuOAc (0.62 mg 1.5 equiv.), O3 (0.9 mg, 1.0 equiv.) and 1,10-Phenanthroline (1.5 mg, 2.5 equiv.). The tube was evacuated and backfilled with argon for three times, then dry DCM (0.5 mL) was added *via* syringe. The tube was stirred at rt for 3 h. The reaction mixture was evaporated and the sample was analyzed by ESI-MS. The following peaks were observed: HRMS (ESI) m/z calcd. for C₁₀₄H₇₇F₁₂N₂O₈P₂Cu [M+H]⁺ 1834.4254, found 1834.4214.

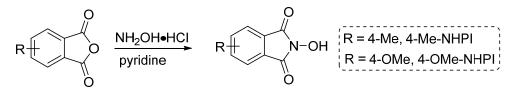

General information

All reactions were carried out under argon (Ar) atmosphere using Schlenk techniques with magnetic stirring. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuTc and CuOAc were purchased from TCL. Chiral phosphoric acids (CPAs) were purchased from Daicel Chiral Technologies (China). Dichloromethane was purchased anhydrous from JK and transferred under an argon atmosphere. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR in CDCl₃ with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). ¹⁹F NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer [CFCl₃ as an external reference (0 ppm)]. HMRS were obtained on a Bruker Apex IV RTMS. The blue LEDs were directly got from the supermarket.

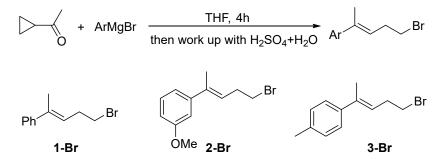

O1 and **O2** were prepared directly from the corresponding benzyl carbonochloridate and cyclopentyl carbonochloridate in 80% and 85% yields, respectively according to reference¹ and the data are consistent with those reported in the literature.

O3 and O4 were prepared from 1-adamantanol via two steps according to reference².

O3, 70% yield from 1-adamantanol, ¹H NMR (400 MHz, Chloroform-d) δ 2.25 – 2.17 (m, 3H), 2.14 (d, J = 3.2 Hz, 6H), 1.67 (t, J = 3.1 Hz, 6H), 1.32 (s, 9H). ¹³C NMR (101


MHz, CDCl₃) δ 152.4, 84.3, 83.5, 41.0, 35.9, 31.0, 25.9. **HRMS** (ESI) m/z calcd. for C₁₅H₂₄NaO₄ [M+H]⁺ 291.1563, found 291.1567.

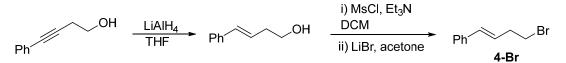
O4, 60% yield from 1-adamantanol, ¹H NMR (400 MHz, Chloroform-d) δ 2.21 (s, 3H), 2.16 – 2.09 (m, 6H), 1.70 – 1.58 (m, 8H), 1.26 (s, 6H), 0.96 – 0.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 85.9, 84.3, 47.7, 41.0, 35.9,


31.1, 23.5, 8.2. HRMS (ESI) m/z calcd. for $C_{16}H_{26}NaO_4 [M+H]^+$ 305.1723, found 305.1721.

General procedure for the synthesis of R-NHPI.

4-Me-NHPI and 4-OMe-NHPI were prepared directly from the corresponding 5methylisobenzofuran-1,3-dione and 5-methoxyisobenzofuran-1,3-dione in 85% and 82% yields, respectively according to reference³. Data are consistent with those reported in the literature.

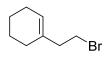
General procedure for the synthesis of homoallylic bromide.


Tri-substituted homoallylic bromides (1-Br to 3-Br) were prepared according to reference⁴.

A flame-dried 50-mL Schlenk flask was evacuated and flushed three times with nitrogen, and then charged with (3-methoxyphenyl)magnesium bromide (60 mmol, 1.0 M in THF, generated in situ from 1-bromo-3-methoxybenzene and magnesium). The solution was cooled to 0 °C, after which a solution of 1-cyclopropylethanone (4.26 mg, 50 mmol, 1 equiv) was added. The resulting solution was warmed up to room temperature and stirred for 4 h. The mixture was cooled to 0 °C, and then a mixture of H₂SO₄ and H₂O (H₂SO₄:H₂O = 1:1, v/v, 16 mL) was added. The resulting mixture was stirred for 30 min at room temperature and extracted with EtOAc (50 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated

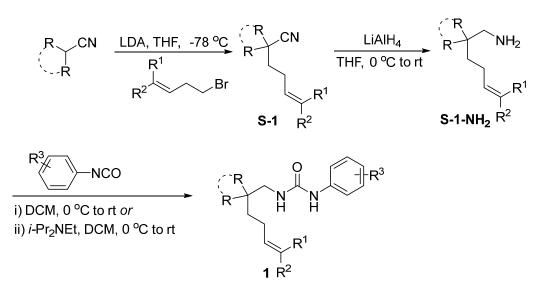
in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: PE) to afford the final product **2-Br** (10.4 g, 68% yield).

1-Br and **3-Br** were prepared according to the similar procedure in 62% and 71% yields, respectively.


Di-substituted homoallylic bromides 4-Br was prepared according to procedure reported in the reference⁵.

To a three necked flask, THF (60 mL) and LiAlH4 (3.8 g, 100 mmol) were added. This solution was cooled at 0 °C, and 4-phenylbut-3-yn-1-ol (2.92 g, 20 mmol) in THF (10 mL) was dropped to the mixture over 15 min. After refluxing for 18 h, the reaction mixture was quenched with 1N NaOH (10 mL) at 0 °C. This mixture was filtered, and the filtrate was dried (MgSO4). The solvent was evaporated, and the residue was purified by column chromatography (eluent: hexane/ethyl acetate = 80:20) to give the alcohol product (2.84 g, 96%).

To an ice cooled solution of above alcohol (9.1 mmol) and Et₃N (1.9 mL, 13.7 mmol) in dry DCM (20 ml) was added methanesulfonyl chloride (0.8 mL, 10 mmol) *via* syringe at 0 °C under argon atmosphere. The mixture was stirred for 45 min at 0 °C before the reaction was quenched with H₂O. The organic materials were washed with saturated NaHCO₃ aqueous solution, then extracted twice with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo after filtration.


The resulting crude material was dissolved in acetone (40 mL) before addition of lithium bromide (3.6 g, 41 mmol) at 0 °C. The mixture was stirred at 50 °C for 5 h. The reaction was then cooled to room temperature and acetone was removed under reduced pressure. The resulting residue was diluted with H₂O and the organic materials were extracted thrice with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo after filtration. The resulting residue was purified by flash column chromatography (petroleum ether/ ethyl acetate =100/1-30/1) to give the **4-Br** (1.63 g, 7.7 mmol) in 80% overall isolated yield in 2 steps.

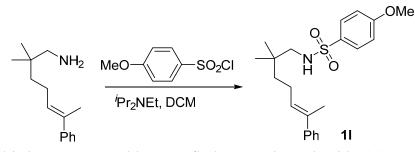
5-Br

5-Br was prepared according to reference and the data are consistent with those reported in the literature⁶.

General procedure for the synthesis of alkenyl urea substrates 1.

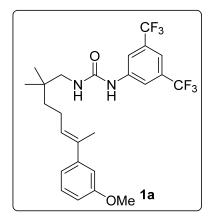
To a two-neck round bottom flask containing diisopropylamine (2.0 mL, 13.3 mmol) in dry THF (15 mL) cooled to -78 °C was added dropwise *n*-BuLi (5.6 mL, 2.4 M, 13.3 mmol). The solution was stirred at -78 °C for 30 min. A solution of isobutyronitrile (1.0 mL, 11.1 mmol) was added dropwise and the solution was stirred at -78 °C for further 30 min. To the reaction mixture was added dropwise a solution of homoallylic bromide (12.2 mmol) in dry THF (5.0 mL). Upon completion of the addition, the reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched by adding saturated aqueous NH4Cl (20 mL), and the mixture was extracted three times with Et₂O. The combined organic extracts were washed with water and brine. After drying with MgSO₄ and removal of the solvents under reduced pressure, the resulting crude material was purified by flash column chromatography to yield the corresponding products **S**-1⁷.

The following reduction of S-1 by LiAlH₄ and reaction with aryl isocyanate were performed according to procedures reported in the reference⁸.


Reduction of S-1: To a suspension solution of LiAlH₄ (10.0 mmol) in anhydrous THF (20.0 mL) was slowly added S-1 (5.0 mmol) in dry THF (5.0 mL) in ice-bath under Argon. Then the mixture was warmed to room temperature, and stirred for an additional 2 hours. The reaction mixture was quenched by slow, sequential addition of water (0.5 mL) in Na₂SO₄ (4.0 g) at 0 °C. The reaction mixture was warmed to room temperature, stirred for an additional 30 minutes, filtered and concentrated *in vacuo* to afford corresponding products S-1-NH₂, which was directly used in the next reaction without further purification.

Synthesis of urea substrate 1a. To a stirred solution of S-1a-NH₂ (2.0 mmol) in dry DCM (5.0 mL) was slowly added 1-isocyanato-3,5-bis(trifluoromethyl)-benzene (2.0 mmol) at 0 °C. Then, the reaction mixture was stirred for an additional 15 min at 0 °C. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography and dried under reduced pressure to afford 1a (0.60 g, 60%) as a white powder.

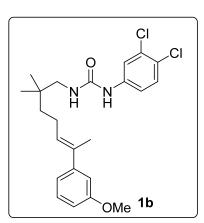
Synthesis of urea substrates 1b. 1,2-dichloro-4-isocyanatobenzene (2.0 mmol) was slowly added to a stirred solution of $S-2a-NH_2$ (2.0 mmol) (2.0 mmol) and ethyldiisopropylamine (*i*-Pr₂NEt, 2.0 mmol) in dry DCM (5.0 mL) at 0 °C. The reaction


mixture was stirred for an additional 15 min at 0 °C. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography to give urea substrate **1b** (0.48 g, 55%).

Procedure for the synthesis of substrate 11.

A flame-dried 25-mL round-bottom flask was charged with (*E*)-2,2-dimethyl-6phenylhept-5-en-1-amine (392 mg, 1.8 mmol) and ${}^{i}Pr_2NEt$ (0.62 mL, 3.6 mmol) in DCM (8.0 mL), 4-methoxybenzenesulfonyl chloride (447 mg, 2.16 mmol) was added. The resulting mixture was stirred at rt overnight, and the reaction mixture was quenched with saturated NaHCO₃ aqueous solution, then extracted twice with DCM. The combined organic extracts was washed with brine, dried over Na₂SO₄, and concentrated in vacuo after filtration. The crude mixture was directly purified by silica gel column chromatography to give substrate **11** (419 mg, 60% yield).

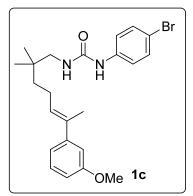
(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(6-(3-methoxyphenyl)-2,2-dimethylhept-5-en-1-yl)urea



1a, 60% yield, ¹**H NMR (400 MHz, Chloroform-***d***) \delta 7.78 (s, 1H), 7.73 (d,** *J* **= 1.5 Hz, 2H), 7.41 (t,** *J* **= 1.4 Hz, 1H), 7.20 (t,** *J* **= 7.9 Hz, 1H), 6.92 (ddd,** *J* **= 7.7, 1.8, 0.9 Hz, 1H), 6.87 (dd,** *J* **= 2.6, 1.7 Hz, 1H), 6.76 (ddd,** *J* **= 8.2, 2.6, 0.9 Hz, 1H), 5.68 (tq,** *J* **= 7.2, 1.4 Hz, 1H), 5.58 (t,** *J* **= 6.1 Hz, 1H), 3.79 (s, 3H), 3.12 (d,** *J* **= 6.0 Hz, 2H), 2.11 (dd,** *J* **= 10.7, 6.1 Hz, 2H), 1.96 (d,** *J* **= 1.3 Hz, 3H), 1.34 – 1.27 (m, 2H), 0.90 (s, 6H). ¹³C NMR (101 MHz, CDCl₃)** δ 159.4, 155.7, 145.3, 140.5, 134.6, 132.2 (q, *J*_{C-F} = 33.1 Hz), 129.2, 128.4, 123.1 (q, *J*_{C-F} = 271.0 Hz), 118.5, 118.2, 115.9 –115.7

(m, 1C), 111.7, 111.6, 55.2, 50.1, 39.4, 34.4, 24.7, 23.3, 15.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.27.

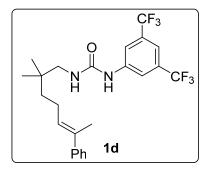
HRMS (ESI) m/z calcd. for $C_{25}H_{29}F_6N_2O_2$ [M+H]⁺ 503.2133, found 503.2137.


(*E*)-1-(3,4-dichlorophenyl)-3-(6-(3-methoxyphenyl)-2,2-dimethylhept-5-en-1-yl)urea

1b, 55% yield, ¹**H NMR (400 MHz, Chloroform-***d***) \delta 8.19 (s, 1H), 7.43 (d, J = 2.4 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 8.8 Hz, 1H), 6.94 (dd, J = 8.8, 2.4 Hz, 1H), 6.91 (dt, J = 8.0, 1.2 Hz, 1H), 6.86 (t, J = 2.0 Hz, 1H), 6.74 (ddd, J = 8.2, 2.4, 0.8 Hz, 1H), 6.05 (t, J = 6.0 Hz, 1H), 5.66 (td, J = 7.2, 1.6 Hz, 1H), 3.77 (s, 3H), 3.06 (d, J = 6.0 Hz, 2H), 2.11 – 2.05 (m, 2H), 1.95 (d, J = 1.2 Hz, 3H), 1.31 – 1.26 (m, 2H), 0.86 (s, 6H). ¹³C NMR (101 MHz, CDCl₃)** δ 159.5, 156.7, 145.3, 138.6, 134.6, 132.6, 130.3, 129.2, 128.5, 125.9, 121.2,

118.9, 118.2, 111.7, 111.7, 55.2, 50.1, 39.5, 34.5, 24.8, 23.4, 15.8. **HRMS** (ESI) m/z calcd. for C₂₃H₂₉Cl₂N₂O₂ [M+H]⁺ 435.1601, found 435.1599.

(E)-1-(4-bromophenyl)-3-(6-(3-methoxyphenyl)-2,2-dimethylhept-5-en-1-yl)urea

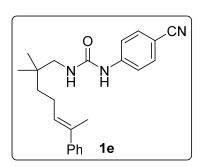

1c, 65% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.27 – 7.22 (m, 2H), 7.19 (t, *J* = 8.0 Hz, 1H), 7.11 – 7.09 (m, 2H), 6.91 (ddd, *J* = 7.8, 1.8, 1.0 Hz, 1H), 6.87 (dd, *J* = 2.8, 1.6 Hz, 1H), 6.75 (ddd, *J* = 8.0, 2.4, 0.8 Hz, 1H), 5.82 (t, *J* = 6.0 Hz, 1H), 5.69 – 5.65 (m, 1H), 3.78 (s, 3H), 3.04 (d, *J* = 6.0 Hz, 2H), 2.11 – 2.04 (m, 2H), 1.94 (d, *J* = 1.6 Hz, 3H), 1.31 – 1.21 (m, 2H), 0.84 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 159.5, 156.7, 145.4, 138.2, 134.5, 131.9, 129.2, 128.6, 121.4, 118.2, 115.5,

111.7, 111.6, 55.3, 50.0, 39.5, 34.5, 24.8, 23.4, 15.8.

HRMS (ESI) m/z calcd. for $C_{23}H_{30}BrN_2O_2$ [M+H]⁺ 445.1485, found 445.1483.

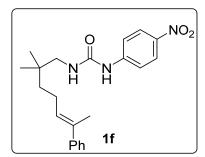
(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-6-phenylhept-5-en-1-yl)urea



1d, 62% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (s, 1H), 7.73 (s, 2H), 7.41 (s, 1H), 7.36 – 7.26 (m, 4H), 7.25 – 7.19 (m, 1H), 5.95 (t, J = 6.0 Hz, 1H), 5.71 – 5.67 (m, 1H), 3.15 (d, J = 6.0 Hz, 2H), 2.22 – 2.06 (m, 2H), 2.00 (d, J = 1.3 Hz, 3H), 1.42 – 1.29 (m, 2H), 0.92 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 156.2, 143.7, 140.4, 134.8, 132.2 (q, *J*_{C-F} = 33.1 Hz), 128.2, 128.0, 126.6, 125.5, 123.1 (q, *J*_{C-F} = 271.0 Hz), 118.5, 115.8, 50.2,

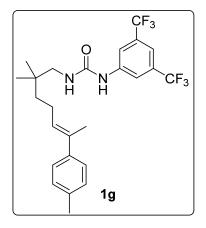
39.6, 34.4, 24.6, 23.3, 15.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31. HRMS (ESI) m/z calcd. for C₂₄H₂₇F₆N₂O [M+H]⁺473.2028, found 473.2030.


(E)-1-(4-cyanophenyl)-3-(2,2-dimethyl-6-phenylhept-5-en-1-yl)urea

1e, 55% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.43 (s, 4H), 7.33 – 7.22 (m, 4H), 7.21 – 7.14 (m, 1H), 5.77 (t, *J* = 6.0 Hz, 1H), 5.67 – 5.64 (m, 1H), 3.12 (d, *J* = 6.0 Hz, 2H), 2.13 – 2.11 (m, 2H), 1.97 (d, *J* = 1.3 Hz, 3H), 1.38 – 1.27 (m, 2H), 0.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 144.1, 143.7, 134.8, 133.3, 128.2, 128.1, 126.7, 125.5, 119.7, 118.3, 104.1, 49.9, 39.5, 34.5, 24.9, 23.4, 15.7.

HRMS (ESI) m/z calcd. for C₂₃H₂₈N₃O [M+H]⁺ 362.2232, found 362.2228.

(E)-1-(2,2-dimethyl-6-phenylhept-5-en-1-yl)-3-(4-nitrophenyl)urea

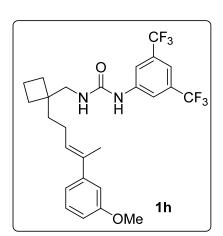

1f, 50% yield, ¹**H NMR (400 MHz, Chloroform-***d***) \delta 8.11 (d, J = 9.2 Hz, 2H), 8.05 (s, 1H), 7.53 (d, J = 9.2 Hz, 2H), 7.36 – 7.27 (m, 4H), 7.24 – 7.17 (m, 1H), 5.77 (t, J = 6.1 Hz, 1H), 5.73 – 5.68 (m, 1H), 3.19 (d, J = 6.1 Hz, 2H), 2.20 – 2.14 (m, 2H), 2.01 (d, J = 1.2 Hz, 3H), 1.42 – 1.34 (m, 2H), 0.96 (s, 6H).**

¹³C NMR (101 MHz, CDCl₃) δ 155.3, 146.1, 143.6, 141.7, 134.8, 128.2, 128.1, 126.6, 125.5, 125.4, 117.7,

50.1, 39.4, 34.5, 24.9, 23.4, 15.7.

HRMS (ESI) m/z calcd. for C₂₂H₂₈N₃O₂ [M+H]⁺ 382.2131, found 382.2127.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-6-(p-tolyl)hept-5-en-1-yl)urea

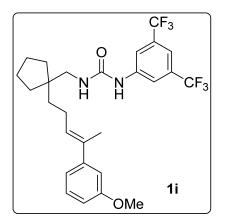


1g, 58% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s 2H), 7.50 (s, 1H), 7.28 – 7.26 (m, 3H), 7.14 – 7.11 (m, 2H), 6.82 (s, 1H), 5.74 – 5.70 (m, 1H), 4.90 (t, J = 6.1 Hz, 1H), 3.18 (d, J = 6.2 Hz, 2H), 2.35 (s, 3H), 2.22 – 2.17 (m, 2H), 2.03 (d, J = 1.2 Hz, 3H), 1.43 – 1.34 (m, 2H), 0.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 140.8, 140.5, 136.3, 134.6, 132.2 (q, $J_{C-F} = 33.1$ Hz), 128.9, 127.3, 125.3, 123.2 (q, $J_{C-F} = 271.0$ Hz), 118.5, 115.8, 50.1, 39.6, 34.4, 24.7, 23.3, 21.0, 15.6.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.13.

HRMS (ESI) m/z calcd. for C₂₅H₂₉F₆N₂O [M+H]⁺487.2184, found 487.2186.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-(4-(3-methoxyphenyl)pent-3-en-1-yl)cyclobutyl)methyl)urea


1h, 65% yield, ¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.00 (s, 1H), 7.74 (s, 2H), 7.42 (s, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.95 – 6.92 (m, 1H), 6.90 – 6.89 (m, 1H), 6.80 – 6.77 (m, 1H), 5.82 – 5.61 (m, 2H), 3.81 (s, 3H), 3.38 (d, *J* = 5.6 Hz, 2H), 2.18 – 2.08 (m, 2H), 1.99 (s, 3H), 1.94 – 1.74 (m, 6H), 1.62 – 1.53 (m, 2H).

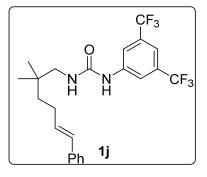
¹³C NMR (101 MHz, CDCl₃) δ 159.4, 156.0, 145.3, 140.5, 134.8, 132.1 (q, *J*_{C-F} = 33.1 Hz), 129.2, 128.1, 123.1 (q, *J*_{C-F} = 271.0 Hz), 118.4, 118.2, 115.7, 111.7, 111.6, 55.2, 46.3, 41.7, 37.2, 29.1, 23.4, 15.7, 15.1.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.25.

HRMS (ESI) m/z calcd. for $C_{26}H_{29}F_6N_2O_2$ [M+H]⁺ 515.2133, found 515.2134.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-(4-(3-methoxyphenyl)pent-3-en-1-yl)cyclopentyl)methyl)urea

1i, 62% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 7.66 (s, 2H), 7.35 (s, 1H), 7.17 (t, J =7.9 Hz, 1H), 6.90 – 6.87 (m, 1H), 6.85 (t, J = 2.1 Hz, 1H), 6.75 – 6.73 (m, 1H), 6.06 (t, J = 5.9 Hz, 1H), 5.68 – 5.64 (m, 1H), 3.77 (s, 3H), 3.22 (d, J = 5.5 Hz, 2H), 2.15 – 2.07 (m, 2H), 1.93 (s, 3H), 1.58 – 1.55 (m, 4H), 1.44 – 1.36 (m, 6H).

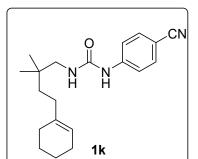

¹³C NMR (101 MHz, CDCl₃) δ 159.4, 156.5, 145.3, 140.4, 134.7, 132.1 (q, J_{C-F} = 33.1 Hz), 129.1, 128.2, 123.1 (q, J_{C-F} = 271.0 Hz), 118.5, 118.2, 115.8, 111.7,

111.6, 55.2, 46.7, 45.8, 37.4, 35.5, 25.0, 24.1, 15.6.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.32.

HRMS (ESI) m/z calcd. for $C_{27}H_{31}F_6N_2O_2$ [M+H]⁺ 529.2290, found 529.2295.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-6-phenylhex-5-en-1-yl)urea


1j, 50% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 2H), 7.46 (s, 1H), 7.33 – 7.26 (m, 4H), 7.21 – 7.19 (m, 1H), 7.13 (s, 1H), 6.42 – 6.33 (dt, *J* = 16.0, 1.6 Hz, 1H), 6.18 (dt, *J* = 16.0, 6.7 Hz, 1H), 5.08 (t, *J* = 6.2 Hz, 1H), 3.15 (d, *J* = 6.1 Hz, 2H), 2.24 – 2.13 (m, 2H), 1.42 – 1.36 (m, 2H), 0.94 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 154.9, 140.6, 137.6, 132.2 (q, *J*_{C-F} = 33.1 Hz), 130.8, 129.8, 128.6, 127.0, 125.9, 123.2 (q, *J*_{C-F} = 271.0 Hz), 118.4, 115.8, 50.0,

39.3, 34.4, 27.6, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08.

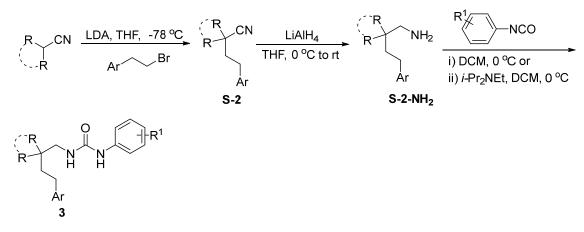
HRMS (ESI) m/z calcd. for $C_{23}H_{25}F_6N_2O [M+H]^+ 459.1866$, found 459.1863.

1-(4-cyanophenyl)-3-(4-(cyclohex-1-en-1-yl)-2,2-dimethylbutyl)urea

1k, 45% yield, ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.75 (s, 1H), 7.58 – 7.37 (m, 4H), 5.51 (t, *J* = 6.0 Hz, 1H), 5.36 – 5.33 (m, 1H), 3.09 (d, *J* = 6.0 Hz, 2H), 1.99 – 1.82 (m, 6H), 1.64 – 1.43 (m, 4H), 1.36 – 1.23 (m, 2H), 0.88 (s, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 155.4, 143.9, 137.9, 133.3, 120.6, 119.5, 118.4, 104.4, 49.9, 37.9, 34.2, 32.2, 28.6, 25.2, 24.9, 23.1, 22.5.

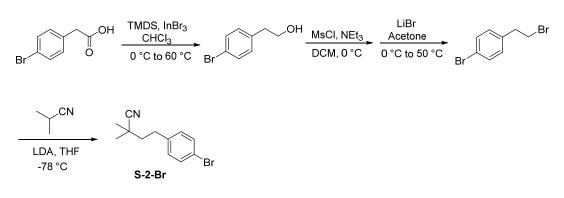
HRMS (ESI) m/z calcd. for C₂₀H₂₈N₃O [M+H]⁺ 326.2232, found 326.2230.

(E)-N-(2,2-dimethyl-6-phenylhept-5-en-1-yl)-4-methoxybenzenesulfonamide



11, 75% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 8.9 Hz, 2H), 7.36 – 7.25 (m, 5H), 7.22 – 7.16 (m, 1H), 6.93 (d, J = 8.9 Hz, 2H), 5.66 (td, J = 7.1, 1.4 Hz, 1H), 5.13 – 5.06 (m, 1H), 3.79 (s, 3H), 2.70 (d, J =6.8 Hz, 2H), 2.12 – 2.02 (m, 2H), 1.98 (d, J = 1.3 Hz, 3H), 1.36 – 1.27 (m, 2H), 0.89 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 143.8, 134.6,

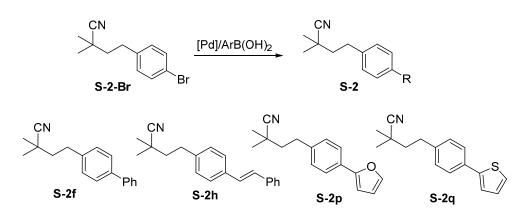
131.6, 129.2, 128.4, 128.2, 126.5, 125.6, 114.3, 55.6, 52.9, 39.1, 33.9, 25.0, 23.3, 15.8.


HRMS (ESI) m/z calcd. for C₂₂H₃₀NO₃S [M+H]⁺ 388.1946, found 388.1944.

General procedure for the synthesis of benzyl urea substrates 3.

S-2 were synthesized from homobenzylic bromides according to the similar procedures reported in the reference^{7,8}. Benzyl urea substrates **3** were prepared from S-2 through LiAlH₄ reduction and reaction with different aryl isocynates with the similar procedures for the synthesis of substrates **1**.

General procedure for the synthesis of homobenzylic bromide S-2-Br.⁹

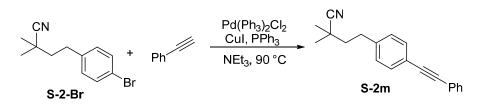

To a two-neck round bottom flask equipped with a magnetic stir bar was added 2-(4bromophenyl)acetic acid (10.8 g, 50 mmol) and InBr₃ (886.7 mg, 5 mmol%), CHCl₃ (50 mL) was successively added under argon atmosphere. Then 1,1,3,3-Tetramethyldisiloxane (TMDS) (17.7 mL, 100 mmol) was dropwise added at 0 °C under argon atmosphere for 5 min. The mixture was stirred at 60 °C ca. 2h. Then, the reaction was quenched with H₂O at 0 °C and the organic layer was dried with anhydrous Na₂SO4 and evaporated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ ethyl acetate =10/1-2/1) to afford the 2-(4bromophenyl)ethan-1-ol (5.5 g, 27.5 mmol) in 55% isolated yields.

To an ice cooled solution of above alcohol and Et₃N (5.7 mL, 41.3 mmol) in dry DCM (80 ml) was added methanesulfonyl chloride (2.3 mL, 41.3 mmol) *via* syringe at 0 °C under argon atmosphere. The mixture was stirred for 45 min at 0 °C before the reaction was quenched with H₂O. The organic materials were washed with saturated NaHCO₃ aqueous solution, then extracted twice with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo after filtration.

The resulting crude material was dissolved in acetone (80 mL) before addition of lithium bromide (10.8 g, 123.8 mmol) at 0 °C. The mixture was stirred at 50 °C overnight. The reaction was then cooled to room temperature and acetone was removed under reduced pressure. The resulting residue was diluted with H₂O and the organic materials were extracted thrice with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo after filtration. The resulting residue was purified by flash column chromatography (petroleum ether/ ethyl acetate =100/1-30/1) to give the 1-bromo-4-(2-bromoethyl)benzene (7.0 g, 26.7 mmol) in 97% overall isolated yield in 2 steps.

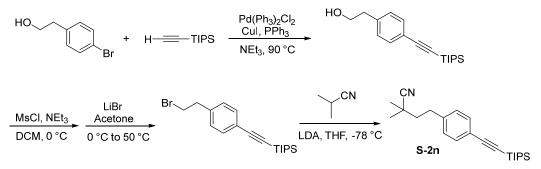
S-2-Br (3.52g, 70% yield) was synthesized from isobutyronitrile (20 mmol) and 1-bromo-4-(2-bromoethyl)benzene (21 mmol) under LDA conditions with the similar procedure mentioned above.

General procedure for the synthesis of S-2f, S-2h, S-2p and S-2q.


S-2f, S-2h, S-2p and S-2q were prepared from S-2-Br with different ArB(OH)₂ under palladium catalysis.

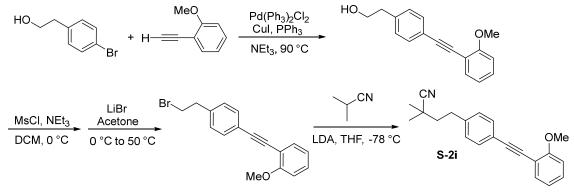
To a flame-dried Schlenk tube equipped with a magnetic stir bar were added S-2-Br (1.52 g, 6.0 mmol), phenylboronic acid (0.88 g, 7.2 mmol), Pd(PPh₃)₄(350 mg, 5 mol%) and Na₂CO₃ (2.6 g, 24 mmol). The tube was evacuated and backfilled with argon for three times, then toluene (15.0 mL) and water (15.0 mL) were added *via* syringe. The tube was stirred at 80 °C overnight. After completion, the reaction mixture was diluted with ethyl acetate (30 mL) and filtered through celite. The filtrate was washed with water and brine. After drying with MgSO₄ and removal of the solvents under reduced pressure, the resulting crude material was purified by flash column chromatography to yield 1.27 g of 4-([1,1'-biphenyl]-4-yl)-2,2-dimethylbutanenitrile S-2f in 85% isolated yield.

S-2h (90% yield) was prepared from **S-2-Br** and correspond (*E*)-styrylboronic acid with the similar procedure.

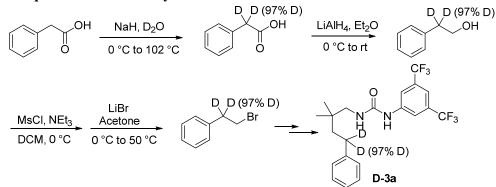

To a flame-dried Schlenk tube equipped with a magnetic stir bar was added S-2-Br (1.3 g, 5 mmol), and furan-2-ylboronic acid (1.4 g, 12.5 mmol) or thiophen-2-ylboronic acid (1.6 g, 12.5 mmol) were dissolved in dimethoxyethane (DME) (20 mL) under argon atmosphere. Then 2 M aq K₂CO₃ (1.25 mL, 12.5 mmol) was successively added and the mixture was degassed for 10 min. Finally, Pd(PPh₃)₄ (578.0 mg, 10 mmol%) was added under argon atmosphere and the mixture was stirred at 85 °C overnight. The resulting mixture was cooled to ambient temperature and diluted with H₂O and the organic materials were extracted thrice with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo after filtration. The resulting residue was purified by flash chromatography (petroleum ether/ ethyl acetate =100/1–50/1) to give the 4-(4-(furan-2-yl)phenyl)-2,2-dimethylbutanenitrile S-2p (1.0 g, 4.2 mmol) or 2,2-dimethyl-4-(4-(thiophen-2-yl)phenyl)butanenitrile S-2q (1.23 g, 4.8 mmol) in 84% and 96% isolated yields respectively.

General procedure for the synthesis of alkynylated starting materials: Procedure for the synthesis of S-2m

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added S-2-Br (1.26 g, 5.0 mmol), CuI (53 mg 5.5 mol%), Pd(PPh₃)₂Cl₂ (176 mg, 5 mol%) and PPh₃ (132 mg, 10 mol%). The tube was evacuated and backfilled with argon for three times, then ethynylbenzene (0.7 mL, 6.0 mmol) and dry Et₃N (12.0 mL) were added via syringe. The tube was stirred at 90 °C overnight. After completion, the reaction mixture was diluted with ethyl acetate (30 mL) and filtered through celite. The filtrate was washed with water and brine. After drying with MgSO₄ and removal of the solvents under reduced pressure, the resulting crude material was purified by flash column chromatography to vield 1.35 of 2,2-dimethyl-4-(4g (phenylethynyl)phenyl)butanenitrile S-2m in 99% isolated yield.


Procedure for the synthesis of S-2n.

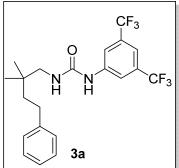
To a round bottom flask equipped with a magnetic stir bar was added 2-(4bromophenyl)ethan-1-ol (3.0 g, 15 mmol), Pd(PPh₃)₂Cl₂ (526.4 mg, 5 mmol%), CuI (157.1 mg, 5.5 mmol%) and PPh₃ (393.4 mg, 10 mmol%). The flask was evacuated and backfilled with argon for three times. Then anhydrous Et₃N (30 mL) was added via syringe under argon atmosphere. Finally, ethynyltriisopropylsilane was dropwise added under argon atmosphere and the mixture was stirred for 60 h at 90 °C. The crude reaction mixture was then filtered through a short celite/SiO₂ pad, and neutralized by using saturated NH₄Cl aqueous solution (50 mL x 2). The aqueous phase was extracted with ethyl acetate (30 mL x 3), and the combined organic phases were washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the desired crude products. Purification by flash column chromatography ether/ ethvl acetate =30/1-10/1) give (petroleum to the 2-(4-((triisopropylsilyl)ethynyl)phenyl)ethan-1-ol (2.5 g, 8.4 mmol) in 56% isolated yields. To an ice cooled solution of above propargylic alcohol and Et₃N (1.8 mL, 12.6 mmol) in dry DCM (25 ml) was added methanesulfonyl chloride (0.7 mL, 12.6 mmol) via syringe at 0 °C under argon atmosphere. The mixture was stirred for 45 min at 0 °C before the reaction was quenched with H₂O. The organic materials were washed with saturated NaHCO₃ aqueous solution, then extracted twice with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo after filtration.


The resulting crude material including mesylate was then, without purification, dissolved in acetone (25 mL) before addition of lithium bromide (3.3 g, 37.8 mmol) at 0 °C. The mixture was stirred at 50 °C overnight. The reaction was then cooled to room temperature and acetone was removed under reduced pressure. The resulting residue was diluted with H₂O and the organic materials were extracted thrice with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo after filtration. The resulting residue was purified by flash column chromatography (petroleum ether/ ethvl acetate =100/1-30/1) to give the ((4-(2bromoethyl)phenyl)ethynyl)triisopropylsilane (3.0 g, 8.2 mmol) in 98% overall isolated vield in 2 steps.

S-2n was prepared from ((4-(2-bromoethyl)phenyl)ethynyl)triisopropylsilane and isobutyronitrile under LDA conditions with the similar procedure shown above in 70% yield.

S-2i was prepared from 2-(4-bromophenyl)ethan-1-ol and corresponding 1-ethynyl-2methoxybenzene in 45% yield over three steps.

General procedure for the synthesis of D-3a.

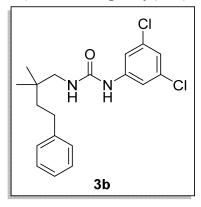

In a three-neck 100 mL round bottom flask equipped with a magnetic stir bar, reflux condenser, and rubber septum, NaH (1.7 g, 42 mmol) was added slowly to D_2O (12 mL) at 0 °C under argon atmosphere. Phenylacetic acid (4.1 g, 30 mmol) was added, and the mixture was heated at reflux at 100 °C for 4 days under argon. The reaction mixture was acidified with 4 N HCI to a pH of 4 and extracted thrice with DCM. The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated to give a quantitative yield of phenylacetic acid with 93% deuterium incorporation in the benzylic position. This procedure was repeated to give 97% deuterated product.

To a stirred ice-cooled suspension of lithium aluminum hydride (1.1 g, 36 mmol)in 80 mL of anhydrous diethyl ether was dropwise added of the preceding acid (4.1 g, 30 mmol) in 20 mL of anhydrous diethyl ether. The hydride mixture was stirred at room temperature overnight. Excess hydride was quenched by adding 8 mL of 10% aqueous NaOH. The mixture was filtered and organic layer was washed with brine, extracted with EtOAc. The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated to give the 2-phenylethan-2,2- d_2 -1-ol (3.4 g, 27.5 mmol, 97% deuterium incorporation) in 92% yield.

(2-bromoethyl-1,1- d_2) benzene was prepared from 2-phenylethan-2,2- d_2 -1-ol with the similar procedures for the synthesis of 1-bromo-4-(2-bromoethyl) benzene.

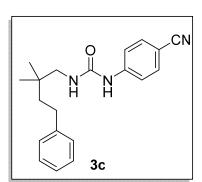
D-3a was prepared from (2-bromoethyl-1,1- d_2) benzene with the similar procedure mentioned above.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-phenylbutyl)urea



3a, 72% yield, ¹H NMR (**400** MHz, Chloroform-*d*): δ 8.50 (s, 1H), 7.62 (s, 2H), 7.36 (s, 1H), 7.19 (t, *J* = 7.3 Hz, 2H), 7.13 – 7.09 (m, 1H), 7.06 (d, *J* = 6.8 Hz, 2H), 6.16 (t, *J* = 6.1 Hz, 1H), 3.08 (d, *J* = 6.0 Hz, 2H), 2.51 – 2.46 (m, 2H), 1.46 – 1.42 (m, 2H), 0.88 (s, 6H). ¹³C NMR (**101** MHz, CDCl₃): δ 156.6, 142.4, 140.3, 132.2 (q, *J*_{C-F} = 33.1 Hz), 128.4, 128.1, 125.8, 123.0 (q, *J*_{C-F} = 271.1 Hz), 118.7 – 118.6 (m, 1C), 115.9 – 115.8

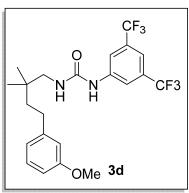
(m, 1C), 50.1, 42.0, 34.5, 30.4, 24.5.


¹⁹F NMR (376 MHz, CDCl₃): δ -63.06. HRMS (ESI) m/z calcd. for C₂₁H₂₃F₆N₂O [M+H]⁺ 433.1709, found 433.1703.

1-(3,5-dichlorophenyl)-3-(2,2-dimethyl-4-phenylbutyl)urea

3b, 56% yield, ¹**H NMR (400 MHz, Chloroform-***d***)**: δ 7.61 (s, 1H), 7.25 – 7.21 (m, 2H), 7.16 – 7.14 (m, 3H), 7.12 – 7.10 (m, 2H), 6.92 (t, *J* = 1.8 Hz, 1H), 5.62 (t, *J* = 6.2 Hz, 1H), 3.08 (d, *J* = 6.1 Hz, 2H), 2.54 – 2.50 (m, 2H), 1.47 – 1.43 (m, 2H), 0.90 (s, 6H). ¹³**C NMR (101 MHz, CDCl₃)**: δ 155.9, 142.7, 140.9, 135.1, 128.4, 128.2, 125.8, 122.7, 117.6, 50.0, 42.0, 34.6, 30.4, 24.8. **HRMS** (ESI) m/z calcd. for C₁₉H₂₃Cl₂N₂O [M+H]⁺ 365.1182, found 365.1177.

11-(4-cyanophenyl)-3-(2,2-dimethyl-4-phenylbutyl)urea

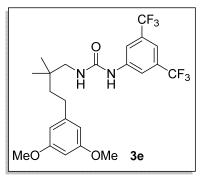


3c, 52% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 7.66 (s, 1H), 7.44 (s, 4H), 7.25 – 7.21 (m, 2H), 7.17 – 7.11 (m, 3H), 5.48 (t, *J* = 6.0 Hz, 1H), 3.13 (d, *J* = 6.0 Hz, 2H), 2.56 – 2.52 (m, 2H), 1.51 – 1.46 (m, 2H), 0.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.9, 144.1, 142.6, 133.3, 128.5, 128.2, 125.9, 119.7, 118.4, 104.1, 49.9, 41.9, 34.6, 30.5, 24.9.

HRMS (ESI) m/z calcd. for $C_{20}H_{24}N_3O$ [M+H]⁺

322.1914, found 322.1909.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(3-methoxyphenyl)-2,2-dimethylbutyl) urea

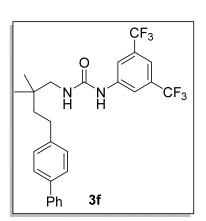

3d, 66% yield, ¹**H NMR (400 MHz, Chloroform-***d***)**: δ 7.72 -7.65 (m, 3H), 7.42 - 7.41 (m, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 6.73 - 6.68 (m, 3H), 5.47 (t, *J* = 6.1 Hz, 1H), 3.78 (s, 3H), 3.10 (d, *J* = 6.0 Hz, 2H), 2.53 - 2.48 (m, 2H), 1.46 - 1.41 (m, 2H), 0.91 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 159.6, 156.3, 144.3, 140.4, 132.1 (q, $J_{C-F} = 33.1$ Hz), 129.4, 122.8 (q, $J_{C-F} = 271.1$ Hz), 120.7, 118.6 - 118.5 (m, 1C), 115.7(8) - 115.7(4) (m, 1C), 114.3, 110.8, 55.1, 50.1, 41.9, 34.5, 30.4, 24.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.30.

HRMS (ESI) m/z calcd. for $C_{22}H_{25}F_6N_2O_2$ [M+H]⁺ 463.1815, found 463.1808

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(3,5-dimethoxyphenyl)-2,2-dimethylbutyl)urea

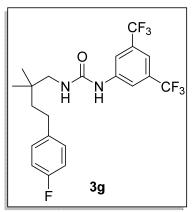

3e, 70% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 8.05 (s, 1H), 7.71 (s, 2H), 7.39 (s, 1H), 6.30 – 6.27 (m, 3H), 5.72 (t, *J* = 6.1 Hz, 1H), 3.72 (s, 6H), 3.09 (d, *J* = 6.0 Hz, 2H), 2.48 – 2.44 (m, 2H), 1.45 – 1.40 (m, 2H), 0.89 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 160.8, 156.1, 145.2, 140.5, 132.1 (q, $J_{C-F} = 33.1$ Hz), 123.1 (q, $J_{C-F} = 271.1$ Hz), 118.5 – 118.4 (m, 1C), 115.8 – 115.7 (m, 1C), 106.5, 97.5, 55.2, 50.0, 41.7, 34.5, 30.7, 24.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.28.

HRMS (ESI) m/z calcd. for C₂₃H₂₇F₆N₂O₃ [M+H]⁺ 493.1920, found 493.1915.

1-(4-([1,1'-biphenyl]-4-yl)-2,2-dimethylbutyl)-3-(3,5-bis(trifluoromethyl)phenyl) urea

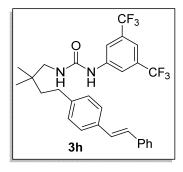


3f, 70% yield, ¹**H NMR** (**400 MHz**, **Chloroform**-*d*): δ 7.80 (s, 2H), 7.56 – 7.53 (m, 2H), 7.50 – 7.40 (m, 5H), 7.34 – 7.30 (m, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.17 (s, 1H), 5.11(t, J = 6.2 Hz, 1H), 3.17 (d, J = 6.1 Hz, 2H), 2.63 – 2.59 (m, 2H), 1.56 – 1.52 (m, 2H), 0.97 (s, 6H). ¹³**C NMR** (**101 MHz**, **Acetone**-*d***6**): δ 155.1, 142.8, 142.6, 140.9, 138.3, 131.5 (q, $J_{C-F} = 33.1$ Hz), 128.9, 128.8, 127.0, 126.8, 126.6, 123.7 (q, $J_{C-F} = 271.1$ Hz), 117.5 – 117.4 (m, 1C), 113.9 – 113.7 (m, 1C), 48.9, 41.9, 34.6, 29.9, 24.5.

¹⁹F NMR (**376** MHz, Acetone-*d*6) δ -63.58.

HRMS (ESI) m/z calcd. for C₂₇H₂₇F₆N₂O [M+H]⁺ 509.2022, found 509.2018.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-fluorophenyl)-2,2-dimethylbutyl)urea

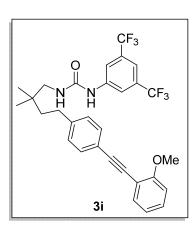


3g, 62% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 7.84 (s, 2H), 7.49 (s, 1H), 7.13 – 7.09 (m, 2H), 6.96 – 6.91 (m, 2H), 6.86 (s, 1H), 4.90 (t, J = 6.2 Hz, 1H), 3.17 (d, J = 6.2 Hz, 2H), 2.59 – 2.55 (m, 2H), 1.51 – 1.47 (m, 2H), 0.97 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 161.2 (d, $J_{C-F} = 241.9$ Hz), 156.6, 140.3, 138.0 (d, $J_{C-F} = 3.5$ Hz), 132.2 (q, $J_{C-F} = 33.1$ Hz), 129.4 (d, $J_{C-F} = 7.8$ Hz), 123.0 (q, $J_{C-F} = 271.1$ Hz), 118.6 – 118.5 (m, 1C), 115.9 – 115.8 (m, 1C), 115.1 (d, $J_{C-F} = 21.0$ Hz), 50.1, 42.1, 34.4, 29.5, 24.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.10, -117.75.

HRMS (ESI) m/z calcd. for C₂₁H₂₂F₇N₂O [M+H]⁺451.1615, found 154.1609.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(4-styrylphenyl)butyl) urea

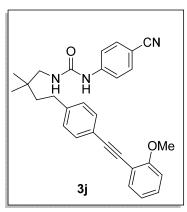


3h, 70% yield, ¹**H NMR (400 MHz, Acetone-***d***₆)**: δ 8.58 (s, 1H), 8.17 (m, 2H), 7.59 – 7.57 (m, 2H), 7.53 – 7.49 (m, 3H), 7.38 – 7.34 (m, 2H), 7.26 – 7.22 (m, 3H), 7.20 (d, *J* = 4.6 Hz, 2H), 6.18 (t, *J* = 6.6 Hz, 1H), 3.21 (d, *J* = 6.3 Hz, 2H), 2.69 – 2.64 (m, 2H), 1.58 – 1.53 (m, 2H), 1.00 (s, 6H). ¹³C NMR (101 MHz, Acetone-*d***₆)**: δ 155.1, 143.0, 142.8, 137.6, 134.9, 131.5 (q, *J*_{C-F} = 33.3 Hz), 128.7, 128.6, 128.5, 127.6, 127.3, 126.5, 126.4, 123.6 (q, *J*_{C-F} = 270.3 Hz), 117.5 – 117.4 (m, 1C), 113.9 – 113.7 (m, 1C), 48.9, 41.8, 34.6,

30.1, 24.5.

¹⁹F NMR (376 MHz, Acetone-*d*₆): δ -63.55. HRMS (ESI) m/z calcd. for C₂₉H₂₉F₆N₂O [M+H]⁺ 535.2179, found 535.2179.

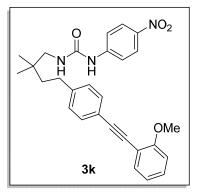
1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-((2-methoxyphenyl)ethynyl)phenyl)-2,2-dimethylbutyl)urea


3i, 52% yield, ¹H NMR (**400** MHz, Chloroform-*d*): δ 7.77 - 7.71 (m, 3H), 7.49 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.41 - 7.38 (m, 3H), 7.34 - 7.29 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.97 - 6.90 (m, 2H), 5.53 - 5.48 (m, 1H), 3.89 (s, 3H), 3.08 (d, *J* = 6.0 Hz, 2H), 2.53 - 2.49 (m, 2H), 1.42 - 1.38 (m, 2H), 0.90 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 159.7, 156.2, 143.0, 140.4, 133.7, 132.2 (q, $J_{C-F} = 33.1$ Hz), 131.7, 129.9, 128.2, 123.1 (q, $J_{C-F} = 271.1$ Hz), 120.8, 120.7, 118.4, 115.8 – 115.6 (m, 1C), 112.4, 110.8, 93.7, 85.3, 55.8, 50.1, 41.5, 34.5, 30.3, 24.5.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.14.

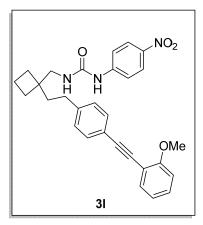
HRMS (ESI) m/z calcd. for $C_{30}H_{29}F_6N_2O_2$ [M+H]⁺ 563.2128, found 563.2123.


1-(4-cyanophenyl)-3-(4-(4-((2-methoxyphenyl)ethynyl)phenyl)-2,2-dimethylbutyl) urea

3j, 54% yield, ¹**H NMR (400 MHz, Chloroform-***d***)**: δ 8.00 (s, 1H), 7.48 – 7.37 (m, 7H), 7.31 – 7.27 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.95 - 6.87 (m, 2H), 5.65 (t, *J* = 6.4 Hz, 1H), 3.87 (s, 3H), 3.08 (d, *J* = 6.0 Hz, 2H), 2.53 – 2.48 (m, 2H), 1.44 – 1.40 (m, 2H), 0.90 (s, 6H). ¹³**C NMR (101 MHz, CDCl₃)**: δ 159.7, 155.5, 144.1, 143.1, 133.6, 133.3, 131.7, 129.9, 128.3, 120.8, 119.7, 118.3, 112.4, 110.9, 104.1, 93.7, 85.4, 55.9, 49.8, 41.5, 34.6, 30.4, 24.9. **HRMS** (ESI) m/z calcd. for C₂₉H₃₀N₃O₂ [M+H]⁺

452.2333, found 452.2327.

1-(4-(4-((2-methoxyphenyl)ethynyl)phenyl)-2,2-dimethylbutyl)-3-(4-nitrophenyl) urea

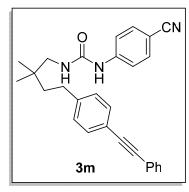

3k, 50% yield, ¹**H NMR (400 MHz, Chloroform-***d***)**: δ 8.07 (d, *J* = 9.2 Hz, 2H), 7.59 (s, 1H), 7.52 – 7.48 (m, 3H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.08 (d, *J* = 8.1 Hz, 2H), 6.97 - 6.90 (m, 2H), 5.27 (t, *J* = 6.1 Hz, 1H), 3.91 (s, 3H), 3.13 (d, *J* = 6.1 Hz, 2H), 2.57 – 2.53 (m, 2H), 1.46 – 1.42 (m, 2H), 0.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.6, 154.9, 145.9, 143.2, 141.7, 133.7, 131.7, 129.9, 128.3, 125.3, 120.9, 120.7, 117.6, 112.4, 111.0, 93.7, 85.3, 56.0, 50.0, 41.4,

34.6, 30.4, 24.8.

HRMS (ESI) m/z calcd. for $C_{28}H_{30}N_3O_4$ [M+H]⁺ 472.2231, found 472.2227.

1-(4-((2-methoxyphenyl)ethynyl)phenyl)cyclobutyl)methyl)-3-(4-nitrophenyl)

urea

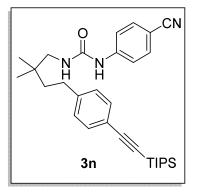


31, 62% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 8.15 (s, 1H), 8.07 (d, J = 9.2 Hz, 2H), 7.54 (d, J = 9.2 Hz, 2H), 7.47 (dd, J = 7.6, 1.7 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.29 (ddd, J = 8.4, 7.5, 1.7 Hz, 1H), 7.07 (d, J = 8.2 Hz, 2H), 6.93 (td, J = 7.5, 1.0 Hz, 1H), 6.89 (dd, J = 8.4, 1.0 Hz, 1H), 5.72 (t, J = 5.8 Hz, 1H), 3.88 (s, 3H), 3.38 (d, J = 5.7 Hz, 2H), 2.57 – 2.44 (m, 2H), 1.94 – 1.82 (m, 2H), 1.76 (t, J = 7.5 Hz, 4H), 1.72 – 1.59 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 159.6, 155.0, 145.9, 142.9, 141.8, 133.7, 131.7, 129.9, 128.3, 125.3, 120.8,

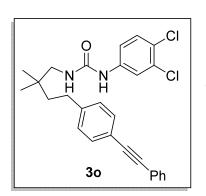
120.7, 117.5, 112.4, 110.9, 93.7, 85.3, 55.9, 46.2, 41.8, 39.1, 30.3, 29.2, 15.1. **HRMS** (ESI) m/z calcd. for C₂₉H₃₀N₃O₄ [M+H]⁺ 484.2231, found 484.2228.

1-(4-cyanophenyl)-3-(2,2-dimethyl-4-(4-(phenylethynyl)phenyl)butyl)urea



3m, 57% yield, ¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.69 (s, 1H), 7.51 – 7.49 (m, 2H), 7.44 (s, 4H), 7.39 (d, *J* = 7.8 Hz, 2H), 7.34 – 7.31 (m, 3H), 7.09 (d, *J* = 7.8 Hz, 2H), 5.49 (t, *J* = 6.0 Hz, 1H), 3.11 (d, *J* = 6.1 Hz, 2H), 2.56 – 2.52 (m, 2H), 1.48 – 1.44 (m, 2H), 0.92 (s, 6H). ¹³C **NMR** (101 MHz, CDCl₃): δ 155.3, 143.9, 143.1, 133.3, 131.7, 131.6, 128.4, 128.3, 128.2, 123.3, 120.7, 119.6, 118.4, 104.3, 89.4, 89.1, 49.8, 41.6, 34.6, 30.5, 24.9.

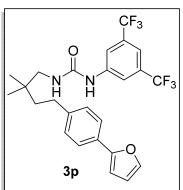
HRMS (ESI) m/z calcd. for $C_{28}H_{28}N_3O$ $[M+H]^+$


422.2227, found 422.2220.

1-(4-cyanophenyl)-3-(2,2-dimethyl-4-(4-((triisopropylsilyl)ethynyl)phenyl)butyl) urea

3n, 58% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (q, *J* = 8.8 Hz, 4H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.33 (s, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.24 (t, *J* = 6.0 Hz, 1H), 3.13 (d, *J* = 6.0 Hz, 2H), 2.57 – 2.53 (m, 2H), 1.48 – 1.44 (m, 2H), 1.12 (s, 21H), 0.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.0, 143.7, 143.2, 133.3, 132.1, 128.2, 121.0, 119.4, 118.4, 107.1, 104.6, 90.0, 49.8, 41.7, 34.6, 30.5, 24.9, 18.7, 11.3. HRMS (ESI) m/z calcd. for C₃₁H₄₄N₃OSi [M+H]⁺ 502.3254, found 502.3251.

1-(3,4-dichlorophenyl)-3-(2,2-dimethyl-4-(4-(phenylethynyl)phenyl)butyl)urea

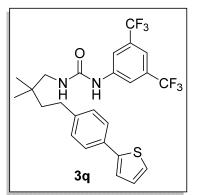

30, 60% yield, ¹H NMR (400 MHz, Acetone- d_6) δ 8.20 (s, 1H), 8.00 (d, J = 2.4 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.50 – 7.39 (m, 6H), 7.35 (dd, J = 8.8, 2.5 Hz, 1H), 7.34 – 7.29 (m, 2H), 6.04 (t, J = 6.3 Hz, 1H), 3.21 (d, J = 6.4 Hz, 2H), 2.77 – 2.67 (m, 2H), 1.63 – 1.51 (m, 2H), 1.02 (s, 6H).

¹³C NMR (101 MHz, Acetone) δ 155.1, 144.3, 141.0, 131.7, 131.4, 131.3, 130.3, 128.7, 128.6, 128.3, 123.4, 123.2, 120.3, 119.2, 117.7, 89.4, 88.5, 48.7, 41.6, 34.6,

30.3, 24.5.

HRMS (ESI) m/z calcd. for C₂₇H₂₇Cl₂N₂O [M+H]⁺ 465.1495, found 465.1496.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-(furan-2-yl)phenyl)-2,2-dimethylbutyl) urea

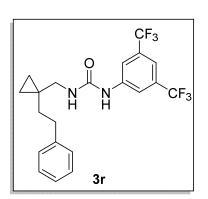

3p, 65% yield, ¹H NMR (400 MHz, Acetone-*d*₆): δ 8.56 (s, 1H), 8.17 (s, 2H), 7.62 (s, 1H), 7.60 – 7.59 (m, 2H), 7.53 (s, 1H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.76 (d, *J* = 3.4 Hz, 1H), 6.53 – 6.52 (m, 1H), 6.17 (s, 1H), 3.21 (d, *J* = 6.3 Hz, 2H), 2.70 – 2.65 (m, 2H), 1.58 – 1.54 (m, 2H), 1.00 (s, 6H).

¹³C NMR (101 MHz, Acetone): δ 155.1, 154.0, 142.8, 142.7, 142.0, 131.5 (q, $J_{C-F} = 32.6$ Hz), 128.7, 128.5, 123.6 (q, $J_{C-F} = 271.0$ Hz), 123.5, 117.5, 113.8, 111.6, 104.5, 48.9, 41.8, 34.6, 30.1, 24.5.

¹⁹F NMR (376 MHz, Acetone): δ -63.59.

HRMS (ESI) m/z calcd. for $C_{25}H_{25}F_6N_2O_2$ [M+H]⁺ 499.1820, found 499.1821.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(4-(thiophen-2-yl)phenyl) butyl)urea

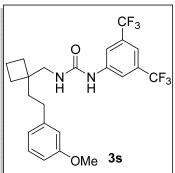


3q, 66% yield, ¹**H NMR** (**400 MHz**, **CDCl**₃): δ 8.26 (s, 1H), 7.65 (s, 2H), 7.43 (d, J = 7.8 Hz, 2H), 7.37 (s, 1H), 7.22 -7.19 (m, 2H), 7.07 - 7.01 (m, 3H), 5.95 (t, J = 6.1 Hz, 1H), 3.09 (d, J = 5.9 Hz, 2H), 2.51 - 2.46 (m, 2H), 1.47 - 1.42 (m, 2H), 0.88 (s, 6H). ¹³**C NMR** (**101 MHz**, **CDCl**₃): δ 156.3, 144.2, 141.9, 140.3, 132.2 (q, $J_{C-F} = 33.0$ Hz), 132.1, 128.7, 128.0, 125.9, 124.4, 123.0 (q, $J_{C-F} = 270.9$ Hz), 122.7, 118.6, 115.9, 50.1, 41.9, 34.5, 30.1, 24.6.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.27.

HRMS (ESI) m/z calcd. for $C_{25}H_{25}F_6N_2OS \ [M+H]^+ 515.1592$, found 515.1592.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-phenethylcyclopropyl)methyl)urea

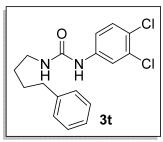


3r, 54% yield, ¹H NMR (400 MHz, Chloroform-*d*): δ 7.76 (s, 1H), 7.72 (s, 2H), 7.40 (s, 1H), 7.22 - 7.18 (m, 2H), 7.14 - 7.13 (m, 1H), 7.10- 7.08 (m, 2H), 5.57 (t, *J* = 5.5 Hz, 1H), 3.20 (d, *J* = 5.4 Hz, 2H), 2.67 - 2.63 (m, 2H), 1.58 - 1.54 (m, 2H), 0.38 - 0.31 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 156.5, 141.8, 140.3, 132.2 (q, *J*_{C-F} = 33.1 Hz), 128.4, 128.1, 125.9, 123.1 (q, *J*_{C-F} = 271.1 Hz), 118.7, 115.9, 46.0, 36.7, 33.0, 20.0, 10.6.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.36.

HRMS (ESI) m/z calcd. for $C_{21}H_{21}F_6N_2O [M+H]^+ 431.1553$, found 431.1549.

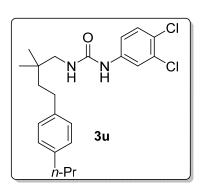
1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-(3-methoxyphenethyl)cyclobutyl)methyl) urea



3s, 63% yield, ¹**H NMR** (**400 MHz**, **CDCl**₃): δ 8.09 (s, 1H), 7.67 (s, 2H), 7.38 (s, 1H), 7.14 – 7.10 (m, 1H), 6.70 – 6.66 (m, 3H), 5.80 (t, *J* = 5.5 Hz, 1H), 3.73 (s, 3H), 3.33 (d, *J* = 5.7 Hz, 2H), 2.48 – 2.44 (m, 2H), 1.86 – 1.78 (m, 2H), 1.75 -1.70 (m, 4H), 1.69 – 1.65 (m, 2H). ¹³C **NMR** (**101 MHz**, **CDCl**₃): δ 159.6, 156.8, 143.9, 140.4, 132.2 (q, *J*_{C-F} = 33.1 Hz), 129.4, 123.1 (q, *J*_{C-F} = 271.1 Hz), 120.6, 118.7, 115.8, 114.3, 110.8, 55.0, 46.3, 41.8, 39.3, 30.4, 29.0, 15.0.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.31.

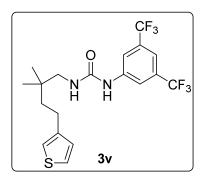
HRMS (ESI) m/z calcd. for C₂₃H₂₅F₆N₂O₂ [M+H]⁺ 475.1815, found 475.1813.


1-(3,4-dichlorophenyl)-3-(4-phenylbutyl)urea

3t, 52% yield, ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.44 (d, *J* = 2.4 Hz, 1H), 7.27 – 7.24 (m, 3H), 7.20 – 7.04 (m, 5H), 5.20 (t, *J* = 5.7 Hz, 1H), 3.21 – 3.16 (m, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.63 – 1.56 (m, 2H), 1.52 – 1.46 (m, 2H). ¹³**C NMR (101 MHz, CDCl₃)** δ 155.5, 142.0, 138.4, 132.7, 130.5, 128.4, 126.2, 125.9, 121.4, 119.0, 40.2, 35.5, 29.6, 28.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}Cl_2N_2O [M+H]^+ 337.0869$, found 337.0867.

1-(3,4-dichlorophenyl)-3-(2,2-dimethyl-4-(4-propylphenyl)butyl)urea

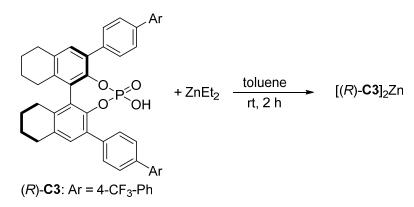

3u, 64% yield, ¹**H NMR (400 MHz, Chloroform-d):** δ 8.28 (s, 1H), 7.39 (d, J = 2.5 Hz, 1H), 7.09 (d, J = 8.6 Hz, 1H), 7.00 (q, J = 8.1 Hz, 4H), 6.88 (dd, J = 8.7, 2.5 Hz, 1H), 6.14 (t, J = 6.2 Hz, 1H), 3.04 (d, J = 5.9 Hz, 2H), 2.56 – 2.38 (m, 4H), 1.57 (dt, J = 14.7, 7.4 Hz, 2H), 1.47 – 1.37 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H), 0.85 (s, 6H).

¹³C NMR (101 MHz, Chloroform-d): δ157.1, 140.2,

139.8, 138.6, 132.6, 130.4, 128.6, 128.1, 126.1, 121.5, 119.1, 50.1, 42.2, 37.8, 34.7, 30.1, 24.9, 24.8, 14.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₉Cl₂N₂O [M+H]⁺ 407.1651, found 407.1650.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(thiophen-3-yl)butyl)urea


3v, 62% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (s, 1H), 7.64 (s, 2H), 7.37 (s, 1H), 7.16 (dd, J = 4.7, 3.2 Hz, 1H), 6.88 – 6.78 (m, 2H), 6.01 (t, J = 6.1 Hz, 1H), 3.09 (d, J = 6.0 Hz, 2H), 2.61 – 2.46 (m, 2H), 1.57 – 1.42 (m, 2H), 0.89 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 142.6, 140.2, 132.2 (q, *J*_{C-F} = 33.1 Hz), 128.0, 125.4, 123.0 (q, *J*_{C-F} = 271.0 Hz), 119.6, 118.7, 116.0, 50.1, 40.5, 34.4, 24.7, 24.6.

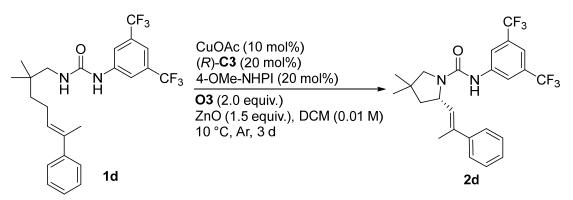
¹⁹F NMR (376 MHz, CDCl₃) δ -63.33.

HRMS (ESI) m/z calcd. for C₁₉H₂₁F₆N₂OS [M+H]⁺ 439.1279, found 439.1276.

Procedure for the synthesis of $[(R)-C3]_2$ Zn.

To a flame-dried round bottom flask equipped with a magnetic stir bar was added (*R*)-C3 (160 mg, 0.2 mmol) and dry toluene (2 mL) was then added *via* syringe. ZnEt₂ (100 μ L, 1.0 M in hexane solution) was added slowly *via* syringe under Ar. The resulting mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure to afford 140 mg [(*R*)-C3]₂Zn as brown crystal. [(*R*)-C3]₂Zn ¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.95 (dd, *J* = 8.4, 3.0 Hz, 16H), 7.80 (d, *J* = 8.0 Hz, 8H), 7.75 (d, *J* = 8.0 Hz, 8H), 7.18 (s, 4H), 2.93 – 2.76 (m, 8H), 2.70 – 2.59 (m, 4H), 2.21 – 2.14 (m, 4H), 1.81 – 1.73 (m, 12H), 1.58 – 1.53 (m, 4H).

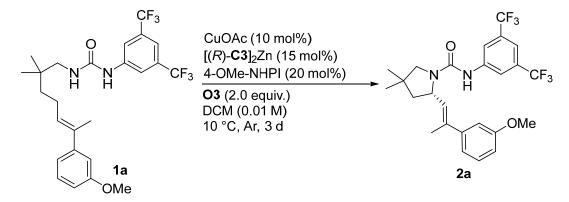
¹³C NMR (101 MHz, DMSO) δ 145.3, 145.2, 144.4, 138.5, 137.2, 136.9, 133.7, 130.9, 130.8, 130.7, 128.5, 128.1 (q, *J* = 31.6 Hz), 127.74, 127.01, 126.2–126.1 (m, 1C), 124.7 (q, *J*_{C-F} = 271.0 Hz), 29.0, 27.9, 22.7, 22.6.


¹⁹F NMR (376 MHz, DMSO) δ -60.85.

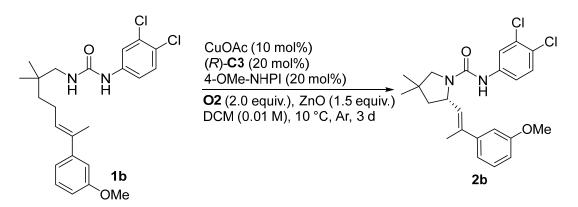
³¹P NMR (162 MHz, DMSO) δ 0.02.

HRMS (ESI) m/z calcd. for $C_{92}H_{69}F_{12}O_8P_2Zn [M+H]^+ 1655.3562$, found 1655.3566.

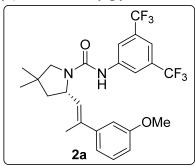
General procedure for enantioselective radical allylic C-H amination


under conditions A:

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 1d (47.5 0.1 mmol), CuOAc (1.24 mg 10 mol%), (*R*)-C3 (16 mg, 20 mol%), 4-OMe-NHPI (4.0 mg, 20 mol%), and ZnO (12 mg, 0.15 mmol). The tube was evacuated and backfilled with argon for three times, the O3 (48 μ L, 0.2 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ ethyl acetate =20/1–10/1) to give the corresponding product 2d (35.8 mg) in 76% isolated yield.


General procedure for enantioselective radical allylic C-H amination

under conditions B:

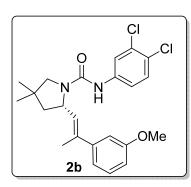

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **1a** (50.5 mg, 0.1 mmol), CuOAc (1.24 mg 10 mol%), [(R)-C3]₂Zn (25 mg, 15 mol%) and 4-OMe-NHPI (4.0 mg, 20 mol%). The tube was evacuated and backfilled with argon for three times, the O3 (48 µL, 0.2 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1-10/1) to give the corresponding product **2a** (38 mg) in 76% isolated yield.

Procedure for enantioselective radical allylic C-H amination of 1b.

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 1d (47.5 0.1 mmol), CuOAc (1.24 mg 10 mol%), (*R*)-C3 (16 mg, 20 mol%), 4-OMe-NHPI (4.0 mg, 20 mol%), and ZnO (12 mg, 0.15 mmol). The tube was evacuated and backfilled with argon for three times, the O2 (36 μ L, 0.2 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ ethyl acetate =20/1–10/1) to give the corresponding product 2b (38 mg) in 88% isolated yield.

(S)(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(2-(3-methoxyphenyl)prop-1-en-1-yl)-4,4-dimethylpyrrolidine-1-carboxamide

2a, 76% yield, $[\alpha]_D^{27} = -75.8$ (*c* 1.04, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 2H), 7.47 (s, 1H), 7.35 – 7.28 (m, 1H), 7.07 – 6.99 (m, 2H), 6.95 (t, *J* = 2.1 Hz, 1H), 6.89 (ddd, *J* = 8.2, 2.6, 1.2 Hz, 1H), 5.89 (dd, *J* = 9.0, 1.2 Hz, 1H), 4.75 (td, *J* = 9.0, 7.1 Hz, 1H), 3.84 (s, 3H), 3.67 (d, *J* = 10.6 Hz, 1H), 3.26 (d, *J* = 10.6 Hz, 1H), 2.28 (d, *J* = 1.2 Hz, 3H), 2.11 (ddd, *J* = 12.7, 7.1, 1.6 Hz, 1H), 1.75 (dd, *J* = 12.7,

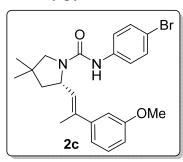

9.1 Hz, 1H), 1.21 (s, 3H), 1.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ (one C signal was overlapped) 159.8, 153.8, 143.4, 140.8, 138.4, 132.1 (q, *J*_{C-F} = 33.1 Hz), 129.7, 123.2 (q, *J*_{C-F} = 271.0 Hz), 118.6 – 118.5 (m, 1C), 118.1, 115.8 – 115.6 (m, 1C), 113.2, 111.7, 59.1, 55.8, 55.3, 47.6, 36.7, 26.3(0), 26.2(7), 16.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.07.

HRMS (ESI) m/z calcd. for C₂₅H₂₇F₆N₂O₂ [M+H]⁺ 501.1977, found 501.1976. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 10.1 min, t(major) = 14.5 min, 95:5 er.

(S)(E)-N-(3,4-dichlorophenyl)-2-(2-(3-methoxyphenyl)prop-1-en-1-yl)-4,4dimethylpyrrolidine-1-carboxamide

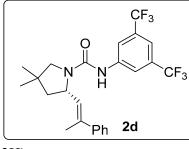


2b, 88% yield, $[\alpha]_D^{27} = -106.6$ (*c* 0.62, CHCl₃). ¹**H NMR (400 MHz, Chloroform-d)** δ 7.59 (d, J = 2.5Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.92 (t, J = 2.0 Hz, 1H), 6.86 (ddd, J = 8.2, 2.4, 0.8 Hz, 1H), 6.67 (s, 1H), 5.85 (dq, J = 8.8, 1.3 Hz, 1H), 4.68 (td, J = 9.0, 7.2 Hz, 1H), 3.82 (s, 3H), 3.66 – 3.63 (m, 1H), 3.21 (d, J = 10.6 Hz, 1H), 2.23 (d, J = 1.2 Hz, 3H), 2.06 (ddd, J = 12.6, 7.1, 1.5 Hz, 1H), 1.69 (dd, J = 12.7, 9.0 Hz, 1H), 1.17 (s, 3H), 1.13 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 159.8, 154.0, 143.5, 138.9, 137.9, 132.6, 130.3, 129.9, 129.6, 125.4, 120.5, 118.2, 118.1, 113.1, 111.8, 59.1, 55.6, 55.3, 47.6, 36.7, 26.3, 26.2, 16.2.

HRMS (ESI) m/z calcd. for C₂₃H₂₇Cl₂N₂O₂ [M+H]⁺ 433.1444, found 433.1441. **HPLC condition:** Chiralcel AD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) =24.0 min, t(major) = 28.6 min, 94:6 er.

(S)(E)-N-(4-bromophenyl)-2-(2-(3-methoxyphenyl)prop-1-en-1-yl)-4,4dimethylpyrrolidine-1-carboxamide

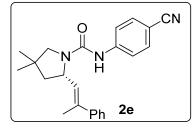


2c, 80% yield, $[\alpha]_D^{27} = -78.05$ (*c* 0.54, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.29 (m, 2H), 7.28 – 7.25 (m, 1H), 7.23 – 7.13 (m, 2H), 7.00 (ddd, *J* = 7.6, 2.0, 0.8 Hz, 1H), 6.92 (t, *J* = 2.1 Hz, 1H), 6.85 (ddd, *J* = 8.0, 2.4, 0.8 Hz, 1H), 6.65 (s, 1H), 5.86 (dq, *J* = 8.8, 1.2 Hz, 1H), 4.68 (td, *J* = 9.0, 7.2 Hz, 1H), 3.81 (s, 3H), 3.65 (dd, *J* = 10.4, 1.6 Hz, 1H), 3.21 (d, *J* = 10.4 Hz, 1H), 2.23 (d, *J* = 1.3 Hz, 3H), 2.05 (ddd, *J* = 12.7, 7.2,

1.6 Hz, 1H), 1.70 – 1.64 (m, 1H), 1.17 (s, 3H), 1.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (one C signal was overlapped) 159.8, 154.3, 143.6, 138.5, 137.7, 131.8, 130.1, 129.6, 120.4, 118.2, 114.8, 113.0, 111.9, 59.1, 55.5, 55.3,

47.7, 36.6, 26.3, 16.2. **HRMS** (ESI) m/z calcd. for C₂₃H₂₈BrN₂O₂ [M+H]⁺ 443.1329, found 443.1325. **HPLC condition:** Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. λ = 260 nm, t(minor) = 16.6 min, t(major) = 22.0 min, 94:6 er.

(S)(E)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(2-phenylprop-1-en-1-yl)pyrrolidine-1-carboxamide

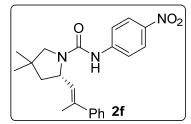

2d, 76% yield, $[\alpha]_D^{27} = -23.88$ (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (s, 2H), 7.48 – 7.29 (m, 6H), 7.01 (s, 1H), 5.86 (dd, J = 9.0, 1.4Hz, 1H), 4.73 (td, J = 9.0, 7.1 Hz, 1H), 3.66 (dd, J = 10.6, 1.6 Hz, 1H), 3.23 (d, J = 10.7 Hz, 1H), 2.28 (d, J = 1.4 Hz, 3H), 2.09 (ddd, J = 12.6, 7.1, 1.6 Hz, 1H), 1.73 (dd, J = 12.7, 9.1 Hz, 1H), 1.19 (s, 3H), 1.15 (s,

3H).

¹³C NMR (151 MHz, CDCl₃) δ 153.8, 141.9, 140.8, 132.1 (q, $J_{C-F} = 33.1$ Hz), 129.6, 128.7, 128.1, 127.3, 125.7, 123.2 (q, $J_{C-F} = 271.0$ Hz), 118.5 – 118.4 (m, 1C), 115.8 – 115.6 (m, 1C), 59.2, 55.8, 47.6, 36.7, 26.3(2), 26.2(9), 16.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.09.

HRMS (ESI) m/z calcd. for C₂₄H₂₅F₆N₂O [M+H]⁺471.1871, found 471.1875. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.4 mL/min. λ = 254 nm, t(minor) = 11.9 min, t(major) = 14.8 min, 93:7 er.

(S)(E)-N-(4-cyanophenyl)-4,4-dimethyl-2-(2-phenylprop-1-en-1-yl)pyrrolidine-1-carboxamide



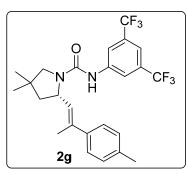
2e, 78% yield, $[\alpha]_D^{27} = -137.1$ (*c* 0.5, CHCl₃). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.53 – 7.45 (m, 2H), 7.44 – 7.31 (m, 7H), 6.97 (s, 1H), 5.86 (dd, *J* = 9.1, 1.4 Hz, 1H), 4.72 (td, *J* = 9.0, 7.1 Hz, 1H), 3.67 (dd, *J* = 10.8, 1.6 Hz, 1H), 3.22 (d, *J* = 10.7 Hz, 1H), 2.27 (d, *J* = 1.6 Hz, 3H), 2.07 (ddd, *J* = 12.7, 7.1, 1.6 Hz, 1H), 1.71 (dd, *J* = 12.7, 9.1 Hz, 1H), 1.17 (s, 3H), 1.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 143.6, 141.8, 138.4, 133.3, 129.5, 128.7, 128.1, 125.7, 119.3, 118.4, 105.0, 59.1, 55.7, 47.6, 36.7, 26.4, 26.3, 16.2.
HRMS (ESI) m/z calcd. for C₂₃H₂₆N₃O [M+H]⁺ 360.2076, found 360.2071.
HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. λ

= 254 nm, t(minor) = 15.3 min, t(major) = 24.6 min, 92.5:7.5 er.

(S)(E)-4,4-dimethyl-N-(4-nitrophenyl)-2-(2-phenylprop-1-en-1-yl)pyrrolidine-1-carboxamide

2f, 62% yield, $[\alpha]_D^{27} = -14.7$ (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 8.8 Hz, 2H), 7.44 – 7.32 (m, 7H), 7.11 (s, 1H), 5.88 (d, *J* = 9.1 Hz, 1H), 4.73 (q, *J* = 8.5 Hz, 1H), 3.68 (d, *J* = 10.7 Hz, 1H), 3.24 (d, *J* = 10.8 Hz, 1H), 2.29 (s, 3H), 2.09 (dd, *J* = 12.7, 7.0 Hz, 1H), 1.73 (dd, *J* = 12.7, 9.1 Hz, 2H),

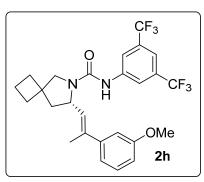

1.19 (s, 3H), 1.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 145.5, 142.2, 141.7, 138.6, 129.4, 128.7, 128.2, 125.7, 125.2, 117.7, 59.2, 55.8, 47.7, 36.6, 26.3(0), 26.2(9), 16.2.

HRMS (ESI) m/z calcd. for $C_{22}H_{26}N_3O_3 [M+H]^+ 380.1974$, found 380.1974.

HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. λ = 254 nm, t(minor) = 16.0 min, t(major) = 25.8 min, 91:9 er.

(S)(E)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(2-(p-tolyl)prop-1-en-1-yl)pyrrolidine-1-carboxamide

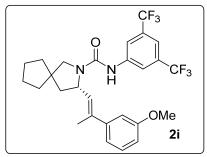


2g, 81% yield, $[\alpha]_D^{27} = -78.6$ (*c* 0.6, CHCl₃). **¹H NMR (400 MHz, Chloroform-***d***)** δ 7.75 (s, 2H), 7.44 (s, 1H), 7.36 – 7.28 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 1H), 5.89 – 5.77 (m, 1H), 4.72 (td, *J* = 9.1, 7.0 Hz, 1H), 3.66 (dd, *J* = 10.8, 1.6 Hz, 1H), 3.23 (d, *J* = 10.7 Hz, 1H), 2.36 (s, 3H), 2.26 (d, *J* = 1.3 Hz, 3H), 2.08 (ddd, *J* = 12.6, 7.1, 1.6 Hz, 1H), 1.72 (dd, *J* = 12.8, 9.1 Hz, 1H), 1.18 (s, 3H), 1.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.9, 140.8, 138.9, 138.5, 138.1, 132.1 (q, J_{C-F} = 33.1 Hz), 129.4, 128.7, 125.5, 123.2 (q, J_{C-F} = 271.0 Hz), 118.5 – 118.4 (m, 1C), 115.7 – 115.5 (m, 1C), 59.1, 55.8, 47.7, 36.6, 26.3(0), 26.2(8), 21.1, 16.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.07.

HRMS (ESI) m/z calcd. for C₂₅H₂₇F₆N₂O [M+H]⁺ 485.2028, found 485.2028. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.4 mL/min. λ = 254 nm, t(minor) = 10.4 min, t(major) = 13.0 min, 92:8 er.

(S)(E)-N-(3,5-bis(trifluoromethyl)phenyl)-7-(2-(3-methoxyphenyl)prop-1-en-1-yl)-6-azaspiro[3.4]octane-6-carboxamide

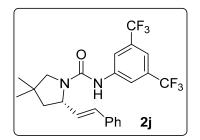

2h, 80% yield, $[\alpha]_D^{27} = -80.6$ (*c* 0.8, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (s, 2H),

7.45 (s, 1H), 7.29 (t, J = 8.0 Hz, 1H), 6.99 (ddd, J = 7.8, 1.8, 0.9 Hz, 1H), 6.94 (s, 1H), 6.93 – 6.92 (m, 1H), 6.86 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 5.84 (dd, J = 9.1, 1.4 Hz, 1H), 4.64 (dt, J = 9.1, 7.2 Hz, 1H), 3.82 (s, 3H), 3.81 (d, J = 10.7 Hz, 1H), 3.50 (d, J = 10.7 Hz, 1H), 2.34 (ddd, J = 12.6, 7.2, 1.1 Hz, 1H), 2.25 (d, J = 1.3 Hz, 3H), 2.16 – 1.87 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 159.8, 153.8, 143.4, 140.8, 138.2, 132.1 (q, J_{C-F} = 33.1 Hz), 129.7, 129.5, 123.2 (q, J_{C-F} = 271.0 Hz), 118.5 – 118.4 (m, 1C), 118.1, 115.7 – 115.6 (m, 1C), 113.2, 111.8, 57.9, 55.6, 55.3, 45.8, 43.4, 32.4, 30.6, 16.3, 16.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08.

HRMS (ESI) m/z calcd. for C₂₆H₂₇F₆N₂O₂ [M+H]⁺ 513.1977, found 513.1980. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 13.0 min, t(major) = 16.0 min, 94:6 er.

(S)(E)-N-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(3-methoxyphenyl)prop-1-en-1-yl)-2-azaspiro[4.4]nonane-2-carboxamide



2i, 84% yield, $[\alpha]_D^{27} = -60.3$ (*c* 0.8, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (s, 2H), 7.45 (s, 1H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.93 (t, *J* = 2.1 Hz, 1H), 6.87 (ddd, *J* = 8.2, 2.5, 0.9 Hz, 1H), 5.88 (dd, *J* = 9.1, 1.4 Hz, 1H), 4.66 (td, *J* = 8.6, 7.1 Hz, 1H), 3.82 (s, 3H), 3.69 (d, *J* = 10.6 Hz, 1H), 3.33 (d, *J* = 10.6 Hz, 1H), 2.26 (d, *J* = 1.4 Hz, 3H), 2.19 (ddd, *J* = 12.5, 7.1, 1.4 Hz, 1H), 1.86 (dd, *J* = 12.5, 8.4 Hz, 1H), 1.77 – 1.49 (m, 8H).

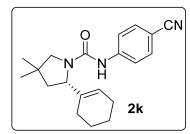
¹³C NMR (101 MHz, CDCl₃) δ 159.8, 153.8, 143.4, 140.8, 138.4, 132.1 (q, J_{C-F} = 33.1 Hz), 129.8, 129.7, 123.2 (q, J_{C-F} = 271.0 Hz), 118.5 – 118.4 (m, 1C), 118.1, 115.7 – 115.6 (m, 1C), 113.2, 111.7, 57.9, 56.2, 55.3, 47.8, 45.9, 37.5, 36.3, 24.9, 24.8, 16.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08.

HRMS (ESI) m/z calcd. for C₂₇H₂₉F₆N₂O₂ [M+H]⁺ 527.2133, found 527.2136. **HPLC condition**: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 10.9 min, t(major) = 15.1 min, 90:10 er.

(*S*)(*E*)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-styrylpyrrolidine-1-carboxamide

2j, 54% yield, $[\alpha]_D^{27} = -50.9$ (*c* 0.5, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 2H), 7.48 -7.42 (m, 3H), 7.42 - 7.37 (m, 2H), 7.37 - 7.31 (m, 1H),

7.11 (s, 1H), 6.83 (d, J = 16.0 Hz, 1H), 6.27 (dd, J = 16.0, 8.4 Hz, 1H), 4.52 (q, J = 8.0 Hz, 1H), 3.71 (d, J = 10.6 Hz, 1H), 3.27 (d, J = 10.6 Hz, 1H), 2.12 (ddd, J = 12.8, 7.2, 1.6 Hz, 1H), 1.82 (dd, J = 12.8, 9.6 Hz, 1H), 1.22 (s,


3H), 1.15 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 154.0, 140.6, 135.3, 132.6, 132.4, 131.9 (q, *J*_{C-F} = 33.1 Hz), 129.0, 128.7, 126.5, 123.2 (q, *J*_{C-F} = 271.0 Hz), 118.6 – 118.5 (m, 1C), 115.8 – 115.7 (m, 1C), 60.1, 59.4, 48.2, 36.8, 26.3, 26.2.

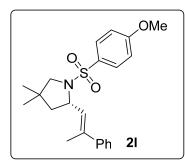
¹⁹F NMR (376 MHz, CDCl₃) δ -63.09.

HRMS (ESI) m/z calcd. for C₂₃H₂₃F₆N₂O [M+H]⁺457.1709, found 457.1708. **HPLC condition**: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 13.3 min, t(minor) = 20.8 min, 90:10 er.

(S)-N-(4-cyanophenyl)-2-(cyclohex-1-en-1-yl)-4,4-dimethylpyrrolidine-1-carboxamide

2k, 25% yield (40% conversion), $[\alpha]_D^{27} = 14.4$ (*c* 0.14, CHCl₃). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.55 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.25 (s, 1H), 6.02 (t, J = 1.7 Hz, 1H), 4.27 (dd, J = 9.9, 7.1 Hz, 1H), 3.76 (dd, J = 10.9, 1.8 Hz, 1H), 3.08 (d, J = 10.9 Hz, 1H), 2.20 – 2.17 (m, 2H), 1.99 – 1.96 (m, 2H), 1.90 – 1.85 (m, 1H), 1.82 – 1.75 (m, 1H), 1.73 – 1.58 (m, 4H), 1.16 (s,

3H), 1.09 (s, 3H).

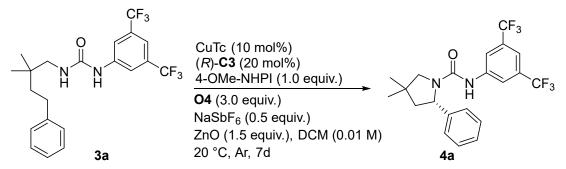

¹³C NMR (101 MHz, CDCl₃) δ 153.8, 143.7, 139.5, 133.3, 126.4, 119.3, 118.2, 104.9, 63.9, 59.5, 46.1, 36.2, 26.1, 25.8, 25.3, 22.4(2), 22.4(1), 22.3.

HRMS (ESI) m/z calcd. for C₂₀H₂₆N₃O [M+H]⁺ 324.2076, found 324.2074.

HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane =97/3, flow rate 0.3 mL/min. λ = 254 nm, t(major) =60.8 min, t(minor) = 69.5 min, 76:24 er.

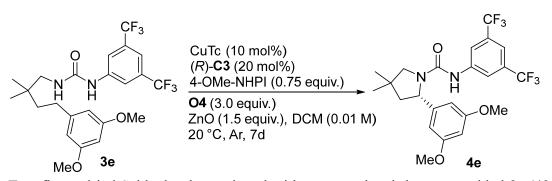
(S)(E)-1-((4-methoxyphenyl)sulfonyl)-4,4-dimethyl-2-(2-phenylprop-1-en-1-

yl)pyrrolidine

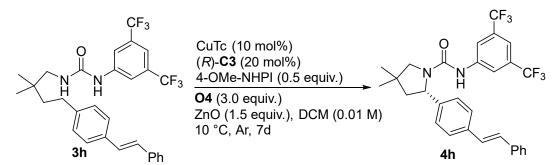

21, 35% yield (75% conversion), $[\alpha]_D^{27} = -30.9$ (*c* 0.2, CHCl₃). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.75 (d, J = 8.3 Hz, 2H), 7.44 – 7.10 (m, 5H), 6.91 (d, J = 8.4 Hz, 2H), 5.66 (d, J = 8.6 Hz, 1H), 4.54 (q, J = 8.3 Hz, 1H), 3.83 (s, 3H), 3.32 (d, J = 10.0 Hz, 1H), 3.23 (d, J = 10.0 Hz, 1H), 2.10 (s, 3H), 1.91 (dd, J = 12.7, 7.6 Hz, 1H), 1.57 (dd, J = 12.6, 8.7 Hz, 1H), 1.12 (s, 3H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.9, 134.9,

131.2, 129.8, 129.5, 128.1, 127.0, 125.8, 113.9, 61.1, 58.0, 55.5, 47.7, 37.6, 26.6, 26.2, 16.0.

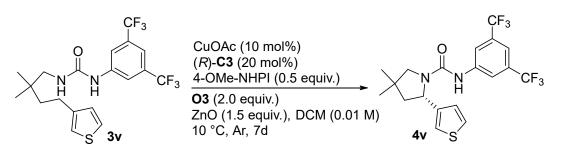
HRMS (ESI) m/z calcd. for C₂₂H₂₈NO₃S [M+H]⁺ 386.1790, found 386.1786. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 16.0 min, t(minor) = 18.4 min, 87:13 er.


General procedure for enantioselective radical benzylic C-H

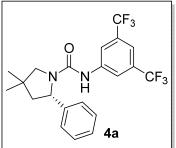
amination:


To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3a** (43.2 mg, 0.1 mmol), CuTc (1.9 mg 10 mol%), (*R*)-C**3** (16 mg, 20 mol%), 4-OMe-NHPI (19 mg, 0.1 mmol), ZnO (12 mg, 0.15 mmol) and NaSbF₆ (13 mg, 0.05 mmol). The tube was evacuated and backfilled with argon for three times, the O4 (72 μ L, 0.3 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 20 °C and (*R*)-C**3** (4 mg, 5 mol%) was added after 12 h and 24 h, respectively. After 7 days, the reaction stopped and the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1-10/1) to give the corresponding product **4a** in 38% isolated yield with 55% conversion (67% yield based on recovered starting material).

Procedure for enantioselective radical benzylic C-H amination of 3e.


To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3e** (49.3 mg, 0.1 mmol), CuTc (1.9 mg 10 mol%), (*R*)-C**3** (16 mg, 20 mol%), 4-OMe-NHPI (14.3 mg, 0.075 mmol), and ZnO (12 mg, 0.15 mmol). The tube was evacuated and backfilled with argon for three times, the **O4** (72 μ L, 0.3 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C and (*R*)-C**3** (4 mg, 5 mol%) was added after 12 h and 24 h, respectively. After 7 days, the reaction stopped and the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1-10/1) to give the corresponding product **4e** in 40% isolated yield with 53% conversion (76% yield based on recovered starting material).

Procedure for enantioselective radical benzylic C–H amination of 3h.

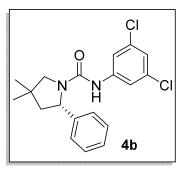

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3h** (53.5 mg, 0.1 mmol), CuTc (1.9 mg 10 mol%), (*R*)-C**3** (16 mg, 20 mol%), 4-OMe-NHPI (9.5 mg, 0.05 mmol), and ZnO (12 mg, 0.15 mmol). The tube was evacuated and backfilled with argon for three times, the **O4** (72 μ L, 0.3 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C and (*R*)-C**3** (4 mg, 5 mol%) was added after 12 h and 24 h, respectively. After 7 days, the reaction stopped and the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1-10/1) to give the corresponding product **4h** in 44% isolated yield with 60% conversion (73% yield based on recovered starting material).

Procedure for enantioselective radical benzylic C-H amination of 3v.

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3v** (43.8 mg, 0.1 mmol), CuOAc (1.24 mg 10 mol%), (*R*)-C**3** (16 mg, 20 mol%), 4-OMe-NHPI (9.5 mg, 0.05 mmol), and ZnO (12 mg, 0.15 mmol). The tube was evacuated and backfilled with argon for three times, the **O3** (48 μ L, 0.2 mmol) and dry DCM (10.0 mL) was added *via* syringe. The tube was stirred at 10 °C and (*R*)-C**3** (4 mg, 5 mol%) was added after 12 h and 24 h, respectively. After 7 days, the reaction stopped and the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1-10/1) to give the corresponding product **4v** in 51% isolated yield with 71% conversion (72% yield based on recovered starting material).

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-phenylpyrrolidine-1-carboxamide

4a, 69% yield based on recovered starting material, $[\alpha]_{D}^{27} = -63.1$ (*c* 0.5, CHCl₃).

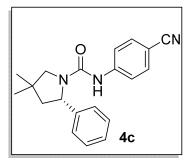

¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 2H), 7.47-7.37 (m, 6H), 6.29 (s, 1H), 4.86 (dd, J = 9.2, 7.2 Hz, 1H), 3.85 (d, J = 10.4 Hz, 1H), 3.40 (d, J = 10.8 Hz, 1H), 2.28 (ddd, J = 12.7, 7.0, 1.5 Hz, 1H), 1.84 (dd, J = 12.4, 10.0 Hz, 1H), 1.19 (s, 3H), 1.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 153.6, 142.1, 140.5, 131.9 (q, $J_{C-F} = 33.3$ Hz), 129.7, 128.6, 125.9, 123.1(q, $J_{C-F} = 271.0$ Hz), 118.7 – 118.6 (m, 1C), 116.0 – 115.8 (m, 1C), 61.7, 60.3, 52.0, 37.3, 26.1, 25.9.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.09.

HRMS (ESI) m/z calcd. for $C_{21}H_{21}F_6N_2O [M+H]^+ 431.1553$, found 431.1549. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 10.6 min, t(minor) = 16.4 min, 95:5 er.

(S)-N-(3,5-dichlorophenyl)-4,4-dimethyl-2-phenylpyrrolidine-1-carboxamide


4b, 84% yield based on recovered starting material, $[\alpha]_D^{27} = -31.7$ (*c* 0.1, CHCl₃).

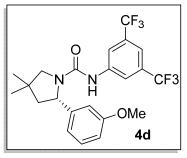
¹H NMR (400 MHz, Chloroform-*d*): δ 7.45 – 7.41 (m, 2H), 7.38 – 7.34 (m, 3H), 7.02 (s, 2H), 6.90 (t, *J* = 2.0 Hz, 1H), 6.04 (s, 1H), 4.80 (dd, *J* = 9.6, 6.8 Hz, 1H), 3.84 (d, *J* = 10.8 Hz, 1H), 3.37 (d, *J* = 10.8 Hz, 1H), 2.25 (ddd, *J* = 12.9, 7.0, 1.7 Hz, 1H), 1.81 (dd, *J* = 12.8, 9.6 Hz, 1H), 1.17 (s, 3H), 1.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 153.6, 142.2, 140.9, 134.8, 129.7, 128.5, 125.9, 122.5, 117.1, 61.7, 60.2, 52.1, 37.3, 26.1, 25.9.

HRMS (ESI) m/z calcd. for C₁₉H₂₁Cl₂N₂O [M+H]⁺ 363.1025, found 363.1022. **HPLC condition:** Chiralcel IA, *i*-PrOH/*n*-hexane = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 6.8 min, t(minor) = 12.7 min, 91:9 er.

(S)-N-(4-cyanophenyl)-4,4-dimethyl-2-phenylpyrrolidine-1-carboxamide

4c, 72% yield based on recovered starting material, $[\alpha]_D^{27} = -77.8 \ (c \ 0.5, \text{CHCl}_3).$


¹**H** NMR (400 MHz, Chloroform-*d*): δ 7.46 – 7.41 (m, 4H), 7.38 – 7.34 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.25 (s, 1H), 4.83 (dd, *J* = 9.8, 7.0 Hz, 1H), 3.87 (d, *J* = 10.8 Hz, 1H), 3.38 (d, *J* = 10.8 Hz, 1H), 2.26 (ddd, *J* = 12.8, 7.0, 1.8 Hz, 1H), 1.83 (dd, *J* = 12.8, 10.0 Hz, 1H), 1.18 (s, 3H), 1.17 (s, 3H).

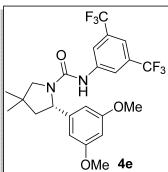
¹³C NMR (101 MHz, CDCl₃): δ 153.5, 143.2, 142.1, 133.1, 129.7, 128.6, 126.0, 119.2, 118.5, 105.1, 61.8, 60.2, 52.1, 37.2, 26.1, 25.9.

HRMS (ESI) m/z calcd. for C₂₀H₂₂N₃O [M+H]⁺ 320.1757, found 320.1756.

HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 16.1 min, t(minor) = 20.8 min, 92:8 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(3-methoxyphenyl)-4,4-dimethylpyrro lidine-1-carboxamide

4d, 61% yield based on recovered starting material, $[\alpha]_{D}^{27} = -44.5$ (c 0.6, CHCl₃).

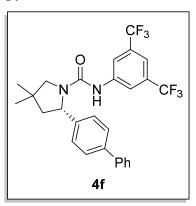

¹H NMR (400 MHz, Chloroform-*d*): δ 7.57 (s, 2H), 7.42 (s, 1H), 7.39 – 7.34 (m, 1H), 6.97 – 6.95 (m, 1H), 6.91 – 6.88 (m, 2H), 6.36 (s, 1H), 4.82 (dd, *J* = 9.6, 7.2 Hz, 1H), 3.85 – 3.82 (m, 4H), 3.38 (d, *J* = 10.4 Hz, 1H), 2.27 (ddd, *J* = 12.8, 7.0, 1.7 Hz, 1H), 1.84 (dd, *J* = 12.8, 9.6 Hz, 1H), 1.18 (s, 3H), 1.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 160.6, 153.6, 143.8, 140.5,131.9 (q, J_{C-F} = 33.1 Hz), 130.8, 123.2 (q, J_{C-F} = 271.0 Hz), 118.7 – 118.6 (m, 1C), 118.0, 115.9 – 115.8 (m, 1C), 113.5, 111.9, 61.6, 60.2, 55.3, 51.8, 37.3, 26.1, 25.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.07.

HRMS (ESI) m/z calcd. for C₂₂H₂₃F₆N₂O₂ [M+H]⁺ 461.1658, found 461.1655. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 15.1 min, t(minor) = 29.9 min, 95:5 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(3,5-dimethoxyphenyl)-4,4-dimethyl pyrrolidine-1-carboxamide


4e, 76% yield based on recovered starting material, $[\alpha]_D^{27} = -18.4$ (*c* 0.2, CHCl₃).

¹**H NMR (400 MHz, Chloroform-***d***)**: δ 7.61 (s, 2H), 7.42 (s, 1H), 6.50 (d, J = 2.0 Hz, 2H), 6.47 (s, 1H), 6.43 (t, J = 2.0 Hz, 1H), 4.78 (dd, J = 9.6, 7.2 Hz, 1H), 3.85 – 3.80 (m, 7H), 3.36 (d, J = 10.4 Hz, 1H), 2.25 (ddd, J = 12.8, 7.0, 1.7 Hz, 1H), 1.84 (dd, J = 12.8, 10.0 Hz, 1H), 1.18 (s, 3H), 1.15 (s, 3H).

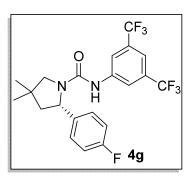
13C NMR (101 MHz, CDCl₃): δ 161.9, 153.8, 144.7, 140.6, 132.0 (q, J_{C-F} = 33.1 Hz), 123.2 (q, J_{C-F} = 271.0 Hz), 118.7 – 118.6 (m, 1C), 115.9 – 115.7 (m, 1C), 103.9, 99.5, 61.8, 60.2, 55.4, 51.5, 37.3, 26.1, 25.8. **19F NMR (376 MHz, CDCl₃):** δ -63.07.

HRMS (ESI) m/z calcd. for C₂₃H₂₅F₆N₂O₃ [M+H]⁺ 491.1764, found 491.1762. **HPLC condition:** Chiralcel AD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 7.3 min, t(minor) = 13.3 min, 94.5:5.5 er.

(S)-2-([1,1'-biphenyl]-4-yl)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl pyrrolidine-1-carboxamide

4f, 64% yield based on recovered starting material, $[\alpha]_D^{27} = -74.5$ (*c* 0.8, CHCl₃).

¹**H NMR (400 MHz, Chloroform-***d***): \delta 7.66 – 7.57 (m, 6H), 7.47 – 7.41 (m, 5H), 7.39 – 7.35 (m, 1H), 6.40 (s, 1H), 4.93 (t,** *J* **= 8.2 Hz, 1H), 3.84 (d,** *J* **= 10.4 Hz, 1H), 3.44 (d,** *J* **= 10.4 Hz, 1H), 2.31 (ddd,** *J* **= 12.8, 7.0, 1.7 Hz, 1H), 1.87 (dd,** *J* **= 12.8, 9.6 Hz, 1H), 1.20 (s, 3H), 1.19 (s, 3H).**


¹³C NMR (101 MHz, CDCl₃): δ 153.6, 141.5, 141.1, 140.5, 140.2, 132.0 (q, *J*_{C-F} = 33.1 Hz), 128.9, 128.3,

127.6, 127.1, 126.3, 123.1 (q, *J*_{C-F} = 271.3 Hz), 118.7 – 118.6 (m, 1C), 115.9 – 115.8 (m, 1C), 61.4, 60.3, 51.8, 37.5, 26.1, 25.9.

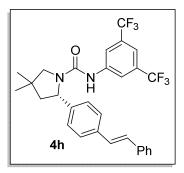
¹⁹F NMR (**376** MHz, CDCl₃): δ -63.04.

HRMS (ESI) m/z calcd. for $C_{27}H_{25}F_6N_2O [M+H]^+ 507.1866$, found 507.1866. **HPLC condition:** Chiralcel AD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 10.5 min, t(minor) = 12.8 min, 94:6 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(4-fluorophenyl)-4,4-dimethylpyro lidine-1-carboxamide

4g, 80% yield based on recovered starting material, $[\alpha]_D^{27} = -61.1$ (*c* 0.6, CHCl₃).

¹**H NMR (400 MHz, Chloroform-***d***)**: δ 7.64 (s, 2H), 7.44 (s, 1H), 7.35 – 7.31 (m, 2H), 7.11 (t, *J* = 8.6 Hz, 2H), 6.32 (s, 1H), 4.90 (dd, *J* = 8.8, 7.2 Hz, 1H), 3.78 (d, *J* = 10.8 Hz, 1H), 3.40 (d, *J* = 10.6 Hz, 1H), 2.26 (ddd, *J* = 12.8, 7.0, 1.7 Hz, 1H), 1.77 (dd, *J* = 12.8, 9.6 Hz, 2H), 1.18 (s, 3H), 1.17 (s, 3H).


¹³C NMR (101 MHz, CDCl₃): δ 162.4 (q, J_{C-F} = 246.1 Hz), 153.5, 140.3, 138.0, 132.0 (q, J_{C-F} = 33.1 Hz), 127.4 (d, J_{C-F} = 8.1 Hz), 123.2 (q, J_{C-F} = 271.2 Hz), 118.7 – 118.6 (m, 1C), 116.5 (d, J_{C-F} = 21.5 Hz), 116.0 – 115.9 (m, 1C), 61.0, 60.3, 51.8, 37.6, 26.1, 25.9.

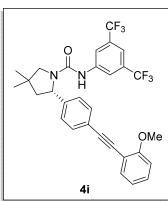
¹⁹F NMR (565 MHz, DMSO-*d*₆, 80 °C) δ -61.80, -116.86.

HRMS (ESI) m/z calcd. for $C_{21}H_{20}F_7N_2O [M+H]^+ 449.1458$, found 449.1454.

HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 98/2, flow rate 0.4 mL/min. λ = 254 nm, t(major) = 26.9 min, t(minor) = 31.6 min, 94:6 er.

(S)-(E)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(4-styrylphenyl) pyrrolidine-1-carboxamide

4h, 73% yield based on recovered starting material, $[\alpha]_D^{27} = -85$ (c 1.4, CHCl₃).


¹H NMR (400 MHz, Chloroform-*d*): δ 7.60 – 7.56 (m, 4H), 7.53 – 7.51 (m, 2H), 7.41 (s, 1H), 7.39 – 7.34 (m, 4H), 7.30 – 7.27 (m, 1H), 7.11 (d, *J* = 2.0 Hz, 2H), 6.36 (s, 1H), 4.91 – 4.86 (m, 1H), 3.84 (d, *J* = 10.4 Hz, 1H), 3.42 (d, *J* = 10.5 Hz, 1H), 2.28 (ddd, *J* = 12.8, 7.1, 1.6 Hz, 1H), 1.83 (dd, *J* = 12.8, 9.7 Hz, 1H), 1.19 (s, 3H), 1.18 (s, 3H).

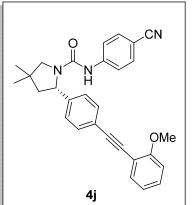
¹³C NMR (101 MHz, CDCl₃): δ 153.6, 140.4, 137.0, 135.2, 132.0 (q, J_{C-F} = 32.9 Hz), 129.6, 128.7, 127.9, 127.7, 127.6, 126.6, 126.2, 124.3, 123.1 (q, J_{C-F} = 271.1 Hz), 119.1 -118.7 (m, 1C), 116.0 - 115.8 (m, 1C), 61.5, 60.3, 51.8, 37.4, 26.1, 25.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.04.

HRMS (ESI) m/z calcd. for C₂₉H₂₇F₆N₂O [M+H]⁺ 533.2028, found 533.2028. **HPLC condition:** Chiralcel IA, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 15.5 min, t(minor) = 18.7 min, 96:4 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(4-((2-methoxyphenyl)ethynyl)phenyl)-4,4-dimethylpyrrolidine-1-carboxamide

4i, 70% yield based on recovered starting material, $[\alpha]_D^{27} = -43$ (c 1.0, CHCl₃).

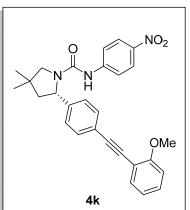

¹**H NMR (400 MHz, Chloroform-***d***)**: δ 7.65 (s, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.49 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.43 (s, 1H), 7.28 (d, *J* = 8.1 Hz, 3H), 6.96 – 6.90 (m, 2H), 6.32 (s, 1H), 4.92 – 4.88 (m, 1H), 3.91 (s, 3H), 3.83 – 3.81 (m, 1H), 3.41 (d, *J* = 10.4 Hz, 1H), 2.28 (ddd, *J* = 12.8, 7.2, 1.7 Hz, 1H), 1.82 (dd, *J* = 12.8, 9.6 Hz, 1H), 1.20 (s, 3H), 1.19 (s, 3H).

⁴¹ ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 153.6, 142.1, 140.4, 133.6, 132.8, 132.0 (q, $J_{C-F} = 33.1$ Hz), 130.0, 125.7, 123.8, 123.1 (q, $J_{C-F} = 271.1$ Hz), 120.5, 119.1 – 118.7 (m, 1C), 116.0 – 115.9 (m, 1C), 112.2, 110.8, 92.6, 86.6, 61.5, 60.3, 55.8, 51.7, 37.6, 26.1, 25.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.0.

HRMS (ESI) m/z calcd. for C₃₀H₂₇F₆N₂O₂ [M+H]⁺ 561.1977, found 561.1978. **HPLC condition:** Chiralcel IA, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 17.7 min, t(minor) = 22.0 min, 96:4 er.

(S)-N-(4-cyanophenyl)-2-(4-((2-methoxyphenyl)ethynyl)phenyl)-4,4-dimethyl pyrrolidine-1-carboxame

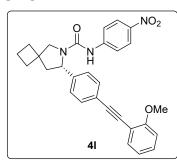

4j, 74% yield based on recovered starting material, $[\alpha]_D^{27} = -154.6$ (*c* 0.6, CHCl₃).

¹**H** NMR (400 MHz, Chloroform-*d*): δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.50 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.35 – 7.31 (m, 3H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.97 – 6.91 (m, 2H), 6.23 (s, 1H), 4.85 (dd, *J* = 9.6, 7.0 Hz, 1H), 3.92 (s, 3H), 3.86 (d, *J* = 10.8 Hz, 1H), 3.39 (d, *J* = 10.4 Hz, 1H), 2.27 (ddd, *J* = 12.9, 7.0, 1.6 Hz, 1H), 1.81 (dd, *J* = 12.8, 9.6 Hz, 1H), 1.18 (s, 3H), 1.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 156.0, 153.4, 143.1, 142.0, 133.6, 133.1, 132.9, 130.1, 125.9, 123.9, 120.6, 119.2, 118.6, 112.0, 110.7, 105.3, 92.6, 86.8, 61.6, 60.2, 55.9, 51.9, 37.4, 26.1, 25.9.

HRMS (ESI) m/z calcd. for C₂₉H₂₈N₃O₂ [M+H]⁺ 450.2176, found 450.2175. HPLC condition: Chiralcel AD-H, *i*-PrOH/*n*-hexane = 75/25, flow rate 1.0 mL/min. λ = 230 nm, t(minor) = 13.7 min, t(major) = 24.9 min, 97:3 er.

(S)-2-(4-((2-methoxyphenyl)ethynyl)phenyl)-4,4-dimethyl-N-(4-nitrophenyl) pyrrolidine-1-carboxamde


4k, 69% yield based on recovered starting material, $[\alpha]_D^{27} = -180 \ (c \ 1.3, \text{CHCl}_3).$

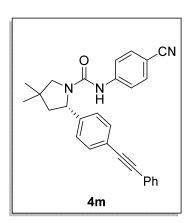
¹H NMR (400 MHz, Chloroform-*d*): δ 8.09 – 8.05 (m, 2H), 7.63 – 7.61 (m, 2H), 7.50 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.24 (d, *J* = 10.5 Hz, 2H), 6.97 – 6.91 (m, 2H), 6.38 (s, 1H), 4.87 (dd, *J* = 9.6, 7.0 Hz, 1H), 3.92 (s, 3H), 3.86 (d, *J* = 10.8 Hz, 1H), 3.40 (d, *J* = 10.8 Hz, 1H), 2.28 (ddd, *J* = 12.8, 7.1, 1.7 Hz, 1H), 1.82 (dd, *J* = 12.8, 9.7 Hz, 1H), 1.19 (s, 3H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.0, 153.2, 145.0,

142.4, 141.9, 133.6, 132.9, 130.1, 125.9, 125.1, 124.0, 120.6, 117.9, 112.0, 110.7, 92.5, 86.8, 61.6, 60.3, 55.9, 51.9, 37.4, 26.1, 25.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₈N₃O₄ [M+H]⁺ 470.2074, found 470.2075. **HPLC condition**: Chiralcel IA, *i*-PrOH/*n*-hexane = 85/15, flow rate 1.0 mL/min. λ = 280 nm, t(minor) = 26.6 min, t(major) = 31.7 min, 96.5:3.5 er.

(S)-7-(4-((2-methoxyphenyl)ethynyl)phenyl)-N-(4-nitrophenyl)-6-azaspiro [3.4]octane-6-carboxamide

41, 68% yield based on recovered starting material, $[\alpha]_D^{27} = -123.3$ (*c* 0.4, CHCl₃).

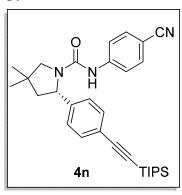

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 9.2 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.52 (dd, J = 7.6, 1.7 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.28 (d, J = 5.6 Hz, 2H), 7.02 – 6.89 (m, 2H), 6.40 (s, 1H), 4.84 (t, J = 7.3 Hz, 1H), 4.01 (d, J = 10.8 Hz, 1H), 3.94 (s, 3H), 3.68 (d, J = 10.7 Hz, 1H), 2.56 (dd, J = 12.6, 7.3 Hz, 1H), 2.18 – 1.85 (m,

7H).

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 153.3, 145.0, 142.4, 141.5, 133.6, 132.7, 130.1, 125.9, 125.0, 123.8, 120.6, 118.0, 112.0, 110.7, 92.6, 86.8, 61.2, 59.0, 55.9, 49.3, 43.7, 32.6, 30.4, 16.1.

HRMS (ESI) m/z calcd. for C₂₉H₂₈N₃O₄ [M+H]⁺ 480.2080, found 480.2081. **HPLC condition:** Chiralcel AD-H, *i*-PrOH/*n*-hexane = 70/30, flow rate 1.0 mL/min. $\lambda = 280$ nm, t(minor) = 18.3 min, t(major) = 27.0 min, 96:4 er.

(S)-N-(4-cyanophenyl)-4,4-dimethyl-2-(4-(phenylethynyl)phenyl)pyrrolidine-1-carboxamide

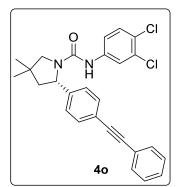

4m, 80% yield based on recovered starting material, $[\alpha]_D^{27} = -107 (c \ 1.1, \text{CHCl}_3).$

¹H NMR (400 MHz, Chloroform-*d*): δ 7.58 (d, J = 8.4 Hz, 2H), 7.54 – 7.52 (m, 2H), 7.46 – 7.43 (m, 2H), 7.37 – 7.33 (m, 5H), 7.23 (d, J = 8.4 Hz, 2H), 6.28 (s, 1H), 4.88 (dd, J = 9.6, 7.2 Hz, 1H), 3.82 (d, J = 10.4 Hz, 1H), 3.39 (d, J = 10.4 Hz, 1H), 2.26 (ddd, J = 12.8, 7.1, 1.7 Hz, 1H), 1.80 (dd, J = 12.8, 9.6 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.4, 143.1, 142.3, 133.1, 132.7, 131.6, 128.6, 128.4, 125.9, 123.4, 122.9, 119.2, 118.6, 105.3, 90.3, 88.6, 61.5, 60.3, 51.7, 37.5, 26.1,

25.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₆N₃O [M+H]⁺ 420.2070, found 420.2067. **HPLC condition:** Chiralcel IA, *i*-PrOH/*n*-hexane = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.8 min, t(major) = 15.4 min, 97:3 er.

(S)-N-(4-cyanophenyl)-4,4-dimethyl-2-(4-((triisopropylsilyl)ethynyl)phenyl) pyrrolidine-1-carboxamide

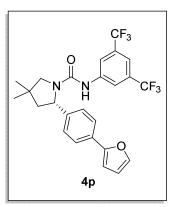

4n, 81% yield based on recovered starting material, $[\alpha]_D^{27} = -116$ (*c* 0.6, CHCl₃).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.52 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.24 (s, 1H), 4.85 (dd, J = 9.5, 7.0 Hz, 1H), 3.82 (d, J = 10.6 Hz, 1H), 3.38 (d, J = 10.6 Hz, 1H), 2.27 – 2.22 (m, 1H), 1.75 (dd, J = 12.8, 9.6 Hz, 1H), 1.16 (s, 3H), 1.15 (s, 3H), 1.13 (s, 21H).

¹³C NMR (101 MHz, CDCl₃): δ 153.4, 143.1, 142.4, 133.2, 133.1, 128.4, 125.7, 119.2, 118.6, 106.2, 105.3,

91.8, 61.5, 60.2, 51.8, 37.5, 26.1, 25.9, 18.7, 11.3. **HRMS** (ESI) m/z calcd. for C₃₁H₄₂N₃OSi [M+H]⁺ 500.3097, found 500.3095. **HPLC condition:** Chiralcel IA, *i*-PrOH/*n*-hexane = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 5.7 min, t(major) = 9.1 min, 95.5:4.5 er.

(S)-N-(3,4-dichlorophenyl)-4,4-dimethyl-2-(4-(phenylethynyl)phenyl)pyrrolidine-1-carboxamide



40, 75% yield based on recovered starting material, $[\alpha]_D^{27} = -79$ (*c* 0.2, CHCl₃).

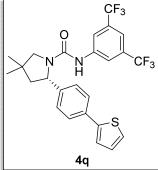
¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.52 (m, 4H), 7.46 (d, J = 2.6 Hz, 1H), 7.42 – 7.31 (m, 5H), 7.23 (d, J =8.8 Hz, 1H), 6.99 – 6.82 (m, 1H), 6.05 (s, 1H), 4.88 (t, J =8.2 Hz, 1H), 3.83 (d, J = 10.4 Hz, 1H), 3.40 (d, J = 10.4 Hz, 1H), 2.28 (dd, J = 12.8, 7.1 Hz, 1H), 1.80 (dd, J = 12.8, 9.5 Hz, 1H), 1.19 (s, 3H), 1.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 142.5, 138.4, 132.7, 132.5, 131.6, 130.2, 128.5, 128.4, 125.9, 125.8, 123.3, 123.0, 120.7, 118.3, 90.1, 88.7, 61.4, 60.3, 51.7, 37.6, 26.2, 25.9.

HRMS (ESI) m/z calcd. for C₂₇H₂₅Cl₂N₂O [M+H]⁺ 463.1338, found 463.1338. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 17.9 min, t(minor) = 28.4 min, 95:5 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(4-(furan-2-yl)phenyl)-4,4-dimethyl pyrrolidine-1-carboxamide

4p, 65% yield based on recovered starting material, $[\alpha]_D^{27} = -52.2$ (*c* 0.7, CHCl₃).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.73 (d, J = 8.0 Hz, 2H), 7.62 (s, 2H), 7.48 (s, 1H), 7.41 – 7.37 (m, 3H), 6.68 (d, J = 3.3 Hz, 1H), 6.48 (t, J = 2.5 Hz, 1H), 6.34 (s, 1H), 4.89 (dd, J = 9.5, 7.1 Hz, 1H), 3.84 (d, J = 10.5 Hz, 1H), 3.41 (d, J = 10.5 Hz, 1H), 2.28 (dd, J = 12.8, 7.1 Hz, 1H), 1.83 (dd, J = 12.8, 9.6 Hz, 1H), 1.19 (s, 3H), 1.17 (s, 3H).


¹³**C NMR (101 MHz, CDCl₃)**: δ 153.6, 153.1, 142.4, 140.9, 140.4, 132.0 (q, J_{C-F} = 32.8 Hz), 131.1, 126.2, 124.9, 123.1

(q, *J*_{C-F} =271.0 Hz), 118.7 – 118.6 (m, 1C), 115.9 – 115.8 (m, 1C), 111.8, 105.6, 61.5, 60.3, 51.8, 37.5, 26.1, 25.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.05.

HRMS (ESI) m/z calcd. for C₂₅H₂₃F₆N₂O₂ [M+H]⁺ 497.1664, found 497.1667. **HPLC condition:** Chiralcel ID, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. λ = 254 nm, t(major) = 16.1 min, t(minor) = 20.3 min, 91:9 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(4-(thiophen-2-yl)phenyl) pyrrolidine-1-carboxamide

4q, 66% yield based on recovered starting material, $[\alpha]_D^{27} = -71$ (*c* 1.1, CHCl₃).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.67 – 7.64 (m, 4H), 7.42 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31 (dd, *J* = 9.0, 4.4 Hz, 2H), 7.09 (t, *J* = 4.4 Hz, 1H), 6.38 (s, 1H), 4.91 (t, *J* = 8.3 Hz, 1H), 3.82 (d, *J* = 10.4 Hz, 1H), 3.42 (d, *J* = 10.4 Hz, 1H), 2.29 (dd, *J* = 12.9, 7.1 Hz, 1H), 1.83 (dd, *J* = 12.8, 9.6 Hz, 1H), 1.19 (s, 3H), 1.18 (s, 3H).

^{4q} ¹³C NMR (101 MHz, CDCl₃): δ 153.6, 143.4, 141.2, 140.4, 134.6, 132.0 (q, J_{C-F} = 33.1 Hz), 128.1, 127.0, 126.3, 125.3, 123.5, 123.1 (q, J_{C-F} = 270.9 Hz), 118.8 – 118.7 (m, 1C), 115.9 – 115.8 (m, 1C), 61.4, 60.3, 51.7, 37.6, 26.1, 25.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.03.

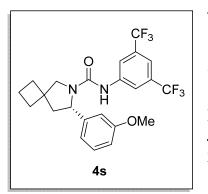
HRMS (ESI) m/z calcd. for C₂₅H₂₃F₆N₂OS [M+H]⁺ 514.1435, found 514.1439. **HPLC condition**: Chiralcel ID, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. λ = 254 nm, t(major) = 16.6 min, t(minor) = 20.9 min, 94:6 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-6-phenyl-5-azaspiro[2.4]heptane-5-carboxamide

4r, 60% yield based on recovered starting material, $[\alpha]_D^{27} = -17 \ (c \ 0.3, \text{CHCl}_3).$

¹H NMR (400 MHz, Chloroform-*d*): δ 7.59 (s, 2H), 7.46 – 7.42 (m, 5H), 7.39 – 7.36 (m, 1H), 6.30 (s, 1H), 4.99 (dd, *J* = 7.9, 4.9 Hz, 1H), 3.79 (d, *J* = 10.3 Hz, 1H), 3.63 (d, *J* = 10.3 Hz, 1H), 2.50 (dd, *J* = 12.6, 7.9 Hz, 1H), 1.89 (dd, *J* = 12.6, 4.9 Hz, 1H), 0.76 – 0.67 (m, 2H), 0.62 – 0.58 (m, 1H),

0.55 – 0.51 (m, 1H).


¹³C NMR (101 MHz, CDCl₃): δ 153.3, 142.0, 140.4, 132.0 (q, *J*_{C-F} = 33.1 Hz), 129.5, 128.4, 126.0, 123.2 (q, *J*_{C-F} = 271.0 Hz), 118.7 – 118.6 (m, 1C), 116.0 – 115.8 (m, 1C), 62.3, 55.3, 45.0, 19.8, 11.8, 9.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.07.

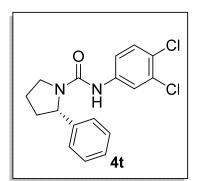
HRMS (ESI) m/z calcd. for C₂₁H₁₉F₆N₂O [M+H]⁺ 429.1396, found 429.1391.

HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 12.3 min, t(minor) = 16.0 min, 95:5 er.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-7-(3-methoxyphenyl)-6-azaspiro[3.4] octane-6-carboxamide

4s, 69% yield based on recovered starting material, $[\alpha]_{D}^{27} = -61$ (*c* 0.25, CHCl₃).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.58 (s, 2H), 7.42 – 7.41 (m, 1H), 7.37 – 7.33 (m, 1H), 6.95 – 6.92 (m, 1H), 6.90 – 6.87 (m, 2H), 6.36 (s, 1H), 4.76 (t, *J* = 7.2 Hz, 1H), 3.98 (d, *J* = 10.7 Hz, 1H), 3.82 (s, 3H), 3.63 (d, *J* = 10.6 Hz, 1H), 2.53 (ddd, *J* = 12.6, 7.3, 1.2 Hz, 1H), 2.13 – 1.89 (m, 7H).


¹³C NMR (101 MHz, CDCl₃): δ 160.5, 153.7, 143.5, 140.5, 131.9 (q, $J_{C-F} = 33.1$ Hz), 130.7, 123.1 (q, $J_{C-F} =$

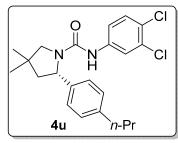
271.0 Hz), 118.7 – 118.6 (m, 1C), 118.0, 115.9 – 115.7 (m, 1C), 113.4, 111.8, 61.2, 59.9, 55.3, 49.3, 43.6, 32.8, 30.2, 16.1.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.07.

HRMS (ESI) m/z calcd. for C₂₃H₂₃F₆N₂O₂ [M+H]⁺ 473.1664, found 473.1661. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 14.0 min, t(minor) = 20.3 min, 92:8 er.

(S)-N-(3,4-dichlorophenyl)-2-phenylpyrrolidine-1-carboxamide

4t, 37% yield based on recovered starting material, $[\alpha]_D^{27} = 43$ (c 0.1, CHCl₃).


¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 7.5 Hz, 2H), 7.39 – 7.29 (m, 4H), 7.20 (d, *J* = 8.8 Hz, 1H), 6.92 (d, *J* = 8.8 Hz, 1H), 6.04 (s, 1H), 4.84 (d, *J* = 8.0 Hz, 1H), 3.85 – 3.71 (m, 2H), 2.05 – 2.44 (m, 1H), 2.04 – 1.90 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 142.2, 138.6, 132.4, 130.1, 129.4, 128.4, 126.9, 125.8, 120.7, 118.4,

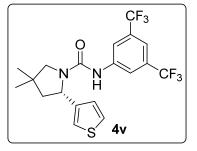
61.5, 47.6, 26.3, 23.2.

HRMS (ESI) m/z calcd. for C₁₇H₁₇Cl₂N₂O [M+H]⁺ 335.0712, found 335.0710. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(minor) = 46.2 min, t(minor) = 53.8 min, 92.5:7.5 er.

(S)-N-(3,4-dichlorophenyl)-4,4-dimethyl-2-(4-propylphenyl)pyrrolidine-1-carboxamide

4**u**, 67% yield based on recovered starting material, $[\alpha]_D^{27} = -70$ (c 1.0, CHCl₃).

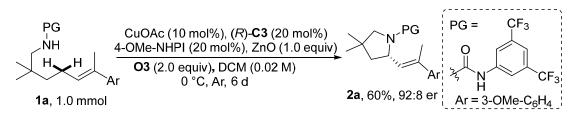
¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.20 (m, 5H), 7.17 (d, *J* = 8.8 Hz, 1H), 6.82 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.06 (s, 1H), 4.76 (dd, *J* = 10.0, 6.8 Hz, 1H), 3.83 (d, *J* = 10.4 Hz, 1H), 3.35 (d, *J* = 10.8 Hz, 1H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.22 (ddd, *J* = 12.8, 6.8, 1.6 Hz, 1H), 1.81


(dd, *J* = 12.8, 9.6 Hz, 1H), 1.65 (q, *J* = 7.6 Hz, 2H), 1.16 (s, 3H), 1.15 (s, 3H), 0.94 (t, *J* = 7.2 Hz, 3H).

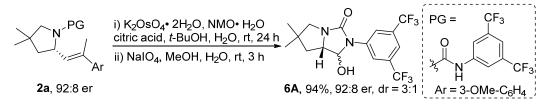
¹³C NMR (101 MHz, CDCl₃) δ 153.9, 143.2, 139.3, 138.7, 132.3, 130.1, 129.7, 125.9, 125.4, 120.5, 118.2, 61.5, 60.1, 52.2, 37.6, 37.1, 26.1, 25.9, 24.5, 13.8.

HRMS (ESI) m/z calcd. for C₂₂H₂₇Cl₂N₂O [M+H]⁺ 405.1495, found 405.1495.

HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 32.7 min, t(minor) = 37.9 min, 90.5:9.5 er.


(S)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(thiophen-3-yl)pyrrolidine-1-carboxamide

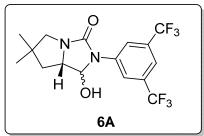
4v, 72% yield based on recovered starting material, $[\alpha]_D^{27} = -11$ (*c* 0.4, CHCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (s, 2H), 7.46 (dd, *J* = 5.1, 2.9 Hz, 1H), 7.43 (s, 1H), 7.34 (dd, *J* = 3.0, 1.4 Hz, 1H), 7.07 (dd, *J* = 5.0, 1.4 Hz, 1H), 6.50 (s, 1H), 4.99 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.79 (d, *J* = 10.6 Hz, 1H), 3.36 (d, *J* = 10.6 Hz, 1H), 2.23 (ddd, *J* = 12.7, 7.1, 1.7 Hz, 1H), 1.89 (dd, *J* = 12.7, 9.5 Hz, 1H), 1.18 (s, 3H), 1.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 142.5, 139.5, 131.0 (q, $J_{C-F} = 33.1$ Hz), 127.8, 124.3, 122.1 (q, $J_{C-F} = 271$ Hz), 120.5, 117.7 – 117.6 (m, 1C), 114.8 – 114.7 (m, 1C), 58.7, 56.3, 49.7, 36.0, 25.1, 24.9. HRMS (ESI) m/z calcd. for C₁₉H₁₉F₆N₂OS [M+H]⁺437.1122, found 437.1121. HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 9.3 min, t(minor) = 12.4 min, 68:32 er.


Preparative scale enantioselective radical allylic C-H amination under

conditions A:

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **1a** (502 mg, 1.0 mmol), CuOAc (12.4 mg 10 mol%), (*R*)-C3 (160 mg, 20 mol%), 4-OMe-NHPI (40 mg, 20 mol%) and ZnO (80 mg, 1.0 mmol). The tube was evacuated and backfilled with argon for three times, the O3 (480 μ L, 2.0 mmol) and dry DCM (50.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the reaction mixture was filtered through celite and the filtrate was evaporated under reduced pressure, and the residue was purified by flash chromatography (petroleum ether/ ethyl acetate =20/1–10/1) to give the corresponding product **2a** (300 mg) in 60% isolated yield with 92:8 er.

Versatile transformation¹⁰



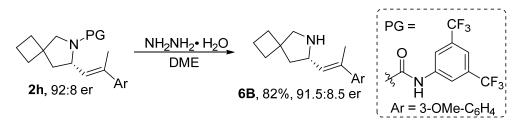
To a flame-dried Schlenk tube equipped with a magnetic stir bar was added **2a** (50.0 mg, 0.1 mmol). Then *t*-BuOH (1.0 mL) and deionized water (1.0 mL) was added while vigorous stirring followed by the addition of citric acid (38.5 mg, 0.2 mmol). Then K₂OsO4·2H₂O (1.5 mg, 4 mol%) and NMO·H₂O (17.5 mg, 0.15 mmol) were sequentially added and the resulting mixture was vigorously stirred in air at rt for ca. 24 h. The resulting mixture was evaporated under reduced pressure until most of the *t*-BuOH had been removed. Then the mixture was diluted with HCl (1 M) solution and EtOAc and the separated aqueous layer was extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄, filtered through a cotton plug and evaporated under reduced pressure. The residue thus obtained was used directly for the

next step without purification.

To a solution of the crude product obtained above in MeOH (1.5 mL) was added deionized H₂O (0.5 mL) and NaIO₄ (42.8 mg, 0.2 mmol) sequentially. the resulting mixture was vigorously stirred in air at rt for ca. 3 h. Then the reaction mixture was repetitively diluted with MeCN and evaporated under reduced pressure until a dried residue was obtained. This residue was mixed with EtOAc and the resulting mixture was sonicated until all the solid was well dispersed in EtOAc. The suspension thus obtained was filtered through a celite pad and the filtrate was evaporated under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ ethyl acetate =20/1-8/1) to give the corresponding product **6A** (36.0 mg) in 94% isolated yield.

2-(3,5-bis(trifluoromethyl)phenyl)-1-hydroxy-6,6-dimethylhexahydro-3Hpyrrolo[1,2-c]imidazol-3-one

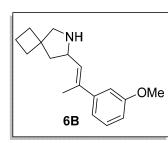
¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (s, 2H), 7.55 (s, 1H), 5.59 (*dd*, J = 5.2 Hz, 0.2H), 5.44 (d, J =9.1 Hz, 0.8H), 5.14 (*d*, J = 12.0 Hz, 0.2H), 4.22 – 4.19 (m, 1H), 3.74 (dd, J = 10.5, 6.2 Hz, 0.8H), 3.40 (d, J = 11.4 Hz, 0.8H), 2.76 (d, J = 11.4 Hz, 1H), 2.56 (*d*, J = 10.0 Hz, 0.2H), 1.88 (dd, J = 6.4 Hz, 0.8H), 1.80 (*d*, J = 11.5 Hz, 0.2H), 1.58 (*dd*, J = 6.0 Hz, 1.00 (*d*, J = 12.1 Hz, 6H)


0.2*H*), 1.31 (d, *J* = 11.5 Hz, 0.8H), 1.09 (d, *J* = 13.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 160.1, *156.6*, 141.1, *139.8*, 132.1 (q, *J* = 33.0 Hz, 1C), 123.1 (q, *J* = 271.1 Hz, 1C), 118.9(7) -118.9(2) (m, 1C), *117.4*, 117.0 - 116.8(m, 1C), *115.6*, 83.3, 82.0, 66.0, 60.2, 59.3, 56.3, 43.6, 42.0, 40.4, 37.8, 28.5, 27.7, 27.3, 26.2. (The italics data represents minor diasteromer).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.92 (minor), -62.99 (major).

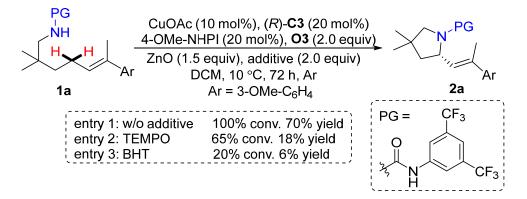
HRMS (ESI) m/z calcd. for C₁₆H₁₇F₆N₂O₂ [M+H]⁺ 383.1189, found 383.1186.


HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. λ = 254 nm, minor diasteromer: t(minor) = 15.3 min, t(major) = 17.4 min, 92:8 er; major diasteromer: t(minor) = 20.0 min, t(major) = 21.8 min, 92:8 er.

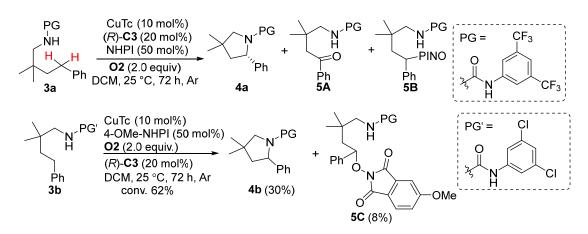
To a flam-dried Schlenk tube equipped with a magnetic stir bar was charged with **2h** (25.6 mg, 0.05 mmol), hydrazine hydrate (30 μ L, 0.5 mmol) and 1,2-Dimethoxyethane (2.0 mL). The sealed tube was then stirred at 80 °C for 96 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. Then the crude product was concentrated *in vacuo* and purified by flash column chromatography using dichloromethane/methanol (50/1) as the eluent to give **6B** (10.6 mg) in 82%

isolated yield.

(E)-7-(2-(3-methoxyphenyl)prop-1-en-1-yl)-6-azaspiro[3.4]octane

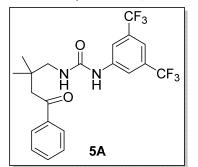


¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (t, *J* = 7.9 Hz, 1H), 7.01 – 6.98 (m, 2H), 6.82 – 6.79 (m, 1H), 6.05 – 5.97 (m, 1H), 4.51 – 4.45 (m, 1H), 3.81 (s, 3H), 3.66 (brs, 1H), 3.22 (s, 2H), 2.25 (dd, J = 12.8, 6.4 Hz, 1H), 2.10 (d, *J* = 1.2 Hz, 3H), 2.07 – 1.94 (m, 5H), 1.91 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 143.3, 141.8, 129.3, 122.0, 118.5, 113.6, 111.7, 56.9, 55.3, 54.9, 45.0, 44.3, 33.5,


29.9, 16.6, 16.0.

HRMS (ESI) m/z calcd. for C₁₇H₂₄NO [M+H]⁺ 258.1852, found 258.1848. **HPLC condition:** Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 24.7 min, t(major) = 36.4 min, 91.5:8.5 er.

Mechanistic studies:


To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **1a** (50.5 0.1 mmol), CuOAc (1.24 mg 10 mol%), (*R*)-C3 (16.0 mg, 20 mol%), 4-OMe-NHPI (4.0 mg, 20 mol%), ZnO (12.0 mg, 0.15 mmol) and additive (0.2 mmol). The tube was evacuated and backfilled with argon for three times, the O3 (48 μ L, 0.2 mmol) and dry DCM (8.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. The solvent was removed under reduced pressure, and the conversion and yield were determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard.

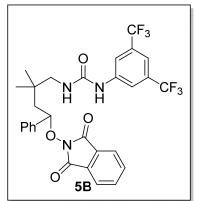
To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3a** (43.2 mg, 0.1 mmol), CuTc (1.9 mg 10 mol%), (*R*)-C**3** (16.0 mg, 20 mol%) and NHPI (8.2 mg, 50 mol%). The tube was evacuated and backfilled with argon for three times, the **O2** (54 μ L, 0.3 mmol) and dry DCM (8.0 mL) was added *via* syringe. The tube was stirred at rt for 3 days. The reaction stopped and the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate =20/1-10/1) to give the corresponding product **4a** in 34% isolated yield with 65% conversion along with the detection of byproducts **5A** and **5B**.

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3b** (36.5 0.1 mmol), CuTc (1.9 mg 10 mol%), (*R*)-C**3** (16.0 mg, 20 mol%), and 4-OMe-NHPI (9.8 mg, 50 mol%). The tube was evacuated and backfilled with argon for three times, the **O2** (36 μ L, 0.2 mmol) and dry DCM (8.0 mL) was added *via* syringe. The tube was stirred at rt for 3 days. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate =20/1-10/1) to give the corresponding product **4b** in 30% isolated yield with 62% conversion along with the detection of byproducts **5C** (4.5 mg, 8%).

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-oxo-4-phenylbutyl)urea ¹H NMR (400 MHz, Chloroform-d) δ 7.95 (d, *J* = 7.7 Hz, 2H), 7.90 (s, 2H), 7.59 (t,

J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.42 (s, 1H), 6.05 (s, 1H), 3.28 (d, J = 6.7 Hz, 2H), 2.94 (s, 2H), 1.04 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 202.9, 155.9, 141.1, 137.6, 133.9, 132.0 (q, $J_{C-F} = 33.1$ Hz), 128.8, 128.5, 123.3 (q, $J_{C-F} = 271.1$ Hz), 118.5, 115.5, 49.7, 36.1, 29.72, 26.5.


¹⁹F NMR (**376** MHz, CDCl₃): δ -63.11.

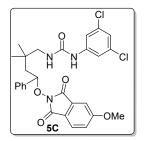
HRMS (ESI) m/z calcd. for $C_{21}H_{21}F_6N_2O_2$ [M+H]⁺

447.1507, found 447.1504.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-((1,3-dioxoisoindolin-2-yl)oxy)-2,2-

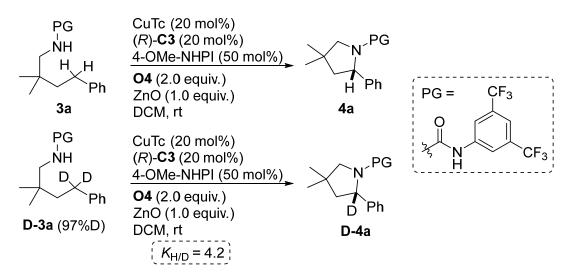
dimethyl-4-phenylbutyl)urea.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 2H), 7.97 (s, 1H), 7.73 (s, 4H), 7.46 (s, 1H), 7.43 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.35 – 7.29 (m, 3H), 6.33 (s, 1H), 5.57 (dd, *J* = 9.1, 1.7 Hz, 1H), 3.57 (dd, *J* = 14.0, 7.1 Hz, 1H), 3.36 (dd, *J* = 14.2, 5.9 Hz, 1H), 2.42 (dd, *J* = 15.8, 9.1 Hz, 1H), 1.76 (dd, *J* = 15.8, 1.7 Hz, 1H), 1.15 (s, 3H), 1.08 (s, 3H).

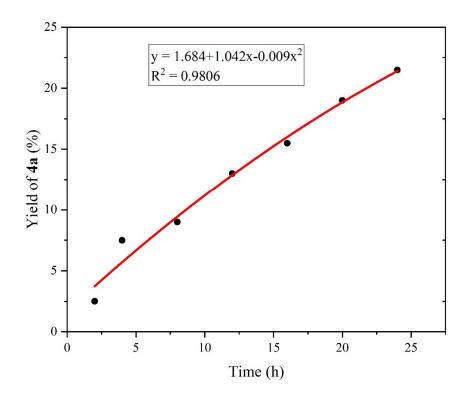

¹³C NMR (101 MHz, CDCl₃) δ 164.2, 155.4, 141.4, 138.5, 134.9, 132.0 (q, $J_{C-F} = 33.1$ Hz), 129.5, 128.5,

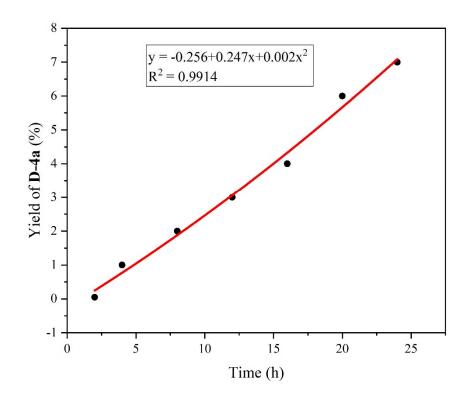
128.2, 128.1, 123.7, 123.4 (q, $J_{C-F} = 271.1$ Hz), 118.1, 115.0, 87.0, 48.9, 46.9, 34.8, 28.6, 24.4.

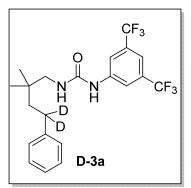
¹⁹F NMR (376 MHz, CDCl₃): δ -62.99.


HRMS (ESI) m/z calcd. for C₂₉H₂₆F₆N₃O₄ [M+H]⁺ 594.1828, found 594.1827.

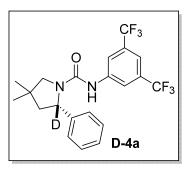
1-(3,5-dichlorophenyl)-3-(4-((5-methoxy-1,3-dioxoisoindolin-2-yl)oxy)-2,2dimethyl-4-phenylbutyl)urea


¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.3 Hz, 1H), 7.49 (d, *J* = 1.6 Hz, 2H), 7.47 (s, 1H), 7.42 – 7.40 (m, 2H), 7.31 – 7.29 (m, 3H), 7.19 (d, *J* = 2.4 Hz, 1H), 7.14 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.96 (t, *J* = 2.0 Hz, 1H), 6.26 (s, 1H), 5.57 – 5.47 (m, 1H), 3.90 (s, 3H), 3.56 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.26 (dd, *J* = 14.4, 5.2 Hz, 1H), 2.39 (dd, *J* = 16.0, 9.2 Hz, 1H), 1.74 (d, *J* = 12.0 Hz, 1H), 1.11 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz,

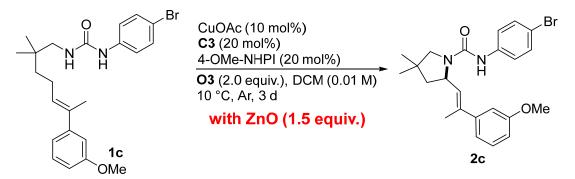

CDCl₃) δ 165.3, 164.5, 163.9, 155.2, 141.9, 138.7, 134.9, 130.8, 129.4, 128.4, 128.2, 125.7, 121.8, 120.0, 119.7, 116.8, 109.1, 86.9, 56.2, 48.8, 47.4, 34.8, 28.9, 24.3. **HRMS** (ESI) m/z calcd. for C₂₈H₂₈Cl₂N₃O₅ [M+H]⁺ 556.1401, found 556.1404.


To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **3a** (43.3 mg, 0.1 mmol) or **D-3a** (43.5 mg, 0.1 mmol), CuTc (3.8 mg 20 mol%), (*R*)-C**3** (16 mg,

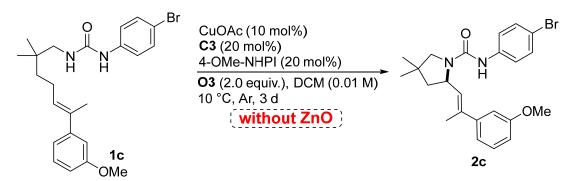
20 mol%), 4-OMe-NHPI (10 mg, 50 mol%) and ZnO (8.0 mg, 0.1 mmol). The tube were evacuated and backfilled with argon for three times, the **O4** (48 μ L, 0.2 mmol) and dry DCM (6.0 mL) was added *via* syringe. The tube was stirred at rt and the yield of **4a** and **D-4a** were determined by crude ¹H NMR using 1,3,5-trimethoxybenzene as internal standard at different times to determine the intermolecular KIE value.


1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-phenylbutyl-4,4-d₂)urea

¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.68 (s, 2H), 7.41 (s, 1H), 7.34 – 7.01 (m, 5H), 6.15 (t, *J* = 6.4 Hz, 1H), 3.13 (d, *J* = 6.0 Hz, 2H), 2.52 (t, *J* = 8.8 Hz, 0.07 H), 1.48 (s, 2H), 0.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 142.4, 140.3, 132.1 (q, *J*_{C-F} = 33.1 Hz), 128.4, 128.1, 125.0, 123.0 (q, *J*_{C-F} = 271.1 Hz), 118.6, 115.9, 50.1, 41.9, 34.5, 24.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.35. HRMS (ESI) m/z calcd. for C₂₁H₂₁D₂F₆N₂O [M+H]⁺


435.1835, found 435.1832.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-phenylpyrrolidine-2-d-1-carboxamide



¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.53 (s, 2H), 7.49 – 7.33 (m, 6H), 6.28 (s, 1H), 3.85 (d, *J* = 10.4 Hz, 1H), 3.40 (d, *J* = 10.4 Hz, 1H), 2.27 (dd, *J* = 12.4, 1.8 Hz, 1H), 1.84 (d, *J* = 12.4 Hz, 1H), 1.18 (s, 3H), 1.17 (s, 3H) ¹³**C NMR (101 MHz, CDCl₃)** δ 153.6, 142.0, 140.5, 131.9 (q, *J*_{C-F} = 33.3 Hz), 129.7, 128.6, 125.9, 123.1(q, *J*_{C-F} = 271.0 Hz), 118.7 – 118.6 (m, 1C), 115.9 – 115.7 (m, 1C), 61.3 (t, *J*_{C-D} = 21.3 Hz), 60.3, 51.9, 37.3, 26.1, 25.9. **HRMS** (ESI) m/z calcd. for $C_{21}H_{20}DF_6N_2O [M+H]^+ 432.1615$, found 432.1613.

Non-linear effect experiments:

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 1c (22.0 mg, 0.05 mmol), CuOAc (0.62 mg 10 mol%), C3 (8.0 mg, 20 mol%), 4-OMe-NHPI (2.0 mg, 20 mol%) and ZnO (6.0 mg, 0.075 mmol). The tube was evacuated and backfilled with argon for three times, the O3 (24 μ L, 0.1 mmol) and dry DCM (5.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the reaction mixture was filtered through a pad of celite. The filtrate was used to collect the ee value by HPLC analysis on a Chiral column.

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 1c (22.0 mg, 0.05 mmol), CuOAc (0.62 mg 10 mol%), C3 (8.0 mg, 20 mol%), and 4-OMe-NHPI (2.0 mg, 20 mol%). The tube was evacuated and backfilled with argon for three times, the O3 (24 μ L, 0.1 mmol) and dry DCM (5.0 mL) was added *via* syringe. The tube was stirred at 10 °C for 3 days. After completion, the reaction mixture was filtered through a pad of celite. The filtrate was used to collect the ee value by HPLC analysis on a Chiral column.

References:

(1) N. Zhu, J. Zhao, H. Bao, Chem. Sci., 2017, 8, 2081.

(2) S. Paria, Q.-K. Kang, M. Hatanaka, K. Maruoka, ACS Catal. 2019, 9, 78.

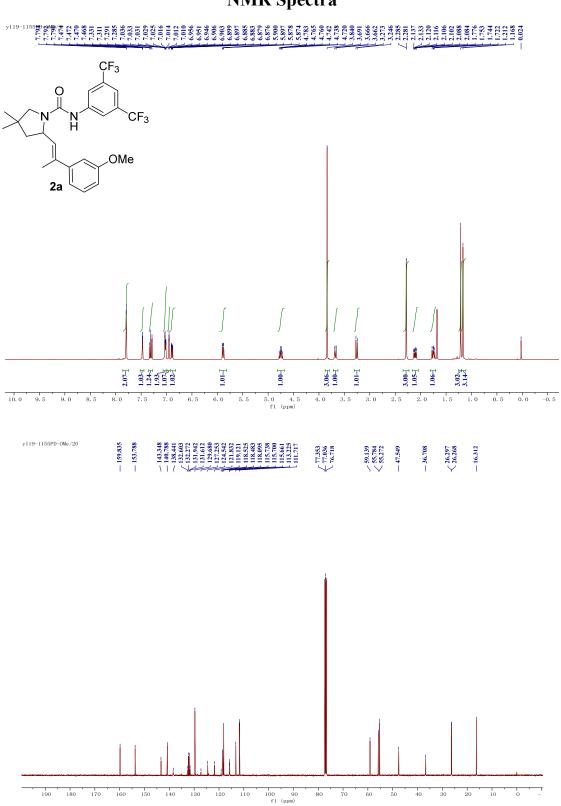
(3) I. B. Krylov, M. O. Kompanets, K. V. Novikova, I. O. Opeida, O. V. Kushch, B. N.

Shelimov, G. I. Nikishin, D. O. Levitsky, A. O. Terent'ev, J. Phys. Chem. A 2016, 120, 68.

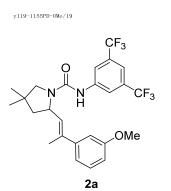
(4) X. Liu, Y. Liang, J. Ji, J. Luo, X. Zhao, J. Am. Chem. Soc. 2018, 140, 4782.

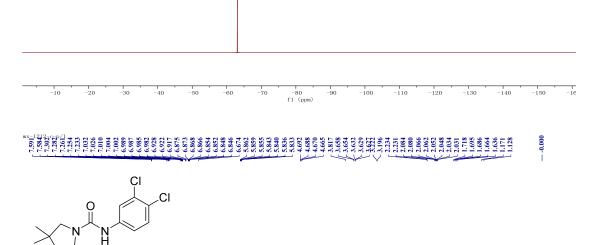
(5) (a) Y. Kita, T. Yata, Y. Nishimoto, M. Yasuda, J. Org. Chem. 2018, 83, 740. (b) M.

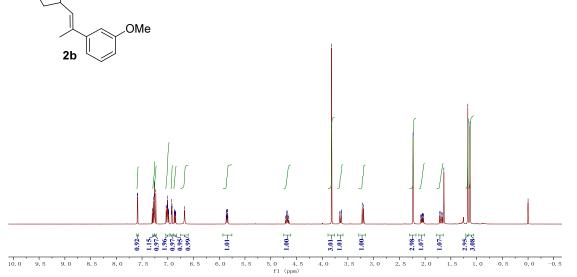
E. Jung, S. Angelica, D. C. D'Amico, J. Org. Chem. 1997, 62, 9182.

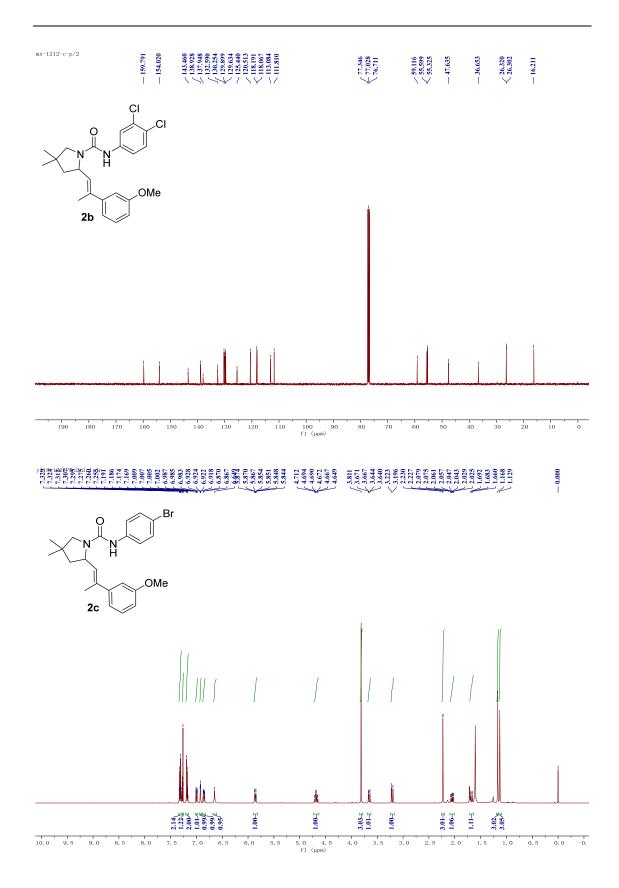

(6) A. Kaga, Y. L. Tnay, S. Chiba, Org. Lett. 2016, 18, 3506.

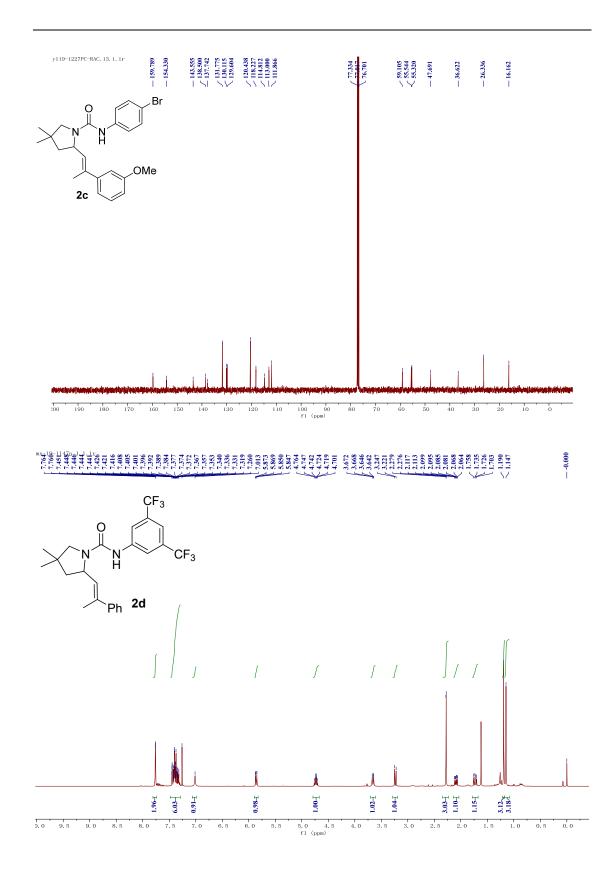
(7) X. Peng, B. Meng, K. Tong, H. Hirao, S. Chiba, Angew. Chem. Int. Ed. 2014, 53, 1959.

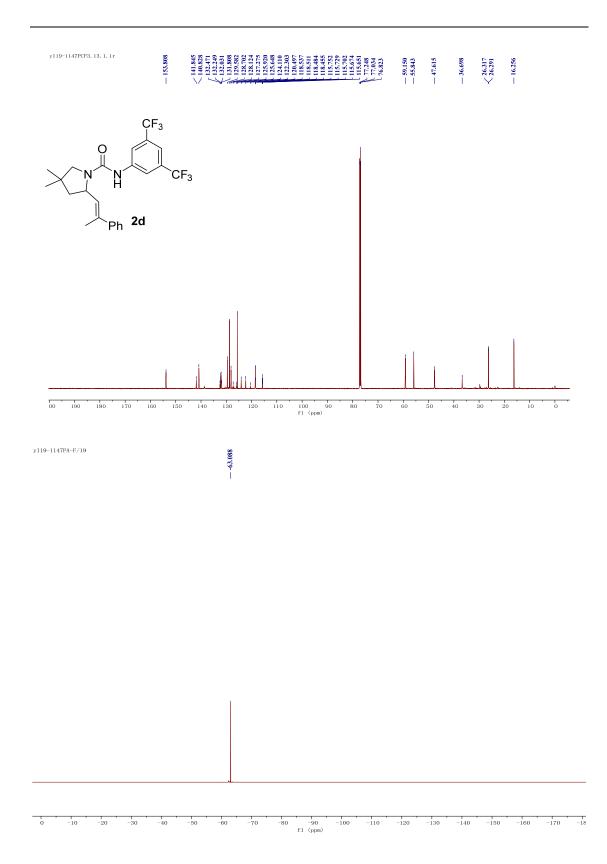

(8) J.-S. Lin, X.-Y. Dong, T.-T. Li, N.-C. Jiang, B. Tan, X.-Y. Liu, J. Am. Chem. Soc. **2016**, *138*, 9357.


(9) N. Sakai, K. Kawana, R. Ikeda, Y. Nakaike, T. Konakahara, *Eur. J. Org. Chem.* 2011, 3178.

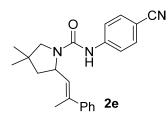

(10) Q.-S. Gu, D. Yang, Angew. Chem. Int. Ed. 2017, 56, 5886; Angew. Chem. 2017, 129, 5980.

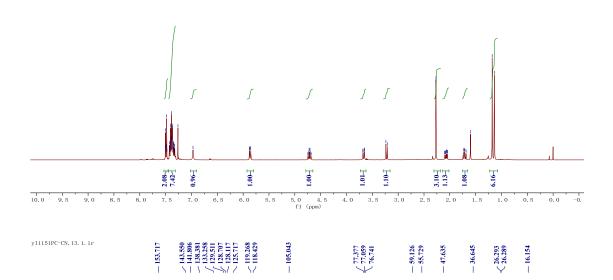

NMR Spectra

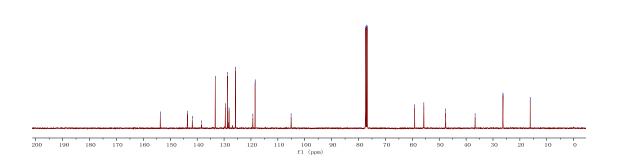


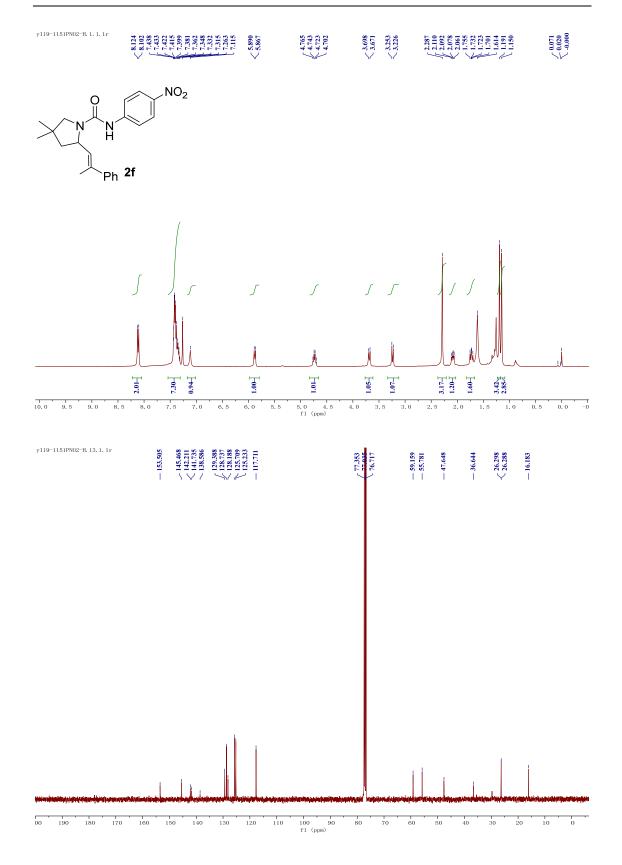


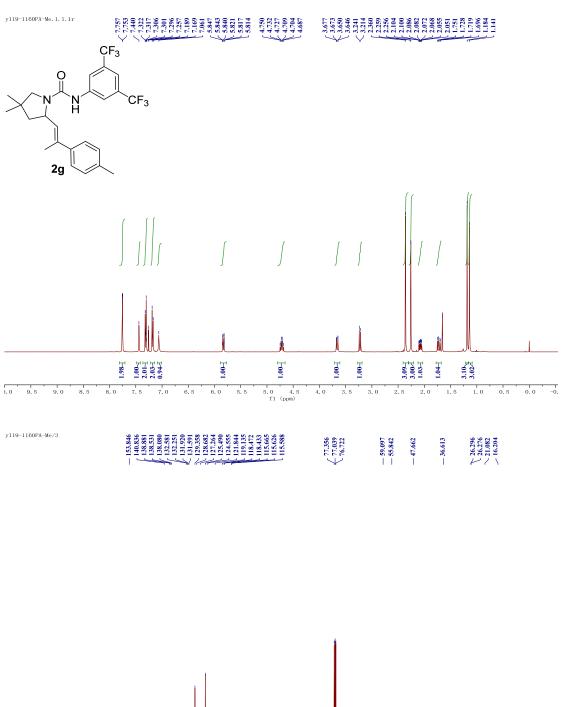
S63

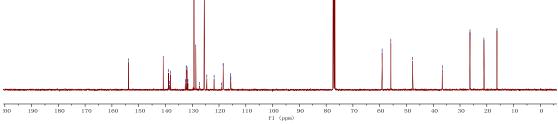


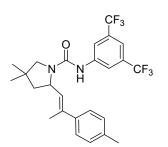


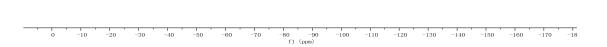


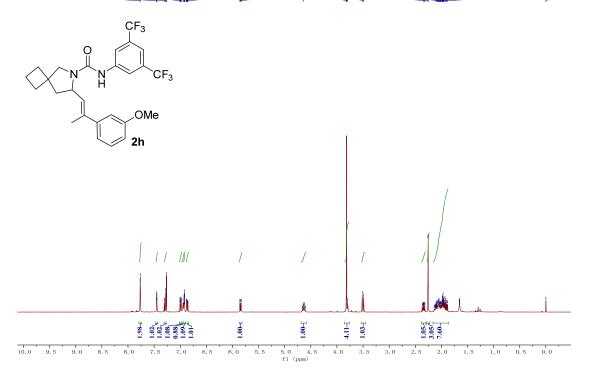

S66

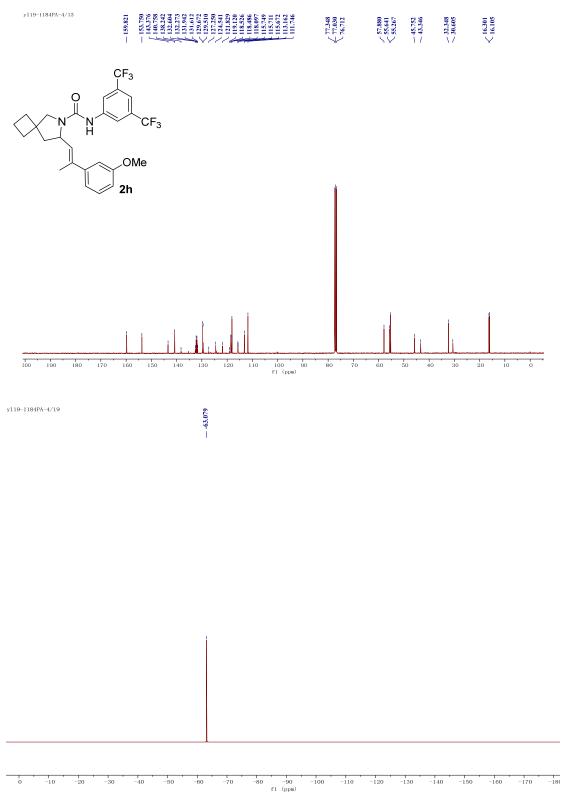


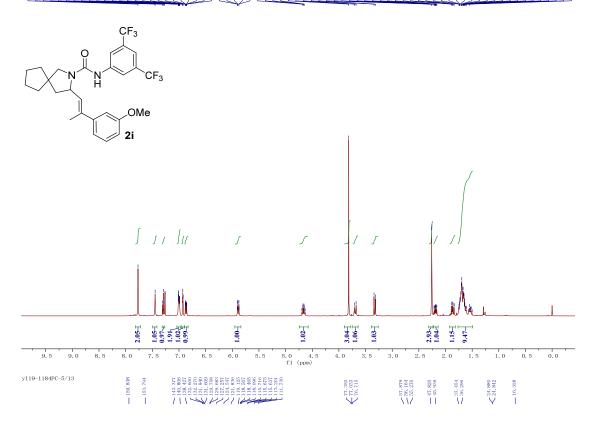


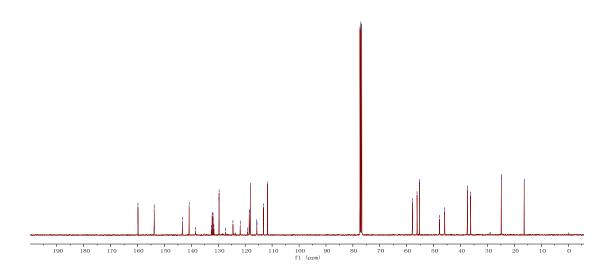


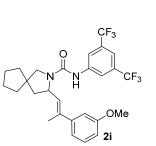


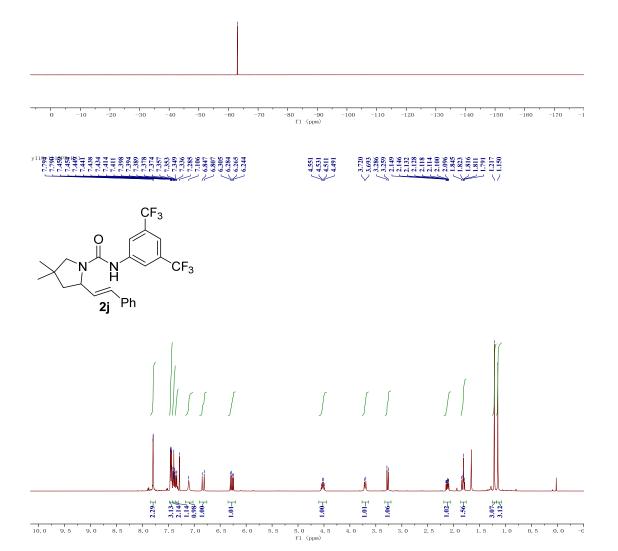


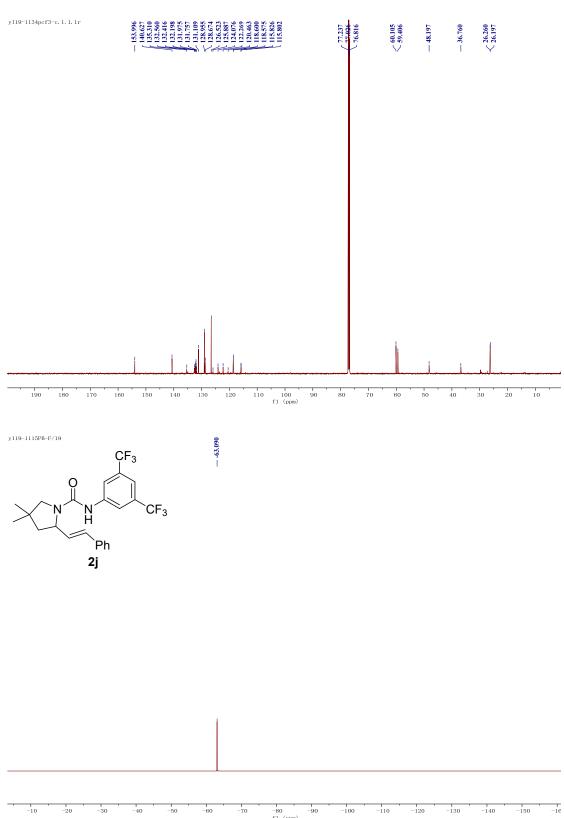

y119-1160PA-Me. 19. 1. 1r

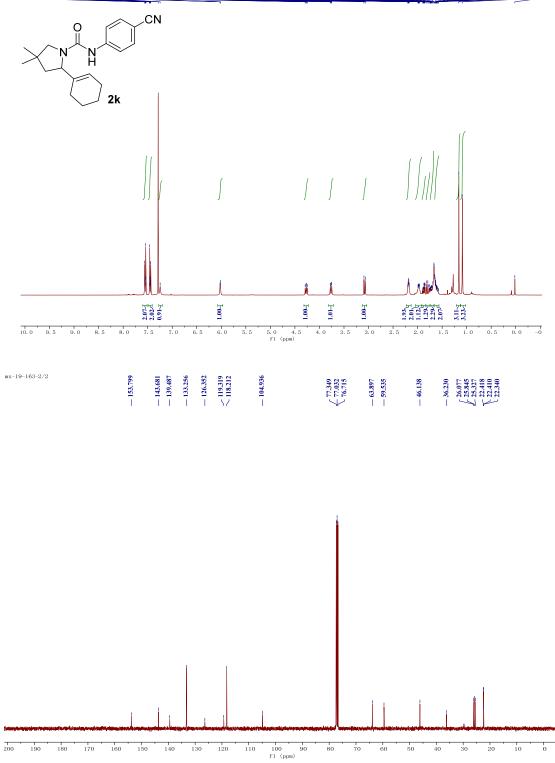


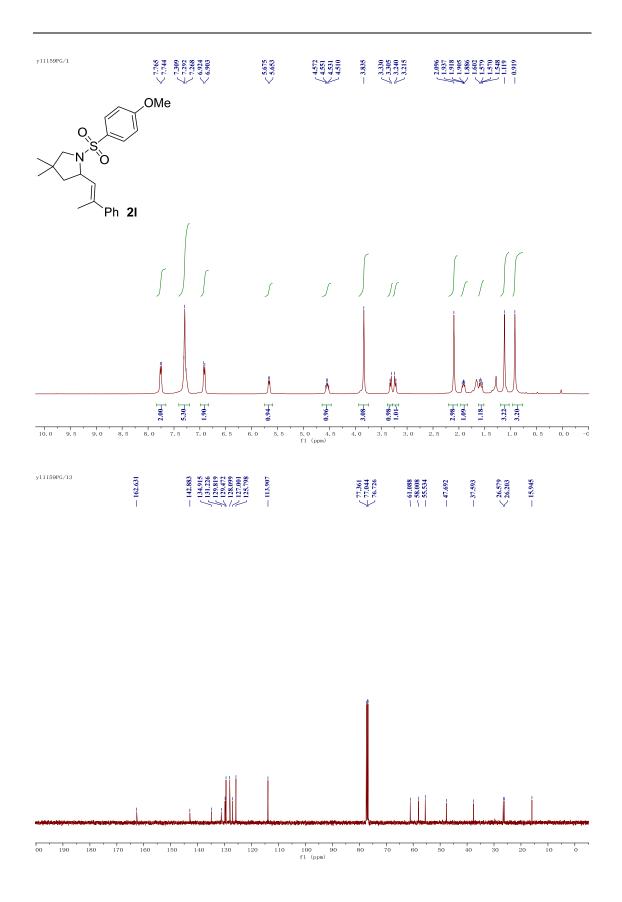

7,7766 7,746 6,697 7,746 6,697 7,746 6,697 6,698 6

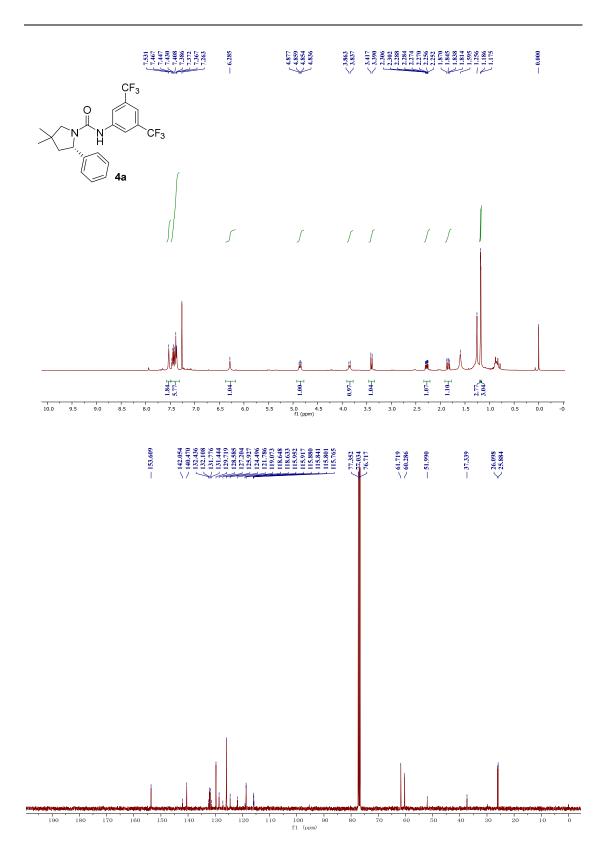


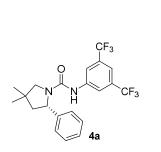

$\begin{array}{l} 7.7.76(6) \\ 6.7.7.10(6)$

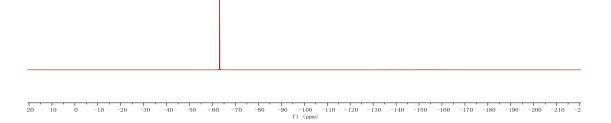


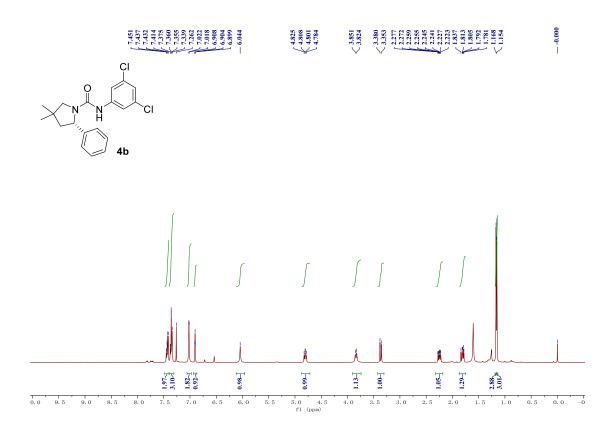


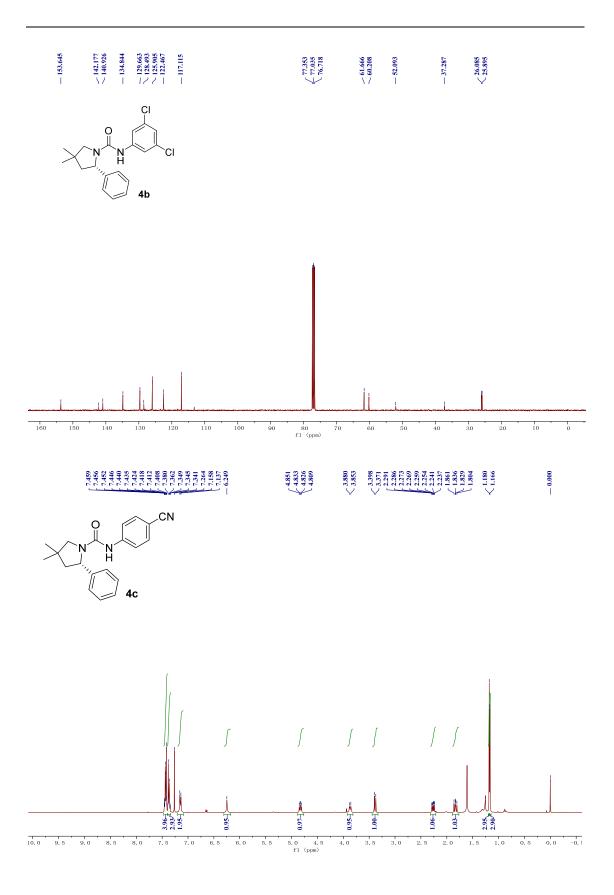

S73

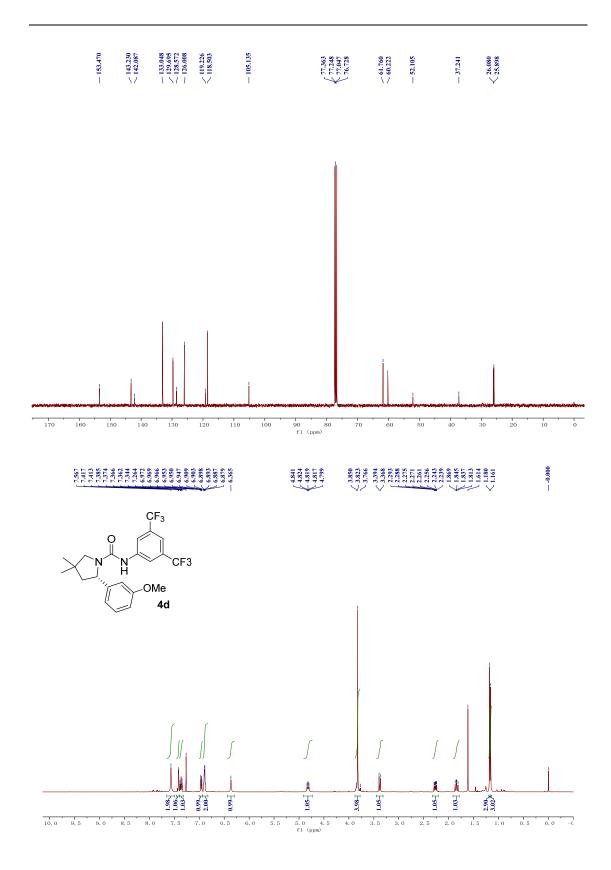


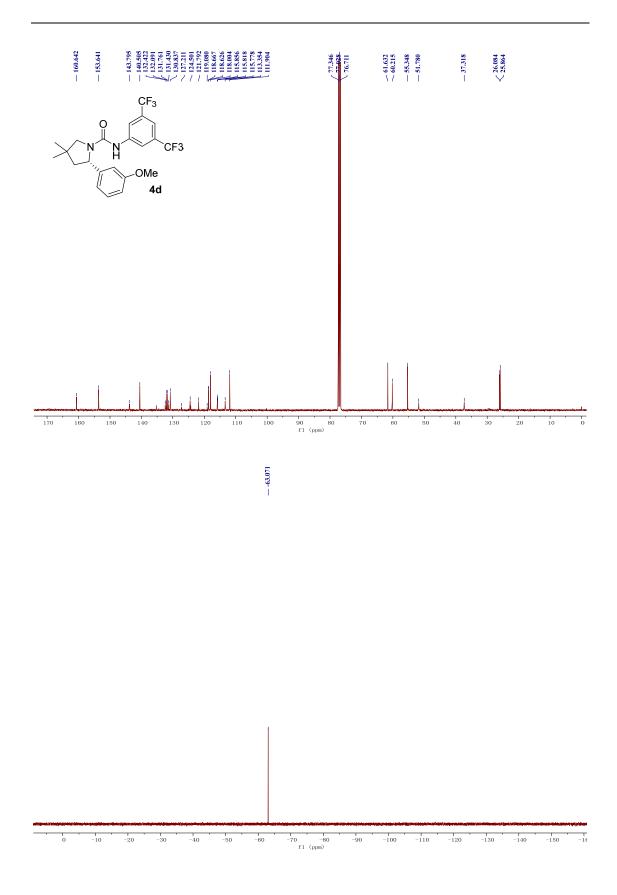

-80 f1 (ppm)

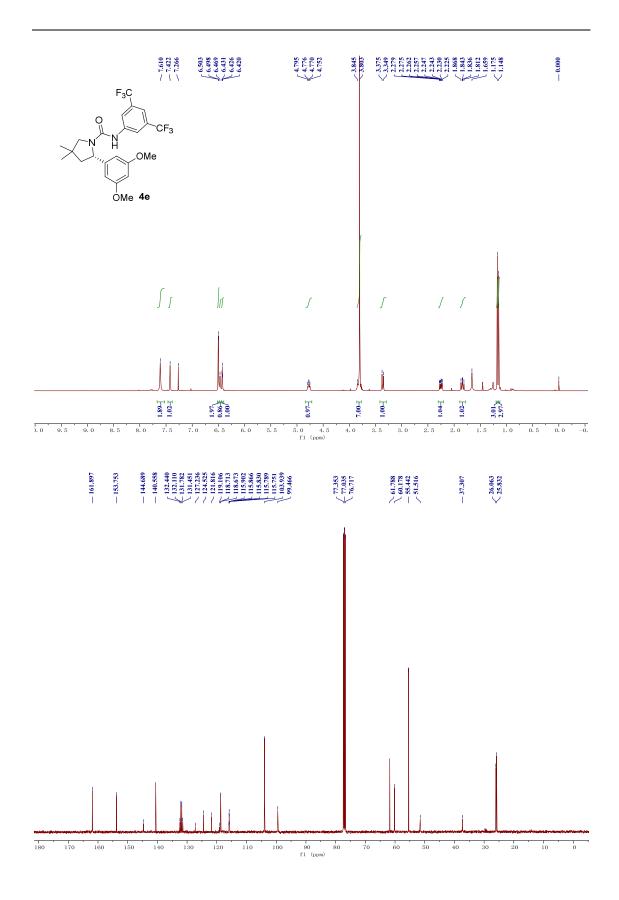


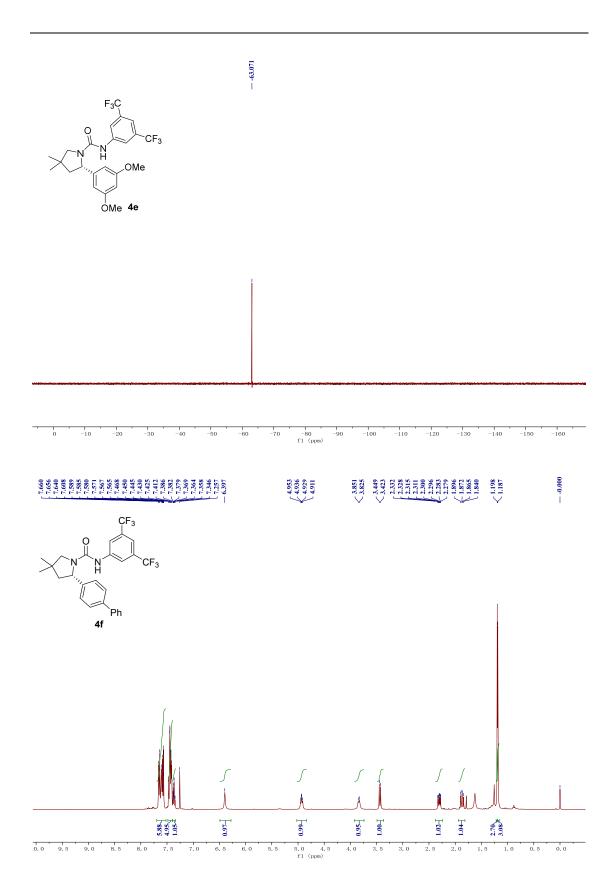


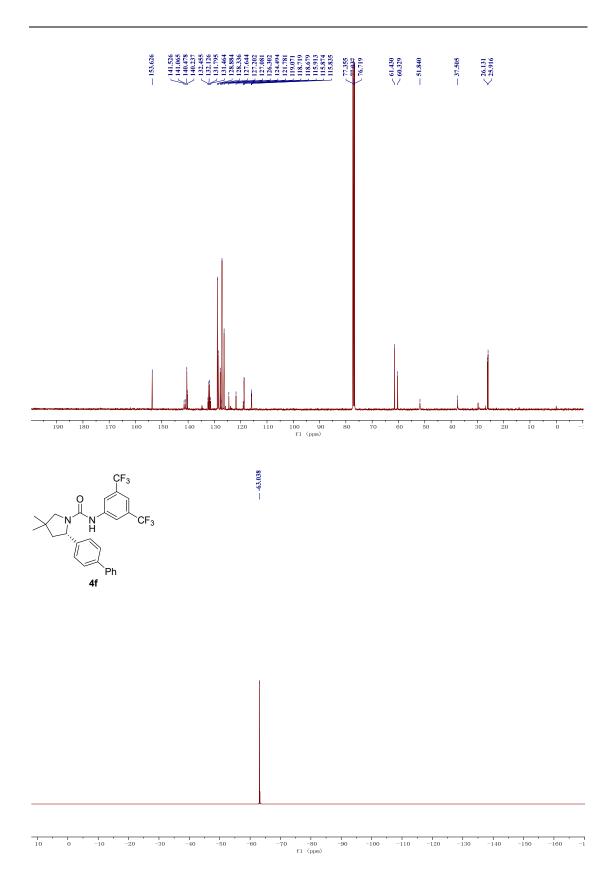


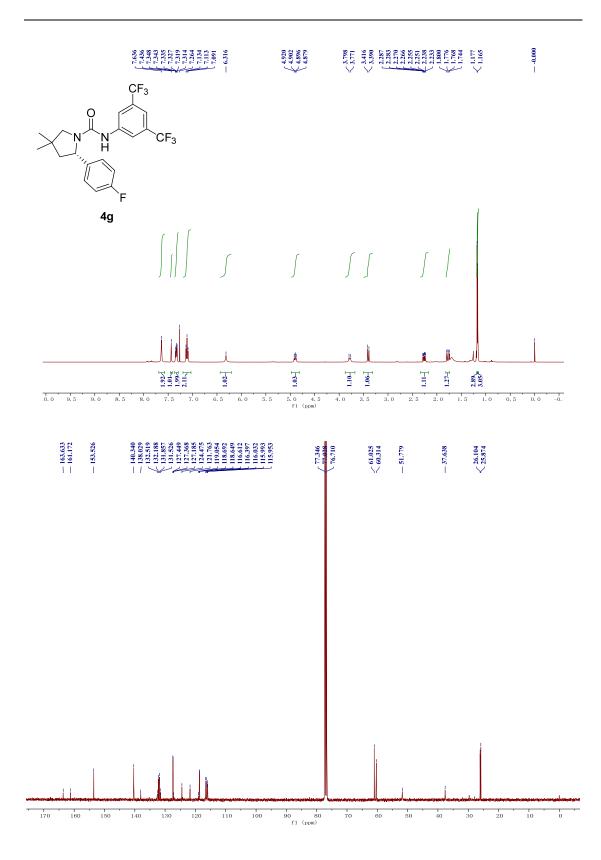


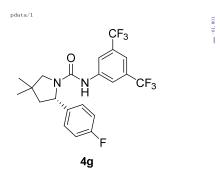


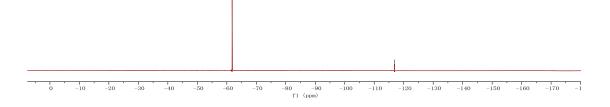


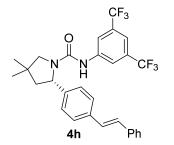


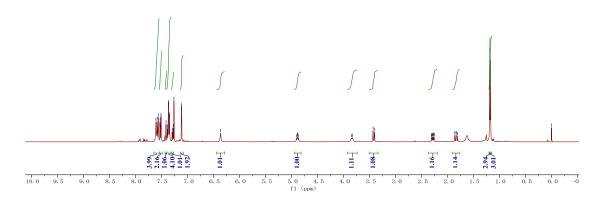


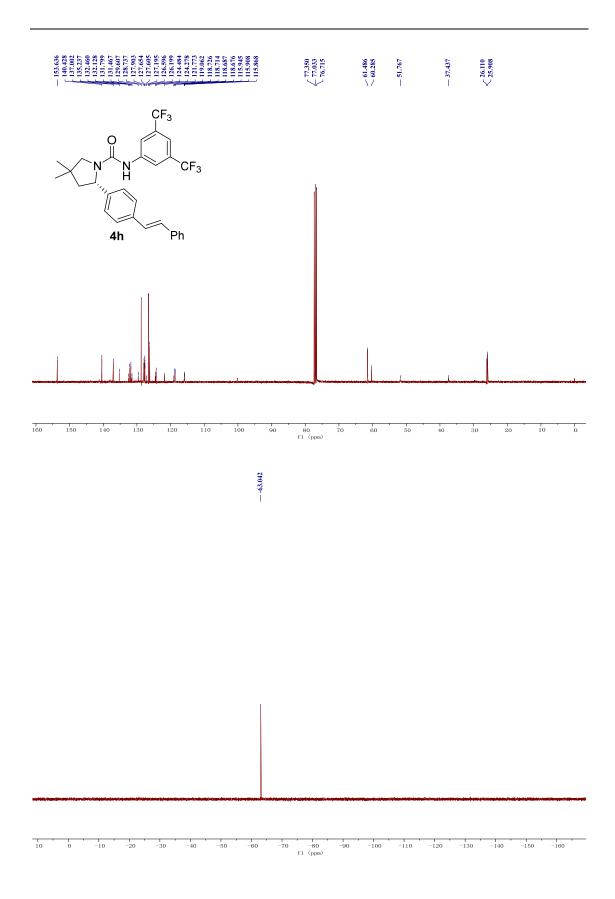

S80

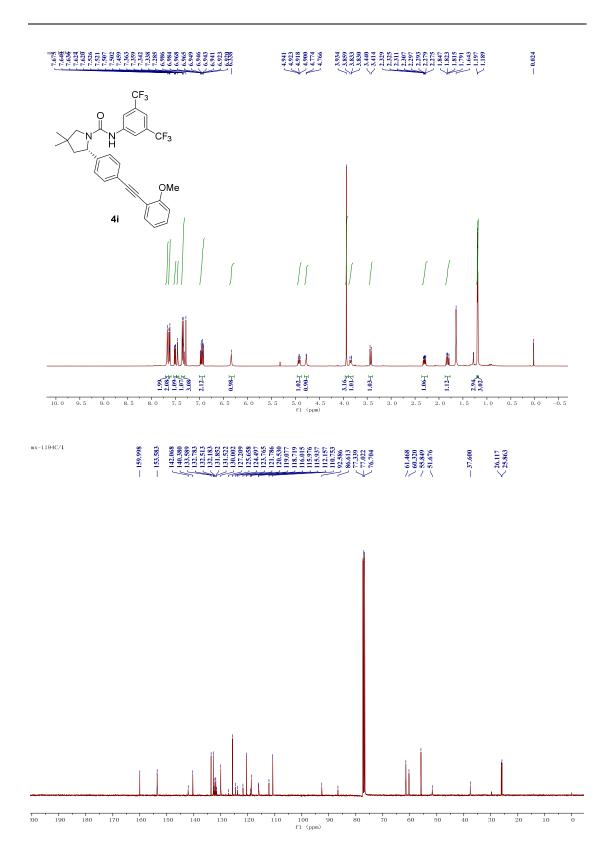


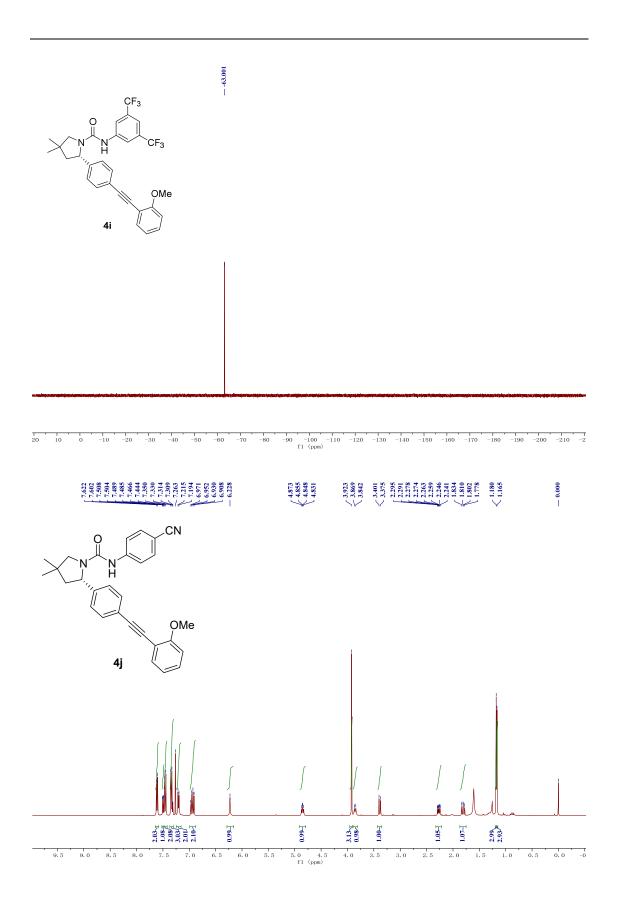


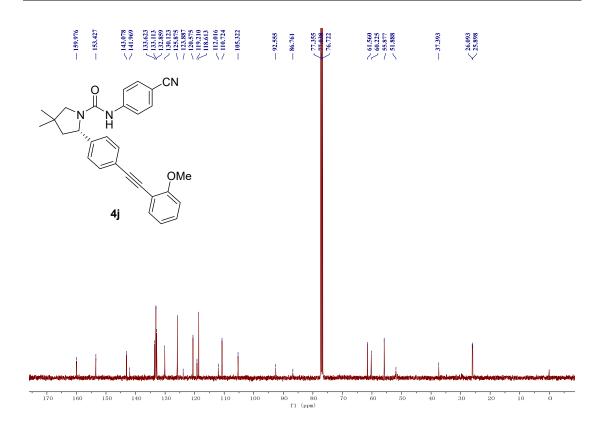


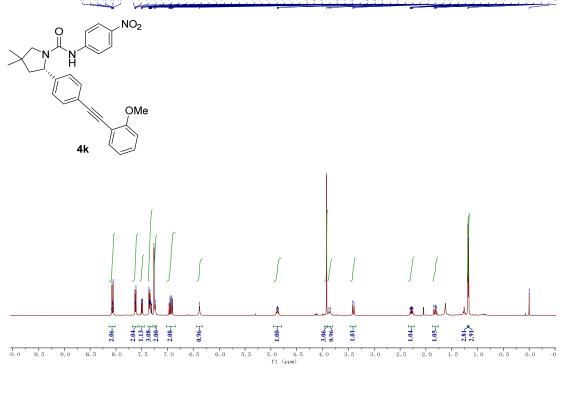


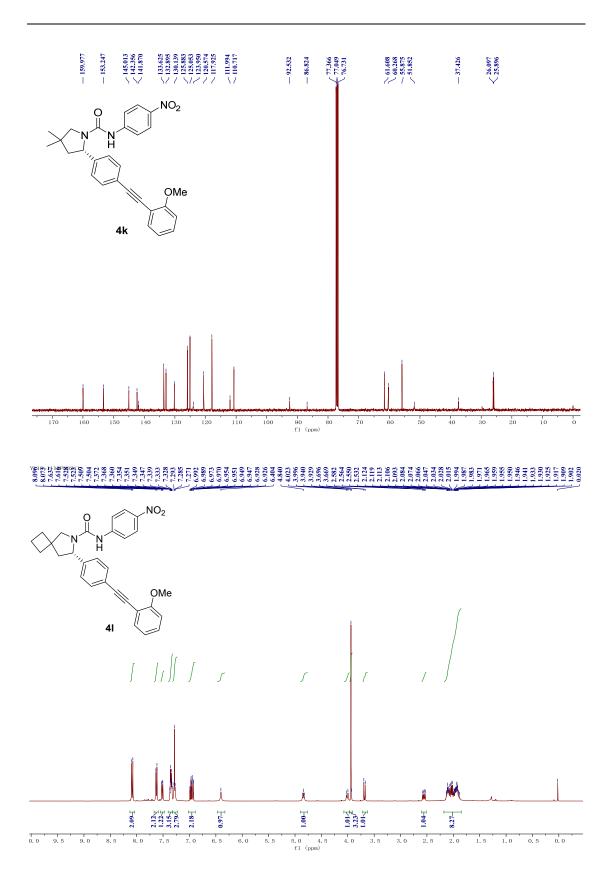


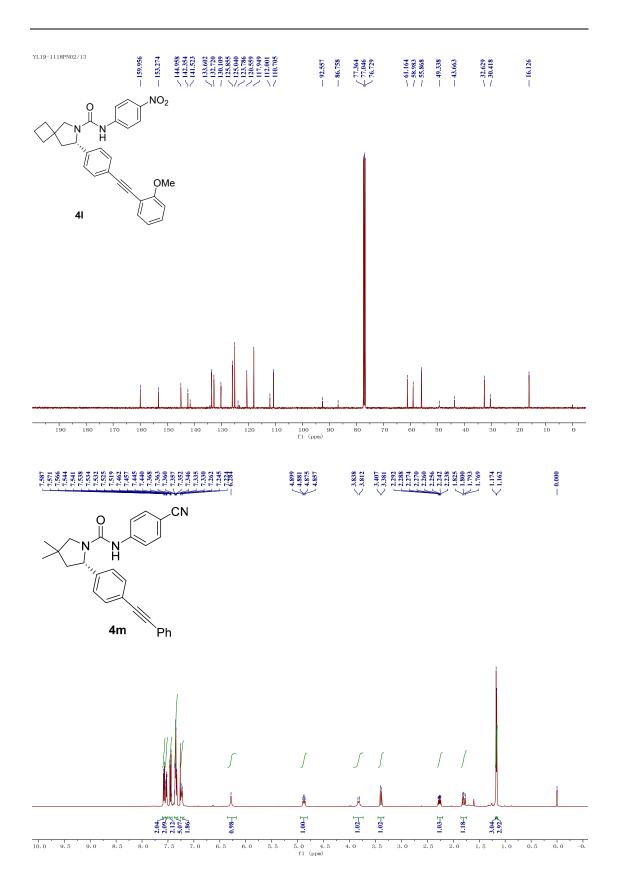

-0.000

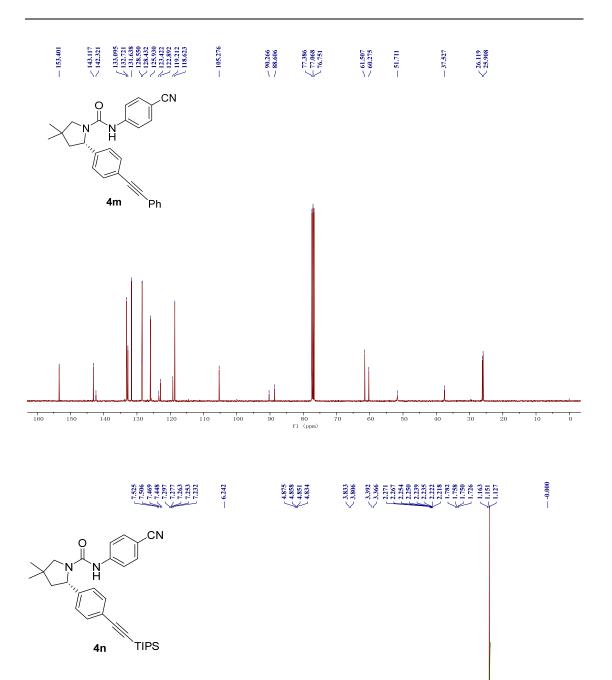


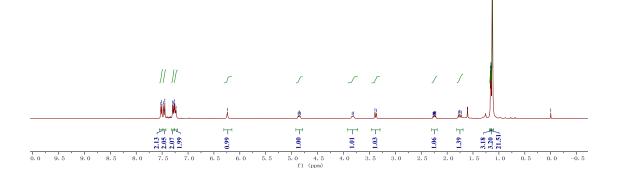


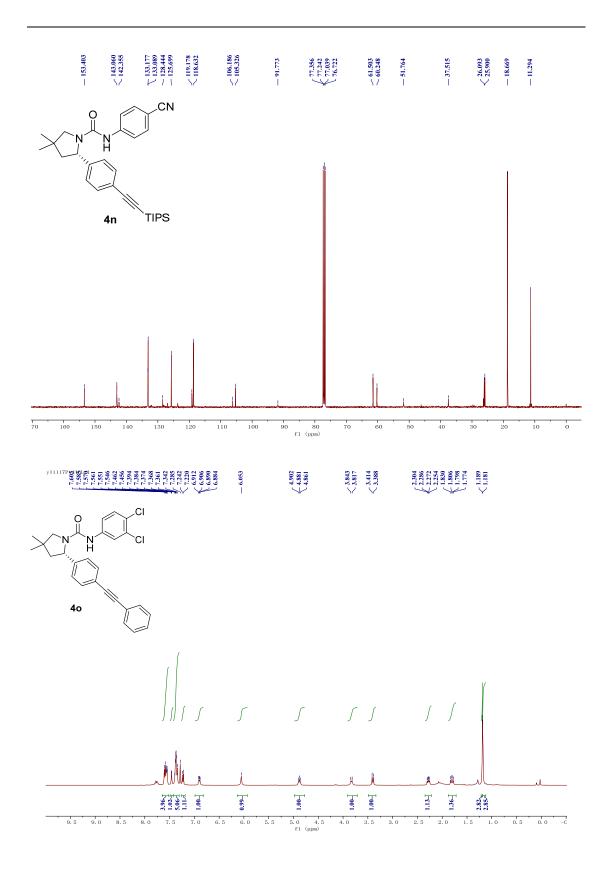


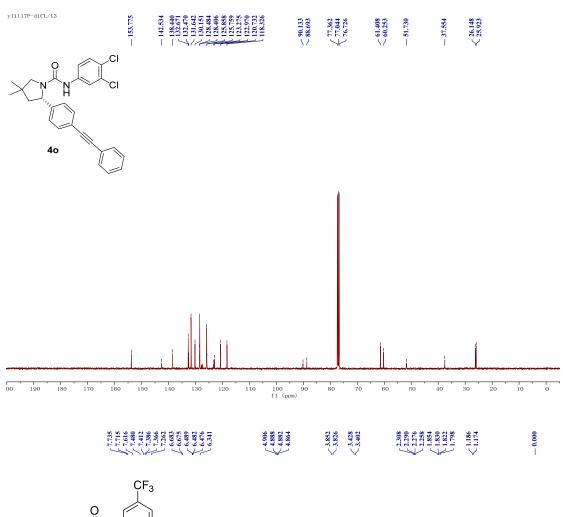


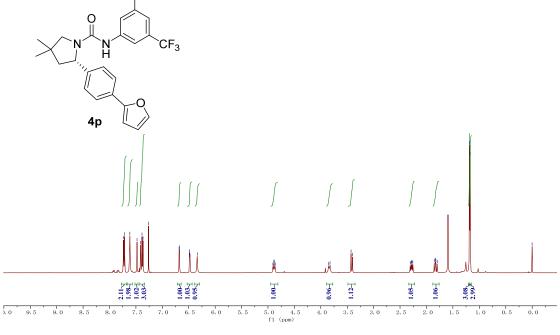


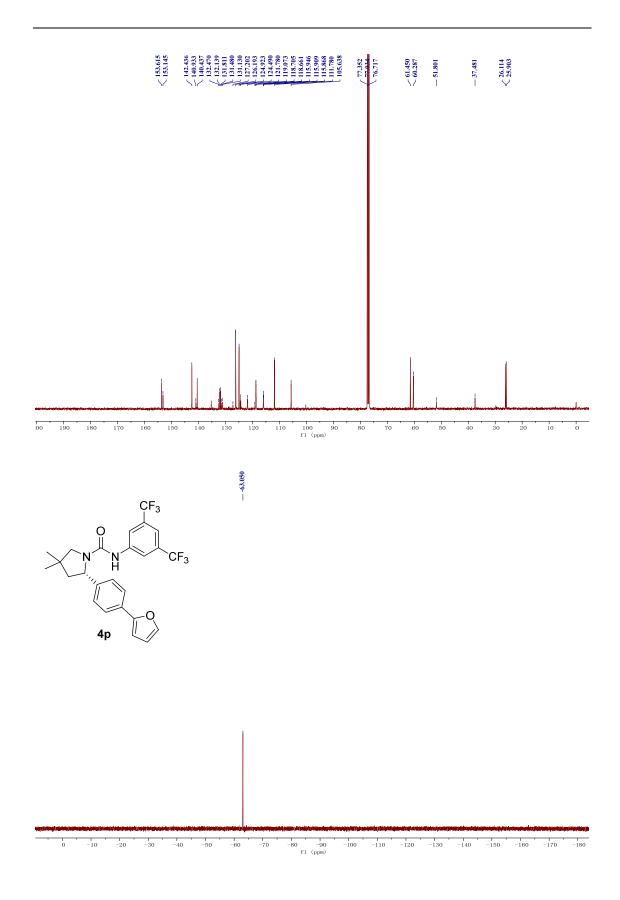


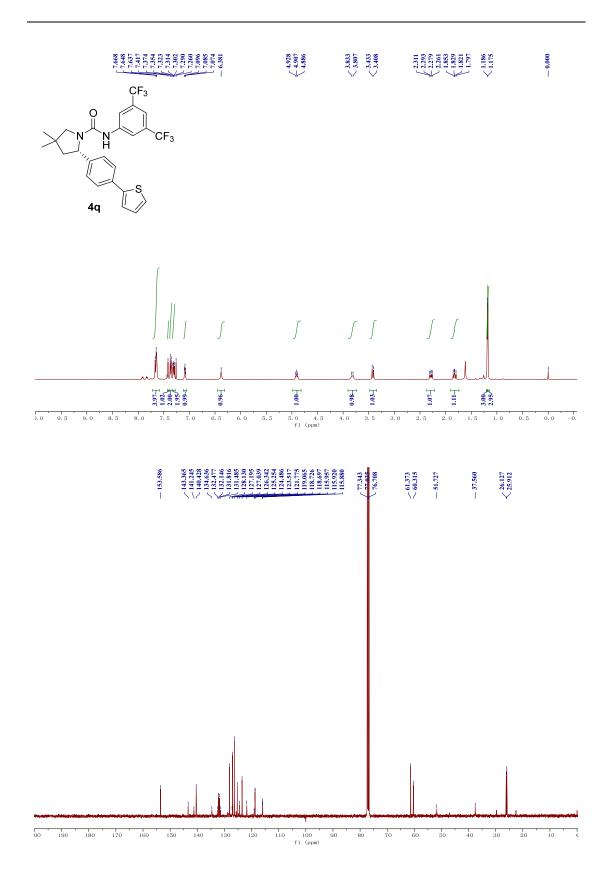


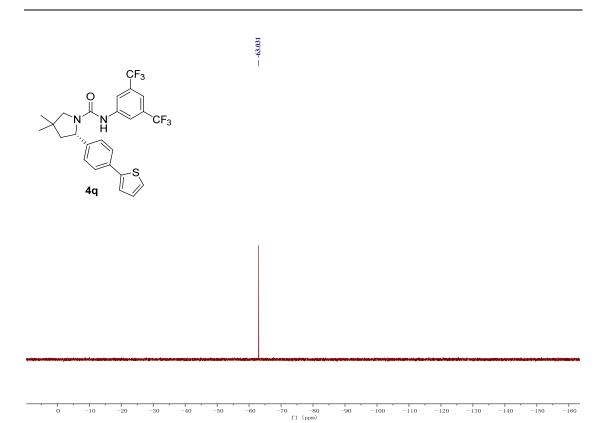


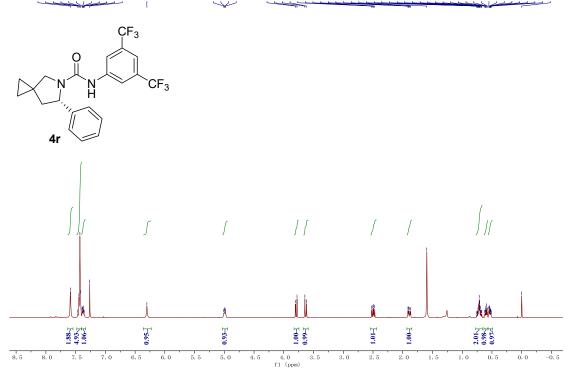


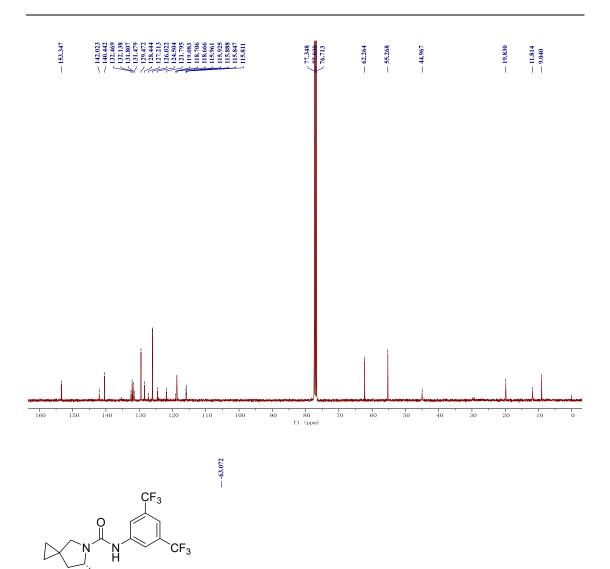


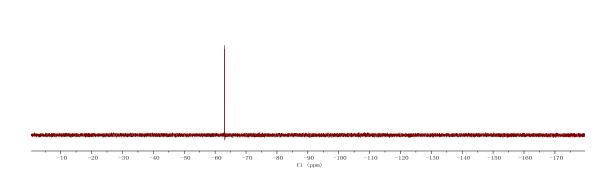


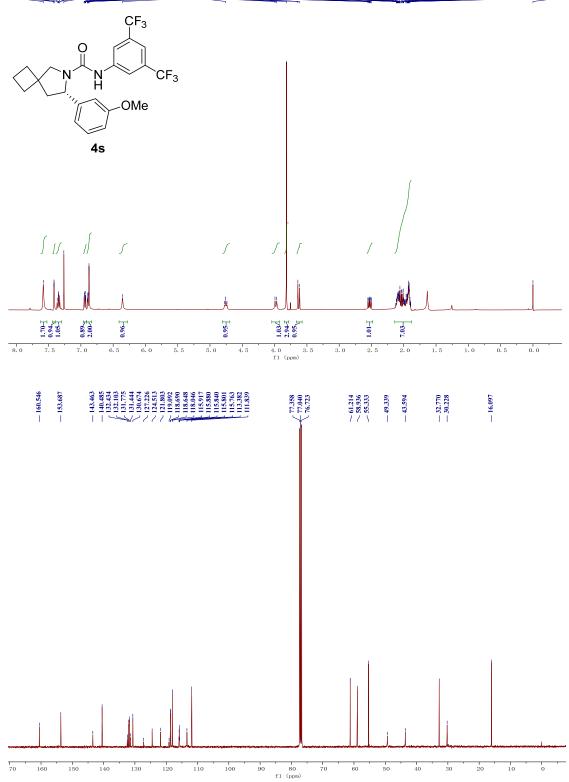


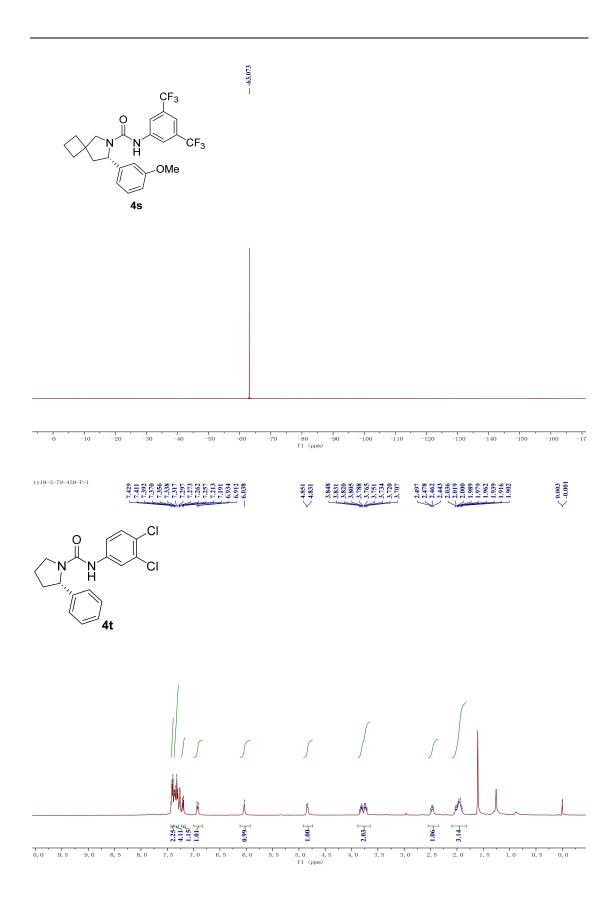


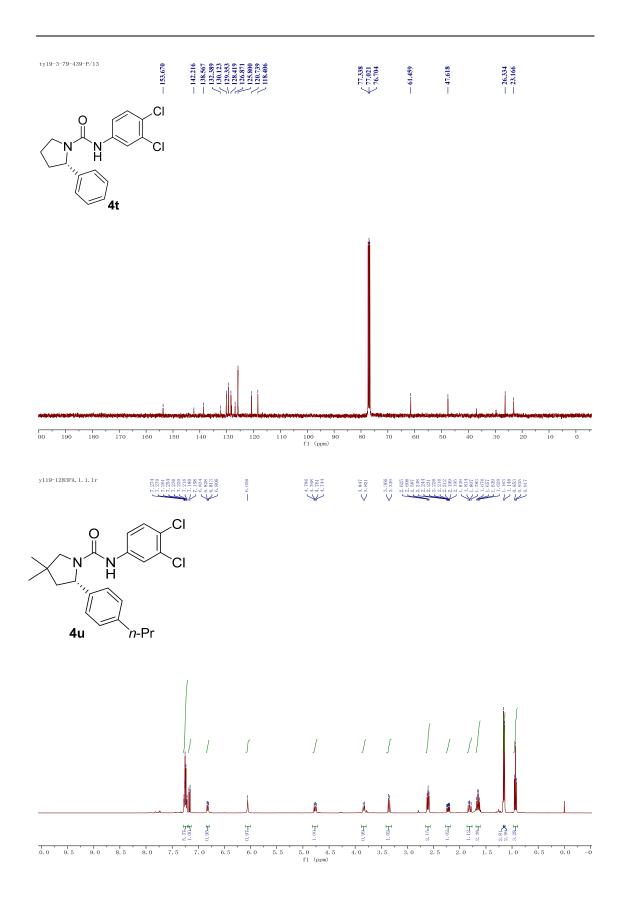


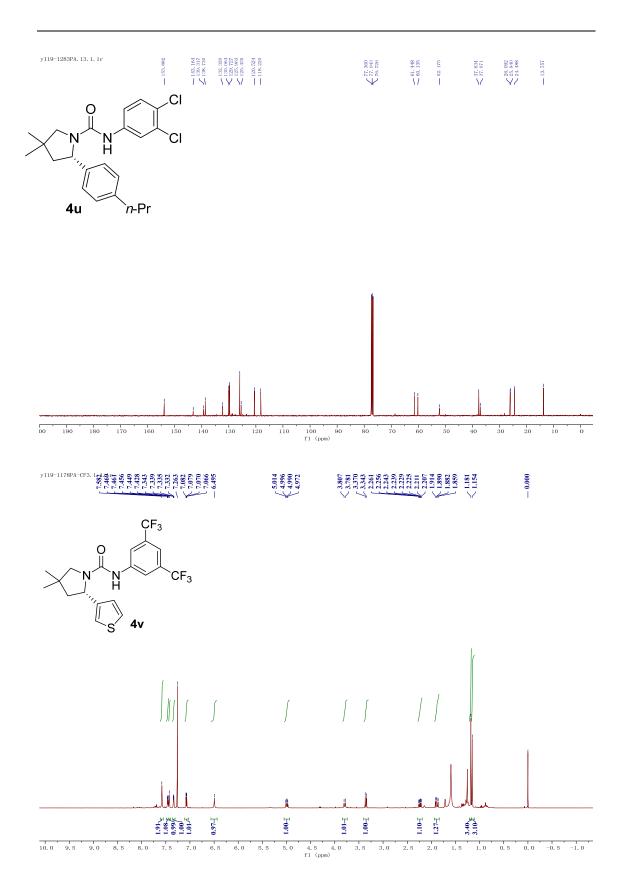


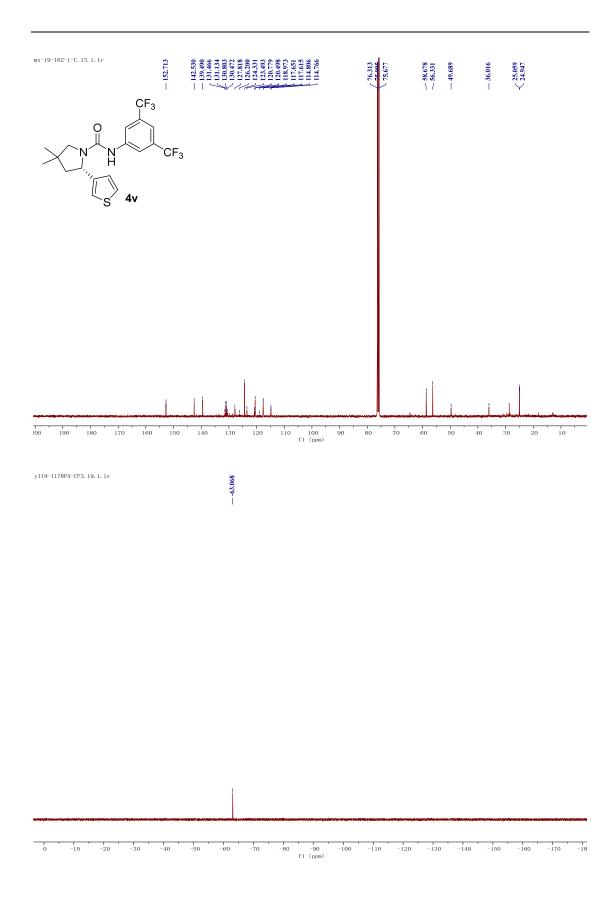

S97

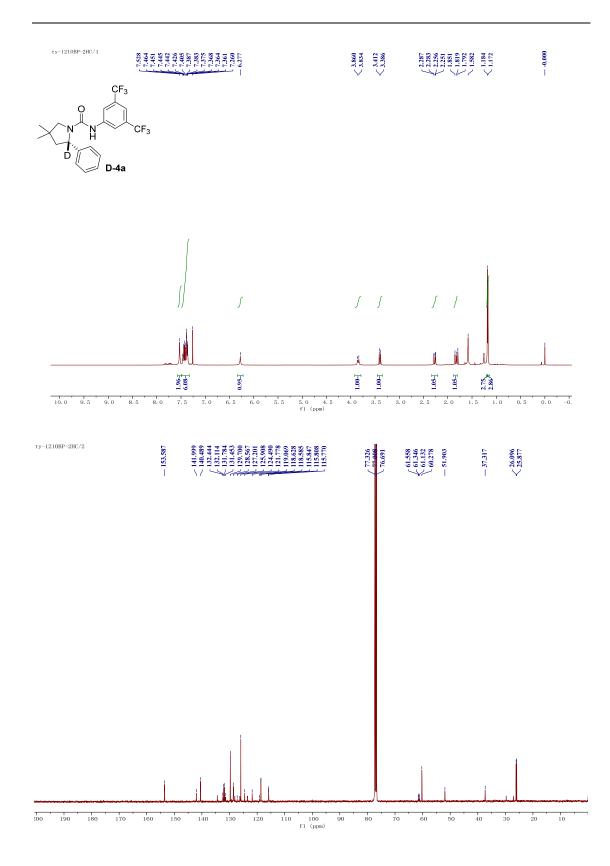


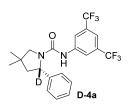


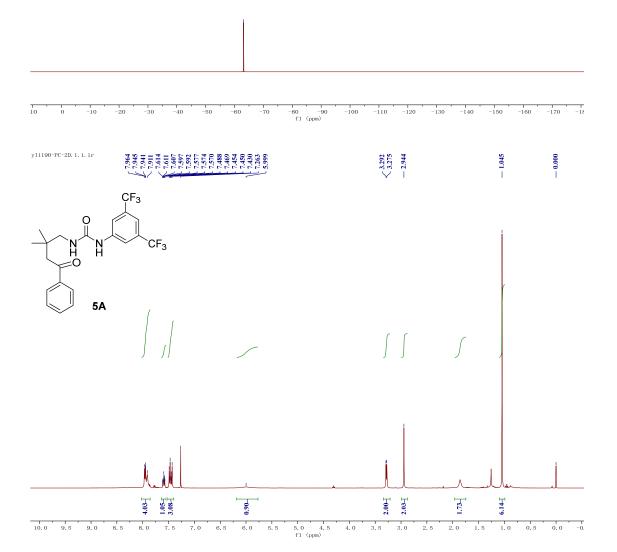


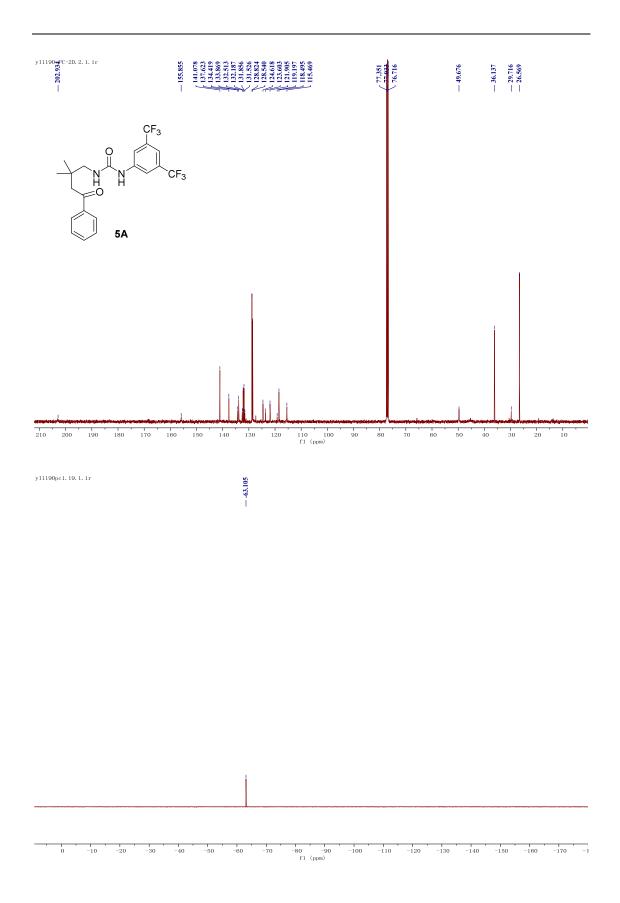


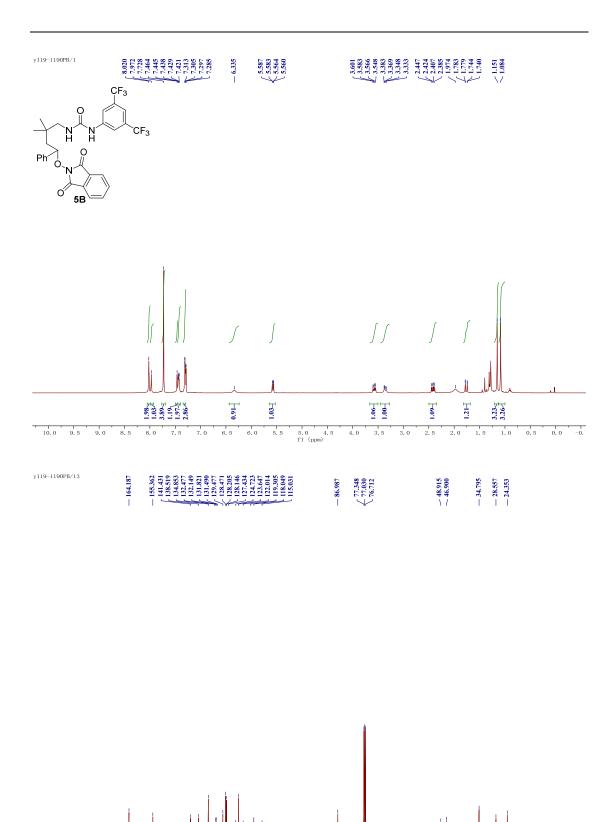


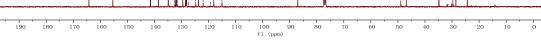




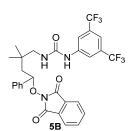


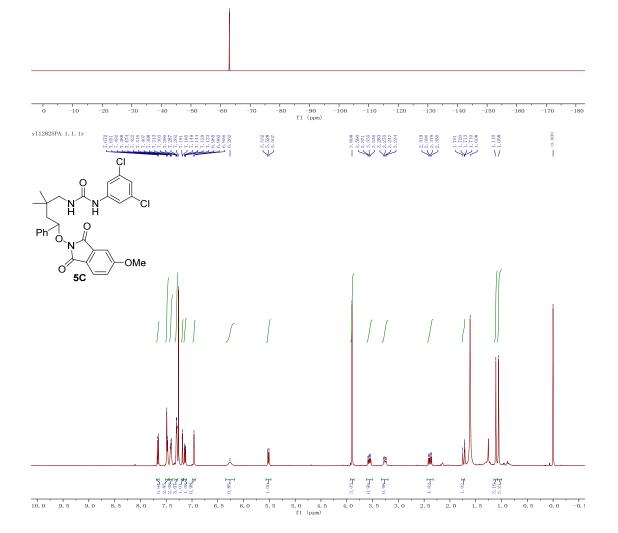


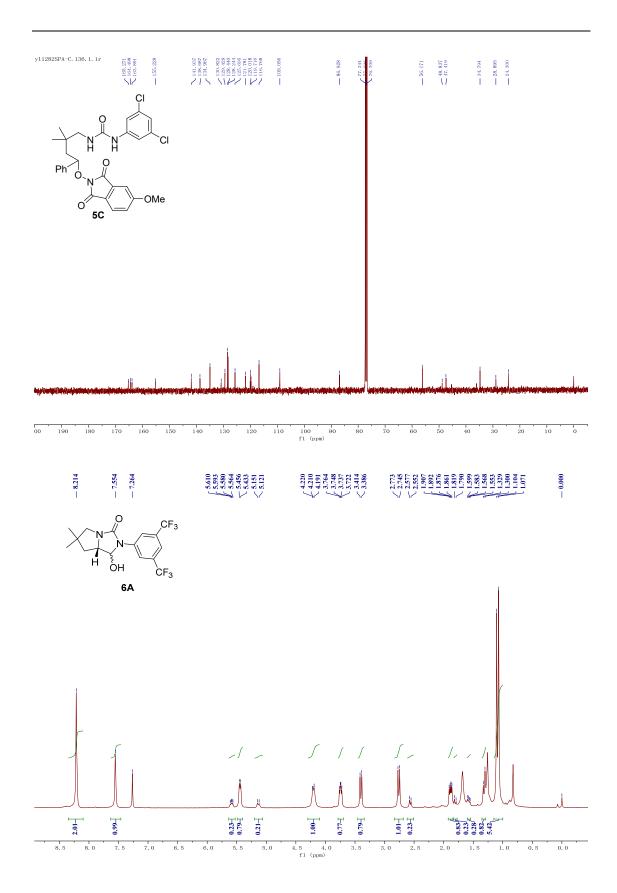

ty19-3-72-432B-P.19.1.1r

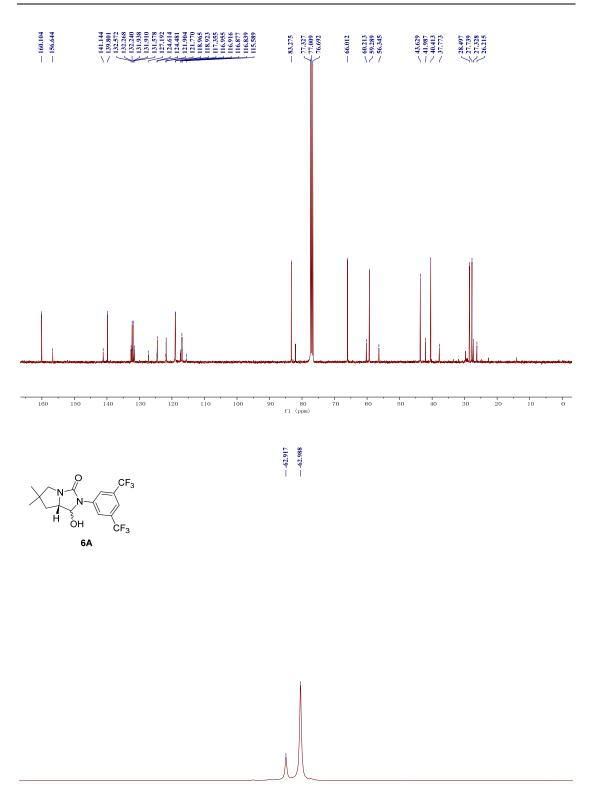


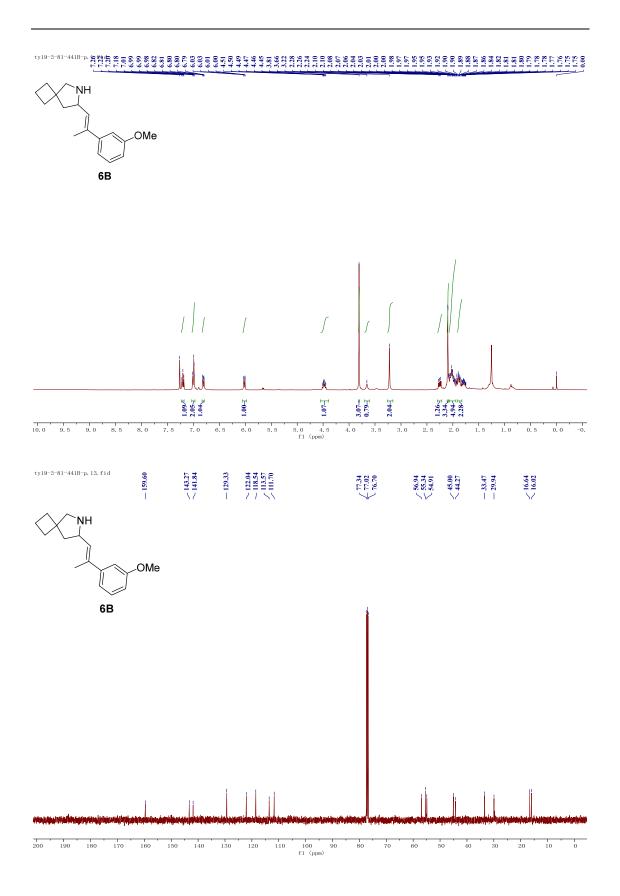
--63.105

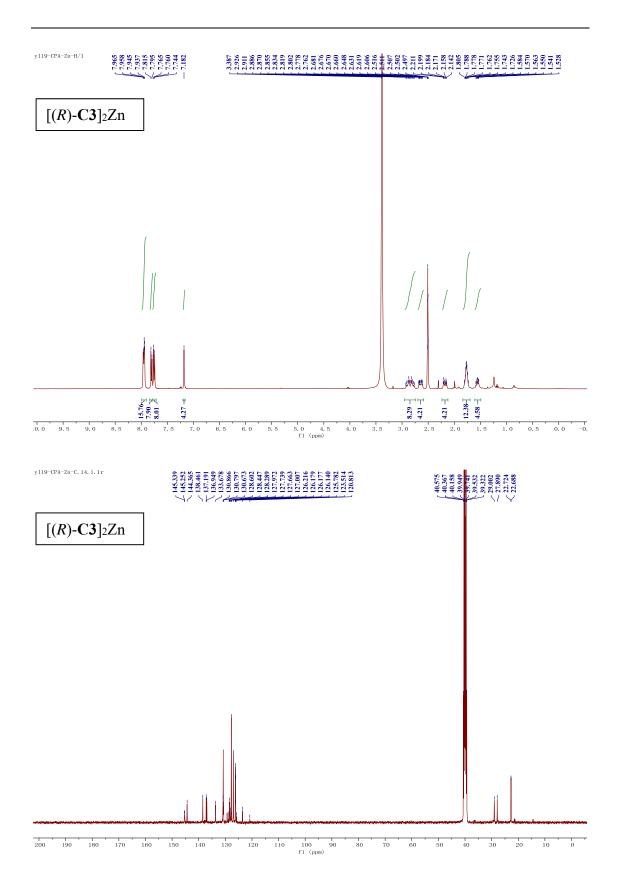


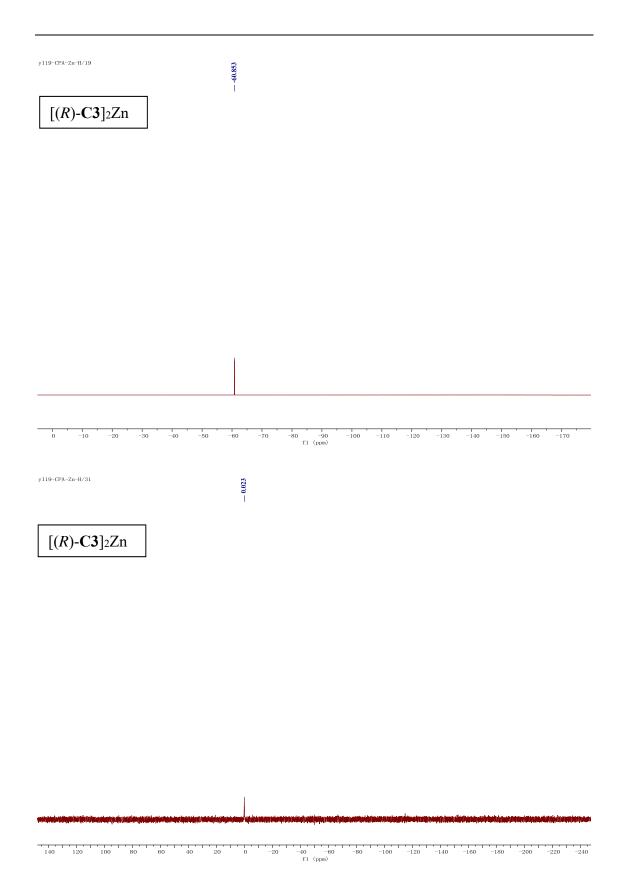


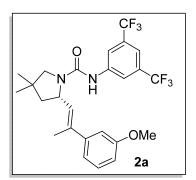


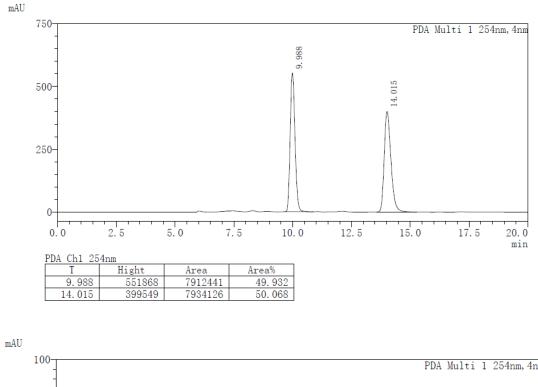


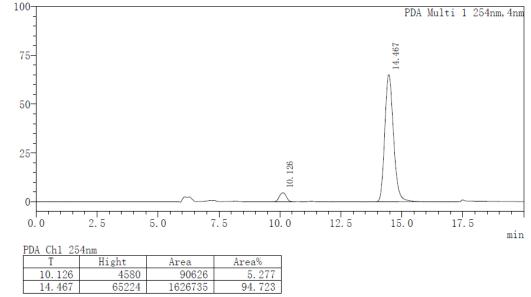


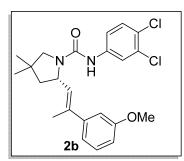

- -62.990

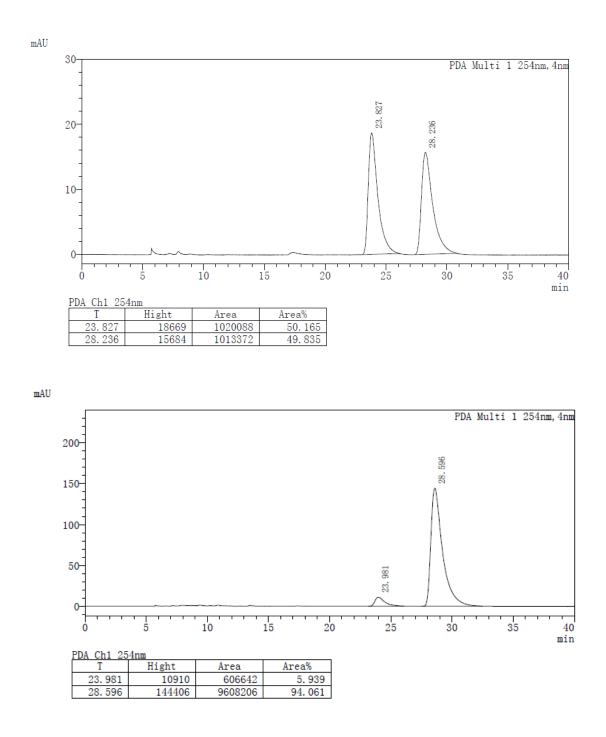


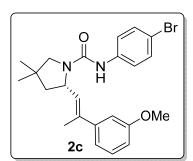




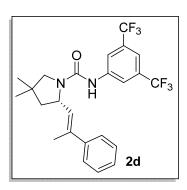


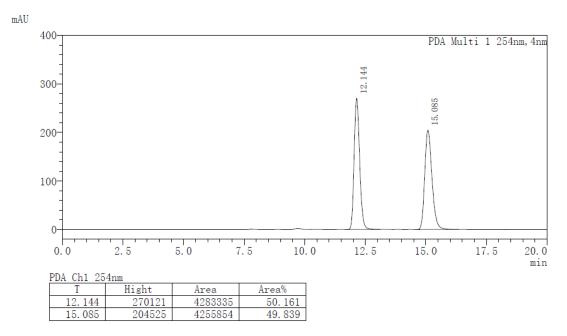

HPLC Spectra

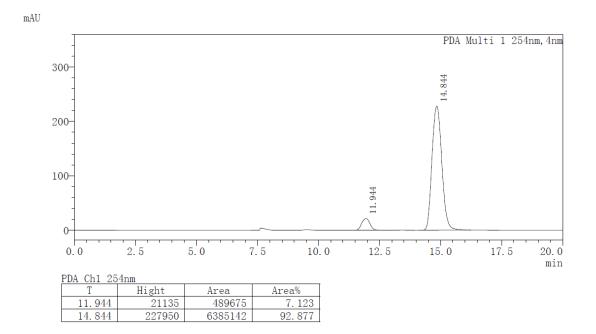

2a, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. $\lambda = 254$ nm, t(minor) = 10.1 min, t(major) = 14.5 min, 95:5 er.

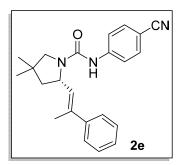


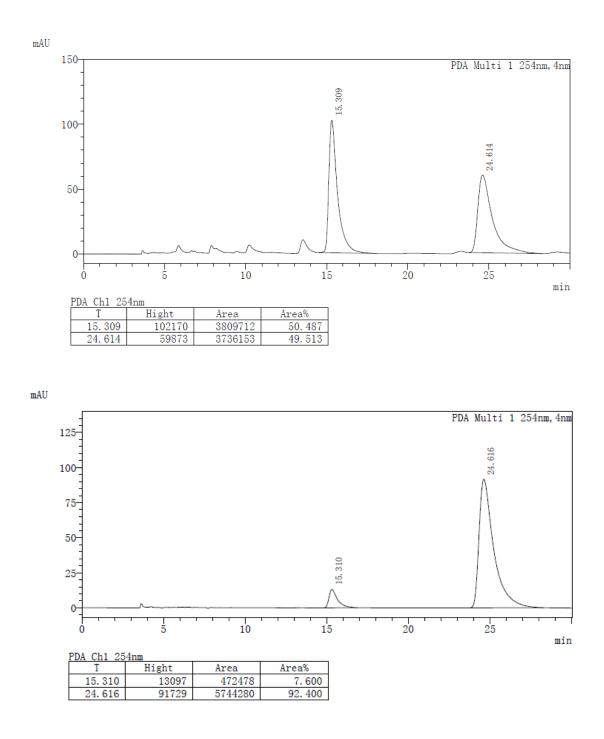
2b, HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) =24.0 min, t(major) = 28.6 min, 94:6 er.

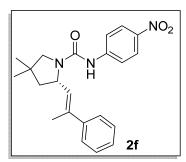


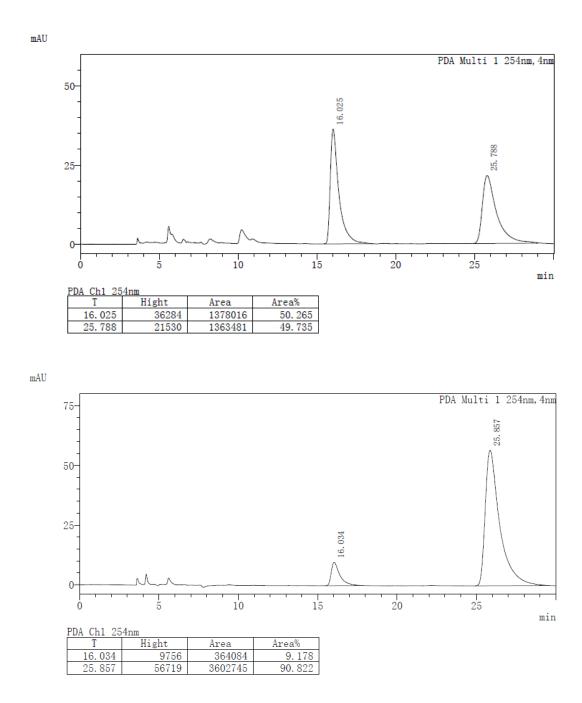

2c, HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. $\lambda = 260$ nm, t(minor) = 16.6 min, t(major) = 22.0 min, 94:6 er.

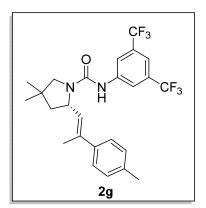


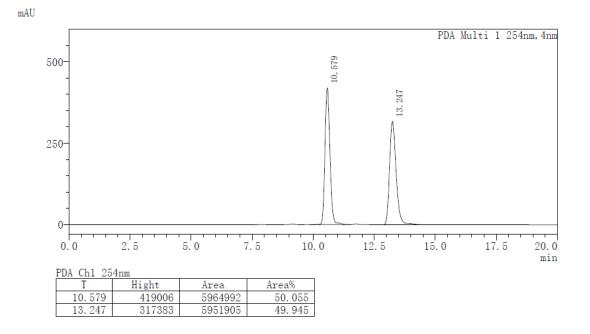

Реак	Retlime	Туре	Width	Area	Height	Area	
				[mAU*s]			
1	16.601	BB	0.4759	244.58809	6.51709	5.6232	
2	22.071	BB	0.7397	4105.05469	79.32757	94.3768	

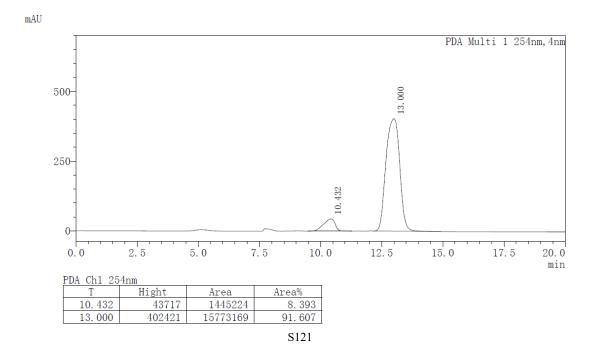

2d, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.4 mL/min. $\lambda = 254$ nm, t(minor) = 11.9 min, t(major) = 14.8 min, 93:7 er.

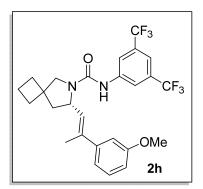


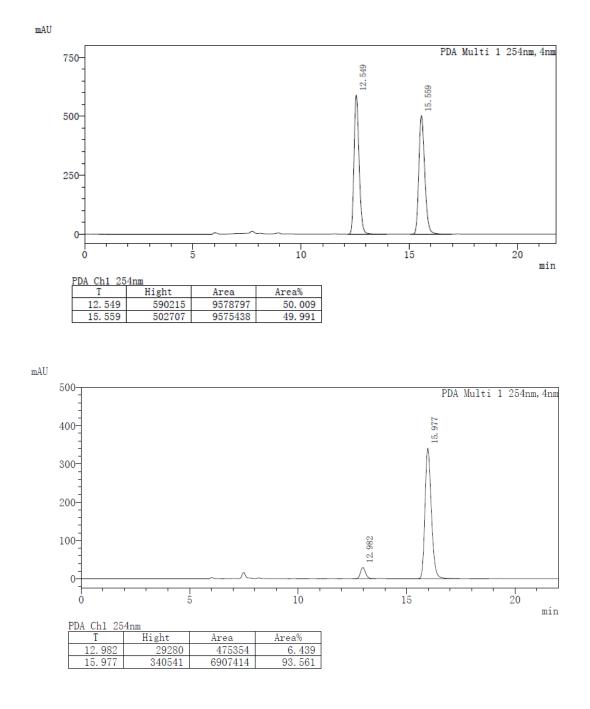


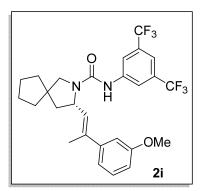

2e, HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. $\lambda = 254$ nm, t(minor) = 15.3 min, t(major) = 24.6 min, 92.5:7.5 er.

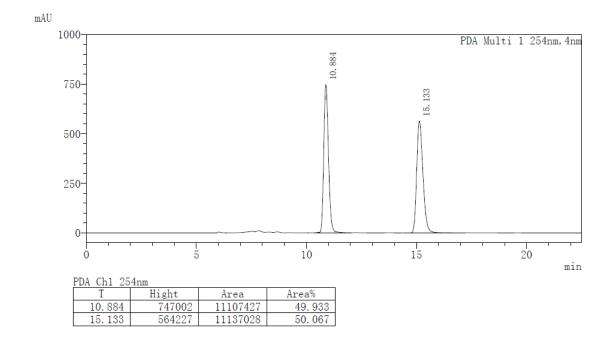


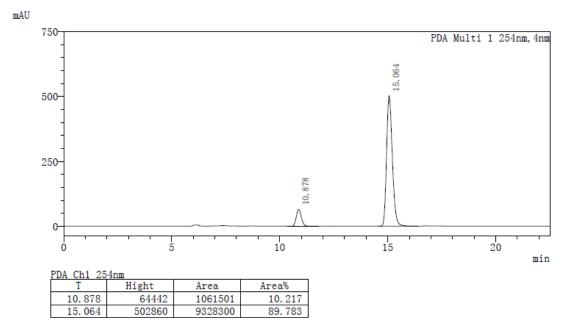

2f, HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.8 mL/min. $\lambda = 254$ nm, t(minor) = 16.0 min, t(major) = 25.8 min, 91:9 er.

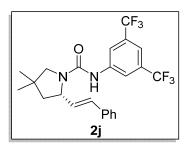



2g, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.4 mL/min. λ = 254 nm, t(minor) = 10.4 min, t(major) = 13.0 min, 92:8 er.

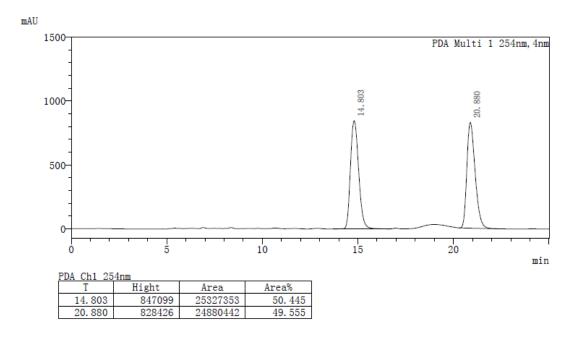


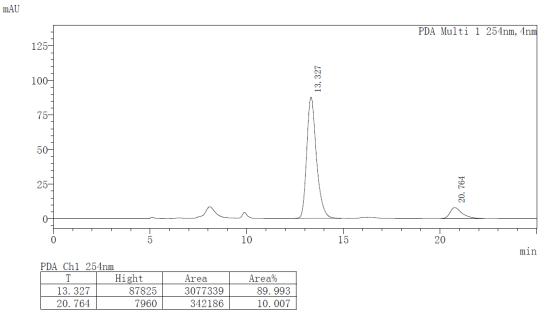


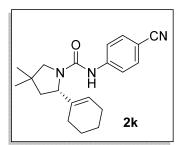

2h, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 13.0 min, t(major) = 16.0 min, 94:6 er

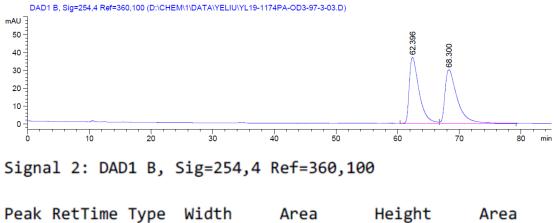


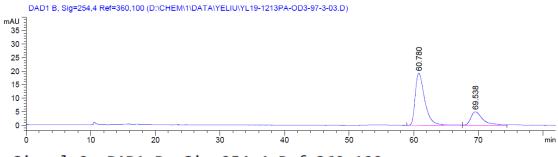
2i, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 10.9 min, t(major) = 15.1 min, 90:10 er.

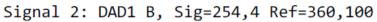




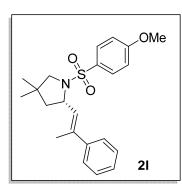

S123


2j, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. $\lambda = 254$ nm, t(major) = 13.3 min, t(minor) = 20.8 min, 90:10 er.

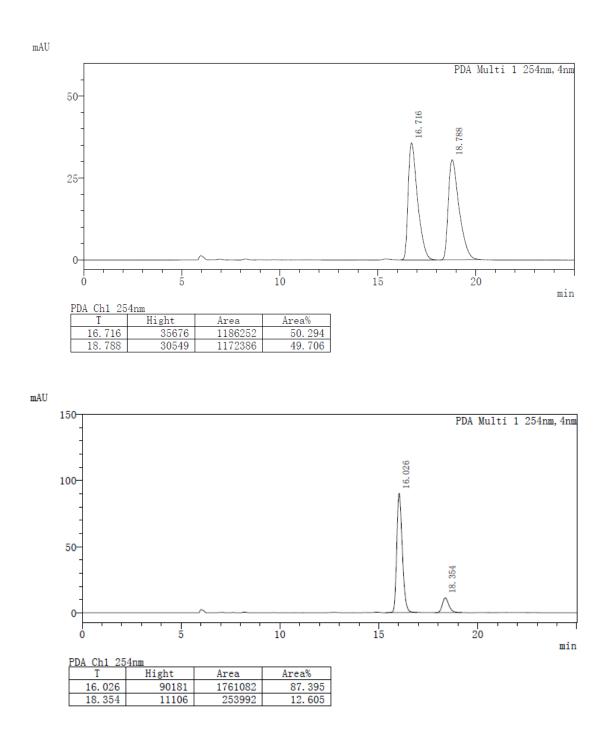




2k, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane =97/3, flow rate 0.3 mL/min. λ = 254 nm, t(major) =60.8 min, t(minor) = 69.5 min, 76:24 er.

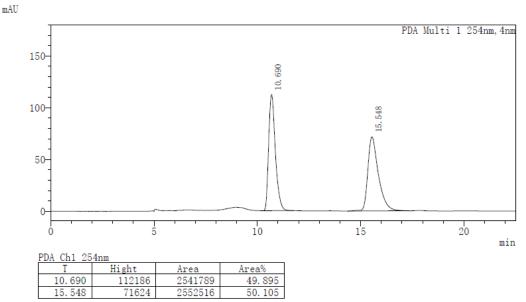


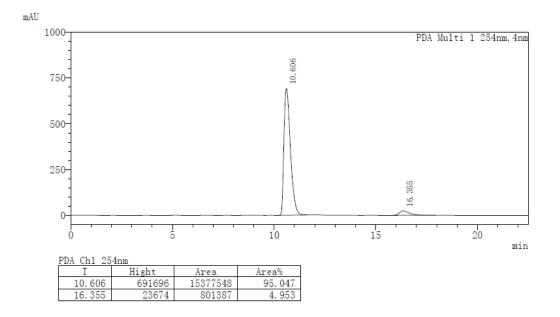
INC CT IIIC	- ypc	M L G C H	Al Cu	neight	Al Cu	
62.396	BV	1.6440	4048.45679	36.89947	49.6989	
68.300	VB	2.0164	4097.51758	30.02031	50.3011	
	[min] 62.396	[min] 	[min] [min] 62.396 BV 1.6440	62.396 BV 1.6440 4048.45679	[min] [min] [mAU*s] [mAU] 	[min] [min] [mAU*s] [mAU] % 62.396 BV 1.6440 4048.45679 36.89947 49.6989

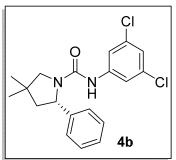


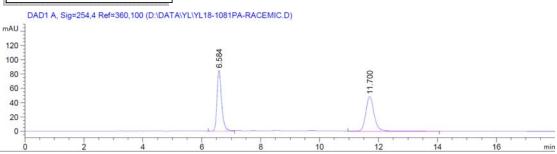


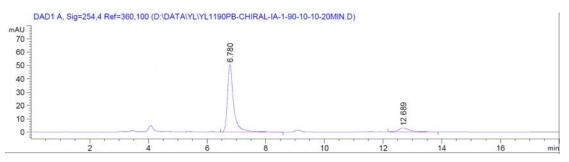
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	60.780	BV	1.5394	1974.55103	19.27051	75.5991
2	69.538	VV	1.8411	637.32129	4.96671	24.4009



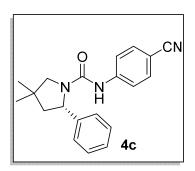

21, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. $\lambda = 254$ nm, t(major) = 16.0 min, t(minor) = 18.4 min, 87:13 er.



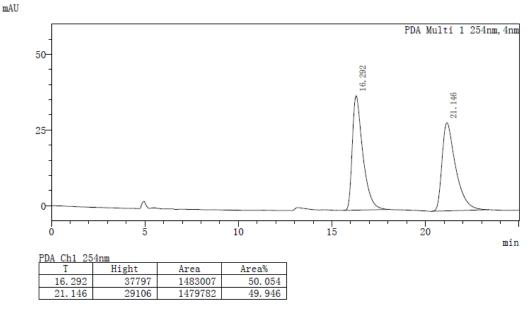

4a HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. $\lambda = 254$ nm, t(major) = 10.6 min, t(minor) = 16.4 min, 95:5 er.

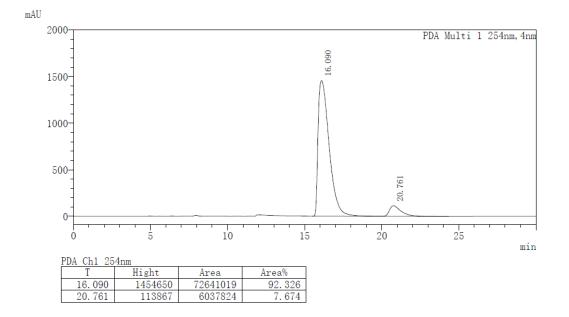


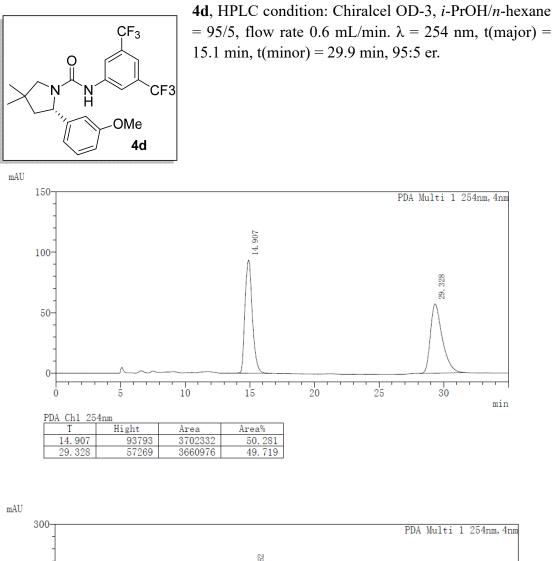
4b, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 90/10, flow rate 1.0 mL/min. $\lambda = 254$ nm, t(major) = 6.8 min, t(minor) = 12.7 min, 91:9 er.

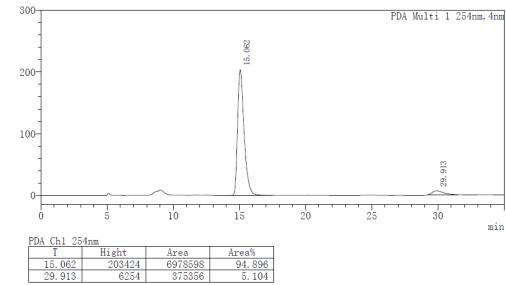

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

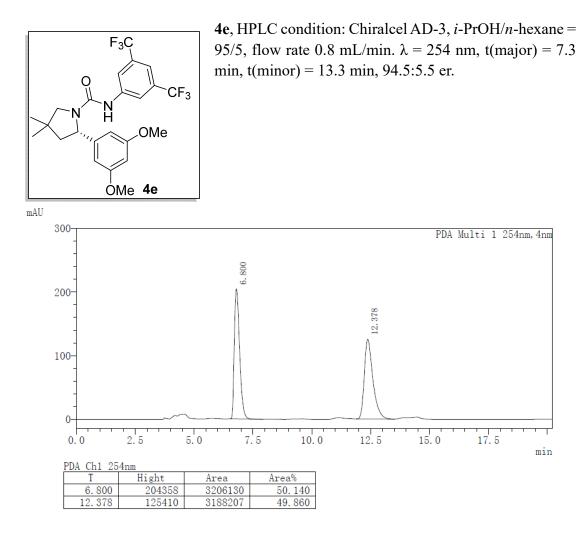
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.584	BV	0.1622	921.12390	85.15656	49.8263
2	11.700	BV	0.2945	927.54657	48.63167	50.1737

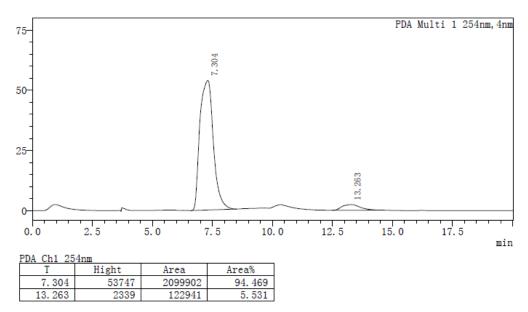


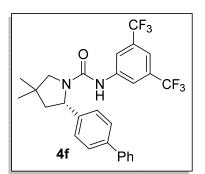

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

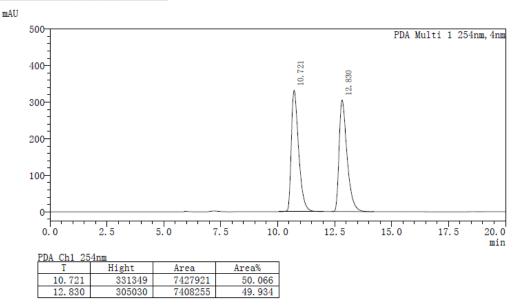

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.780	BB	0.2119	736.43317	50.55672	90.8121
2	12.689	BB	0.3787	74.50823	2.93006	9.1879

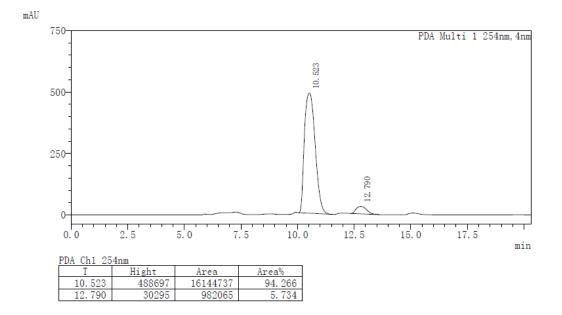


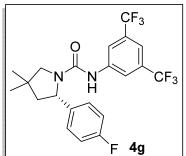

4c, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 85/15, flow rate 0.6 mL/min. $\lambda = 254$ nm, t(major) = 16.1 min, t(minor) = 20.8 min, 92:8 er.

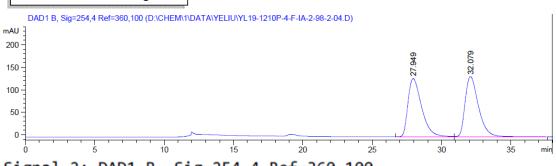


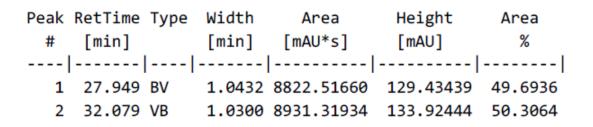


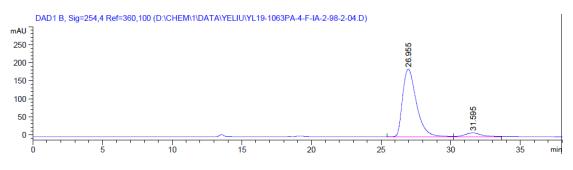


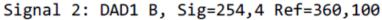


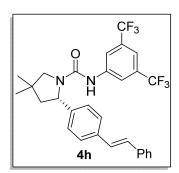


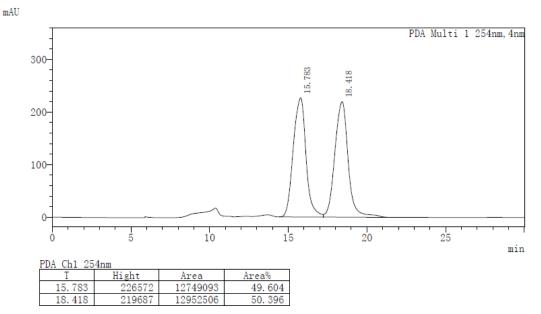

4f, HPLC condition: Chiralcel AD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 10.5 min, t(minor) = 12.8 min, 94:6 er.

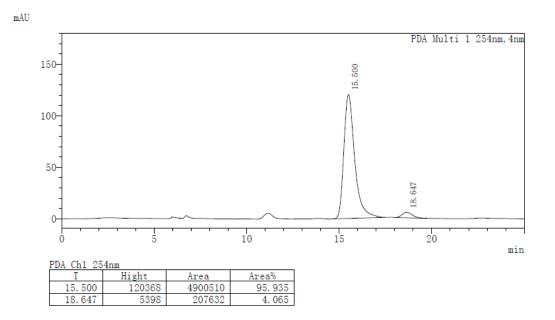


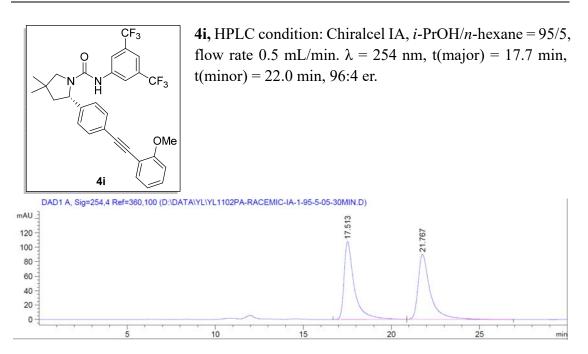



4g, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 98/2, flow rate 0.4 mL/min. $\lambda = 254$ nm, t(major) = 26.9 min, t(minor) = 31.6 min, 94:6 er.

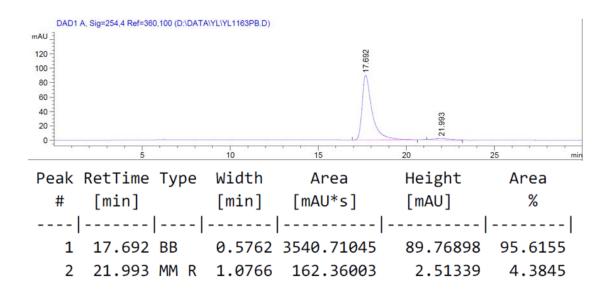

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

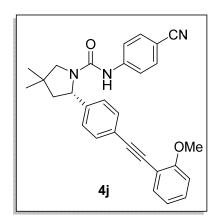


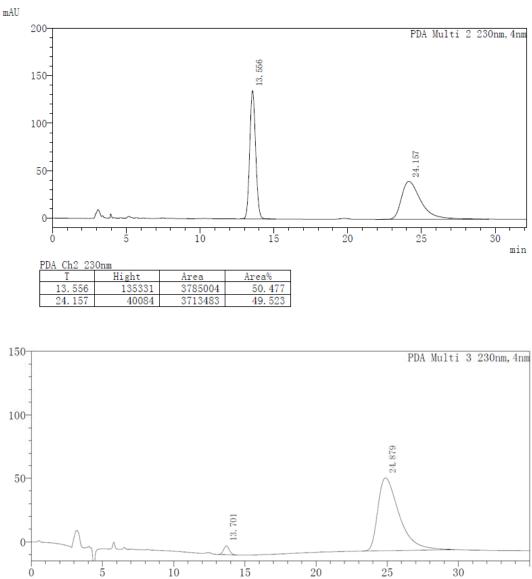



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.955	BV	1.0656	1.28801e4	187.45976	93.6796
2	31.595	VV	1.2307	868.99628	10.80079	6.3204

4h, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. $\lambda = 254$ nm, t(major) = 15.5 min, t(minor) = 18.7 min, 96:4 er.

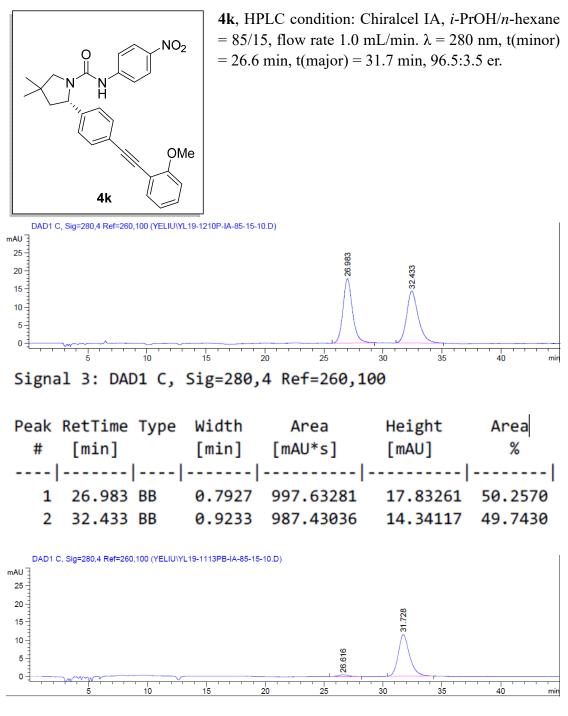





Signal 1: DAD1 A, Sig=254,4 Ref=360,100

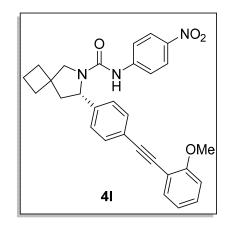
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.513	BB	0.5812	4318.60498	107.83671	50.0836
2	21.767	BB	0.6964	4304.19434	89.93429	49.9164

4j, HPLC condition: Chiralcel AD-H, i-PrOH/nhexane = 75/25, flow rate 1.0 mL/min. λ = 230 nm, t(minor) = 13.7 min, t(major) = 24.9 min, 97:3 er.

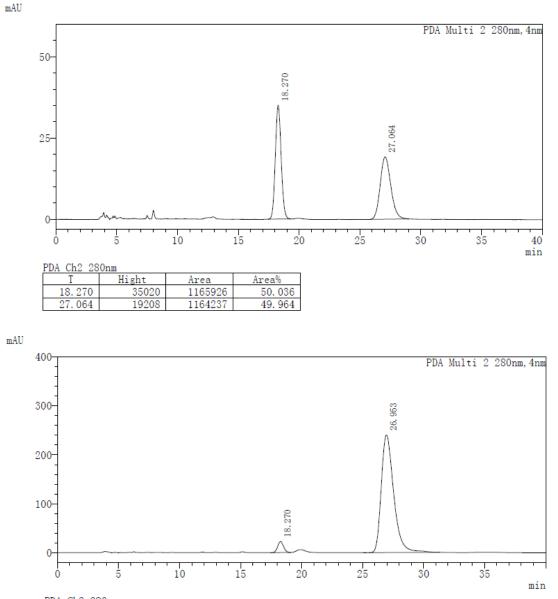

min

30

25

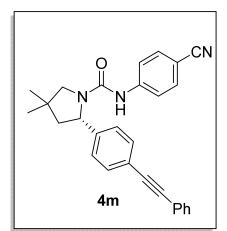

T	Hight	Area	Area%
13.701	6884	195130	3.171
24.879	57149	5958344	96.829

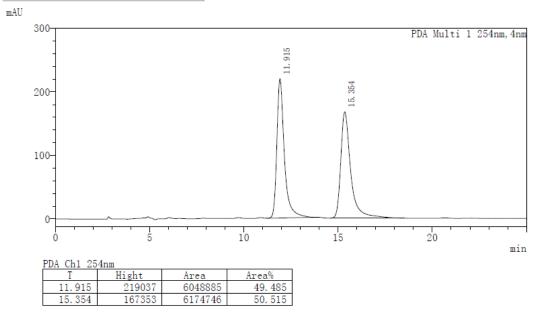
5

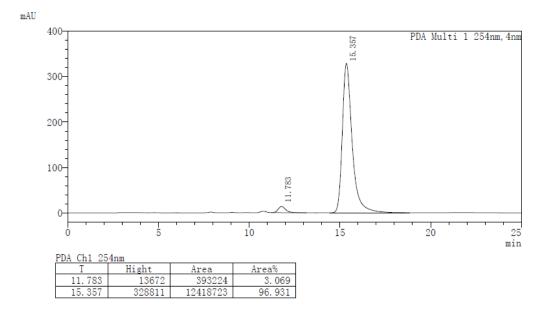


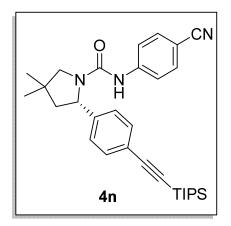
Signal 3: DAD1 C, Sig=280,4 Ref=260,100

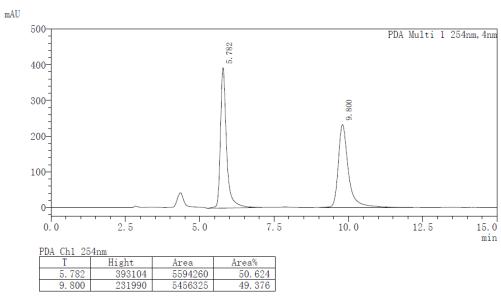
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.616	MM R	0.9846	28.43053	4.81239e-1	3.5692
2	31.728	BB	0.9004	768.11865	11.48307	96.4308

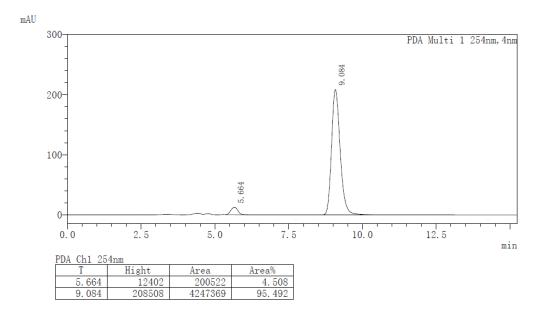

4l, HPLC condition: Chiralcel AD-H, i-PrOH/nhexane = 70/30, flow rate 1.0 mL/min. λ = 280 nm, t(minor) = 18.3 min, t(major) = 27.0 min, 96:4 er.

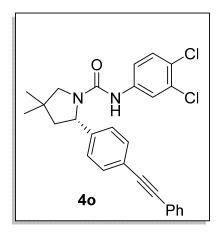

PDA Ch2 28	Onm		
Т	Hight	Area	Area%
18.270	22468	750124	4.211
26.953	240264	17062663	95.789

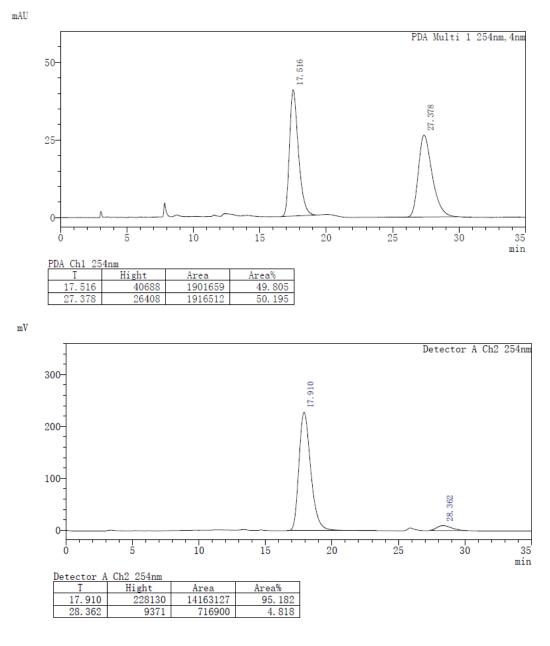

-

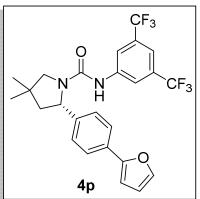

000

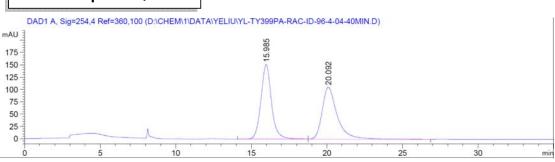

4m, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.8 min, t(major) = 15.4 min, 97:3 er.



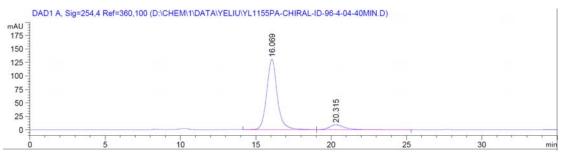



4n, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 80/20, flow rate 1.0 mL/min. $\lambda = 254$ nm, t(minor) = 5.7 min, t(major) = 9.1 min, 95.5:4.5 er.

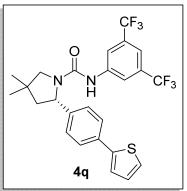




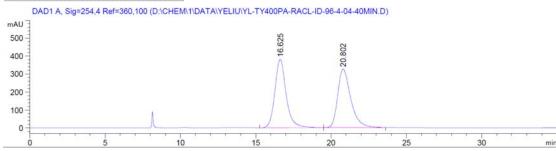
40, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 17.9 min, t(minor) = 28.4 min, 95:5 er.

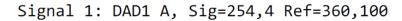


4p, HPLC condition: Chiralcel ID, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. λ = 254 nm, t(major) = 16.1 min, t(minor) = 20.3 min, 91:9 er.

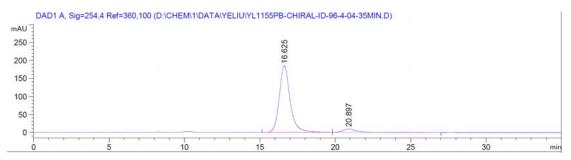

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.985	BV	0.7424	7464.87451	151.61041	50.2034
2	20.092	VV	1.0427	7404.38623	105.50870	49.7966

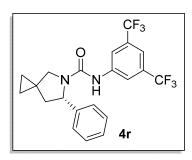



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

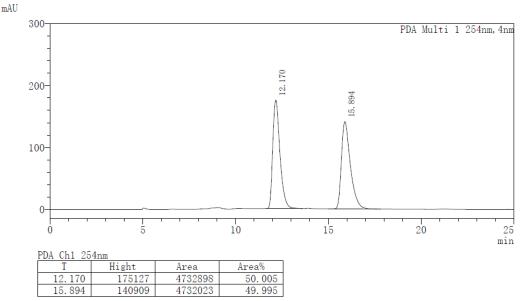
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.069	VV	0.7419	6442.18652	130.95869	90.6113
2	20.315	VB	1.0597	667.50903	9.31883	9.3887

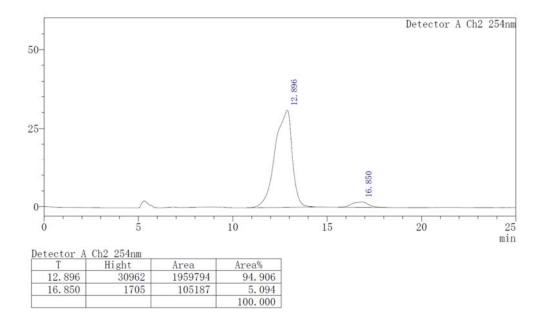


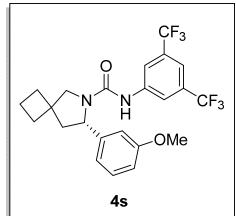
4q, HPLC condition: Chiralcel ID, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. $\lambda = 254$ nm, t(major) = 16.6 min, t(minor) = 20.9 min, 94:6 er.

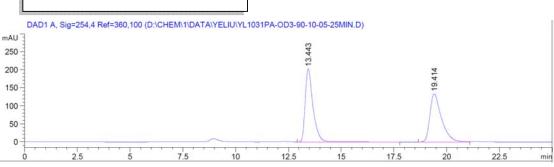


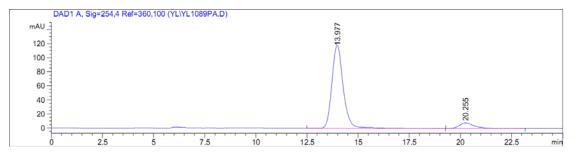
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.625	BB	0.7900	1.99101e4	380.80334	50.0914
2	20.802	BV	0.9230	1.98374e4	325.52408	49.9086



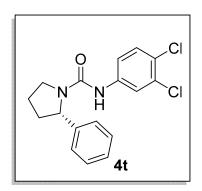

Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak	RetTime Ty	ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	16.625 VV	0.7628	9390.16211	185.41672	93.5521
2	20.897 VV	/ 1.0119	647.19409	9.43900	6.4479

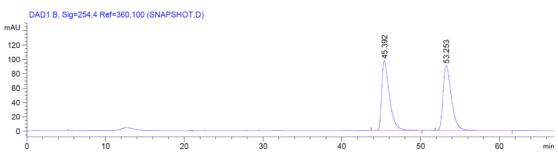

4r, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. $\lambda = 254$ nm, t(major) = 12.3 min, t(minor) = 16.0 min, 95:5 er.



4s, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.5 mL/min. $\lambda = 254$ nm, t(major) = 14.0 min, t(minor) = 20.3 min, 92:8 er.

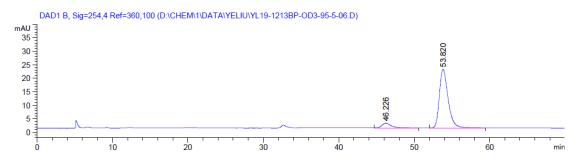

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

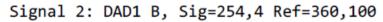
Peak RetTime T	Гуре Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
-				
1 13.443 E	3B 0.3836	5213.37646	202.99559	50.5273
2 19.414 E	3V 0.5641	5104.55713	134 . 09773	49.4727

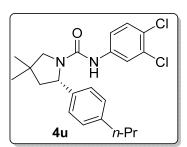


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

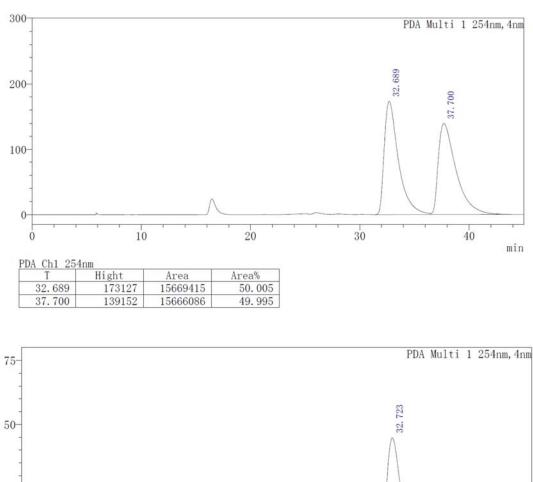
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.977	BB	0.5836	4529.45410	118.05036	92.2677
2	20.255	BB	0.7440	379.58371	7.68792	7.7323

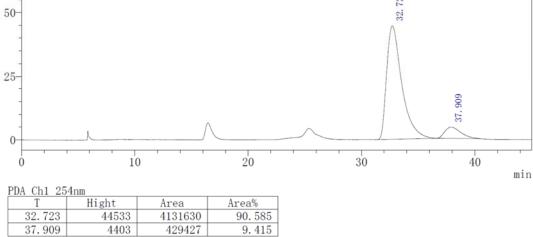


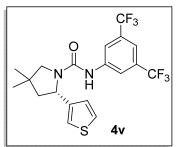

4t, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(minor) = 46.2 min, t(minor) = 53.8 min, 92.5:7.5 er.

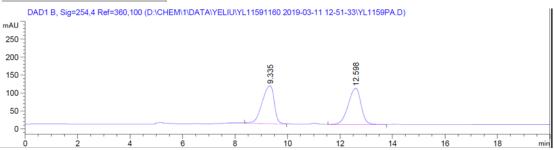

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

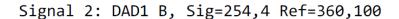
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	45.392	BV	1.0204	6656.81152	97.03388	49.9147
2	53.253	VB	1.1202	6679.56201	90.17438	50.0853

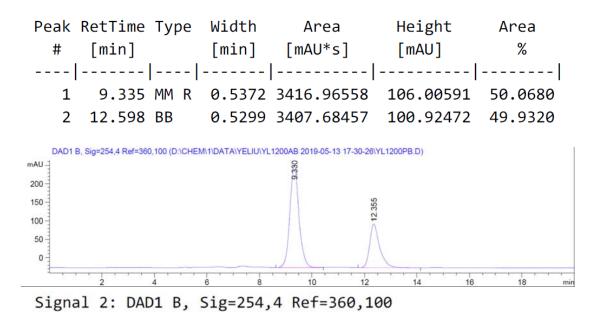


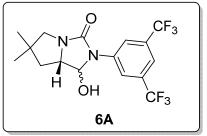


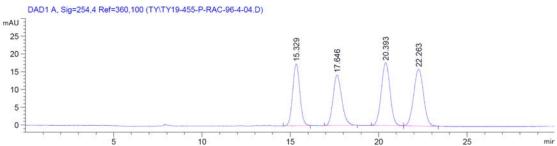

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	46.226	VB	1.2391	142.26128	1.71622	7.5970
2	53.820	BV	1.2158	1730.33655	21.66531	92.4030

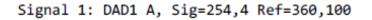

4u, Chiralcel AD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 32.7 min, t(minor) = 37.9 min, 90.5:9.5 er.



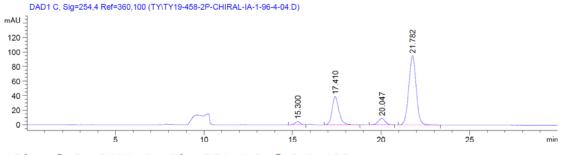



4v, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 90/10, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 9.3 min, t(minor) = 12.4 min, 68:32 er.

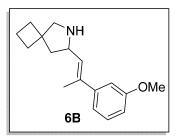




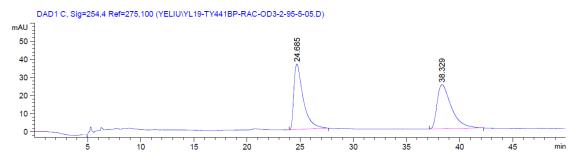
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.330	BV	0.3698	6680.89697	276.60239	68.1099
2	12.355	BB	0.3880	3128.09131	118.48897	31.8901

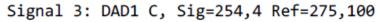


6A, HPLC condition: Chiralcel IA, *i*-PrOH/*n*-hexane = 96/4, flow rate 0.4 mL/min. λ = 254 nm, minor diasteromer: t(minor) = 15.3 min, t(major) = 17.4 min, 92:8 er; major diasteromer: t(minor) = 20.0 min, t(major) = 21.8 min, 92:8 er.

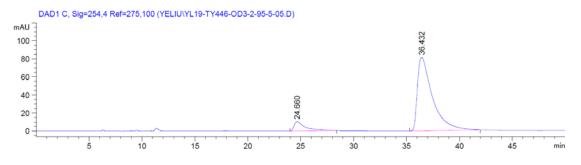


			Width		Height	Area
				[mAU*s]		%
1	15.329	BB	0.4334	491.75681	17.41818	22.2807
2	17.646	BB	0.5091	488.25284	14.20116	22.1220
3	20.393	BB	0.5078	611.56238	17.75667	27.7089
4	22.263	BB	0.5565	615.52234	16.01059	27.8884




Signal 3: DAD1 C, Sig=254,4 Ref=360,100

				Area [mAU*s]	Height [mAU]	Area %	
1	15.300	BB	0.2831	89.68925	4.56707	2.1531	
2	17.410	BB	0.4009	1044.49670	38.69160	25.0743	
3	20.047	BB	0.3910	244.10229	9.15821	5.8600	
4	21.782	BB	0.4484	2787.31519	95.53551	66.9126	



6B, HPLC condition: Chiralcel OD-3, *i*-PrOH/*n*-hexane = 95/5, flow rate 0.5 mL/min. $\lambda = 254$ nm, t(minor) = 24.7 min, t(major) = 36.4 min, 91.5:8.5 ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.685	BB	0.8860	2212.98999	36.16180	49.4496
2	38.329	BB	1.1661	2262.25659	24.39159	50.5504

Signal 3: DAD1 C, Sig=254,4 Ref=275,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.660	BB	0.9421	747.91583	10.31248	8.5299
2	36.432	BB	1.3472	8020.20410	81.56428	91.4701