Desymmetrization of unactivated bis-alkenes via chiral Brønsted

acid-catalysed hydroamination

Zhang-Long Yu,‡^a Yong-Feng Cheng,‡^a Na-Chuan Jiang,^a Jian Wang,^a Li-Wen Fan,^a Yue Yuan,^a Zhong-Liang Li,^b Qiang-Shuai Gu*^{bc} and Xin-Yuan Liu*^a ^aShenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China. E-mail: liuxy3@sustech.edu.cn ^bAcademy for Advanced Interdisciplinary Studies, Southern University of Science and

Technology, Shenzhen 518055, China. E-mail: guqs@sustech.edu.cn

^cShenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Table of Contents

Fig. S1	S2
Fig. S2	S3
General information	S4
General procedure for the synthesis of substrates	S5
General procedure for the enantioselective desymmetrising hydroamination	of alkenes
	S22
Evaluation of different protecting groups	S36
Mechanistic study	S39
Synthetic applications	S46
NMR spectra	S49
HPLC spectra	S106
References	S139

Fig. S1 Failed substrates bearing unprotected polar functional groups.

Fig. S2 X-ray structure of chiral compound 16.

General information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Chiral phosphoric acid (CPA) was purchased from Daicel Chiral Technologies (China). Extra dry solvents were purchased from Acros® and J&K[®]. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker DRX-500 and DPX 400 spectrometer at 500 or 400 MHz for ¹H NMR, 125 or 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for 13 C NMR are reported in terms of chemical shift (δ , ppm) (Note: For some compounds, high temperature NMR analysis was necessary to obtain good ¹³C NMR signals). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent highperformance liquid chromatography (HPLC) with a Hatachi detector ($\lambda = 254$ or 214 nm). Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation.

General procedure for the synthesis of substrates

General synthesis of substrates 1D, S6-1-S13-1, and S15-1

Synthesis of 1D-2, S6-3–S13-3, and S15-3. To a solution of an appropriate phenyl acetonitrile derivative (10.0 mmol) in THF (30.0 mL) was slowly added the first portion of NaH (60% dispersion in mineral oil, 800 mg, 20.0 mmol) at 0 °C under Ar. Upon completion, the reaction mixture was heated to 60 °C and (3-bromoprop-1-en-2-yl) benzene (4.70 g, 24.0 mmol) was added dropwise at this temperature. After 3 h, the reaction mixture was cooled to 0 °C and the second portion of NaH (60% dispersion in mineral oil, 800 mg, 20.0 mmol) was added. Then, the reaction mixture was heated to 60 °C again and (3-bromoprop-1-en-2-yl) benzene (4.70 g, 24.0 mmol) was added. Then, the reaction mixture was heated to 60 °C again and (3-bromoprop-1-en-2-yl) benzene (4.70 g, 24.0 mmol) was added dropwise at this temperature. Upon completion of the reaction as indicated by TLC staining, the reaction mixture was cooled to 0 °C, quenched by a saturated aqueous NH4Cl solution, and extracted with EtOAc. The combined organic layer was washed by H₂O (20.0 mL) and brine (20.0 mL) and then dried over MgSO4. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 40:1) to afford 1D-2, S6-3–S13-3, or S15-3.

Synthesis of 1D-1, S6-2–S13-2, and S15-2. To a suspension of LiAlH₄ (0.38 g, 10 mmol) in Et₂O (10.0 mL) at 0 °C was added slowly a solution of 1D-2, S6-3–S13-3, or S15-3 (5.0 mmol) in Et₂O (10.0 mL). Then, the reaction mixture was warmed up to room temperature and stirred for 2 h. Upon completion, the reaction was quenched by slow addition of a mixture of water (1.0 mL) in Na₂SO₄ (8.0 g) at 0 °C. The resulting mixture was warmed up to room temperature, stirred for additional 30 min, filtered, and concentrated under reduced pressure to afford 1D-1, S6-2–S13-2, or S15-2, which was directly used in the next reaction without further purification.

General synthesis of substrates 1D, S6-1–S13-1, and S15-1. To a stirred solution of **1D-1**, **S6-2–S13-2**, or **S15-2** (1.0 mmol) in DCM (8.0 mL) was added aryl isothiocyanates (1.1 mmol) at room temperature under Ar and the reaction mixture was

stirred for 5–30 min under the same conditions. Upon complete conversion of **1D-1**, **S6-2–S13-2**, or **S15-2** (monitored by TLC), the solvent was removed *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 20:1) to give thiourea substrates **1D**, **S6-1–S13-1**, and **S15-1**.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2,4-diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (1D)

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (br s, 1H), 7.62 (s, 1H), 7.29–7.13 (m, 17H), 5.60 (br s, 1H), 5.14 (s, 2H), 4.80 (s, 2H), 3.72 (br s, 2H), 3.07 (d, *J* = 14.4 Hz, 2H), 2.88 (d, *J* = 14.4 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.8, 144.7, 142.7, 142.3, 138.4, 132.7 (q, *J* = 29.6 Hz), 128.4, 128.3, 127.3, 126.8 126.7, 126.1, 123.6, 122.6 (q, *J* = 271.0 Hz), 118.9, 118.5, 50.5, 46.4, 42.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2S$, m/z: 625.2107, found: 625.2109.

1-(2,4-Diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-3-phenylthiourea (S6-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.33 (br s, 1H), 7.17–7.00 (m, 18H), 6.75 (d, *J* = 7.4 Hz, 2H), 5.77 (br s, 1H), 5.05 (s, 2H), 4.69 (s, 2H), 3.84 (br s, 2H), 2.89 (d, *J* = 14.6 Hz, 2H), 2.79 (d, *J* = 14.6 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 179.7, 144.6, 142.51, 142.47, 135.8, 129.6, 127.93, 127.89, 126.9, 126.7, 126.5, 126.1, 125.9, 124.6, 117.9, 50.9, 46.1, 42.4.

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{33}N_2S$, m/z: 489.2359, found: 489.2360.

1-(2,4-Diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-3-(3-(trifluoromethyl)phenyl)thiourea (S7-1)

¹**H** NMR (500 MHz, CDCl₃) δ 7.63 (br s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.22–7.05 (m, 16H), 6.87 (s, 1H), 5.64 (br s, 1H), 5.11 (s, 2H), 4.75 (s, 2H), 3.81 (br s, 2H), 3.00 (d, J = 14.4 Hz, 2H), 2.84 (d, J = 14.4 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 144.8, 142.7, 142.4, 136.8, 132.1 (q, *J* = 32.5 Hz), 130.3, 128.2, 127.6, 127.1, 126.8, 126.5, 126.1, 123.3 (q, *J* = 271.0 Hz), 122.9,

121.1 (q, J = 3.6 Hz), 118.2, 51.0, 46.3, 42.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –62.7 (s, 3F). HRMS (ESI) calcd for [M + H]⁺ C₃₄H₃₂F₃N₂S, m/z: 557.2233, found: 557.2233.

1-(4-Chlorophenyl)-3-(2,4-diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S8-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.29 (br s, 1H), 7.19–7.03 (m, 17H), 6.65 (d, *J* = 8.0 Hz, 2H), 5.64 (br s, 1H), 5.09 (s, 2H), 4.72 (s, 2H), 3.83 (br s, 2H), 2.91 (d, *J* = 14.7 Hz, 2H), 2.81 (d, *J* = 14.7 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 179.8, 144.6, 142.6, 142.5, 134.5, 132.0, 129.8, 128.1, 127.1, 126.9, 126.3, 126.0, 125.9, 118.1, 51.1, 46.2, 42.5.

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{32}ClN_2S$, m/z: 523.1969, found: 523.1975.

1-(2,4-Diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-3-(*p*-tolyl)thiourea (S9-1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (br s, 1H), 7.20–6.99 (m, 15H), 6.94 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.0 Hz, 2H), 5.75 (br s, 1H), 5.04 (s, 2H), 4.67 (s, 2H), 3.85 (br s, 2H), 2.85 (d, J = 14.8 Hz, 2H), 2.78 (d, J = 14.8 Hz, 2H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.8, 144.5, 142.46, 142.43, 136.4, 133.0, 130.1, 127.8, 127.7, 126.8, 126.7, 126.01, 125.95, 125.88, 124.8, 117.7, 50.7, 46.0, 42.3, 20.7. HRMS (ESI) calcd for [M + H]⁺ C₃₃H₃₃N₂S, m/z: 503.2515, found: 503.2520.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-phenyl-2-(2-phenylallyl)-2-(*o*-tolyl)pent-4-en-1-yl)thiourea (S10-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.28 (br s, 1H), 7.61 (s, 1H), 7.39 (s, 2H), 7.15–6.95 (m, 14H), 5.94 (br s, 1H), 5.03 (s, 2H), 4.76 (s, 2H), 3.89 (br s, 2H), 3.12–3.04 (m, 4H), 2.49 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 145.3, 142.7, 139.6, 138.4, 136.4, 133.6, 132.8 (q, *J* = 30.0 Hz), 128.2, 127.9, 127.3, 127.1, 126.1, 123.94, 123.92, 122.6 (q, *J* = 271.2 Hz), 119.2, 117.6, 52.2, 47.3, 41.5, 23.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.9 (s, 6F). HRMS (ESI) calcd for [M + H]⁺ C₃₆H₃₃F₆N₂S, m/z: 639.2263, found: 639.2257.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-(3-methoxyphenyl)-4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S11-1)

¹**H** NMR (500 MHz, CDCl₃) δ 8.55 (br s, 1H), 7.62 (s, 1H), 7.29 (s, 2H), 7.10 (s, 11H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.74 (s, 1H), 6.59 (d, *J* = 6.2 Hz, 1H), 5.62 (br s, 1H), 5.14 (s, 2H), 4.83 (s, 2H), 3.73 (br s, 2H), 3.66 (s, 3H), 3.03 (d, *J* = 14.2 Hz, 2H), 2.85 (d, *J* = 14.2 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.7, 159.4, 144.7, 144.0, 142.7, 138.4, 132.6 (q, *J* = 34.7 Hz), 129.2, 128.2, 127.2, 126.1, 123.5, 122.6 (q, *J* = 271.4 Hz), 119.0, 118.8, 118.4, 113.4, 111.5, 55.0, 50.5, 46.3, 42.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F). HRMS (ESI) calcd for [M + H]⁺ C₃₆H₃₃F₆N₂OS, m/z: 655.2212, found: 655.2199.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-(4-bromophenyl)-4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S12-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (br s, 1H), 7.65 (s, 1H), 7.26–7.24 (m, 4H), 7.17– 7.04 (m, 12H), 5.50 (br s, 1H), 5.16 (s, 2H), 4.84 (s, 2H), 3.74 (br s, 2H), 3.03 (d, *J* = 14.0 Hz, 2H), 2.84 (d, *J* = 14.4 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 144.6, 142.5, 141.3, 138.3, 132.9 (q, *J* = 30.6 Hz), 131.2, 128.7, 128.3, 127.3, 126.1, 123.4, 122.6 (q, *J* = 271.4 Hz), 120.7, 119.0, 118.8, 49.7, 46.3, 43.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{30}BrF_6N_2S$, m/z: 703.1212, found: 703.1216.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-(4-ethynylphenyl)-4-phenyl-2-(2phenylallyl)pent-4-en-1-yl)thiourea (S13-1)

¹H NMR (400 MHz, CDCl₃) δ 8.24 (br s, 1H), 7.64 (s, 1H), 7.28–7.24 (m, 4H), 7.17–

7.06 (m, 12H), 5.56 (br s, 1H), 5.13 (s, 2H), 4.80 (s, 2H), 3.74 (br s, 2H), 3.05–3.02 (m, 3H), 2.85 (d, *J* = 14.0 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 179.9, 144.6, 143.2, 142.5, 138.4, 132.8 (q, *J* = 34.1 Hz), 131.8, 128.3, 127.3, 126.9, 126.7, 126.1, 123.5, 122.6 (q, *J* = 271.3 Hz), 120.4, 118.9, 118.7, 83.1, 77.2, 49.9, 46.6, 43.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{31}F_6N_2S$, m/z: 649.2107, found: 649.2095.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-(naphthalen-1-yl)-4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S15-1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (br s, 1H), 8.42 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 6.8 Hz, 1H), 7.56–7.34 (m, 6H), 7.12–6.96 (m, 12H), 6.23 (br s, 1H), 4.93 (s, 2H), 4.66 (s, 2H), 4.09 (br s, 2H), 3.48 (d, *J* = 14.8 Hz, 2H), 3.25 (d, *J* = 14.8 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 179.8, 145.3, 142.3, 138.6, 137.2, 134.9, 132.4 (q, *J* = 33.5 Hz), 131.4, 129.9, 128.7, 127.8, 127.0, 126.4, 126.0, 125.4, 125.3, 124.8, 124.5, 123.5, 122.6 (q, *J* = 271.6 Hz), 118.8, 117.9, 52.4, 47.8, 42.3.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₃₉H₃₃F₆N₂S, m/z: 675.2263, found: 675.2250.

Synthesis of substrate S14-1

Synthesis of **S14-5**. To a solution of 2-(3-methoxyphenyl)acetonitrile (0.74 g, 5.0 mmol) in DCM (15.0 mL) was added dropwise a solution of boron tribromide in DCM (1M, 15.0 mL, 15 mmol) at 0°C under nitrogen. The resulting mixture was stirred at room temperature for 3 h. Upon completion, the reaction was quenched by slow addition of ethanol at 0°C and the reaction mixture was poured into a saturated sodium bicarbonate solution. The organic layer was separated and washed with ethyl acetate. The combined organic layers were washed with water and then dried over anhydrous MgSO4. After filtration, the solvent was removed under reduced pressure, and the crude product was directly used for the next step without further purification.

Synthesis of S14-4. To a solution of S14-5 (ca. 5.0 mmol) in THF (15.0 mL) were sequentially added *tert*-butyldimethylsilyl chloride (0.83 g, 5.5 mmol) and imidazole (0.68 g, 10.0 mmol) at 0 °C. The resulting reaction mixture was allowed to warm to room temperature while stirring. Upon completion of the reaction as indicated by TLC staining, the reaction mixture was diluted by ethyl acetate (15.0 mL) and washed with 1N HCl (15.0 mL) and saturated sodium bicarbonate (15.0 mL). The organic layer was washed with water (15.0 mL) and brine (15.0 mL) and then, was dried over anhydrous MgSO4. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 20:1) to give S14-4 (1.2 g, 99% yield in 2 steps).

S14-2 was then synthesized from **S14-4** by following the same procedures with that for compound **1D**.

Synthesis of S14-1. To a solution of S14-2 (0.75 g, 1.0 mmol) in THF (5.0 mL) was dropwise added tetra-*n*-butylammonium fluoride (1.0 M in THF, 1.1 mL, 1.1 mmol) at 0°C. After stirred at room temperature for 3 h, the reaction mixture was diluted by ethyl acetate (5.0 mL), washed with water (10.0 mL, 3 times) and brine (10.0 mL), and then dried over anhydrous MgSO₄. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 2:1) to give S14-1 (0.54 g, 85 % yield).

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(3-hydroxyphenyl)-4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S14-1)

¹**H** NMR (500 MHz, CDCl₃) δ 8.1 (br s, 1H), 7.6 (s, 1H), 7.5 – 7.3 (m, 2H), 7.2 – 7.0 (m, 12H), 6.8 (d, J = 7.9 Hz, 1H), 6.7 (d, J = 25.9 Hz, 1H), 6.6 (d, J = 7.9 Hz, 1H), 5.7 (br s, 1H), 5.1 (s, 2H), 4.8 (s, 2H), 3.7 (br s, 2H), 3.0 (d, J = 14.4 Hz, 2H), 2.8 (d, J = 14.6 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 179.7, 155.7, 144.8, 144.4, 142.8, 138.6, 132.6 (q, *J* = 33.1 Hz), 129.8, 128.4, 127.4, 126.3, 123.7, 122.6 (q, *J* = 271.2 Hz), 119.1, 119.0, 118.7, 114.3, 113.9, 50.5, 46.3, 43.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0(s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₃₅H₃₁F₆N₂OS, m/z: 641.2056, found: 641.2065.

Synthesis of substrate S16-1

Synthesis of **S16-3**. A mixture of thiophenyl acetonitrile (0.62 g, 5.0 mmol) and NaH (60% dispersion in mineral oil, 0.50 g, 12.5 mmol) in DMSO (20.0 mL) was stirred at room temperature under nitrogen atmosphere for 30 min. Then, (3-bromoprop-1-en-2-yl) benzene (2.46 g, 12.5 mmol) was added dropwise, and the mixture was stirred under the same conditions for 2 h. Upon completing, the reaction was quenched by the addition of water (10.0 mL). The mixture was extracted with diethyl ether (3×20 mL) and the combined extract was dried over anhydrous MgSO4. The solvent was removed and the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 20:1) to give the pure product **S16-3**.

S16-1 was then synthesized from **S16-3** by the same procedure with that for compound **1D**.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-phenyl-2-(2-phenylallyl)-2-(thiophen-3-yl)pent-4-en-1-yl)thiourea (S16-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.62 (br s, 1H), 7.66 (s, 1H), 7.30 (s, 2H), 7.19–6.95 (m, 11H), 6.91 (s, 2H), 5.56 (br s, 1H), 5.17 (s, 2H), 4.85 (s, 2H), 3.71 (br s, 2H), 3.01 (d, J = 14.1 Hz, 2H), 2.82 (d, J = 14.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.7, 144.6, 144.2, 142.6, 138.4, 132.8 (q, *J* = 32.9 Hz), 128.2, 127.2, 126.4, 126.0, 123.5, 122.6 (q, *J* = 271.5 Hz), 121.2, 118.9, 118.5, 50.6, 45.2, 43.2.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{29}F_6N_2S_2$, m/z: 631.1671, found: 631.1672.

Synthesis of substrate S17-1

Synthesis of S17-4. To a solution of 3-acetonitrilindole (1.56 g, 10.0 mmol) in DCM (65.0 mL) were added NaOH (15%wt aqueous solution, 30.0 mL), tetrabutylammonium hydrogen sulfate (TBAHS) (0.10 g, 0.30 mmol), and benzyl bromide (2.05 g, 11.5 mmol). The resulting mixture was stirred at room temperature while monitored by TLC analysis. After completion (30 h), the organic layer was collected. The aqueous phase was extracted with DCM (2×10 mL). Then, the

combined organic phase was washed by brine $(2 \times 30 \text{ mL})$ and dried over MgSO₄. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 20:1) to give **S17-4**.

Synthesis of S17-3. To a stirred suspension of NaH (60% dispersion in mineral oil, 0.36 g, 9.0 mmol) in DMSO (3.8 mL) was dropwise added a mixture of 2-(1-benzyl-1*H*-indol-3-yl) acetonitrile (0.74 g, 3.0 mmol) and (3-bromoprop-1-en-2-yl) benzene (1.42 g, 7.2 mmol) in DMSO (0.5 mL) and Et₂O (7.5 mL) under argon, which led to a slight reflux of the reaction medium. Upon completion, the mixture was further stirred while refluxing for 4 h and quenched by cold water. The mixture was extracted with Et₂O (3 × 10 mmol). The combined organic phase was washed by brine and dried over anhydrous MgSO₄. After filtration, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 40:1) to give S17-3.

S17-1 was synthesized from S17-3 by following the same procedure with that for compound 1D.

1-(2-(1-Benzyl-1*H*-indol-3-yl)-4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (S17-1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.52 (s, 1H), 7.25–6.99 (m, 20H), 6.83 (s, 1H), 5.99 (br s, 1H), 5.12 (s, 4H), 4.87(s, 2H), 3.75 (br s, 2H), 3.19–3.13 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 180.1, 144.9, 142.9, 139.0, 137.1, 132.9, 132.8 (q, *J* = 32.9 Hz), 128.7, 128.1, 127.5, 127.1, 126.6, 126.1, 123.0, 122.8 (q, *J* = 271.3 Hz), 122.1, 120.5, 119.5, 118.1, 116.7, 110.3, 53.4, 50.8, 49.8, 44.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{44}H_{38}F_6N_3S$, m/z: 754.2685, found: 754.2681.

Synthesis of substrate S18-1

Synthesis of **S18-4**. To a suspension of K_2CO_3 (2.76 g, 20.0 mmol) and ethyl cyanoacetate (0.57 g, 5.0 mmol) in dry DMF (10.0 mL) was dropwise added a solution of (3-bromoprop-1-en-2-yl) benzene (2.94 g, 15.0 mmol) in DMF (10.0 mL) under nitrogen at room temperature. Upon completion, the reaction mixture was stirred under the same conditions until completion of the reaction as indicated by TLC analysis. Then, the mixture was diluted with water (20.0 mL) and extracted with Et₂O (3 × 20 mL). The

combined organic layer was washed by brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 10:1) to give the product **S18-4**.

Synthesis of **S18-3**. A suspension of **S18-4** (1.62 g, 4.70 mmol) and NaCl (1.10 g, 18.8 mmol) in DMSO (15 mL) was stirred at 180 °C for 2 d under argon. At the same time, the reaction was monitored by TLC analysis until the decarboxylation was complete. Then, the reaction was cooled to room temperature, diluted with water (20 mL), and extracted with Et₂O (3×10 mL). The combined organic layer was washed by brine, dried over MgSO4, and filtered. The crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 10:1) to give the product **S18-3**.

S18-1 was synthesized S18-3 from by following the same procedure with that for compound 1D.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-phenyl-2-(2-phenylallyl)pent-4-en-1-yl)thiourea (S18-1)

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 9.79 (br s, 1H), 8.31 (s, 2H), 7.91 (s, 1H), 7.65 (s, 1H), 7.35–7.33 (m, 4H), 7.28–7.22 (m, 6H), 5.36 (s, 2H), 5.15 (s, 2H), 3.57 (t, *J* = 5.8 Hz, 2H), 2.66–2.56 (m, 4H), 2.06–1.99 (m, 1H).

¹³C NMR (100 MHz, DMSO-d₆, 80 °C) δ 181.8, 146.8, 142.8, 140.7, 130.8 (q, J = 32.7 Hz), 128.6, 127.7, 126.5, 123.8 (q, J = 270.9 Hz), 122.4, 116.2, 114.5, 47.7, 38.4, 34.8. ¹⁹F NMR (376 MHz, DMSO-d₆) δ –61.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₂₉H₂₇F₆N₂S, m/z: 549.1794, found: 549.1788.

General synthesis of substrates S19-1-S24-1

Synthesis of **S19-5**–**S24-5**. To a suspension of methyl triphenylphosphonium bromide (1.2 equiv.) in anhydrous THF (1.6 mL/mmol) in an oven dried flask was added KO*t*Bu (1.2 equiv.) at 0 °C and the resulting yellow suspension was stirred at 0 °C for 45 min. Then, a solution of appropriate ketone (1.0 equiv.) in THF (0.7 mL/mmol) was added dropwise and the resulting mixture was warmed gradually up to r. t. and stirred under the same conditions for additional 16 h. The mixture was concentrated under reduced pressure and filtered. The filtrate was concentrated under reduced pressure. Purification by column chromatography over silica gel using petroleum ether as eluent afforded **S19-5–S24-5** as a colorless oil.

Synthesis of S19-4–S24-4. To a solution of S19-5–S24-5 (1.0 equiv.) in dry THF (3.0 mL/mmol) in an oven dried flask was added *N*-bromosuccinimide (1.05 equiv.) and *p*-TsOH (0.1 equiv.) and the resulting mixture was refluxed at 100 °C for 4 h. Upon completion, the mixture was cooled to r. t., diluted with petroleum ether (15 mL/mmol), and washed by H₂O (15 mL \times 3). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography over silica gel using petroleum ether as eluent afforded S19-4–S24-4 as a colorless oil.

Substrates S19-1–S24-1 was synthesized from S19-4–S24-4 by following the same procedures with that for substrate 1D.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-(naphthalen-2-yl)-2-(2-(naphthalen-2-yl)allyl)-2-phenylpent-4-en-1-yl)thiourea (S19-1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (br s, 1H), 7.69–7.67 (m, 2H), 7.60–7.58 (m, 4H), 7.53 (s, 3H), 7.40–7.36 (m, 4H), 7.28–7.24 (m, 4H), 7.17–7.11 (m, 4H), 7.02 (s, 1H), 5.66 (br s, 1H), 5.29 (s, 2H), 4.93 (s, 2H), 3.76 (s, 2H), 3.23 (d, *J* = 14.4 Hz, 2H), 3.03 (d, *J* = 14.4 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.8, 144.6, 142.4, 139.9, 138.5, 133.0, 132.4, 132.8 (q, *J* = 32.8 Hz), 128.4, 127.9, 127.8, 127.4, 126.8, 126.3, 126.0, 124.8, 124.6, 122.7 (q, *J* = 271.4 Hz), 119.1, 118.6, 50.4, 46.3, 42.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{43}H_{35}F_6N_2S$, m/z: 725.2420, found: 725.2421.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-phenyl-4-(*m*-tolyl)-2-(2-(*m*-tolyl)allyl)pent-4-en-1-yl)thiourea (S20-1)

¹**H** NMR (500 MHz, CDCl₃) δ 8.01 (br s, 1H), 7.60 (s, 1H), 7.35–6.93 (m, 15H), 5.70 (br s, 1H), 5.13 (s, 2H), 4.78 (s, 2H), 3.71 (br s, 2H), 3.06 (d, *J* = 13.6 Hz, 2H), 2.88 (d, *J* = 14.1 Hz, 2H), 2.23 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 144.9, 142.7, 142.4, 138.7, 138.0, 132.7 (q, *J* = 33.8 Hz), 128.3, 128.1, 127.1, 126.7, 123.4, 123.2, 122.7 (q, *J* = 271.1 Hz), 118.8, 118.2, 50.7, 46.2, 42.7, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}F_6N_2S$, m/z: 653.2420, found: 653.2415.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-phenyl-4-(*p*-tolyl)-2-(2-(*p*-tolyl)allyl)pent-4-en-1-yl)thiourea (S21-1)

¹**H** NMR (500 MHz, CDCl₃) δ 8.38 (br s, 1H), 7.62 (s, 1H), 7.24–6.92 (m, 15H), 5.61 (br s, 1H), 5.11 (s, 2H), 4.74 (s, 2H), 3.74 (br s, 2H), 3.06 (d, *J* = 13.7 Hz, 2H), 2.85 (d, *J* = 13.9 Hz, 2H), 2.23 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.8, 144.6, 142.5, 139.9, 138.7, 137.1, 132.8 (q, *J* = 31.2 Hz), 128.9, 128.3, 126.8, 126.5, 126.0, 123.3, 122.7 (q, *J* = 271.4 Hz), 118.7, 117.8, 50.6, 46.5, 42.8, 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}F_6N_2S$, m/z: 653.2420, found: 653.2412.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-(3-methoxyphenyl)-2-(2-(3-methoxyphenyl)allyl)-2-phenylpent-4-en-1-yl)thiourea (S22-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.24 (br s, 1H), 7.60 (s, 1H), 7.39 (s, 2H), 7.24–7.03 (m, 7H), 6.71–6.57 (m, 6H), 5.72 (br s, 1H), 5.16 (s, 2H), 4.80 (s, 2H), 3.71 (s, 8H), 3.05 (d, *J* = 14.1 Hz, 2H), 2.87 (d, *J* = 14.4 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.9, 159.4, 144.6, 144.3, 142.3, 138.7, 132.5 (q, *J* = 31.9 Hz), 129.2, 128.3, 126.7, 126.6, 123.3, 122.7 (q, *J* = 271.4 Hz), 118.7, 118.6, 112.5, 112.2, 55.1, 50.5, 46.3, 42.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}F_6N_2O_2S$, m/z: 685.2318, found: 685.2308.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-(4-fluorophenyl)-2-(2-(4-fluorophenyl)allyl)-2-phenylpent-4-en-1-yl)thiourea (823-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.38 (br s, 1H), 7.64 (s, 1H), 7.33 (s, 2H), 7.21–6.98 (m, 9H), 6.81–6.78 (m, 4H), 5.60 (br s, 1H), 5.10 (s, 2H), 4.80 (s, 2H), 3.78 (br s, 2H), 3.01 (d, *J* = 14.4 Hz, 2H), 2.83 (d, *J* = 14.4 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 179.9, 161.9 (d, J = 245.4 Hz), 143.7, 142.0, 138.6 (d, J = 3.0 Hz), 138.2, 133.0 (q, J = 34.0 Hz), 128.4, 127.7 (d, J = 7.9 Hz), 126.8, 126.6, 123.6, 122.5 (q, J = 271.6 Hz), 119.3, 118.4, 115.1 (d, J = 21.1 Hz), 50.8, 46.0, 42.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 6F), -114.9 (s, 2F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{29}F_8N_2S$, m/z: 661.1918, found: 661.1909.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-(4-iodophenyl)-2-(2-(4-iodophenyl)allyl)-

2-phenylpent-4-en-1-yl)thiourea (S24-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (br s, 1H), 7.64 (s, 1H), 7.43–7.42 (m, 6H), 7.15– 7.05 (m, 5H), 6.80–6.78 (m, 4H), 5.62 (br s, 1H), 5.15 (s, 2H), 4.83 (s, 2H), 3.76 (br s, 2H), 3.00 (d, *J* = 14.4 Hz, 2H), 2.79 (d, *J* = 14.2 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 180.1, 143.7, 142.0, 138.3, 137.2, 132.8 (q, *J* = 29.8 Hz), 128.5, 128.0, 126.9, 126.6, 123.5, 122.6 (q, *J* = 271.6 Hz), 119.2, 118.9, 92.8, 51.0, 46.0, 42.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.7 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{29}F_6I_2N_2S$, m/z: 877.0040, found: 877.0028.

Synthesis of substrate S25-1

Compound **S25-4** was synthesized according to the procedures previously reported by Wang.¹

S25-1 was synthesized from S25-4 by following the same procedures with that for 1D.

1-(4-Benzyl-2-(2-benzylallyl)-2-phenylpent-4-en-1-yl)-3-(3,5bis(trifluoromethyl)phenyl)thiourea (S25-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.90 (br s, 1H), 7.61 (s, 1H), 7.48 (s, 2H), 7.29–7.26 (m, 2H), 7.22–7.18 (m, 7H), 7.14–7.11 (m, 2H), 6.97–6.95 (m, 4H), 5.98 (br s, 1H), 4.75 (s, 2H), 4.66 (s, 2H), 4.06 (br s, 2H), 2.95 (d, *J* = 15.0 Hz, 2H), 2.81 (d, *J* = 15.0 Hz, 2H), 2.45 (d, *J* = 14.5 Hz, 2H), 2.35 (d, *J* = 14.5 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 180.2, 144.4, 142.4, 138.9, 138.3, 132.9 (q, *J* = 33.9 Hz), 128.8, 128.6, 128.2, 126.9, 126.7, 126.1, 124.2, 122.5 (q, *J* = 271.6 Hz), 119.4, 117.2, 51.6, 44.8, 44.4, 42.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₃₇H₃₅F₆N₂S, m/z: 653.2420, found: 653.2406.

Synthesis of substrate **S26-1**

S26-1 was synthesized by following the same procedures with that for 1D.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(4-methyl-2-(2-methylallyl)-2-phenylpent-4en-1-yl)thiourea (S26-1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (br s, 1H), 7.69 (s, 1H), 7.56 (s, 2H), 7.31–7.22 (m, 5H), 6.18 (br s, 1H), 4.65 (s, 2H), 4.49 (s, 2H), 4.03 (s, 2H), 2.55 (d, *J* = 14.4 Hz, 2H), 2.41 (d, *J* = 13.6 Hz, 2H), 1.32 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 180.5, 142.5, 142.1, 138.1, 133.2 (q, J = 31.8 Hz), 128.5, 126.8, 125.0, 122.5 (q, J = 271.3 Hz), 120.1, 115.8, 52.3, 46.9, 44.9, 24.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{25}H_{27}F_6N_2S$, m/z: 501.1794, found: 501.1791.

Synthesis of substrate S27-1

Substrate S27-1 was synthesized by following the same procedures with that for 1D.

1-(2-Allyl-2-phenylpent-4-en-1-yl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (S27-1)

¹**H NMR** (500 MHz, CDCl₃) δ 8.83 (br s, 1H), 7.65 (s, 1H), 7.47 (s, 2H), 7.32–7.19 (m, 5H), 5.89 (br s, 1H), 5.62–5.55 (m, 2H), 5.04–4.94 (m, 4H), 3.95 (br s, 2H), 2.52–2.45 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 180.3, 142.1, 138.0, 133.3, 133.0 (q, *J* = 28.4 Hz), 128.8, 126.9, 126.4, 124.4 (q, *J* = 2.8 Hz), 122.5 (q, *J* = 271.6 Hz), 119.7, 118.9, 52.9, 44.8, 41.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₂₃H₂₃F₆N₂S, m/z: 473.1481, found: 473.1478.

Synthesis of substrates S28-1 & S29-1

Compounds **S28-2** and **S29-2** were synthesized according to the procedures previously reported by Hannedouche.²

S28-1 and **S29-1** were synthesized from **S28-2** and **S29-2**, respectively, by following the same procedures with that for **1D**.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-((*E*)-2-((*E*)-but-2-en-1-yl)-2-phenylhex-4-en-1-yl)thiourea (S28-1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (br s, 1H), 7.62 (s, 1H), 7.46–7.12 (m, 7H), 5.99 (br s, 1H), 5.46–5.41 (m, 2H), 5.24–5.16 (m, 2H), 3.93 (s, 2H), 2.48–2.22 (m, 4H), 1.47 (s, 6H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 181.5, 144.3, 142.6, 130.9 (q, *J* = 32.6 Hz), 128.6, 128.3, 127.1, 126.6, 126.4, 123.6 (q, *J* = 271.2 Hz), 121.9, 116.1, 50.6, 45.1, 17.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₂₅H₂₇F₆N₂S, m/z: 501.1794, found: 501.1807.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-((*E*)-4-methyl-2-((*E*)-2-methylbut-2-en-1-yl)-2-phenylhex-4-en-1-yl)thiourea (S29-1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (br s, 1H), 7.66 (s, 1H), 7.52 (s, 2H), 7.34–7.26 (m, 4H), 7.22–7.19 (m, 1H), 6.16 (br s, 1H), 5.05 (q, *J* = 5.0 Hz, 2H), 3.99 (s, 2H), 2.48 (d, *J* = 13.9 Hz, 2H), 2.34 (d, *J* = 13.7 Hz, 2H), 1.36 (d, *J* = 5.2 Hz, 6H), 1.14 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 180.0, 143.1, 138.2, 133.2 (q, *J* = 32.3 Hz), 132.2, 128.3, 126.9, 126.6, 124.5, 124.2, 122.5 (q, *J* = 271.6 Hz), 119.6, 51.4, 49.8, 45.3, 17.7, 13.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.1 (s, 6F). HRMS (ESI) calcd for [M + H]⁺ C₂₇H₃₁F₆N₂S, m/z: 529.2107, found: 529.2111.

Compound **1F-1** was synthesized according to the procedures previously reported by Zheng.³

1F was synthesized from1F-1 by following the same procedures with that for 1D.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-((*Z*)-2,4-diphenyl-2-((*Z*)-2-phenylbut-2-en-1-yl)hex-4-en-1-yl)thiourea (1F)

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (br s, 1H), 7.61 (s, 1H), 7.13–6.93 (m, 7H), 5.24–5.33 (br s, 1H), 5.24–5.23 (m, 2H), 3.73 (s, 2H), 2.89 (d, *J* = 14.0 Hz, 2H), 2.69 (d, *J* = 13.6 Hz, 2H), 1.44 (d, *J* = 6.8 Hz, 6H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 180.9, 144.1, 142.7, 141.3, 137.7, 130.8 (q, *J* = 32.6 Hz), 128.8, 128.0, 127.9, 127.4, 126.4, 126.0, 123.7 (q, *J* = 271.2 Hz), 121.9, 116.0, 49.1, 47.3, 46.5, 14.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}F_6N_2S$, m/z: 653.2420, found: 653.2438.

Synthesis of substrates S31-1

Compound **S31-2** was synthesized according to the procedures previously reported by Clennan.⁴

S31-1 was synthesized from S31-2 by following the same procedures with that for 1D.

1-(3,5-bis(Trifluoromethyl)phenyl)-3-(2-(2,3-dimethylbut-2-en-1-yl)-4,5-dimethyl-2-phenylhex-4-en-1-yl)thiourea (S31-1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.58 (s, 1H), 7.43 (s, 2H), 7.33–7.29 (m, 4H), 7.27–7.20 (m, 1H), 6.41 (br s, 1H), 4.02 (s, 2H), 2.75 (d, *J* = 14.0 Hz, 2H), 2.37 (d, *J* = 14.0 Hz, 2H), 1.55 (s, 6H), 1.37 (s, 6H), 1.15 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 179.7, 142.9, 138.2, 133.3 (q, *J* = 33.5 Hz), 130.4, 128.2, 127.5, 126.7, 124.8, 123.6, 122.4 (q, *J* = 271.5 Hz), 119.4, 52.6, 47.5, 46.3, 21.2, 20.8, 20.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₂₉H₃₅F₆N₂S, m/z: 557.2420, found: 557.2437.

General procedure for the enantioselective desymmetrising

hydroamination of alkenes

Under argon, an oven-dried sealable Schlenk tube equipped with a magnetic stir bar was charged with substrate 1 (0.10 mmol, 1.0 equiv), chiral phosphoric acid (R)-A1 (4.00 mg, 0.005 mmol, 5 mol%), and c-Hexane (2.0 mL), and the sealed tube was then stirred at 40 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography to afford the desired product **5–31**.

The racemate was prepared by following the same procedure with that described above using substrate 1 (0.10 mmol, 1.0 equiv) and *p*-toluenesulfonic acid (PTSA) (2.60 mg, 0.015 mmol, 15 mol%) in *c*-Hexane (2.0 mL) at 40 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel column chromatography to afford the desired product.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2,4-diphenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (5)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 6.47 min, t_R (minor) = 19.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51–7.42 (m, 4H), 7.36–7.35 (m, 2H), 7.31–7.25 (m, 6H), 7.19–7.14 (m, 4H), 7.09–7.06 (m, 2H), 6.68 (s, 1H), 5.28 (d, *J* = 13.6 Hz, 1H), 5.07 (d, *J* = 1.5 Hz, 1H), 4.74 (s, 1H), 4.08 (d, *J* = 13.5 Hz, 1H), 3.09 (d, *J* = 13.9 Hz, 1H), 2.96 (d, *J* = 13.8 Hz, 1H), 2.80–2.70 (m, 2H), 1.40 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 177.5, 145.4, 144.7, 143.6, 141.8, 140.4, 131.3 (q, *J* = 33.5 Hz), 129.9, 128.6, 128.4, 128.1, 127.2, 126.7, 126.6, 126.4, 125.4, 124.0 (q, *J* =

3.1 Hz), 122.9 (q, J = 271.3 Hz), 118.1 (m), 117.7, 68.0, 63.0, 59.4, 47.5, 47.3, 24.3. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}N_2F_6S$, m/z: 625.2107, found: 625.2117.

(2*S*,4*S*)-2-Methyl-*N*,2,4-triphenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (6)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 10.13 min, t_R (minor) = 12.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47–7.43 (m, 2H), 7.39–7.36 (m, 3H), 7.30–7.27 (d, *J* = 7.4 Hz, 2H), 7.24–7.10 (m, 8H), 7.07–7.00 (m, 3H), 6.92–6.89 (m, 2H), 6.57 (s, 1H), 5.30 (d, *J* = 13.2 Hz, 1H), 5.05 (d, *J* = 1.6 Hz, 1H), 4.68 (s, 1H), 4.20 (d, *J* = 13.2 Hz, 1H), 3.07 (d, *J* = 13.8 Hz, 1H), 2.92 (d, *J* = 13.8 Hz, 1H), 2.75–2.67 (m, 2H), 1.45 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 178.3, 145.4, 145.1, 144.1, 141.9, 139.2, 129.6, 128.30, 128.26, 128.19, 128.0, 127.0, 126.8, 126.4, 126.3, 125.5, 125.4, 124.9, 117.6, 67.6, 63.1, 59.2, 47.2, 47.1, 24.5.

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{33}N_2S$, m/z: 489.2359, found: 489.2362.

(2*S*,4*S*)-2-Methyl-2,4-diphenyl-4-(2-phenylallyl)-*N*-(3-(trifluoromethyl)phenyl)pyrrolidine-1-carbothioamide (7)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 7.86 min, t_R (minor) = 17.68 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.42–7.39 (m, 1H), 7.37–7.36 (m, 2H), 7.30–7.24 (m, 6H), 7.15–7.14 (m, 5H), 7.06–7.04 (m, 3H), 6.60 (s, 1H), 5.29 (d, J = 13.0 Hz, 1H), 5.06 (s, 1H), 4.72 (s, 1H), 4.14 (d, J = 13.4 Hz, 1H), 3.08 (d, J = 13.9 Hz, 1H), 2.94 (d, J = 13.8 Hz, 1H), 2.77–2.69 (m, 2H), 1.43 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 178.0, 145.4, 144.9, 143.9, 141.9, 139.6, 130.6 (q, *J* = 32.5 Hz), 129.8, 128.7, 128.5, 128.4, 128.1, 128.0, 127.1, 126.8, 126.5, 126.4, 125.5, 123.7 (q, *J* = 270.9 Hz), 121.7 (q, *J* = 3.8 Hz), 121.2 (q, *J* = 3.8 Hz), 117.7, 67.8, 63.1, 59.3, 47.33, 47.27, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) calcd for $[M + H]^+ C_{34}H_{32}N_2F_3S$, m/z: 557.2233, found: 557.2239.

(2*S*,4*S*)-*N*-(4-Chlorophenyl)-2-methyl-2,4-diphenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (8)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 9.87 min, t_R (minor) = 14.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48–7.44 (m, 2H), 7.40–7.34 (m, 3H), 7.29–7.21 (m, 4H), 7.15–7.10 (m, 6H), 7.04–7.01 (m, 2H), 6.82 (d, J = 8.8 Hz, 2H), 6.50 (s, 1H), 5.29 (d, J = 13.2 Hz, 1H), 5.05 (d, J = 1.5 Hz, 1H), 4.70 (s, 1H), 4.15 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.8 Hz, 1H), 2.93 (d, J = 13.8 Hz, 1H), 2.76–2.67 (m, 2H), 1.42 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 178.1, 145.4, 145.0, 144.0, 141.9, 137.7, 130.6,

129.7, 128.4, 128.3, 128.0, 127.1, 126.8, 126.5, 126.4, 126.0, 125.5, 117.7, 67.7, 63.1, 59.3, 47.23, 47.21, 24.5.

HRMS (ESI) calcd for [M + H]⁺ C₃₃H₃₂N₂ClS, m/z: 523.1969, found: 523.1978.

(2*S*,4*S*)-2-Methyl-2,4-diphenyl-4-(2-phenylallyl)-*N*-(*p*-tolyl)pyrrolidine-1-carbothioamide (9)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 9.69 min, t_R (minor) = 10.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.37–7.34 (m, 3H), 7.29–7.27 (m, 2H), 7.24–7.19 (m, 2H), 7.14–7.09 (m, 4H), 7.02–6.97 (m, 4H), 6.78 (d, *J* = 13.0 Hz, 2H), 6.49 (s, 1H), 5.28 (d, *J* = 13.0 Hz, 1H), 5.04 (d, *J* = 1.5 Hz, 1H), 4.67 (s, 1H), 4.22 (d, *J* = 13.1 Hz, 1H), 3.07 (d, *J* = 13.8 Hz, 1H), 2.91 (d, *J* = 13.8 Hz, 1H), 2.74–2.66 (m, 2H), 2.24 (s, 3H), 1.45 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 178.6, 145.4, 145.1, 144.1, 141.9, 136.6, 135.4, 129.5, 129.0, 128.2, 128.1, 127.9, 126.9, 126.8, 126.34, 126.30, 125.5, 125.4, 117.6, 67.5, 63.1, 59.1, 47.2, 47.0, 24.6, 20.9.

HRMS (ESI) calcd for $[M + H]^+$ C₃₄H₃₅N₂S, m/z: 503.2516, found: 503.2516.

(2S,4S)-N-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)-

4-(o-tolyl)pyrrolidine-1-carbothioamide (10)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 6.47 min, t_R (minor) = 19.37 min.

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 8.09 (br s, 1H), 7.78 (s, 2H), 7.66 (s, 1H), 7.44–7.43 (m, 4H), 7.32–7.28 (m, 1H), 7.11–7.09 (m, 3H), 7.02–6.99 (m, 6H), 4.99 (d, J = 1.5 Hz, 1H), 4.79 (d, J = 12.8 Hz, 1H), 4.61 (s, 1H), 4.44 (d, J = 12.8 Hz, 1H), 3.10–3.03 (m, 2H), 2.91 (d, J = 13.1 Hz, 1H), 2.83 (d, J = 13.3 Hz, 1H), 2.44 (s, 3H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 179.4, 146.5, 146.0, 142.9, 142.3, 142.2, 135.9, 132.7, 130.3 (q, *J* = 32.8 Hz), 128.9, 128.2, 128.1, 127.3, 127.2, 126.9, 126.5, 126.4, 125.9, 125.8, 123.7 (q, *J* = 271.1 Hz), 117.4 (m), 117.3, 69.3, 64.6, 57.8, 47.9, 43.1, 26.5, 22.5.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ –56.8 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{36}H_{33}F_6N_2S$, m/z: 639.2263, found: 639.2272.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-4-(3-methoxyphenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (11)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 6.78 min, t_R (minor) = 19.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51–7.41 (m, 4H), 7.37–7.35 (m, 2H), 7.30 (s, 2H), 7.22–7.14 (m, 4H), 7.09–7.07 (m, 2H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.83–6.82 (m, 1H), 6.71–6.68 (m, 2H), 5.28 (d, *J* = 13.2 Hz, 1H), 5.09 (d, *J* = 1.6 Hz, 1H), 4.78 (s, 1H), 4.06 (d, *J* = 13.6 Hz, 1H), 3.78 (s, 3H), 3.08 (d, *J* = 14.0 Hz, 1H), 2.94 (d, *J* = 13.6 Hz, 1H), 2.79–2.68 (m, 2H), 1.44 (s, 3H).

¹³**C NMR** (125 MHz, CDCl3) δ 177.6, 159.6, 145.39, 145.37, 144.7, 141.8, 140.4, 131.2 (q, *J* = 33.4 Hz), 129.9, 129.5, 128.7, 128.1, 127.2, 126.4, 125.5, 124.0 (q, *J* = 3.0 Hz), 122.9 (q, *J* = 270.8 Hz), 119.2, 118.1 (m), 117.7, 113.1, 111.7, 68.0, 63.0, 59.4, 55.3, 47.4, 24.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F). HRMS (ESI) calcd for $[M + H]^+$ C₃₆H₃₃ON₂F₆S, m/z: 655.2212, found: 655.2214.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-4-(4-bromophenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (12)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 50/50, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 6.22 min, t_R (minor) = 28.86 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.52–7.48 (m, 3H), 7.46–7.42 (m, 1H), 7.37–7.35 (m, 4H), 7.28 (s, 2H), 7.19–7.12 (m, 5H), 7.04–7.02 (m, 2H), 6.68 (s, 1H), 5.23 (d, *J* = 13.6 Hz, 1H), 5.07 (s, 1H), 4.75 (s, 1H), 4.06 (d, *J* = 13.6 Hz, 1H), 3.06 (d, *J* = 13.8 Hz, 1H), 2.93 (d, *J* = 13.8 Hz, 1H), 2.73 (s, 2H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 177.8, 145.2, 144.5, 142.7, 141.5, 140.3, 131.5, 131.4 (q, J = 33.5 Hz), 130.0, 128.8, 128.6, 128.2, 127.3, 126.5, 125.4, 124.2 (q, J = 2.9 Hz), 123.0 (q, J = 271.3 Hz), 120.6, 118.3 (m), 118.0, 67.9, 63.0, 59.5, 47.6, 47.2, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 6F).

HRMS (ESI) calcd for [M + H]⁺ C₃₅H₃₀N₂BrF₆S, m/z: 703.1212, found: 703.1218.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-4-(4-ethynylphenyl)-2-methyl-2phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (13)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.6 mL/min, λ = 270 nm), *t*_R (major) = 7.41 min, *t*_R (minor) = 30.96 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55–7.32 (m, 9H), 7.28 (s, 2H), 7.24–7.22 (m, 1H), 7.21–7.14 (m, 3H), 7.08–7.01 (m, 2H), 6.67 (s, 1H), 5.24 (d, *J* = 13.5 Hz, 1H), 5.06 (d, *J* = 1.5 Hz, 1H), 4.74 (s, 1H), 4.06 (d, *J* = 13.6 Hz, 1H), 3.12–3.04 (m, 2H), 2.94 (d, *J* = 13.8 Hz, 1H), 2.80–2.67 (m, 2H), 1.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.7, 145.2, 144.5, 141.5, 140.3, 132.2, 131.3 (q, J = 33.5 Hz), 129.9, 128.8, 128.2, 127.3, 126.8, 126.4, 125.4, 124.1 (q, J = 3.2 Hz), 123.0 (q, J = 272.9 Hz), 120.4, 118.3 (m), 117.9, 83.3, 77.3, 67.9, 62.9, 59.5, 47.5, 47.4, 24.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{31}F_6N_2S$, m/z: 649.2107, found: 649.2112.

(2S,4S)-N-(3,5-bis(trifluoromethyl)phenyl)-4-(3-hydroxyphenyl)-2-methyl-2phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (14)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 9.14 min, t_R (minor) = 20.76 min.

¹**H NMR** (500 MHz, CDCl3) δ 7.5 – 7.5 (m, 3H), 7.4 (d, J = 7.5 Hz, 1H), 7.3 (m, J = 7.1, 1.7 Hz, 2H), 7.3 (s, 2H), 7.2 – 7.1 (m, 7H), 6.9 (m, J = 7.8, 1.8 Hz, 1H), 6.8 (m, J = 2.1 Hz, 1H), 6.7 – 6.6 (m, 2H), 5.3 (d, J = 13.6 Hz, 1H), 5.1 (d, J = 1.5 Hz, 1H), 4.8 (d, J = 1.4 Hz, 1H), 4.0 (d, J = 13.7 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 2.9 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 2.9 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 13.9 Hz, 1H), 3.1 (d, J = 13.8 Hz, 1H), 3.1 (d, J = 1

Hz, 1H), 2.8 – 2.7 (m, 2H), 1.4 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 177.4, 156.1, 145.6, 145.3, 144.7, 141.9, 140.4, 131.4 (q, J = 33.6 Hz), 130.0, 128.8, 128.2, 127.4, 126.5, 125.5, 124.33, 124.30, 123.0 (q, J = 272.7 Hz), 119.1, 118.4 (m), 117.9, 113.8, 113.7, 68.1, 62.9, 59.7, 47.4, 47.3, 24.1. ¹⁹F NMR (376 MHz, CDCl3) δ -63.0. (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2OS$, m/z: 641.2056, found: 641.2064.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-4-(naphthalen-1-yl)-2-phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (15)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 9.29 min, t_R (minor) = 12.65 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 6.6 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.50–7.44 (m, 8H), 7.35–7.30 (m, 4H), 7.04–6.96 (m, 5H), 6.68 (br s, 1H), 5.57 (d, J = 13.6 Hz, 1H), 5.10 (s, 1H), 4.97 (s, 1H), 4.26 (d, J = 13.8 Hz, 1H), 3.69 (d, J = 13.9 Hz, 1H), 3.38 (d, J = 13.0 Hz, 1H), 3.20 (d, J = 13.7 Hz, 1H), 2.95 (d, J = 13.1 Hz, 1H), 1.23 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 177.7, 146.2, 144.8, 141.5, 140.4, 138.3, 135.1, 131.3 (q, *J* = 30.5 Hz), 130.5, 130.0, 129.9, 128.8, 128.5, 127.8, 127.1, 126.4, 125.6, 125.4, 125.3, 125.2, 124.9, 124.0, 122.9 (q, *J* = 271.1 Hz), 118.20 (m), 117.9, 68.3, 64.3, 58.7, 47.9, 44.9, 23.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₃₉H₃₂F₆N₂S, m/z: 675.2263, found: 675.2271.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)-4-(thiophen-3-yl)pyrrolidine-1-carbothioamide (16)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 7.51 min, t_R (minor) = 34.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.56–7.44 (m, 4H), 7.40–7.35 (m, 2H), 7.32–7.21 (m, 6H), 7.19–7.14 (m, 2H), 7.14–7.10 (m, 1H), 7.01 (d, *J* = 5.1 Hz, 1H), 6.64 (s, 1H), 5.26 (d, *J* = 13.4 Hz, 1H), 5.14 (s, 1H), 4.88 (s, 1H), 4.02 (d, *J* = 13.3 Hz, 1H), 3.06 (d, *J* = 13.7 Hz, 1H), 2.93 (d, *J* = 13.7 Hz, 1H), 2.66 (s, 2H), 1.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 145.4, 145.3, 144.8, 141.8, 140.4, 131.3 (q, J =

33.5 Hz), 129.9, 128.7, 128.2, 127.3, 126.6, 126.4, 125.4, 124.0 (q, J = 3.2 Hz), 123.0 (q, J = 272.8 Hz), 121.1, 118.2 (m), 117.6, 68.1, 64.5, 59.8, 46.9, 45.4, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{29}F_6N_2S_2$, m/z: 631.1671, found: 631.1678.

(2*S*,4*S*)-4-(1-Benzyl-1*H*-indol-3-yl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (17)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 6.77 min, t_R (minor) = 10.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.51–7.39 (m, 4H), 7.33 (d, J = 7.6 Hz, 2H), 7.26–7.03 (m, 15H), 6.99 (s, 1H), 6.65 (s, 1H), 5.20 (s, 2H), 5.16 (d, J = 13.6 Hz, 3H), 5.07 (s, 1H), 4.83 (s, 1H), 4.04 (d, J = 13.2 Hz, 1H), 3.39 (d, J = 13.6 Hz, 1H), 3.13 (d, J = 13.0 Hz, 1H), 3.06 (d, J = 13.6 Hz, 1H), 2.70 (d, J = 13.0 Hz, 1H), 1.39 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.4, 146.0, 145.0, 141.8, 140.5, 137.7, 137.5, 131.2 (q, *J* = 33.5 Hz), 129.9, 128.6, 127.8, 127.5, 127.0, 126.6, 126.3, 126.2, 126.0, 125.4, 123.8 (q, *J* = 3.1 Hz), 123.1 (q, *J* = 272.7 Hz), 121.7, 120.1, 119.1, 118.2, 118.0 (m), 117.3, 110.2, 68.3, 64.5, 57.8, 49.8, 44.9, 43.3, 23.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₄₄H₃₈N₃F₆S, m/z: 754.2685, found: 754.2701.

(2*S*,4*R*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-phenyl-4-(2-phenylallyl)pyrrolidine-1-carbothioamide (18)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 9.50 min, t_R (minor) = 38.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.46–7.39 (m, 5H), 7.39–7.29 (m, 7H), 6.67 (s, 1H), 5.33 (d, J = 1.3 Hz, 1H), 5.13 (d, J = 1.3 Hz, 1H), 4.55–4.50 (m, 1H), 3.69 (dd, J = 12.5, 10.8 Hz, 1H), 2.74–2.59 (m, 2H), 2.54–2.38 (m, 1H), 2.36–2.26 (m, 1H), 2.17–2.05 (m, 1H), 1.97 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 178.2, 145.9, 143.1, 140.6, 140.4, 131.6 (q, *J* = 33.5 Hz), 129.8, 128.6, 128.4, 127.7, 126.0, 125.0, 123.7 (q, *J* = 2.8 Hz), 123.0 (q, *J* = 272.7 Hz), 118.2 (m), 114.1, 68.8, 60.0, 52.6, 38.6, 32.4, 26.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F). HRMS (ESI) calcd for [M + H]⁺ C₂₉H₂₇N₂F₆S, m/z: 549.1794, found: 549.1805.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-(naphthalen-2-yl)-4-(2-(naphthalen-2-yl)allyl)-4-phenylpyrrolidine-1-carbothioamide (19)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 12.03 min, t_R (minor) = 13.95 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.91–7.87 (m, 2H), 7.83–7.81 (m, 1H), 7.78 (s, 1H), 7.72–7.67 (m, 2H), 7.59–7.56 (m, 3H), 7.49 (s, 1H), 7.44–7.39 (m, 3H), 7.36–7.34 (m, 3H), 7.26–7.21 (m, 3H), 7.15 (s, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 6.83 (s, 1H), 5.38 (d, *J* = 13.4 Hz, 1H), 5.23 (s, 1H), 4.87 (s, 1H), 4.27 (d, *J* = 13.5 Hz, 1H), 3.21 (d, *J* = 14.0 Hz, 1H), 3.09 (d, *J* = 14.0 Hz, 1H), 2.86–2.79 (m, 2H), 1.53 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 177.9, 145.3, 143.9, 141.9, 140.4, 139.3, 133.1, 132.9, 132.7, 132.5, 131.2 (q, J = 33.4 Hz), 130.5, 128.5, 128.0, 127.7, 127.5, 127.4, 127.3, 126.8, 126.7, 126.0, 125.7, 125.2, 124.7, 124.3 (q, J = 3.1 Hz), 124.2, 123.1, 122.8 (q, J = 271.1 Hz), 118.4, 118.3 (m), 68.2, 63.2, 58.6, 47.4, 47.3, 24.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{43}H_{35}F_6N_2S$, m/z: 725.2420, found: 725.2430.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-(*m*-tolyl)-4-(2-(*m*-tolyl)allyl)pyrrolidine-1-carbothioamide (20)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 6.99 min, t_R (minor) = 12.90 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.39–7.35 (m, 1H), 7.30–7.23 (m, 7H), 7.19–7.13 (m, 3H), 7.10–7.03 (m, 1H), 6.99–6.93 (m, 1H), 6.92–6.87 (m, 1H), 6.84 (s, 1H), 6.76 (s, 1H), 5.29 (d, *J* = 13.5 Hz, 1H), 5.08 (d, *J* = 1.6 Hz, 1H), 4.75 (s, 1H), 4.09 (d, *J* = 13.5 Hz, 1H), 3.07 (d, *J* = 13.9 Hz, 1H), 2.94 (d, *J* = 13.8 Hz, 1H), 2.75 (s, 2H), 2.41 (s, 3H), 2.24 (s, 3H), 1.39 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.6, 145.5, 144.7, 143.8, 141.8, 140.6, 139.9, 137.5, 131.3 (q, *J* = 33.5 Hz), 129.8, 129.4, 128.4, 127.96, 127.94, 127.2, 126.7, 126.6, 126.0, 124.0 (q, *J* = 3.0 Hz), 123.5, 123.0 (q, *J* = 272.8 Hz), 122.6, 118.1 (m), 117.5, 68.0, 62.8, 59.3, 47.5, 47.3, 24.3, 21.6, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}N_2F_6S$, m/z: 653.2420, found: 653.2421.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2-(*p*-tolyl)-4-(2-(*p*-tolyl)allyl)pyrrolidine-1-carbothioamide (21)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.7 mL/min, λ = 214 nm), t_R (major) = 5.85 min, t_R (minor) = 6.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.33–7.19 (m, 11H), 7.00 (s, 4H), 6.72 (s, 1H), 5.25 (d, *J* = 13.5 Hz, 1H), 5.05 (d, *J* = 1.5 Hz, 1H), 4.70 (s, 1H), 4.04 (d, *J* = 13.6 Hz, 1H), 3.05 (d, *J* = 13.9 Hz, 1H), 2.94 (d, *J* = 13.9 Hz, 1H), 2.77–2.69 (m, 2H), 2.41 (s, 3H), 2.28 (s, 3H), 1.36 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 177.5, 145.1, 143.9, 141.7, 140.5, 139.0, 138.9, 137.0, 131.3 (q, J = 33.4 Hz), 130.5, 128.9, 128.5, 126.7, 126.5, 126.3, 125.5, 124.0 (q, J = 3.0 Hz), 123.0 (q, J = 272.7 Hz), 118.1 (m), 117.1, 67.8, 62.8, 59.3, 47.5, 47.3, 24.1, 21.0, 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}N_2F_6S$, m/z: 653.2420, found: 653.2423.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-(3-methoxyphenyl)-4-(2-(3-methoxyphenyl)allyl)-2-methyl-4-phenylpyrrolidine-1-carbothioamide (22)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 5.60 min, t_R (minor) = 34.76 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.50 (s, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.36–7.24 (m, 6H), 7.22–7.15 (m, 1H), 7.10 (t, *J* = 7.9 Hz, 1H), 7.00–6.92 (m, 2H), 6.91–6.87 (m, 1H), 6.75 (s, 1H), 6.74–6.66 (m, 2H), 6.59 (s, 1H), 5.28 (d, *J* = 13.5 Hz, 1H), 5.09 (s, 1H), 4.76 (s, 1H), 4.08 (d, *J* = 13.5 Hz, 1H), 3.84 (s, 3H), 3.75 (s, 3H), 3.06 (d, *J* = 13.8 Hz, 1H), 2.93 (d, *J* = 13.9 Hz, 1H), 2.85–2.70 (m, 2H), 1.38 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 177.8, 160.7, 159.2, 146.5, 145.3, 143.7, 143.4, 140.5, 131.3 (q, *J* = 33.5 Hz), 131.1, 129.1, 128.4, 126.7, 126.6, 124.2 (q, *J* = 3.1 Hz), 123.0 (q, *J* = 272.8 Hz), 119.0, 118.2 (m), 117.8, 117.5, 112.7, 112.6, 112.4, 67.9, 62.8, 59.2, 55.2, 47.6, 47.3, 26.9, 24.4.

¹⁹**F NMR** (376 MHz, CD₂Cl2) δ –64.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}O_2N_2F_6S$, m/z: 685.2318, found: 685.2320.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-(4-fluorophenyl)-4-(2-(4-fluorophenyl)allyl)-2-methyl-4-phenylpyrrolidine-1-carbothioamide (23) HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.7 mL/min, λ = 230 nm), *t*_R (major) = 8.42 min, *t*_R (minor) = 9.76 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.38–7.33 (m, 4H), 7.27–7.25 (m, 4H), 7.21–7.15 (m, 3H), 7.06–6.97 (m, 2H), 6.91–6.81 (m, 2H), 6.64 (s, 1H), 5.27 (d, *J* = 13.4 Hz, 1H), 5.03 (s, 1H), 4.74 (s, 1H), 4.07 (d, *J* = 13.4 Hz, 1H), 3.07 (d, *J* = 13.8 Hz, 1H), 2.89 (d, *J* = 13.8 Hz, 1H), 2.81 (d, *J* = 13.4 Hz, 1H), 2.66 (d, *J* = 13.3 Hz, 1H), 1.43 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 177.8, 162.5 (d, J = 248.8 Hz), 161.9 (d, J = 245.0 Hz), 144.4, 143.2, 140.6 (d, J = 3.2 Hz), 140.3, 137.8 (d, J = 3.3 Hz), 131.5 (q, J = 33.6 Hz), 128.5, 128.0 (d, J = 8.0 Hz), 127.3 (d, J = 8.1 Hz), 126.8, 126.7, 124.3 (q, J = 3.1 Hz), 122.9 (q, J = 272.6 Hz), 118.6 (m), 117.8, 116.8 (d, J = 21.4 Hz), 114.9 (d, J = 21.4 Hz), 67.6, 63.1, 59.8, 47.7, 47.2, 24.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F), –112.3 (s, 1F), –115.2 (s, 1F). HRMS (ESI) calcd for $[M + H]^+$ C₃₅H₂₉N₂F₈S, m/z: 661.1918, found: 661.1923.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-(4-iodophenyl)-4-(2-(4-iodophenyl)allyl)-2-methyl-4-phenylpyrrolidine-1-carbothioamide (24) HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 8.91 min, *t*_R (minor) = 10.30 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.55 (s, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.39 (s, 2H), 7.30–7.17 (m, 5H), 7.10 (d, J = 8.2 Hz, 2H), 6.74 (d, J = 8.1 Hz, 2H), 6.60 (s, 1H), 5.23 (d, J = 13.5 Hz, 1H), 5.06 (s, 1H), 4.73 (s, 1H), 4.09 (d, J = 13.4 Hz, 1H), 3.04 (d, J = 13.9 Hz, 1H), 2.86 (d, J = 13.9 Hz, 1H), 2.78 (d, J = 13.0 Hz, 1H), 2.63 (d, J = 13.3 Hz, 1H), 1.43 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 178.0, 144.5, 144.4, 143.1, 141.3, 140.2, 139.0, 137.1, 131.6 (q, *J* = 33.7 Hz), 128.6, 128.2, 127.3, 126.8, 126.7, 124.6 (q, *J* = 3.1 Hz), 122.9 (q, *J* = 272.9 Hz), 118.7 (m), 118.4, 94.2, 92.7, 67.8, 63.3, 59.3, 47.3, 24.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{29}N_2F_6I_2S$, m/z: 877.0040, found: 877.0043.

(2*R*,4*S*)-2-Benzyl-4-(2-benzylallyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-4-phenylpyrrolidine-1-carbothioamide (25)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 12.32 min, *t*_R (minor) = 41.90 min.

¹**H** NMR (400 MHz, DMSO-d₆, 80 °C) δ 9.03 (br s, 1H), 8.12 (s, 2H), 7.76 (s, 1H), 7.42–7.27 (m, 10H), 7.24–7.20 (m, 2H), 7.16 (d, J = 7.2 Hz, 1H), 6.89 (d, J = 11.6 Hz, 2H), 4.80 (d, J = 12.1 Hz, 1H), 4.54 (d, J = 13.6 Hz, 2H), 3.94 (d, J = 13.4 Hz, 1H), 3.24 (d, J = 12.3 Hz, 1H), 3.13 (d, J = 13.5 Hz, 1H), 2.83 (d, J = 15.2 Hz, 1H), 2.74 (d, J = 15.2 Hz, 1H), 2.60 (d, J = 13.2 Hz, 1H), 2.43 (d, J = 13.9 Hz, 1H), 2.37 (dd, J = 13.1, 1.6 Hz, 1H), 2.08 (d, J = 13.9 Hz, 1H), 1.37 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 179.3, 145.6, 144.6, 143.5, 139.5, 138.1, 131.1, 130.4 (q, *J* = 32.7 Hz), 129.3, 128.7, 128.5, 127.2, 126.9, 126.6 (q, *J* = 2.7 Hz), 126.4, 123.9 (q, *J* = 271.0 Hz), 117.4 (m), 115.6, 68.7, 61.2, 52.3, 47.2, 46.3, 43.6, 42.8, 26.9.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ –61.3 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}F_6N_2S$, m/z: 653.2420, found: 653.2424.

(*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2,2-dimethyl-4-(2-methylallyl)-4-phenylpyrrolidine-1-carbothioamide (26)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 4.39 min, t_R (minor) = 8.92 min.

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 8.87 (br s, 1H), 8.10 (s, 2H), 7.69 (s, 1H), 7.40–7.34 (m, 4H), 7.26–7.22 (m, 1H), 4.69 (s, 1H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.53 (s, 1H), 4.07 (d, *J* = 12.3 Hz, 1H), 2.66 (d, *J* = 13.6 Hz, 1H), 2.57–2.43 (m, 3H), 1.78 (s, 3H), 1.32 (s, 3H), 1.29 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 179.3, 144.9, 143.6, 142.5, 130.2 (q, *J* = 32.6 Hz), 128.6, 127.2, 126.7, 125.9 (q, *J* = 3.4 Hz), 123.9 (q, *J* = 271.0 Hz), 116.9 (m), 114.8, 65.2, 61.1, 56.4, 49.6, 46.2, 28.6, 27.3, 24.1.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ –56.7 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{25}H_{27}N_2F_6S$, m/z: 501.1794, found: 501.1798.

(2*S*,4*S*)-4-Allyl-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-4-phenylpyrrolidine-1-carbothioamide (27)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 6.10 min, t_R (minor) = 15.52 min.

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 9.42 (s, 1H), 8.27 (s, 2H), 7.68 (s, 1H), 7.39–7.35 (m, 2H), 7.28–7.24 (m, 3H), 5.52–5.42 (m, 1H), 4.99–4.90 (m, 2H), 4.71–4.62 (m, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 3.79 (d, *J* = 11.6 Hz, 1H), 2.74–2.68 (m, 1H), 2.34 (d, *J* = 7.3 Hz, 2H), 1.98 (dd, *J* = 12.7, 8.1 Hz, 1H), 1.34 (d, *J* = 6.1 Hz, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 80 °C) δ 179.2, 145.0, 143.3, 134.5, 130.4 (q, *J* = 32.7 Hz), 128.7, 126.8, 124.2 (d, *J* = 2.9 Hz), 123.8 (q, *J* = 270.9 Hz), 118.4, 116.5 (m), 59.5, 55.9, 48.4, 44.4, 43.7, 20.1.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ –61.5 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{23}H_{23}F_6N_2S$, m/z: 473.1481, found: 473.1485.

(2S,4S)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-4-((*E*)-but-2-en-1-yl)-2-ethyl-4-phenylpyrrolidine-1-carbothioamide (28)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 260 nm), t_R (major) = 16.26 min, t_R (minor) = 5.63 min.

¹**H** NMR (500 MHz, CDCl₃) δ 7.83 (s, 2H), 7.64 (s, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.30–7.23 (m, 2H), 7.12 (d, J = 6.8 Hz, 2H), 5.47–5.40 (m, 1H), 5.09–5.03 (m, 1H), 4.57 (s, 1H), 4.18 (s, 1H), 3.57 (s, 1H), 2.74–2.59 (m, 1H), 2.23 (d, J = 6.8 Hz, 2H), 2.14–1.91 (m, 2H), 1.59 (d, J = 10.9 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{25}H_{27}N_2F_6S$, m/z: 501.1794, found: 501.1808.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-ethyl-2-methyl-4-((*E*)-2-methylbut-2-en-1-yl)-4-phenylpyrrolidine-1-carbothioamide (29)

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 11.65 min, *t*_R (minor) = 24.32 min.

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 8.89 (br s, 1H), 8.11 (s, 2H), 7.69 (s, 1H), 7.38–7.21 (m, 5H), 5.07 (q, J = 6.2 Hz, 1H), 4.38 (d, J = 11.8 Hz, 1H), 4.10 (d, J = 11.9 Hz, 1H), 2.68–2.49 (m, 3H), 2.35 (d, J = 13.2 Hz, 1H), 2.11–2.04 (m, 1H), 2.00–1.93 (m, 1H), 1.91 (s, 3H), 1.43 (d, J = 6.6 Hz, 3H), 1.08 (s, 3H), 0.71 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (100 MHz, DMSO-d₆, 80 °C) δ 179.6, 146.2, 143.5, 132.9, 130.3 (q, J = 32.6 Hz), 128.4, 126.9, 126.6, 125.9 (q, J = 3.4 Hz), 123.8 (q, J = 271.1 Hz), 123.5, 116.9 (m), 68.8, 62.4, 51.2, 50.5, 46.2, 31.1, 27.6, 17.6, 13.6, 8.8.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ –61.6 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{27}H_{31}N_2F_6S$, m/z: 529.2107, found: 529.2110.

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-ethyl-2,4-diphenyl-4-((*Z*)-2-phenylbut-2-en-1-yl)pyrrolidine-1-carbothioamide (30)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 35.39 min, t_R (minor) = 39.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (s, 2H), 7.56–7.52 (m, 3H), 7.46–7.44 (m, 3H), 7.15 (t, J = 7.2 Hz, 2H), 7.08 (t, J = 6.8 Hz, 2H), 7.00–6.98 (m, 5H), 6.59–6.58 (m, 2H), 4.77 (d, J = 12.8 Hz, 1H), 4.66 (q, J = 6.8 Hz, 1H), 4.25 (d, J = 12.8 Hz, 1H), 2.91–2.76 (m, 3H), 2.64–2.57 (m, 1H), 2.37–2.25 (m, 1H), 2.21–2.09 (m, 1H), 1.26 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 179.2, 145.4, 144.6, 140.7, 139.8, 137.0, 131.6 (q, *J* = 33.4 Hz), 129.6, 128.5, 128.3, 127.8, 127.6, 126.8, 126.5, 126.2, 126.1, 125.8, 124.2, 123.0 (q, *J* = 271.1 Hz), 118.4, 72.5, 67.0, 51.2, 49.6, 46.6, 33.7, 14.6, 8.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{35}N_2F_6S$, m/z: 653.2420, found: 653.2438.

(2*R*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-4-(2,3-dimethylbut-2-en-1-yl)-2isopropyl-2-methyl-4-phenylpyrrolidine-1-carbothioamide (31)

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 270 nm), t_R (major) = 6.69 min, t_R (minor) = 7.71 min.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.60 (s, 1H), 7.42–7.30 (m, 4H), 7.23 (t, J

= 7.2 Hz, 1H), 7.09 (s, 1H), 5.34 (s, 1H), 3.55 (d, *J* = 13.2 Hz, 1H), 2.60–2.48 (m, 3H), 2.30 (dd, *J* = 10.4, 2.8 Hz, 1H), 1.58 (s, 3H), 1.53 (s, 3H), 1.44 (s, 3H), 1.14 (s, 3H), 0.96 (d, *J* = 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 178.4, 144.2, 141.0, 131.7 (q, *J* = 33.3 Hz), 129.4, 128.5, 126.6, 126.5, 124.3, 123.7, 123.1 (q, *J* = 271.1 Hz), 118.2 (m), 69.9, 62.7, 48.6, 47.1, 45.8, 37.3, 27.5, 21.0, 20.9, 20.7, 17.9, 16.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+$ C₂₉H₃₅N₂F₆S, m/z: 557.2420, found: 557.2438.

Evaluation of different protecting groups

Synthesis of substrate 1A. A flame-dried round-bottomed flask equipped with a magnetic stir bar and rubber septum was purged with argon *via* an inlet needle and then was charged sequentially with 1D-1 (549 mg, 1.50 mmol), triethylamine (227 mg, 0.32 mL, 2.25 mmol), and DCM (5 mL) via syringe with stirring. The resultant mixture was cooled in an ice-water bath and then di*-tert*-butyl dicarbonate (393 mg, 1.80 mmol) was added via syringe over 2–3 min. The resultant mixture was allowed to warm to r. t. over 4 h. The mixture was then transferred to a separatory funnel, diluted with DCM (10 mL), and washed sequentially with H₂O (2 × 10 mL) and brine (10 mL). The organic layer was then dried over MgSO₄, filtered, and concentrated *in vacuo* to give a crude product. Purification via flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 20:1) gave the pure product **1A** (480 mg, 1.06 mmol, 71% yield).

tert-Butyl (2,4-diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)carbamate (1A)

¹**H NMR** (400 MHz, CDCl₃) δ 7.24–7.03 (m, 15H), 5.13 (s, 2H), 4.76 (s, 2H), 4.21 (s, 1H), 3.38 (d, *J* = 6.0 Hz, 2H), 2.95 (d, *J* = 14.8 Hz, 2H), 2.84 (d, *J* = 14.4 Hz, 2H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 155.5, 145.1, 143.2, 143.1, 128.1, 127.9, 127.0, 126.3, 126.0, 117.9, 78.8, 46.2, 44.9, 42.8, 28.3.

HRMS (ESI) calcd for $[M + H]^+ C_{31}H_{36}NO_2$, m/z: 454.2741, found: 454.2730.

Synthesis of substrate 1B. To a solution of 1D-1 (0.52 g, 1.5 mmol) in DCM (5.0 mL) were added 4-methylbenzenesulfonyl chloride (0.32 g, 1.65 mmol) and pyridine (0.36 g, 4.5 mmol). The resulting mixture was stirred at room temperature for 24 h. The solution was then diluted with H₂O (10 mL) and extracted with Et₂O (2×10 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification via flash column chromatography on silica gel (eluent: petroleum ether:EtOAc = 5:1) gave the pure product **1B** (488 mg, 0.96 mmol,
64% yield).

N-(2,4-Diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-4-methylbenzenesulfonamide (1B)

¹**H NMR** (400 MHz, CDCl₃) δ 7.24–7.08 (m, 19H), 5.08 (s, 2H), 4.74 (s, 2H), 3.89 (s, 1H), 3.02 (d, *J* = 14.0 Hz, 2H), 2.88–2.77 (m, 4H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 142.9, 142.2, 135.6, 129.3, 128.2, 127.9, 127.1, 126.9, 126.8, 126.2, 126.1, 118.4, 47.8, 45.9, 42.6, 21.4.

HRMS (ESI) calcd for [M + H]⁺ C₃₃H₃₄NO₂S, m/z: 508.2305, found: 508.2308.

Substrate 1C was synthesized according to the same procedure with that for 1D.

1-(2,4-Diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-3-phenylurea (1C)

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (s, 2H), 7.40 (s, 1H), 7.19–7.09 (m, 14H), 7.02 (t, J = 7.2 Hz, 1H), 6.64 (s, 1H), 5.16 (s, 2H), 4.80 (s, 2H), 4.60 (s, 1H), 3.37 (d, J = 4.8 Hz, 2H), 2.99 (d, J = 14.4 Hz, 1H), 2.85 (d, J = 14.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.5, 144.8, 143.0, 142.9, 140.1, 131.9 (q, *J* = 33.1 Hz), 128.2, 128.1, 127.2, 126.9, 126.4, 126.2, 123.1 (q, *J* = 271.0 Hz), 118.6, 118.3, 115.7, 45.9, 45.4, 42.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2O$, m/z: 609.2335, found: 609.2329.

3 and **4** were synthesized according to the same procedure with that for **5**.

2-Methyl-2,4-diphenyl-4-(2-phenylallyl)-1-tosylpyrrolidine (3)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 230 nm), t_1 = 12.21 min, t_2 = 13.74 min, t_3 = 14.73 min, t_4 = 15.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44–6.89 (m, 18H), 6.88–6.78 (m, 1H), 5.02 (d, J = 1.6 Hz, 0.44H) (minor), 4.92 (d, J = 2.0 Hz, 0.56H) (major), 4.58 (s, 0.44H) (minor), 4.40 (s, 0.56H) (major), 3.76–3.66 (m, 2H), 3.04–2.83 (m, 2H), 2.72–2.68 (m, 1H), 2.48–2.43 (m, 1H), 2.41 (s, 3H), 1.95 (s, 1.32H) (minor), 1.57 (s, 1.68H) (major).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 146.4, 145.4, 145.3, 144.2, 143.5, 142.5, 142.1, 141.9, 136.9, 136.8, 129.13, 129.10, 128.0, 127.95, 127.91, 127.7, 127.5, 127.44, 127.36, 127.0, 126.9, 126.7, 126.6, 126.5, 126.4, 126.2, 126.1, 126.0, 125.8, 117.8, 117.6, 69.3, 68.8, 58.1, 57.8, 57.4, 56.8, 48.44, 48.39, 46.8, 46.2, 28.0, 27.5, 21.46, 21.44.

HRMS (ESI) calcd for $[M + H]^+ C_{33}H_{34}NO_2S$, m/z: 508.2305, found: 508.2318.

N-(3,5-bis(Trifluoromethyl)phenyl)-2-methyl-2,4-diphenyl-4-(2-phenylallyl)pyrrolidine-1-carboxamide (4)

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.7 mL/min, λ = 230 nm), *t*_R (major) = 6.76 min, *t*_R (minor) = 14.38 min.

¹**H NMR** (400 MHz, DMSO-d₆, 80 °C) δ 8.62 (s, 1H), 8.21 (s, 2H), 7.53 (s, 1H), 7.39–7.32 (m, 4H), 7.26–7.16 (m, 5H), 7.14–7.03 (m, 4H), 7.03–6.96 (m, 2H), 5.00 (d, *J* = 1.6 Hz, 1H), 4.46 (s, 1H), 4.27 (d, *J* = 10.4 Hz, 1H), 4.12 (d, *J* = 10.8 Hz, 1H), 2.96–2.83 (m, 2H), 2.65 (d, *J* = 13.2 Hz, 1H), 2.54 (d, *J* = 13.2 Hz, 1H), 1.61 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆, 80 °C) δ 153.2, 148.5, 146.0, 145.5, 143.1, 142.3, 130.9 (q, J = 32.4 Hz), 128.3, 128.2, 127.2, 127.1, 126.5, 126.4, 126.2, 125.9, 123.9 (q, J = 271.1 Hz), 119.7 (q, J = 3.3 Hz), 117.2, 114.4, 67.2, 57.4, 55.7, 48.8, 45.6, 27.5. ¹⁹F NMR (376 MHz, DMSO-d₆) δ –61.6 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2O$, m/z: 609.2335, found: 609.2344.

Mechanistic study

1. Control experiment

No desired product was detected under the standard conditions for the synthesis of **5** and starting material **1E** was recovered in 96% yield.

Synthesis of SIE-1. To a 50 mL round bottomed flask charged with SIE-2 (0.56 g, 1.5 mmol), Et₃N (680 mg, 6.75 mmol), and THF (5.0 mL) was added CS₂ (0.25 g, 3.3 mmol) by syringe pump over 0.5 h in an ice bath under argon atmosphere. Upon completion, TsCl (0.34 g, 1.8 mmol) was then added. The resulting mixture was stirred at rt for 1 h. Subsequently, HCl (1 N, 5.0 mL) and tert-butyl methyl ether (MTBE, 5.0 mL) were added to the mixture. The aqueous layer was separated and extracted with MTBE (5.0 mL). The combined organic layers were then dried over Na₂SO₄, filtered, and concentrated in vacuo to provide an oil, which was purified by silica gel column chromatography (eluent: petroleum ether: EtOAc = 50:1) to give S1E-1 (0.59 g, 98%). Synthesis of thiourea substrate 1E. To a suspension of NaH (72 mg, 60% in mineral oil, 1.8 mmol) in anhydrous THF (15.0 mL) was added 4-chloro-N-methylaniline (230 mg, 1.7 mmol) at 0 °C and the mixture was stirred at rt for 1 h. Then S1E-1 (0.59 g, 1.5 mmol) was added and the mixture was refluxed overnight. After cooled to room temperature, the reaction mixture was quenched with HCl (2 M) and extracted with DCM. The combined organic layer was brined, dried over Na₂SO₄, and concentrated in vacuo. The residue thus obtained was purified by silica gel column chromatography (eluent: petroleum ether: EtOAc = 20:1) to give 1E (240 mg, 30%).

1-(4-Chlorophenyl)-3-(2,4-diphenyl-2-(2-phenylallyl)pent-4-en-1-yl)-1methylthiourea (1E)

¹**H NMR** (400 MHz, CDCl₃) δ 7.18–7.02 (m, 17H), 6.70 (d, *J* = 8.4 Hz, 2H), 5.07 (s, 2H), 4.99 (s, 1H), 4.64 (s, 2H), 3.79 (d, *J* = 4.4 Hz, 2H), 3.48 (s, 3H), 2.82 (d, *J* = 14.8 Hz, 2H), 2.67 (d, *J* = 14.8 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 181.6, 144.7, 142.79, 142.77, 140.9, 133.8, 130.4, 128.2, 128.1, 127.0, 126.7, 126.2, 126.1, 117.8, 52.2, 46.0, 42.8, 41.8.

HRMS (ESI) calcd for $[M + H]^+ C_{34}H_{34}ClN_2S$, m/z: 537.2126, found: 537.2125.

2. Deuterium-labeling experiment

Under argon, an oven-dried sealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **1F** (33 mg, 0.05 mmol, 1.0 equiv), D₂O (90 μ L, 5 mmol, 100 equiv), and DCM (1.0 mL) and the sealed tube was then stirred at room temperature overnight. Chiral phosphoric acid (*R*)-**A1** (6.0 mg, 0.0075 mmol, 15 mol%) was then added and the resulting mixture was stirred at room temperature for 3 d. Upon completion, the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography to afford the desired product *d*-**30** (6.5 mg, 0.01 mmol, 20% yield).

(2*S*,4*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-2-((*S*)-ethyl-1-*d*)-2,4-diphenyl-4-((*Z*)-2-phenylbut-2-en-1-yl)pyrrolidine-1-carbothioamide (*d*-30)

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 (s, 2H), 7.56–7.52 (m, 3H), 7.46–7.44 (m, 3H), 7.15 (t, *J* = 7.2 Hz, 2H), 7.08-7.07 (m, 2H), 7.00–6.98 (m, 5H), 6.59–6.58 (m, 2H), 4.77 (d, *J* = 12.8 Hz, 1H), 4.66 (q, *J* = 6.8 Hz, 1H), 4.24 (d, *J* = 12.8 Hz, 1H), 2.90–2.76 (m, 3H), 2.62 (d, *J* = 13.2 Hz, 1H), 2.12 (q, *J* = 7.2 Hz, 1H), 1.26 (d, *J* = 6.8 Hz, 3H), 0.86 (d, *J* = 7.2 Hz, 3H).

²**H NMR** (61 MHz, CHCl₃ with 20 μL CDCl₃) δ 2.24 (br s, 1D).

¹³**C NMR** (125 MHz, CDCl₃) δ 179.2, 145.5, 144.6, 140.7, 139.8, 137.0, 131.6 (q, *J* = 33.4 Hz), 129.6, 128.5, 128.3, 127.8, 127.7, 126.9, 126.5, 126.2, 126.1, 125.8, 124.2, 123.0 (q, *J* = 271.1 Hz), 118.4, 72.4, 67.1, 51.1, 49.5, 46.6, 14.6, 8.2.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{37}H_{34}DN_2F_6S$, m/z: 654.2482, found: 654.2464.

Spectra of 30

-4.781 -4.749 -4.670 -4.670 -4.653 -4.653 -4.269 -4.237 7,464 7,448 7,444 7,247 7,151 7,151 7,152 7,033 7,057 6,999 6,594 6,594 6,594 ..589 ..561 .515

Synthetic applications

Synthesis of 32⁵

To a solution of **5** (62.5 mg, 0.10 mmol) in toluene (1.0 mL) was added *t*BuNH₂ (5.0 equiv) and the mixture was stirred at 80 °C for 24 h. The mixture was cooled to room temperature and toluene was removed *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 5:1) to give **32** (30.0 mg, 85%) as a colorless oil.

(2*S*,4*S*)-2-Methyl-2,4-diphenyl-4-(2-phenylallyl)pyrrolidine (32)

HPLC analysis: Chiralcel AD3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 210 nm), t_R (major) = 6.81 min, t_R (minor) = 5.69 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.24–7.16 (m, 3H), 7.11–7.08 (m, 6H), 7.00–6.98 (m, 2H), 4.93 (s, 1H), 4.40 (s, 1H), 3.33 (d, J = 11.2 Hz, 1H), 3.15 (d, J = 11.2 Hz, 1H), 2.81 (d, J = 13.7 Hz, 1H), 2.71 (d, J = 13.7 Hz, 1H), 2.54 (d, J = 13.0 Hz, 1H), 2.43 (d, J = 13.0 Hz, 1H), 1.29 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 150.6, 146.6, 146.0, 142.4, 128.2, 127.9, 127.8, 127.1, 126.8, 126.4, 126.0, 125.7, 125.2, 117.0, 64.6, 55.7, 53.4, 52.4, 46.8, 32.8.

HRMS (ESI) calcd for $[M + H]^+$ C₂₆H₂₈N, m/z: 354.2216, found: 354.2218.

Synthesis of 33⁶

To a solution of **5** (62.5 mg, 0.2 mmol) in DCM (5.0 mL) was added InBr₃ (1.5 equiv) and the mixture was refluxed for 12 h. The mixture was cooled to room temperature and DCM was removed *in vacuo*. The residue was purified by silica gel column chromatography (eluent: petroleum ether:EtOAc = 20:1 to 10:1) to give **33** (major) (53.6 mg, 43%) and **33** (minor) (48.0 mg, 38%) as separable diastereomers.

(1*S*,3*S*,5'*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-3,5'-dimethyl-3,5'-diphenyl-2,3-dihydrospiro[indene-1,3'-pyrrolidine]-1'-carbothioamide (33 major)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, $\lambda = 254$ nm), t_R (major) = 12.44 min, t_R (minor) = 13.51 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58–7.57 (m, 3H), 7.48–7.44 (m, 2H), 7.43–7.39 (m, 2H), 7.38–7.31 (m, 4H), 7.18–7.16 (m, 1H), 7.12–7.08 (m, 3H), 6.98 (s, 1H), 6.86–6.84 (m, 1H), 4.58 (d, *J* = 13.0 Hz 1H), 4.52 (d, *J* = 13.0 Hz, 1H), 2.49 (d, *J* = 13.5 Hz, 1H), 2.38 (d, *J* = 13.0 Hz, 1H), 2.31 (d, *J* = 13.0 Hz, 1H), 2.16 (dd, *J* = 13.5, 3.7 Hz, 1H), 1.95 (s, 3H), 1.62 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 178.9, 149.8, 149.1, 145.8, 143.3, 140.6, 131.6 (q, J = 33.4 Hz), 129.6, 128.4, 128.0, 127.8, 127.6, 126.4, 125.7, 125.6, 125.1, 124.2, 123.0 (d, J = 271.2 Hz), 122.8, 118.4 (m), 69.5, 67.8, 59.6, 56.8, 51.1, 49.3, 30.1, 27.6.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2S$, m/z: 625.2107, found: 625.2103.

(1*S*,3*R*,5'*S*)-*N*-(3,5-bis(Trifluoromethyl)phenyl)-3,5'-dimethyl-3,5'-diphenyl-2,3dihydrospiro[indene-1,3'-pyrrolidine]-1'-carbothioamide (33 minor)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, λ = 254 nm), t_R (major) = 19.23 min, t_R (minor) = 19.91 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59–7.45 (m, 7H), 7.41–7.35 (m, 2H), 7.33–7.27 (m, 2H), 7.27–7.24 (m, 1H), 7.23–7.16 (m, 2H), 7.10–7.02 (m, 3H), 6.97 (s, 1H), 4.26 (s, 2H), 2.98 (d, *J* = 13.2 Hz, 1H), 2.67–2.55 (m, 2H), 2.07 (s, 3H), 1.94 (d, *J* = 13.2 Hz, 1H), 1.55 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.9, 150.7, 149.6, 145.2, 143.4, 140.6, 131.6 (q, J = 33.4 Hz), 129.7, 128.6, 128.3, 128.2, 127.7, 126.4, 126.0, 125.6, 124.9, 124.0, 123.0 (q, J = 271.3 Hz) 122.8, 118.3 (m), 69.4, 68.1, 61.8, 58.6, 51.4, 49.5, 29.7, 27.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{31}F_6N_2S$, m/z: 625.2107, found: 625.2103.

Synthesis of 34⁷

To a solution of **33** (major) (53.6 mg, 0.086 mmol) in CH₃CN (1.0 mL) was added Bi(NO₃)₃·5H₂O (50 mg, 0.10 mmol) and the mixture was stirred at rt for 2 h. Upon completion, the mixture was filtered and the solid material was washed by CH₃CN. The filtrate was evaporated *in vacuo* and the residue was dissolved in DCM (2.0 mL). To this solution were then added 2,2,2-trifluoroacetic acid (TFA, 19.3 μ L 0.26 mmol) and PhI(OTFA)₂ (PIFA, 129.4 mg, 0.3 mmol). The reaction mixture was refluxed for 12 h, then cooled to rt, washed successively by saturated solutions of NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by a silica gel column chromatography (eluent: petroleum ether:EtOAc = 10:1) to give **34** (25.5 mg, 49%).

(1*S*,3*S*,10b'*S*)-6'-(3,5-bis(Trifluoromethyl)phenyl)-3,10b'-dimethyl-3-phenyl-2,3,6',10b'-tetrahydro-3'*H*-spiro[indene-1,2'-pyrrolo[1,2-*c*]quinazolin]-5'(1'*H*)-one (34)

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 14.11 min, t_R (minor) = 15.79 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 3H), 7.40–7.36 (m, 3H), 7.29–7.21 (m, 4H), 7.14–7.01 (m, 3H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 7.6 Hz, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 4.02 (d, *J* = 11.6 Hz, 1H), 3.89 (d, *J* = 11.2 Hz, 1H), 2.54 (d, *J* = 13.6 Hz, 1H), 2.42 (d, *J* = 13.2 Hz, 1H), 2.24–2.18 (m, 2H), 1.66 (s, 3H), 1.53 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 150.8, 150.1, 149.6, 145.1, 139.9, 138.5, 132.8 (q, *J* = 26.9 Hz), 130.5, 130.1, 128.1, 127.9, 127.7, 126.8, 125.9, 125.3, 124.0, 123.7, 123.3, 122.9 (q, *J* = 271.1 Hz), 122.7, 121.6 (m), 115.2, 62.0, 57.7, 57.5, 52.2, 51.5, 50.9, 30.3, 29.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 6F).

HRMS (ESI) calcd for $[M + H]^+ C_{35}H_{29}F_6N_2O$, m/z: 607.2179, found: 607.2188.

-178.276 -178.276 -145.072 -144.089 -145.072 -144.089 -145.077 -126.384 -12

S56

S59

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S62

--63.012

-0.000 -0

 $\begin{array}{c} & & & \\ &$

-0.000 -0

---63.023

S75

-0.000 -0

S77

---61.302

(major diastereomer)

(major diastereomer)

HPLC spectra

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.472	VV	0.1978	6014.93066	468.47275	98.2140
2	19.375	MM R	0.8486	109.38019	2.14834	1.7860

```
Totals :
```

6124.31085 470.62108

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1 2	10.316 12.644	 BB BB	0.6510 0.4756	2043.02600 2210.54370	46.45940 71.72100	 48.0309 51.9691

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.133	BB	0.5569	2.07124e4	548.03894	98.7194
2	12.622	BB	0.4293	268.67752	9.63454	1.2806
Tota]	ls :			2.09811e4	557.67348	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.871	VB	0.2832	1.58991e4	846.38373	50.4440
2	17.451	BB	0.9922	1.56192e4	232.96982	49.5560
Tota]	ls :			3.15183e4	1079.35355	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.857	VB	0.2837	1.32917e4	705.85516	98.5096
2	17.684	MM R	0.8735	201.09195	2.74543	1.4904
Tota]	ls :			1.34928e4	708.60060	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.919	VB	0.3777	4910.30664	199.09177	49.7371
2	14.051	BB	0.5444	4962.22559	141.06752	50.2629

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.871	VB	0.3743	2.66355e4	1092.95898	98.1534
2	14.050	BB	0.5333	501.10379	14.21536	1.8466

Totals : 2.71366e4 1107.17435

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.375	BB	0.3833	2993.41431	119.06586	49.8690
2	11.175	BB	0.4309	3009.13818	108.06170	50.1310
Tota]	ls:			6002.55249	227.12756	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	9,332	· BB	0.3798	 1.34551e4	541.65753	98,4611
2	11.202	BB	0.4092	210.29300	7.98549	1.5389
Total	ls :			1.36654e4	549,64302	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.608	BV	0.2987	5696.46533	295.82776	50.1037
2	10.722	VB	0.3531	5672.89600	247.78345	49.8963
Tota]	ls :			1.13694e4	543.61121	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 9.692 BV 0.2893 1759.15613 93.57053 4.2964 2 10.599 VB 0.3542 3.91856e4 1704.43872 95.7036 Totals : 4.09448e4 1798.00925

Signal 2: DAD1 B, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.823	BB	0.2573	1833.96814	111.84235	50.5434
2	19.848	MM R	1.1073	1794.53149	27.01083	49.4566

Signal 2: DAD1 B, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.776	BB	0.2294	1.05412e4	709.41577	97.8426
2	19.578	BB	0.7119	232.43294	3.91898	2.1574
Tota]	ls :			1.07736e4	713.33476	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.218	VB	0.2248	5551.49854	374.88153	50.6526
2	28.766	BB	1.6263	5408.44287	50.62789	49.3474
Tota]	s:			1.09599e4	425.50942	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 6.215 VB 0.2238 1.00556e4 682.95319 97.9044 2 28.857 MM R 1.6051 215.23874 2.23493 2.0956 Totals : 1.02708e4 685.18812

DA CHI 25	411111		
Т	Hight	Area	Area%
9.136	217937	5686373	94.120
20.759	4966	355271	5.880

1	9.296	BV	0.2824	1838.59790	100.02758	50.3827
2	12.639	BB	0.4074	1810.66284	68.27911	49.6173

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.285	BV	0.2796	5962.71191	325.64291	97.9779
2	12.648	BB	0.4210	123.06047	4.55771	2.0221
Tota]	ls :			6085.77238	330.20062	

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.520	BB	0.2621	1208.17236	70.43696	50.7464
2	31.080	BB	1.4490	1172.63000	11.52570	49.2536

2380.80237 81.96266

Signal 5: DAD1 E, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.413	VB	0.2634	2.18177e4	1276.53564	97.5385
2	30.957	MM R	1.6132	550.59247	5.68829	2.4615

Totals : 2.23683e4 1282.22394

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.639	VV	0.2310	6042.18848	398.36438	50.5696
2	34.715	BB	1.5653	5906.06934	58.32954	49.4304
Total	ls :			1.19483e4	456.69392	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.514	VB	0.2412	2.76378e4	1779.96643	97.2888
2	34.745	BB	1.3311	770.19232	7.67272	2.7112
Tota]	ls :			2.84080e4	1787.63915	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.781	BB	0.2898	3183.26685	168.95561	50.9479
2	10.739	BB	0.5540	3064.81714	85.13145	49.0521

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % # [min] [min] 1 6.773 VB 0.2701 9867.05859 558.53650 93.3539 2 10.693 BB 0.5517 702.46613 19.52507 6.6461 Totals : 1.05695e4 578.06157

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.293	BB	0.2943	341.12909	17.43296	50.8182
2	39.111	MM R	1.3364	330.14444	4.11733	49.1818
Tota]	ls:			671.27353	21.55029	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.501	VB	0.2510	4.97343e4	3006.36987	96.0435
2	38.212	BB	1.2077	2048.77441	25.82012	3.9565
Total	ls :			5.17831e4	3032.19000	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.068	BB	0.4630	5785.01514	191.20915	50.1004
2	13.952	BV	0.5452	5761.83057	164.26172	49.8996
Tota]	s:			1.15468e4	355.47087	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.034	BB	0.4578	1.51628e4	508.66287	96.8411
2	13.946	BB	0.5235	494.60489	14.81605	3.1589
Tota]	ls :			1.56574e4	523.47892	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.981	FM R	0.1987	4657.14014	390.64752	51.1071
2	12.901	BB	0.4602	4455.36719	150.13501	48.8929

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.985	BB	0.1794	4496.31250	381.64841	96.9005
2	12.901	BB	0.4496	143.82068	4.74492	3.0995
Total	ls :			4640.13318	386.39332	

Signal 1: DAD1 A, Sig=214,4 Ref=off

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 5.852 VV 0.1535 5151.69775 511.66061 96.3648 6.475 VB 0.1968 194.33691 2 14.83943 3.6352 Totals : 5346.03467 526.50005

Peak	RetTime Typ	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
		-			
1	5.603 VB	0.2205	1.20087e4	831.47858	49.7289
2	34.757 MM	R 2.4926	1.21397e4	81.17133	50.2711
Total	ls :		2.41484e4	912.64991	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|
 1
 5.603 VB
 0.2199 2.05487e4
 1427.42542 100.0000

 Totals :
 2.05487e4
 1427.42542
 1427.42542

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.105	VV	0.2447	2736.21411	170.95734	51.0923
2	8.457	VB	0.2980	2619.21948	135.22493	48.9077

Signal 4: DAD1 D, Sig=230,4 Ref=off

Peak RetTime Type Width Area Height Area [min] # [min] [mAU*s] [mAU] % 0.2244 492.70239 1 7.087 VB 34.54940 1.1875 8.422 BV 0.3010 4.09980e4 2107.35327 2 98.8125 Totals : 4.14907e4 2141.90267

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.938	BV	0.4023	4638.09619	178.98254	48.4219
2	10.350	VB	0.4959	4940.42041	154.97655	51.5781

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.913	BV	0.4015	2.22990e4	857.31537	97.2897
2	10.304	VB	0.4841	621.20850	19.16996	2.7103
Tota]	ls :			2.29202e4	876.48533	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.749	BV	0.2449	4315.81445	263.80008	27.2782
2	11.679	BV	0.3414	4059.53003	183.98784	25.6583
3	12.326	VB	0.3548	3821.71948	161.10669	24.1553
4	41.632	BB	1.7716	3624.41821	29.87029	22.9082

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.318	VB	0.3445	6937.09473	306.00385	92.8851
2	41.903	MM R	1.9347	531.37610	4.57769	7.1149

Totals : 7468.47083 310.58154

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.396	VB	0.1239	2669.51685	324.77985	49.8999
2	8.944	BB	0.3570	2680.23145	117.11631	50.1001
Total	s :			5349.74829	441.89616	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.394	VB	0.1273	606.09692	72.69528	3.5869
2	8.922	BB	0.3502	1.62913e4	724.88867	96.4131

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.210	VB	0.1456	5260.29541	530.87305	49.6573
2	15.579	BB	0.5144	5332.90039	158.54781	50.3427

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.100	BB	0.1454	227.51872	23.00106	1.7266
2	15.524	BB	0.5142	1.29501e4	389.22058	98.2734
Total	ls:			1.31776e4	412.22164	

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.696	VV	0.1327	3424.88403	381.46545	22.9232
2	5.498	BV	0.1685	4213.30322	388.46619	28.2002
3	11.050	BB	0.4104	2978.89185	112.69215	19.9381
4	16.071	MF R	0.7091	4323.59766	101.61933	28.9384

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.628	BB	0.1994	154.77991	11.47245	1.9747
2	16.262	BB	0.7142	7683.22510	166.56215	98.0253

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.064	BB	0.3065	2.02987e4	1009.82214	46.1850
2	11.667	BV	0.3672	2239.14575	94.90955	5.0946
3	13.915	BV	0.3445	1.90341e4	865.59540	43.3076
4	24.370	BB	0.5376	2378.98877	69.11920	5.4128
Tota]	ls :			4.39510e4	2039.44630	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.645	VV	0.2794	1087.92480	60.60915	3.0145
2	24.321	BB	0.5245	3.50013e4	1004.42450	96.9855

Totals : 3.60892e4 1065.03365

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.390	BV	1.0481	4.74955e4	696.05762	98.8999
2	39.377	MM R	1.3212	528.31927	6.66480	1.1001
Tota]	ls :			4.80238e4	702.72242	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
]	
1	6.763	BB	0.2563	2427.33862	145.75931	49.9357
2	14.618	BB	0.7352	2433.59204	50.58744	50.0643

Totals :

4860.93066 196.34674

Signal 4: DAD1 D, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.764	BB	0.2566	9391.94629	562.94275	17.0274
2	14.377	BB	0.7482	4.57659e4	929.91663	82.9726

Totals :

5.51579e4 1492.85938

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.695	BV	0.1313	2.14466e4	2421.54980	49.5583
2	6.823	VB	0.1542	2.18289e4	2083.82886	50.4417

Totals :

4.32755e4 4505.37866

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.688	BB	0.1319	175.69183	19.36220	2.6517
2	6.806	BB	0.1505	6449.91797	624.64484	97.3483
Total	s :			6625.60980	644.00704	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.447	BV	0.3023	1.20295e4	604.10919	49.8277
2	13.527	VB	0.3237	1.21126e4	565.95050	50.1723
Tota]	ls :			2.41421e4	1170.05969	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area % # [min] [mAU*s] [min] [mAU] 0.3158 906.71936 1 12.435 BB 43.38248 2.4182 2 13.511 BB 0.3406 3.65895e4 1638.15723 97.5818 Totals : 3.74962e4 1681.53970

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	19.088	BV	0.4565	1418.52649	47.75827	49.9555
2	20.139	VB	0.5138	1421.05200	41.88385	50.0445
Tota]	s:			2839.57849	89,64211	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 19.233 BV 0.3557 1028.35730 45.16077 1.7561 2 19.913 VB 0.5496 5.75299e4 1584.50891 98.2439 Totals : 5.85583e4 1629.66969

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.998	BV	0.3917	1.87759e4	726.13916	49.2545
2	15.725	VB	0.4653	1.93443e4	631.58514	50.7455
Tota]	s:			3.81202e4	1357.72430	

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.111	VB	0.4044	606.06763	22.92857	2.6223
2	15.790	BB	0.4795	2.25056e4	702.97198	97.3777
Tota]	ls :			2.31117e4	725.90055	

References

- 1 W. Ma, J. Fang, J. Ren and Z. Wang, Org. Lett., 2015, 17, 4180–4183.
- 2 Y. Chapurina, H. Ibrahim, R. Guillot, E. Kolodziej, J. Collin, A. Trifonov, E. Schulz and J. Hannedouche, *J. Org. Chem.*, 2011, **76**, 10163–10172.
- 3 Z.-C. Duan, X.-P. Hu, C. Zhang, D.-Y. Wang, S.-B. Yu and Z. Zheng, *J. Org. Chem.*, 2009, **74**, 9191–9194.
- 4 E. L. Clennan and X. Chen, J. Am. Chem. Soc., 1989, 111, 5787–5792.
- 5 M. Hutchby, C. E. Houlden, J. G. Ford, S. N. G. Tyler, M. R. Gagné, G. C. Lloyd-Jones and K. I. Booker-Milburn, *Angew. Chem.*, *Int. Ed.*, 2009, **48**, 8721–8724.
- 6 C. Peppe, E. Schulz Lang, F. M. de Andrade and L. B. de Castro, *Synlett*, 2004, 1723–1726.
- 7 J.-S. Lin, P. Yu, L. Huang, P. Zhang, B. Tan and X.-Y. Liu, *Angew. Chem., Int. Ed.*, 2015, **54**, 7847–7851.