Supporting Information for

Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic

Secondary Alkyl Halides to Access a-Chiral Primary Amines

Yu-Feng Zhang,^{†,§} Xiao-Yang Dong,^{†,§} Jiang-Tao Cheng,^{†,§} Ning-Yuan Yang,[†] Li-Lei Wang,[†] Fu-Li Wang,[†] Cheng Luan,[†] Juan Liu,[†] Zhong-Liang Li,[‡] Qiang-Shuai Gu,[‡] and Xin-Yuan Liu^{†,}*

*Correspondence to: <u>liuxy3@sustech.edu.cn</u>

[†]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.

‡Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China

Table	of	Content	ts
-------	----	---------	----

Table S1S3
Table S2S4
Table S3
Scheme S1S6
Scheme S2S7
Scheme S3S8
Figure S1S10
Figure S2S11
Figure S3S12
Figure S4S12
Figure S5S12
General information
General procedure for reaction condition screening
The synthesis of starting materials
Enantioconvergent N-alkylation reactions
Demonstration of synthetic potentials
Mechanistic investigations
NMR spectraS136
HPLC spectra
References

Table S1. Reaction Condition Optimization with Benzyl Bromide^a

^{*a*}Reaction conditions: (\pm)-E1 (0.025 mmol), N1 (1.0 equiv.), [Cu] (10 mol%), L*n (10 mol%), and base (4.0 equiv.) in solvent (0.5 mL) at room temperature for 72 h under argon; Yield of 1 was isolated; Ee was based on HPLC analysis. ^{*b*}The yield of S-B1 was based on ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard: 10% yield by L*1, trace by L*2, 13% yield by L*3.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				[Cu] (10 mol%) L*n (10 mol%) <u>Cs₂CO₃ (4.0 equiv.)</u> solvent, T, 72h		O N≥S∽Ar Me O 41	
entry	[Cu]	L*n	Ar	solvent	T (°C)	yield (%)	e.e. (%)
1	CuTc	L*5	Ph	Et ₂ O	r. t.	26	34
2	CuTc	L*5	Ph	THF	r. t.	41	20
3	CuTc	L*5	Ph	dioxane	r. t.	50	5
4	CuTc	L*5	Ph	benzene	r. t.	17	32
5	Cu(HFacac) ₂	L*5	Ph	Et ₂ O	r. t.	88	53
6	Cu(HFacac) ₂	L*6	Ph	Et ₂ O	r. t.	83	56
7	Cu(HFacac) ₂	L*7	Ph	Et ₂ O	r. t.	82	63
8	Cu(HFacac) ₂	L*7	4-MeOPh	Et ₂ O	r. t.	63	84
9	Cu(HFacac) ₂	L*7	4-MeOPh	Et ₂ O	10	69	90
10	Cu(HFacac) ₂	L*7	4-MeOPh	Et ₂ O	0	55	91
11	Cu(HFacac) ₂	L*7	4-MeOPh	Et ₂ O	0	80	91

Table S2. Reaction Condition Optimization with α-Arylcarbonyl Alkyl Bromide^a

^{*a*}Reaction conditions: (\pm)-**SE41** (0.025 mmol), sulfoximine (1.1 equiv.), [Cu] (10 mol%), L*n (10 mol%) and base (4.0 equiv.) in solvent (0.5 mL) for 72 h under argon; Yield of **41** was isolated; Ee was based on HPLC analysis.

	O N → Br + Me	O ⊨ Ph ^{-/S} ∖ Ph	NH	[Cu] (10 mo L*n (10 mo Cs ₂ CO ₃ (X eo solvent, T, 1	I%) I%) quiv.) → I8 h		Ph Y ^N ≳S∕∽Ph Me O
3 1.0	equiv.	1.0 equ	iv.			5	.
entry	[Cu]	L*n	X	solvent	T (°C)	yield (%)	e.e. (%)
1	CuTc	L*5	4.0	Et ₂ O	r. t.	60	44
2	CuTc	L*5	4.0	CH_2Cl_2	r. t.	71	17
3	CuTc	L*5	4.0	Dioxane	r. t.	52	25
4	CuTc	L*5	4.0	Benzene	r. t.	36	13
5	CuTc	L*6	4.0	Et ₂ O	r. t.	71	75
6	CuI	L*5	4.0	Et ₂ O	r. t.	56	61
7	Cu(PPh ₃) ₃ Br	L*5	4.0	Et ₂ O	r. t.	70	44
8	Cu(ⁱ PrCOO) ₂	L*5	4.0	Et ₂ O	r. t.	83	48
9	Cu(HFacac) ₂	L*5	4.0	Et ₂ O	r. t.	90	77
10	Cu(HFacac) ₂	L*6	4.0	Et ₂ O	r. t.	91	94
11	Cu(HFacac) ₂	L*6	4.0	Et ₂ O	0	85	96
12	Cu(HFacac) ₂	L*6	2.5	Et ₂ O	r. t.	95	94
13	Cu(HFacac) ₂	L*6	2.0	Et ₂ O	r. t.	83	93

Table	S3 .	Reaction	Condition	Optimization	with	α-Aminocarbonyl	Alkyl
Bromi	de ^a						

^{*a*}Reaction conditions: (±)-**SE55** (0.025 mmol), **N1** (1.0 equiv.), [Cu] (10 mol%), **L*n** (10 mol%), and base (4.0 equiv.) in solvent (0.5 mL) for 72 h under argon; Yield of **55** was isolated; Ee was based on HPLC analysis.

Scheme S1. The Attempt of Other Common Ammonia Surrogates

Scheme S2. The Synthesis of Antipodes

Scheme S3. Radical Clock Experiments

^{*a*}The complete loss of enantioselectivity indicates that **86** might have formed through facile direct substitution reactions between **E3** and **N1** due to the doubly activated nature of **E3**.

Figure S1. The time-course profile of the model reaction under the optimal conditions.

Figure S2. The X-ray structure of 26.

Figure S3. The X-ray structure of 58.

Figure S4. The X-ray structure of 83.

Figure S5. Cyclic voltammograms of compound **83** were measured in CH₃CN in the presence of TBAPF₆ (0.1 M) with scan rates of 100 mV s⁻¹. Potentials are given vs. the ferrocene/ferrocenium (Fc/Fc⁺) couple. (a) and (b) are the scan spectra of corresponding oxidation and reduction, respectively. (c) is the whole scan spectrum of **83** with Fc/Fc⁺ in CH₃CN.

General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CH₂Cl₂, THF and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. Copper(I) thiophene-2-carboxylate (CuTc, CAS No. 68986-76-5) was purchased from Bide Pharmatech Ltd. Copper(II) hexafluoroacetylacetonate (Cu(HFacac)₂, CAS No. 14781-45-4) was purchased from TCI. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 500 to 600 °C) for 5 minutes in vacuum. Anhydrous diethyl ether (Et₂O) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was treated by 4 Å Molecular sieve and distilled after refluxing with sodium and benzophenone. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). As the eluent, the petroleum ether (PE), hexane, ethyl acetate (EtOAc), dichloromethane (CH₂Cl₂) and methanol were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR and 162 MHz or 243 MHz for ³¹P NMR, respectively, in CDCl₃, CD₃OD, C₆D₆, D₂O or DMSO-*d*₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) value was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Kα radiation.

General procedure for reaction condition screening.

General procedure for Supplementary Table 1.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone **N1** (5.4 mg, 0.025 mmol, 1.0 equiv.), [Cu] (0.0025 mmol, 10 mol%), chiral ligand **L*n** (0.0025 mmol, 10 mol%), base (0.10 mmol, 4.0 equiv.) and anhydrous solvent (0.5 mL). To this solution was added (1-bromoethyl)benzene (4.6 mg, 0.025 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 72 h. The precipitate was diluted with EtOAc, filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure for Supplementary Table 2.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfoximine (0.028 mmol, 1.1 equiv.), [Cu] (0.0025 mmol, 10 mol%), chiral ligand L*n (0.0025 mmol, 10 mol%), Cs₂CO₃ (32.6 mg, 0.10 mmol, 4.0 equiv.) and anhydrous solvent (0.5 mL). To this solution was added 2-bromo-1-phenylpropan-1-one (5.3 mg, 0.025 mmol, 1.0 equiv.) and the reaction mixture was stirred for 72 h. The precipitate was diluted with EtOAc, filtered through

a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure for Supplementary Table 3.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (6.5 mg, 0.030 mmol, 1.2 equiv.), [Cu] (0.0025 mmol, 10 mol%), chiral ligand L*n (0.0025 mmol, 10 mol%), Cs₂CO₃ (X equiv.) and anhydrous solvent (0.5 mL). Then, 2-bromo-1-(indolin-1-yl)propan-1-one (6.3 mg, 0.025 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 18 h. The precipitate was diluted with EtOAc, filtered off and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford the desired product.

The synthesis of starting materials.

All the benzylic halides were synthesized following the literatures.¹

The Synthesis of sulfoximines.

General procedure SM A: To a solution of sulfide or sulfoxide (1.0 equiv.) in methanol were added PhI(OAc)₂ (2.5 equiv.) and ammonium carbamate (2.0 equiv.) at 0 °C. The reaction mixture was warmed up to room temperature and stirred overnight. After that, the solvent was removed by evaporator and the residue was dissolved in CH₂Cl₂. The organic phase was washed with water, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

According to **General procedure SM A** with sulfinyldibenzene (2.02 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **N1** as a white powder (1.87 g, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.21 – 7.91 (m, 4H), 7.67 – 7.37 (m, 6H), 2.74 (s, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 143.4, 132.6, 129.1, 127.9.

HRMS (ESI) m/z calcd. for C₁₂H₁₂NOS [M + H]⁺ 218.0634, found 218.0633.

Iminobis(4-methoxyphenyl)-λ⁶-sulfanone (SN2)

According to **General procedure SM A** with 4,4'-sulfinylbis(methoxybenzene) (2.62 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **SN2** as a yellow powder (2.22 g, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 4H), 6.93 (d, *J* = 8.5 Hz, 4H), 3.82 (s, 6H), 2.92 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.8, 135.6, 129.8, 114.3, 55.6.

HRMS (ESI) m/z calcd. for C₁₄H₁₆NO₃S [M + H]⁺ 278.0845, found 278.0844.

di([1,1'-Biphenyl]-4-yl)(imino)-λ⁶-sulfanone (SN3)

According to **General procedure SM A** with 4,4"-sulfinyldⁱ1,1'-biphenyl (3.54 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/3) to yield the product **SN3** as a white powder (2.44 g, 66% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.5 Hz, 4H), 7.81 – 7.65 (m, 4H), 7.65 – 7.53 (m, 4H), 7.53 – 7.36 (m, 6H), 3.16 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6, 142.1, 139.4, 129.0, 128.47, 128.46, 127.9, 127.4.
HRMS (ESI) *m/z* calcd. for C₂₄H₂₀NOS [M + H]⁺ 370.1260, found 370.1258.

bis(4-(*tert*-Butyl)phenyl)(imino)-λ⁶-sulfanone (SN4)

According to **General procedure SM A** with 4,4'-sulfinylbis(*tert*-butylbenzene) (3.14 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **SN4** as a white powder (2.66 g, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 4H), 7.47 (d, *J* = 8.5 Hz, 4H), 2.94 (brs, 1H), 1.29 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 156.2, 140.6, 127.8, 126.1, 35.0, 31.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₈NOS [M + H]⁺ 330.1886, found 330.1883.

bis(4-Cyclohexylphenyl)(imino)-λ⁶-sulfanone (SN5)

According to General procedure SM A with 4,4'-sulfinylbis(cyclohexylbenzene) (3.66 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product SN5 as a white powder (3.16 g, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 4H), 7.28 (d, J = 8.0 Hz, 4H), 2.86 (brs, 1H), 2.63 – 2.38 (m, 2H), 1.77 (dd, J = 33.6, 10.8 Hz, 10H), 1.50 – 1.09 (m, 10H).
¹³C NMR (100 MHz, CDCl₃) δ 153.0, 140.9, 128.0, 127.6, 44.4, 34.09, 34.07, 26.7, 26.0.

HRMS (ESI) m/z calcd. for C₂₄H₃₂NOS [M + H]⁺ 382.2199, found 382.2195.

bis(4-Fluorophenyl)(imino)-λ⁶-sulfanone (SN6)

According to **General procedure SM A** with bis(4-fluorophenyl)sulfane (2.22 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **SN6** as a yellow oil (2.28 g, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 7.95 (m, 4H), 7.22 – 7.06 (m, 4H), 3.23 (brs, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 165.2 (d, *J* = 255.1 Hz), 139.3 (d, *J* = 3.1 Hz), 130.6 (d, *J* = 9.5 Hz), 116.4 (d, *J* = 22.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –105.6 (tt, *J* = 8.2, 4.8 Hz, 2F).

HRMS (ESI) m/z calcd. for C₁₂H₁₀F₂NOS [M + H]⁺ 254.0446, found 254.0444.

bis(4-Chlorophenyl)(imino)-λ⁶-sulfanone (SN7)

According to **General procedure SM A** with bis(4-chlorophenyl)sulfane (2.54 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **SN7** as a yellow powder (2.48 g, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.92 (m, 4H), 7.49 – 7.42 (m, 4H), 3.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 139.6, 129.6, 129.4.

HRMS (ESI) m/z calcd. for C₁₂H₁₀Cl₂NOS [M + H]⁺ 285.9855, found 285.9854.

bis(4-Bromophenyl)(imino)-λ⁶-sulfanone (SN8)

According to **General procedure SM A** with bis(4-bromophenyl)sulfane (3.42 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **SN8** as an orange powder (3.36 g, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 4H), 7.58 (d, *J* = 8.3 Hz, 4H), 3.27 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.1, 132.5, 129.5, 128.1.

HRMS (ESI) m/z calcd. for C₁₂H₁₀Br₂NOS [M + H]⁺ 373.8844, found 373.8844.

4,4'-Sulfonimidoyldibenzonitrile (N2)

According to **General procedure SM A** with 4,4'-sulfinyldibenzonitrile (2.52 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **N2** as a yellow powder (2.32 g, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.11 (m, 4H), 7.95 – 7.77 (m, 4H), 3.36 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 133.2, 128.8, 117.09, 117.05.

HRMS (ESI) m/z calcd. for C₁₄H₁₀N₃OS [M + H]⁺ 268.0539, found 268.0538.

Dimethyl 4,4'-sulfonimidoyldibenzoate (SN10)

According to **General procedure SM A** with dimethyl 4,4'-sulfinyldibenzoate (3.18 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **SN10** as a white powder (2.73 g, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.06 (m, 8H), 3.94 (s, 6H), 3.28 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.5, 146.7, 134.1, 130. 5, 128.1, 52.7.

HRMS (ESI) m/z calcd. for C₁₆H₁₆NO₅S [M + H]⁺ 334.0744, found 334.0742.

bis(3,5-Dimethylphenyl)(imino)- λ^6 -sulfanone (SN11)

According to **General procedure SM A** with dimethyl 5,5'-sulfinylbis(1,3dimethylbenzene) (2.58 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **SN11** as a white powder (1.97 g, 72% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 4H), 7.11 (s, 2H), 2.98 (s, 1H), 2.34 (s, 12H).
¹³C NMR (100 MHz, CDCl₃) δ 143.2, 139.1, 134.2, 125.4, 21.2.

HRMS (ESI) m/z calcd. for C₁₆H₂₀NOS [M + H]⁺ 274.1260, found 274.1258.

The synthesis of SE40.

To a solution of ^{*n*}BuLi (5.0 mL, 12.0 mmol, 1.2 equiv., 2.4 M in hexane) in THF (5.0 mL) was added 3,3-dimethylbut-1-yne (984.0 mg, 12.0 mmol, 1.2 equiv.) dropwise with vigorously stirring at -78 °C under an argon atmosphere. After that, the mixture was warmed up to room temperature, stirred for another 30 min, and cooled down to -78 °C again. To this solution was added 3-phenylpropanal (1.34 g, 10.0 mmol, 1.0 equiv.) dropwise. The reaction mixture was warmed up to room temperature and stirred for another 2 h. The reaction was quenched with slow addition of ice. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product **SE40-1** (2.05 g, 95% yield) as a colorless oil, which was immediately applied to the next step without further purification.

The crude **SE40-1** (2.05 g) was dissolved in CH₂Cl₂ (20.0 mL) and cooled down to 0 °C. To this solution were added imidazole (775.2 mg, 11.4 mmol, 1.2 equiv.) and PPh₃Br₂(4.79 g, 11.4 mmol, 1.2 equiv.) sequentially at that temperature and the reaction mixture was warmed up to room temperature and stirred for another 3 h. The mixture was filtered through a short pad of Celite and washed with Et₂O. The combined organic phase was concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford the desired product **SE40** (2.38 g, 90% yield) as a colorless oil.

6,6-Dimethyl-1-phenylhept-4-yn-3-ol (SE40-1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.28 – 7.19 (m, 3H), 4.40 (q, *J* = 6.0 Hz, 1H), 2.83 (t, *J* = 7.9 Hz, 2H), 2.08 – 1.96 (m, 2H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 141.7, 128.5, 128.4, 125.9, 94.2, 79.5, 61.9, 39.8, 31.6, 31.1, 27.4.

(3-Bromo-6,6-dimethylhept-4-yn-1-yl)benzene (SE40)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 2H), 7.28 – 7.18 (m, 3H), 4.53 (t, J =

6.7 Hz, 1H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.44 – 2.22 (m, 2H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 128.60, 128.55, 126.2, 96.7, 77.8, 41.8, 37.8, 33.5, 30.8, 27.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₉ [M – Br]⁺ 199.1481, found 199.1482.

The synthesis of α-bromo ketones.

General procedure SM B: To a solution of ketone (1.0 equiv.) in Et₂O was added bromine (10.0 equiv.) dropwise at room temperature and the reaction mixture was stirred for another 1 h. Upon completion (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution and extracted with Et₂O three times. The combined organic phase was washed with Na₂S₂O₃ solution and brine, then dried over Na₂SO₄ and concentrated to afford the residue. The residue was purified by flash column chromatography on silica gel to afford the desired product.

2-Bromo-1-(3-methoxyphenyl)propan-1-one (SE44)

According to **General procedure SM B** with 1-(3-methoxyphenyl)propan-1-one (1.64 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **SE44** as a colorless oil (2.01 g, 83% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 1H), 7.57 (dd, *J* = 2.7, 1.6 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.15 (ddd, *J* = 8.2, 2.7, 0.9 Hz, 1H), 5.30 (q, *J* = 6.6 Hz, 1H), 3.88 (s, 3H), 1.92 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.2, 159.9, 135.4, 129.7, 121.3, 120.2, 113.3, 55.5, 41.6, 20.2.

HRMS (ESI) m/z calcd. for C₁₀H₁₂BrO₂ [M + H]⁺ 243.0015, found 243.0015.

1-(Benzo[d][1,3]dioxol-5-yl)-2-bromobutan-1-one (SE45)

According to **General procedure SM B** with 1-(benzo[*d*][1,3]dioxol-5-yl)butan-1-one (1.92 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **SE45** as a colorless oil (1.92 g, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 1H), 7.53 – 7.47 (m, 1H), 6.92 – 6.84 (m, 1H), 6.07 (s, 2H), 5.05 – 4.95 (m, 1H), 2.32 – 2.04 (m, 2H), 1.08 (t, *J* = 7.3 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 191.5, 152.3, 148.4, 129.2, 125.2, 108.7, 108.1, 102.1, 49.0, 27.1, 12.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₂BrO₃ [M + H]⁺ 270.9964 & 272.9944, found 270.9963 & 272.9942.

2-Bromo-1-(3-(trifluoromethyl)phenyl)propan-1-one (SE46)

According to **General procedure SM B** with 1-(3-(trifluoromethyl)phenyl)propan-1one (2.02 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE46** as a colorless oil (2.49 g, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.22 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 5.30 (d, J = 6.8 Hz, 1H), 1.94 (d, J = 6.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 192.0, 134.7, 132.0, 131.4 (q, J = 33.0 Hz), 130.0 (q, J = 3.6 Hz), 129.4, 125.8 (q, J = 3.8 Hz), 123.6 (q, J = 272.6 Hz), 41.2, 19.8.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₀H₉BrF₃O [M + H]⁺ 280.9783, found 280.9783.

2-Bromo-1-phenylpentan-1-one (SE50)

According to **General procedure SM B** with 1-phenylpentan-1-one (1.62 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE50** as a colorless oil (1.34 g, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 7.99 (m, 2H), 7.68 – 7.58 (m, 1H), 7.57 – 7.46 (m, 2H), 5.18 (dd, *J* = 7.8, 6.5 Hz, 1H), 2.27 – 2.08 (m, 2H), 1.70 – 1.36 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.3, 134.5, 133.7, 128.9, 128.8, 47.1, 35.5, 20.8, 13.6. HRMS (ESI) *m/z* calcd. for C₁₁H₁₄BrO [M + H]⁺ 241.0223, found 241.0221.

2-Bromo-1-(thiophen-2-yl)propan-1-one (SE51)

According to **General procedure SM B** with 1-(thiophen-2-yl)propan-1-one (1.40 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **SE51** as a colorless oil (1.70 g, 78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 3.9, 1.2 Hz, 1H), 7.70 (dd, J = 5.0, 1.1 Hz, 1H), 7.16 (dd, J = 5.0, 3.9 Hz, 1H), 5.15 (q, J = 6.7 Hz, 1H), 1.90 (d, J = 6.7 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 186.9, 140.9, 134.9, 133.1, 128.3, 42.5, 20.4.
HRMS (ESI) *m/z* calcd. for C₇H₈BrOS [M + H]⁺ 218.9474, found 218.9474.

2-Bromo-4-methylpentan-3-one (SE53)

To a solution of lithium bis(trimethylsilyl)amide (LiHMDS) (2.0 mmol, 20 mol%) in THF was added 2-methylpentan-3-one (1.00 g, 10.0 mmol, 1.0 equiv.) dropwise at -78 °C. The reaction mixture was then warmed up to 0 °C and stirred for 10 min. After cooling down to -78 °C, bromine (1.60 g, 10.0 mmol, 1.0 equiv.) was added dropwise and the mixture was stirred for another 10 min at that temperature. Then the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with Et₂O. The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1) to yield the product **SE53** as a colorless oil (1.37 g, 77% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 4.56 (d, J = 6.8 Hz, 1H), 3.11 (hept, J = 6.8 Hz, 1H),

1.74 (d, *J* = 6.8 Hz, 3H), 1.18 (d, *J* = 6.7 Hz, 3H), 1.14 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.9, 45.9, 37.5, 20.1, 19.5, 18.7.

HRMS (ESI) m/z calcd. for C₆H₁₁O [M – Br]⁺ 99.0804, found 99.0810.

The synthesis of SE54.

To a mixture of cyclohexanecarbaldehyde (1.68 g, 15.0 mmol, 1.0 equiv.) and K₂CO₃ (0.41 g, 3.0 mmol, 0.2 equiv.) in Et₂O (30.0 mL) was added trimethylsilyl cyanide (1.63 g, 16.5 mmol, 1.1 equiv.) and the mixture was stirred at room temperature overnight. After completion (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution and extracted with Et₂O three times. The combined organic phase was washed with brine and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE54-1** as a colorless oil (1.90 g, 91% yield).

To a solution of **SE54-1** (0.70 g, 5.0 mmol, 1.0 equiv.) in CH₂Cl₂ (25.0 mL) were added triphenylphosphine dibromide (2.53 g, 6.0 mmol, 1.2 equiv.) and imidazole (0.41 g, 6.0 mmol, 1.2 equiv.) with vigorously stirring at 0 °C under argon. Then the reaction mixture was allowed to warm to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **SE54** as a yellow oil (0.55 g, 55% yield).

2-Cyclohexyl-2-hydroxyacetonitrile (SE54-1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.25 (d, *J* = 6.4 Hz, 1H), 3.95 (brs, 1H), 1.96 – 1.63 (m, 6H), 1.34 – 1.02 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 119.5, 66.1, 42.1, 28.2, 27.9, 25.9, 25.43, 25.41.

2-Bromo-2-cyclohexylacetonitrile (SE54)

¹**H NMR** (400 MHz, CDCl₃) δ 4.21 (d, J = 5.7 Hz, 1H), 2.10 – 1.93 (m, 2H), 1.92 –

1.87 (m, 3H), 1.77 – 1.68 (m, 1H), 1.41 – 1.12 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 116.6, 42.7, 34.3, 30.4, 29.5, 25.6, 25.5.

HRMS (ESI) m/z calcd. for C₈H₁₃BrN [M + H]⁺ 202.0226, found 202.0225.

The synthesis of α-bromo amides.

General procedure SM C: To a solution of Et₃N (1.52 g, 15.0 mmol, 1.5 equiv.) and amine (10.0 mmol, 1.0 equiv.) in THF (5.0 mL) was added 2-bromopropanoyl bromide (2.59 g, 12.0 mmol, 1.2 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 3 h. After completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure SM D: To a solution of 2-bromo aliphatic acid (5.0 mmol, 1.0 equiv.) and Et₃N (1.52 g, 15.0 mmol, 3.0 equiv.) in THF (10.0 mL) was added pivaloyl chloride (603.0 mg, 5.0 mmol, 1.0 equiv.) dropwise at 0 °C. The reaction mixture was stirred at that temperature for 4 h, and then LiCl (0.21 g, 5.0 mmol, 1.0 equiv.) and morpholine (0.44 g, 5.0 mmol, 1.0 equiv.) were added sequentially. The mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with 1.0 M aqueous HCl solution and extracted with EtOAc three times. The combined organic phase was washed with 1.0 M aqueous NaOH solution and brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure SM E: To a solution of aliphatic acid (10.0 mmol, 1.0 equiv.) and hexamethylphosphoramide (HMPA) (0.5 mL) in THF (30.0 mL) was added lithium diisopropylamide (LDA) (11.0 mL, 11.0 mmol, 1.1 equiv., 1.0 M in THF) at -10 °C. After being stirred for 2 h at -10 °C, the reaction mixture was cooled down to -78 °C and treated with a solution of carbon tetrabromide (7.30 g, 22.0 mmol, 2.2 equiv.) in THF (3.0 mL). The solution was warmed up to room temperature over 1 h and stirred for another 1 h at room temperature. The reaction was quenched with brine, acidified with 2.0 M aqueous HCl solution, and extracted with Et₂O three times. The combined organic phase was dried over magnesium sulfate, filtered and concentrated to afford the crude bromo acid, which was immediately used in the next step without further purification.

To a solution of the above bromo acid in CH₂Cl₂ (10.0 mL) was added oxalyl chloride (2.52 g, 20.0 mmol, 2.0 equiv.) and a drop of DMF at room temperature. The reaction mixture was stirred for 2 h at room temperature. Then the solvent was removed under reduced pressure to afford the bromo acyl chloride, which was immediately used in the next step without further purification.

To a solution of morpholine (1.74 g, 20.0 mmol, 2.0 equiv.) and Et₃N (2.02 g, 20.0 mmol, 2.0 equiv.) in CH₂Cl₂ (20.0 mL) was added the above bromo acidic chloride at 0 °C. The mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with brine and extracted with EtOAc three times. The combined organic phase was dried over magnesium sulfate, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel to yield the product.

2-Bromo-1-(indolin-1-yl)propan-1-one (SE55)

According to **General procedure SM C** with indoline (1.19 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE55** as a pink amorphous powder (2.20 g, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.17 (m, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 4.59 (q, *J* = 6.6 Hz, 1H), 4.40 (td, *J* = 10.0, 6.8 Hz, 1H), 4.08 (td, *J* = 10.0, 6.9 Hz, 1H), 3.38 – 3.17 (m, 2H), 1.94 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 142.7, 131.5, 127.7, 124.6, 124.4, 117.6, 47.8, 40.9, 28.1, 21.3.

HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNO [M + H]⁺ 254.0175, found 254.0175.

2-Bromo-1-(5-(trifluoromethyl)indolin-1-yl)propan-1-one (SE57)

According to **General procedure SM C** with 5-(trifluoromethyl)indoline (1.87 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE57** as a pink amorphous powder (2.73 g, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 9.3 Hz, 1H), 7.46 (s, 1H), 4.58 (q, *J* = 6.6 Hz, 1H), 4.48 (td, *J* = 10.1, 6.9 Hz, 1H), 4.17 – 4.11 (m, 1H), 3.40 – 3.18 (m, 2H), 1.93 (d, *J* = 6.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.6, 145.6, 132.2, 126.2 (dd, *J* = 64.8, 32.2 Hz), 125.3 (dd, *J* = 7.7, 3.9 Hz), 124.2 (q, *J* = 270.0 Hz), 122.0 – 120.7 (m), 117.2, 48.1, 40.5, 27.8, 21.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –61.8 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₂H₁₂BrF₃NO [M + H]⁺ 322.0049, found 322.0049.

2-Bromo-N-methyl-N-phenylpropanamide (SE59)

According to **General procedure SM C** with *N*-methylaniline (1.07 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE59** as a brown amorphous powder (1.88 g, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.33 (m, 3H), 7.33 – 7.19 (m, 2H), 4.26 (q, *J* = 6.7 Hz, 1H), 3.27 (s, 3H), 1.71 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 142.9, 123.0, 128.5, 127.1, 39.1, 38.1, 21.9.

HRMS (ESI) m/z calcd. for C₁₀H₁₃BrNO [M + H]⁺ 242.0175, found 242.0174.

2-Bromo-N-phenylpropanamide (SE60)

According to **General procedure SM C** with aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE60** as a white amorphous powder (1.88 g, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.57 (d, J = 7.9 Hz, 2H), 7.40 – 7.30 (m, 2H), 7.17 (t, J = 7.4 Hz, 1H), 4.66 – 4.53 (m, 1H), 2.01 – 1.89 (m, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 168.0, 137.2, 129.1, 125.1, 120.5, 44.8, 22.6.
HRMS (ESI) *m/z* calcd. for C₉H₁₁BrNO [M + H]⁺ 228.0019, found 228.0018.

2-Bromo-1-morpholinopropan-1-one (E2)

According to General procedure SM C with morpholine (0.87 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product E2 as a colorless oil (2.03 g, 92% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.57 – 4.46 (m, 1H), 3.88 – 3.54 (m, 6H), 3.53 – 3.37 (m, 2H), 1.81 (t, *J* = 6.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 66.6, 66.3, 46.5, 42.6, 37.7, 21.5.

HRMS (ESI) m/z calcd. for C₇H₁₃BrNO₂ [M + H]⁺ 222.0124, found 222.0124.

2-Bromo-1-morpholinohexan-1-one (SE62)

According to **General procedure SM D** with 2-bromohexanoic acid (0.97 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE62** as a colorless oil (0.82 g, 62% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.33 (t, J = 7.1 Hz, 1H), 3.86 – 3.39 (m, 8H), 2.24 – 1.97 (m, 2H), 1.49 – 1.25 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 66.7, 66.3, 46.6, 43.5, 42.6, 34.4, 29.7, 22.2, 13.9.

HRMS (ESI) m/z calcd. for C₁₀H₁₉BrNO₂ [M + H]⁺ 264.0594, found 264.0594.

2-Bromo-4-methyl-1-morpholinopentan-1-one (SE63)

According to **General procedure SM D** with 2-bromo-4-methylpentanoic acid (0.97 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE63** as a colorless oil (0.68 g, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.43 (dd, *J* = 8.0, 6.6 Hz, 1H), 3.87 – 3.41 (m, 8H), 2.06 – 1.71 (m, 3H), 1.01 – 0.86 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 66.7, 66.3, 52.2, 46.6, 43.1, 41.8, 26.1, 22.5, 21.8.

HRMS (ESI) m/z calcd. for C₁₀H₁₉BrNO₂ [M + H]⁺ 264.0594, found 264.0594.
2-Bromo-4-chloro-1-morpholinobutan-1-one (SE64)

A mixture of 4-chlorobutanoic acid (1.22 g, 10.0 mmol, 1.0 equiv.), PBr₃ (0.54 g, 2.0 mmol, 0.2 equiv.) and Br₂ (3.20 g, 20.0 mmol, 2.0 equiv.) was refluxed overnight. After concentration under reduced pressure, the crude bromo acetyl bromide was obtained and dissolved in CH₂Cl₂ (10.0 mL). To this solution were added morpholine (1.04 g, 12.0 mmol, 1.2 equiv.) and Et₃N (3.03 g, 30.0 mmol, 3.0 equiv.) sequentially at room temperature and the reaction mixture was stirred overnight. The reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford the desired product **SE64** as a colorless oil (1.10 g, 41% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.70 (t, *J* = 6.9 Hz, 1H), 3.85 – 3.44 (m, 10H), 2.57 – 2.43 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 66.6, 66.3, 46.6, 42.7, 42.5, 39.8, 36.9.

HRMS (ESI) m/z calcd. for C₈H₁₄BrClNO₂ [M + H]⁺ 269.9891, found 269.9890.

2-(3-Bromo-4-morpholino-4-oxobutyl)isoindoline-1,3-dione (SE65)

According to **General procedure SM D** with 2-bromo-4-(1,3-dioxoisoindolin-2yl)butanoic acid (1.56 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product SE65 as a brown amorphous powder (0.78 g, 41% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.77 – 7.71 (m, 2H), 4.49 – 4.38 (m, 1H), 3.92 – 3.43 (m, 10H), 2.83 – 2.60 (m, 1H), 2.38 – 2.19 (m, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 168.4, 166.2, 134.1, 132.0, 123.3, 66.6, 66.4, 46.3, 42.6, 39.4, 35.3, 33.8.

HRMS (ESI) m/z calcd. for C₁₆H₁₈BrN₂O₄ [M + H]⁺ 381.0444, found 381.0442.

2-Bromo-1-morpholino-4-phenoxybutan-1-one (SE66)

According to **General procedure SM E** with 4-phenoxybutanoic acid (1.80 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE66** as a red oil (1.96 g, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 6.98 (tt, *J* = 7.4, 1.1 Hz, 1H),
6.91 (dt, *J* = 7.8, 1.0 Hz, 2H), 4.80 (dt, *J* = 7.9, 5.9 Hz, 1H), 4.25 – 4.02 (m, 2H), 3.87 – 3.41 (m, 8H), 2.68 – 2.35 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 166.9, 158.6, 129.6, 121.2, 114.5, 66.72, 66.69, 63.9,

46.5, 42.8, 42.7, 34.3.

HRMS (ESI) m/z calcd. for C₁₄H₁₉BrNO₃ [M + H]⁺ 328.0543, found 328.0543.

Ethyl 4-bromo-5-morpholino-5-oxopentanoate (SE67)

According to **General procedure SM E** with 5-ethoxy-5-oxopentanoic acid (1.60 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE67** as a red oil (1.14)

g, 37% yield).

¹H NMR (400 MHz, CDCl₃) δ 4.71 – 4.61 (m, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.86 – 3.45 (m, 8H), 2.61 – 2.48 (m, 2H), 2.44 – 2.31 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.0, 66.6, 60.6, 46.5, 42.7, 42.3, 31.4, 29.7, 14.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₉BrNO₄ [M + H]⁺ 308.0492, found 308.0491.

2-Bromo-1-morpholino-4-phenylbutan-1-one (SE68)

According to **General procedure SM E** with 4-phenylbutanoic acid (1.64 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE68** as a colorless oil (1.87 g, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.12 (m, 5H), 4.28 – 4.23 (m, 1H), 3.91 – 3.28 (m, 8H), 2.88 – 2.75 (m, 2H), 2.56 – 2.27 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 140.2, 128.6, 126.4, 66.7, 66.2, 52.6, 46.5, 42.2, 36.0, 33.3.

HRMS (ESI) m/z calcd. for C₁₄H₁₉BrNO₂ [M + H]⁺ 312.0594, found 312.0593.

2-Bromo-1-morpholinohex-5-en-1-one (SE69)

According to **General procedure SM E** with hex-5-enoic acid (1.14 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **SE69** as a red oil (1.49 g, 57%)

yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.81 – 5.63 (m, 1H), 5.09 – 4.93 (m, 2H), 4.38 – 4.28 (m, 1H), 3.82 – 3.32 (m, 8H), 2.26 – 2.07 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.2, 136.6, 116.2, 66.6, 66.3, 46.5, 42.6, 42.4, 33.5, 31.4.

HRMS (ESI) m/z calcd. for C₁₀H₁₇BrNO₂ [M + H]⁺ 262.0437, found 262.0437.

Enantioconvergent N-alkylation reactions.

All the racemic products were prepared by S_N2 reaction without further optimization.

General procedure:

$$\begin{array}{cccc} Br/Cl &+ & O \\ R^2 & R^1 &+ & Ar & S \\ R^2 & R^1 & Ar & Ar & DMF, 60 \ ^{\circ}C & R^2 & N & Ar \\ 3.0 \ equiv. & 1.0 \ equiv. \end{array}$$

To a mixture of alkyl halides (3.0 equiv.) and sulfoximine (1.0 equiv.) in DMF was added KOH (3.0 equiv.). The reaction mixture was then warmed up to 60 °C and stirred for 3–12 h. After cooling to room temperature, the solution was diluted with H₂O and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired products.

Enantioconvergent N-alkylation: scope of sulfoximines. (Figure 2B)

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (43.4 mg, 0.20 mmol, 1.0 equiv.), CuTc (3.9 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added alkyl halide (0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 30 to 96 h. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc. The mixture was then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfoximine (0.20 mmol, 1.0 equiv.), CuTc (3.9 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added benzyl bromide (0.30 mmol, 1.5 equiv.) and the reaction mixture was stirred at room temperature for 3 to 5 d. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, then filtered through a pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

(S)-Diphenyl((1-phenylethyl)imino)- λ^6 -sulfanone (1)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **1** as a colorless oil (51.8 mg, 81% yield, 97% ee).

 $[\alpha]_{D}^{20} = -37 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 38.53 min, t_R (minor) = 49.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.04 (m, 2H), 7.95 – 7.79 (m, 2H), 7.58 – 7.44 (m, 6H), 7.43 – 7.37 (m, 2H), 7.37 – 7.30 (m, 2H), 7.27 – 7.20 (m, 1H), 4.44 (q, *J* = 6.6 Hz, 1H), 1.59 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.5, 141.5, 140.8, 132.4, 132.3, 129.1, 129.0, 128.9, 128.5, 128.2, 126.4, 126.2, 54.2, 28.2.

HRMS (ESI) m/z calcd. for C₂₀H₂₀NOS [M + H]⁺ 322.1260, found 322.1258.

According to **General procedure A** with (1-chloroethyl)benzene (28.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product as a colorless oil (45.6 mg, 71% yield, 93% ee).

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 29.91 min, t_R (minor) = 44.48 min.

(*R*)-Diphenyl((1-phenylethyl)imino)- λ^6 -sulfanone ((*R*)-1)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7' for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*R*)-1 as a colorless oil (63.6 mg, 99% yield, 98% ee).

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 24.87 min, t_R (major) = 27.64 min.

(S)-bis(4-Methoxyphenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (2)

According to **General procedure B** with iminobis(4-methoxyphenyl)- λ^6 -sulfanone (55.4 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **2** as a colorless oil (75.6 mg, 99% yield, 98% ee).

 $[\alpha]_{D}^{20} = -32 (c \ 1.6, CH_2Cl_2).$

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 13.36 min, t_R (minor) = 17.99 min.

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.91 (m, 2H), 7.75 – 7.67 (m, 2H), 7.46 – 7.39 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.17 (m, 1H), 6.96 – 6.89 (m, 2H), 6.88 – 6.79 (m, 2H), 4.37 (q, *J* = 6.6 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 1.54 (d, *J* = 6.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 162.8, 162.7, 147.9, 133.7, 132.7, 130.9, 130.4, 128.3, 126.4, 114.4, 114.3, 55.7, 55.6, 54.2, 28.4.

HRMS (ESI) m/z calcd. for C₂₂H₂₄NO₃S [M + H]⁺ 382.1471, found 382.1467.

(S)-di([1,1'-Biphenyl]-4-yl)((1-phenylethyl)imino)- λ^6 -sulfanone (3)

According to **General procedure B** with di([1,1'-biphenyl]-4-yl)(imino)- λ^6 -sulfanone (73.8 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **3** as a colorless oil (55.8 mg, 59% yield, 97% ee).

 $[\alpha]_{D}^{20} = -9 (c 2.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/^{*i*}PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.65 min, *t*_R (minor) = 16.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 – 8.11 (m, 2H), 7.95 – 7.88 (m, 2H), 7.73 – 7.66 (m, 2H), 7.63 – 7.52 (m, 6H), 7.50 – 7.42 (m, 6H), 7.42 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.20 (m, 1H), 4.50 (q, *J* = 6.6 Hz, 1H), 1.62 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 145.5, 145.3, 140.3, 139.62, 139.59, 129.6, 129.12, 129.10, 129.06, 128.48, 128.46, 128.3, 127.91, 127.89, 127.5, 127.4, 126.5, 126.4, 54.4, 28.4.

HRMS (ESI) m/z calcd. for C₃₂H₂₈NOS [M + H]⁺ 474.1886, found 474.1884.

(S)-bis(4-(*tert*-Butyl)phenyl)((1-phenylethyl)imino)-λ⁶-sulfanone (4)

According to **General procedure B** with bis(4-(*tert*-butyl)phenyl)(imino)- λ^6 -sulfanone (65.8 mg, 0.20 mmol, 1.0 equiv.) at 0 °C for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **4** as a colorless oil (77.9 mg, 90% yield, 92% ee).

 $[\alpha]_{D}^{20} = -40$ (*c* 0.6, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 5.80 min, $t_{\rm R}$ (minor) = 7.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.76 – 7.69 (m, 2H), 7.51 – 7.45 (m, 2H), 7.45 – 7.40 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.16 (m, 1H), 4.41 (q, *J* = 6.6 Hz, 1H), 1.55 (d, *J* = 6.6 Hz, 3H), 1.30 (s, 9H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 156.0, 155.9, 147.9, 138.8, 137.9, 128.8, 128.4, 128.2, 126.4, 126.3, 126.2, 126.1, 54.1, 35.2, 35.1, 31.23, 31.21, 28.3.

HRMS (ESI) m/z calcd. for C₂₈H₃₆NOS [M + H]⁺ 434.2512, found 434.2508.

(S)-bis(4-Cyclohexylphenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (5)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and bis(4-cyclohexylphenyl)(imino)- λ^6 -sulfanone (76.2 mg, 0.20 mmol, 1.0 equiv.) for 3 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **5** as a colorless oil (50.4 mg, 52% yield, 92% ee).

 $[\alpha]_{D}^{20} = -17 (c 2.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 7.41 min, $t_{\rm R}$ (minor) = 9.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.75 – 7.66 (m, 2H), 7.44 – 7.38 (m, 2H), 7.29 (m, 4H), 7.23 – 7.15 (m, 3H), 4.39 (q, *J* = 6.6 Hz, 1H), 2.59 – 2.41 (m, 2H), 1.90 – 1.68 (m, 10H), 1.54 (d, *J* = 6.6 Hz, 3H), 1.44 – 1.13 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 152.9, 152.8, 147.9, 139.1, 138.3, 129.1, 128.6, 128.2, 127.6, 126.4, 126.3, 54.2, 44.61, 44.56, 34.3, 34.2, 28.3, 26.8, 26.1.

HRMS (ESI) m/z calcd. for C₃₂H₄₀NOS [M + H]⁺ 486.2825, found 486.2822.

(S)-bis(4-Fluorophenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (6)

According to **General procedure B** with bis(4-fluorophenyl)(imino)- λ^6 -sulfanone (50.6 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **6** as a colorless oil (58.5 mg, 82% yield, 98% ee).

 $[\alpha]_{D}^{20} = -44 \ (c \ 0.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/^{*i*}PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.93 min, t_R (minor) = 10.40 min.

¹**H NMR** (400 MHz,) δ 8.08 – 7.99 (m, 2H), 7.82 – 7.72 (m, 2H), 7.42 – 7.34 (m, 2H), 7.30 (m, 2H), 7.24 – 7.19 (m, 1H), 7.18 – 7.11 (m, 2H), 7.08 – 7.00 (m, 2H), 4.37 (q, *J* = 6.6 Hz, 1H), 1.54 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ165.3 (d, *J* = 254.7 Hz), 165.2 (d, *J* = 254.6 Hz), 147.3, 137.5 (d, *J* = 2.8 Hz), 136.8 (d, *J* = 3.2 Hz), 131.7 (d, *J* = 9.4 Hz), 131.2 (d, *J* = 9.4 Hz), 128.4, 126.7, 126.3, 116.6, 116.3, 54.4, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –106.0 (tt, *J* = 8.2, 5.2 Hz, 1F), –106.1 (tt, *J* = 8.3, 5.0 Hz, 1F).

HRMS (ESI) m/z calcd. for C₂₀H₁₈F₂NOS [M + H]⁺ 358.1072, found 358.1067.

(S)-bis(4-Chlorophenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (7)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and bis(4-chlorophenyl)(imino)- λ^6 -sulfanone (57.0 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 7 as a colorless oil (56.0 mg, 72% yield, 94% ee).

 $[\alpha]_{D}^{20} = -18 (c 2.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/^{*i*}PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 10.20 min, t_R (minor) = 13.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.91 (m, 2H), 7.74 – 7.65 (m, 2H), 7.47 – 7.41 (m, 2H), 7.40 – 7.34 (m, 3H), 7.33 – 7.27 (m, 3H), 7.24 – 7.18 (m, 1H), 4.38 (q, *J* = 6.6 Hz, 1H), 1.54 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.1, 139.9, 139.4, 139.27, 139.25, 130.4, 130.0, 129.5, 128.4, 126.7, 126.3, 54.4, 28.2.

HRMS (ESI) m/z calcd. for C₂₀H₁₈Cl₂NOS [M + H]⁺ 390.0481, found 390.0477.

(S)-bis(4-Bromophenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (8)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and bis(4-bromophenyl)(imino)- λ^6 -sulfanone (74.6 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **8** as a colorless oil (44.8 mg, 47% yield, 96% ee).

 $[\alpha]_{D}^{20} = -3 (c \ 1.9, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.39 min, t_R (minor) = 10.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.66 – 7.58 (m, 4H), 7.54 – 7.47 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 4.37 (q, *J* = 6.6 Hz, 1H), 1.54 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.1, 140.5, 139.8, 132.6, 130.6, 130.1, 128.4, 128.0, 127.9, 126.7, 126.3, 54.4, 28.2.

HRMS (ESI) m/z calcd. for C₂₀H₁₈Br₂NOS [M + H]⁺ 477.9470, found 477.9469.

(S)-4,4'-((1-Phenylethyl)sulfonimidoyl)dibenzonitrile (9)

According to **General procedure B** with 4,4'-sulfonimidoyldibenzonitrile N2 (53.4 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **9** as a colorless oil (33.4 mg, 45% yield, 90% ee).

 $[\alpha]_{D}^{20} = -3 (c 1.7, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.02 min, t_R (major) = 14.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 – 8.10 (m, 2H), 7.89 – 7.82 (m, 2H), 7.83 – 7.75 (m, 2H), 7.69 – 7.62 (m, 2H), 7.35 – 7.25 (m, 4H), 7.26 – 7.17 (m, 1H), 4.41 (q, *J* = 6.6 Hz, 1H), 1.55 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.3, 145.0, 144.8, 133.2, 133.1, 129.7, 129.3, 128.6, 127.1, 126.2, 117.3, 116.9, 116.7, 54.5, 27.9.

HRMS (ESI) m/z calcd. for C₂₂H₁₈N₃OS [M + H]⁺ 372.1165, found 372.1161.

Dimethyl 4,4'-((1-phenylethyl)sulfonimidoyl)(S)-dibenzoate (10)

According to **General procedure B** with Dimethyl 4,4'-sulfonimidoyldibenzoate (66.6 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **10** as a colorless oil (40.2 mg, 46% yield, 97% ee).

 $[\alpha]_{D}^{20} = -30 \ (c \ 0.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 20.26 min, t_R (minor) = 26.54 min.

¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.07 (m, 4H), 8.02 (d, J = 8.5 Hz, 2H), 7.90 – 7.82 (m, 2H), 7.41 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.17 (m, 1H), 4.40 (q, J = 6.6 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 1.55 (d, J = 6.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 165.8, 147.0, 145.1, 144.7, 134.0, 133.9, 130.5, 130.4, 129.1, 128.7, 128.4, 126.8, 126.3, 54.5, 52.8, 52.7, 28.1.

HRMS (ESI) m/z calcd. for C₂₄H₂₄NO₅S [M + H]⁺ 438.1370, found 438.1367.

(S)-bis(3,5-Dimethylphenyl)((1-phenylethyl)imino)- λ^6 -sulfanone (11)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and bis(3,5-dimethylphenyl)(imino)- λ^6 -sulfanone (54.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **11** as a colorless oil (45.2 mg, 60% yield, 90% ee).

 $[\alpha]_{D}^{20} = -33$ (*c* 2.0, CH₂Cl₂).

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 7.99 min, $t_{\rm R}$ (minor) = 8.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.43 – 7.37 (m, 4H), 7.33 – 7.28 (m, 2H), 7.23 – 7.17 (m, 1H), 7.13 – 7.09 (m, 1H), 7.08 – 7.03 (m, 1H), 4.37 (q, *J* = 6.6 Hz, 1H), 2.35 (s, 6H), 2.24 (s, 6H), 1.56 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.9, 141.3, 140.7, 139.04, 138.97, 134.2, 134.0, 128.2, 126.6, 126.5, 126.4, 125.9, 54.3, 28.2, 21.4, 21.3.

HRMS (ESI) m/z calcd. for C₂₄H₂₈NOS [M + H]⁺ 378.1886, found 378.1882.

Enantioconvergent N-alkylation: scope of benzyl and propargyl halides. (Figure 2B)

General procedure C:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (43.4 mg, 0.20 mmol, 1.0 equiv.), CuTc (3.9 mg, 0.020 mmol, 10 mol%), chiral ligand L*6 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added alkyl halide (0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at 0 °C for 30–96 h. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

(S)-Diphenyl((1-(p-tolyl)ethyl)imino)- λ^6 -sulfanone (12)

According to **General procedure A** with 1-(1-bromoethyl)-4-methylbenzene (39.6 mg, 0.20 mmol, 1.0 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **12** as a colorless oil (60.3 mg, 90% yield, >99% ee).

 $[\alpha]_{D}^{20} = -50 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 44.39 min, t_R (minor) = 66.88 min. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 – 7.98 (m, 2H), 7.89 – 7.77 (m, 2H), 7.52 – 7.40 (m, 4H), 7.40 – 7.34 (m, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 4.36 (q, *J* = 6.6 Hz, 1H), 2.33 (s, 3H), 1.54 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 141.6, 140.8, 135.8, 132.3, 132.2, 129.1, 129.03, 128.97, 128.9, 128.5, 126.1, 54.0, 28.3, 21.1.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NOS [M + H]⁺ 336.1417, found 336.1415.

(S)-Diphenyl((1-(o-tolyl)ethyl)imino)- λ^6 -sulfanone (13)

According to **General procedure A** with 1-(1-bromoethyl)-2-methylbenzene (39.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **13** as a colorless oil (61.0 mg, 91% yield, >99% ee).

 $[\alpha]_{D}^{20} = 7 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 32.31 min, t_R (minor) = 47.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.06 (m, 2H), 7.92 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.83 – 7.74 (m, 2H), 7.58 – 7.42 (m, 4H), 7.40 – 7.27 (m, 3H), 7.15 (td, *J* = 7.4, 1.5 Hz, 1H), 7.05 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.65 (q, *J* = 6.5 Hz, 1H), 2.04 (s, 3H), 1.54 (d, *J* = 6.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.9, 141.5, 141.0, 133.4, 132.4, 132.2, 129.9, 129.02, 128.99, 128.9, 128.4, 126.6, 126.3, 126.1, 50.3, 27.3, 19.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NOS [M + H]⁺ 336.1417, found 336.1415.

(S)-((1-(4-Fluorophenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (14)

According to **General procedure A** with 1-(1-bromoethyl)-4-fluorobenzene (40.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **14** as a colorless oil (63.1 mg, 93% yield, 96% ee).

 $[\alpha]_{D}^{20} = -58 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 40.70 min, t_R (minor) = 50.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 – 8.00 (m, 2H), 7.91 – 7.81 (m, 2H), 7.58 – 7.45 (m, 4H), 7.44 – 7.34 (m, 4H), 7.00 (t, *J* = 8.6 Hz, 2H), 4.41 (q, *J* = 6.6 Hz, 1H), 1.56 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 161.5 (d, *J* = 243.7 Hz), 143.3 (d, *J* = 3.0 Hz), 141.3, 140.8, 132.4, 132.3, 129.09, 129.07, 128.8, 128.4, 127.7 (d, *J* = 7.8 Hz), 114.8 (d, *J* = 21.0 Hz), 53.5, 28.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –117.2 (td, *J* = 8.9, 4.4 Hz, 1F).

HRMS (ESI) m/z calcd. for C₂₀H₁₉FNOS [M + H]⁺ 340.1166, found 340.1164.

(S)-((1-(4-Chlorophenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (15)

According to **General procedure A** with 1-(1-bromoethyl)-4-chlorobenzene (43.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **15** as a colorless oil (66.0 mg, 93% yield, >99% ee).

 $[\alpha]_{D}^{20} = -118 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), $t_{\rm R}$ (major) = 41.11 min, $t_{\rm R}$ (minor) = 55.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.85 (d, *J* = 7.9 Hz, 2H), 7.57 – 7.45 (m, 4H), 7.46 – 7.32 (m, 4H), 7.29 (d, *J* = 8.1 Hz, 2H), 4.39 (q, *J* = 6.6 Hz, 1H), 1.56 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.1, 141.3, 140.7, 132.5, 132.4, 131.9, 129.1, 128.8, 128.4, 128.3, 127.7, 53.6, 28.1.

HRMS (ESI) m/z calcd. for C₂₀H₁₉ClNOS [M + H]⁺ 356.0870, found 356.0868.

(S)-((1-(4-Bromophenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (16)

According to **General procedure A** with 1-bromo-4-(1-bromoethyl)benzene (52.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **16** as a colorless oil (66.2 mg, 83% yield, 97% ee).

 $[\alpha]_{D}^{20} = -123 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), *t*_R (major) = 43.10 min, *t*_R (minor) = 60.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.62 – 7.36 (m, 8H), 7.32 (dd, *J* = 8.4, 2.0 Hz, 2H), 4.38 (q, *J* = 6.6 Hz, 1H), 1.55 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.6, 141.3, 140.7, 132.5, 132.4, 131.2, 129.1, 128.8, 128.4, 128.1, 120.0, 53.7, 28.1.

HRMS (ESI) m/z calcd. for C₂₀H₁₉BrNOS [M + H]⁺ 400.0365 & 402.0345, found 400.0364 & 402.0341.

(S)-((1-(4-Iodophenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (17)

According to **General procedure A** with 1-(1-bromoethyl)-4-iodobenzene (62.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **17** as a yellow oil (71.5 mg, 80% yield, 98% ee).

 $[\alpha]_{D}^{20} = -76 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), $t_{\rm R}$ (major) = 45.58 min, $t_{\rm R}$ (minor) = 62.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 7.97 (m, 2H), 7.84 – 7.78 (m, 2H), 7.64 – 7.58 (m, 2H), 7.55 – 7.43 (m, 4H), 7.42 – 7.34 (m, 2H), 7.20 – 7.14 (m, 2H), 4.33 (q, *J* = 6.6 Hz, 1H), 1.51 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.3, 141.2, 140.7, 137.2, 132.5, 132.4, 129.1, 128.8, 128.4, 91.6, 53.8, 28.0.

HRMS (ESI) m/z calcd. for C₂₀H₁₉INOS [M + H]⁺ 448.0227, found 448.0225.

(S)-((1-(3-Iodophenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (18)

According to **General procedure A** with 1-(1-bromoethyl)-3-iodobenzene (62.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **18** as a yellow oil (71.5 mg, 80% yield, 97% ee).

 $[\alpha]_{D}^{20} = -16 \ (c \ 0.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 39.88 min, t_R (minor) = 46.09 min. ¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 6.4 Hz, 2H), 7.84 (d, *J* = 7.4 Hz, 2H), 7.75 (s, 1H), 7.60 – 7.31 (m, 8H), 7.05 (t, *J* = 7.7 Hz, 1H), 4.35 (q, *J* = 6.6 Hz, 1H), 1.55 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 148.8, 140.1, 139.6, 134.4, 134.3, 131.5, 131.4, 129.0, 128.1, 128.0, 127.7, 127.3, 124.6, 93.3, 52.5, 26.9.

HRMS (ESI) m/z calcd. for C₂₀H₁₉INOS [M + H]⁺ 448.0227, found 448.0225.

(S)-Diphenyl((1-(4-(trifluoromethyl)phenyl)ethyl)imino)-λ⁶-sulfanone (19)

According to **General procedure A** with 1-(1-bromoethyl)-4-(trifluoromethyl)benzene (50.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **19** as a colorless oil (73.9 mg, 95% yield, 98% ee).

 $[\alpha]_{D}^{20} = -11 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.3 mL/min, λ = 230 nm), t_R (major) = 49.46 min, t_R (minor) = 58.97 min.

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.60
- 7.45 (m, 8H), 7.45 - 7.37 (m, 2H), 4.46 (q, *J* = 6.6 Hz, 1H), 1.58 (d, *J* = 6.5 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 151.5 (d, *J* = 1.1 Hz), 141.2, 140.6, 132.5, 132.4, 129.14, 129.12, 128.7, 128.4, 128.2 (q, *J* = 24.0 Hz), 126.6, 125.2 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 270.0 Hz), 53.8, 28.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.2 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₁H₁₉F₃NOS [M + H]⁺ 390.1134, found 390.1132.

According to **General procedure A** with 1-(1-bromoethyl)-3-(trifluoromethyl)benzene (52.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **20** as a colorless oil (73.9 mg, 95% yield, 98% ee).

 $[\alpha]_{D}^{20} = -23 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 99/1, flow rate 0.3 mL/min, λ = 230 nm), t_R (major) = 43.16 min, t_R (minor) = 50.19 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 8.02 (m, 2H), 7.88 – 7.80 (m, 2H), 7.70 – 7.61 (m, 2H), 7.56 – 7.37 (m, 8H), 4.47 (q, *J* = 6.6 Hz, 1H), 1.59 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 148.4, 141.2, 140.6, 132.5, 132.4, 130.3 (q, *J* = 31.9 Hz), 129.8 (d, *J* = 1.4 Hz), 129.14, 129.10, 128.7, 128.6, 128.4, 124.4 (q, *J* = 270.0 Hz), 128.6, 123.2 (dq, *J* = 10.8, 3.8 Hz), 53.8, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.4 (s, 3F)

HRMS (ESI) m/z calcd. for C₂₁H₁₉F₃NOS [M + H]⁺ 390.1134, found 390.1132.

(S)-3- $(1-((Oxodiphenyl-\lambda^6-sulfaneylidene)amino)ethyl)benzaldehyde (21)$

According to General procedure A with 3-(1-bromoethyl)benzaldehyde (42.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **21** as a yellow oil (55.8 mg, 80% yield, 97% ee).

 $[\alpha]_{D}^{20} = -59 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm),

 $t_{\rm R}$ (major) = 36.15 min, $t_{\rm R}$ (minor) = 39.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.10 – 8.00 (m, 2H), 7.92 (s, 1H), 7.89 – 7.82 (m, 2H), 7.75 (dd, *J* = 7.7, 1.8 Hz, 2H), 7.58 – 7.44 (m, 5H), 7.44 – 7.36 (m, 2H), 4.49 (q, *J* = 6.6 Hz, 1H), 1.59 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.7, 148.7, 141.1, 140.7, 136.4, 132.7, 132.6, 132.4, 129.2, 129.1, 128.9, 128.7, 128.4, 127.8, 53.7, 27.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NO₂S [M + H]⁺ 350.1209, found 350.1208.

(S)-((1-(3-Acetylphenyl)ethyl)imino)diphenyl- λ^6 -sulfanone (22)

According to **General procedure A** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one (45.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **22** as a colorless oil (63.2 mg, 87% yield, 98% ee).

 $[\alpha]_{D}^{20} = -46 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 97/3, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 67.42 min, t_R (minor) = 73.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.97 (s, 1H), 7.88 – 7.80 (m, 3H), 7.73 – 7.68 (m, 1H), 7.58 – 7.35 (m, 7H), 4.48 (q, *J* = 6.6 Hz, 1H), 2.61 (s, 3H), 1.59 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.5, 148.1, 141.2, 140.7, 137.1, 132.5, 132.4, 131.2, 129.13, 129.10, 128.8, 128.5, 128.4, 126.5, 126.3, 53.9, 28.0, 26.8.

HRMS (ESI) m/z calcd. for C₂₂H₂₂NO₂S [M + H]⁺ 364.1366, found 364.1358.

(S)-3-(1-((Oxodiphenyl-λ⁶-sulfaneylidene)amino)ethyl)benzonitrile (23)

According to **General procedure A** with 3-(1-bromoethyl)benzonitrile (41.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **23** as a colorless oil (65.7 mg, 95% yield, 92% ee).

 $[\alpha]_{D}^{20} = -17 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 28.68 min, t_R (minor) = 35.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.73 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.58 – 7.45 (m, 5H), 7.45 – 7.34 (m, 3H), 4.41 (q, *J* = 6.6 Hz, 1H), 1.53 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 149.0, 141.0, 140.6, 132.6, 132.5, 131.0, 130.2, 130.1, 129.21, 129.17, 129.0, 128.6, 128.4, 119.3, 112.1, 53.4, 27.9.

HRMS (ESI) m/z calcd. for C₂₁H₁₉N₂OS [M + H]⁺ 347.1213, found 347.1210.

According to **General procedure A** with 3-(1-chloroethyl)benzonitrile (33.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **23** as a colorless oil (62.3 mg, 90% yield, 96% ee).

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 28.29 min, t_R (minor) = 35.67 min.

Methyl (S)-3-(1-((oxodiphenyl- λ^6 -sulfaneylidene)amino)ethyl)benzoate (24)

According to **General procedure A** with methyl 3-(1-bromoethyl)benzoate (48.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **24** as a yellow oil (70.5 mg, 93% yield, 96% ee).

 $[\alpha]_{D}^{20} = -12 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 98/2, flow rate 0.7 mL/min, λ = 230 nm), t_R (minor) = 48.26 min, t_R (major) = 58.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 8.02 (m, 3H), 7.94 – 7.87 (m, 1H), 7.87 – 7.80 (m, 2H), 7.73 – 7.67 (m, 1H), 7.57 – 7.43 (m, 4H), 7.43 – 7.34 (m, 3H), 4.47 (q, *J* = 6.6 Hz, 1H), 3.92 (s, 3H), 1.58 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3, 147.9, 141.3, 140.7, 132.5, 132.3, 131.0, 123.0, 129.10, 129.08, 128.8, 128.4, 128.3, 127.7, 127.5, 53.9, 52.0, 28.0.

HRMS (ESI) m/z calcd. for C₂₂H₂₂NO₃S [M + H]⁺ 380.1315, found 380.1312.

According to **General procedure A** with methyl 3-(1-chloroethyl)benzoate (39.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **24** as a yellow oil (58.4 mg, 77% yield, 97% ee).

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 98/2, flow rate 0.7 mL/min, λ = 230 nm), $t_{\rm R}$ (minor) = 52.88 min, $t_{\rm R}$ (major) = 64.56 min.

(S)-((1-(Naphthalen-2-yl)ethyl)imino)diphenyl- λ^6 -sulfanone (25)

According to **General procedure A** with 2-(1-bromoethyl)naphthalene (46.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **25** as a colorless oil (63.8 mg, 86% yield, 93% ee).

 $[\alpha]_{D}^{20} = -8 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 18.74 min, t_R (minor) = 34.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 7.6 Hz, 2H), 7.92 – 7.80 (m, 6H), 7.67 (d, J = 8.5 Hz, 1H), 7.58 – 7.41 (m, 6H), 7.41 – 7.32 (m, 2H), 4.62 (q, J = 6.6 Hz, 1H), 1.69 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 141.5, 140.8, 133.5, 132.6, 132.4, 132.3, 129.10, 129.07, 129.0, 128.5, 127.94, 127.93, 127.6, 125.8, 125.3, 125.2, 124.3, 54.5, 28.2.
HRMS (ESI) *m/z* calcd. for C₂₄H₂₂NOS [M + H]⁺ 372.1417, found 372.1415.

According to **General procedure A** with 2-(1-chloroethyl)naphthalene (38.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **25** as a colorless oil (60.1 mg, 81% yield, 96% ee).

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), $t_{\rm R}$ (major) = 28.38 min, $t_{\rm R}$ (minor) = 35.84 min.

(S)-((1-(Naphthalen-1-yl)ethyl)imino)diphenyl- λ^6 -sulfanone (26)

According to **General procedure A** with 1-(1-bromoethyl)naphthalene (46.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **26** as a colorless oil (53.4 mg, 72% yield, 95% ee).

X-ray quality crystals were obtained by slow evaporation of solvent from a saturated solution in a mixture of toluene/hexane.

 $[\alpha]_{D}^{20} = 4 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (major) = 18.40 min, $t_{\rm R}$ (minor) = 20.42 min.

¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.06 (m, 3H), 7.98 (d, J = 7.2 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.57 – 7.36 (m, 7H), 7.34 – 7.25 (m, 2H), 5.22 (q, J = 6.6 Hz, 1H), 1.75 (d, J = 6.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 143.3, 141.7, 140.8, 133.9, 132.4, 132.2, 130.3, 129.03, 129.00, 128.82, 128.76, 128.4, 127.0, 125.8, 125.4, 125.1, 123.8, 123.7, 51.3, 27.8.
HRMS (ESI) *m/z* calcd. for C₂₄H₂₂NOS [M + H]⁺ 372.1417, found 372.1414.

(S)-Diphenyl((1-phenylpropyl)imino)- λ^6 -sulfanone (27)

According to **General procedure A** with (1-bromopropyl)benzene (39.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **26** as a colorless oil (53.6 mg, 80% yield, 95% ee).

 $[\alpha]_{D}^{20} = -51$ (*c* 1.0, CH₂Cl₂).

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), $t_{\rm R}$ (minor) = 21.76 min, $t_{\rm R}$ (major) = 37.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 – 8.01 (m, 2H), 7.84 – 7.72 (m, 2H), 7.57 – 7.40 (m, 4H), 7.41 – 7.27 (m, 6H), 7.26 – 7.17 (m, 1H), 4.10 (t, *J* = 6.7 Hz, 1H), 2.02 – 1.79 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 141.4, 141.0, 132.3, 132.2, 129.01, 128.99, 128.9, 128.5, 128.0, 126.9, 126.4, 60.5, 34.3, 11.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NOS [M + H]⁺ 336.1417, found 336.1414.

(S)-((Cyclopentyl(phenyl)methyl)imino)diphenyl-λ⁶-sulfanone (28)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (43.4 mg, 0.20 mmol, 1.0 equiv.), CuTc (15.4 mg, 0.080 mmol, 40 mol%), chiral ligand L*6 (81.9 mg, 0.080 mmol, 40 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added (bromo(cyclopentyl)methyl)benzene (47.6 mg, 0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 5 d. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the desired product **28** as a colorless oil (61.5 mg, 82% yield, 92% ee).

 $[\alpha]_{D}^{20} = -47 \ (c \ 0.6, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 21.68 min, t_R (major) = 25.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 7.93 (m, 2H), 7.77 – 7.63 (m, 2H), 7.53 – 7.35 (m, 4H), 7.31 – 7.13 (m, 7H), 3.88 (d, *J* = 8.4 Hz, 1H), 2.32 (h, *J* = 8.1 Hz, 1H), 1.98 (td, *J* = 7.4, 6.4, 3.5 Hz, 1H), 1.75 – 1.38 (m, 5H), 1.39 – 1.05 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 146.3, 141.3, 141.2, 132.2, 132.0, 129.03, 128.95, 128.7, 128.5, 127.9, 127.2, 126.2, 63.7, 49.7, 30.8, 30.0, 25.3, 25.1.

HRMS (ESI) m/z calcd. for C₂₄H₂₆NOS [M + H]⁺ 376.1730, found 376.1727.

(S)-((2-Methyl-1-phenylpropyl)imino)diphenyl-λ⁶-sulfanone (29)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (43.4 mg, 0.20 mmol, 1.0 equiv.), CuTc (15.4 mg, 0.080 mmol, 40 mol%), chiral ligand **L*6** (81.9 mg, 0.080 mmol, 40 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added (1-bromo-2-methylpropyl)benzene (42.4 mg, 0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 5 d. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the desired product **29** as a colorless oil (27.9 mg, 40% yield, 91% ee).

 $[\alpha]_{D}^{20} = -7 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 16.71 min, t_R (minor) = 17.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 7.94 (m, 2H), 7.74 – 7.64 (m, 2H), 7.53 – 7.36 (m, 4H), 7.31 – 7.13 (m, 7H), 3.82 (d, *J* = 7.0 Hz, 1H), 2.02 (h, *J* = 6.8 Hz, 1H), 1.05 (d, *J* = 6.7 Hz, 3H), 0.79 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 141.4, 141.2, 132.2, 132.0, 129.0, 128.9, 128.7, 128.5, 127.7, 127.6, 126.2, 65.1, 36.8, 19.8, 19.7.

HRMS (ESI) m/z calcd. for C₂₂H₂₄NOS [M + H]⁺ 350.1573, found 350.1571.

(S)-Diphenyl((1-phenylhex-5-en-1-yl)imino)- λ^6 -sulfanone (30)

According to General procedure C with (1-bromohex-5-en-1-yl)benzene (47.6 mg,

0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **30** as a colorless oil (39.1 mg, 52% yield, 92% ee).

 $[\alpha]_{D}^{20} = -5 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 30.13 min, t_R (minor) = 33.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.57 – 7.40 (m, 4H), 7.40 – 7.25 (m, 6H), 7.25 – 7.17 (m, 1H), 5.79 (ddt, *J* = 16.7, 8.9, 6.5 Hz, 1H), 5.04 – 4.85 (m, 2H), 4.17 (t, *J* = 6.8 Hz, 1H), 2.04 (q, *J* = 7.3 Hz, 2H), 2.00 – 1.76 (m, 2H), 1.62 – 1.31 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 146.4, 141.4, 141.0, 139.1, 132.3, 132.2, 129.0, 128.9, 128.5, 128.1, 126.8, 126.4, 114.3, 58.9, 41.0, 33.7, 25.8.

HRMS (ESI) m/z calcd. for C₂₄H₂₆NOS [M + H]⁺ 376.1730, found 376.1728.

(S)-((3-Chloro-1-phenylpropyl)imino)diphenyl- λ^6 -sulfanone (31)

According to **General procedure C** with (1-bromo-3-chloropropyl)benzene (46.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **31** as a colorless oil (56.8 mg, 77% yield, 94% ee).

 $[\alpha]_{D}^{20} = -9 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 97/3, flow rate 0.7 mL/min, λ = 230 nm), $t_{\rm R}$ (minor) = 18.62 min, $t_{\rm R}$ (major) = 32.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 7.95 (m, 2H), 7.84 – 7.70 (m, 2H), 7.55 – 7.39 (m, 4H), 7.39 – 7.16 (m, 7H), 4.37 (dd, *J* = 8.2, 4.9 Hz, 1H), 3.93 – 3.75 (m, 1H), 3.67 – 3.51 (m, 1H), 2.44 – 2.25 (m, 1H), 2.25 – 2.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 141.0, 140.6, 132.5, 132.4, 129.1, 129.0, 128.9, 128.5, 128.3, 126.8, 126.7, 56.1, 43.9, 42.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₁ClNOS [M + H]⁺ 370.1027, found 370.1021.

(S)-((3-(Benzyloxy)-1-phenylpropyl)imino)diphenyl-λ⁶-sulfanone (32)

According to **General procedure C** with (3-(benzyloxy)-1-bromopropyl)benzene (60.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **32** as a colorless oil (68.8 mg, 78% yield, 92% ee).

 $[\alpha]_{D}^{20} = -14 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 10.36 min, t_R (minor) = 11.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.82 – 7.73 (m, 2H), 7.56 – 7.41 (m, 4H), 7.40 – 7.26 (m, 11H), 7.26 – 7.19 (m, 1H), 4.60 (d, *J* = 11.7 Hz, 1H), 4.49 (d, *J* = 11.7 Hz, 1H), 4.43 (dd, *J* = 8.3, 5.4 Hz, 1H), 3.88 – 3.74 (m, 1H), 3.63 – 3.50 (m, 1H), 2.29 – 2.17 (m, 1H), 2.17 – 2.03 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 141.2, 140.8, 138.9, 132.3, 132.2, 129.03, 128.96, 128.9, 128.6, 128.2, 128.1, 127.7, 127.3, 126.8, 126.5, 72.8, 67.6, 55.9, 41.1.

HRMS (ESI) m/z calcd. for C₂₈H₂₈NO₂S [M + H]⁺ 442.1835, found 442.1834.

(S)-bis(4-Methoxyphenyl)((5-oxo-1,5-diphenylpentyl)imino)-λ⁶-sulfanone (33)

According to **General procedure C** with 5-bromo-1,5-diphenylpentan-1-one (63.4 mg, 0.20 mmol, 1.0 equiv.) and iminobis(4-methoxyphenyl)- λ^6 -sulfanone (55.4 mg, 0.20

mmol, 1.0 equiv.) for 96 h at 0 °C, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **33** as a yellow oil (57.5 mg, 56% yield, 84% ee).

 $[\alpha]_{D}^{20} = -0.1 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 75/25, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 16.69 min, $t_{\rm R}$ (minor) = 19.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.86 (m, 4H), 7.69 – 7.63 (m, 2H), 7.54 – 7.48 (m, 1H), 7.45 – 7.37 (m, 2H), 7.35 – 7.30 (m, 2H), 7.30 – 7.23 (m, 2H), 7.22 – 7.15 (m, 1H), 6.94 – 6.87 (m, 2H), 6.83 – 6.74 (m, 2H), 4.17 (dd, *J* = 7.2, 5.1 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 2.97 – 2.87 (m, 2H), 2.01 – 1.72 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 200.5, 162.6, 162.5, 146.4, 137.1, 133.3, 132.77, 132.76, 130.8, 130.3, 128.5, 128.1, 126.8, 126.4, 114.2, 114.1, 58.7, 55.54, 55.52, 41.0, 38.5, 21.3.

HRMS (ESI) m/z calcd. for C₃₁H₃₂NO₄S [M + H]⁺ 514.2047, found 514.2045.

Ethyl (S)-5-((bis(4-methoxyphenyl)(∞o)- λ^6 -sulfaneylidene)amino)-5phenylpentanoate (34)

According to **General procedure C** with ethyl 5-bromo-5-phenylpentanoate (56.8 mg, 0.20 mmol, 1.0 equiv.) and iminobis(4-methoxyphenyl)- λ^6 -sulfanone (55.4 mg, 0.20 mmol, 1.0 equiv.) at room temperature for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **34** as a yellow oil (76.0 mg, 79% yield, 87% ee).

 $[\alpha]_{D}^{20} = -35 \ (c \ 0.3, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (major) = 14.61 min, $t_{\rm R}$ (minor) = 24.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.82 (m, 2H), 7.70 – 7.58 (m, 2H), 7.34 – 7.23 (m, 4H), 7.22 – 7.15 (m, 1H), 6.96 – 6.87 (m, 2H), 6.83 – 6.74 (m, 2H), 4.16 – 4.02 (m, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 2.34 – 2.16 (m, 2H), 1.96 – 1.66 (m, 4H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 162.6, 162.5, 146.4, 133.3, 132.8, 130.8, 130.3, 128.1, 126.8, 126.4, 114.2, 114.1, 60.1, 58.6, 55.6, 55.5, 40.9, 34.2, 21.9, 14.2.
HRMS (ESI) *m/z* calcd. for C₂₇H₃₂NO₅S [M + H]⁺ 482.1996, found 482.1991.

(S)-Diphenyl((1-(pyridin-3-yl)ethyl)imino)-λ⁶-sulfanone (35)

According to **General procedure C** with 3-(1-bromoethyl)pyridine (37.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **35** as a red oil (53.4 mg, 83% yield, 93% ee).

 $[\alpha]_{D}^{20} = -9 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 85/15, flow rate 0.7 mL/min, λ = 230 nm), *t*_R (major) = 19. 80 min, *t*_R (minor) = 24.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (d, J = 2.3 Hz, 1H), 8.48 (dd, J = 4.8, 1.7 Hz, 1H), 8.11 - 7.99 (m, 2H), 7.93 - 7.75 (m, 3H), 7.58 - 7.45 (m, 4H), 7.45 - 7.37 (m, 2H), 7.30 - 7.21 (m, 1H), 4.44 (q, J = 6.6 Hz, 1H), 1.58 (d, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.2, 147.9, 142.6, 141.1, 140.6, 133.9, 132.6, 132.5, 129.2, 129.1, 128.7, 128.4, 123.3, 51.9, 27.8.

HRMS (ESI) m/z calcd. for C₁₉H₁₉N₂OS [M + H]⁺ 323.1213, found 323.1211.

(S)-((1-(Benzofuran-3-yl)ethyl)imino)diphenyl- λ^6 -sulfanone (36)

According to **General procedure A** with 3-(1-bromoethyl)benzofuran (44.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **36** as a colorless oil (62.0 mg, 86% yield, 97% ee).

 $[\alpha]_{D}^{20} = -70 \ (c \ 0.9, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 85/15, flow rate 0.3 mL/min, λ = 254 nm), *t*_R (major) = 21.07 min, *t*_R (minor) = 22.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 6.3 Hz, 2H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.74 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.64 (s, 1H), 7.56 – 7.44 (m, 5H), 7.44 – 7.36 (m, 2H), 7.34 – 7.19 (m, 2H), 4.70 (q, *J* = 6.6 Hz, 1H), 1.73 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 155.8, 141.3, 141.1, 140.7, 132.5, 132.4, 129.11, 129.10, 128.7, 128.4, 126.70, 126.66, 124.0, 122.2, 120.8, 111.5, 46.4, 26.2.

HRMS (ESI) m/z calcd. for C₂₂H₂₀NO₂S [M + H]⁺ 362.1209, found 362.1207.

(S)-Diphenyl((1-(thiophen-3-yl)ethyl)imino)- λ^6 -sulfanone (37)

According to **General procedure A** with 3-(1-bromoethyl)thiophene (38.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **37** as a red oil (62.1 mg, 95% yield, 97% ee).

 $[\alpha]_{D}^{20} = -129 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 6.92 min, *t*_R (major) = 9.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 6.4 Hz, 2H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.57 – 7.37 (m, 6H), 7.28 – 7.24 (m, 1H), 7.20 – 7.14 (m, 2H), 4.51 (q, *J* = 6.6 Hz, 1H), 1.61 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.7, 141.4, 140.7, 132.4, 132.3, 129.1, 128.8, 128.5, 126.6, 125.3, 119.6, 50.2, 27.0.

HRMS (ESI) m/z calcd. for C₁₈H₁₈NOS₂ [M + H]⁺ 328.0824, found 328.0822.

According to **General procedure A** with 3-(1-chloroethyl)thiophene (29.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **37** as a red oil (39.2 mg, 60% yield, 93% ee).

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 11.94 min, t_R (minor) = 14.74 min.

(S)-Diphenyl((1-(thiazol-4-yl)ethyl)imino)- λ^6 -sulfanone (38)

According to **General procedure C** with 4-(1-bromoethyl)thiazole (38.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **38** as a coloress oil (55.8 mg, 85% yield, 82% ee).

 $[\alpha]_{D}^{20} = -39 \ (c \ 0.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 28.02 min, t_R (major) = 32.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (d, *J* = 2.2 Hz, 1H), 8.03 (dd, *J* = 20.5, 6.6 Hz, 4H), 7.59 – 7.40 (m, 7H), 4.65 (q, *J* = 6.6 Hz, 1H), 1.68 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.2, 152.3, 141.1, 140.6, 132.50, 132.46, 129.17,

129.15, 128.8, 128.5, 113.3, 51.4, 25.6.

HRMS (ESI) m/z calcd. for C₁₇H₁₇N₂OS₂ [M + H]⁺ 329.0777, found 329.0775.

(S)-((1-(3-Methoxyphenyl)ethyl)imino)diphenyl-λ⁶-sulfanone (39)

According to **General procedure A** with 1-(1-chloroethyl)-3-methoxybenzene (34.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **39** as a colorless oil (51.2 mg, 73% yield, 98% ee).

 $[\alpha]_{D}^{20} = -37 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 98/2, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 35.99 min, t_R (minor) = 41.71 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.03 (m, 2H), 7.93 – 7.80 (m, 2H), 7.57 – 7.35 (m, 6H), 7.24 (t, *J* = 7.9 Hz, 1H), 7.09 – 7.03 (m, 1H), 7.03 – 6.98 (m, 1H), 6.84 – 6.74 (m, 1H), 4.41 (q, *J* = 6.6 Hz, 1H), 3.83 (s, 3H), 1.58 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 149.3, 141.5, 140.8, 132.4, 132.3, 129.13, 129.05, 129.0, 128.4, 118.7, 111.9, 111.8, 55.2, 54.2, 28.2.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NO₂S [M + H]⁺ 352.1366, found 352.1364.

(S)-((6,6-Dimethyl-1-phenylhept-4-yn-3-yl)imino)bis(4-methoxyphenyl)- λ^{6} sulfanone (40)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminobis(4-methoxyphenyl)- λ^6 -sulfanone (55.4 mg, 0.20 mmol, 1.0 equiv.), Cu(PPh₃)₃Br (37.2 mg, 0.040 mmol, 20 mol%), chiral ligand

L*4 (28.4 mg, 0.040 mmol, 20 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added (3-bromo-6,6-dimethylhept-4yn-1-yl)benzene (111.2 mg, 0.40 mmol, 2.0 equiv.) and the reaction mixture was stirred at room temperature for 7 d. The precipitate was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford the desired product **40** as a colorless oil (38.9 mg, 41% yield, 50% conversion, 80% ee).

 $[\alpha]_{D}^{20} = -10 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IF (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.59 min, t_R (minor) = 9.77 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 7.87 (m, 4H), 7.30 – 7.22 (m, 4H), 7.20 – 7.14 (m, 1H), 7.00 – 6.90 (m, 4H), 3.98 (t, *J* = 6.7 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 2.91 – 2.78 (m, 2H), 2.17 – 2.04 (m, 2H), 1.20 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.7, 162.6, 142.5, 133.5, 133.2, 131.0, 130.0, 128.6, 128.2, 125.4, 114.17, 114.15, 91.3, 80.9, 55.6, 45.3, 41.5, 32.5, 31.2, 27.3.

HRMS (ESI) m/z calcd. for C₂₉H₃₄NO₃S [M + H]⁺ 476.2254, found 476.2263.
Enantioconvergent N-alkylation: scope of secondary α-bromoketones. (Figure 3A) General procedure D:

$$\begin{array}{cccc} & & & & Cu(HFacac)_2 (10 \text{ mol\%}) \\ & & & & \\ & & & \\ R^1 & & & \\ & & & \\ R^2 & & & PMP \\ & & & \\ R^2 & & & PMP \\ & & & \\ 1.0 \text{ equiv.} \end{array} \xrightarrow{\begin{subarray}{c} Cu(HFacac)_2 (10 \text{ mol\%}) \\ & & & \\ & & & \\ \hline & & & \\ Cs_2CO_3 (4.0 \text{ equiv.}) \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ Et_2O, 0 \ ^\circ C \end{array} \xrightarrow{\begin{subarray}{c} O \\ & & & \\ & & \\ & & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\$$

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminobis(4-methoxyphenyl)- λ^6 -sulfanone (60.9 mg, 0.22 mmol, 1.1 equiv.), Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (4.0 mL). To this solution was added α -bromo ketone (0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at 0 °C for 72 h or more. Upon completion (monitored by TLC), the precipitate was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

(S)-bis(4-Methoxyphenyl)((1-oxo-1-phenylpropan-2-yl)imino)- λ^6 -sulfanone (41)

According to **General procedure D** with 2-bromo-1-phenylpropan-1-one (42.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **41** as a yellow oil (65.4 mg, 80% yield, 91% ee).

 $[\alpha]_{D}^{20} = -0.1 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 29.03 min, t_R (minor) = 36.90 min.

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.98 – 7.90 (m, 2H), 7.79 – 7.71 (m, 2H), 7.57 – 7.49 (m, 1H), 7.45 – 7.38 (m, 2H), 6.98 – 6.90 (m, 2H), 6.90 – 6.82 (m, 2H), 4.72 (q, *J* = 6.9 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 1.54 (d, *J* = 6.8 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 201.2, 162.8, 162.7, 135.8, 133.3, 132.60, 132.57, 130.4, 130.3, 129.2, 128.3, 114.32, 114.26, 55.6, 55.5, 55.4, 22.2.
HRMS (ESI) *m/z* calcd. for C₂₃H₂₄NO₄S [M + H]⁺ 410.1421, found 410.1419.

(*R*)-bis(4-Methoxyphenyl)((1-oxo-1-phenylpropan-2-yl)imino)- λ^6 -sulfanone ((*R*)-41)

According to **General procedure D** with 2-bromo-1-phenylpropan-1-one (42.6 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7' for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product (*R*)-41 as a yellow oil (81.2 mg, 99% yield, 96% ee).

HPLC analysis: Chiralcel IE (hexane/^{*i*}PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 29.11 min, *t*_R (major) = 36.78 min.

(S)-bis(4-Methoxyphenyl)((1-oxo-1-(*p*-tolyl)propan-2-yl)imino)- λ^6 -sulfanone (42)

According to **General procedure D** with 2-bromo-1-(*p*-tolyl)propan-1-one (45.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **42** as

a yellow oil (67.7 mg, 80% yield, 92% ee).

 $[\alpha]_{D}^{20} = -70 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 31.44 min, $t_{\rm R}$ (minor) = 38.38 min.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.9 Hz, 4H), 7.75 (d, J = 8.9 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 4.70 (q, J = 6.8 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 2.39 (s, 3H), 1.52 (d, J = 6.9 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 200.7, 162.8, 162.6, 143.3, 133.3, 133.0, 132.6, 130.5, 130.3, 129.3, 129.0, 114.32, 114.25, 55.6, 55.5, 55.3, 22.4, 21.6.

HRMS (ESI) m/z calcd. for C₂₄H₂₆NO₄S [M + H]⁺ 424.1577, found 424.1575.

(S)-((1-(4-(Benzyloxy)phenyl)-1-oxopropan-2-yl)imino)bis(4-methoxyphenyl)- λ^{6} sulfanone (43)

According to **General procedure D** with 1-(4-(benzyloxy)phenyl)-2-bromopropan-1one (63.8 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **43** as a white amorphous solid (98.9 mg, 96% yield, 94% ee).

 $[\alpha]_{D}^{20} = -72 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 18.48 min, t_R (major) = 20.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.0 Hz, 2H), 7.94 (d, *J* = 9.0 Hz, 2H), 7.75 (d, *J* = 8.9 Hz, 2H), 7.54 – 7.33 (m, 5H), 6.99 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 9.0 Hz, 2H), 5.14 (s, 2H), 4.68 (q, *J* = 6.8 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 1.53 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 199.6, 162.8, 162.7, 162.3, 136.3, 133.3, 132.6, 131.6, 130.5, 130.3, 128.7, 128.6, 128.2, 127.5, 114.33, 114.30, 114.27, 70.1, 55.60, 55.55, 55.3, 22.5.

HRMS (ESI) m/z calcd. for C₃₀H₃₀NO₅S [M + H]⁺ 516.1839, found 516.1838.

(S)-bis(4-Methoxyphenyl)((1-(3-methoxyphenyl)-1-oxopropan-2-yl)imino)- λ^6 sulfanone (44)

According to **General procedure D** with 2-bromo-1-(3-methoxyphenyl)propan-1-one (48.4 mg, 0.20 mmol, 1.0 equiv.) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **44** as a colorless oil (67.6 mg, 77% yield, 94% ee).

 $[\alpha]_{D}^{20} = -16 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/^{*i*}PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 29.88 min, *t*_R (minor) = 37.45 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.77 – 7.70 (m, 2H), 7.61 – 7.53 (m, 2H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.11 – 7.01 (m, 1H), 6.94 – 6.89 (m, 2H), 6.88 – 6.79 (m, 2H), 4.69 (q, *J* = 6.9 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 1.51 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.9, 162.8, 162.7, 159.6, 137.1, 133.3, 132.6, 130.4, 130.3, 129.2, 121.7, 119.3, 114.32, 114.25, 113.3, 55.6, 55.5, 55.4, 55.3, 22.2.
HRMS (ESI) *m/z* calcd. for C₂₄H₂₆NO₅S [M + H]⁺ 440.1526, found 440.1523.

(S)-((1-(Benzo[d][1,3]dioxol-5-yl)-1-oxobutan-2-yl)imino)bis(4-methoxyphenyl)- λ^6 -sulfanone (45)

According to **General procedure D** with 1-(benzo[*d*][1,3]dioxol-5-yl)-2-bromobutan-1-one (54.0 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*6 for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **45** as a colorless oil (65.4 mg, 70% yield, 87% ee).

 $[\alpha]_{D}^{20} = -12 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 39.80 min, $t_{\rm R}$ (minor) = 48.11 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.88 (m, 2H), 7.75 – 7.67 (m, 3H), 7.54 (d, *J* = 1.7 Hz, 1H), 6.95 – 6.88 (m, 2H), 6.86 – 6.80 (m, 2H), 6.78 (d, *J* = 8.2 Hz, 1H), 6.01 (s, 2H), 4.29 (dd, *J* = 7.6, 6.3 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 2.02 – 1.80 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.4, 162.7, 162.6, 151.3, 147.8, 133.0, 132.8, 130.6, 130.5, 130.3, 125.4, 114.3, 109.1, 107.6, 101.7, 62.2, 55.6, 55.5, 29.6, 11.0.
HRMS (ESI) *m/z* calcd. for C₂₅H₂₆NO₆S [M + H]⁺ 468.1475, found 468.1474.

(S)-bis(4-Methoxyphenyl)((1-oxo-1-(3-(trifluoromethyl)phenyl)propan-2yl)imino)- λ^6 -sulfanone (46)

According to **General procedure D** with 2-bromo-1-(3-(trifluoromethyl)phenyl)propan-1-one (56.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **46** as a colorless oil (66.8 mg, 70% yield, 94% ee).

 $[\alpha]_{D}^{20} = -6 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/^{*i*}PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.29 min, *t*_R (minor) = 12.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 – 8.36 (m, 1H), 8.34 – 8.24 (m, 1H), 7.91 – 7.83 (m, 2H), 7.80 – 7.75 (m, 1H), 7.75 – 7.67 (m, 2H), 7.59 – 7.52 (m, 1H), 6.98 – 6.90 (m, 2H), 6.89 – 6.79 (m, 2H), 4.60 (q, *J* = 6.9 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 1.53 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.9, 162.9, 162.8, 136.2, 132.8, 132.7, 132.4, 130.7 (q, J = 32.5 Hz), 130.3, 130.2, 129.1 – 128.8 (m), 128.9, 126.54 – 126.24 (m), 123.9 (q, J = 271.0 Hz), 114.4, 114.3, 56.0, 55.60, 55.55, 21.8.
¹⁹F NMR (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₄H₂₃F₃NO₄S [M + H]⁺ 478.1294, found 478.1294.

(S)-((1-(4-Fluorophenyl)-1-oxopropan-2-yl)imino)bis(4-methoxyphenyl)- λ^{6} sulfanone (47)

According to **General procedure D** with 2-bromo-1-(4-fluorophenyl)propan-1-one (46.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **47** as a yellow oil (60.6 mg, 71% yield, 91% ee).

 $[\alpha]_{D}^{20} = -59 \ (c \ 0.7, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 22.57 min, t_R (minor) = 24.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 – 8.11 (m, 2H), 7.94 – 7.87 (m, 2H), 7.79 – 7.71 (m, 2H), 7.13 – 7.04 (m, 2H), 6.97 – 6.90 (m, 2H), 6.90 – 6.83 (m, 2H), 4.63 (q, *J* = 6.9 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 1.52 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 199.5, 165.4 (d, *J* = 254.1 Hz), 162.8, 162.7, 133.1, 132.6, 132.0 (d, *J* = 9.1 Hz), 131.9 (d, *J* = 3.0 Hz), 130.33, 130.28, 115.3 (d, *J* = 21.6 Hz), 114.33, 114.31, 55.7, 55.59, 55.55, 22.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –106.0 (tt, *J* = 8.2, 5.5 Hz, 1F).

HRMS (ESI) m/z calcd. for C₂₃H₂₃FNO₄S [M + H]⁺ 428.1326, found 428.1323.

(S)-((1-(4-Bromophenyl)-1-oxopropan-2-yl)imino)bis(4-methoxyphenyl)- λ^{6} sulfanone (48)

According to **General procedure D** with 2-bromo-1-(4-bromophenyl)propan-1-one (58.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **48** as a colorless oil (68.2 mg, 70% yield, 91% ee).

 $[\alpha]_{D}^{20} = -253 \ (c \ 0.4, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 26.29 min, t_R (minor) = 50.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 8.9 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 4.61 (q, J = 6.9 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.51 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 200.1, 162.8, 162.7, 134.3, 133.0, 132.5, 131.5, 131.0,

130.31, 130.26, 127.7, 114.3, 55.7, 55.61, 55.58, 21.9.

HRMS (ESI) m/z calcd. for C₂₃H₂₃BrNO₄S [M + H]⁺ 488.0526 & 490.0505, found 488.0524 & 490.0499.

(S)-((1-(3-Chlorophenyl)-1-oxopropan-2-yl)imino)bis(4-methoxyphenyl)- λ^{6} -sulfanone (49)

According to **General procedure D** with 2-bromo-1-(3-chlorophenyl)propan-1-one (49.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **49** as a yellow oil (84.2 mg, 95% yield, 90% ee).

 $[\alpha]_{D}^{20} = -70 \ (c \ 0.8, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 26.47 min, *t*_R (minor) = 33.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (t, *J* = 1.8 Hz, 1H), 7.95 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.90 (d, *J* = 9.0 Hz, 2H), 7.73 (d, *J* = 9.0 Hz, 2H), 7.53 – 7.44 (m, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 9.0 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 4.61 (q, *J* = 6.8 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 1.52 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.9, 162.9, 162.7, 137.3, 134.4, 132.9, 132.5, 132.4, 130.31, 130.28, 129.6, 129.3, 127.4, 114.4, 114.3, 55.60, 55.56, 21.9.

HRMS (ESI) m/z calcd. for C₂₃H₂₃ClNO₄S [M + H]⁺ 444.1031, found 444.1031.

(S)-bis(4-Methoxyphenyl)((1-oxo-1-phenylpentan-2-yl)imino)-λ⁶-sulfanone (50)

According to General procedure D with 2-bromo-1-phenylpentan-1-one (48.0 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*6 for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **50** as a white amorphous solid (68.2 mg, 78% yield, 92% ee).

 $[\alpha]_{D}^{20} = 0.5 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 21.29 min, t_R (minor) = 26.26 min.

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.99 – 7.92 (m, 2H), 7.76 – 7.68 (m, 2H), 7.56 – 7.48 (m, 1H), 7.45 – 7.37 (m, 2H), 6.97 – 6.90 (m, 2H), 6.87 – 6.80 (m, 2H), 4.47 (t, *J* = 6.9 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 1.95 – 1.81 (m, 2H), 1.65 – 1.54 (m, 1H), 1.47 – 1.37 (m, 1H), 0.90 (t, *J* = 7.3 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 201.7, 162.8, 162.6, 136.1, 133.1, 132.7, 132.5, 130.6,

130.4, 129.1, 128.2, 114.3, 114.2, 60.5, 55.6, 55.5, 38.3, 19.7, 13.9.

HRMS (ESI) m/z calcd. for C₂₅H₂₈NO₄S [M + H]⁺ 438.1734, found 438.1733.

(S)-bis(4-Methoxyphenyl)((1-oxo-1-(thiophen-2-yl)propan-2-yl)imino)-λ⁶sulfanone (51)

According to **General procedure D** with 2-bromo-1-(thiophen-2-yl)propan-1-one (43.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **51** as a colorless oil (68.0 mg, 82% yield, 94% ee).

 $[\alpha]_{D}^{20} = -63 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IE (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 24.03 min, $t_{\rm R}$ (minor) = 27.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 3.9, 1.2 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.82 – 7.75 (m, 2H), 7.61 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.10 (dd, *J* = 4.9, 3.8 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.91 – 6.84 (m, 2H), 4.42 (q, *J* = 6.8 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 1.55 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 194.7, 162.8, 162.7, 141.0, 133.8, 133.6, 133.0, 132.3, 130.5, 130.3, 127.7, 114.4, 114.3, 57.5, 55.60, 55.57, 23.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NO₄S₂ [M + H]⁺ 416.0985, found 416.0983.

(S)-bis(4-Methoxyphenyl)((3-oxobutan-2-yl)imino)- λ^6 -sulfanone (52)

According to **General procedure D** with 3-bromobutan-2-one (45.0 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **52** as a yellow oil (42.3 mg, 61% yield, 72% ee).

 $[\alpha]_{D}^{20} = -1$ (*c* 1.0, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 21.16 min, $t_{\rm R}$ (major) = 22.89 min.

¹H NMR (400 MHz, CDCl₃) δ 8.31 – 7.64 (m, 4H), 7.09 – 6.78 (m, 4H), 3.85 (s, 3H),

3.84 (s, 3H), 3.69 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.37 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 212.0, 162.9, 162.8, 132.5, 132.3, 130.4, 130.3, 114.5, 114.4, 59.6, 55.6, 25.9, 21.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NO₄S [M + H]⁺ 348.1264, found 348.1262.

(S)-bis(4-Methoxyphenyl)((4-methyl-3-oxopentan-2-yl)imino)-λ⁶-sulfanone (53)

According to **General procedure D** with 2-bromo-4-methylpentan-3-one (35.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **52** as a colorless oil (58.5 mg, 78% yield, 89% ee).

 $[\alpha]_{D}^{20} = -3$ (*c* 1.0, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/^{*i*}PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 10.52 min, *t*_R (major) = 12.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.88 (m, 2H), 7.88 – 7.81 (m, 2H), 6.99 – 6.91 (m, 4H), 3.90 – 3.82 (m, 7H), 3.32 (p, *J* = 6.8 Hz, 1H), 1.37 (d, *J* = 6.9 Hz, 3H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.08 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 216.5, 162.8, 162.7, 133.0, 132.5, 130.39, 130.37, 114.4, 114.3, 57.9, 55.6, 35.7, 21.2, 19.1, 18.9.

HRMS (ESI) m/z calcd. for C₂₀H₂₆NO₄S [M + H]⁺ 376.1577, found 376.1575.

Enantioconvergent N-alkylation: scope of secondary α -bromonitrile. (Figure 3A) (S)-2-((bis(4-Methoxyphenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2cyclohexylacetonitrile (54)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminobis(4-methoxyphenyl)- λ^6 -sulfanone (60.9 mg, 0.22 mmol, 1.1 equiv.), Cu(PPh₃)₃Br (18.6 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (30.0 mg, 0.022 mmol, 11 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (4.0 mL). To this solution was added 2-bromo-2-cyclohexylacetonitrile (40.2 mg, 0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at 0 °C for 5 d. Upon completion (monitored by TLC), the precipitate was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to afford the desired product **54** as a colorless oil (54.1 mg, 68% yield, 90% ee).

 $[\alpha]_{D}^{20} = 14 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 14.77 min, t_R (minor) = 16.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 14.5, 8.9 Hz, 4H), 6.98 (dd, *J* = 12.7, 9.0 Hz, 4H), 3.85 (s, 6H), 3.80 (d, *J* = 6.4 Hz, 1H), 2.12 – 2.03 (m, 1H), 1.96 (d, *J* = 12.3 Hz, 1H), 1.82 – 1.68 (m, 3H), 1.36 – 1.09 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 163.2, 163.1, 132.0, 131.4, 130.8, 130.1, 120.5, 114.7, 114.4, 55.7, 55.6, 50.4, 43.5, 29.4, 28.9, 26.2, 25.8.

HRMS (ESI) m/z calcd. for C₂₂H₂₇N₂O₃S [M + H]⁺ 399.1737, found 399.1735.

Enantioconvergent N-alkylation: scope of secondary α-bromo amides. (Figure 3A) General procedure E:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone (43.4 mg, 0.20 mmol, 1.0 equiv.), Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), chiral ligand **L*6** (20.5 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (163.0 mg, 0.50 mmol, 2.5 equiv.) and anhydrous Et₂O (4.0 mL). Then, α -bromo amide (0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 36 h or more. Upon completion (monitored by TLC), the precipitate was filtered off and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure F:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfoximine (0.24 mmol, 1.2 equiv.), Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (163.0 mg, 0.50 mmol, 2.5 equiv.) and anhydrous Et₂O (4.0 mL). Then, α -bromo amide (0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 36 h or more. Upon completion (monitored by TLC), the precipitate was filtered off and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-((1-(Indolin-1-yl)-1-oxopropan-2-yl)imino)diphenyl-λ⁶-sulfanone (55)

According to **General procedure E** with 2-bromo-1-(indolin-1-yl)propan-1-one (50.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **55** as a white amorphous solid (74.8 mg, 96% yield, 94% ee).

 $[\alpha]_{D}^{20} = -114 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 20.34 min, *t*_R (major) = 31.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.2 Hz, 1H), 8.05 (d, *J* = 6.9 Hz, 2H), 7.96 (d, *J* = 6.7 Hz, 2H), 7.56 – 7.33 (m, 6H), 7.23 – 7.09 (m, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 4.31 (q, *J* = 6.6 Hz, 1H), 4.16 – 3.95 (m, 2H), 3.17 – 2.92 (m, 2H), 1.46 (d, *J* = 6.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 143.3, 141.7, 141.2, 132.6, 132.5, 131.4, 129.12, 129.09, 128.41, 128.35, 127.4, 124.4, 123.6, 117.6, 52.0, 47.7, 28.2, 20.9.

HRMS (ESI) m/z calcd. for C₂₃H₂₃N₂O₂S [M + H]⁺ 391.1475, found 391.1472.

(S)-((1-(5-Methoxyindolin-1-yl)-1-oxopropan-2-yl)imino)diphenyl-λ⁶-sulfanone (56)

According to **General procedure E** with 2-bromo-1-(5-methoxyindolin-1-yl)propan-1-one (56.6 mg, 0.20 mmol, 1.0 equiv.) for 30 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **56** as a yellow amorphous solid (78.1 mg, 93% yield, 93% ee). $|\alpha|_{D}^{20} = -56$ (*c* 0.7, CH₂Cl₂).

HPLC analysis: Chiralcel OZ3 (hexane/ⁱPrOH = 70/30, flow rate 0.6 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (minor) = 36.70 min, $t_{\rm R}$ (major) = 46.77 min.

¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.14 (m, 1H), 8.04 (d, J = 6.9 Hz, 2H), 7.95 (d, J = 6.8 Hz, 2H), 7.55 – 7.34 (m, 6H), 6.70 (s, 2H), 4.28 (q, J = 6.5 Hz, 1H), 4.12 – 3.92 (m, 2H), 3.77 (s, 3H), 3.11 – 2.87 (m, 2H), 1.45 (d, J = 6.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 171.3, 156.3, 141.6, 141.2, 136.9, 133.0, 132.6, 132.5, 129.12, 129.08, 128.39, 128.37, 118.2, 111.8, 110.6, 55.6, 51.8, 47.9, 28.4, 21.0.

HRMS (ESI) m/z calcd. for C₂₄H₂₅N₂O₃S [M + H]⁺ 421.1580, found 421.1574.

(S)-((1-oxo-1-(5-(Trifluoromethyl)indolin-1-yl)propan-2-yl)imino)diphenyl- λ^6 sulfanone (57)

According to **General procedure E** with 2-bromo-1-(5-(trifluoromethyl)indolin-1yl)propan-1-one (64.4 mg, 0.20 mmol, 1.0 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **57** as a white amorphous solid (83.3 mg, 91% yield, 94% ee).

 $[\alpha]_{D}^{20} = -425 \ (c \ 0.6, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 17.91 min, *t*_R (major) = 20.29 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.5 Hz, 1H), 8.02 (d, *J* = 6.7 Hz, 2H), 7.96 (d, *J* = 6.5 Hz, 2H), 7.56 – 7.32 (m, 8H), 4.31 (q, *J* = 6.6 Hz, 1H), 4.17 (t, *J* = 8.5 Hz, 2H), 3.21 – 3.00 (m, 2H), 1.45 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 146.2, 141.5, 141.1, 132.7, 132. 6, 132.1, 129.2, 129.1, 128.4, 128.2, 125.4 (q, J = 32.0 Hz), 125.1 (q, J = 3.9 Hz), 124.4 (q, J = 270.0 Hz), 121.4 (d, J = 4.1 Hz), 117.2, 52.0, 48.1, 27.9, 20.6.

¹⁹F NMR (376 MHz, CDCl₃) δ –61.6 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₄H₂₂F₃N₂O₂S [M + H]⁺ 459.1349, found 459.1342.

(S)-((1-(5-Bromoindolin-1-yl)-1-oxopropan-2-yl)imino)diphenyl-λ⁶-sulfanone (58)

According to **General procedure E** with 2-bromo-1-(5-bromoindolin-1-yl)propan-1one (66.6 mg, 0.20 mmol, 1.0 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **58** as a white amorphous solid (91.7 mg, 98% yield, 94% ee).

X-ray quality crystals were obtained by slow evaporation of solvent from a saturated solution in a mixture of CH₂Cl₂/hexane.

 $[\alpha]_{D}^{20} = -46 \ (c \ 0.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 24.31 min, *t*_R (major) = 29.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 1H), 7.99 (dd, *J* = 27.4, 7.6 Hz, 4H), 7.61 – 7.36 (m, 6H), 7.32 – 7.14 (m, 2H), 4.28 (q, *J* = 6.6 Hz, 1H), 4.18 – 3.98 (m, 2H), 3.19 – 2.89 (m, 2H), 1.43 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 142.5, 141.6, 141.1, 133.8, 132.6, 132.5, 130.2, 129.2, 129.1, 128.4, 128.3, 127.4, 118.9, 116.0, 51.9, 47.9, 28.0, 20.7.

HRMS (ESI) m/z calcd. for C₂₃H₂₂BrN₂O₂S [M + H]⁺ 469.0580, found 469.0577.

(S)-N-Methyl-2-((oxodiphenyl-λ⁶-sulfaneylidene)amino)-N-phenylpropanamide(59)

According to **General procedure F** with 2-bromo-*N*-methyl-*N*-phenylpropanamide (48.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **59** as an amorphous solid (55.2 mg, 73% yield, 93% ee).

 $[\alpha]_{D}^{20} = 0.1 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 70/30, flow rate 0.6 mL/min, λ = 230 nm), *t*_R (minor) = 34.32 min, *t*_R (major) = 43.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.58 – 7.37 (m, 6H), 7.20 (s, 3H), 6.76 (s, 2H), 3.95 (q, *J* = 6.8 Hz, 1H), 3.19 (s, 3H), 1.34 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.4, 143.4, 141.5, 141.0, 132.42, 132.38, 129.5, 129.1, 129.0, 128.9, 128.4, 127.6, 127.2, 49.2, 37.7, 22.4.

HRMS (ESI) m/z calcd. for C₂₂H₂₃N₂O₂S [M + H]⁺ 379.1475, found 379.1469.

(S)-2-((Oxodiphenyl- λ^6 -sulfaneylidene)amino)-N-phenylpropanamide (60)

According to **General procedure F** with 2-bromo-*N*-methyl-*N*-phenylpropanamide (48.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **60** as a colorless oil (35.6 mg, 49% yield, 72% ee).

 $[\alpha]_{D}^{20} = -31$ (*c* 1.0, CH₂Cl₂).

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.04 min, t_R (major) = 17.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.11 – 7.94 (m, 4H), 7.69 – 7.51 (m, 8H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 3.89 (q, *J* = 6.9 Hz, 1H), 1.55 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 140.2, 139.7, 138.0, 133.11, 133.05, 129.6, 129.4, 129.0, 128.5, 128.3, 124.1, 119.7, 54.9, 22.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₁N₂O₂S [M + H]⁺ 365.1318, found 365.1313.

(S)-((1-Morpholino-1-oxopropan-2-yl)imino)diphenyl-λ⁶-sulfanone (61)

According to **General procedure F** with 2-bromo-1-morpholinopropan-1-one **E2** (44.2 mg, 0.20 mmol, 1.0 equiv.) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **61** as a colorless oil (68.0 mg, 95% yield, 95% ee).

 $[\alpha]_{D}^{20} = 27 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 80/20, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 32.31 min, *t*_R (major) = 40.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 7.86 (m, 4H), 7.57 – 7.40 (m, 6H), 4.24 (q, *J* = 6.7 Hz, 1H), 3.88 – 3.45 (m, 8H), 1.39 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5 141.2, 140.9, 132.6, 129.2 128.4 128.3, 66.9, 66.7, 51.6, 46.2, 42.6, 21.4.

HRMS (ESI) m/z calcd. for C₁₉H₂₃N₂O₃S [M + H]⁺ 359.1424, found 359.1419.

(*R*)-((1-Morpholino-1-oxopropan-2-yl)imino)diphenyl- λ^6 -sulfanone ((*R*)-61)

According to General procedure F with 2-bromo-1-morpholinopropan-1-one E2 (44.2 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7' for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product (*R*)-61 as a colorless oil (68.1 mg, 99% yield, 97% ee).

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 80/20, flow rate 0.8 mL/min, λ = 230 nm), t_R (major) = 31.16 min, t_R (minor) = 42.41 min.

(S)-((1-Morpholino-1-oxohexan-2-yl)imino)diphenyl- λ^6 -sulfanone (62)

According to **General procedure F** with 2-bromo-1-morpholinohexan-1-one (52.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **62** as a colorless oil (68.1 mg, 85% yield, 89% ee).

 $[\alpha]_{D}^{20} = -20 \ (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel OZ3 (hexane/^{*i*}PrOH = 80/20, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 15.98 min, *t*_R (major) = 18.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 – 7.89 (m, 4H), 7.59 – 7.39 (m, 6H), 4.00 (t, *J* = 7.2 Hz, 1H), 3.88 – 3.74 (m, 1H), 3.71 – 3.39 (m, 7H), 1.91 – 1.70 (m, 2H), 1.53 – 1.39 (m, 1H), 1.38 – 1.16 (m, 3H), 0.87 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 141.1, 140.6, 132.60, 132.59, 129.1, 128.6, 128.4, 66.9, 66.6, 56.6, 46.2, 42.5, 35.3, 28.6, 22.5, 14.0.

HRMS (ESI) m/z calcd. for C₂₂H₂₉N₂O₃S [M + H]⁺ 401.1893, found 401.1888.

(S)-((4-Methyl-1-morpholino-1-oxopentan-2-yl)imino)diphenyl-λ⁶-sulfanone (63)

According to General procedure F with 2-bromo-4-methyl-1-morpholinopentan-1one (52.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 63 as a colorless oil (63.2 mg, 79% yield, 91% ee).

 $[\alpha]_{D}^{20} = -13 \ (c \ 1.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AZ3 (hexane/^{*i*}PrOH = 80/20, flow rate 0.6 mL/min, λ = 230 nm), *t*_R (minor) = 35.34 min, *t*_R (major) = 41.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (dd, *J* = 14.1, 7.3 Hz, 4H), 7.62 – 7.38 (m, 6H), 4.08 (dd, *J* = 8.7, 5.7 Hz, 1H), 3.84 – 3.33 (m, 8H), 1.90 – 1.67 (m, 2H), 1.65 – 1.53 (m, 1H), 0.90 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 141.1, 140.6, 132.62, 132.61, 129.2, 129.1, 128.6, 128.4, 66.9, 66.5, 54.4, 46.2, 44.4, 42.5, 24.7, 23.2, 21.9.

HRMS (ESI) m/z calcd. for C₂₂H₂₉N₂O₃S [M + H]⁺ 401.1893, found 401.1888.

(S)-((4-Chloro-1-morpholino-1-oxobutan-2-yl)imino)diphenyl- λ^6 -sulfanone (64)

According to **General procedure F** with 2-bromo-4-chloro-1-morpholinobutan-1-one (53.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **64** as a yellow oil (62.5 mg, 77% yield, 93% ee).

 $[\alpha]_{D}^{20} = 5 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IF (hexane/ⁱPrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 14.79 min, $t_{\rm R}$ (minor) = 16.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.2 Hz, 2H), 7.96 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.43 (m, 6H), 4.35 (dd, *J* = 8.3, 5.3 Hz, 1H), 3.88 – 3.78 (m, 1H), 3.72 – 3.25 (m, 9H), 2.33 – 2.13 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.9, 140.5, 132.83, 132.76, 129.24, 129.21, 128.6, 128.4, 66.8, 66.5, 51.3, 46.1, 42.4, 42.3, 37.8.

HRMS (ESI) m/z calcd. for C₂₀H₂₄ClN₂O₃S [M + H]⁺ 407.1191, found 407.1188.

 $(S) - 2 - (4 - Morpholino - 4 - oxo - 3 - ((oxodiphenyl - \lambda^6 - sulfaneylidene) amino) butyl)$

isoindoline-1,3-dione (65)

According to **General procedure F** with 2-(3-bromo-4-morpholino-4oxobutyl)isoindoline-1,3-dione (76.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/5) to yield the product **65** as an amorphous solid (62.0 mg, 60% yield, 88% ee). $[\alpha]_D^{20} = -18 (c \ 0.9, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 60/40, flow rate 0.8 mL/min, λ = 230 nm), $t_{\rm R}$ (minor) = 19.59 min, $t_{\rm R}$ (major) = 27.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.7 Hz, 2H), 7.90 (d, *J* = 7.2 Hz, 2H), 7.80 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.64 – 7.32 (m, 6H), 4.13 (t, *J* = 7.0 Hz, 1H), 3.93 – 3.36 (m, 10H), 2.35 (dt, *J* = 13.4, 6.8 Hz, 1H), 2.11 – 1.99 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.8, 168.2, 140.8, 140.6, 133.9, 132.8, 132.6, 132.1, 129.2, 128.5, 128.2, 123.1, 66.7, 66.5, 53.4, 46.2, 42.5, 35.5, 33.6.

HRMS (ESI) m/z calcd. for C₂₈H₂₈N₃O₅S [M + H]⁺ 518.1744, found 518.1741.

(S)-bis(4-Methoxyphenyl)((1-morpholino-1-oxo-4-phenoxybutan-2-yl)imino)- λ^{6} sulfanone (66)

According to **General procedure F** with 2-bromo-1-morpholino-4-phenoxybutan-1one (65.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **66** as a colorless oil (84.8 mg, 81% yield, 89% ee).

 $[\alpha]_{D}^{20} = 3 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 32.61 min, t_R (major) = 56.48 min.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.9, 1.2 Hz, 4H), 7.36 – 7.20 (m, 2H), 7.06 – 6.69 (m, 7H), 4.36 (dd, J = 8.3, 5.7 Hz, 1H), 4.39 – 4.19 (m, 1H), 4.11 – 4.01 (m, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.77 – 3.35 (m, 8H), 2.41 – 2.16 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 172.1, 162.8, 158.8, 132.9, 132.3, 130.4, 130.3, 129.4, 120.6, 114.5, 114.4, 114.3, 66.9, 66.5, 64.4, 55.60, 55.55, 52.0, 46.1, 42.5, 34.9.

HRMS (ESI) m/z calcd. for C₂₈H₃₃N₂O₆S [M + H]⁺ 525.2054, found 525.2048.

Ethyl (S)-4-((bis(4-methoxyphenyl)(oxo)- λ^6 -sulfaneylidene)amino)-5-morpholino-5-oxopentanoate (67)

According to **General procedure F** with ethyl 4-bromo-5-morpholino-5oxopentanoate (61.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **67** as a colorless oil (66.6 mg, 66% yield, 88% ee).

 $[\alpha]_{D}^{20} = 4$ (*c* 1.0, CH₂Cl₂).

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 37.86 min, $t_{\rm R}$ (major) = 75.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 8.9 Hz, 2H), 7.80 (d, J = 8.9 Hz, 2H), 6.92 (dd, J = 8.9, 6.3 Hz, 4H), 4.18 – 4.01 (m, 3H), 3.82 (s, 6H), 3.81 – 3.71 (m, 1H), 3.69 – 3.54 (m, 4H), 3.54 – 3.37 (m, 3H), 2.63 – 2.43 (m, 2H), 2.15 – 1.95 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.2, 162.9, 162.8, 132.8, 132.4, 130.5, 130.4, 114.4, 114.3, 66.9, 66.6, 60.3, 55.61, 55.59, 54.7, 46.1, 42.5, 30.7, 29.9, 14.2.
HRMS (ESI) *m/z* calcd. for C₂₅H₃₃N₂O₇S [M + H]⁺ 505.2003, found 505.1998.

(S)-bis(4-Methoxyphenyl)((1-morpholino-1-oxo-4-phenylbutan-2-yl)imino)- λ^{6} sulfanone (68)

According to **General procedure C** with 2-bromo-1-morpholino-4-phenylbutan-1-one (62.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **68** as a colorless oil (65.0 mg, 65% yield, 89% ee).

 $[\alpha]_{D}^{20} = -0.4 \ (c \ 0.3, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 12.69 min, $t_{\rm R}$ (major) = 18.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.75 (m, 4H), 7.39 – 7.08 (m, 5H), 6.92 (dd, *J* = 9.0, 0.9 Hz, 4H), 3.99 (dd, *J* = 7.6, 6.4 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.73 – 3.30 (m, 8H), 3.01 – 2.75 (m, 1H), 2.72 – 2.60 (m, 1H), 2.17 – 2.07 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 162.8, 141.8, 132.8, 132.5, 130.4, 130.3, 128.56, 128.3, 125.8, 114.4, 114.3, 66.9, 66.6, 55.8, 55.6, 46.1, 42.5, 37.0, 32.6.

HRMS (ESI) m/z calcd. for C₂₈H₃₃N₂O₅S [M + H]⁺ 509.2105, found 509.2103.

(S)-bis(4-Methoxyphenyl)((1-morpholino-1-oxohex-5-en-2-yl)imino)-λ⁶-sulfanone
(69)

According to **General procedure F** with 2-bromo-1-morpholinohex-5-en-1-one (52.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **69** as a colorless oil (71.4 mg, 78% yield, 90% ee).

 $[\alpha]_{D}^{20} = -3 (c \ 1.0, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 16.58 min, $t_{\rm R}$ (major) = 18.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 11.5, 8.9 Hz, 4H), 6.92 (dd, *J* = 8.9, 1.8 Hz, 4H), 5.78 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.24 – 4.70 (m, 2H), 4.00 (dd, *J* = 7.9, 6.4 Hz, 1H), 3.82 (s, 6H), 3.81 – 3.39 (m, 8H), 2.33 – 2.18 (m, 1H), 2.17 – 2.04 (m, 1H), 1.98 – 1.80 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 162.80, 162.78, 138.1, 133.0, 132.6, 130.4, 130.3, 115.0, 114.4, 114.3, 67.0, 66.7, 56.0, 55.6, 46.2, 42.5, 34.7, 30.6.

HRMS (ESI) m/z calcd. for C₂₄H₃₁N₂O₅S [M + H]⁺ 459.1948, found 459.1942.

Demonstration of synthetic potentials. (Figure 4)

A gram-scale experiment. (Figure 4A)

According to **General procedure F** with 2-bromo-1-morpholinopropan-1-one **E2** (1.11 g, 5.0 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **61** as a colorless oil (1.41 g, 79% yield, 93% ee).

Synthesis of the antipodes of products. (Figure 4B)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7' (27.3 mg, 0.020 mmol, 10 mol%) for 60 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*R*)-1 as a colorless oil (63.6 mg, 99% yield, 98% ee).

HPLC analysis: Chiralcel IA (hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 24.87 min, $t_{\rm R}$ (major) = 27.64 min.

Conversion of enantioenriched sulfoximines to chiral primary amines. (Figure 4C) Deprotection of benzyl products to primary amine (90) Procedure a:

To a flamed dried flask charged with a stir bar were added 1 (18.3 mg, 0.057 mmol, 1.0 equiv., 96% ee), Mg (13.7 mg, 0.57 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.31 mL, 1.25 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added to the mixture at 0 °C, and the mixture was warmed up to room temperature to afford a homogeneous solution in 10 min. The mixture was stirred for another 1 h, then concentrated under reduced pressure to afford the crude product **70** (8.1 mg, 91% crude yield, determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard).

To a solution of the crude **70** (6.3 mg, 0.052 mmol, 1.0 equiv.) in CH₂Cl₂ (2.0 mL) were added Et₃N (21.0 mg, 0.21 mmol, 4.0 equiv.) and Ac₂O (21.4 mg, 0.21 mmol, 4.0 equiv.) sequentially. The reaction was stirred at room temperature for 12 h, and then quenched with saturated NH₄Cl solution. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to afford the desired product **70-1** as a yellow oil (8.4 mg, 99% yield, 95% ee).

Procedure b:

To a solution of 1 (64.2 mg, 0.20 mmol, 1.0 equiv., 96% ee) in THF (5.0 mL) was added the freshly prepared Na/naphthalene reagent (4.0 mL, 2.0 mmol, 10.0 equiv., 0.5 M in THF) dropwise with vigorously stirring at -78 °C under argon. The reaction was stirred at -78 °C for 10 min and quenched with MeOH. Then, the mixture was concentrated in

vacuum and redissolved in HCl (1.1 mL, 4.4 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane). After stirring for another 3 h, the mixture was concentrated under reduced pressure to afford the crude product **70** (27.9 mg, 89% crude yield, determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard).

To a solution of the crude **70** in CH₂Cl₂ (10.0 mL) were added Et₃N (80.8 mg, 0.80 mmol, 4.0 equiv.) and Ac₂O (81.6 mg, 0.80 mmol, 4.0 equiv.) sequentially. The mixture was stirred at room temperature for 12 h. Then the reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to afford the desired product **70-1** as a yellow oil (28.7 mg, 99% yield, 95% ee).

(S)-Chloro(1-phenylethyl)- λ^5 -azane (70)

¹**H NMR** (400 MHz, MeOD) δ 7.48 – 7.27 (m, 5H), 4.39 (q, *J* = 6.9 Hz, 1H), 1.57 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, MeOD) δ 138.5, 128.9, 128.7, 126.5, 51.1, 19.7.

(S)-N-(1-Phenylethyl)acetamide (70-1)

 $[\alpha]_{D}^{20} = -77 (c \ 0.4, CH_2Cl_2).$

HPLC analysis: Chiralcel AD3 (hexane/ⁱPrOH = 90/10, flow rate 0.5 mL/min, $\lambda = 210$

nm), t_R (minor) = 11.15 min, t_R (major) = 13.16 min. (procedure a)

HPLC analysis: Chiralcel AD3 (hexane/ⁱPrOH = 90/10, flow rate 0.5 mL/min, λ = 210

nm), t_{R} (minor) = 11.52 min, t_{R} (major) = 14.12 min. (procedure b)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 5.77 (brs, 1H), 5.22 – 5.07 (m, 1H), 2.00 (s, 3H), 1.51 (d, *J* = 6.9 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 169.1, 143.2, 128.7, 127.4, 126.2, 48.8, 23.5, 21.7.
HRMS (ESI) *m/z* calcd. for C₁₀H₁₄NO [M + H]⁺ 164.1070, found 164.1069.

Deprotection of amide product to primary amine (71) Procedure a:

To a flamed dried flask charged with a stir bar were added **59** (37.8 mg, 0.10 mmol, 1.0 equiv., 93% ee), Mg (24.0 mg, 1.0 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.55 mL, 2.2 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added to the mixture at 0 °C, and the reaction was warmed up to room temperature to afford a homogeneous solution in 10 min. After stirring for another 1 h, the solvent was removed under reduced pressure to afford the crude product **71** (17.3 mg, 81% crude yield, determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard).

Then, CH₂Cl₂ (5.0 mL), Et₃N (40.0 mg, 0.40 mmol, 4.0 equiv.), and Ac₂O (40.8 mg, 0.40 mmol, 4.0 equiv.) were added to the crude **71** sequentially. The mixture was stirred at room temperature for 12 h and quenched with saturated NH₄Cl solution. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography (petroleum ether/EtOAc = 1/1) to yield the desired product **71-1** as a yellow oil (17.8 mg, 99% yield, 88% ee).

Procedure b:

To a solution of **59** (75.6 mg, 0.20 mmol, 1.0 equiv., 93% ee) in THF were added the freshly prepared Na/naphthalene reagent (4.0 mL, 2.0 mmol, 10.0 equiv., 0.5 M in THF) dropwise vigorously stirring at -78 °C under argon. The reaction mixture was stirred at -78 °C for 10 min and quenched with MeOH (The color was disappeared). Then, the mixture was concentrated in vacuum and redissolved in HCl (0.30 mL, 1.2 mmol, 6.0 equiv., 4.0 M in 1,4-dioxane). The reaction mixture was stirred for another 3 h. The mixture was concentrated under reduced pressure to afford the crude product **71** (29.5 mg, 68% crude yield, determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard).

To a solution of the crude **71** (24.2 mg, 0.14 mmol, 1.0 equiv.) in CH₂Cl₂ (5.0 mL) were added Et₃N (56.6 mg, 0.56 mmol, 4.0 equiv.) and Ac₂O (57.4 mg, 0.56 mmol, 4.0 equiv.) sequentially. The reaction was stirred at room temperature for 12 h, then quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the desired product **71-1** as a yellow oil (30.5 mg, 99% yield, 90% ee).

(S)-2-(Chloro-λ⁵-azaneyl)-N-methyl-N-phenylpropanamide (71)

¹**H NMR** (400 MHz, MeOD) δ 7.60 – 7.52 (m, 2H), 7.51-7.43 (m, 3H), 3.97 (q, *J* = 6.9 Hz, 1H), 3.30 (s, 3H), 1.29 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, MeOD) δ 169.4, 141.7, 130.2, 128.8, 127.4, 47.2, 37.3, 15.5.

(S)-2-Acetamido-N-methyl-N-phenylpropanamide (71-1)

 $[\alpha]_{D}^{20} = 73 \ (c \ 1.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel ADH (hexane/ⁱPrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 4.42 min, t_R (major) = 5.54 min. (**Procedure a**)

HPLC analysis: Chiralcel ADH (hexane/ⁱPrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$

nm), t_R (minor) = 4.05 min, t_R (major) = 4.97 min. (**Procedure b**)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.42 (m, 2H), 7.41 – 7.37 (m, 1H), 7.31 – 7.24 (m, 2H), 6.65 (brs, 1H), 4.59 (q, *J* = 7.0 Hz, 1H), 3.27 (s, 3H), 1.96 (s, 3H), 1.14 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 169.5, 142.6, 130.1, 128.5, 127.4, 46.0, 37.9, 23.1, 18.7.

HRMS (ESI) m/z calcd. for C₁₂H₁₇N₂O₂ [M + H]⁺ 221.1285, found 221.1281.

Conversion of enantioenriched sulfoximines to valuable chiral building blocks. (Figure 4D)

The synthesis of 73.

$$\begin{array}{c} & \bigcap_{\substack{N \\ Me \\ 0 \\ \end{array}} N \\ & Me \\ & Me \\ & & \\ \hline \mathbf{h} \\ & & \\ \mathbf{h} \\ & & \\ \hline \mathbf{h} \\ & \\ \hline \mathbf{h} \\ & & \\ \hline \mathbf{h} \\ \\ \hline \mathbf{h} \\ \\ & & \\ \hline \mathbf{h} \\ \hline \mathbf{h} \\ \hline \\ \hline \mathbf{h} \\ \\ \hline \mathbf{h} \\ \hline \hline \mathbf{h} \\ \hline \hline \mathbf{h} \\ \hline$$

To a solution of **61** (71.6 mg, 0.20 mmol, 1.0 equiv.) in THF (3.0 mL) was added DIBAL-H (0.22 mL, 0.22 mmol, 1.1 equiv., 1.0 M in hexane) dropwise at -78 °C. The reaction mixture was stirred for 1 h and another portion of DIBAL-H (60.0 µL, 0.060 mmol, 0.3 equiv., 1.0 M in hexane) was added to the above solution. Upon completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was dissolved in MeOH (5.0 mL). To this solution was added NaBH₄ (15.2 mg, 0.40 mmol, 2.0 equiv.) at 0 °C. After stirring for 10 min, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer Na₂SO₄, filtered and concentrated to afford by the times. The combined organic layer was quenched with saturated aqueous NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was quenched with saturated aqueous NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the desired product **72** as a yellow oil (36.9 mg, 67% yield, 93% ee).

To a flamed flask charged with a stir bar were added **72** (36.9 mg, 0.13 mmol, 1.0 equiv., 93% ee), Mg (64.8 mg, 2.7 mmol, 20.0 equiv.) and anhydrous MeOH (2.0 mL) under argon. The mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (1.4 mL, 5.6 mmol, 44.0 equiv., 4.0 M in 1,4-dioxane) was added to the reaction mixture at 0 °C and the reaction was stirred at room temperature to afford a homogenous solution in 10 min.

Upon completion (monitored by TLC), the solvent was removed under reduced pressure. The residue was dissolved in EtOAc (2.0 mL), followed by the addition of a solution of Na₂CO₃ (42.4 mg, 0.40 mmol, 3.0 equiv.) in H₂O (5.0 mL) and CbzCl (34.0

 μ l, 0.16 mmol, 1.2 equiv.). The reaction was stirred for 1 h and quenched with H₂O. The mixture was extracted with EtOAc three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the desired product **73** as a light yellow oil (24.2 mg, 89% yield, 93% ee).

(S)-((1-Hydroxypropan-2-yl)imino)diphenyl- λ^6 -sulfanone (72)

HPLC analysis: Chiralcel OD3 (hexane/ⁱPrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 10.77 min, t_R (minor) = 12.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 8.02 (m, 2H), 7.99 – 7.90 (m, 2H), 7.59 – 7.44 (m, 6H), 3.56 (dd, *J* = 10.7, 3.7 Hz, 1H), 3.49 (dd, *J* = 10.7, 7.7 Hz, 1H), 3.39 – 3.28 (m, 1H), 2.93 (brs, 1H), 1.22 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 140.5, 132.6, 132.6, 129.3, 129.2, 128.7, 128.5, 68.7, 53.3, 20.5.

HRMS (ESI) m/z calcd. for C₁₅H₁₈NO₂S [M + H]⁺ 276.1053, found 276.1059.

Benzyl (S)-(1-hydroxypropan-2-yl)carbamate (73)

 $[\alpha]_{D}^{20} = -4 (c \ 1.2, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 90/10, flow rate 0.8 mL/min, λ = 210 nm), $t_{\rm R}$ (major) = 17.73 min, $t_{\rm R}$ (minor) = 21.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.27 (m, 5H), 5.09 (s, 2H), 5.03 – 4.86 (m, 1H), 3.93 – 3.74 (m, 1H), 3.64 (dd, *J* = 11.0, 3.9 Hz, 1H), 3.51 (dd, *J* = 11.0, 5.9 Hz, 1H), 2.57 (brs, 1H), 1.16 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 136.4, 128.6, 128.2, 128.1, 77.1, 66.9, 49.0, 17.3. HRMS (ESI) *m/z* calcd. for C₁₁H₁₆NO₃ [M + H]⁺ 210.1125, found 210.1131.

The synthesis of 75.

To a flamed flask charged with a stir bar were added **61** (358.0 mg, 1.0 mmol, 1.0 equiv., 93% ee), Mg (240.0 mg, 10.0 mmol, 10.0 equiv.) and anhydrous MeOH (10.0 mL) under argon. The reaction mixture was stirred at room temperature until Mg disappeared (Note: *Ice bath needed if the reaction was too violent!*).

Upon completion (monitored by TLC), HCl (5.5 mL, 22.0 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added dropwise to the mixture at 0 °C, then the mixture was warmed up to room temperature to afford a homogeneous solution in 30 min. Upon completion (monitored by TLC), the solvent was removed under reduced pressure to afford the crude 74.

To the crude 74, CH₂Cl₂ (20.0 mL), Et₃N (505.0 mg, 5.0 mmol, 5.0 equiv.) and (Boc)₂O (654.0 mg, 3.0 mmol, 3.0 equiv.) were added sequentially. The mixture was stirred at room temperature for 3 h. Then the reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the desired product 74-1 as a colorless oil (218.0 mg, 84% yield in three steps, 91% ee).

To a solution of LiAlH₄ (11.3 mg, 0.30 mmol, 2.0 equiv.) in Et₂O (4.0 mL) was added the solution of **74-1** (38.7 mg, 0.15 mmol, 1.0 equiv.) in Et₂O (2.0 mL) dropwise at 0 °C under argon. The resulting mixture was slowly warmed up to room temperature and stirred for 3 h. Upon completion (monitored by TLC), the reaction was quenched with Na₂SO₄•10H₂O, dried with Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the desired product **75** as a yellow oil (32.8 mg, 90% yield). To the solution of **75** (32.8 mg, 0.13 mmol, 1.0 equiv.) in 1,4-dioxane (2.0 mL) was added HCl (0.33 mL, 1.3 mmol, 10.0 equiv., 4.0 M HCl in 1,4-dioxane) and the resulting mixture was stirred at room temperature. Upon completion (monitored by TLC), the mixture was concentrated to afford the residue, which was directly used in the next step without further purification.

The residue and Et₃N (72.0 μ L, 0.52 mmol, 4.0 equiv.) were dissolved in CH₂Cl₂ (5.0 mL) and cooled down to 0 °C. To this solution was added CbzCl (73.0 μ L, 0.52 mmol, 4.0 equiv.) and the reaction mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with brine and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the desired product **75-1** as a light yellow oil (29.6 mg, 82% yield, 91% ee).

(S)-2-Amino-1-morpholinopropan-1-one hydrochloride (74)

¹**H NMR** (400 MHz, CD₃OD) δ 4.41 – 4.29 (m, 1H), 3.63 – 3.55 (m, 5H), 3.50 – 3.41 (m, 3H), 1.37 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 168.1, 66.2, 46.7, 45.6, 42.4, 15.5.

tert-Butyl (S)-(1-morpholino-1-oxopropan-2-yl)carbamate (74-1)

 $[\alpha]_{D}^{20} = 5 (c 5.7, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/^{*i*}PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 17.35 min, *t*_R (minor) = 21.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 5.57 (d, *J* = 7.7 Hz, 1H), 4.60 (p, *J* = 7.0 Hz, 1H), 3.78 – 3.63 (m, 5H), 3.63 – 3.53 (m, 2H), 3.53 – 3.43 (m, 1H), 1.44 (s, 9H), 1.30 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 155.1, 79.6, 66.8, 66.6, 45.9, 42.4, 28.3, 19.2.
HRMS (ESI) *m/z* calcd. for C₁₂H₂₃N₂O₄ [M + H]⁺ 259.1652, found 259.1658.

tert-Butyl (S)-(1-morpholinopropan-2-yl)carbamate (75)

 $[\alpha]_{D}^{20} = 2 (c \ 0.2, \ CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃) δ 4.70 (brs, 1H), 3.86 – 3.42 (m, 5H), 2.59 – 2.46 (m, 2H),

2.45 – 2.36 (m, 2H), 2.35 – 2.27 (m, 1H), 2.27 – 2.18 (m, 1H), 1.45 (s, 9H), 1.15 (d, J

= 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.8, 79.2, 67.0, 64.2, 53.8, 43.5, 28.5, 19.6.

HRMS (ESI) m/z calcd. for C₁₂H₂₅N₂O₃ [M + H]⁺ 245.1860, found 245.1856.

Benzyl (S)-(1-morpholinopropan-2-yl)carbamate (75-1)

 $[\alpha]_{D}^{20} = 12 (c 1.5, CH_2Cl_2).$

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm), $t_{\rm R}$ (minor) = 10.10 min, $t_{\rm R}$ (major) = 13.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 5.19 – 5.00 (m, 3H), 3.89 – 3.73 (m, 1H), 3.72 – 3.57 (m, 4H), 2.60 – 2.44 (m, 2H), 2.43 – 2.21 (m, 4H), 1.19 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.2, 136.7, 128.5, 128.11, 128.09, 66.9, 66.5, 63.9, 53.7, 44.0, 19.5.

HRMS (ESI) m/z calcd. for C₁₅H₂₃N₂O₃ [M + H]⁺ 279.1703, found 279.1699.

The synthesis of 76.

To a solution of **74-1** (773.0 mg, 3.0 mmol, 1.0 equiv.) in anhydrous THF (15.0 mL) was added phenylmagnesium bromide (9.0 mL, 9.0 mmol, 3.0 equiv., 1.0 M in THF) dropwise at 0 °C under argon. Then the reaction mixture was stirred at 0 °C for 2 h. Upon completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the desired product **76** as a colorless oil (709.0 mg, 95% yield, 91% ee).

tert-Butyl (S)-(1-oxo-1-phenylpropan-2-yl)carbamate (76)

 $[\alpha]_{D}^{20} = -4 (c 4.8, CH_2Cl_2).$

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.04 min, t_R (major) = 8.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.3 Hz, 2H), 7.64 – 7.55 (m, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 5.60 (d, *J* = 6.5 Hz, 1H), 5.38 – 5.24 (m, 1H), 1.47 (s, 9H), 1.41 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.5, 155.2, 134.2, 133.7, 128.8, 128.7, 79.7, 51.1, 28.4, 19.9.
HRMS (ESI) m/z calcd. for C₁₄H₁₉NO₃Na [M + Na]⁺ 272.1257, found 272.1262.

The synthesis of 77.

To a flamed tube charged with a stir bar and rubber plug were added Lithium tri-*tert*butoxyaluminum hydride (406.0 mg, 1.6 mmol, 8.0 equiv.), anhydrous EtOH (2.0 mL) under argon and the mixture was cooled down to -78 °C. To this solution was added a solution of **76** (49.8 mg, 0.20 mmol, 1.0 equiv.) in anhydrous EtOH (1.0 mL) dropwise. The reaction mixture was stirred at -78 °C for 0.5 h. Upon completion (monitored by TLC), the reaction was quenched with 10% citric acid, and extracted with EtOAc three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford crude product (the dr was determined by ¹H NMR). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the desired product **77** as a colorless oil (36.6 mg, 73% yield, 91% ee, dr > 20:1).

tert-Butyl ((1*R*,2*S*)-1-hydroxy-1-phenylpropan-2-yl)carbamate (77)

 $[\alpha]_{D}^{20} = -54 (c \ 1.8, CH_2Cl_2).$

HPLC analysis: Chiralcel ODH (hexane/^{*i*}PrOH = 92/8, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 7.21 min, t_R (major) = 7.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 4H), 7.32 – 7.25 (m, 1H), 4.85 (d, *J* = 2.2 Hz, 1H), 4.77 (d, *J* = 7.9 Hz, 1H), 4.00 (brs, 1H), 3.49 (brs, 1H), 1.47 (s, 9H), 0.99 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.4, 140.9, 128.1, 127.4, 126.3, 79.8, 76.8, 52.0, 28.4, 14.7.

HRMS (ESI) m/z calcd. for C₁₄H₂₁NO₃Na [M + Na]⁺ 274.1414, found 274.1419.

The assignment of relative configuration was determined by 2D NMR analysis of the cyclization product.

To an oven dried round bottom flask was added sodium hydride (60% dispersion in mineral oil, 7.4 mg, 0.18 mmol, 1.2 equiv.). To this flask was added a solution of Bocprotected amino alcohol 77 (38.9 mg, 0.15 mmol, 1.0 equiv.) in THF (2.0 mL) slowly at 0 °C under argon. Then the flask was equipped with a reflux condenser and the reaction mixture was heated to reflux with stirring until the starting material was completely consumed (monitored by TLC). The mixture was cooled down to room temperature, quenched with saturated aqueous NH₄Cl solution, and transferred to a separatory funnel. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum/EtOAc = 3/1) to afford the pure product **77-1** as a yellow oil (23.1 mg, 87% yield).

(4S,5R)-4-Methyl-5-phenyloxazolidin-2-one (77-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 3H), 7.34 – 7.29 (m, 2H), 6.28 (s, 1H), 5.73 (d, *J* = 8.0 Hz, 1H), 4.32 – 4.13 (m, 1H), 0.83 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 134.9, 128.53, 128.50, 126.0, 81.0, 52.4, 17.5. HRMS (ESI) *m/z* calcd. for C₁₀H₁₂NO₂ [M + H]⁺ 170.0863, found 170.0861.

The synthesis of 78.

To a solution of **76** (49.8 mg, 0.20 mmol, 1.0 equiv.) in anhydrous THF (2.0 mL) was added methyl magnesium bromide (0.80 mL, 2.4 mmol, 12.0 equiv., 3.0 M in THF) dropwise at 0 °C under argon and then the mixture was stirred at 0 °C for 2 h. Upon completion (monitored by TLC), the reaction was quenched with saturated NH4Cl solution, and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford crude product (the dr was determined by ¹H NMR). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the desired product **78** as a colorless oil (43.8 mg, 83% yield, 91% ee).

tert-Butyl ((2*S*,3*R*)-3-hydroxy-3-phenylbutan-2-yl)carbamate (78)

 $[\alpha]_{D}^{20} = -3$ (*c* 2.2, CH₂Cl₂).

HPLC analysis: Chiralcel IC (hexane/ⁱPrOH = 93/7, flow rate 0.8 mL/min, λ = 214 nm), $t_{\rm R}$ (major) = 7.69 min, $t_{\rm R}$ (minor) = 8.29 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.28 – 7.23 (m, 1H), 4.89 (d, *J* = 9.3 Hz, 1H), 4.07 – 3.96 (m, 1H), 2.80 (brs, 1H), 1.59 (s, 3H), 1.49 (s, 9H), 0.91 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.4, 145.5, 128.2, 126.7, 125.1, 79.5, 77.1, 54.6, 28.5, 28.3, 16.1.

HRMS (ESI) m/z calcd. for C₁₅H₂₃NO₃Na [M + Na]⁺ 288.1570, found 288.1576.

The assignment of relative configuration was determined by 2D NMR analysis of the cyclization product.

To an oven dried round bottom flask was added sodium hydride (60% dispersion in mineral oil, 3.6 mg, 0.090 mmol, 1.2 equiv.). To this flask was added a solution of Bocprotected amino alcohol **78** (19.8 mg, 0.075 mmol, 1.0 equiv.) in THF (1.0 mL) slowly at 0 °C under argon. Then the flask was equipped with a reflux condenser and the reaction mixture was heated to reflux with stirring until the starting material had been completely consumed (monitored by TLC). The mixture was cooled down to room temperature, quenched with saturated aqueous NH4Cl solution, and transferred to a separatory funnel. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to afford the pure product **78-1** as a yellow oil (10.0 mg, 70% yield).

(4S,5R)-4,5-Dimethyl-5-phenyloxazolidin-2-one (78-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 5.91 (s, 1H), 3.98 – 3.79 (m, 1H), 1.83 (s, 3H), 0.77 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.6, 139.5, 128.3, 127.8, 125.2, 86.5, 58.3, 27.6, 19.0.

HRMS (ESI) m/z calcd. for C₁₁H₁₄NO₂ [M + H]⁺ 192.1019, found 192.1016.

The synthesis of 79.

To a flask charged with a stir bar were added **76** (49.8 mg, 0.20 mmol, 1.0 equiv.), 4methylbenzenesulfonhydrazide (44.6 mg, 0.24 mmol, 1.2 equiv.) and MeOH (2.0 mL). The reaction mixture was stirred at 60 °C for 12 h. Upon completion (monitored by TLC), the reaction was concentrated to afford the crude product **79-1**, which was directly used in the next step without further purification.

To a flask charged with a stir bar were added the above crude product **79-1**, ZnF_2 (82.4 mg, 0.80 mmol, 4.0 equiv.), NaBH₃CN (100.8 mg, 1.6 mmol, 8.0 equiv.) and toluene (2.0 mL). Then the reaction mixture was stirred at 80 °C for 24 h. Upon completion (monitored by TLC), the reaction was quenched with 10% aqueous NaOH solution and extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the desired product **79** as a white solid (15.4 mg, 33% yield in two steps, 88% ee).

tert-Butyl (S)-(1-phenylpropan-2-yl)carbamate (79)

 $[\alpha]_{D}^{20} = -3 \ (c \ 0.5, \ CH_2Cl_2).$

HPLC analysis: Chiralcel OD3 (hexane/^{*i*}PrOH = 99/1, flow rate 1.0 mL/min, λ = 214 nm), $t_{\rm R}$ (major) = 8.53 min, $t_{\rm R}$ (minor) = 9.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.24 – 7.15 (m, 3H), 4.40 (brs, 1H), 3.91 (brs, 1H), 2.84 (dd, *J* = 13.2, 5.3 Hz, 1H), 2.65 (dd, *J* = 13.3, 7.4 Hz, 1H), 1.42 (s, 9H), 1.08 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 138.3, 129.5, 128.3, 126.3, 79.1, 47.5, 43.0, 28.4, 20.2.

HRMS (ESI) m/z calcd. for C₁₄H₂₁NO₂Na [M + Na]⁺ 258.1465, found 258.1470.

The synthesis of 80.

To a solution of **74** (31.0 mg, 0.16 mmol, 1.0 equiv.) in CH₂Cl₂ was added CH₂Cl₂ (5.0 mL), Et₃N (0.11 mL, 0.80 mmol, 4.0 equiv.) and the mixture was cooled to 0 °C. To this solution was added CbzCl (136.0 mg, 0.80 mmol, 4.0 equiv.) and the reaction mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with brine and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the desired product **80-1** as a yellow oil (45.6 mg, 98% yield, 90% ee).

To a solution of **80-1** (45.6 mg, 0.16 mmol, 1.0 equiv., 90% ee) in MeOH (0.3 mL) was added SOCl₂ (56.0 μ L, 0.80 mmol, 5.0 equiv.) at 0 °C under argon. The reaction mixture was refluxed at 100 °C for 48 h, then cooled down to room temperature. The solvent was removed under reduced pressure. The residue was diluted with CH₂Cl₂, saturated aqueous NaHCO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the desired product **80** as a yellow oil (19.0 mg, 50% yield, 89% ee).

Benzyl (S)-(1-morpholino-1-oxopropan-2-yl)carbamate (80-1)

 $[\alpha]_{D}^{20} = 13 \ (c \ 2.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel AD (hexane/ⁱPrOH = 75/25, flow rate 0.8 mL/min, λ = 210 nm), t_R (major) = 14.97 min, t_R (minor) = 16.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.29 (m, 5H), 6.01 – 5.80 (m, 1H), 5.11 (s, 2H),

4.77 – 4.58 (m, 1H), 3.77 – 3.44 (m, 8H), 1.34 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 155.6, 136.4, 128.5, 128.1, 128.0, 66.79, 66.76, 66.5, 46.5, 45.9, 42.4, 19.2.

HRMS (ESI) m/z calcd. for C₁₅H₂₁N₂O₄ [M + H]⁺ 293.1496, found 293.1491.

Methyl ((benzyloxy)carbonyl)-L-alaninate (80)

 $[\alpha]_{D}^{20} = -4 (c \ 0.5, CH_2Cl_2).$

HPLC analysis: Chiralcel IB (hexane/ⁱPrOH = 90/10, flow rate 0.8 mL/min, λ = 210 nm), $t_{\rm R}$ (major) = 10.36 min, $t_{\rm R}$ (minor) = 12.70 min.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 5.41 (brs, 1H), 5.10 (s, 2H), 4.47

- 4.30 (m, 1H), 3.73 (s, 3H), 1.40 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 155.6, 136.3, 128.5, 128.2, 128.1, 66.9, 52.5, 49.6, 18.6.

HRMS (ESI) m/z calcd. for C₁₂H₁₆NO₄ [M + H]⁺ 238.1074, found 238.1075.

To a solution of **80** (16.6 mg, 0.070 mmol, 1.0 equiv.) in co-solvent of THF (1.0 mL) and H₂O (1.0 mL) was added LiOH (3.4 mg, 0.14 mmol, 20.0 equiv.) in one portion at room temperature. The mixture was stirred at room temperature for 3 h. After completion (monitored by TLC), 3.0 M aqueous HCl solution was added and the mixture was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the product **80-2** as a colorless oil (10.0 mg, 61% yield).

((Benzyloxy)carbonyl)-L-alanine (80-2)

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 5H), 5.33 (d, *J* = 7.8 Hz, 1H), 5.20 – 5.01 (m, 2H), 4.50 – 4.34 (m, 1H), 1.46 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.6, 155.9, 136.1, 128.6, 128.3, 128.2, 67.2, 49.5, 18.4.

HRMS (ESI) m/z calcd. for C₁₁H₁₃NO₄Na [M + Na]⁺ 246.0737, found 246.0742.

Synthesis of novel chiral ligands. (Figure 4E)

The synthesis of 81 (Pyrox).

The compound **78** (110.0 mg, 0.42 mmol, 1.0 equiv.) was dissolved in HCl (0.53 mL, 2.1 mmol, 5.0 equiv., 4.0 M in 1,4-dioxane) and the reaction mixture was stirred at room temperature for 3 h. The solvent was removed by evaporator to afford the crude product **81-1**, which was directly used in next step without further purification.

To the residue were added methyl picolinimidate (57.1 mg, 0.42 mmol, 1.0 equiv.), TsOH (7.2 mg, 0.042 mmol, 10 mol%) and toluene (1.0 mL) and the reaction mixture was refluxed for 5 h. After cooling down to room temperature, 1.0 M aqueous NaOH solution was added and the product was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to afford **81** as a colorless oil (87.8 mg, 83% yield in two steps, 98% ee).

(4S,5R)-4,5-Dimethyl-5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (81)

 $[\alpha]_{D}^{20} = -303 \ (c \ 5.0, \ CH_2Cl_2).$

HPLC analysis: Chiralcel IF (hexane/iPrOH = 80/20, flow rate 1.0 mL/min, λ = 260 nm), tR (minor) = 6.87 min, tR (major) = 8.49 min.

¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 3.6, 1.1 Hz, 1H), 8.05 (d, J = 7.9 Hz, 1H), 7.73 (td, J = 7.8, 1.8 Hz, 1H), 7.38 – 7.16 (m, 6H), 4.25 (q, J = 7.0 Hz, 1H), 1.80 (s, 3H), 0.79 (d, J = 7.0 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 160.9, 150.0, 147.0, 140.9, 136.6, 128.0, 127.2, 125.5, 125.4, 123.8, 90.2, 72.2, 27.9, 19.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₇N₂O [M + H]⁺ 253.1335, found 253.1340.

The synthesis of 82 (N, P-ligand).

To a flamed dried flask charged with a stir bar were added **26** (30.0 mg, 0.081 mmol, 1.0 equiv., 98% ee), Mg (19.4 mg, 0.81 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The reaction mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.45 mL, 1.8 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added at 0 °C and the reaction mixture was stirred at room temperature to afford a homogenous solution in 10 min. Upon completion (monitored by TLC), the reaction was quenched with saturated aqueous Na₂CO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product.

Without further purification, the obtained crude product, 2-(diphenylphosphaneyl)benzoic acid (25.0 mg, 0.081 mmol, 1.0 equiv.), EDCI (18.6 mg, 0.097 mmol, 1.2 equiv.) and DMAP (0.99 mg, 0.0081 mmol, 0.1 equiv.) were dissolved in CH₂Cl₂ (5.0 mL) and the reaction mixture was stirred overnight. Upon completion, the reaction mixture was concentrated and purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the desired product **82** as a white solid (30.0 mg, 81% yield, 97% ee). (S)-2-(Diphenylphosphaneyl)-N-(1-(naphthalen-1-yl)ethyl)benzamide (82)

 $[\alpha]_{D}^{20} = 15 (c \ 1.5, CH_2Cl_2).$

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 16.82 min, $t_{\rm R}$ (major) = 22.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.55 – 7.50 (m, 1H), 7.45 – 7.39 (m, 1H), 7.39 – 7.26 (m, 11H), 7.26 – 7.19 (m, 2H), 7.00 – 6.91 (m, 1H), 6.25 (d, J = 8.2 Hz, 1H), 6.11 – 5.99 (m, 1H), 1.59 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 142.2, 142.1, 141.8, 137.74, 137.69, 137.62, 137.57, 136.8, 136.6, 134.3, 134.0, 133.9, 133.8, 133.7, 129.9, 128.7, 128.54, 128.53, 128.48, 128.4, 128.2, 127.7, 127.3, 127.2, 126.9, 64.9, 50.8, 39.0, 17.0, 12.1.
³¹P NMR (162 MHz, CDCl₃) δ -10.7.

HRMS (ESI) m/z calcd. for C₃₁H₂₇NOP [M + H]⁺ 460.1825, found 460.1827.

Expedient synthesis of highly enantioenriched commercial drugs. (Figure 4F)

The synthesis of cinacalcet.

According to **General procedure A** with 1-(1-bromoethyl)naphthalene (23.4 mg, 0.10 mmol, 1.0 equiv.) and chiral ligand L*7' for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to afford the product (*R*)-26 as a white solid (27.1 mg, 73% yield, 99% ee).

To a flamed dried flask charged with a stir bar were added (*R*)-**26** (27.1 mg, 0.073 mmol, 1.0 equiv., 99% ee), Mg (17.5 mg, 0.73 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.40 mL, 1.6 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added to the mixture at 0 °C and the reaction mixture was stirred at room temperature to afford a homogeneous solution in 10 min. Upon completion (monitored by TLC), the reaction was quenched with saturated aqueous Na₂CO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuum.

Without further purification, the residue was dissolved in MeCN (1.0 mL). To this solution were added K₂CO₃ (30.2 mg, 0.22 mmol, 3.0 equiv.) and 1-(3-iodopropyl)-3-(trifluoromethyl)benzene (22.9 mg, 0.073 mmol, 1.0 equiv.) under argon, and then the reaction mixture was refluxed at 70 °C for 24 h. Upon completion (monitored by TLC), the reaction was diluted with EtOAc and filtered through a short pad of Celite. The filtrate was evaporated to afford the crude product, which was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/10) to afford the desired product **cinacalcet** as a yellow oil (25.8 mg, 99% yield, 97% ee).

(*R*)-((1-(Naphthalen-1-yl)ethyl)imino)diphenyl- λ^6 -sulfanone ((*R*)-26)

HPLC analysis: Chiralcel OD3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 19.50 min, t_R (major) = 21.47 min.

(*R*)-*N*-(1-(Naphthalen-1-yl)ethyl)-3-(3-(trifluoromethyl)phenyl)propan-1-amine (cinacalcet)

 $[\alpha]_{D}^{20} = 4.7 (c \ 2.5, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/^{*i*}PrOH = 98/2, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 10.97 min, t_R (minor) = 12.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.2 Hz, 1H), 7.88 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.79 (t, *J* = 8.1 Hz, 2H), 7.59 – 7.45 (m, 3H), 7.42 – 7.34 (m, 2H), 7.33 – 7.20 (m, 2H), 4.78 (q, *J* = 6.6 Hz, 1H), 2.77 – 2.55 (m, 4H), 2.07 – 1.87 (m, 2H), 1.62 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.5, 134.0, 131.7 (d, J = 1.0 Hz), 131.2, 130.6 (q, J = 32.0 Hz), 129.2, 128.7, 127.9, 126.2, 125.8, 125.6, 125.0 (q, J = 3.8 Hz), 124.2 (q, J = 271.0 Hz), 123.3, 122.8 (q, J = 4.5, 3.9 Hz), 123.3, 122.5, 53.7, 46.8, 33.2, 30.6, 23.0.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₂H₂₃F₃N [M + H]⁺ 358.1777, found 358.1779.

The synthesis of (S)-cinacalcet.

According to General procedure A with 1-(1-bromoethyl)naphthalene (23.4 mg, 0.10 mmol, 1.0 equiv.) and Cu(HFacac)₂ (4.4 mg, 0.10 mmol, 10 mol%) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to afford the product (S)-26 as a white solid (31.9 mg, 86% yield, 98% ee). To a flamed dried flask charged with a stir bar were added (S)-26 (31.9 mg, 0.086 mmol, 1.0 equiv., 98% ee), Mg (20.6 mg, 0.86 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The reaction mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.47 mL, 1.9 mmol, 22.0 equiv., 4.0 M in 1,4-dioxane) was added to the reaction mixture at 0 °C and then the mixture was warmed up to room temperature to afford a homogeneous solution in 10 min. Upon completion (monitored by TLC), the reaction was quenched with saturated aqueous Na₂CO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuum. Without further purification, the residue was dissolved in MeCN (1.0 mL). To this solution were added K₂CO₃ (35.9 mg, 0.26 mmol, 3.0 equiv.) and 1-(3-iodopropyl)-3-(trifluoromethyl)benzene (27.0 mg, 0.086 mmol, 1.0 equiv.) under argon, and then the reaction mixture was refluxed at 70 °C for 24 h. Upon completion (monitored by TLC), the reaction was diluted with EtOAc and filtered through a short pad of Celite. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/10) to afford the desired product (S)cinacalcet as a yellow oil (22.7 mg, 74% yield, 98% ee).

(S)-((1-(Naphthalen-1-yl)ethyl)imino)diphenyl- λ^6 -sulfanone ((S)-26)

HPLC analysis: Chiralcel OD3 (hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 19.20 min, t_R (minor) = 21.64 min.

(S)-N-(1-(Naphthalen-1-yl)ethyl)-3-(3-(trifluoromethyl)phenyl)propan-1-amine ((S)-cinacalcet)

 $[\alpha]_{D}^{20} = -23 (c 1.3, CH_2Cl_2).$

HPLC analysis: Chiralcel IG (hexane/^{*i*}PrOH = 98/2, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 11.33 min, t_R (major) = 12.91 min.

The synthesis of dapoxetine.

According to **General procedure C** with 1-(3-bromo-3-phenylpropoxy)naphthalene (34.0 mg, 0.10 mmol, 1.0 equiv.) and iminobis(4-methoxyphenyl)- λ^6 -sulfanone (27.7 mg, 0.10 mmol, 1.0 equiv.) at 0 °C for 5 d and room temperature for another 2 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the **dapoxetine-1** as a white solid (34.0 mg, 63% yield, 92% ee).

To a solution of the above sulfoximine (34.0 mg, 0.063 mmol, 1.0 equiv., 92% ee) in THF (3.0 mL) was added the freshly prepared Na/naphthalene reagent (1.30 mL, 0.63

mmol, 10.0 equiv., 0.5 M in THF) dropwise with vigorously stirring at -78 °C under argon. The reaction mixture was stirred at -78 °C for another 10 min and quenched with MeOH (The color was disappeared). Then, the mixture was warmed up to 0 °C, followed by the addition of HCl (0.16 mL, 0.63 mmol, 10.0 equiv., 4.0 M in 1,4-dioxane) and the reaction mixture was stirred for another 3 h. Upon completion (monitored by TLC), the reaction was quenched with saturated aqueous Na₂CO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuum.

The residue was transferred to a Schlenk tube. Then HCHO (0.023 mL, 0.32 mmol, 5.0 equiv., 37% in water) and HCO₂H (1.0 mL) were added under argon. The reaction mixture was refluxed at 100 °C for 24 h. Upon completion (monitored by TLC), the reaction was cooled down to room temperature and treated with 2.0 M aqueous NaOH solution. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/10) to afford the desired product **dapoxetine** as a brown oil (13.6 mg, 71% yield, 93% ee).

(S)-bis(4-Methoxyphenyl)((3-(naphthalen-1-yloxy)-1-phenylpropyl)imino)- λ^6 -sulfanone (dapoxetine-1)

HPLC analysis: Chiralcel IA (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 10.42 min, $t_{\rm R}$ (major) = 13.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (dd, J = 8.4, 1.2 Hz, 1H), 7.87 – 7.78 (m, 3H), 7.73 – 7.64 (m, 2H), 7.51 – 7.31 (m, 8H), 7.28 – 7.23 (m, 1H), 6.86 (dd, J = 7.0, 1.6 Hz, 1H),

6.81 – 6.75 (m, 2H), 6.75 – 6.70 (m, 2H), 4.60 (dd, *J* = 8.2, 5.4 Hz, 1H), 4.51 (ddd, *J* = 9.3, 7.9, 4.9 Hz, 1H), 4.17 (dt, *J* = 9.4, 5.5 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.54 – 2.31 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.5, 154.8, 146.4, 134.5, 132.7, 132.5, 130.6, 130.5, 128.3, 127.3, 126.8, 126.6, 126.2, 126.1, 125.7, 124.8, 122.3, 119.8, 114.2, 114.1, 104.6, 65.0, 56.0, 55.5, 55.4, 40.9.

HRMS (ESI) m/z calcd. for C₃₃H₃₂NO₄S [M + H]⁺ 538.2047, found 538.2060.

(S)-N,N-Dimethyl-3-(naphthalen-1-yloxy)-1-phenylpropan-1-amine (Dapoxetine)

 $[\alpha]_{D}^{20} = -1$ (*c* 0.5, CH₂Cl₂).

HPLC analysis: Chiralcel OD3 (hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 240 nm), t_R (major) = 5.61 min, t_R (minor) = 7.10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.86 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.66 – 7.54 (m, 2H), 7.54 – 7.47 (m, 2H), 7.47 – 7.35 (m, 3H), 7.35 – 7.23 (m, 2H), 6.74 (d, *J* = 7.7 Hz, 1H), 5.55 (dd, *J* = 8.2, 4.7 Hz, 1H), 2.62 (t, *J* = 7.3 Hz, 2H), 2.52 – 2.38 (m, 1H), 2.34 (s, 6H), 2.25 – 2.14 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 153.7, 142.0, 134.6, 128.7, 127.6, 126.4, 126.1, 125.93, 125.86, 125.2, 122.2, 120.1, 107.0, 78.4, 56.2, 45.7, 37.3.

HRMS (ESI) m/z calcd. for C₂₁H₂₄NO [M + H]⁺ 306.1852, found 306.1859.

The synthesis of rivastigmine.

ethyl(methyl)carbamate (28.5 mg, 0.10 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the **rivastigmine-1** as a yellow solid (36.7 mg, 87% yield, 96% ee).

To a flamed dried flask charged with a stir bar were added the above sulfoximine (27.4 mg, 0.065 mmol, 1.0 equiv., 96% ee), Mg (15.0 mg, 0.65 mmol, 10.0 equiv.) and anhydrous MeOH (1.0 mL) under argon. The reaction mixture was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), the reaction mixture was cooled down to at 0 °C and HCl (0.36 mL, 22.0 equiv., 1.4 mmol, 4.0 M in 1,4-dioxane) was added. The mixture was stirred at room temperature to afford a homogeneous solution in 10 min. Upon completion (monitored by TLC), the reaction was quenched with saturated aqueous Na₂CO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuum.

The residue was transferred to a Schlenk tube. Then HCHO (0.025 mL, 0.33 mmol, 5.0 equiv., 37% in water) and HCO₂H (1.0 mL) were added under argon. The mixture was refluxed at 100 °C for 24 h. Upon completion (monitored by TLC), the reaction was cooled down to room temperature and treated with 2.0 M aqueous NaOH solution. The mixture was extracted with CH₂Cl₂ three times, washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/10) to afford the desired product **rivastigmine** as a colorless oil (14.6 mg, 90% yield, 97% ee).

(S)-3-(1-((Oxodiphenyl-λ⁶-sulfaneylidene)amino)ethyl)phenyl ethyl(methyl)carbamate (rivastigmine-1)

rivastigmine-1

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 18.91 min, t_R (minor) = 22.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.87 – 7.78 (m, 2H), 7.53 – 7.33 (m, 6H), 7.26 (t, *J* = 7.9 Hz, 1H), 7.20 (dd, *J* = 6.6, 1.9 Hz, 2H), 7.02 – 6.94 (m, 1H), 4.39 (q, *J* = 6.6 Hz, 1H), 3.44 (dq, *J* = 21.9, 7.2 Hz, 2H), 3.02 (d, *J* = 27.4 Hz, 3H), 1.55 (d, *J* = 6.6 Hz, 3H), 1.30 – 1.12 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 154.7, 154.5, 151.5, 149.0, 141.5, 140.6, 132.39, 132.3, 129.12, 129.05, 129.0, 128.8, 128.4, 122.9, 119.7, 119.5, 53.9, 44.1, 34.2, 33.9, 28.1, 13.3, 12.5.

HRMS (ESI) m/z calcd. for C₂₄H₂₇N₂O₃S [M + H]⁺ 423.1737, found 423.1745.

(S)-3-(1-(Dimethylamino)ethyl)phenyl ethyl(methyl)carbamate (Rivastigmine)

 $[\alpha]_{D}^{20} = -12 (c \ 0.7, CH_2Cl_2).$

HPLC analysis: Chiralcel ODH (hexane/ⁱPrOH/TFA/DEA = 80/20/2/1, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (minor) = 9.56 min, t_R (major) = 16.01 min.

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (t, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.19 – 7.12 (m, 1H), 4.05 (q, *J* = 7.2 Hz, 1H), 3.49 (q, *J* = 7.1 Hz, 1H), 3.41 (q, *J* = 7.2 Hz, 1H), 3.04 (d, *J* = 53.1 Hz, 3H), 2.58 (s, 6H), 1.82 – 1.68 (m, 3H), 1.30 – 1.16 (m, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 154.2, 154.1, 151.9, 136.9, 130.0, 125.43, 125.41, 122.9, 122.8, 122.31, 122.28, 65.8, 44.20, 44.15, 41.0, 34.3, 33.9, 17.84, 17.81, 13.3, 12.5.
HRMS (ESI) *m/z* calcd. for C₁₄H₂₃N₂O₂ [M + H]⁺ 251.1754, found 251.1755.

Mechanistic investigations. (Figure 5)

Synthesis of the sulfoximiato complex of Cu(I). (Figure 5A)

$$\begin{array}{c} O \\ H \\ Ph \\ Ph \\ NH \end{array} + CuMes \xrightarrow{C_6D_6, 66 \circ C} \begin{pmatrix} O \\ H \\ Ph \\ S^{\times} \\ NCu \\ Ph \\ 83, \sim 80\% \end{pmatrix}$$

To a mixture of sulfoximine N1 (21.7 mg, 0.10 mmol, 1.0 equiv.) and CuMes (Mesityl Copper) (18.2 mg, 0.10 mmol, 1.0 equiv.) were added C₆D₆ (benzene-*d*₆) (1.0 mL) under argon atmosphere, and the mixture was stirred at 66 °C overnight. After completion (monitored by ¹H NMR), the mixture was filtered in argon atmosphere and washed with anhydrous benzene. Next, the mixture thus obtained was transferred to a flask and volatiles were evaporated under reduced pressure to afford analytically pure **83** (~80% yield) as a crystalline solid.

The thus obtained product **83** was mixed with anhydrous DMSO at 100 °C in a glovebox and filtered to remove any remaining solids. The resulting solution was transferred to an NMR tube, and then stayed at 70 °C for 1 month to afford the X-ray quality crystals.

((Oxodiphenyl- λ^6 -sulfaneylidene)amino)copper (83)

¹H NMR (600 MHz, DMSO-*d*₆, 100 °C) δ 7.97 – 7.75 (m, 16H), 7.50 – 7.22 (m, 24H)
¹³C NMR (150 MHz, DMSO-*d*₆, 100 °C) δ 147.8, 132.1, 129.2, 127.1.
HRMS (ESI) *m/z* calcd. for C₁₂H₁₁CuNOS [M + H]⁺ 279.9852, found 279.9838.

The effect of chiral ligand in the stoichiometric reaction of the sulfoximinato complex with alkyl bromide. (Figure 5B)

To the **83** (14.0 mg, 0.013 mmol, 0.25 equiv.) was added (1-bromoethyl)benzene (9.2 mg, 0.050 mmol, 1.0 equiv.), chiral ligand L*7 (6.8 mg, 0.0050 mmol, 10 mol%), Cs₂CO₃ (32.6 mg, 0.10 mmol, 2.0 equiv.) and anhydrous Et₂O (1.0 mL) and stirred at room temperature for 72 h. The mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product and purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **1** as a colorless oil (12.5 mg, 78% yield, 96% ee).

To the **83** (14.0 mg, 0.013 mmol, 0.25 equiv.) was added (1-bromoethyl)benzene (9.2 mg, 0.050 mmol, 1.0 equiv.), Cs_2CO_3 (32.6 mg, 0.10 mmol, 2.0 equiv.) and anhydrous Et₂O (1.0 mL) and stirred at room temperature for 72 h. The mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product and determined by ¹H NMR spectra. There is no reaction happened without the chiral ligand.

The effect of sulfoximine on the reaction initiation. (Figure 5C)

According to **General procedure A** with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7 at 0 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 1 as a colorless oil (44.3 mg, 69% yield, 96% ee).

In absence of sulfoximine N1, according to General procedure A with (1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7 at 0 °C for 72 h, there is no conversion of E1.

The stereochemistry of alkyl bromide during the reaction. (Figure 5D)

Racemic benzylic bromide

According to General procedure A with *rac*-(1-bromoethyl)benzene E1 (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7 at room temperature for 12 h, the reaction mixture was diluted with EtOAc and filtrated through a pad of Celite, then concentrated in vacuum. The yield of E1 was determined by ¹H NMR spectra with 1,3,5-trimethoxybenzene as an internal standard, the product 1 as a colorless oil was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) as a colorless oil (16.6 mg, 26% yield, 96% ee).

Chiral benzylic bromide

According to **General procedure A** with (*R*)-(1-bromoethyl)benzene (36.8 mg, 0.20 mmol, 1.0 equiv.) and chiral ligand L*7 at room temperature for 12 h, the reaction mixture was diluted with EtOAc and filtrated through a pad of Celite, then concentrated in vacuum. The yield of (*R*)-E1 was determined by ¹H NMR spectra with 1,3,5-trimethoxybenzene as an internal standard, the product 1 (13.5 mg, 21% yield, 96% ee) as a colorless oil was obtained by column chromatography on silica gel (petroleum ether/EtOAc = 5/1).

Radical trap experiment with TEMPO. (Figure 5E)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone N1 (26.0 mg, 0.12 mmol, 1.2 equiv.), Cu(HFacac)₂ (4.4 mg, 0.010 mmol, 10 mol%), chiral ligand L*7 (13.6 mg, 0.010 mmol, 10 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 equiv.), TEMPO (31.3 mg, 0.20 mmol, 2.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added (*R*)-(1-bromoethyl)benzene (18.4 mg, 0.10 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 96 h. The precipitate was diluted with EtOAc, and then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated under reduce pressure and the residue was purified by column chromatography on neutral alumina (petroleum) to afford **84** as a yellow oil (4.4 mg, 17% yield).

2,2,6,6-Tetramethyl-1-(1-phenylethoxy)piperidine (84)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.27 – 7.20 (m, 1H), 4.80 (q, J = 6.7 Hz, 1H), 1.53 – 1.02 (m, 18H), 0.68 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 145.9, 128.0, 126.8, 126.6, 83.1, 59.7, 53.4, 40.4, 34.5, 34.1, 23.6, 20.4, 17.2.
HRMS (ESI) *m/z* calcd. for C₁₇H₂₈NO [M + H]⁺ 262.2165, found 262.2161.

Radical clock experiment. (Supplementary Scheme S3)

Benzyl chloride

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone N1 (52.0 mg, 0.24 mmol, 1.2 equiv.), CuTc (3.8 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). To this solution was added (chloro(cyclopropyl)methyl)benzene E3 (33.2 mg, 0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, and then filtered through Celite and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to afford the desired product 85 as a yellow oil (6.0 mg, 9% yield) and 86 as a yellow oil (19.1 mg, 28% yield, 0% ee).

(*E*)-Diphenyl((4-phenylbut-3-en-1-yl)imino)- λ^6 -sulfanone (85)

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.91 (m, 4H), 7.53 – 7.41 (m, 6H), 7.39 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.22 – 7.15 (m, 1H), 6.51 – 6.41 (m, 1H), 6.30 (dt, *J* = 15.9, 6.9 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.62 – 2.51 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 140.8, 137.8, 132.4, 131.1, 129.1, 128.9, 128.6, 128.5, 128.4, 127.6, 126.9, 126.03, 125.99, 43.9, 36.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₂NOS [M + H]⁺ 348.1417, found 348.1411.

((Cyclopropyl(phenyl)methyl)imino)diphenyl-λ⁶-sulfanone (86)

HPLC analysis: Chiralcel ID (hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_{R1} = 8.17 min, t_{R2} = 9.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 – 8.00 (m, 2H), 7.80 – 7.70 (m, 2H), 7.53 – 7.37 (m, 6H), 7.36 – 7.27 (m, 4H), 7.25 – 7.19 (m, 1H), 3.61 (d, *J* = 7.6 Hz, 1H), 1.36 – 1.17 (m, 1H), 0.58 – 0.50 (m, 1H), 0.50 – 0.39 (m, 2H), 0.39 – 0.30 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 141.7, 140.9, 132.3, 132.2, 128.94, 128.92, 128.6, 128.1, 126.8, 126.5, 62.9, 21.1, 4.8, 4.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₂NOS [M + H]⁺ 348.1417, found 348.1411.

a-Bromo ketone

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a

magnetic stir bar was charged with iminobis(4-methoxyphenyl)- λ^6 -sulfanone (60.9 mg, 0.22 mmol, 1.1 equiv.), Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), chiral ligand L*7 (27.3 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (4.0 mL). To this solution was added 2-bromo-2-cyclopropyl-1-phenylethan-1-one **E4** (47.6 mg, 0.20 mmol, 1.0 equiv.) and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, and then filtered through a short pad of Celite and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **87** as a colorless oil (48.7 mg, 56% yield).

(*E*)-bis(4-Methoxyphenyl)((5-oxo-5-phenylpent-3-en-1-yl)imino)- λ^6 -sulfanone (87)

¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.91 (m, 2H), 7.91 – 7.83 (m, 4H), 7.59 – 7.52 (m, 1H), 7.52 – 7.44 (m, 2H), 7.20 – 7.10 (m, 1H), 7.02 – 6.95 (m, 1H), 6.95 – 6.89 (m, 4H), 3.82 (s, 6H), 3.24 (t, *J* = 6.9 Hz, 2H), 2.73 – 2.61 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 191.0, 162.7, 148.3, 138.0, 132.6, 132.5, 130.4, 128.6,

128.5, 127.1, 114.4, 55.6, 42.7, 36.3.

HRMS (ESI) m/z calcd. for C₂₅H₂₆NO₄S [M + H]⁺ 436.1577, found 436.1575.

a-Bromo amide

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a

magnetic stir bar was charged with iminodiphenyl- λ^6 -sulfanone N1 (13.0 mg, 0.060 mmol, 1.2 equiv.), Cu(HFacac)₂ (2.39 mg, 0.0050 mmol, 10 mol%), chiral ligand L*7 (6.8 mg, 0.0050 mmol, 10 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 4.0 equiv.) and anhydrous Et₂O (1.0 mL). To this solution was added alkyl halide 2-bromo-2-cyclopropyl-1-morpholinoethan-1-one E5 (12.4 mg, 0.050 mmol, 1.0 equiv.) and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), the precipitate was diluted with EtOAc, and then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to afford the desired product **89** as a yellow oil (10.0 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 – 7.93 (m, 4H), 7.59 – 7.42 (m, 6H), 6.95 (dt, *J* = 15.2, 6.9 Hz, 1H), 6.32 (d, *J* = 15.2 Hz, 1H), 3.81 – 3.45 (m, 8H), 3.21 (t, *J* = 7.0 Hz, 2H), 2.65 – 2.53 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.9, 144.7, 140.6, 132.5, 129.2, 128.5, 121.0, 66.9, 46.2, 42.7, 36.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₅N₂O₃S [M + H]⁺ 385.1580, found 385.1575.

NMR spectra

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.438	BB	0.9406	2.64790e4	405.10440	49.9046
2	48.488	BB	1.2155	2.65803e4	309.63678	50.0954
Total	ls :			5.30594e4	714.74118	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.533	MM R	1.1878	9.59549e4	1346.36279	98.6305
2	49.203	MM R	1.2988	1332.36206	17.09709	1.3695

```
Totals : 9.72873e4 1363.45988
```


Signal 2: DAD1 B, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
33.616	BB	1.3648	1980.41125	22.59015	50.4214
43.808	BB	1.4772	1947.30835	16.16784	49.5786
	RetTime [min] 33.616 43.808	RetTime Type [min] 33.616 BB 43.808 BB	RetTime Type Width [min] [min] 33.616 BB 1.3648 43.808 BB 1.4772	RetTime TypeWidthArea[min][min][mAU*s]33.616BB1.36481980.4112543.808BB1.47721947.30835	RetTime TypeWidthAreaHeight[min][min][mAU*s][mAU]33.616BB1.36481980.4112522.5901543.808BB1.47721947.3083516.16784

3927.71960 38.75799

Totals : 2363.46196 34.88321

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.747	MM R	0.6640	1574.53088	39.52412	49.9293
2	27.566	MM R	0.7456	1578.99146	35.29557	50.0707
Tota]	s:			3153.52234	74.81970	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.871	MM R	0.6997	148.49786	3.53742	0.9373
2	27.635	MM R	0.7920	1.56954e4	330.28882	99.0627
Tota]	ls :			1.58439e4	333.82623	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area % [min] [min] [mAU*s] [mAU] # 5.723 MM R 0.0556 2255.44287 676.06622 50.1071 1 7.258 MM R 0.6017 2245.80444 2 62.21108 49.8929

4501.24731 738.27731

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.804	VV	0.0706	4808.30762	1108.69519	96.2177
2	7.261	VB	0.3402	189.01508	8.22201	3.7823

4997.32269 1116.91720

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	45.602	MM R	1.2519	1.60955e4	214.28592	49.9729
2	66.753	BB	1.8005	1.61129e4	124.78596	50.0271
Tota]	ls:			3.22084e4	339.07188	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	44.385	BB	1.1909	2.12108e4	257.52716	99.9702
2	66.878	MM R	1.8231	6.32561	5.78282e-2	0.0298
Total	ls :			2.12171e4	257.58499	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.048	BB	0.8069	3.31078e4	598.92108	50.0171
2	47.465	BB	1.1145	3.30852e4	426.74246	49.9829
Tota]	s:			6.61931e4	1025.66354	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime Type	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
		-			
1	32.311 BB	0.8144	4.94108e4	889.06995	100.0000
Tota]	ls :		4.94108e4	889.06995	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.989	BB	0.9750	2047.65356	30.82331	49.8954
2	50.302	MM R	1.5217	2056.23633	22.52057	50.1046
Tatal				4102 00000		

4103.88989 53.34387

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.703	BB	1.0338	2.90297e4	404.24634	97.8410
2	50.642	BB	1.2200	640.57184	7.17219	2.1590
Total	ls :			2.96703e4	411.41853	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	41.656	BB	0.9840	4.73538e4	699.32672	50.4262
2	55.001	BB	1.4967	4.65534e4	428.10934	49.5738

9.39072e4 1127.43607

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 ----|
 ----|

 1
 41.114
 BB
 1.0079
 1.75803e5
 2545.18359
 100.0000

```
Totals :
```

```
1.75803e5 2545.18359
```


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	43.093	BB	1.0348	5.21301e4	732.02399	50.2237
2	58.544	MM R	2.1345	5.16658e4	403.41370	49.7763

1.03796e5 1135.43768

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	43.097	MM R	1.3261	1.25414e5	1576.22388	98.3707
2	60.889	BB	1.5686	2077.17212	16.36729	1.6293
Total	ls :			1.27491e5	1592.59117	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	45.639	BB	1.0081	4.47529e4	639.79907	49.9349
2	60.698	BB	1.7749	4.48695e4	328.21915	50.0651
Total	ls :			8.96224e4	968.01822	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	45.581	BB	1.1007	1.20058e5	1586.75171	98.7816
2	62.718	MM R	1.9474	1480.82922	12.67355	1.2184
Tota	ls :			1.21539e5	1599.42526	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.375	BB	0.9944	4.86179e4	732.44867	50.2278
2	45.674	BB	1.1659	4.81770e4	627.34558	49.7722
Total	ls :			9.67948e4	1359.79425	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	39.875	BB	0.9887	1.12532e5	1685.98218	98.3010
2	46.087	BB	1.1229	1945.00818	25.35567	1.6990
Tota]	ls :			1.14477e5	1711.33785	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	49.649	BB	1.3174	9.58099e4	1092.21545	49.8488
2	58.094	BB	1.5854	9.63913e4	900.07635	50.1512
Tota]	ls :			1.92201e5	1992.29181	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [min] [mAU] % # [min] 1.3153 6.54396e4 1 49.464 BB 757.93567 98.8920 2 58.971 MM R 1.8881 733.16608 6.47184 1.1080

Totals: 6.61728e4 764.40751

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 43.156 BB 1.1629 4.45228e4 583.03094 98.8820 2 50.186 BB 1.1637 503.37344 5.60514 1.1180 Totals : 588.63609 4.50262e4

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.876	BB	1.0115	1953.82703	29.02003	50.0781
2	39.568	BB	0.9743	1947.72913	29.57620	49.9219
Total	ls :			3901.55615	58.59623	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	36.149	BB	0.8902	1.11870e4	185.33284	98.5339
2	39.786	BB	0.8560	166.45030	2.88983	1.4661
Tota]	ls :			1.13534e4	188.22267	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	67.408	BB	1.5413	1.06781e4	102.50818	50.0453
2	73.142	BB	1.7148	1.06588e4	92.47124	49.9547
Tota]	ls:			2.13369e4	194,97942	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	67.416	BB	1.5810	5.09481e4	469.87244	98.8052
2	73.933	MM R	1.9635	616.10785	5.22972	1.1948

Totals : 5.

5.15642e4 475.10215

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.857	FM R	0.8307	5726.69385	114.89928	49.8968
2	36.042	BB	1.1223	5750.37793	75.69331	50.1032
Tota]	ls :			1.14771e4	190.59259	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.675	MM R	0.8402	5.73416e4	1137.46777	96.1699
2	35.924	MM R	0.9996	2283.73438	38.07840	3.8301
Total	ls :			5.96253e4	1175.54618	

The chloro substrates

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.351	MM R	0.6905	6129.36133	147.93439	50.5681
2	35.981	MM R	0.7676	5991.64551	130.09331	49.4319

Totals: 1.21210e4 278.02769

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [min] [min] [mAU] % # 1 28.293 BB 0.6580 5021.50195 116.23598 97.8208 2 35.671 MM R 0.9252 111.86822 2.01512 2.1792 Totals : 5133.37017 118.25111

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	48.256	BB	0.9586	1555.43750	25.61066	1.9405
2	58.046	BB	1.4289	7.86011e4	768.74951	98.0595
Total	ls :			8.01566e4	794.36017	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	52.060	BB	1.0606	4097.68799	59.12556	50.0616
2	64.527	VB	1.2186	4087.59766	51.68767	49.9384

Totals :

8185.28564 110.81322

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.749	BB	0.4716	1.55100e4	486.97626	49.7060
2	34.035	BB	1.0074	1.56935e4	226.75638	50.2940
Total	ls:			3.12035e4	713.73264	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.737	BB	0.5158	6.94171e4	2015.63318	96.4782
2	34.315	MM R	0.9429	2533.97803	44.78920	3.5218
Tota	ls :			7.19511e4	2060.42238	

The chloro substrates

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.283	BB	0.6514	6109.99902	143.31752	49.9649
2	35.910	MM R	0.7831	6118.59473	130.22910	50.0351

Totals: 1.22286e4 273.54662

Peak	RetTime T	уре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	-	-				
1	28.384 B	BB	0.6669	5033.23438	114.93758	98.1808
2	35.839 M	1M R	0.8933	93.26212	1.74008	1.8192
Tota]	ls :			5126.49649	116.67767	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Ty	ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.404 BE	B 0.3829	2473.65405	97.85881	48.0628
2	20.062 BE	B 0.4221	2673.05542	96.21078	51.9372
Total	ls :		5146.70947	194.06960	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.402	BB	0.4603	1.80370e4	587.29456	97.7450
2	20.420	BB	0.4677	416.12219	13.49546	2.2550
Total	ls :			1.84531e4	600.79001	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.767	BB	0.4553	1823.32922	62.33519	49.8722
2	37.694	BB	0.8559	1832.67224	32.89739	50.1278
Total	ls :			3656.00146	95.23259	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.762	BB	0.4681	1132.11426	37.29874	2.5412
2	37.315	BB	0.9319	4.34174e4	713.48608	97.4588

Totals :

4.45495e4 750.78482

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.515	BB	0.4792	258.25525	8.16025	50.1547
2	25.284	BB	0.6283	256.66193	5.84520	49.8453
Tota]	ls :			514.91718	14.00546	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.683	BB	0.4986	259.50281	8.12478	3.9846
2	25.373	BB	0.6991	6253.09863	136.85159	96.0154
Tota]	ls :			6512.60144	144.97638	

S279

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.441	VB R	0.2171	2982.91162	213.39357	49.6558
2	12.559	BV R	0.2514	3024.26807	184.36650	50.3442

Totals : 6007.17969 397.76007

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.445	VV R	0.2203	2229.56519	156.41428	95.4798
2	12.615	BV R	0.2109	105.55209	6.31776	4.5202

```
Totals : 2335.11728 162.73204
```


Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.044	BB	0.7378	4879.53418	97.84650	49.9359
2	34.070	BB	0.8223	4892.06494	88.85565	50.0641
Tatal				0771 50010	100 70015	

9771.59912 186.70215

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.133	BB	0.8345	3.75098e4	676.94598	96.1263
2	33.855	BB	0.9708	1511.58765	23.30194	3.8737
Tota]	ls:			3.90213e4	700.24793	

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 18.616 BB 0.3733 118.72488 4.92329 2.9877 2 32.090 BB 0.6309 3855.07568 93.14317 97.0123 Totals : 3973.80057 98.06646

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] [min] [mAU] % # 1 10.420 BV 0.2626 2675.26025 154.08708 49.9445 2 11.354 VB 0.2940 2681.20068 138.40616 50.0555

5356.46094 292.49324

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.364	BV R	0.2705	1.26594e4	708.36725	95.9999
2	11.359	VB E	0.2869	527.49170	27.85690	4.0001
Tota]	s:			1.31869e4	736.22415	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.519	BB	0.5106	865.13348	25.32464	51.5652
2	18.979	MF R	0.5972	812.61371	22.67711	48.4348

1677.74719 48.00175

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.692	BB	0.5201	3743.00073	108.06425	92.0698
2	19.245	BB	0.6071	322.39331	7.88378	7.9302
Tota]	ls :			4065.39404	115.94804	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.598	BB	0.4667	9575.00879	316.68216	49.9300
2	24.196	BB	0.8595	9601.86816	171.41501	50.0700
Tota]	ls :			1.91769e4	488.09717	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.609	BB	0.4661	6544.97900	215.62640	93.3042
2	24.339	BB	0.7912	469.68518	8.51898	6.6958
Tota]	ls :			7014.66418	224.14538	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.798	MM R	0.5759	3.37381e4	976.34192	96.5905
2	24.551	VV R	0.6152	1190.90613	23.03533	3.4095
Tota]	ls :			3.49291e4	999.37724	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.215	BV	0.3814	3039.37671	122.54710	48.1928
2	22.332	VB	0.4413	3267.32495	112.35404	51.8072

6306.70166 234.90115

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			- -				
1	21.066	MF	R	0.5276	9.81674e4	3100.98804	98.3851
2	22.231	FM	R	0.5109	1611.29407	52.56573	1.6149
Tota]	ls :				9.97787e4	3153.55377	

Totals :

2520.50574 235.32159

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.919	VB R	0.1385	253.80870	25.32936	1.6773
2	9.088	VB R	0.2391	1.48784e4	931.92694	98.3227
Total	s :			1.51322e4	957.25631	
The chloro substrates

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.192	BB	1.0071	1.12106e4	161.65407	50.0206
2	32.853	BB	1.1941	1.12014e4	136.10995	49.9794
Tota]	s:			2.24120e4	297.76402	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.109	BB	0.8982	2.31619e4	385.91211	49.8754
2	43.458	BB	0.9896	2.32776e4	347.45084	50.1246
Tota]	ls :			4.64394e4	733.36295	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.989	BB	0.7353	3.79174e4	790.89185	98.7748
2	41.712	BB	0.7907	470.32013	8.75555	1.2252
Total	ls :			3.83877e4	799.64740	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.796	BV	0.1867	1.24916e4	1021.04315	49.8337
2	8.775	MF R	0.2331	1.25750e4	899.07648	50.1663
Total	s :			2.50666e4	1920.11963	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.593	MM R	0.2178	3335.70874	255.23349	89.8878
2	9.773	MM R	0.2517	375.26151	24.85266	10.1122
Total	s :			3710.97025	280.08615	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
	-				
29.027	BB	1.2470	1.14457e5	1440.47339	95.5742
36.904	BB	1.5689	5300.26172	48.27670	4.4258
	RetTime [min] 29.027 36.904	RetTime Type [min] - 29.027 BB 36.904 BB	RetTime Type Width [min] [min] 29.027 BB 1.2470 36.904 BB 1.5689	RetTime TypeWidthArea[min][min][mAU*s]29.027BB1.24701.14457e536.904BB1.56895300.26172	RetTime TypeWidthAreaHeight[min][min][mAU*s][mAU]29.027BB1.24701.14457e51440.4733936.904BB1.56895300.2617248.27670

Totals :

1.19758e5 1488.75009

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.112	BB	0.8420	1914.09485	33.93956	2.1425
2	36.778	BB	1.1471	8.74266e4	1181.75098	97.8575
Tota]	ls :			8.93406e4	1215.69054	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	31.444	MM R	1.0545	2.60207e4	411.25116	95.8009
2	38.384	BB	1.0603	1140.54004	15.21855	4.1991
Tota]	ls :			2.71612e4	426.46971	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.475	BB	0.5582	2645.55542	72.07307	49.7634
2	20.615	BB	0.6366	2670.70923	63.50843	50.2366

5316.26465 135.58151

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.482	BB	0.5492	570.25281	15.72108	2.8574
2	20.309	BBA	0.6349	1.93869e4	457.05188	97.1426
Tota]	ls:			1.99571e4	472.77296	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	30.633	 MM R	1.0364	 4920.84277	 79.13699	 50.1795
2 Total	37.931	BB	1.1316	4885.63672	66.30952	49.8205

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.878	BB	0.9392	2.17582e4	358.95581	97.1445
2	37.453	BB	0.9753	639.57898	8.70349	2.8555
Tota]	ls :			2.23978e4	367.65930	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	39.911	BB	1.3251	6002.48193	67.13322	49.9175
2	47.849	BB	1.5796	6022.32422	56.31431	50.0825

1.20248e4 123.44753

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	39.799	BB	1.3961	2.05143e4	226.62315	93.4253
2	48.107	BB	1.2723	1443.66357	13.47137	6.5747
Total	ls :			2.19580e4	240,09452	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.329	BV	0.3120	1088.28418	54.26349	50.0097
2	12.168	VB	0.3343	1087.86206	50.29762	49.9903
Total	ls :			2176.14624	104.56111	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.290	BV	0.3108	1.58914e4	796.49493	96.9539
2	12.145	VB	0.3487	499.27292	21.67608	3.0461
Tota]	ls :			1.63907e4	818.17102	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.675	MF R	0.7582	6511.51270	143.14381	50.8488
2	24.861	FM R	0.8381	6294.13281	125.16263	49.1512
Total	ls :			1.28056e4	268.30644	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.570	BB	0.6844	2.09530e4	471.54083	95.4709
2	24.835	BB	0.7300	993.99774	21.15985	4.5291
Total	s:			2.19470e4	492,70068	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.398	MF R	1.0654	1.64059e4	256.63904	50.4365
2	50.747	MM R	2.1406	1.61219e4	125.52304	49.5635
Tota]	ls :			3.25278e4	382.16208	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	26.293	MF R	1.0451	3.22819e4	514.80560	95.4730
2	50.808	BB	1.5019	1530.70703	12.00249	4.5270
Total	ls :			3.38126e4	526 . 80809	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.466	BB	1.0199	1884.78296	29.24394	49.8201
2	33.204	BB	1.2652	1898.39380	20.37167	50.1799

3783.17676 49.61562

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.470	BB	1.0425	1.12698e4	171.99257	95.2291
2	33.300	BB	1.1026	564.61102	6.05098	4.7709
Tota]	ls :			1.18344e4	178.04355	

Peak RetTime Type Width Area Height Area % [min] [min] [mAU*s] # [mAU] 21.969 MM R 0.7818 1110.04211 23.66327 48.5844 1 2 26.946 MM R 0.9496 1174.72986 20.61849 51.4156

2284.77197 44.28176

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.287	BB	0.7122	2.66140e4	576.90405	96.0370
2	26.255	BB	0.8477	1098.22229	19.48231	3.9630
Total	ls :			2.77122e4	596.38636	

Peak RetTime Type Width Height Area Area [mAU] # [min] [min] [mAU*s] % 1 23.643 BB 0.7330 1950.66357 40.85941 49.8128 2 27.257 BB 0.8601 1965.32861 34.94857 50.1872 Totals : 3915.99219 75.80798

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.034	BB	0.7291	6.12202e4	1296.05078	97.2223
2	27.760	BB	0.8265	1749.10547	32.36598	2.7777
Total	ls :			6.29693e4	1328,41676	


```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.082	BB	0.5987	1888.84814	48.89371	50.8365
2	22.908	BB	0.6550	1826.68787	43.05470	49.1635
Total	ls :			3715.53601	91.94841	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.159	BV	0.5961	2911.27686	75.79636	14.2366
2	22.888	MM R	0.7123	1.75379e4	410.34650	85.7634
Tota]	ls :			2.04492e4	486.14286	

reak	INC CT THIC	rype	MIGCH	Alca	nergne	Aica	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.523	BB	0.3275	823.33551	39.12523	5.3343	
2	12.727	BB	0.4129	1.46114e4	548.26465	94.6657	

1.54347e4

587.38988

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.185	BB	0.6327	6343.55273	152.69914	50.0737
2	31.731	BB	1.0440	6324.86963	92.00576	49.9263
Total	ls :			1.26684e4	244.70490	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.343	BB	0.6215	919.85565	22.95653	2.8282
2	31.377	BBA	1.0759	3.16047e4	448.60132	97.1718
Tota]	ls :			3.25245e4	471.55785	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.874	BB	1.1008	2.29967e4	313.88516	50.0245
2	46.221	BB	1.3728	2.29742e4	250.30614	49.9755
Tota]	ls :			4.59708e4	564.19130	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.696	MM R	1.3398	139.82149	1.73928	3.2541
2	46.772	BB	1.4236	4156.90283	43.86626	96.7459
Total	ls :			4296.72432	45.60554	

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 17.778 BB 0.4894 2.18919e4 1 683.92426 49.9939 20.270 BB 0.5687 2.18972e4 2 590.33777 50.0061 Totals : 4.37892e4 1274.26202

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.907	BB	0.5053	479.34879	14.51269	3.1842
2	20.288	BB	0.5704	1.45744e4	391.46890	96.8158
Tota]	ls :			1.50538e4	405.98159	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.824	BB	0.7283	2.25128e4	468.75302	49.9218
2	31.333	BB	0.9383	2.25833e4	367.82880	50.0782

4.50962e4 836.58182

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.307	BB	0.6759	3803.23779	86.00909	3.2335
2	29.962	BB	0.9036	1.13816e5	1903.54834	96.7665

1.17620e5 1989.55743

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	34.089	BB	1.0990	3.17399e4	438.23398	50.1479
2	44.146	BB	1.3293	3.15526e4	359.74316	49.8521
Tota]	ls :			6.32925e4	797.97714	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	34.322	BB	1.1008	6925.98096	94.96967	3.2618
2	43.038	BB	1.5221	2.05411e5	1996.93567	96.7382

Totals :

2.12337e5 2091.90533

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.776	BB	0.2733	304.83850	16.67424	49.6669
2	17.433	MM R	0.5366	308.92709	9.59446	50.3331
Total	s:			613.76559	26.26871	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	10.038	VB	0.2495	3579.75122	213.58316	14.0347
2	17.576	BB	0.4462	2.19267e4	743.28137	85.9653
Tota]	ls :			2.55064e4	956.86453	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.859	BB	0.8262	3821.35596	69.63688	50.1127
2	41.126	BB	1.2262	3804.16870	45.55674	49.8873

Totals :

7625.52466 115.19362

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.305	BB	0.8846	435.88144	7.27951	2.3709
2	40.524	BB	1.2470	1.79486e4	211.29892	97.6291
Tota]	ls :			1.83844e4	218.57843	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.953	BB	0.8065	5487.00049	101.52797	50.3826
2	41.840	BB	1.1660	5403.65625	63.68179	49.6174
Tota]	ls :			1.08907e4	165.20976	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.157	BB	0.9566	1.14461e5	1693.32275	98.3787
2	42.409	BB	1.0001	1886.37891	22.54610	1.6213
Tota]	ls :			1.16347e5	1715.86886	

Peak RetTime Type Width Area Height Area [mAU*s] [min] % # [min] [mAU] 1 15.718 BB 0.4477 2.84080e4 958.70557 49.9325 2 18.225 BB 0.7223 2.84848e4 570.66528 50.0675

5.68928e4 1529.37085

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.978	BB	0.4512	2303.86816	77.87305	5.4955
2	18.143	BB	0.7341	3.96186e4	777.97815	94.5045
Tota	ls :			4.19224e4	855.85120	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.474	BB	1.2847	4265.30273	49.43028	50.1837
2	41.689	BB	1.5054	4234.07715	42.02741	49.8163

Totals : 8499.37988 91.45770

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.339	BB	1.2765	3862.34229	44.07092	4.4777
2	41.253	BB	1.6708	8.23952e4	772.25165	95.5223
Tota]	ls :			8.62575e4	816.32257	


```
Signal 3: DAD1 C, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.034	BB	0.3481	1467.87512	63.41177	49.1827
2	16.456	BB	0.3975	1516.65771	57.17370	50.8173

2984.53284 120.58548


```
Signal 3: DAD1 C, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.788	MM R	0.3944	1.32235e4	558.75153	96.6281
2	16.516	MM R	0.4690	461.44833	16.39979	3.3719
Tota]	ls :			1.36849e4	575.15131	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.491	BB	0.6596	2.15415e4	476.30225	50.0235
2	25.774	BB	0.8526	2.15213e4	380.09293	49.9765
Total	ls :			4.30627e4	856.39517	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19 . 594	MM R	0.8162	4951.76563	101.10960	5.7893
2	27.617	MM R	1.0835	8.05810e4	1239.46155	94.2107
Tota]	ls :			8.55328e4	1340.57115	

Т	Hight	Area	Area%
37.858	8818	772369	5.789
75. 790	60974	12569681	94.211

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.541	BB	0.5149	4212.57129	121.39346	50.0658
2	18.888	BB	0.6893	4201.50000	90.55860	49.9342

8414.07129 211.95206

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.692	BB	0.5434	413.00174	11.16825	5.3754
2	18.835	MM R	0.7810	7270.23926	155.13843	94.6246

Totals :

7683.24100 166.30668

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.464	BB	0.4172	2.31839e4	874.91003	49.7112
2	13.669	BB	0.5023	2.34533e4	742.92719	50.2888

Totals :

4.66372e4 1617.83722

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.803	MM R	0.5035	9622.04785	318.52432	50.7779
2	14.619	FM R	0.2890	9327.25293	537.85400	49.2221

Totals: 1.89493e4 856.37833

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.364	VV	0.1529	1263.34778	126.13493	49.8266
2	5.595	BB	0.2146	1272.14270	89.09251	50.1734

Totals : 2535.49048 215.22743

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.416	VV	0.1779	94.88505	7.80298	5.9097
2	5.541	VB	0.2187	1510.70288	103.27180	94.0903

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.016	BB	0.0944	744.98492	119.97974	49.7860
2	4.986	BB	0.1268	751.38831	88.73402	50.2140

1496.37323 208.71376

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.967	BB	0.3470	1197.34814	49.35469	50.0541
2	12.475	BB	0.4105	1194.76099	41.91695	49.9459
Tota]	ls :			2392.10913	91.27163	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area [mAll*s]	Height	Area %
	[]			[IIIAO 3]	[IIIA0]	/0
1	10.768	BB	0.3610	4674.11084	186.11456	96.6247
2	12.390	BB	0.3648	163.27538	6.41850	3.3753
Tota]	ls :			4837.38622	192.53306	

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.879	BB	0.5361	9619.58008	262.16507	50.0112
2	21.451	BB	0.6099	9615.27930	230.85823	49.9888
Total	ls:			1.92349e4	493.02330	

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.733	BB	0.5624	4.39897e4	1149.79004	96.6062
2	21.510	BB	0.5807	1545.38208	39.64761	3.3938

```
Totals :
              4.55351e4 1189.43765
```


Signal 2: DAD1 B, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	17.468	BB	0.6521	3776.80518	87.75518	49.8942	
2	21.642	MM R	0.8907	3792.81567	70.97343	50.1058	

7569.62085 158.72861

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.094	BB	0.3651	1.22806e4	506.03769	48.7944
2	13.943	MM	0.5663	1.28874e4	379.29300	51.2056
Tota]	ls:			2.51680e4	885.33069	

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.099	BB	0.3491	199.66264	8.28641	4.3393	
2	13.921	BB	0.4980	4401.57178	133.03854	95.6607	
2	13.921	BB	0.4980	4401.57178	133.03854	95.6607	7

Totals :

4601.23442 141.32495

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.093	BV	0.2510	1.23022e4	735.97424	49.3968
2	8.640	VB	0.2814	1.26027e4	670.08380	50.6032

Totals :

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.312	BV	0.1792	3813.89136	329.09067	49.2725
2	7.981	MM R	0.2260	3926.50757	289.60992	50.7275

7740.39893 618.70059

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	7.213	BB	0.1655	155.55150	14.45717	4.5762	
2	7.840	BB	0.1879	3243.57764	266.63788	95.4238	

Totals : 3399.12914 281.09505

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.792	BV	0.1819	3095.37964	265.76370	50.1003
2	8.400	VB	0.1819	3082.98071	260.90656	49.8997
T ()				6470 26025		

6178.36035 526.67026

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.692	MM R	0.2005	2.18047e4	1812.46399	95.3332
2	8.285	MM R	0.1811	1067.38721	98.22916	4.6668
Total	s :			2.28720e4	1910.69315	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.529	BV	0.1831	8572.78613	729.68750	49.7934
2	9.148	VB	0.1922	8643.93066	699.47711	50.2066

Totals : 2877.81862 253.21444

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.969	BB	0.4478	1.90429e4	661.55133	94.9757
2	16.917	BB	0.4606	1007.38684	32.59061	5.0243
Tota]	ls:			2.00503e4	694.14194	

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.414	BB	0.2596	8253.10645	472.80496	49.7137
2	12.643	BB	0.3499	8348.16602	355.62445	50.2863

1.66013e4 828.42941

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area	Height	Area %
	[]			[IIIAO 3]	[IIIA0]	/0
1	10.363	BB	0.2866	2.37640e4	1257.01978	94.6372
2	12.703	BB	0.3499	1346.63257	58.63842	5.3628

Totals :

^{2.51106}e4 1315.65819

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 6.514 BB 0.1940 8223.98730 648.10333 49.9683 1 2 8.680 BB 0.2205 8234.40723 563.55042 50.0317

1.64584e4 1211.65375

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 6.873 BB 0.1661 16.02410 1 1.43743 0.8243 8.488 BB 0.2987 1927.99121 94.22214 99.1757 2

Totals :

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.927	BB	0.4460	2238.84741	77.27638	51.7104
2	22.919	BB	0.6580	2090.74072	48.98307	48.2896

```
Totals :
```

4329.58813 126.25945

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.818	BV	0.4647	51.80617	1. 69436	1.6029
2	22.782	BV	0.6651	3180.30957	73.46073	98.3971
Tota]	ls:			3232.11574	75.15510	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.497	BB	0.4310	97.29700	2.70886	0.7042
2	21.471	BB	0.6988	1.37202e4	281.41525	99.2958
Tota]	ls :			1.38175e4	284.12412	

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.933	BV	0.2603	1.58807e4	943.72546	49.9267	
2	12.392	VB	0.2778	1.59274e4	894.22443	50.0733	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.967 BB	0.3131	5354.47510	265.73593	98.6960
2	12.408 BB	0.2321	70.74434	4.20884	1.3040
Total	ls :		5425.21944	269.94477	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.314	BB	0.5793	5479.00537	134.48413	49.1944
2	21.635	BB	0.6429	5658.46143	125.29555	50.8056

1.11375e4 259.77968

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.200	BB	0.6046	1.04809e4	249.24472	98.8089
2	21.644	BB	0.3911	126.33920	3.90864	1.1911
Total	ls:			1.06072e4	253.15336	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.327	BB	0.2238	46.54716	2.58846	1.0121
2	12.912	BB	0.3006	4552.39404	232.29883	98.9879
Total	ls :			4598.94120	234.88728	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] % # [mAU] 10.430 MF R 0.3324 8408.82520 421.64929 49.9769 1 2 13.615 BB 0.4160 8416.61035 304.95752 50.0231 Totals : 1.68254e4 726.60681

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.424	BB	0.2914	165.50771	8.41813	4.0920
2	13.602	BB	0.4154	3879.13306	140.79268	95.9080
Total	ls :			4044.64076	149.21081	

Signal 5: DAD1 F, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.315	MF R	0.1363	8028.58691	981.92572	48.7460
2	6.795	MM R	0.1823	8441.67676	771.74994	51.2540
Total	s :			1.64703e4	1753.67566	

Signal 5: DAD1 F, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.610	FM R	0.1367	788.99292	96.20926	96.5057
2	7.096	MM R	0.1442	28.56778	3.30167	3.4943
Total	s :			817.56070	99.51093	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.510	BV	0.4722	6791.69678	222.45860	50.1599
2	21.423	VB	0.6242	6748.38721	165.32813	49.8401
Tota]	ls :			1.35401e4	387.78673	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.910	BV	0.4723	2979.02002	97.55349	98.1745
2	22.144	VB	0.6112	55.39318	1.31574	1.8255
Tota]	ls :			3034.41320	98.86923	

5.50350e4 1428.84637

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.555	BB	0.3444	285.78000	9.91021	1.5771
2	16.014	BB	0.7124	1.78343e4	363.49234	98.4229
Total	ls :			1.81201e4	373.40255	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.207	BB	0.1593	732.68152	71.68010	49.9665
2	9.870	BV	0.2149	733.66266	53.88187	50.0335

1466.34418 125.56197

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.174	BV	0.1584	1210.50232	119.30834	50.3436
2	9.817	BV	0.2133	1193.97937	88.53080	49.6564

Totals :

2404.48169 207.83914

References

 Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. A General Asymmetric Copper-Catalysed Sonogashira C(*sp*³)–C(*sp*) Coupling. *Nat. Chem.* 2019, *11*, 1158–1166.