

Supporting Information

Copper-Catalyzed Enantioconvergent Cross-Coupling of Racemic Alkyl Bromides with Azole C(sp²)–H Bonds

Xiao-Long Su⁺, Liu Ye⁺, Ji-Jun Chen⁺, Xiao-Dong Liu⁺, Sheng-Peng Jiang, Fu-Li Wang, Lin Liu, Chang-Jiang Yang, Xiao-Yong Chang, Zhong-Liang Li, Qiang-Shuai Gu, and Xin-Yuan Liu^{*}

anie_202009527_sm_miscellaneous_information.pdf

Table of contents

Scheme S1	S1
Scheme S2	S2
Scheme S3	S3
Scheme S4	S4
Table S1	S5
Table S2	S6
Table S3	S7
Table S4	S8
Figure S1	S9
Figure S2	S10
General information	S11
Preparation of substrates	S12
General procedures for reaction condition optimization (Table S1: Scre reaction conditions)	ening of
General procedures for enantioconvergent cross-coupling of racemic alkyl with a ole $C(sp^2)$ –H bonds	bromides S18
Characterization data of products 3–45 and 51	S19
Preparative scale reaction and transformation	
Mechanistic studies	S41
References	S47
NMR spectra	S48
HPLC spectra	S103

Scheme S1. Selected bioactive α -chiral alkyl azoles.

[a] Reaction conditions: **2a** (0.050 mmol), CuBH₄(PPh₃)₂ (0 or 10 mol%), L*3 (12 mol%), D₂O (1 mL), and LiO'Bu (4.5 equiv) in DMA/DCM (2/1, 0.60 mL) under argon. Deuterium incorporation percentage of **2a** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Scheme S2. H/D exchange experiments.^[a]

Scheme S3. Results of alkyl bromides other than benzylic ones.

Scheme S4. Failed heteroaromatic substrates.

[a] Reaction conditions: (±)-1a (2.0 equiv), 2a (0.050 mmol), CuBH₄(PPh₃)₂ (10 mol%), L* (12 mol%), H₂O (0 or 2.0 equiv) and base (3.0 or 4.5 equiv) in solvent (0.60 mL) at room temperature for 3 d under argon. [b] Without H₂O. [c] Conversion of 2a and yield of 3 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [d] Ee value was based on HPLC analysis. [e] At 10 °C. [f] At 40 °C. Side product 3' was detected in 18% yield based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [g] At 50 °C. Side product 3' was detected in 28% yield based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [g] At 50 °C. Side product 3' was detected in 28% yield based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [g] At 50 °C. Side product 3' was detected in 28% yield based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [g] At 50 °C. Side product 3' was detected in 28% yield based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [g] At 50 °C.

Br Ph Et (±)-1a	+ Me S20	CuBH ₄ (PPh ₃); LiO ^r Bu, H ₂ DMA/DC		.r ₂		
	entry	temperature	time	yield (%) ^[b]	ee (%) ^[c]	
	1	10 °C	72 h	61	90	
	2	30 °C	12 h	50	87	
	3	40 °C	12 h	51	85	
	4	60 °C	12 h	18	74	

Table S2: Temperature effect on product enantioselectivity.^[a]

[a] Reaction conditions: (\pm)-1a (2.0 equiv), S2c (0.050 mmol), CuBH₄(PPh₃)₂ (10 mol%), L*3 (12 mol%), H₂O (2.0 equiv), and LiO'Bu (4.5 equiv) in DMA/DCM (2/1, 0.60 mL) under argon. [b] Yield of 28 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [c] Ee value was based on HPLC analysis.

Ρ	Br h Et (±)-1a K2c	N ^{−N} ↓ 0 +	Et N-N-PMP - 3, 90% ee, 1 equiv	CuBH ₄ (PPh ₃) ₂ , L*3 LiO'Bu, H ₂ O DMA/DCM	Et + 28 Et + N-N 3 L^*3 (Ar = 9)	NH PAr ₂
entry	temperature	time	yield of 28 (%)[b]	ee of 28 (%) ^[c]	recovered yield of 3 (%) ^[b]	ee of 3 (%) ^[c]
1	10 °C	72 h	54	90	98	89
2	30 °C	12 h	38	87	98	89
3	40 °C	12 h	38	85	98	89
4	60 °C	12 h	11	49	66	59

Table S3: Temperature effect on product racemization.^[a]

[a] Reaction conditions: (\pm)-1a (2.0 equiv), S2c (0.050 mmol), CuBH₄(PPh₃)₂ (10 mol%), L*3 (12 mol%), H₂O (2.0 equiv) and LiO'Bu (4.5 equiv) in DMA/DCM (2/1, 0.60 mL) under argon. [b] Yield of 28 and the recovered yield of 3 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. [c] Ee value was based on HPLC analysis.

Table S4: Control experiments.^[a]

[a] Reactions were performed according to general procedure as described for the synthesis of **3** unless otherwise specified in Table **S4**. [b] Yield of **3** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. ND = not detected.

Figure S1. The X ray structure of **3**.

Figure S2. The stereodiscriminative model.

General information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. N,N-Dimethylacetamide (DMA) was purchased from Aladdin, which was redistilled with calcium hydride under argon atmosphere. Anhydrous dichloromethane (DCM) and (trifluoromethyl)benzene were purchased from JK and transferred under an argon atmosphere. LiO'Bu (98%) was purchased from JK. CuBH₄(PPh₃)₂, Cu(^{*i*}PrCO₂)₂, CuI and Cu(acac)₂ were purchased from TCL. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040 - 0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker DPX-400 spectrometer at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR, respectively, in CDCl₃ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet; m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using SHIMADZU LC-20AD with SPD-20AV detector (at an appropriate wavelength). Column conditions are reported in the experimental section below.

Preparation of substrates

The alkyl bromides **1a** and **S1b–S1x** were synthesized According to the literature procedures.^[1–3] All the characterization data are consistent with those in the reported literature.

General procedure for the synthesis of alkyl bromides 1a and S1b–S1k:

To a solution of ketone (3.0 mmol, 1.0 equiv) in EtOH (9.0 mL) was added NaBH₄ (136.2 mg, 3.6 mmol, 1.2 equiv) at 0 °C and the reaction mixture was stirred at room temperature for 0.5–2 h. After completion of reaction (monitored by TLC), the reaction was quenched by water, diluted with CH₂Cl₂, and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the corresponding alcohol, which was directly used in the next step without further purification.

To a solution of the residue obtained above in CH₂Cl₂ (9.0 mL) was added PBr₃ (0.20 mL, 2.1 mmol, 0.70 equiv) under argon atmosphere at 0 °C and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, filtered by a pad of silica gel, and concentrated under reduced pressure to afford the corresponding crude alkyl bromide, which was directly used in the next step without further purification or stored in refrigerator (The product readily decomposed in air or on silica gel).

To a solution of aldehyde in anhydrous THF (2.0 mL/mmol aldehyde) was slowly added alkyl-magnesium bromide (1.0 M in THF, 1.2 equiv) at 0 °C under argon atmosphere. The reaction mixture was stirred for another 2 h. And then, the reaction mixture was warmed up to room temperature and stirred until the aldehyde was completely consumed (monitored by TLC). The reaction was quenched by saturated aqueous NH4Cl, and extracted with ethyl acetate three times. The combined organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure to afford the desired alcohol, which was directly used in the next step without further purification.

Method a: To a solution of the crude alcohol obtained above in CH₂Cl₂ (2.0 mL/mmol alcohol) was added PBr₃ (0.70 equiv) with vigorous stirring at 0 °C and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered through a silica gel pad, and concentrated under reduced pressure to afford the corresponding crude alkyl bromide product, which was directly used in the next step without further purification or stored in a refrigerator unless otherwise noted. (The product usually readily decomposed in air and on silica gel.)

Method b: To a solution of the crude alcohol obtained above and triphenylphosphine (1.8 equiv) in THF (2.0 mL/mmol alcohol) was added carbon tetrabromide (1.5 equiv) in one portion at 0 $^{\circ}$ C under argon atmosphere and the resulting reaction mixture was stirred at 0 $^{\circ}$ C for 5 min. Then, the mixture was allowed to warm up to room temperature and stirred for another 2 h. The precipitate was filtered off through a pad of celite and washed by cold THF. The solution was concentrated under reduced pressure and the residues was purified by column chromatography on silica gel to provide the corresponding bromo compound.

Alkyl bromides **1b**, **S1w** and **S1x** were prepared according to literature procedures.^[1]

To a solution of pivalaldehyde (861.3 mg, 10.0 mmol, 1.0 equiv) in THF (20 mL) were sequentially added lithium hydroxide (239.5 mg, 12.0 mmol, 1.2 equiv) and diethyl (2-oxopropyl)phosphonate (2.04 g, 10.5 mmol, 1.05 equiv). The reaction was stirred for 15 h, and then concentrated in vacuo. The residue was dissolved in EtOAc, and washed twice with 1 M aqueous hydrochloric acid and twice with saturated aqueous sodium bicarbonate solution. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The (E)-2,2-dimethylhex-4-en-3-one was isolated after flash column chromatography.

To a solution of (*E*)-2,2-dimethylhex-4-en-3-one (378.6 mg, 3.0 mmol, 1.0 equiv) in EtOH (9.0 mL) was added NaBH₄ (136.2 mg, 3.6 mmol, 1.2 equiv) at 0 °C and the reaction mixture was stirred at room temperature for 0.5–2 h. After completion of reaction (monitored by TLC), the reaction was quenched by water, diluted with CH₂Cl₂, and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the corresponding alcohol, which was directly used in the next step without further purification.

To a solution of the residue obtained above in CH₂Cl₂ (9.0 mL) was added PBr₃ (0.20 mL, 2.1 mmol, 0.70 equiv) under argon atmosphere at 0 °C and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, filtered by a pad of silica gel, and concentrated under reduced pressure to afford the corresponding crude alkyl bromide **S1y** and **S1y'** (2:1, 328 mg, 57% crude yield), which was directly used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 5.80 – 5.60 (m, 2H(major)+1H(minor)), 4.72 (dq, J = 7.9, 6.7 Hz, 1H) (major), 4.42 (d, J = 10.1 Hz, 0.5H) (minor), 1.79 (d, J = 6.7 Hz, 3H) (major), 1.74 (dd, J = 6.3, 1.4 Hz, 1.5H) (minor), 1.05 (s, 4.5H) (minor), 1.03 (s, 9H) (major).

¹³C NMR (100 MHz, CDCl₃) δ 142.9 (major), 130.4 (minor), 128.8 (minor), 128.2 (major), 70.6 (minor), 51.1 (major), 35.8 (minor), 32.7 (major), 29.3 (major), 27.3 (major), 26.5 (minor), 17.0 (minor).

HRMS (ESI) m/z calcd. for C₈H₁₅ [M – Br]⁺ 111.1168, found 111.1169.

Azoles **2a** and **S2b–S2r** were synthesized According to the literature procedures.^[4–8]All the characterization data are consistent with those in the reported literature.

General procedure for the synthesis of azoles 2a and S2b-S2n:

An appropriate benzhydrazide (7.3 mmol) was dissolved in triethyl orthoformate (6.7 mL, 40 mmol, 5.5 equiv) and the mixture was vigorously stirred at 120 °C overnight. The excess triethyl orthoformate was removed by evaporation under reduced pressure. The resulting oil was purified by column chromatography (petroleum ether/EtOAc = 4/1) to afford the desired product.

General procedure for the synthesis of azoles S2o and S2p:

A mixture of an appropriate benzaldehyde (5.0 mmol), TosMIC (*p*-toluenesulfonylmethyl isocyanide) (1.46 g, 7.5 mmol, 1.5 equiv), and K₂CO₃ (1.38 g, 10 mmol, 2.0 equiv) in MeOH (7.5 mL) was heated at 65 °C. After completion of reaction (monitored by TLC), the mixture was cooled, quenched with water, and extracted with EtOAc. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the desired product.

General procedure for the synthesis of azoles S2q and S2r:

An appropriate 2-aminophenol (5.0 mmol, 1.0 equiv) was dissolved in triethyl orthoformate (5.0 mL, 30 mmol, 6.0 equiv) and the reaction mixture was carefully heated to 120 °C overnight. The excess triethyl orthoformate was removed by evaporation under reduced pressure. The resulting oil was purified by column chromatography (petroleum ether/EtOAc = 20/1) to yield the desired product.

General procedures for reaction condition optimization (Table S1:

Screening of reaction conditions)

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added copper (0.005 mmol, 10 mol%), ligand (0.006 mmol, 12 mol%), LiO'Bu (18 mg, 0.22 mmol, 4.5 equiv), and an appropriate azole (0.05 mmol, 1.0 equiv). The tube was evacuated and backfilled with argon for three times, and then, an appropriate alkyl bromide (0.10 mmol, 2.0 equiv), water (1.8 μ L, 0.10 mmol, 2.0 equiv), and anhydrous *N*,*N*-dimethylacetamide (0.40 mL) and dichloromethane (0.20 mL) were sequentially added. The reaction mixture was stirred at room temperature for 30 minutes and then stirred at rt or at 10 °C for 3–5 d. The resulting reaction mixture was diluted with 10 mL ethyl acetate and washed with brine (10 mL × 3). The organic layer was dried over anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford the desired product. Specially, when the reaction performed at 40 °C and 50 °C, the byproduct **3'** was obtained in 18% and 28% yield, respectively (dr : 1:1).

MeQ

2-(3,4-diphenylhexan-3-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.37 – 7.27 (m, 3H), 7.22 – 7.15 (m, 4H), 7.10 – 7.07 (m, 1H), 7.02 – 6.95 (m, 2H), 6.76 – 6.70 (m, 2H), 3.88 (s, 1.5H), 3.86 (s, 2.7 Hz, 1.5H), 3.64 (dd, J = 11.9, 2.7 Hz, 0.5H), 3.37 (dd, J = 11.6, 2.7 Hz, 0.5H), 2.20 – 1.82 (m, 4H), 0.75 – 0.64 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, *168.2*, 164.6, *164.5*, 162.3, *162.2*, 141.3, *139.8*, 139.3, *137.7*, 130.4, *129.8*, 128.7(0), *128.6(6)*, 128.3, *128.0*, 127.5(*1*), *127.4(9)*, 127.3, *127.2*, 127.0, *126.8*, 126.7, 116.6(4), *116.6(2)*, 114.5, *114.4*, 57.0, *55.8*, 55.5, *54.2*, 54.0, *53.5*, 32.3, *31.0*, 25.1, *24.4*, 13.0, *12.6*, 9.4, *9.1*.

HRMS (ESI) m/z calcd. for C₂₇H₂₈N₂O [M + H]⁺ 413.2224, found 413.2219.

General procedures for enantioconvergent cross-coupling of racemic alkyl bromides with azole $C(sp^2)$ –H bonds

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol%), L*3 (9.7 mg, 0.012 mmol, 12 mol%), LiO'Bu (36 mg, 0.45 mmol, 4.5 equiv), and an appropriate azole (0.10 mmol, 1.0 equiv). The tube was evacuated and backfilled with argon for three times, and then, an appropriate alkyl bromide (0.20 mmol, 2.0 equiv), water (3.6 μ L, 0.20 mmol, 2.0 equiv), and anhydrous *N*,*N*-dimethylacetamide (0.70 mL) and dichloromethane (0.35 mL) were sequentially added. The reaction mixture was stirred at room temperature for 30 minutes and then stirred at 10 °C for 3–5 d. The resulting reaction mixture was diluted with 10 mL ethyl acetate and washed with brine (10 mL × 3). The organic layer was dried over anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford the desired product.

Characterization data of products 3-45 and 51

(R)-2-(4-Methoxyphenyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide 1a (39.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 3 (24.3 mg) in 83% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.38 – 7.32 (m, 4H), 7.31 – 7.25 (m, 1H), 6.98 – 6.95 (m, 2H), 4.14 (t, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 2.40 – 2.29 (m, 1H), 2.18 – 2.07 (m, 1H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.7, 162.1, 139.0, 128.8, 128.5, 127.9, 127.4, 116.5, 114.3, 55.4, 45.0, 27.5, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₉N₂O₂ [M + H]⁺ 295.1441, found 295.1438.

HPLC conditions: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.3 min, t(major) = 14.4 min, 90% ee (95.2:4.8 er).

(S)-2-(4-methoxyphenyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) alkyl bromide 1a (39.8 mg, 0.20 mmol, 2.0 equiv) and with the the ligand L*4 for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product *ent*-3 (21.4 mg) in 78% isolated yield.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 82/20, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 10.9 min, t(minor) = 13.7 min, 89% ee (94.6:5.4 er).

(R)-2-(4-Methoxyphenyl)-5-(1-phenylbutyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1b (42.6 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 4 (26.5 mg) in 85% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.41 – 7.34 (m, 4H), 7.31 – 7.29 (m, 1H), 7.01 – 6.97 (m, 2H), 4.27 (t, *J* = 8.0 Hz, 1H), 3.88 (s, 3H), 2.35 – 2.26 (m, 1H), 2.15 – 2.05 (m, 1H), 1.44 – 1.34 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.8, 162.2, 139.2, 128.8, 128.6, 127.9, 127.5,

116.6, 114.4, 55.4, 43.1, 36.3, 20.6, 13.7.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₂O₂ [M + H]⁺ 309.1598, found 309.1594. HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.2 min, t(major) = 18.3 min, 90% ee (94.8:5.2 er).

(R)-2-(4-Methoxyphenyl)-5-(1-phenylhexyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1c (48.2 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 5 (24.2 mg) in 72% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.38 – 7.32 (m, 4H), 7.29 – 7.27 (m, 1H), 6.98 – 6.95 (m, 2H), 4.23 (t, *J* = 8.0 Hz, 1H), 3.85 (s, 3H), 2.32 – 2.25 (m, 1H), 2.11 – 2.06 (m, 1H), 1.35 – 1.26 (m, 6H), 0.85 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.8, 162.2, 139.3, 128.8, 128.6, 127.9, 127.5, 116.6, 114.4, 55.4, 43.4, 34.2, 31.4, 27.1, 22.4, 14.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₅N₂O₂ [M + H]⁺ 337.1911, found 337.1905.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.8 min, t(major) = 17.5 min, 89% ee (94.5:5.5 er).

(R)-2-(4-Methoxyphenyl)-5-(3-methyl-1-phenylbutyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide **S1d** (45.4 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **6** (24.2 mg) in 75% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.39 – 7.32 (m, 4H), 7.29 – 7.24 (m, 1H), 6.98 – 6.95 (m, 2H), 4.35 (t, *J* = 8.0 Hz, 1H), 3.85 (s, 3H), 2.21 – 2.14 (m, 1H), 2.04 – 1.97 (m, 1H), 1.58 – 1.48 (m, 1H), 0.95 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.8, 162.2, 139.3, 128.9, 128.6, 127.9, 127.5, 116.6, 114.4, 55.4, 43.2, 41.2, 25.6, 22.6, 22.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₃N₂O₂ [M + H]⁺ 323.1754, found 323.1751.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.1 min, t(major) = 17.0 min, 88% ee (93.8:6.2 er).

(R)-2-(4-Methoxyphenyl)-5-(1-phenylbut-3-en-1-yl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S11 (42.2 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 7 (13.0 mg) in 42% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.38 – 7.33 (m, 4H), 7.30 – 7.27 (m, 1H), 6.99 – 6.95 (m, 2H), 5.83 – 5.73 (m, 1H), 5.14 – 5.01 (m, 2H), 4.33 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.11 – 3.03 (m, 1H), 2.89 – 2.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 164.9, 162.2, 138.6, 134.6, 128.9, 128.6, 127.9, 127.6, 117.9, 116.5, 114.4, 55.5, 43.4, 38.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₉N₂O₂ [M + H]⁺ 307.1441, found 307.1438.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.9 min, t(major) = 18.3 min, 82% ee (91.2:8.8 er).

(R)-2-(4-Methoxyphenyl)-5-(1-phenylhex-5-en-1-yl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1m (47.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 8 (19.0 mg) in 56% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.94 (m, 2H), 7.39 – 7.35 (m, 4H), 7.32 – 7.29 (m, 1H), 7.05 – 6.97 (m, 2H), 5.83 – 5.73 (m, 1H), 5.05 – 4.95 (m, 2H), 4.25 (t, *J* = 7.8 Hz, 1H), 3.88 (s, 3H), 2.39 – 2.30 (m, 1H), 2.18 – 2.09 (m, 3H), 1.51 – 1.43 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.8, 162.2, 139.1, 138.1, 128.9, 128.6, 127.9, 127.5, 116.5, 115.0, 114.4, 55.5, 43.3, 33.7, 33.3, 26.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₂ [M + H]⁺ 335.1754, found 335.1749.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.7 min, t(major) = 18.7 min, 87% ee (93.5:6.5 er).

(R)-2-(4-Methoxy-1-phenylbutyl)-5-(4-Methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1x (67.8 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 9 (22.0 mg) in 65% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.38 – 7.32 (m, 4H), 7.29 – 7.25 (m, 1H), 6.98 – 6.95 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.38 (m, 2H), 4.26 (t, *J* = 8.0 Hz, 1H), 4.26 (t, *J* = 8

2H), 3.30 (s, 3H), 2.42 – 2.33 (m, 1H), 2.24 – 2.14 (m, 1H), 1.69 – 1.58 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 139.0, 128.9, 128.6, 127.9, 127.6, 116.5, 114.4, 72.1, 58.6, 55.4, 43.2, 31.0, 27.5.

HRMS (ESI) m/z calcd. for C₂₀H₂₃N₂O₃ [M + H]⁺ 339.1703, found 339.1700. **HPLC condition:** Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 22.6 min, t(major) = 26.6 min, 87% ee (93.4:6.6 er).

(*R*)-2-(4-((*tert*-Butyldiphenylsilyl)oxy)-1-phenylbutyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1w (93.5 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 10 (22.5 mg) in 40% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.65 – 7.61 (m, 4H), 7.42 – 7.33 (m, 10H), 7.29 – 7.25 (m, 1H), 6.98 – 6.94 (m, 2H), 4.24 (t, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 3.71 – 3.67 (m, 2H), 2.43 – 2.36 (m, 1H), 2.26 – 2.16 (m, 1H), 1.62 – 1.55 (m, 2H), 1.03 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 139.1, 135.6, 133.8, 129.6, 128.9, 128.6, 127.9, 127.7, 127.5, 116.6, 114.4, 63.3, 55.5, 43.0, 30.6, 30.2, 26.9, 19.2.

HRMS (ESI) m/z calcd. for C₃₅H₃₉N₂O₃Si [M + H]⁺ 563.2724, found 563.2722.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 12.0 min, t(major) = 16.9 min, 90% ee (95:5 er).

(R)-2-(4-Chloro-1-phenylbutyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole **2a** (17.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **S1e** (74.3 mg, 0.30 mmol, 3.0 equiv), LiO'Bu (28.0 mg, 0.35 mmol, 3.5 equiv), and H₂O (5.4 μ L, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **11** (13.7 mg) in 40% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.36 – 7.33 (m, 4H), 7.32 – 7.26 (m, 1H), 6.99 – 6.95 (m, 2H), 4.25 (t, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 3.59 – 3.53 (m, 2H), 2.51 – 2.42 (m, 1H), 2.33 – 2.24 (m, 1H), 1.93 – 1.78 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.9, 162.3, 138.6, 129.0, 128.6, 127.8, 127.8, 116.4, 114.4, 55.5, 44.4, 42.8, 31.5, 30.3.

HRMS (ESI) m/z calcd. for C₁₉H₂₀³⁵ClN₂O₂ [M + H]⁺ 343.1208, found 343.1207; for C₁₉H₂₀³⁷ClN₂O₂ [M + H]⁺ 345.1178, found 345.1176.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 20.0 min, t(major) = 23.2 min, 78% ee (89:11 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(m-tolyl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1f (42.6 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 12 (15.5 mg) in 50% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.23 (t, J = 8.0 Hz, 1H), 7.16 – 7.14 (m, 2H), 7.08 (d, J = 7.2 Hz, 1H), 6.98 – 6.95 (m, 2H), 4.09 (t, J = 8.0 Hz, 1H), 3.85 (s, 3H), 2.34 (s, 3H), 2.37 – 2.28 (m, 1H), 2.15 – 2.08 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.8, 162.2, 139.0, 138.5, 128.7, 128.6(2), 128.6(0), 128.3, 124.9, 116.6, 114.4, 55.4, 45.1, 27.5, 21.5, 12.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₂O₂ [M + H]⁺ 309.1598, found 309.1593.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.8 min, t(major) = 14.0 min, 83% ee (91.7:8.3 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(3-methoxyphenyl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1n (57.3 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 13 (26.0 mg) in 80% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.26 (t, J = 8.0 Hz, 1H), 6.99 – 6.93 (m, 3H), 6.91 (t, J = 2.0 Hz, 1H), 6.81 (ddd, J = 8.0, 2.8, 1.2 Hz, 1H), 4.11 (t, J = 8.0 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 2.37 – 2.29 (m, 1H), 2.16 – 2.09 (m, 1H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 159.9, 140.6, 129.8, 128.6, 120.3, 116.6, 114.4, 113.8, 112.7, 55.4, 55.3, 45.1, 27.4, 12.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₂O₃ [M + H]⁺ 325.1547, found 325.1543.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.2 min, t(major) = 22.7 min, 90% ee (95:5 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(3-phenoxyphenyl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S10 (58.2 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 14 (22.5 mg) in 58% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.35 – 7.26 (m, 3H), 7.16 – 7.08 (m, 2H), 7.06 – 6.96 (m, 5H), 6.90 (dd, J = 8.4, 1.2 Hz, 1H), 4.12 (t, J = 7.8 Hz, 1H), 3.87 (s, 3H), 2.36 – 2.25 (m, 1H), 2.16 – 2.05 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.2, 164.9, 162.2, 157.7, 156.9, 141.0, 130.1, 129.8, 128.6, 123.5, 122.7, 119.0, 118.3, 117.7, 116.5, 114.4, 55.5, 44.9, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₄H₂₃N₂O₃ [M + H]⁺ 387.1703, found 387.1699.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 24.7 min, t(minor) = 28.6 min, 84% ee (92:8 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(p-tolyl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1i (42.6 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 15 (21.0 mg) in 68% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.29 – 7.26 (m, 2H), 7.17 (d, J = 7.6 Hz, 2H), 7.00 – 6.98 (m, 2H), 4.12 (t, J = 7.6 Hz, 1H), 3.88 (s, 3H), 2.38 – 2.31 (m, 1H), 2.38 (s, 3H), 2.16 – 2.09 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.8, 162.2, 137.2, 136.1, 129.5, 128.6, 127.8, 116.6, 114.4, 55.4, 44.7, 27.5, 21.1, 12.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₂O₂ [M + H]⁺ 309.1598, found 309.1593.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 13.9 min, t(minor) = 16.6 min, 90% ee (95:5 er).

(*R*)-2-(1-(4-(*tert*-Butyl)phenyl)propyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1j (63.8 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 16 (17.5 mg) in 50% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.35 (dd, *J* = 6.0, 2.0 Hz, 2H), 7.28 (d, *J* = 6.0, 2.0 Hz, 2H), 7.00 – 6.98 (m, 2H), 4.12 (t, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 2.38 – 2.29 (m, 1H), 2.19 – 2.07 (m, 1H), 1.30 (s, 9H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.7, 164.7, 162.1, 150.4, 136.0, 128.6, 127.5, 125.7, 116.7, 114.4, 55.4, 44.6, 34.5, 31.3, 27.6, 12.3.

HRMS (ESI) m/z calcd. for C₂₂H₂₇N₂O₂ [M + H]⁺ 351.2067, found 351.2066.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min. λ = 254 nm, t(minor) = 20.4 min, t(major) = 22.3 min, 90% ee (95:5 er).

(*R*)-2-(1-([1,1'-Biphenyl]-4-yl)propyl)-5-(4-Methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1t (68.8 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 17 (24.1 mg) in 65% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.59 – 7.56 (m, 4H), 7.45 – 7.41 (m, 4H), 7.36 – 7.32 (m, 1H), 6.99 – 6.95 (m, 2H), 4.19 (t, *J* = 7.7 Hz, 1H), 3.86 (s, 3H), 2.41 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H), 1.02 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 140.6, 140.5, 138.1, 128.8, 128.6, 128.4, 127.6, 127.4, 127.1, 116.6, 114.4, 55.5, 44.8, 27.6, 12.2.

HRMS (ESI) m/z calcd. for C₂₄H₂₃N₂O₃ [M + H]⁺ 371.1754, found 371.1750.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 20.2 min, t(major) = 26.8 min, 90% ee (95.1:4.9 er).

(R)-2-(1-(4-Fluorophenyl)propyl)-5-(4-Methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1g (65.1 mg, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 18 (20.6 mg) in 66% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.35 – 7.32(m, 2H), 7.06 – 7.01 (m, 2H), 7.00 – 6.96 (m, 2H), 4.13 (t, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 2.36 – 2.29 (m, 1H), 2.13 – 2.06 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 166.1 (d, J_{C-F} = 241.9 Hz), 163.4, 162.2, 160.9, 134.8 (d, J_{C-F} = 3.0 Hz), 129.5 (d, J_{C-F} = 8.0 Hz), 128.6, 116.5, 115.7 (d, J_{C-F} = 21.5 Hz), 114.4, 55.5, 44.4, 27.6, 12.1.

¹⁹**F NMR** (376 MHz, CDCl₃): δ –115.0.

HRMS (ESI) m/z calcd. for C₁₈H₁₈FN₂O₃ [M + H]⁺ 313.1347, found 313.1341.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.3 min, t(major) = 17.6 min, 87% ee (93.6:6.4 er).

(R)-2-(1-(4-Chlorophenyl)propyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide **S1h** (70.1 mg, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **19** (12.5 mg) in 38% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.34 – 7.26 (m, 4H), 6.99 – 6.95 (m, 2H), 4.12 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 2.36 – 2.29 (m, 1H), 2.13 – 2.06 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.9, 162.3, 137.5, 133.4, 129.3, 129.0, 128.6, 116.4, 114.4, 55.5, 44.5, 27.5, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₈³⁵ClN₂O₂ [M + H]⁺ 329.1051, found 329.1047. for C₁₈H₁₈³⁷ClN₂O₂ [M + H]⁺ 331.1022, found 331.1017.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.0 min, t(major) = 20.2 min, 85% ee (92.5:7.5 er).

(*R*)-2-(1-(3-(Furan-3-yl)phenyl)propyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1p (66.3 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 20 (28.0 mg) in 78% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.73 (t, J = 1.2 Hz, 1H), 7.47 (q, J = 2.0 Hz, 2H), 7.40 (dt, J = 8.0, 1.6 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.28 – 7.25 (m, 1H), 6.98 – 6.95 (m, 2H), 6.70 (dd, J = 2.0, 0.8 Hz, 1H), 4.16 (t, J = 7.8 Hz, 1H), 3.85 (s, 3H), 2.43 – 2.32 (m, 1H), 2.21 – 2.09 (m, 1H), 1.01 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 143.8, 139.7, 138.7, 133.0, 129.3, 128.6, 126.5, 126.2, 125.5, 125.1, 116.5, 114.4, 108.8, 55.5, 45.1, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₂O₃ [M + H]⁺ 361.1547, found 361.1543.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 18.8 min, t(major) = 23.3 min, 93% ee (96.4:3.6 er).

(*R*)-2-(4-Methoxyphenyl)-5-(1-(3-(thiophen-3-yl)phenyl)propyl)-1,3,4-oxadiazole According to the general procedure with azole 2a (35.2 mg, 0.20 mmol, 1.0 equiv), alkyl bromide S1r (140.6 mg, 0.50 mmol, 2.5 equiv), and LiO'Bu (60.8 mg, 0.76 mmol, 3.8 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 21 (60.0 mg) in 80% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.58 (t, J = 1.2 Hz, 1H), 7.51 (dt, J = 7.6, 1.2 Hz, 1H), 7.46 (t, J = 2.4 Hz, 1H), 7.40 – 7.36 (m, 3H), 7.29 (dt, J = 7.6,

1.6 Hz, 1H), 6.98 – 6.95 (m, 2H), 4.18 (t, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 2.42 – 2.33 (m, 1H), 2.22 – 2.13 (m, 1H), 1.01 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 141.9, 139.7, 136.4, 129.3, 128.6, 126.6, 126.4, 126.3, 126.1, 125.7, 120.7, 116.5, 114.4, 55.5, 45.2, 27.5, 12.3.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₂O₂S [M + H]⁺ 377.1318, found 377.1313.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.8 min, t(major) = 21.2 min, 93% ee (96.3:3.7 er).

(*R*)-2-(4-Methoxyphenyl)-5-(1-(3-(thiophen-2-yl)phenyl)propyl)-1,3,4-oxadiazole According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1s (56.2 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 22 (22.0 mg) in 55% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.60 (t, J = 1.2 Hz, 1H), 7.52 (dt, J = 8.0, 1.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.32 (dd, J = 3.6, 1.2 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.08 (dd, J = 4.8, 3.6 Hz, 1H), 6.98 – 6.95 (m, 2H), 4.17 (t, J = 7.8 Hz, 1H), 3.85 (s, 3H), 2.43 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H), 1.01 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.4, 164.9, 162.2, 143.9, 139.8, 135.0, 129.4, 128.6, 128.1, 126.9, 125.6, 125.2, 125.1, 123.4, 116.5, 114.4, 55.5, 45.1, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₂O₂S [M + H]⁺ 377.1318, found 377.1313.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 25.3 min, t(minor) = 30.9 min, 85% ee (92.6:7.4 er).

(*R*)-2-(1-(3-(1*H*-Pyrrol-1-yl)phenyl)propyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide S1q (79.2 mg, 0.30 mmol, 3.0 equiv), LiO'Bu (28.0 mg, 0.35 mmol, 3.5 equiv), and H₂O (5.4 μ L, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 23 (12.6 mg) in 35% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.42 – 7.38 (m, 2H), 7.32 – 7.30 (m, 1H), 7.26 – 7.23 (m, 1H), 7.08 (t, *J* = 2.0 Hz, 2H), 6.98 – 6.96 (m, 2H), 6.35 (t, *J* = 2.0 Hz, 2H), 4.18 (t, *J* = 8.0 Hz, 1H), 3.86 (s, 3H), 2.43 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H), 1.01 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.3, 141.2, 140.7, 130.0, 128.6, 125.1, 120.1, 119.6, 119.3, 116.4, 114.4, 110.6, 55.5, 45.0, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₂N₃O₂ [M + H]⁺ 360.1707, found 360.1703.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.1 min, t(major) = 20.4 min, 87% ee (93.6:6.4 er).

(*R*)-2-(4-Methoxyphenyl)-5-(1-(4-(thiophen-3-yl)phenyl)propyl)-1,3,4-oxadiazole According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1u (70.3 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 24 (22.6 mg) in 60% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 – 7.92 (m, 2H), 7.58 – 7.56 (m, 2H), 7.43 (dd, J = 2.4, 1.6 Hz, 1H), 7.40 – 7.36 (m, 4H), 6.98 – 6.96 (m, 2H), 4.16 (t, J = 8.0 Hz, 1H), 3.85 (s, 3H), 2.42 – 2.31 (m, 1H), 2.20 – 2.09 (m, 1H), 1.01 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 141.8, 137.9, 135.2, 128.6, 128.4, 126.9, 126.3, 126.3, 120.4, 116.6, 114.4, 55.5, 44.8, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₂O₂S [M + H]⁺ 377.1318, found 377.1313.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 28.7 min, t(major) = 38.4 min, 89% ee (94.6:5.4 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(naphthalen-2-yl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1k (74.7 mg, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 25 (18.5 mg) in 53% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.90 (m, 2H), 7.84 – 7.80 (m, 4H), 7.50 – 7.44 (m, 3H), 6.96 – 6.94 (m, 2H), 4.30 (t, *J* = 7.6 Hz, 1H), 3.84 (s, 3H), 2.48 – 2.39 (m, 1H), 2.29 – 2.20 (m, 1H), 1.02 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.9, 162.2, 136.4, 133.4, 132.7, 128.7, 128.6, 127.8, 127.7, 126.9, 126.4, 126.1, 125.7, 116.5, 114.4, 55.4, 45.2, 27.4, 12.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₂O₃ [M + H]⁺ 345.1598, found 345.1593.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 17.2 min, t(major) = 22.3 min, 77% ee (88.7:11.3 er).

(R)-2-(4-Methoxyphenyl)-5-(1-(thiophen-3-yl)propyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide S1v (61.5 mg, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding

product 26 (13.8 mg) in 46% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.31 (dd, J = 4.8, 2.8 Hz, 1H), 7.21 (dd, J = 3.2, 1.6 Hz, 1H), 7.11 (dd, J = 5.2, 1.2 Hz, 1H), 7.00 – 6.96 (m, 2H), 4.32 (t, J = 7.7 Hz, 1H), 3.87 (s, 3H), 2.31 – 2.22 (m, 1H), 2.19 – 2.10 (m, 1H), 0.99 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 139.3, 128.6, 127.0, 126.2, 122.2, 116.5, 114.4, 55.5, 40.3, 27.5, 12.1.

HRMS (ESI) m/z calcd. for C₁₆H₁₇N₂O₂S [M + H]⁺ 301.1005, found 301.1002.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 18.5 min, t(major) = 23.2 min, 86% ee (93:7 er).

(R)-2-Phenyl-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2b** (14.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv), and LiO'Bu (20.0 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **27** (17.6 mg) in 67% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 8.01 (m, 2H), 7.55 – 7.47 (m, 3H), 7.41 – 7.35 (m, 4H), 7.32 – 7.28 (m, 1H), 4.19 (t, *J* = 7.8 Hz, 1H), 2.44 – 2.33 (m, 1H), 2.22 – 2.11 (m, 1H), 1.02 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.9, 138.9, 131.6, 129.0, 128.9, 127.9, 127.6, 126.9, 124.0, 45.1, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₁₇H₁₇N₂O [M + H]⁺ 265.1335, found 265.1331.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =10.5 min, t(major) = 12.6 min, 89% ee (94.3:5.7 er).

(R)-2-(1-Phenylpropyl)-5-(p-tolyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2c** (16.0 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv), and LiO'Bu (20.0 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **28** (20.0 mg) in 72% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.38 – 7.32 (m, 4H), 7.29 – 7.25 (m, 3H), 4.15 (t, *J* = 7.7 Hz, 1H), 2.40 – 2.31 (m, 4H), 2.19 – 2.08 (m, 1H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 165.0, 142.0, 139.0, 129.6, 128.8, 127.9, 127.5, 126.8, 121.2, 45.1, 27.5, 21.6, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₉N₂O [M + H]⁺ 279.1492, found 279.1487.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 8.8 min, t(major) = 11.0 min, 89% ee (94.5:5.5 er).

(R)-2-(4-(tert-Butyl)phenyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2d** (20.2 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv), and LiO'Bu (20.0 mg, 0.25 mmol, 2.5 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **29** (22.1 mg) in 69% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.50 – 7.47 (m, 2H), 7.38 – 7.31 (m, 4H), 7.29 – 7.25 (m, 1H), 4.16 (t, *J* = 7.8 Hz, 1H), 2.40 – 2.29 (m, 1H), 2.19 – 2.08 (m, 1H), 1.33 (s, 9H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.9, 155.1, 139.0, 128.8, 127.9, 127.5, 126.6, 125.9, 121.2, 45.1, 35.0, 31.1, 27.5, 12.1.

HRMS (ESI) m/z calcd. for C₂₁H₂₅N₂O [M + H]⁺ 321.1961, found 321.1956.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 7.1 min, t(major) = 8.8 min, 90% ee (95.2:4.8 er).

(R)-2-(4-Bromophenyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole S2e (45.0 mg, 0.20 mmol, 1.0 equiv) and alkyl bromide 1a (119.5 mg, 0.60 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 30 (51.3 mg) in 75% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.63 – 7.59 (m, 2H), 7.37 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 4.15 (t, *J* = 7.8 Hz, 1H), 2.41 – 2.30 (m, 1H), 2.19 – 2.08 (m, 1H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.1, 138.7, 132.2, 128.9, 128.2, 127.9, 127.6, 126.2, 122.9, 45.1, 27.4, 12.1.

HRMS (ESI) m/z calcd. for C₁₇H₁₆⁷⁹BrN₂O [M + H]⁺ 343.0441, found 343.0436, C₁₇H₁₆⁸¹BrN₂O [M + H]⁺ 345.0420 found 345.0415.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 9.3 min, t(major) = 11.3 min, 87% ee (93.3:6.7 er).

(R)-2-(1-Phenylpropyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole

According to the general procedure with azole S2f (21.4 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide 1a (59.7 mg, 0.30 mmol, 3.0 equiv) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 31 (15.7 mg) in 47% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.12 (m, 2H), 7.75 – 7.73 (m, 2H), 7.39 – 7.34 (m, 4H), 7.32 – 7.28 (m, 1H), 4.18 (t, *J* = 7.8 Hz, 1H), 2.43 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H), 1.00 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 168.8, 163.7, 138.6, 133.2 (q, *J* = 32.7 Hz), 128.9, 127.9, 127.7, 127.2(0), 127.2(6), 126.0 (q, *J* = 4.0 Hz), 123.5 (q, *J* = 271.0 Hz), 45.1, 27.5, 12.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.10.

HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃N₂O [M + H]⁺ 333.1209, found 333.1204. **HPLC condition:** Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =7.3 min, t(major) = 8.3 min, 78% ee (89.2:10.8 er).

(R)-2-(1-Phenylpropyl)-5-(m-tolyl)-1,3,4-oxadiazole

According to the general procedure with azole S2g (16.0 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide 1a (39.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 32 (13.5 mg) in 49% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.38 – 7.26 (m, 7H), 4.16 (t, *J* = 7.8 Hz, 1H), 2.40 – 2.30 (m, 4H), 2.19 – 2.08 (m, 1H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 165.0, 139.0, 138.8, 132.3, 128.8, 127.9, 127.5, 127.3, 124.0, 123.8, 45.1, 27.5, 21.3, 12.2.

HRMS (ESI) m/z calcd. for C₁₈H₁₉N₂O [M + H]⁺ 279.1492, found 279.1487.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 6.9 min, t(major) = 7.4 min, 85% ee (92.4:7.6 er).

(R)-2-(3-Chlorophenyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2h** (18.1 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv) and H₂O (5.4 μ L, 0.30 mmol, 3.0 equiv) in anhydrous *N*,*N*-dimethylacetamide (0.35 mL) and PhCF₃ (0.70 mL) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **33** (10.2 mg) in 34% isolated yield (57% yield based on recovered starting material).

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 – 7.97 (m, 1H), 7.92 – 7.89 (m, 1H), 7.49 – 7.46 (m, 1H), 7.43 – 7.41 (m, 1H), 7.36 – 7.34 (m, 4H), 7.32 – 7.27 (m, 1H), 4.16 (t, *J* = 7.8 Hz, 1H), 2.41 – 2.30 (m, 1H), 2.20 – 2.09 (m, 1H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 163.7, 138.7, 135.0, 131.6, 130.3, 128.9, 127.9, 127.6, 126.8, 125.6, 124.9, 45.1, 27.4, 12.1.

HRMS (ESI) m/z calcd. for C₁₇H₁₆³⁵ClN₂O [M + H]⁺ 299.0946, found 299.0943; for C₁₇H₁₅³⁷ClN₂O [M + H]⁺ 301.0916 found 301.0913.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(minor) =14.3 min, t(major) = 15.7 min, 79% ee (89.5:10.5 er).

(R)-2-(1-Phenylpropyl)-5-(o-tolyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2i** (16.0 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide **1a** (39.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **34** (14.1 mg) in 51% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.85 (m, 1H), 7.40 – 7.26 (m, 8H), 4.18 (t, J = 7.8 Hz, 1H), 2.65 (s, 3H), 2.41 – 2.30 (m, 1H), 2.20 – 2.09 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 165.1, 138.9, 138.2, 131.6, 131.0, 128.9, 128.8, 127.9, 127.5, 126.0, 123.1, 45.0, 27.4, 22.0, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₉N₂O [M + H]⁺ 279.1492, found 279.1488.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.6 min, t(major) = 12.9 min, 85% ee (92.3:7.7 er).

(R)-2-(Naphthalen-1-yl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2j** (19.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv) and H₂O (5.4 μ L, 0.30 mmol, 3.0 equiv) in anhydrous *N*,*N*-dimethylacetamide (0.35 mL) and PhCF₃ (0.70 mL) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **35** (12.6 mg) in 40% isolated yield (73% yield based on recovered starting material).

¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (dd, J = 8.7, 1.1 Hz, 1H), 8.12 (dd, J = 7.3, 1.3 Hz, 1H), 8.04 – 8.01 (m, 1H), 7.94 – 7.92 (m, 1H), 7.70 – 7.66 (m, 1H), 7.62 – 7.54 (m, 2H), 7.46 – 7.37 (m, 4H), 7.34 – 7.30 (m, 1H), 4.27 (t, J = 7.8 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.28 – 2.17 (m, 1H), 1.06 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.8, 138.9, 133.8, 132.4, 130.0, 128.9, 128.6, 128.2, 128.0, 127.9, 127.5, 126.6, 126.2, 124.7, 120.6, 45.0, 27.5, 12.2.

HRMS (ESI) m/z calcd. for C₂₁H₁₉N₂O [M + H]⁺ 315.1492, found 315.1487.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(minor) =20.2 min, t(major) = 21.5 min, 85% ee (92.6:7.4 er).

(R)-2-(1-Phenylpropyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole

According to the general procedure with azole **S2k** (14.7 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv) and LiO'Bu (20.0 mg, 0.25 mmol, 2.5 equiv) in anhydrous *N*,*N*-dimethylacetamide (0.35 mL) and PhCF₃ (0.70 mL) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **36** (6.7 mg) in 25% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.75 – 8.73 (m, 1H), 8.30 (dt, *J* = 8.0, 1.9 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.38 – 7.34 (m, 4H), 7.32 – 7.28 (m, 1H), 4.18 (t, *J* = 7.8 Hz, 1H), 2.43 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H), 1.00 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 162.8, 152.2, 147.8, 138.6, 134.1, 128.9, 127.9, 127.7, 123.7, 120.5, 45.1, 27.4, 12.1.

HRMS (ESI) m/z calcd. for C₁₆H₁₆N₃O [M + H]⁺ 266.1288, found 266.1284.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =21.2 min, t(major) = 23.7 min, 75% ee (87.3:12.7 er).

(R)-2-(Furan-2-yl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2l** (13.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv) and LiO'Bu (20.0 mg, 0.25 mmol, 2.5 equiv) in anhydrous *N*,*N*-dimethylacetamide (0.35 mL) and PhCF₃ (0.70 mL) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **37** (8.7 mg) in 34% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 1.9, 0.8 Hz, 1H), 7.37 – 7.32 (m, 4H), 7.31 – 7.25 (m, 1H), 7.10 (dd, J = 3.6, 0.7 Hz, 1H), 6.55 (dd, J = 3.5, 1.8 Hz, 1H), 4.14 (t, J = 7.8 Hz, 1H), 2.40 – 2.29 (m, 1H), 2.18 – 2.08 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 157.7, 145.4, 139.5, 138.7, 128.8, 127.9, 127.6, 113.8, 112.0, 45.0, 27.4, 12.1.

HRMS (ESI) m/z calcd. for C₁₅H₁₅N₂O₂ [M + H]⁺ 255.1128, found 255.1124.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =18.5 min, t(major) = 22.2 min, 82% ee (91:9 er).

(R)-2-Phenethyl-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole S2m (17.4 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide 1a (39.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 38 (16.1 mg) in 55% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.17 (m, 8H), 7.14 – 7.11 (m, 2H), 4.03 (t, J = 7.8 Hz, 1H), 3.12 – 3.02 (m, 4H), 2.30 – 2.19 (m, 1H), 2.10 – 1.99 (m, 1H), 0.92 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 166.3, 139.4, 138.9, 128.8, 128.6, 128.2, 127.8, 127.4, 126.5, 44.9, 32.5, 27.2(4), 27.2(3), 12.1.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₂O [M + H]⁺ 293.1648, found 293.1643.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 214 nm, t(minor) = 17.0 min, t(major) = 17.9 min, 81% ee (90.5:9.5 er).

(R)-2-(tert-Butyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with azole **S2n** (12.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv), and LiO'Bu (24.0 mg, 0.30 mmol, 3.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **39** (11.5 mg) in 47% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 4.09 (t, *J* = 7.8 Hz, 1H), 2.32 – 2.21 (m, 1H), 2.13 – 2.04 (m, 1H), 1.39 (s, 9H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 167.9, 139.1, 128.7, 127.8, 127.4, 45.0, 32.3, 28.1, 27.7, 12.1.

HRMS (ESI) m/z calcd. For C₁₆H₂₁NO [M + H]⁺ 245.1648, found 245.1646.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min. λ = 214 nm, t(minor) = 31.1 min, t(major) = 32.3 min, 93% ee (96.5:3.5 er).

2,5-bis(1-phenylpropyl)-1,3,4-oxadiazole

According to the general procedure with 1,3,4-oxadiazole (7.0 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (199 mg, 1.0 mmol, 10.0 equiv), and LiO'Bu (36.0 mg, 0.45 mmol, 4.5 equiv) for 6 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **40** (13.2 mg) in 43% isolated yield, the *dr* value is 6:1, and give the mono-alkylated product **40'** (6.4 mg) in 34% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.24 (m, 10H), 4.08 (t, *J* = 7.8 Hz, 1H), 4.03 (t, *J* = 7.8 Hz, 1H), 2.31 – 2.17 (m, 2H), 2.11 – 1.99 (m, 2H), 0.94 – 0.89 (m, 6H).
¹³C NMR (100 MHz, CDCl₃) δ 168.3, 139.1, *139.0*, 128.7(2), *128.7(1)*, 127.8, 127.4(0), *127.3(9)*, 44.9(8), *44.9(6)*, 27.6, *27.5*, 12.0.

HRMS (ESI) m/z calcd. for C₂₀H₂₃N₂O [M + H]⁺ 307.1805, found 307.1800.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min. λ = 214 nm, t(major) = 16.1 min, t(minor) = 23.7 min, 97% ee (98.5:1.5 er).

2-(1-phenylpropyl)-1,3,4-oxadiazole

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.36 – 7.25 (m, 5H), 4.13 (t, J = 7.8 Hz, 1H), 2.37 – 2.26 (m, 1H), 2.17 – 2.06 (m, 1H), 0.95 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 153.0, 138.6, 128.9, 127.9, 127.7, 44.9, 27.3, 12.1.

HRMS (ESI) m/z calcd. for C₁₁H₁₃N₂O [M + H]⁺ 189.1022, found 189.1021. **HPLC condition:** Chiralcel OD-3, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 214 nm, t(major) = 19.1 min, t(minor) = 21.1 min, 77% ee (88.8:11.2 er).

(R) - 5 - (3 - Fluoro - 4 - (trifluoromethyl)phenyl) - 2 - (1 - phenylpropyl) oxazole

According to the general procedure with azole **S20** (23.1 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (59.7 mg, 0.30 mmol, 3.0 equiv), and $Cu(iPrCO_2)_2$ (2.38 mg, 0.010 mmol, 10 mol%) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **41** (10.5 mg) in 30% isolated yield (51% yield based on recovered starting material).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (t, *J* = 7.7 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.37 (d, *J* = 4.3 Hz, 4H), 7.31 – 7.28 (m, 1H), 4.08 (t, *J* = 7.8 Hz, 1H), 2.40 – 2.29 (m, 1H), 2.17 – 2.06 (m, 1H), 0.99 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 160.1 (dd, J = 256.2, 2.3 Hz), 148.6 (d, J = 2.7 Hz), 139.9, 133.7 (d, J = 9.0 Hz), 128.8, 127.9, 127.3, 124.7, 122.4 (q, J = 272.4 Hz), 119.3 (d, J = 3.7 Hz), 117.5 (q, J = 33.2 Hz), 117.3 (q, J = 33.1 Hz), 112.1 (d, J = 23.0 Hz), 47.5, 28.0, 12.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –61.26 (d, J = 12.6 Hz), –113.44 (q, J = 12.6 Hz). **HRMS** (ESI) m/z calcd. for C₁₉H₁₆F₄NO [M + H]⁺ 350.1163, found 350.1159.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 7.9 min, t(minor) = 9.6 min, 95% ee (97.4:2.6 er).

(R)-5-(3,5-Bis(trifluoromethyl)phenyl)-2-(1-phenylpropyl)oxazole

According to the general procedure with azole S2p (28.1 mg, 0.10 mmol, 1.0 equiv), alkyl bromide 1a (59.7 mg, 0.30 mmol, 3.0 equiv), and CuI (1.90 mg, 0.010 mmol, 10 mol%) at room temperature for 3 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 42 (14 mg) in 35% isolated yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.0 (d, *J* = 1.5 Hz, 2H), 7.80 (s, 1H), 7.49 (s, 1H), 7.39 (s, 2H), 7.38 (d, *J* = 1.9 Hz, 2H), 7.32 – 7.29 (m, 1H), 4.11 (t, *J* = 7.8 Hz, 1H), 2.42 – 2.31 (m, 1H), 2.18 – 2.06 (m, 1H), 1.00 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 167.2, 148.3, 139.8, 132.4 (q, J = 33.6 Hz), 130.1, 128.8, 127.9, 127.3, 124.6, 123.8 (q, J = 4.3 Hz), 123.0 (q, J = 272.4 Hz), 121.4 – 121.3 (m), 47.5, 28.0, 12.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.11.

HRMS (ESI) m/z calcd. for C₂₀H₁₆F₆NO [M + H]⁺ 400.1131, found 400.1128.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 12.2 min, t(minor) = 14.3 min, 85% ee (92.6:7.4 er).

(R)-5-Methoxy-2-(1-phenylpropyl)benzo[d]oxazole

According to the general procedure with azole S2q (14.9 mg, 0.10 mmol, 1.0 equiv), alkyl bromide 1a (49.8 mg, 0.25 mmol, 2.5 equiv), and Cu(acac)₂ (2.62 mg, 0.010 mmol, 10 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 43 (8.0 mg) in 30% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.37 – 7.35 (m, 2H), 7.33 (d, J = 2.1 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.23 (d, J = 2.6 Hz, 1H), 6.90 (dd, J = 8.9, 2.6 Hz, 1H), 4.12 (t, J = 7.8 Hz, 1H), 3.86 (s, 3H), 2.47 – 2.36 (m, 1H), 2.21 – 2.10 (m, 1H), 1.00 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.0, 142.0, 139.9, 128.7, 128.0, 127.3, 113.0, 110.6, 103.0, 56.0, 48.0, 27.6, 12.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NO₂ [M + H]⁺ 268.1332, found 268.1330.

HPLC condition: Chiralcel OJ, *n*-hexane/*i*-PrOH = 93/7, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 17.7 min, t(major) = 23.1 min, 91% ee (95.4:4.6 er).

(R)-5-Phenyl-2-(1-phenylpropyl)benzo[d]oxazole

According to the general procedure with azole S2r (19.5 mg, 0.10 mmol, 1.0 equiv) and alkyl bromide 1a (39.8 mg, 0.20 mmol, 2.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 44 (11.0 mg) in 35% isolated yield (63% yield based on recovered starting material).

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 1.2 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.53 (brs, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.40 – 7.35 (m, 3H), 7.31 – 7.27 (m, 1H), 4.18 (t, J = 7.7 Hz, 1H), 2.52 – 2.41 (m, 1H), 2.25 – 2.13 (m, 1H), 1.03 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 150.4, 141.9, 141.2, 139.8, 138.1, 128.9, 128.8, 128.0, 127.5, 127.3, 127.2, 124.2, 118.4, 110.5, 48.0, 27.6, 12.3.

HRMS (ESI) m/z calcd. for C₂₂H₂₀NO [M + H]⁺ 314.1539, found 314.1537.

HPLC condition: Chiralcel OJ, *n*-hexane /*i*-PrOH = 93/7, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 22.3 min, t(major) = 33.7 min, 93% ee (96.5:3.5 er).

(*R*)-2-(1-Phenylpropyl)benzo[*d*]thiazole

According to the general procedure with benzo[d]thiazole (13.5 mg, 0.10 mmol, 1.0 equiv), alkyl bromide **1a** (49.8 mg, 0.25 mmol, 2.5 equiv), and CuI (1.90 mg, 0.010 mmol, 10 mol%) at room temperature for 4 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **45** (3.0 mg) in 12% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.79 (d, 1H), 7.46 – 7.39 (m, 3H), 7.36 – 7.29 (m, 3H), 7.28 – 7.24 (m, 1H), 4.29 (t, *J* = 7.7 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.26 – 2.15 (m, 1H), 0.99 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 153.1, 141.7, 135.2, 128.7, 128.1, 127.3, 125.8, 124.7, 122.9, 121.5, 52.8, 28.9, 12.5.

HRMS (ESI) m/z calcd. for C₁₇H₁₆NS [M + H]⁺ 254.0998, found 254.0997.

HPLC condition: Chiralcel OJ, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 13.8 min, t(mnior) = 16.0 min, 87% ee (93.7:6.3 er).

(R,E)-2-(2,2-Dimethylhex-4-en-3-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

According to the general procedure with azole 2a (17.6 mg, 0.10 mmol, 1.0 equiv), alkyl bromides S1y and S1y' (2:1, 47.5 mg, 0.25 mmol, 2.5 equiv), CuI (1.90 mg, 0.010 mmol, 10 mol%), and L*5 (12.5 mg, 0.015 mmol, 15 mol%) for 4 d, the

reaction mixture was purified by column chromatography on silica gel to give the corresponding product **51** (20.0 mg) in 70% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 5.80 – 5.73 (m, 1H), 5.68 – 5.59 (m, 1H), 3.89 (s, 3H), 3.51 (d, J = 9.3 Hz, 1H), 1.74 (dd, J = 6.3, 1.5 Hz, 3H), 1.03 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.3, 162.1, 130.3, 128.5, 125.9, 116.7, 114.4, 55.5, 51.6, 34.4, 27.7, 18.0.

HRMS (ESI) m/z calcd. for C₁₇H₂₃N₂O₂ [M + H]⁺ 287.1754, found 295.1753.

HPLC condition: Chiralcel IA, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 15.2 min, t(major) = 18.7 min, 33% ee (66.6:33.4 er).

Preparative scale reaction and transformation

Preparative scale reaction

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added CuBH₄(PPh₃)₂ (60.3 mg, 0.10 mmol, 10 mol%), L*3 (97.4 mg, 0.12 mmol, 12 mol%), LiO'Bu (200 mg, 2.5 mmol, 2.5 equiv), and azole 2a (176 mg, 1.0 mmol, 1.0 equiv). The tube was evacuated and backfilled with argon for three times and then, alkyl bromide 1a (498 mg, 2.5 mmol, 2.5 equiv), water (36 μ L, 2.0 mmol, 2.0 equiv), and anhydrous *N*,*N*-dimethylacetamide (7.0 mL) and dichloromethane (3.0 mL) were sequentially added. The reaction mixture was stirred at room temperature for 30 min and then stirred at 10 °C for 4 d. The resulting reaction mixture was diluted with 50 mL ethyl acetate and washed with brine (30 mL × 3). The organic layer was dried over anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford the desired product 3 (224 mg, 76% yield, 94% ee).

Transformation

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with **3** (30 mg, 0.10 mmol, 1.0 equiv), aniline (0.10 mL, 1.1 mmol, 11 equiv), and *p*-toluenesulfonic acid monohydrate (7.6 mg, 0.04 mmol, 0.40 equiv). The resulting reaction mixture was stirred at 80 °C for 4 d. After completion, the reaction mixture was purified by column chromatography on silica gel to afford **46** (33 mg, 90% yield).

(*R*)-3-(4-Methoxyphenyl)-4-phenyl-5-(1-phenylpropyl)-4*H*-1,2,4-triazole 46, 33 mg, 90% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.32 – 7.27 (m, 3H), 7.20 – 7.14 (m, 4H), 7.02 – 6.99 (m, 2H), 6.74 – 6.72 (m, 2H), 6.52 (br s, 1H), 3.73 (s, 3H), 3.57 (t, J = 7.8 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.16 – 2.04 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 160.4, 157.2, 153.8, 140.9, 134.9, 129.7, 129.6, 129.5, 128.4, 128.0, 126.8, 119.5, 113.8, 55.2, 44.7, 28.6, 12.5. **HRMS** (ESI) *m/z* calcd. for C₂₄H₂₄N₃O [M + H]⁺ 370.1914, found 370.1913. **HPLC condition:** Chiralcel IF, *n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 22.3 min, t(major) = 26.2 min, 93% ee (96.5:3.5 er).

Mechanistic studies

H/D exchange experiments

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with **2a** (8.8 mg, 0.050 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (3.0 mg, 0.010 mmol, 10 mol% or 0 mmol), **L*3** (4.87 mg, 0.012 mmol, 12 mol%), and LiO'Bu (18 mg, 0.22 mmol, 4.5 equiv). The tube was evacuated and backfilled with argon for three times and then, D₂O (1.0 mL) and anhydrous *N*,*N*-dimethylacetamide (0.40 mL) and dichloromethane (0.20 mL) were sequentially added. The resulting reaction mixture was stirred at room temperature for 1 h or at 10 °C for 20 min. The resulting reaction mixture was diluted with 10 mL ethyl acetate, and washed with water (10 mL × 3). The organic layer was dried over anhydrous NaSO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum. The ¹H NMR analysis of the residue showed 95%, 94%, 35% and 34% incorporation of deuterium at the C5–H of **2a**.

sx1-3-110-6.11.fid

Control experiment with TEMPO

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with **2a** (17.6 mg, 0.10 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (6.03 mg, 0.01 mmol, 10 mol%), L***3** (9.74 mg, 0.012 mmol, 12 mol%), LiO'Bu (36 mg, 0.45 mmol, 4.5 equiv), and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (39.1 mg, 0.25 mmol, 2.5 equiv). The tube was evacuated and backfilled with argon for three times and then, **1a** (39.8 mg, 0.20 mmol, 2.0 equiv), water (3.6 μ L, 0.20 mmol, 2.0 equiv), and anhydrous *N*,*N*-dimethylacetamide (0.70 mL) and dichloromethane (0.35 mL) were sequentially added. The resulting reaction mixture was stirred at room temperature for 3 d. The resulting reaction mixture was dried over anhydrous NaSO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on neutral alumina to afford **47** (7.7 mg, 28% yield).¹ The desired product **3** was not observed.

2,2,6,6-Tetramethyl-1-(1-phenylpropoxy)piperidine

47, 7.7 mg, 28% yield. ¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 4H), 7.29 – 7.24 (m, 1H), 4.57 (dd, J = 9.5, 3.9 Hz, 1H), 2.18 – 2.08 (m, 1H), 1.89 – 1.78 (m, 1H), 1.56 – 1.46 (m, 3H), 1.40 – 1.29 (m, 6H), 1.21 (br s, 3H), 1.04 (br s, 3H), 0.70 (t, J = 7.5 Hz, 3H), 0.62 (br s, 3H).

HRMS (ESI) m/z calcd. for C₁₈H₃₀NO [M + H]⁺ 276.2321, found 276.2318.

Radical clock experiment

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with **2a** (17.6 mg, 0.10 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (6.03 mg, 0.010 mmol, 10 mol%), L***3** (9.74 mg, 0.012 mmol, 12 mol%), and LiO'Bu (36 mg, 0.45 mmol, 4.5 equiv). The tube was evacuated and backfilled with argon for three times and then, **1b** (94.6 mg, 0.30 mmol, 3.0 equiv), water (3.6 μ L, 0.20 mmol, 2.0 equiv), and anhydrous

N,N-dimethylacetamide (0.70 mL) and dichloromethane (0.35 mL) were sequentially added. The resulting reaction mixture was stirred 10 °C for 5 d. The resulting reaction mixture was diluted with 10 mL ethyl acetae and washed with water (10 mL \times 3). The organic layer was dried over anhydrous NaSO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford **48** (5.0 mg, 12% yield) and the desired product **49** (4.0 mg, 10% yield).

(*R*,*Z*)-2-(1,6-Diphenylhex-5-en-1-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.9 Hz, 2H), 7.36 – 7.34 (m, 5H), 7.33 – 7.29 (m, 2H), 7.26 – 7.22 (m, 3H), 7.00 (d, J = 8.9 Hz, 2H), 6.46 – 6.42 (m, 1H), 5.63 (dt, J = 11.7, 7.2 Hz, 1H), 4.21 (t, J = 7.8 Hz, 1H), 3.88 (s, 3H), 2.44 – 2.31 (m, 3H), 2.20 – 2.10 (m, 1H), 1.57 – 1.49 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.8, 162.2, 139.0, 137.5, 132.0, 129.5, 128.9, 128.7, 128.6, 128.2, 127.9, 127.5, 126.6, 116.5, 114.4, 55.4, 43.2, 33.7, 28.1, 27.6. **HRMS** (ESI) *m/z* calcd. for C₂₇H₂₇N₂O₂ [M + H]⁺ 411.2067, found 411.2063.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t (minor) =15.8 min, t (major) = 19.4 min, 88% ee (94:6 er).

2-(4-Methoxyphenyl)-5-(phenyl(2-phenylcyclopentyl)methyl)-1,3,4-oxadiazole

¹**H NMR** (400 MHz, CDCl₃) (the major diastereomer) δ 7.95 (d, J = 8.8 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.19 – 7.14 (m, 5H), 7.11 – 7.07 (m, 1H), 7.00 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 4.23 (d, J = 8.7 Hz, 1H), 3.89 (s, 3H), 2.97 – 2.89 (m, 1H), 2.79 (q, J = 8.1 Hz, 1H), 2.17 – 2.11 (m, 1H), 2.08 – 2.00 (m, 1H), 1.89 – 1.72 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 164.6, 162.2, 145.6, 137.9, 128.6(0), 128.6(9), 128.4, 128.2, 127.3, 125.6, 116.5, 114.4, 55.5, 51.8, 50.5, 47.7, 36.2, 30.7, 24.8. HRMS (ESI) *m/z* calcd. for C₂₇H₂₇N₂O₂ [M + H]⁺ 411.2067, found 411.2062.

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with **2b** (18.6 mg, 0.10 mmol, 1.0 equiv), CuBH₄(PPh₃)₂ (6.03 mg, 0.010 mmol, 10 mol%), L*3 (9.74 mg, 0.012 mmol, 12 mol%), and LiO'Bu (36 mg, 0.45 mmol, 4.5 equiv). The tube was evacuated and backfilled with argon for three times and then, **1a** (39.8 mg, 0.20 mmol, 2.0 equiv), water (3.6 μ L, 0.20 mmol, 2.0 equiv), and anhydrous *N*,*N*-dimethylacetamide (0.70 mL) and dichloromethane (0.35 mL) were sequentially added. The resulting reaction mixture was stirred 10 °C for 3 d. The resulting reaction mixture was diluted with 10 mL ethyl acetae and washed with water (10 mL × 3). The organic layer was dried over anhydrous NaSO₄ and filtered through a pad of celite. The organic solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford **50** (21.0 mg, 69% yield, dr: 1:1)

2-Phenylcyclopropyl)-5-(1-phenylpropyl)-1,3,4-oxadiazole

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 7H), 7.24 (t, *J* = 6.8 Hz, 1H), 7.15 (d, *J* = 7.3 Hz, 2H), 4.06 (t, *J* = 7.8 Hz, 1H), 2.65 – 2.57 (m, 1H), 2.39 – 2.36 (m, 1H), 2.34 – 2.27 (m, 1H), 2.15 – 2.04 (m, 1H), 1.77 – 1.70 (m, 1H), 1.59 – 1.53 (m, 1H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5(4), *167.4(9)*, 139.5, 138.9(7), *138.9(5)*, 128.8, 128.6, 127.9, 127.5, 126.7, 126.1, 45.1, 27.4(2), *27.3(9)*, 26.6, *26.5*, 17.1(1), *17.0(6)*, 17.0(4), *17.0(0)*, 12.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₁N₂O [M + H]⁺ 305.1648, found 305.1645.

References

[1] X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, *Nat. Chem.* **2019**, *11*, 1158.

[2] P. H. Huy, A. M. P. Koskinen, Org. Lett. 2013, 15, 5178.

[3] P. H. Huy, S. Motsch, S. M. Kappler, Angew. Chem. Int. Ed. 2016, 55, 10145. Angew. Chem. 2016, 128, 10300.

[4] T. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2010, 132, 6900.

[5] G. C. Reddy, P. Balasubramanyam, N. Salvanna, B. Das, *Eur. J. Org. Chem.* 2012, 2012, 471.

[6] C. A. Dannenberg, V. Bizet, L. Zou, C. Bolm, Eur. J. Org. Chem. 2015, 2015, 77.

[7] S. Wertz, S. Kodama, A. Studer, *Angew. Chem. Int. Ed.* **2011**, *50*, 11511. *Angew. Chem.* **2011**, *123*, 11713.

[8] J. Lehmann, T. Alzieu, R. E. Martin, R. Britton, Org. Lett. 2013, 15, 3550.

NMR spectra

17.7.33 17.

γ

bo 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

y11361PAF.1.fid

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 fl (ppm)

-90 f1 (ppm)

 $\begin{array}{c} 7.934\\ 7.758\\ 7.659\\ 7.659\\ 7.659\\ 7.651\\ 7.659\\ 7.651\\ 7.659\\ 7.768\\ 7.768\\ 7.768\\ 7.768\\ 7.758\\ 7.748\\ 7.748\\ 7.748\\ 7.748\\ 7.748\\ 7.748\\ 7.748\\ 7.748\\ 7.738\\ 7.748\\ 7.738\\ 7.$

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) **HPLC** spectra

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.3 min, t(major) = 14.4 min, 90% ee (95.2:4.8 er).

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.281	11483401	49.727		
2	14.361	11609339	50.273		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.322	723400	4.840		
2	14.376	14221390	95.160		

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 82/20, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 10.9 min, t(minor) = 13.7 min, 89% ee (94.6:5.4 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.2 min, t(major) = 18.3 min, 90% ee (94.8:5.2 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.8 min, t(major) = 17.5 min, 89% ee (94.5:5.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.1 min, t(major) = 17.0 min, 88% ee (93.8:6.2 er).

PDA Ch1 254nm T

14.854 18.258 Hight

102013

811142

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.9 min, t(major) = 18.3 min, 82% ee (91.2:8.8 er).

S	1	08

Area%

8.843

91.157

Area

2052181 21155421

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.7 min, t(major) = 18.7 min, 87% ee (93.5:6.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 22.6 min, t(major) = 26.6 min, 87% ee (93.4:6.6 er).

10 HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 12.0 min, t(major) = 16.9 min, 90% ee (95:5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 20.0 min, t(major) = 23.2 min, 78% ee (89:11 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.8 min, t(major) = 14.0 min, 83% ee (91.7:8.3 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.2 min, t(major) = 22.7 min, 90% ee (95:5 er).

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 24.7 min, t(minor) = 28.6 min, 84% ee (92:8 er).

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 13.9 min, t(minor) = 16.6 min, 90% ee (95:5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min. λ = 254 nm, t(minor) = 20.4 min, t(major) = 22.3 min, 90% ee (95:5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 20.2 min, t(major) = 26.8 min, 90% ee (95.1:4.9 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 13.3 min, t(major) = 17.6 min, 87% ee (93.6:6.4 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 14.0 min, t(major) = 20.2 min, 85% ee (92.5:7.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 18.8 min, t(major) = 23.3 min, 93% ee (96.4:3.6 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.8 min, t(major) = 21.2 min, 93% ee (96.3:3.7 er).

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 25.3 min, t(minor) = 30.9 min, 85% ee (92.5:7.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.1 min, t(major) = 20.4 min, 87% ee (93.6:6.4 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 28.7 min, t(major) = 38.4 min, 89% ee (94.5:5.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 17.2 min, t(major) = 22.3 min, 77% ee (88.7:11.3 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 18.5 min, t(major) = 23.2 min, 86% ee (93:7 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =10.5 min, t(major) = 12.6 min, 89% ee (94.3:5.7 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 8.8 min, t(major) = 11.0 min, 89% ee (94.5:5.5 er).

PDA Ch1 254nm

IDA OI					
Peak#	Ret.	\mathtt{Time}	Area	Area%	
1	8.7	770	14851058	49.885	
2	11.	023	14919306	50.115	

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.778	1690817	5.520		
2	10.996	28938449	94. 480		

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 7.1 min, t(major) = 8.8 min, 90% ee (95.2:4.8 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 9.3 min, t(major) = 11.3 min, 87% ee (93.3:6.7 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =7.3 min, t(major) = 8.3 min, 78% ee (89.2:10.8 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 6.9 min, t(major) = 7.4 min, 85% ee (92.4:7.6 er).

1 6.933 8779525 49.903 2 7.436 8813510 50.097
2 7 436 8813510 50 097
2 1.450 0015010 00.051

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.940	1385938	7.584		
2	7.436	16887749	92.416		

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(minor) =14.3 min, t(major) = 15.7 min, 79% ee (89.5:10.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 11.6 min, t(major) = 12.9 min, 85% ee (92.3:7.7 er).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 min

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.596	948664	7.712		
2	12.929	11353012	92.288		

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(minor) =20.2 min, t(major) = 21.5 min, 85% ee (92.6:7.4 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =21.2 min, t(major) = 23.7 min, 75% ee (87.3:12.7 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) =18.5 min, t(major) = 22.2 min, 82% ee (90.8:9.2 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 214 nm, t(minor) = 17.0 min, t(major) = 17.9 min, 81% ee (90.5:9.5 er).

Peak Table

PDA Ch3 214nm

Peak#	Ret. Time	Area	Area%
1	16.965	941641	9.458
2	17.912	9014839	90.542

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min. λ = 214 nm, t(minor) =31.1 min, t(major) = 32.3 min, 93% ee (96.5:3.5 er).

ł	PDA Ch2 214nm				
	Т	Hight	Area	Area%	
	31.084	41014	1409272	3.499	
	32.277	774652	38869853	96.501	

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min. λ = 214 nm, t(major) = 16.1 min, t(minor) = 23.7 min, 97% ee (98.5:1.5 er).

40 ' HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 214 nm, t(major) = 19.1 min, t(minor) = 21.1 min, 77% ee (88.8:11.2 er).

PDA Ch2 214nm

Т	Hight	Area	Area%
19.128	642579	17963934	88.846
21.064	92727	2255345	11.154

41 HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 7.9 min, t(minor) = 9.6 min, 95% ee (97.4:2.6 er).

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 12.2 min, t(minor) = 14.3 min, 85% ee (92.6:7.4 er).

HPLC condition: Chiralcel OJ, *n*-hexane/*i*-PrOH = 93/7, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 17.7 min, t(major) = 23.1 min, 91% ee (95.4:4.6 er).

HPLC condition: Chiralcel OJ, *n*-hexane/*i*-PrOH = 93/7, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 22.3 min, t (major) = 33.7 min, 93% ee (96.5:3.5 er).

HPLC conditions: Chiralcel OJ, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 13.8 min, t(mnior) = 16.0 min, 87% ee (93.7:6.3 er).

46 HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 22.3 min, t(major) = 26.2 min, 93% ee (96.5:3.5 er).

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t (minor) =15.8 min, t (major) = 19.4 min, 88% ee (94:6 er).

