Chem, Volume 3

Supplemental Information

Catalytic Asymmetric Radical

Diamination of Alkenes

Fu-Li Wang, Xiao-Yang Dong, Jin-Shun Lin, Yang Zeng, Guan-Yuan Jiao, Qiang-Shuai Gu, Xian-Qi Guo, Can-Liang Ma, and Xin-Yuan Liu

Table of Contents

- I. Supplemental Tables
- II. Supplemental Schemes
- **III. Supplemental Experimental Procedures**
- 1.General information
- 2.Procedures for synthesis of substrates
- 3.General procedures for asymmetric diamination of unactivated alkenes
- 4.General procedures for asymmetric azidoamination of unactivated alkenes
- 5.Mechanistic study
- 6.Transformations
- 7.Application
- IV. Supplemental Figures
- V. X-ray Crystallographic Data
- VI. Supplemental References

I. Supplemental Tables

Table S1. Screening of Reaction Conditions for Azidyl Radical^a

entry	CPA	Additive	solvent	yield (%) ^ɒ	ee (%) ^c
1	(<i>R</i>)- A7	-	1,4-dioxane	82	7
2	(<i>R</i>)- A8	-	1,4-dioxane	80	13
3	(<i>R</i>)- A9	-	1,4-dioxane	85	33
4	(S)- A10	-	1,4-dioxane	82	13
5	(S)- A4	-	1,4-dioxane	81	0
6	(S)- A5	-	1,4-dioxane	86	71
7	(S)- A5	-	THF	77	55
8	(S)- A5	-	EA	20	42
9 ^d	(S)- A5	-	1,4-dioxane	42	3
10 ^e	(S)- A5	-	1,4-dioxane	36	23
11 ^f	(S)- A5	-	1,4-dioxane	84	84
12 ^g	(S)- A5	-	1,4-dioxane	83	79
13 ^{f,k}	(S)- A5	3 Å MS	1,4-dioxane	84	83
14 ^{f,k}	(S)- A5	4 Å MS	1,4-dioxane	85	88
15 ^{f,k}	(S)- A5	5 Å MS	1,4-dioxane	62	75
16 ^{f,h,k}	(S)- A5	4 Å MS	1,4-dioxane	86	89
17 ^{f,i,k}	(S)- A5	4 Å MS	1,4-dioxane	85	92
18 ^{f,j,k}	(S)- A5	4 Å MS	1,4-dioxane	84	90

^aReaction conditions: **1a** (0.05 mmol), **2** (1.2 equiv), CuI (10 mol %), CPA (10 mol %), solvent (1.0 mL), 25°C, 24 hr under argon.

^bYield based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard.

^cEe value based on HPLC analysis.

 d Cu(CH₃CN)₄BF₄ (10 mol %) was employed at 25°C for 48 hr.

^eCuBr (10 mol %) was employed was employed at 25°C for 48 hr.

^f1,4-Dioxane (2.0 mL) was employed.

^g1,4-Dioxane (4.0 mL) was employed.

^h1.2 Equiv of Na_2CO_3 was added.

ⁱ1.2 Equiv of NaHCO₃ was added.

^j1.2 Equiv of KHCO₃ was added.

^kmolecular sieves (50.0 mg) was added.

II. Supplemental Schemes

Scheme S1. Asymmetric Diamination of Alkene with NFSI

Abbreviations: NFSI, N-fluorobenzenesulfonimide; TMSOAc, trimethylsilyl acetate.

Scheme S2. Mechanistic Study

III. Supplemental Experimental Procedures

1. General information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Cu(CH₃CN)₄BF₄ and Cul were purchased from Sigma-Aldrich. Chiral phosphoric acid (CPA) was purchased from Daicel Chiral Technologies (China). Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker DRX-500 and DPX 400 spectrometer at 400 or 500 MHz for ¹H NMR, 100 or 125 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR in CDCl₃ and acetone- d_6 with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; g, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (λ = 320, 254, 230 or 214 nm). Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation.

2. Procedures for synthesis of substrates

Substrates 1a-1I, 1p-1s, 1u, and 1v were prepared according to reported procedures.^{1,2}

Synthesis of 1m, 1n and 1o

S-1m was prepared according to reported procedures.²

To a stirred solution of **S-1m** (2.0 mmol) and *i*Pr₂NEt (2.0 mmol) in anhydrous CH₂Cl₂ (4.0 mL) was slowly added 1-isocyanato-3,5-bis(trifluoromethyl)-benzene (2.0 mmol) at 0 °C. Then the reaction mixture was warmed to room temperature and stirred for an additional 1 h. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography (eluent: petroleum ether/CH₂Cl₂ = 100/1 to 1/2, using petroleum ether (100%) to remove CH₂Cl₂ for sample loading at first) to afford **1m** (1.72 mmol, 86% yield).

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-phenylpent-4en-1-yl)urea (1m, 86% yield)

¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (s, 3H), 7.41 (s, 1H), 7.34 (dd, J = 5.0, 3.5 Hz, 2H), 7.31–7.26 (m, 2H), 7.26–7.20 (m, 1H), 5.49 (s, 1H), 5.25 (d, J = 0.5 Hz, 1H), 5.01 (d, J = 1.0 Hz, 1H), 3.23 (dd, J = 13.0, 7.5 Hz, 2H), 2.51 (t, J = 7.5 Hz, 2H), 1.73–1.59 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.6, 147.3, 140.7, 140.5, 132.3 (q, *J* = 33.3 Hz), 128.5, 127.7, 126.1, 123.2 (q, *J* = 272.8 Hz), 118.7 (d, *J* = 3.0 Hz), 116.0 (t, *J* = 3.6 Hz), 113.1, 40.0, 32.6, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₀H₁₉F₆N₂O [M + H]⁺ 417.1396, found 417.1392.

S-1n-1 and S-1o-1 were prepared according to reported procedures.³

To a solution of **S-1n-1** (0.57 g, 3.0 mmol), *O*-Phthalimide (0.44 g, 3.0 mmol), and PPh₃ (0.79 g, 3.0 mmol) in 20.0 mL THF was added diethyl azodicarboxylate (0.5 mL, 3.0 mmol) at 0 °C. The mixture was allowed to warm to room temperature for 18 h, evacuated the solvent and purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20:1-5:1) to give **S-1n-2** (0.8 g, 83%).

To a solution of **S-1n-2** (0.64 g, 2.0 mmol) in EtOH (15.0 mL) was added hydrazine monohydrate (0.4 mL, 6.0 mmol) at room temperature. The reaction mixture was stirred and heated to reflux for 2 h. After cooling down to room temperature, the mixture was filtered and the filtrate was concentrated *in vacuo* to afford crude amine, which was not purified for the next step.

Urea substrates **1n** and **1o** were obtained by the similar procedure for the compound **1m**.

2-(5-(*m*-tolyl)hex-5-en-1-yl)isoindoline-1,3-dione (S-1n-2, 83% vield)

¹**H NMR** (500 MHz, CDCl₃) δ 7.85–7.80 (m, 2H), 7.72–7.67 (m, 2H), 7.22–7.13 (m, 3H), 7.07 (d, J = 5.0 Hz, 1H), 5.26 (s, 1H), 5.08 (s, 1H),

3.73 (t, J = 7.5 Hz, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.33 (s, 3H), 1.91–1.80 (m, 2H). ¹³**C** NMR (125 MHz, CDCl₃) δ 168.3, 147.3, 140.9, 137.8, 133.8, 132.1, 128.2, 126.8, 123.14, 123.10, 112.6, 37.7, 32.6, 27.0, 21.4.

2-(5-(*p***-tolyl)hex-5-en-1-yl)isoindoline-1,3-dione (S-1o-2**, 89% yield) ¹H NMR (500 MHz, CDCl₃) δ 7.92–7.81 (m, 2H), 7.79–7.61 (m, 2H), 7.29 (d, *J* = 5.0 Hz, 2H), 7.14 (d, *J* = 5.0 Hz, 2H), 5.28 (s, 1H), 5.08 (s, 1H), 3.75 (t, *J* = 7.5 Hz, 2H), 2.57 (t, *J* = 7.5 Hz, 2H), 2.35 (s, 3H), 1.94–

1.82 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 168.3, 146.9, 137.9, 137.1, 133.8, 132.0, 128.9, 125.9, 123.1, 111.9, 37.7, 32.5, 27.0, 21.0.

1-(4-(*m***-tolyl)pent-4-en-1-yl)-3-(3-(trifluoromethyl)phenyl)urea (1n**, 67% yield)

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (s, 1H), 7.43 (d, *J* = 10.0 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.22–7.10 (m, 5H), 7.06 (d, *J* = 5.0 Hz, 1H), 5.47 (s, 1H), 5.22 (s, 1H), 4.98 (s, 1H), 3.19 (dd, *J* = 10.0, 5.0 Hz, 2H), 2.47 (t, *J* = 7.5 Hz, 2H), 2.31 (s, 3H), 1.66–1.55 (m, 2H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₀H₂₂F₃N₂O [M + H]⁺ 363.1679, found 363.1668.

1-(4-(*p***-tolyl)pent-4-en-1-yl)-3-(3-(trifluoromethyl)phenyl)urea (10**, 74% yield)

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 (s, 1H), 7.46 (d, J = 5.0 Hz, 1H), 7.32–7.20 (m, 5H), 7.10 (d, J = 10.0 Hz, 2H), 5.26 (t, J = 5.0 Hz, 1H), 5.23 (s, 1H), 4.97 (s, 1H), 3.21 (dd, J = 10.0, 5.0 Hz, 2H), 2.49 (t, J = 6.9 Hz, 2H), 2.31 (s, 3H), 1.67–1.57 (m, 2H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.6 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{20}H_{22}F_3N_2O [M + H]^+$ 363.1679, found 363.1668.

Synthesis of 1w and 1x

S-1w was prepared according to reported procedures.^{1,2}

To a solution of **S-1w** (12.0 mmol) in toluene (24.0 mL) was added neopentyl glycol (36.0 mmol) and PPTS (1.98 mmol) under argon. Then the reaction was stirred for 18 h at 100 °C. After complete conversion (monitored by TLC), the reaction mixture was extracted with EtOAc. The combined organic layers were concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to get **S-1x** (10.8 mmol, 90% yield). To a suspension of LiAlH₄ (456.0 mg, 12.0 mmol) in Et₂O (36.0 mL) at 0 °C was slowly added a solution of **S-1x** (6.0 mmol) in Et₂O (4.0 mL). Then the mixture was warmed to room temperature and stirred for additional 3 h. The reaction mixture was quenched by slow portionwise addition of water (1 mL) in Na₂SO₄ (8.0 g) at 0 °C. The reaction mixture was warmed to room temperature, stirred for additional 30 min, filtered and concentrated *in vacuo* to afford **S-2x**, which was directly

used in the next reaction without further purification.

To a stirred solution of **S-2x** (ca. 5.21 mmol) and *i*Pr₂NEt (5.21 mmol) in anhydrous CH₂Cl₂ (13.0 mL) was slowly added 1-isocyanato-3,5-bis(trifluoromethyl)-benzene (5.21 mmol) at 0 °C. Then the reaction mixture was warmed to room temperature and stirred for an additional 1 h. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography (eluent: petroleum ether/CH₂Cl₂ = 100/1 to 1/5, using petroleum ether (100%) to remove CH₂Cl₂ for sample loading at first) to afford **1w** (4.3 mmol, 83% yield).

To a solution of **1w** (3.0 mmol) in H₂O (3.0 mL)/CHCl₃ (50.0 mL) was added CF₃COOH (6.0 mL). The mixture was stirred for 3 h at room temperature. After complete reaction, the mixture was quenched by NaHCO₃ (aq). The organic layer was separated, dried, filtered and concentrated *in vacuo*. The residue thus obtained was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20/1 to 5/1) to afford **1x** (2.22 mmol, 74% yield).

4-(3-formylphenyl)-2,2-dimethylpent-4-enenitrile (S-1w)

¹**H NMR** (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.90 (s, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 5.52 (s, 1H), 5.38 (s, 1H), 2.80 (s, 2H), 1.28 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 192.2, 142.9, 142.5, 136.6, 132.6, 129.6, 129.3, 127.1, 124.3, 120.1, 45.4, 32.9, 27.1.

4-(3-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)-2,2-dimethylpent-4-enenitrile (S-1x)

¹**H NMR** (500 MHz, $CDCI_3$) δ 7.52 (s, 1H), 7.44 (dt, J = 6.5 Hz, J = 2.0 Hz, 1H), 7.37–7.32 (m, 2H), 5.47 (s, 1H), 5.40 (s, 1H), 5.31 (s, 1H), 3.77 (d, J = 11.0 Hz, 2H), 3.65 (d, J = 11.0 Hz, 2H), 2.77 (s, 2H), 1.30 (s, 3H), 1.24 (s, 6H), 0.81 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 143.6, 141.8, 138.8, 128.5, 126.9, 125.6, 124.2, 118.9, 101.6, 77.7, 45.3, 33.4, 30.3, 27.1, 23.1, 21.9.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(3-(5,5-dimethyl-1,3-dioxan-2-yl) phenyl)-2,2-dimethylpent-4-en-1-yl)urea (1w)

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (s, 2H), 7.67 (s, 1H), 7.46–7.44 (m, 3H), 7.42–7.39 (m, 1H), 6.62 (s, 1H), 5.49 (s, 1H), 5.32 (s, 1H), 5.12 (s, 1H), 3.82 (t, *J* = 6.5 Hz, 1H), 3.78 (d, *J* = 11.0 Hz, 2H), 3.72 (d, *J* = 11.0 Hz, 2H), 2.73 (d, *J* = 6.5 Hz, 2H), 2.48 (s, 2H), 1.32 (s, 3H), 0.94 (s, 6H), 0.82 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 154.9, 145.6, 144.1, 140.9, 138.3, 132.1, 131.9 (q, *J* = 33.0 Hz), 129.5, 128.5, 125.8, 123.2 (q, *J* = 271.1 Hz), 118.9, 117.9, 115.5, 102.2, 77.9, 48.3, 45.2, 35.9, 30.3, 26.1, 22.9, 21.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{28}H_{33}F_6N_2O_3[M + H]^+$ 559.2391, found 559.2390.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(3-formylphenyl)-2,2-dimethylp ent-4-en-1-yl)urea (1x)

¹**H NMR** (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.89 (s, 1H), 7.81 (s, 2H), 7.73 (d, J = 7.2 Hz, 1H), 7.66 (t, J = 2.8 Hz, 2H), 7.49 (t, J = 3.6 Hz, 1H), 7.43 (s, 1H), 5.35 (s, 1H), 5.28 (t, J = 6.0 Hz, 1H), 5.13 (s, 1H), 2.98 (d, J = 6.0 Hz, 2H), 2.52 (s, 2H), 0.76 (s, 6H).

¹³**C** NMR (125 MHz, CDCl₃) δ 193.3, 155.3, 144.7, 144.0, 140.6, 136.3, 132.8, 132.2 (q, J = 33.0 Hz), 129.9, 129.4, 125.9, 123.1 (q, J = 271.2 Hz), 118.9, 118.4, 115.7, 50.0, 44.5, 35.7, 25.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{23}H_{23}F_6N_2O_2[M + H]^+$ 473.1658, found 473.1660.

Synthesis of 1y

S-2aa was prepared according to reported procedures.^{1,2}

To a stirred solution of **S-2aa** (4.0 mmol) and *i*Pr₂NEt (4.0 mmol) in anhydrous CH_2CI_2 (10.0 mL) was slowly added 1-isocyanato-3,5-bis(trifluoromethyl)-benzene (4.0 mmol) at 0 °C. Then, the reaction mixture was stirred for additional 60 min at 0 °C. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 100/1 to 10/1, using petroleum ether (100%) to remove CH_2CI_2 for sample loading at first) to afford **1aa** (3.6 mmol, 90% yield).

To a solution of **1aa** (2.0 mmol), 3-ethoxycarbonylphenylboronic acid (3.0 mmol), K_2CO_3 (6.0 mmol) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, 0.16 mmol) in CH₃CN/H₂O (6.0 mL/3.0 mL) was added Pd(OAc)₂ (0.08 mmol). Then the flask was briefly evacuated and backfilled with argon three times. Upon completion, the flask was sealed and the reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. Next, the reaction mixture was cooled to room temperature and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to afford a crude product, which was further purified by flash chromatography (eluent: petroleum ether/EtOAc = 100/1 to 7/1) to give **1y** (0.4 mmol, 20%

yield).

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-bromo-2,2-dimethylpent-4-en-1-yl)urea (1aa)

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (s, 2H), 7.49 (s, 1H), 6.92 (s, 1H), 5.98 (s, 2H), 5.10 (t, J = 7.5 Hz, 1H), 3.25 (d, J = 8.0 Hz, 2H), 2.45 (s, 2H), 1.01 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.4, 140.4, 132.4 (q, *J* = 33.0 Hz), 128.8, 123.1 (q, *J* = 271.1 Hz), 121.3, 118.7, 116.0, 50.3, 49.2, 35.8, 25.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.2 (s, 6F).

Ethyl3-(5-(3-(3,5-bis(trifluoromethyl)phenyl)ureido)-4,4-dimethylpent -1-en-2-yl)benzoate (1y)

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.94 (s, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.55 (s, 1H), 7.43 (t, J = 7.6 Hz, 2H), 5.43 (s, 1H), 5.17 (s, 1H), 4.89 (t, J = 7.2 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 2.82 (d, J = 6.4 Hz, 2H), 2.55 (s, 2H), 1.41 (t, J = 7.2 Hz, 3H), 0.87 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 168.2, 155.0, 144.6, 143.0, 141.2, 132.0 (q, *J* = 33.0 Hz), 131.2, 130.3, 129.2, 128.3, 126.6, 123.3 (q, *J* = 271.0 Hz), 118.4, 117.9, 115.2, 61.8, 48.9, 44.0, 35.8, 25.9, 14.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{25}H_{27}F_6N_2O_3[M + H]^+$ 517.1920, found 517.1921.

Synthesis of 1t, 1z, 1za, 1bb-1hh

S-1 and S-2 were prepared according to reported procedures.^{1,2}

To a stirred solution of **S-2** (2.0 mmol) and iPr_2NEt (2.0 mmol) in anhydrous CH_2Cl_2 (5.0 mL) was slowly added 1-isocyanato-3,5-bis(trifluoromethyl)-benzene (2.0 mmol) at 0 °C. Then, the reaction mixture was warmed to room temperature and stirred for an additional 1 h. After complete conversion (monitored by TLC), the crude mixture was directly purified by silica gel column chromatography (eluent: petroleum ether/CH₂Cl₂ = 100/1 to 1/5, using petroleum ether (100%) to remove CH₂Cl₂ for sample loading at first) to give urea substrates **1t**, **1z**, **1za**, and **1bb-1hh**.

2,2-dimethyl-4-(naphthalen-2-yl)pent-4-en-1-amine (S-2t)

(1.01 g, 76% overall yield in two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.19–8.17 (m, 1H), 7.86–7.84 (m, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.51–7.46 (m, 2H), 7.45–7.38 (m, 2H), 5.43 (d, J = 2.0 Hz, 1H), 5.26 (d, J = 8.0 Hz, 1H), 2.62 (s, 2H), 2.33 (s, 2H), 0.89 (br s, 2H), 0.79 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 145.9, 142.3, 134.0, 130.9, 128.5, 127.3, 126.0, 125.8, 125.6, 125.2, 119.9, 52.7, 47.6, 36.4, 25.3.

2,2-dimethyl-4-(3-styrylphenyl)pent-4-enenitrile (S-1z)

(740 mg, 81% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 3H), 7.46 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 1.5 Hz, 2H), 5.50 (s, 1H), 5.33 (s, 1H), 2.80 (s, 2H), 1.28 (s, 6H).

³⁻¹² ¹³**C NMR** (125 MHz, CDCl₃) δ 143.9, 142.2, 137.6, 137.2, 129.1, 128.8, 128.7, 128.4, 127.8, 126.6, 125.8(2), 125.8(1), 124.8, 124.7, 118.9, 45.5, 33.3, 27.1.

4-(3-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)-2,2-dimethylpent-4-enenitrile (S-1za)

(570 mg, 76% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.56–7.53 (m, 3H), 7.46 (td, J = 1.5 Hz, J = 7.0 Hz, 1H), 7.37–7.31 (m, 5H), 5.48 (d, J = 1.0 Hz, 1H), 5.34 (d, J = 1.0 Hz, 1H), 2.77 (s, 2H), 1.27 (s, 6H).

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(naphthalen-2-yl)pent-4-en-1-yl)urea (1t)

(890 mg, 90% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.85–7.49 (m, 4H), 7.62 (s, 2H), 7.54 (dd, J = 2.0 Hz, J = 8.0 Hz, 1H), 7.50 (dt, J = 1.0 Hz, J = 6.5 Hz, 1H), 7.47–7.45 (m, 1H), 7.44 (s, 1H), 5.97 (s, 1H), 5.43 (d, J = 1.5 Hz, 1H), 5.19 (d, J = 1.5 Hz, 1H), 4.31 (t, J = 6.0 Hz, 1H), 2.97 (d, J = 6.0 Hz, 2H), 2.62 (s, 2H), 0.88 (s,

¹³C NMR (125 MHz, CDCl₃) δ 154.6, 146.0, 140.8, 140.4, 133.2, 132.6, 132.1 (q, J = 33.1Hz), 128.3, 127.9, 127.7, 126.6, 126.2, 125.1, 125.0, 123.1 (q, J = 271.1 Hz), 118.3, 118.2, 115.7, 50.0, 45.3, 35.8, 25.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₆H₂₅F₆N₂O [M + H]⁺ 495.1866, found 495.1867.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(3-styrylphenyl)pe nt-4-en-1-yl)urea (1z)

(951 mg, 87% overall yield in two steps).

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (s, 2H), 7.54 (s, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 5.5 Hz, 2H), 7.38–7.32 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15(d, *J* = 16.5 Hz, 1H), 7.11 (d, *J* = 16.5 Hz, 1H), 6.39 (s, 1H), 5.34 (s, 1H), 5.12 (s, 1H), 4.48 (s, 1H), 2.99 (d, *J* = 7.5Hz, 2H), 2.54 (s, 2H), 0.87 (s, 1H), 5.12 (s, 1H), 4.48 (s, 1H), 5.12 (s, 1H), 5.12

6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.2, 156.1, 146.0, 143.6, 140.3, 137.4, 137.0, 132.1 (q, *J* = 33.1 Hz), 129.0, 128.7, 128.3, 127.8, 126.5, 125.7, 125.4, 124.7, 123.0 (q, *J* = 271.1 Hz), 118.5, 117.6, 115.8, 50.2, 45.1, 35.7, 25.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{30}H_{29}F_6N_2O [M + H]^+ 547.2179$, found 547.2177.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(3-(phenylethynyl) phenyl)pent-4-en-1-yl)urea (1za)

(933 mg, 85% overall yield in two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (s, 2H), 7.57 (s, 1H), 7.53–7.51 (m, 2H), 7.45–7.43 (m, 2H), 7.36–7.31 (m, 4H), 7.26 (s, 1H), 6.66 (s,1H), 5.33 (s, 1H), 5.11 (s, 1H), 4.63 (s, 1H), 2.99 (d, *J* = 6.0 Hz, 2H), 2.51 (s, 2H), 0.84 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.1, 145.3, 143.6, 140.4, 132.2 (q, J = 33.3

Hz), 131.6, 130.6, 129.4, 128.7, 128.5, 128.4, 128.6, 123.1 (q, *J* = 270.7 Hz), 123.3, 122.8, 118.5, 118.2, 115.9, 89.8, 89.1, 50.0, 45.0, 35.8, 25.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{30}H_{27}F_6N_2O [M + H]^+$ 545.2022, found 545.2023.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-chlorophenyl)-2,2-dimeth ylpent-4-en-1-yl)urea (1bb)

(850 mg, 89% overall yield in two steps).

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (s, 2H), 7.44 (s, 1H), 7.37 (s, 1H), 7.25-7.23 (m, 4H), 5.24 (s, 1H), 5.20 (s, 1H), 5.02 (s, 1H), 3.01 (d, J = 5.5 Hz, 2H), 2.44 (s, 2H), 0.75 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 155.3, 145.0, 141.6, 140.3, 133.2, 132.1 (q, J = 33.1 Hz), 128.5, 127.6, 123.1 (q, J = 271.2 Hz), 118.6, 117.9, 116.0, 50.3, 45.0, 35.7, 25.4. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.2 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₂H₂₂F₆ON₂CI [M + H]⁺ 479.1319, found 479.1306.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-fluorophenyl)-2,2-dimethyl pent-4-en-1-yl)urea (1cc)

(811 mg, 88% overall yield in two steps).

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (s, 2H), 7.60 (s, 1H), 7.43 (s, 1H), 7.28-7.26 (m, 2H), 6.94 (t, J = 8.5 Hz, 2H), 5.36 (s, 1H), 5.19 (s, 1H), 4.99 (s, 1H), 3.01 (d, J = 6.0 Hz, 2H), 2.43 (s, 2H), 0.74 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 163.2, 161.2, 155.6, 140.3, 139.1, 132.2 (q, *J* = 33.1 Hz), 127.9 (d, *J* = 7.9 Hz), 123.0 (q, *J* = 271.1 Hz), 118.6, 117.4, 116.0, 115.2, 50.3, 45.2, 35.7, 25.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.2 (s, 6F), –115.0 (s, 1F). **HRMS** (ESI) *m*/*z* calcd. for C₂₂H₂₂F₇ON₂ [M + H]⁺ 463.1615, found 463.1600.

1-(3,5-dichlorophenyl)-3-(2,2-dimethyl-4-phenylpent-4-en-1-yl)urea (1dd)

(682 mg, 90% overall yield in two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.31-7.29 (m, 2H), 7.28–7.24 (m, 2H), 7.23–7.21 (m, 1H), 7.15 (d, *J* = 2.0 Hz, 2H), 6.94 (t, *J* = 2.0 Hz, 1H), 5.56 (t, *J* = 5.6 Hz, 1H), 5.22 (s, 1H), 5.00 (s, 1H), 2.97 (d, *J* = 2.0 Hz,

2H), 2.44 (s, 2H), 0.74 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 155.9, 146.2, 143.2, 140.9, 135.2, 128.4, 127.3, 126.4, 122.7, 117.7, 117.3, 50.2, 45.1, 35.7, 25.5.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}ON_2CI_2 [M + H]^+$ 377.1182, found 377.1185.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-(quinolin-6-yl)pent -4-en-1-yl)urea (1ee)

(420 mg, 56% overall yield in two steps)

¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.76 (s, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.7 Hz, 1H), 7.75 (d, *J* = 9.4 Hz, 3H), 7.63 (d, *J* = 8.6 Hz, 1H), 7.37 (s, 2H), 5.74 (s, 1H), 5.34 (s, 1H), 5.10 (s, 1H), 3.05 (d, *J* = 5.4 Hz, 2H), 2.52 (s, 2H), 0.64 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 155.8, 149.9, 147.1, 145.2, 141.8, 141.1, 136.9, 132.0 (q, J = 33.2 Hz), 129.0, 128.4, 128.3, 124.9, 123.2 (q, J = 272.7 Hz), 121.6, 119.0, 118.0, 115.3, 50.3, 44.9, 35.7, 25.2.

 $^{19}{\rm F}~{\rm NMR}$ (376 MHz, CDCl₃) δ –63.6 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{25}H_{24}F_6N_3O[M + H]^+$ 496.1818, found 496.1816.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(furan-2-yl)-2,2-dimethylpent-4-e n-1-yl)urea (1ff)

(382 mg, 85% overall yield in two steps)

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.48 (s, 1H), 7.34 (s, 1H), 6.76 (s, 1H), 6.37 (s, 1H), 6.34 (s, 1H), 5.63 (s, 1H), 4.96 (s, 1H), 4.88 (s, 1H), 3.13

(d, *J* = 6.2 Hz, 2H), 2.36 (s, 2H), 0.92 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 155.7, 155.4, 141.7, 140.6, 134.2, 132.1 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 272.8 Hz), 118.5, 115.6, 113.7, 111.3, 106.5, 50.1, 42.5, 35.4, 25.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{20}H_{21}F_6N_2O_2[M + H]^+$ 435.1502, found 435.1504.

35.3, 25.5.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-methylene-6-p henylhex-5-en-1-yl)urea (1gg)

(624 mg, 67% overall yield in two steps)

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.69 (s, 2H), 7.47-7.31 (m, 3H), 7.26 (dd, J = 8.5, 6.5 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 16.2 Hz, 1H), 6.54 (d, J = 16.3 Hz, 1H), 5.83 (s, 1H), 5.26 (s, 1H), 4.92 (s, 1H), 3.15 (d, J = 6.0 Hz, 2H), 2.24 (s, 2H), 0.9 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.0, 144.3, 142.6, 140.4, 137.0, 132.2 (q, J = 30.7 Hz), 128.8, 128.6, 127.6, 126.4, 123.1 (q, J = 271.1 Hz), 119.5, 118.6, 115.9, 50.4, 41.2,

¹⁹F NMR (376 MHz, CDCl₃) δ –61.2 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₄H₂₅F₆N₂O [M + H]⁺ 471.1866, found 471.1865.

(*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2,2-dimethyl-4-methylene-7 -phenylhept-5-en-1-yl)urea (1hh)

(710 mg, 73% overall yield in two steps)

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (s, 2H), 7.43 (s, 1H), 7.28 (dd, *J* = 13.6, 6.3 Hz, 2H), 7.23-7.14 (m, 3H), 6.89 (s, 1H), 6.19 (d, *J* = 15.6 Hz, 1H), 5.92-5.77 (m, 1H), 5.13 (s, 1H), 5.10 (s, 1H), 4.85 (s, 1H), 3.43 (d, *J* = 6.9 Hz, 2H), 3.07 (d, *J* = 6.2 Hz, 2H), 2.13 (s, 2H), 0.87 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 155.0, 142.4, 140.5, 140.3, 134.9, 132.1 (q, J = 33.3 Hz), 128.9, 128.7, 128.6, 126.4, 123.2 (q, J = 272.7 Hz), 118.6, 118.0, 115.8, 49.8, 41.0, 39.2, 35.4, 25.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₅H₂₇F₆N₂O [M + H]⁺ 485.2022, found 485.2020.

General procedure for preparation of O-benzoylhydroxylamines 2a-j

O-Benzoylhydroxylamines 2a-j were synthesized using literature procedures.⁴

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with aryl peroxyanhydride (1.0 mmol, 1.0 equiv), dipotassium hydrogen phosphate (1.5 mmol, 1.5 equiv), secondary amines (1.1 mmol, 1.1 equiv) and anhydrous *N*,*N*-dimethylformamide (5 mL), and the

sealed tube was then stirred at room temperature overnight. Upon completion (monitored by TLC), the reaction mixture was guenched with water (5 mL), and the agueous layer was extracted with CH_2CI_2 (2 x 10 mL). The combined organic extract was washed with brine (2 x 10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by flash chromatography using petroleum ether/EtOAc (6/1) as the eluent to afford the corresponding O-benzoylhydroxylamines.

4-tosyl-1,4-diazepan-1-yl 4-methoxybenzoate (2e)

(242 mg, 60% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H),

3.51 (d, J = 3.0 Hz, 2H), 3.43–3.37 (m, 6H), 2.43 (s, 3H), 2.19–1.94 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 163.7, 143.6, 135.9, 131.6, 130.0, 127.1, 121.4, 113.9, 59.9, 57.0, 55.6, 46.8, 44.2, 23.8, 21.7.

HRMS (ESI) m/z calcd. for $C_{20}H_{25}O_5N_2S[M + H]^+$ 405.1479, found 405.1478.

4-(methylsulfonyl)piperazin-1-yl 4-methoxybenzoate (2f) (239 mg, 76% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 2.0 Hz, 1H), 7.94 (d, J = 2.4Hz, 1H), 6.92 (dd, J = 8.8, 2.4 Hz, 1H), 3.86 (s, 3H), 3.73 (s, 2H), 3.52

(s, 2H), 3.26 (s, 2H), 3.11 (s, 2H), 2.83 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.4, 163.8, 131.7, 121.0, 113.9, 55.6, 55.3, 44.4, 34.9. **HRMS** (ESI) m/z calcd. for $C_{13}H_{19}O_5N_2S[M + H]^+$ 315.1009, found 315.1004.

4-tosylpiperazin-1-yl 4-methoxybenzoate (2g)

(238 mg, 61% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.96–7.82 (m, 2H), 7.65 (d, J = 8.5 Hz,

2H), 7.35 (d, J = 8.0 Hz, 2H), 7.14–6.79 (m, 2H), 3.85 (s, 3H), 3.68 (s, 2H), 3.44 (s, 2H), 3.07 (s, 2H), 2.84 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.3, 163.8, 144.3, 132.1, 131.7, 129.9, 128.0, 121.1, 113.9, 55.6, 55.2, 44.9, 21.7.

HRMS (ESI) m/z calcd. for C₁₉H₂₂O₅N₂NaS [M + Na]⁺ 413.1142, found 413.1140.

Piperidin-1-yl 4-methoxybenzoate (2h)

(191 mg, 81% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.96 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H), 3.48 (s, 2H), 2.74 (s, 2H), 1.82–1.79 (m, 4H), 1.73–1.66 (m, 1H), 1.27 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 163.4, 131.5, 122.1, 113.7, 57.6, 55.6, 25.1, 23.5. **HRMS** (ESI) m/z calcd. for C₁₃H₁₈O₃N [M + H]⁺ 236.1281, found 236.1280.

Ethyl-1-((4-methoxybenzoyl)oxy)piperidine-4-carboxylate (2i) (225 mg, 73% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 4.14 (d, J = 6.0 Hz, 2H), 3.85 (s, 3H), 3.59 (s, 1H), 3.25

(s, 1H), 2.75 (s, 1H), 2.66–1.57 (m, 6H), 1.27–1.25 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 164.6, 163.6, 131.6, 121.8, 113.8, 60.7, 56.3, 55.6, 40.6, 27.8, 14.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}O_5N[M + H]^+$ 308.1492, found 308.1491.

4-methoxypiperidin-1-yl 4-methoxybenzoate (2j)

(217 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.53 (s, 1H), 3.35 (s, 3H), 3.22 (s, 2H), 2.84 (s,

1H), 2.26–1.61 (m, 5H).

¹³**C NMR** (125 MHz, CDCl₃) δ 164.7, 163.5, 131.6, 121.9, 113.8, 56.1, 55.9, 55.6, 54.3, 52.3. **HRMS** (ESI) *m*/*z* calcd. for C₁₄H₂₀O₄N [M + H]⁺ 266.1387, found 266.1385.

3. General procedures for asymmetric diamination of unactivated alkenes

General procedures for asymmetric diamination of substrates 1a-1za, 1bb-1hh with 2c

To an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was added urea substrate **1** (0.1 mmol, 1.0 equiv), $Cu(CH_3CN)_4BF_4$ (3.1 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (*S*)-**A4** (6.2 mg, 0.01 mmol, 10 mol%), *O*-benzoyl hydroxylmorpholine **2c** (0.15 mmol, 1.5 equiv) and activated 5 Å molecular sieves (100 mg) under argon. Then 2.0 mL of anhydrous 1,4-dioxane was added at room temperature and the sealed tube was stirred at 40 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography (eluent: petroleum ether/EtOAc = 20/1 to 2/1) to afford the desired product **3A–3Ze**.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

General procedures for asymmetric diamination of substrate 1h with 2e-2j

To an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was added urea substrate **1h** (0.1 mmol, 1.0 equiv), Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (*S*)-**A4** (6.2 mg, 0.01 mmol, 10 mol%), *O*-benzoylhydroxylamines **2e–2j** (0.15 mmol, 1.5 equiv) and activated 5 Å molecular sieves (100 mg) under argon. Then 2.0 mL of anhydrous 1,4-dioxane was added at room temperature and the sealed tube was stirred at 40 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography (eluent: petroleum ether/EtOAc = 20/1 to 2/1) to afford desired products **3Zf–3Zk**.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

General procedures for preparation of racemic 3A–3Zk

The racemic products **3A–3Zk** were prepared by following similar procedures as described above using $Cu(CH_3CN)_4BF_4$ (6.2 mg, 0.02 mmol, 20 mol%) and diphenyl phosphate (12.5 mg, 0.05 mmol, 50 mol%) as catalyst at 60 °C in anhydrous DCE (2.0 mL) for 40 h. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20/1 to 2/1) to give the racemic products.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinomet hyl)-2-phenylpyrrolidine-1-carboxamide (3A)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.3 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 24.78 min, $t_{\rm R}$ (major) = 27.52 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.04 (s, 1H), 7.64 (s, 2H), 7.39 (s, 1H), 7.31–7.29 (m, 2H), 7.25–7.23 (m, 2H), 7.20–7.17 (m, 1H), 3.75 (d, J = 11.0

Hz, 1H), 3.62 (d, J = 11.0 Hz, 1H), 3.60–3.46 (m, 4H), 3.41 (d, J = 15.0 Hz, 1H), 3.07 (d, J = 15.0 Hz, 1H), 2.77 (s, 2H), 2.70–2.68 (m, 2H), 2.18 (d, J = 13.5 Hz, 1H), 2.03 (d, J = 13.0 Hz, 1H), 1.26 (s, 3H), 1.02 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 160.0, 144.6, 141.0, 131.9 (q, J = 33.1 Hz), 129.0, 127.4, 125.8, 123.4 (q, J = 272.7 Hz), 119.0, 115.4, 71.0, 67.1, 66.6, 63.6, 58.8, 56.1, 35.2, 28.9, 28.3. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{26}H_{30}F_6N_3O_2[M + H]^+$ 530.2237, found 530.2232. [α]_D²⁷ = +19.8 (*c* 1.02, CH₂Cl₂).

(S)-4,4-dimethyl-2-(morpholinomethyl)-2-phenyl-*N*-(3-(trifluoromethyl) phenyl)pyrrolidine-1-carboxamide (3B)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 40.19 min, t_R (major) = 45.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.64 (s, 1H), 7.52 (s, 1H), 7.32–7.24 (m, 6H), 7.21–7.16 (m, 2H), 3.75 (d, J = 11.0 Hz, 1H), 3.63 (d, J = 11.0 Hz, 1H), 3.54

(s, 4H), 3.40 (d, *J* = 15.0 Hz, 1H), 3.05 (d, *J* = 15.0 Hz, 1H), 2.73 (s, 2H), 2.68-2.64 (m, 2H), 2.15 (d, *J* = 13.0 Hz, 1H), 2.06 (d, *J* = 15.0 Hz, 1H), 1.25 (s, 3H), 1.00 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.1, 144.7, 131.0 (q, *J* = 32.0 Hz), 139.9, 129.2, 128.8, 127.2, 126.0, 124.1 (q, *J* = 272.4 Hz), 122.8, 118.9 (q, *J* = 3.8 Hz), 116.5 (q, *J* = 3.8 Hz), 70.9, 67.1, 66.6, 63.5, 58.7, 56.0, 35.1, 28.8, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₅H₃₁F₃N₃O₂[M + H]⁺ 462.2363, found 462.2361.

 $[\alpha]_D^{27} = +61.6 (c \, 0.55, \, CH_2CI_2).$

(*S*)-4,4-dimethyl-2-(morpholinomethyl)-2-phenyl-*N*-(4-(trifluoromethyl) phenyl)pyrrolidine-1-carboxamide (3C)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 18.76 min, $t_{\rm R}$ (major) = 21.88 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.51 (s, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.32– 7.26 (m, 5H), 7.20–7.18 (m, 1H), 3.76 (d, J = 11.0 Hz, 1H), 3.63 (d, J = 11.0

Hz, 1H), 3.58-3.55 (m, 4H), 3.40 (d, J = 15.0 Hz, 1H), 3.05 (d, J = 15.0 Hz, 1H), 2.75 (s, 2H), 2.69-2.67 (m, 2H), 2.14 (d, J = 13.0 Hz, 1H), 2.05 (d, J = 10.0 Hz, 1H), 1.26 (s, 3H), 1.02 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.8, 144.8, 142.7, 128.9, 127.2, 126.0 (q, *J* = 3.8 Hz), 125.9, 124.5 (q, *J* = 271.2 Hz), 123.9 (q, *J* = 32.6 Hz), 119.0, 71.0, 66.9, 66.7, 63.6, 58.7, 56.1, 35.1, 28.9, 28.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –61.8 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{25}H_{31}F_3N_3O_2[M + H]^+$ 462.2363, found 462.2361. [α]_D²⁷ = +28.8 (*c* 0.78, CH₂Cl₂).

(S)-N-(4-bromophenyl)-4,4-dimethyl-2-(morpholinomethyl)-2-phenylpy rrolidine-1-carboxamide (3D)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 23.94 min, $t_{\rm R}$ (major) = 26.18 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.30 (s, 1H), 7.31–7.25 (m, 6H), 7.19 (t, J = 7.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 3.73 (d, J = 10.5 Hz, 1H), 3.61 (d, J =

11.0 Hz, 1H), 3.52 (s, 4H), 3.37 (d, *J* = 15.0 Hz, 1H), 3.02 (d, *J* = 15.0 Hz, 1H), 2.71 (s, 2H), 2.65–2.62 (m, 2H), 2.12 (d, *J* = 13.0 Hz, 1H), 2.06 (s, 1H), 1.24 (s, 3H), 0.99 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 156.0, 144.9, 138.5, 131.7, 128.8 127.2, 126.1, 121.5, 114.9, 70.9, 67.0, 66.8, 63.6, 58.7, 56.0, 35.1, 28.9, 28.4.

HRMS (ESI) *m*/*z* calcd. for $C_{24}H_{31}BrN_3O_2[M + H]^+$ 472.1594, found 472.1598. $[\alpha]_D^{27} = +15.6 \ (c \ 0.44, \ CH_2Cl_2).$

(*S*)-6-(morpholinomethyl)-6-phenyl-*N*-(3-(trifluoro-methyl)phenyl)-5-az aspiro[2.4]heptane-5-carboxamide (3E)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 19.75 min, $t_{\rm R}$ (major) = 24.79 min.

¹**H NMR** (500 MHz, CDCl₃) δ 9.88 (s, 1H), 7.38 (s, 1H), 7.33–7.28 (m, 4H), 7.23–7.14 (m, 3H), 7.11 (d, J = 7.0 Hz, 1H), 4.11 (d, J = 10.5 Hz, 1H), 3.67–3.52 (m, 4H), 3.43 (d, J

= 15.0 Hz, 1H), 3.39 (d, J = 11.0 Hz, 1H), 3.14 (d, J = 15.0 Hz, 1H), 2.85 (s, 2H), 2.80 (s, 2H), 2.35

(d, *J* = 13.0 Hz, 1H), 1.74 (d, *J* = 12.0 Hz, 1H), 0.78–0.74 (m, 1H), 0.67–0.60 (m, 2H), 0.51–0.47 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 155.3, 144.1, 139.9, 131.0 (q, J = 32.0 Hz), 129.1, 129.0, 127.5, 125.7, 124.1 (q, J = 272.4 Hz), 121.8, 118.6, 115.5, 71.7, 66.9, 64.9, 57.3, 56.4, 52.6, 18.8, 14.3, 6.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.6 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{25}H_{29}F_3N_3O_2[M + H]^+$ 460.2206, found 460.2204. $[\alpha]_D^{27} = +50.7 (c \ 0.58, CH_2Cl_2).$

(*S*)-7-(morpholinomethyl)-7-phenyl-*N*-(3-(trifluoro-methyl)phenyl)-6-az aspiro[3.4]octane-6-carboxamide (3F)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 21.15 min, t_R (major) = 28.94 min.

¹H NMR (500 MHz, CDCl₃) δ 10.26 (s, 1H), 7.42 (s, 1H), 7.31–7.26 (m, 2H), 7.26–7.20 (m, 4H), 7.19–7.07 (m, 2H), 4.08–3.75 (m, 2H), 3.55 (s, 4H), 3.39 (d, J = 15.0 Hz, 1H), 2.85 (d, J = 15.0 Hz, 1H), 2.78 (s, 2H), 2.72 (s, 2H), 2.23–2.05 (m, 4H), 2.03–1.77 (m, 4H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.8, 144.1, 139.9, 131.0 (q, *J* = 32.0 Hz), 129.2, 128.9, 127.3, 124.1 (q, *J* = 272.8 Hz), 122.2, 118.7 (q, *J* = 3.7 Hz), 115.9 (q, *J* = 3.8 Hz), 70.9, 66.8, 65.7, 61.8, 56.9, 56.2, 42.1, 34.7, 31.2, 17.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{26}H_{31}F_3N_3O_2[M + H]^+$ 474.2363, found 474.2361. $[\alpha]_{D}^{27} = +38.8 (c \ 0.82, CH_2Cl_2).$

(S)-3-(morpholinomethyl)-3-phenyl-*N*-(3-(trifluoro-methyl)phenyl)-2azaspiro[4.6]undecane-2-carboxamide (3G)

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 68.49 min, $t_{\rm R}$ (major) = 72.88 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.56 (s, 1H), 7.52 (s, 1H), 7.35–7.24 (m, 6H), 7.21–7.14 (m, 2H), 3.74 (d, *J* = 11.0 Hz, 1H), 3.64 (d, *J* = 11.0 Hz, 1H), 3.54 (m, 4H), 3.40 (d, *J* = 15.0 Hz, 1H), 3.01 (d, *J* = 15.0 Hz, 1H), 2.73 (s, 2H), 2.67–2.65 (m, 2H), 2.28–2.05 (m, 2H), 1.96–1.82 (m, 1H), 1.70–1.32 (m, 10H), 1.30–1.04 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.1, 144.8, 140.0, 131.0 (q, J = 32.0 Hz), 129.2, 128.8, 127.1, 126.0, 124.2 (q, J = 272.4 Hz), 122.7, 118.9 (q, J = 3.7 Hz), 116.4 (q, J = 3.8 Hz), 70.8, 67.1, 66.7, 63.2, 58.1, 56.1, 42.1, 40.8, 40.4, 29.4, 29.3, 24.2, 23.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{29}H_{37}F_3N_3O_2[M + H]^+$ 516.2832, found 516.2833.

 $[\alpha]_D^{27} = +22.1 \ (c \ 1.17, \ CH_2Cl_2).$

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-3-(morpholino-methyl)-3-phenyl -2-azaspiro[4.4]nonane-2-carboxamide (3H)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 30.97 min, t_R (major) = 36.12 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.92 (s, 1H), 7.60 (s, 2H), 7.37 (s, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 7.5 Hz, 2H), 7.18 (t, J = 7.0 Hz, 1H), 3.73 (d,

J = 11.0 Hz, 1H), 3.67 (d, *J* = 11.0 Hz, 1H), 3.55 (s, 4H), 3.42 (d, *J* = 15.0 Hz, 1H), 3.05 (d, *J* = 15.0 Hz, 1H), 2.80 (s, 2H), 2.74 (s, 2H), 2.33 (d, *J* = 13.0 Hz, 1H), 2.06 (d, *J* = 13.0 Hz, 1H), 1.98–1.79 (m, 1H), 1.79–1.44 (m, 7H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.9, 144.5, 141.0, 131.9 (q, J = 33.1 Hz), 129.0, 127.5, 125.7, 123.4 (q, J = 272.7 Hz), 118.8 (d, J = 3.2 Hz), 115.3 (t, J = 3.4 Hz), 70.8, 66.7, 66.2, 62.4, 56.9, 56.2, 46.3, 39.3, 38.2, 25.0, 24.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for C₂₈H₃₂F₆N₃O₂ [M + H]⁺ 556.2393, found 556.2392. $[\alpha]_{D}^{27} = +23.2 (c \, 0.94, \, CH_{2}CI_{2}).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-(morpholino-methyl)-3-pheny I-2-azaspiro[4.5]decane-2-carboxamide (3I)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.3 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 32.81 min, $t_{\rm R}$ (major) = 41.85 min.

 ^{1}H NMR (500 MHz, CDCl_3) δ 11.00 (s, 1H), 7.64 (s, 2H), 7.39 (s, 1H),

7.32–7.27 (m, 2H), 7.25–7.21 (m, 2H), 7.21–7.16 (m, 1H), 3.78–3.72 (m, 2H), 3.54 (s, 4H), 3.40 (d, J = 15.0 Hz, 1H), 3.00 (d, J = 15.0 Hz, 1H), 2.72 (s, 2H), 2.67–2.65 (m, 2H), 2.16 (d, J = 13.5 Hz, 1H), 2.11–1.93 (m, 1H), 1.74–1.63 (m, 1H), 1.57–1.42 (m, 4H), 1.41–1.28 (m, 4H), 1.28–1.16 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.9, 144.6, 141.1, 131.9 (q, J = 33.1 Hz), 129.1, 127.4, 125.8, 123.4 (q, J = 272.7 Hz), 119.0 (d, J = 3.2 Hz), 115.4 (t, J = 3.4 Hz), 70.3, 67.5, 66.6, 61.1, 57.0, 56.1, 38.9, 37.9, 37.9, 25.9, 23.6, 23.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{29}H_{34}F_6N_3O_2[M + H]^+$ 570.2550, found 570.2553. [α]_D²⁷ = +14.7 (*c* 0.74, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(morpholinomethyl)-2,4,4-triph enylpyrrolidine-1-carboxamide (3J)

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 15.23 min, $t_{\rm R}$ (major) = 18.95 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.07 (s, 1H), 7.55 (s, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.38 (s, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.29–7.23 (m, 5H), 7.20–7.14 (m,

6H), 5.10 (d, *J* = 10.5 Hz, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 3.71–3.19 (m, 4H), 3.10 (d, *J* = 15.0 Hz, 1H), 3.04 (d, *J* = 13.0 Hz, 1H), 2.87 (dd, *J* = 13.0, 1.5 Hz, 1H), 2.79–2.22 (m, 5H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.1, 146.0, 145.3, 144.7, 140.7, 131.9 (q, J = 33.1 Hz), 129.3,

129.0, 128.8, 127.6, 127.0, 126.8, 126.4, 126.1, 125.3, 123.3 (q, J = 272.7 Hz), 118.9 (d, J = 3.2 Hz), 115.5 (p, J = 3.8 Hz), 70.9, 66.5, 63.8, 58.6, 56.3, 55.9, 50.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{36}H_{34}F_6N_3O_2[M + H]^+$ 654.2546, found 654.2550.

 $[\alpha]_D^{27} = -114.7 \ (c \ 1.05, \ CH_2Cl_2).$

(S)-diethyl-1-((3,5-bis(trifluoromethyl)phenyl)carbamoyl)-5-(morpholinomethyl)-5-phenylpyrrolidine-3,3-dicarboxylate (3K)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_{R} (minor) = 29.30 min, t_{R} (major) = 37.98 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (s, 2H), 7.40 (s, 1H), 7.36–7.29 (m, 2H), 7.25–7.19 (m, 3H), 4.41 (d, *J* = 12.0 Hz, 1H), 4.34 (d, *J* = 12.0 Hz, 1H), 4.32–4.23 (m, 2H), 4.13–3.91 (m, 2H), 3.55 (s, 4H), 3.41 (d, *J* = 15.0 Hz, 1H), 2.92 (d, *J* = 14.0 Hz, 1H), 2.86–2.78 (m, 2H), 2.74 (s, 2H), 2.67 (s, 2H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.15 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 170.2, 169.1, 154.9, 142.5, 140.6, 132.0 (q, J = 33.2 Hz), 129.2, 128.1, 125.9, 123.3 (q, J = 272.7 Hz), 119.0 (d, J = 2.8 Hz), 115.8 (t, J = 3.4 Hz), 70.1, 66.7, 65.7, 62.6, 62.5, 56.3, 56.0, 55.1, 49.7, 14.2, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{30}H_{34}F_6N_3O_6[M + H]^+$ 646.2346, found 646.2346.

 $[\alpha]_{D}^{27} = +13.2 (c 1.38, CH_2CI_2).$

(*S*)-2-(morpholinomethyl)-2-phenyl-*N*-(3-(trifluoro-methyl)phenyl)pyrro lidine-1-carboxamide (3L)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 24.59 min, $t_{\rm R}$ (major) = 26.94 min.

¹**H NMR** (500 MHz, CDCl₃) δ 9.91 (s, 1H), 7.42 (s, 1H), 7.33–7.26 (m, 4H), 7.24–7.17 (m, 3H), 7.14–7.10 (m, 1H), 4.04–3.89 (m, 1H), 3.81–3.74 (m,

1H), 3.65–3.53 (m, 4H), 3.46 (d, *J* = 15.0 Hz, 1H), 2.87–2.67 (m, 5H), 2.17–2.05 (m, 2H), 1.98–1.83 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.4, 144.0, 140.0, 131.0 (q, *J* = 32.0 Hz), 129.1, 129.0, 127.5, 125.8, 124.1 (q, *J* = 272.8 Hz), 122.0, 118.7 (q, *J* = 3.7 Hz), 115.7 (q, *J* = 3.9 Hz), 70.1, 66.9, 65.6, 56.2, 50.1, 45.0, 22.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{23}H_{27}F_3N_3O_2[M + H]^+$ 434.2050, found 434.2050. [α]_D²⁷ = +42.6 (*c* 0.63, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(morpholinomethyl)-2-phenylp yrrolidine-1-carboxamide (3M)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 18.42 min, $t_{\rm R}$ (minor) = 23.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.36 (s, 1H), 7.54 (s, 2H), 7.35 (s, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 3.94 (dd, J

= 17.6, 9.6 Hz, 1H), 3.80–3.75 (m, 1H), 3.58 (s, 4H), 3.48 (d, *J* = 14.8 Hz, 1H), 2.82–2.78 (m, 5H), 2.28–2.02 (m, 2H), 2.01–1.92 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.3, 143.8, 141.0, 131.9 (q, *J* = 32.8 Hz), 129.2, 127.6, 125.6, 123.4 (q, *J* = 272.2 Hz), 118.3, 115.2, 70.3, 66.9, 65.6, 56.3, 50.1, 45.0, 22.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{24}H_{26}F_6N_3O_2[M + H]^+$ 502.1924, found 502.1921. [α]_D²⁷ = +28.9 (*c* 0.54, CH₂Cl₂).

(*S*)-2-(morpholinomethyl)-2-(*m*-tolyl)-*N*-(3-(trifluoromethyl)phenyl)pyrr olidine-1-carboxamide (3N)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 16.38 min, $t_{\rm R}$ (major) = 19.22 min.

¹**H NMR** (500 MHz, $CDCI_3$) δ 9.86 (s, 1H), 7.36 (s, 1H), 7.22 (d, J = 4.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.12 (d, J = 5.0 Hz, 1H), 7.06 (d, J = 8.0 Hz,

2H), 6.98 (d, *J* = 7.5 Hz, 1H), 3.93 (dd, *J* = 18.5, 8.5 Hz, 1H), 3.78–3.74 (m, 1H), 3.58 (s, 4H), 3.43 (d, *J* = 14.5 Hz, 1H), 2.86–2.66 (m, 5H), 2.25 (s, 3H), 2.17–2.02 (m, 2H), 2.01–1.85 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.5, 143.9, 140.1, 138.7, 131.0 (q, *J* = 32.5 Hz), 129.1, 128.8, 128.2, 126.5, 124.1 (q, *J* = 272.2 Hz), 122.8, 122.0, 118.6 (q, *J* = 3.8 Hz), 115.67 (q, *J* = 3.8 Hz), 70.0, 66.9, 65.6, 56.2, 50.0, 44.8, 22.1, 21.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{24}H_{29}F_3N_3O_2[M + H]^+$ 448.2206, found 448.2205. $[\alpha]_D^{27} = +22.5 \ (c \ 1.09, \ CH_2Cl_2).$

(S)-2-(morpholinomethyl)-2-(p-tolyl)-*N*-(3-(trifluoromethyl)phenyl)pyrro lidine-1-carboxamide (3O)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_{R} (major) = 19.80 min, t_{R} (minor) = 27.46 min.

¹**H NMR** (500 MHz, CDCl₃) δ 9.87 (s, 1H), 7.34 (s, 1H), 7.29-7.26 (m, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.16–7.07 (m, 5H), 3.92 (dd, *J* = 18.5, 8.0 Hz, 1H),

3.79–3.71 (m, 1H), 3.57 (s, 4H), 3.42 (d, *J* = 14.5 Hz, 1H), 2.82–2.63 (m, 5H), 2.26 (s, 3H), 2.13–2.04 (m, 2H), 1.99–1.83 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.5, 140.8, 140.0, 137.2, 131.0 (q, *J* = 32.5 Hz), 129.7, 129.2, 125.7, 124.2 (q, *J* = 272.2 Hz), 122.3, 118.7 (q, *J* = 3.8 Hz), 115.9 (q, *J* = 3.8 Hz), 69.9, 66.9, 65.7, 56.2, 50.1, 45.0, 22.0, 20.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.8 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for $C_{24}H_{29}F_3N_3O_2[M + H]^+$ 448.2206, found 448.2205. $[\alpha]_D^{27} = +18.1 (c \, 0.66, CH_2Cl_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinomethyl)-2-(*p*-tolyl)pyrrolidine-1-carboxamide (3P)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.35 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 19.93 min, $t_{\rm R}$ (major) = 21.16 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.98 (s, 1H) 7.63 (s, 2H), 7.39 (s, 1H), 7.14– 7.07 (m, 4H), 3.74 (d, *J* = 11.0 Hz, 1H), 3.60 (d, *J* = 11.0 Hz, 1H), 3.54 (s,

4H), 3.37 (d, *J* = 15.0 Hz, 1H), 3.05 (d, *J* = 15.0 Hz, 1H), 2.75 (s, 2H), 2.69 (s, 2H), 2.26 (s, 3H), 2.15 (d, *J* = 13.5 Hz, 1H), 2.00 (d, *J* = 12.5 Hz, 1H), 1.25 (s, 3H), 1.01 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.0, 141.5, 141.1, 137.2, 131.9 (q, J = 33.1 Hz), 129.7, 125.8, 123.4 (q, J = 273.3 Hz), 119.1 (d, J = 3.0 Hz), 115.4 (t, J = 3.8 Hz), 70.9, 67.2, 66.7, 63.5, 58.8, 56.1, 35.1, 28.9, 28.4, 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{27}H_{32}F_6N_3O_2[M + H]^+$ 544.2393, found 544.2395. [α]_D²⁷ = +11.9 (*c* 1.08, CH₂Cl₂).

(*S*)-*N*-(3-bromophenyl)-4,4-dimethyl-2-(morpholinomethyl)-2-(*p*-tolyl)p yrrolidine-1-carboxamide (3Q)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 22.98 min, $t_{\rm R}$ (major) = 27.64 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.33 (s, 1H), 7.47 (s, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.04–7.00 (m, 3H), 3.71 (d, *J* = 10.5 Hz, 1H),

3.62–3.47 (m, 5H), 3.33 (d, *J* = 15.0 Hz, 1H), 2.99 (d, *J* = 15.0 Hz, 1H), 2.68 (s, 2H), 2.64–2.61 (m, 2H), 2.29 (s, 3H), 2.10 (d, *J* = 12.5 Hz, 1H), 2.04 (s, 1H), 1.22 (s, 3H), 0.97 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.9, 141.6, 140.9, 136.9, 130.0, 129.5, 126.0, 125.3, 122.9, 122.5, 118.4, 70.6, 67.3, 66.7, 63.5, 58.8, 56.0, 35.0, 28.9, 28.4, 21.0.

HRMS (ESI) m/z calcd. for $C_{25}H_{33}BrN_3O_2[M + H]^+$ 486.1751, found 486.1754. [α]_D²⁷ = +20.3 (*c* 0.60, CH₂Cl₂).

(S)-*N*-(3-bromophenyl)-4,4-dimethyl-2-(morpholinomethyl)-2-(*m*-tolyl)p yrrolidine-1-carboxamide (3R)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 19.02 min, $t_{\rm R}$ (major) = 25.10 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.28 (s, 1H), 7.46 (s, 1H), 7.22–7.15 (m, 1H), 7.08–6.98 (m, 6H), 3.72 (d, *J* = 11.0 Hz, 1H), 3.60 (d, *J* = 11.0 Hz, 1H), 3.55

(s, 4H), 3.35 (d, *J* = 15.0 Hz, 1H), 3.00 (d, *J* = 15.0 Hz, 1H), 2.69 (s, 2H), 2.65–2.58 (m, 2H), 2.29 (s, 3H), 2.12 (d, *J* = 13.0 Hz, 1H), 2.06 (s, 1H), 1.23 (s, 3H), 0.99 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.0, 144.6, 140.9, 138.5, 130.0, 128.7, 127.9, 126.8, 125.3, 123.2, 122.8, 122.5, 118.3, 70.7, 67.3, 66.8, 63.5, 58.6, 56.0, 35.1, 28.9, 28.4, 21.8.

HRMS (ESI) *m*/*z* calcd. for $C_{25}H_{33}BrN_3O_2[M + H]^+$ 486.1751, found 486.1754. $[\alpha]_D^{27} = +28.0 (c 0.54, CH_2CI_2).$

(*S*)-2-([1,1'-biphenyl]-4-yl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimet hyl-2-(morpholinomethyl)pyrrolidine-1-carboxamide (3S)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.3 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 37.58 min, $t_{\rm R}$ (minor) = 42.29 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.15 (s, 1H), 7.70 (s, 2H), 7.55–7.50 (m, 4H), 7.43–7.39 (m, 3H), 7.35–7.31 (m, 3H), 3.79 (d, *J* = 10.5 Hz, 1H), 3.65 (d, *J*

= 11.0 Hz, 1H), 3.57 (s, 4H), 3.45 (d, *J* = 15.0 Hz, 1H), 3.11 (d, *J* = 15.0 Hz, 1H), 2.79 (s, 2H), 2.74 (s, 2H), 2.21 (d, *J* = 13.0 Hz, 1H), 2.07 (s, 1H), 1.28 (s, 3H), 1.05 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 156.0, 143.6, 141.0, 140.3, 140.0, 132.0 (q, J = 33.1 Hz), 128.9, 127.7, 127.6, 127.0, 126.3, 123.4 (q, J = 272.7 Hz), 119.0 (d, J = 3.2 Hz), 115.5, 70.9, 67.3, 66.6, 63.6, 58.9, 56.1, 35.3, 28.9, 28.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{32}H_{34}F_6N_3O_2[M + H]^+$ 606.2250, found 606.2253. $[\alpha]_D^{27} = +9.2$ (*c* 1.25, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinomethyl)-2-(naphthalen-2-yl)pyrrolidine-1-carboxamide (3T)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 13.12 min, $t_{\rm R}$ (major) = 14.75 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.22 (s, 1H), 7.79–7.71 (m, 4H), 7.61 (s, 2H), 7.50–7.44 (m, 2H), 7.33–7.29 (m, 2H), 3.83 (d, J = 11.0 Hz, 1H), 3.68 (d, J =

11.0 Hz, 1H), 3.54 (d, J = 15.0 Hz, 5H), 3.17 (d, J = 15.0 Hz, 1H), 2.78 (s, 2H), 2.72 (s, 2H), 2.28 (d, J = 13.5 Hz, 1H), 2.10 (d, J = 12.0 Hz, 1H), 1.29 (s, 3H), 1.01 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 156.0, 141.5, 141.0, 133.0, 132.3, 131.9 (q, J = 33.1 Hz), 129.3, 128.0, 127.6, 127.0, 126.6, 124.5, 124.1, 123.3 (q, J = 272.8 Hz), 119.1 (d, J = 2.9 Hz), 115.4, 71.1, 67.6, 66.6, 63.6, 58.6, 56.1, 35.2, 29.0, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{30}H_{32}F_6N_3O_2[M + H]^+$ 580.2393, found 580.2397. $[\alpha]_D^{27} = +38.8 \ (c \ 1.02, \ CH_2Cl_2).$

(*S*)-2-(3-fluorophenyl)-4,4-dimethyl-2-(morpholinomethyl)-*N*-(3-(trifluor omethyl)phenyl)pyrrolidine-1-carboxamide (3U)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 18.60 min, $t_{\rm R}$ (major) = 20.03 min.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.39–7.23 (m, 3H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 7.00 (dt, *J* = 10.8, 2.0 Hz, 1H), 6.90 (td,

J = 8.0, 2.0 Hz, 1H), 3.72 (d, *J* = 10.8 Hz, 1H), 3.62 (d, *J* = 10.8 Hz, 1H), 3,57 (s, 4H), 3.37 (d, *J* = 14.8 Hz, 1H), 3.04 (d, *J* = 14.8 Hz, 1H), 2.74 (s, 2H), 2.69–2.64 (m, 2H), 2.10 (s, 2H), 1.25 (s, 3H),

1.01 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 163.1 (d, *J* = 246.6 Hz), 155.7, 148.0, 147.9, 139.9, 131.2 (q, *J* = 32.1 Hz), 130.5 (d, *J* = 5.4 Hz), 129.3, 124.1 (q, *J* = 272.4 Hz), 122.7, 119.2 (d, *J* = 3.4 Hz), 116.4 (q, *J* = 3.9 Hz), 114.1 (d, *J* = 20.9 Hz), 113.4 (d, *J* = 22.9 Hz), 70.8, 66.7, 63.5, 58.6, 56.1, 35.3, 28.8, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –62.6 (s, 3F), –111.4 (s, 1F).

HRMS (ESI) m/z calcd. for $C_{25}H_{30}F_4N_3O_2[M + H]^+$ 480.2269, found 480.2269.

 $[\alpha]_{D}^{27} = +10.2 (c \, 0.82, \, CH_2CI_2).$

(*S*)-2-(3-bromophenyl)-4,4-dimethyl-2-(morpholinomethyl)-*N*-(3-(trifluo romethyl)phenyl)pyrrolidine-1-carboxamide (3V)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 25.26 min, $t_{\rm R}$ (minor) = 28.18 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.63 (s, 1H), 7.56 (s, 1H), 7.44 (t, J = 1.7 Hz, 1H), 7.40–7.27 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (t, J = 8.0 Hz, 1H),

3.72 (d, *J* = 9.5 Hz, 1H), 3.65–3.45 (m, 5H), 3.37 (d, *J* = 15.0 Hz, 1H), 3.03 (d, *J* = 14.5 Hz, 1H), 2.73 (s, 2H), 2.67–2.63 (m, 2H), 2.10 (s, 2H), 1.24 (s, 3H), 1.01 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.7, 147.4, 139.8, 131.2 (q, J = 32.1 Hz), 130.5, 130.2, 129.3, 126.1, 124.8, 124.1 (q, J = 272.4 Hz), 122.8, 119.2 (d, J = 3.4 Hz), 119.0, 116.5 (q, J = 3.8 Hz), 70.7, 66.8, 63.4, 58.4, 56.1, 35.4, 28.7, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –62.7 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{25}H_{30}BrF_3N_3O_2[M + H]^+$ 540.1468, found 540.1473.

 $[\alpha]_{D}^{27} = +11.7 (c \, 0.85, \, CH_2CI_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(3-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)-4,4-dimethyl-2-(morpholino-methyl)pyrrolidine-1-carboxamide (3W)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 13.17 min, $t_{\rm R}$ (major) = 14.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.82 (s, 1H), 7.65 (s, 2H), 7.57 (s, 1H), 7.36 (s, 1H), 7.29–7.17 (m, 3H), 5.29 (s, 1H), 3.78–3.68 (m, 3H), 3.63–3.50 (m, 7H),

3.42 (d, *J* = 15.2 Hz, 1H), 3.08 (d, *J* = 14.8 Hz, 1H), 2.79 (s, 4H), 2.24 (d, *J* = 13.6 Hz, 1H), 2.02 (d, *J* = 13.6 Hz, 1H), 1.29 (s, 3H), 1.22 (s, 3H), 1.08 (s, 3H), 0.79 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 155.9, 145.3, 140.9, 139.0, 131.8 (q, J = 33.0 Hz), 129.4, 126.6, 125.7, 123.5, 123.4 (q, J = 272.7 Hz), 118.8 (q, J = 3.0 Hz), 115.2, 101.7, 77.8, 70.8, 66.7, 63.7, 58.3, 56.1, 35.3, 30.3, 29.0, 28.4, 23.0, 21.9.

¹⁹**F NMR** (376 MHz, CDCl₃) –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{32}H_{40}F_6N_3O_4[M + H]^+$ 644.2918, found 644.2900.

 $[\alpha]_D^{27} = +43.8 \ (c \ 1.03, \ CH_2Cl_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(3-formylphenyl)-4,4-dimethyl-2-(morpholinomethyl)pyrrolidine-1-carboxamide (3X)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 15.72 min, $t_{\rm R}$ (minor) = 21.77 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.12 (s, 1H), 9.97 (s, 1H), 7.84 (s, 1H), 7.69 (d, J = 7.0 Hz, 1H), 7.61 (s, 2H), 7.51–7.46 (m, 2H), 7.43–7.37 (m, 1H), 3.75

(s, 1H), 3.71–3.45 (m, 6H), 3.12 (d, *J* = 12.8 Hz, 1H), 2.82 (s, 2H), 2.74 (s, 2H), 2.17–2.04 (m, 2H), 1.29 (s, 3H), 1.04 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 191.9, 155.6, 146.5, 140.8, 136.6, 132.1 (q, *J* = 33.3 Hz), 132.0(5), 130.1, 127.2, 125.3, 123.3 (q, *J* = 272.7 Hz), 118.7, 115.7, 70.9, 66.7, 63.6, 58.6, 56.2, 44.4, 35.6, 28.8, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{27}H_{30}F_6N_3O_3[M + H]^+$ 558.2186, found 558.2189. [α]_D²⁷ = +45.6 (*c* 0.97, CH₂Cl₂).

(*S*)-Ethyl3-(1-((3,5-bis(trifluoromethyl)phenyl)carbamoyl)-4,4-dimethyl -2-(morpholinomethyl)pyrrolidin-2-yl)benzoate (3Y)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 230 nm), t_{R} (minor) = 14.59 min, t_{R} (major) = 15.96 min.

¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 8.03 (s, 1H), 7.84 (d, *J* = 7.6 Hz,

1H), 7.61 (s, 2H), 7.44–7.30 (m, 3H), 4.36 (q, *J* = 7.2 Hz, 2H), 3.76 (d, *J* =

10.8 Hz, 1H), 3.62–3.45 (m, 6H), 3.11 (d, *J* = 15.1 Hz, 1H), 2.83 (s, 2H), 2.77 (s, 2H), 2.18 (d, *J* = 13.6 Hz, 1H), 2.06 (s, 1H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.29 (s, 3H), 1.06 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.2, 155.8, 145.6, 140.9, 132.0 (q, J = 33.1 Hz), 130.7, 130.5, 129.7, 128.5, 126.7, 123.3 (q, J = 272.7 Hz), 118.6, 115.4, 70.9, 66.7, 63.6, 61.4, 58.5, 56.1, 35.5, 28.9, 28.4, 14.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{29}H_{34}F_6N_3O_4[M + H]^+$ 602.2448, found 602.2449. [α]_D²⁷ = +19.6 (*c* 0.53, CH₂Cl₂).

(*S,E*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinoet hyl)-2-(3-styrylphenyl)pyrrolidine-1-carboxamide (3Z)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 320 nm), $t_{\rm R}$ (minor) = 15.45 min, $t_{\rm R}$ (major) = 19.34 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.16 (s, 1H), 7.70 (s, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.40–7.23 (m, 7H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.04–6.92 (m, 2H), 3.79

(d, *J* = 11.0 Hz, 1H), 3.64 (d, *J* = 11.0 Hz, 1H), 3.56 (s, 4H), 3.44 (d, *J* = 15.0 Hz, 1H), 3.10 (d, *J* = 15.0 Hz, 1H), 2.77 (s, 2H), 2.74–2.65 (m, 2H), 2.22 (d, *J* = 13.5 Hz, 1H), 2.08 (s, 1H), 1.27 (s, 3H), 1.03 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.0, 145.0, 141.1, 138.2, 136.9, 132.0 (q, J = 33.1 Hz), 129.8, 129.3, 128.8, 128.0, 126.7, 125.2, 125.0, 124.3, 123.4 (q, J = 272.7 Hz), 119.1 (d, J = 3.1 Hz),

115.5, 71.0, 67.7, 66.6, 63.5, 58.8, 56.1, 35.2, 28.9, 28.3. ¹⁹F NMR (376 MHz, CDCl₃) –63.0 (s, 6F). HRMS (ESI) m/z calcd. for $C_{34}H_{36}F_6N_3O_2[M + H]^+$ 632.2706, found 632.2707. $[\alpha]_D^{27} = +7.6$ (*c* 0.85, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinome thyl)-2-(3-(phenylethynyl)phenyl)pyro-lidine-1-carboxamide (3Za) HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 12.87 min, t_R (major) = 14.39 min. ¹H NMR (400 MHz, CDCl₃) δ 11.18 (s, 1H), 7.73 (s, 2H), 7.51–7.49 (m, 2H), 7.43 (d, *J* = 6.8 Hz, 2H), 7.40–7.32 (m, 4H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 3.76 (d, *J* = 11.2 Hz, 1H), 3.63 (d, *J* = 11.2 Hz, 1H), 3.64 (d, *J* = 11.2 Hz, 1H), 3.65 (d, *J* = 10.2 Hz), 3.65 (d, J = 10.2 Hz), 3.65 (d, J

1H), 3.57 (s, 4H), 3.42 (d, *J* = 15.2 Hz, 1H), 3.08 (d, *J* = 14.8 Hz, 1H), 2.75 (s, 2H), 2.70–2.66 (m, 2H), 2.20 (d, *J* = 13.2 Hz, 1H), 2.11–2.01 (m, 1H), 1.26 (s, 3H), 1.02 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 155.8, 144.9, 141.0, 132.1 (q, J = 33.1 Hz), 131.8, 130.6, 129.1(1), 129.0(7), 128.7, 128.5, 125.9, 124.1, 123.4 (q, J = 272.8 Hz), 122.9, 119.2 (q, J = 3.2 Hz), 115.6, 90.1, 88.7, 70.7, 67.6, 66.6, 63.5, 58.8, 56.1, 35.2, 28.8, 28.3.

¹⁹**F NMR** (376 MHz, CDCl₃) –63.0 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{34}H_{34}F_6N_3O_2[[M + H]^+ 630.2550$, found 630.2549. $[\alpha]_D^{27} = +39.5 \ (c \ 0.65, \ CH_2Cl_2)$.

(*S*,*E*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinom ethyl)-2-styrylpyrrolidine-1-carboxamide (3Zb)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 19.88 min, $t_{\rm R}$ (major) = 22.89 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.08 (s, 1H), 7.93 (s, 2H), 7.44 (s, 1H), 7.31-7.27 (m, 2H), 7.25 (d, J = 9.1 Hz, 3H), 6.47 (d, J = 16.4 Hz, 1H), 6.32

(d, J = 15.6 Hz, 1H), 3.81 (d, J = 10.1 Hz, 1H), 3.69-3.56 (m, 4H), 3.37 (d, J = 11.1 Hz, 1H), 3.03 (d, J = 14.5 Hz, 1H), 2.90 (d, J = 14.6 Hz, 1H), 2.80 (s, 2H), 2.75 (s, 2H), 2.05 (d, J = 13.1 Hz, 1H), 1.89 (d, J = 11.8 Hz, 1H), 1.19 (s, 3H), 1.13 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 155.2, 141.2, 136.0, 133.4, 132.1 (q, J = 33.2 Hz), 129.3, 128.9, 128.1, 126.2, 123.3 (q, J = 270.8 Hz), 119.0, 115.4, 68.5, 68.2, 66.6, 61.5, 56.0, 55.6, 35.3, 28.0, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{28}H_{32}F_6N_3O_2[M + H]^+$ 556.2393, found 556.2391. [α]_D²⁷ = +10.2 (*c* 0.52, CH₂Cl₂).

(*S,E*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinomet hyl)-2-(3-phenylprop-1-en-1-yl)pyrrolidine-1-carboxamide (3Zc)

HPLC analysis: Chiralcel ASH (*n*-hexane/*i*-PrOH = 92/8, flow rate 0.5 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ (major) = 9.50 min, $t_{\rm R}$ (minor) = 12.38 min.

¹**H NMR** (500 MHz, CDCl₃) δ 10.88 (s, 1H), 7.93 (s, 2H), 7.46 (s, 1H), 7.21-7.12 (m, 3H), 7.03 (d, J = 7.0 Hz, 2H), 5.81-5.70 (m, 1H), 5.66 (d, J =

15.8 Hz, 1H), 3.73 (d, *J* = 10.9 Hz, 1H), 3.65-3.47 (m, 4H), 3.34 (d, *J* = 5.8 Hz, 2H), 3.31 (d, *J* = 11.1 Hz, 1H), 2.82 (d, *J* = 14.3 Hz, 1H), 2.75 (d, *J* = 14.6 Hz, 1H), 2.63 (s, 4H), 1.95 (d, *J* = 13.0 Hz, 1H), 1.78 (d, *J* = 12.8 Hz, 1H), 1.15 (s, 3H), 1.11 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 155.0, 141.4, 139.4, 134.8, 132.0 (q, J = 33.2 Hz), 129.5, 128.6, 128.2, 126.5, 123.4 (q, J = 272.8 Hz), 118.5, 115.1, 68.4, 67.9, 66.4, 61.5, 56.0, 55.7, 38.8, 35.0, 28.0, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for C₂₉H₃₄F₆N₃O₂ [M + H]⁺ 570.2550, found 570.2546. $[\alpha]_{D}^{27} = +48.9 \ (c \ 0.50, \ CH_{2}Cl_{2}).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-(morpholinomet hyl)-2-(quinolin-6-yl)pyrrolidine-1-carboxamide (3zd)

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 21.71 min, $t_{\rm R}$ (minor) = 24.45 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.39 (s, 1H), 8.89 (s, 1H), 8.06 (t, *J* = 8.4 Hz, 2H), 7.69 (s, 1H), 7.65 (s, 2H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.41 (dd, *J* = 8.2,

4.1 Hz, 1H), 7.37 (s, 1H), 3.82 (d, *J* = 7.7 Hz, 1H), 3.69 (d, *J* = 11.0 Hz, 1H), 3.56 (s, 1H), 3.53 (s, 4H), 3.18 (d, *J* = 14.9 Hz, 1H), 2.76 (s, 2H), 2.68 (dd, *J* = 10.1, 5.2 Hz, 2H), 2.27 (d, *J* = 13.1 Hz, 1H), 2.15 (d, *J* = 20.6 Hz, 1H), 1.27 (s, 3H), 0.98 (s, 3H)..

¹³**C NMR** (125 MHz, CDCl₃) δ 155.7, 151.0, 147.1, 142.3, 140.8, 136.0, 131.9 (q, J = 33.2 Hz), 130.4, 127.9, 127.8, 126.4, 124.4, 123.1 (q, J = 272.8 Hz), 119.0, 115.6, 70.7, 67.9, 66.4, 63.4, 58.6, 55.9, 35.1, 28.8, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for C₂₉H₃₁F₆N₄O₂ [M + H]⁺ 581.2346, found 581.2341. $[\alpha]_{D}^{27} = +8.7$ (*c* 1.00, CH₂Cl₂).

(*R*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(furan-2-yl)-4,4-dimethyl-2-(m orpholinomethyl)pyrrolidine-1-carboxamide (3ze)

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_{R} (major) = 22.55 min, t_{R} (minor) = 24.40 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.15 (s, 1H), 7.82 (s, 2H), 7.42 (s, 1H), 7.29 (d, J = 1.1 Hz, 1H), 6.31-6.25 (m, 1H), 6.20 (d, J = 3.3 Hz, 1H), 3.74 (d, J = 10.9 Hz, 1H), 3.61 (dd, J = 6.0, 2.9 Hz, 4H), 3.44 (d, J = 10.9 Hz, 1H), 3.16

(d, *J* = 14.6 Hz, 1H), 2.97 (d, *J* = 14.6 Hz, 1H), 2.76 (s, 2H), 2.63-2.51 (m, 2H), 2.27 (d, *J* = 13.2 Hz, 1H), 1.84 (d, *J* = 13.2 Hz, 1H), 1.22 (s, 3H), 1.06 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.5, 141.9, 141.1, 131.9 (q, J = 33.1 Hz), 123.3 (q, J = 272.7 Hz), 118.81, 118.79, 115.3, 110.7, 106.9, 66.9, 66.5, 66.3, 62.3, 55.5, 54.3, 34.9, 28.2, 27.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₄H₂₈F₆N₃O₃[M + H]⁺ 520.2029, found 520.2027. [α]_D²⁷ = +8.9 (*c* 1.00, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-phenyl-3-(piperidin-1-ylme thyl)-2-azaspiro[4.4]nonane-2-carboxamide (3Zf)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min, λ = 254 nm), t_{R} (minor) = 12.29 min, t_{R} (major) = 13.24 min.

¹**H NMR** (500 MHz, CDCl₃) δ 11.60 (s, 1H) 7.66 (s, 2H), 7.33 (s, 1H),

 $\begin{bmatrix} -5 \\ -7.30 \\ -7.22 \\ (m, 4H), 7.18 \\ -7.13 \\ (m, 1H), 3.72 \\ (d, J = 11.0 \\ Hz, 1H), 3.68 \\ (d, J = 15.0 \\ Hz, 1H), 2.99 \\ (d, J = 15.0 \\ Hz, 1H), 2.71 \\ (s, 3H), 2.30 \\ (d, J = 13.5 \\ Hz, 1H), 2.01 \\ (d, J = 13.0 \\ Hz, 1H), 1.96 \\ -1.88 \\ (m, 1H), 1.79 \\ -1.33 \\ (m, 14H). \end{bmatrix}$

¹³**C NMR** (125 MHz, CDCl₃) δ 156.3, 145.1, 141.5, 131.7 (q, J = 32.9 Hz), 128.9, 127.2, 125.7, 123.5 (q, J = 272.6 Hz), 118.6 (d, J = 3.2 Hz), 114.8, 70.9, 66.2, 62.4, 57.3, 57.0, 46.3, 39.3, 38.1, 25.7, 25.1, 24.3, 23.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₉H₃₄ON₃F₆ [M + H]⁺ 554.2601, found 554.2601.

 $[\alpha]_D^{27} = +12.8 (c \, 0.72, \, CH_2CI_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-((4-methoxy-piperidin-1-yl) methyl)-3-phenyl-2-azaspiro[4.4]nonane-2-carboxamide (3Zg) HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.3

mL/min, $\lambda = 254$ nm), $t_{\rm R}$ (minor) = 21.39 min, $t_{\rm R}$ (major) = 24.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 11.42 (s, 1H) 7.60 (s, 2H), 7.35 (s, 1H), 7.32–7.25 (m, 4H), 7.18 (t, *J* = 7.2 Hz, 1H), 3.74 (d, *J* = 10.8 Hz, 1H),

3.70 (d, *J* = 10.8 Hz, 1H), 3.43 (d, *J* = 15.2 Hz, 1H), 3.28 (s, 3H), 3.25 (s, 1H), 3.04 (d, *J* = 15.2 Hz, 1H). 2.96 (s, 2H), 2.64 (d, *J* = 27.2 Hz, 2H), 2.32 (d, *J* = 13.2 Hz, 1H), 2.09–2.00 (m, 1H), 1.96–1.90 (m, 1H), 1.74–1.71 (m, 4H), 1.65–1.51 (m, 6H), 1.47–1.41 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 156.2, 144.9, 141.4, 131.8 (q, J = 33.1 Hz), 129.0, 127.2, 125.7, 123.4 (q, J = 273.2 Hz), 118.5, 114.9, 74.0, 71.0, 65.0, 62.4, 57.0, 55.6, 53.0, 46.3, 39.3, 38.0, 30.2, 25.1, 24.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{30}H_{36}O_2N_3F_6[M + H]^+$ 584.2706, found 584.2705.

 $[\alpha]_D^{27} = +11.2 \ (c \ 0.64, \ CH_2Cl_2).$

(*S*)-Ethyl-1-((2-((3,5-bis(trifluoromethyl)phenyl)car-bamoyl)-3-phe nyl-2-azaspiro[4.4]nonan-3-yl)methyl)piperidine-4-carboxylate (3Zh)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min, λ = 254 nm), *t*_R (minor) = 15.36 min, *t*_R (major) = 16.96 min. ¹**H NMR** (500 MHz, CDCl₃) δ 11.25 (s, 1H) 7.62 (s, 2H), 7.34 (s, 1H),

7.31–7.22 (m, 4H), 7.17 (t, J = 7.0 Hz, 1H), 4.13–3.98 (m, 2H), 3.73 (d, J = 11.5 Hz, 1H), 3.68 (d, J = 11.0 Hz, 1H), 3.41 (d, J = 15.0 Hz, 1H), 3.08 (s, 2H), 3.02 (d, J = 15.0 Hz, 1H), 2.46 (d, J = 32.0 Hz, 2H), 2.31 (d, J = 13.5 Hz, 1H), 2.03 (d, J = 13.0 Hz, 1H), 1.91–1.89 (m, 2H), 1.82–1.47 (m, 10H), 1.42–1.39 (m, 1H), 1.16 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.0, 156.1, 144.7, 141.3, 131.8 (q, J = 33.0 Hz), 128.9, 127.3, 125.7, 123.4 (q, J = 273.2 Hz), 118.4, 114.9, 70.9, 65.4, 62.4, 60.6, 57.0, 55.3, 46.3, 40.1, 39.3, 38.1, 27.5, 25.0, 24.3, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{32}H_{38}O_3N_3F_6[M + H]^+$ 626.2812, found 626.2813. $[\alpha]_D^{27} = +15.8 \ (c \ 0.80, \ CH_2Cl_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-((4-(methyl-sulfonyl)piperazi n-1-yl)methyl)-3-phenyl-2-azaspiro[4.4]nonane-2-carboxamide (3Zi) HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0

mL/min, $\lambda = 254$ nm), t_{R} (minor) = 17.92 min, t_{R} (major) = 26.09 min. ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H) 7.62 (s, 2H), 7.38 (s, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.26 (t, J = 6.4 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 3.75 (d,

J = 10.8 Hz, 1H), 3.68 (d, *J* = 10.8 Hz, 1H), 3.48 (d, *J* = 14.8 Hz, 1H), 3.12–2.87 (m, 9H), 2.57 (s, 3H), 2.34 (d, *J* = 13.2 Hz, 1H), 2.11 (d, *J* = 10.0 Hz, 1H), 1.88 (s, 1H), 1.74–1.53 (m, 6H), 1.39 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 155.4, 144.0, 141.0, 132.0 (q, J = 33.1 Hz), 129.1, 127.6, 125.7, 123.3 (q, J = 273.2 Hz), 118.3, 115.3, 70.7, 65.3, 62.4, 56.9, 55.1, 46.2, 45.6, 39.2, 38.1, 33.7, 24.9, 24.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{29}H_{35}O_3N_4F_6S[M + H]^+ 633.2329$, found 633.2327. $[\alpha]_D^{27} = +14.4 \ (c \ 1.00, \ CH_2Cl_2).$

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-3-phenyl-3-((4-tosylpiperazin -1-yl)methyl)-2-azaspiro[4.4]nonane-2-carboxamide (3Zj)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 34.39 min, $t_{\rm R}$ (major) = 39.35 min. ¹**H NMR** (500 MHz, CDCl₃) δ 10.23 (s, 1H) 7.37 (d, *J* = 7.5 Hz, 2H), 7.27–7.23 (m, 3H), 7.20–6.93 (m, 7H), 3.67 (d, *J* = 11.0 Hz, 1H), 3.63 (d,

J = 10.5 Hz, 1H), 3.44 (d, J = 15.0 Hz, 1H), 3.05–2.88 (m, 8H), 2.29 (s, 1H), 2.25 (s, 3H), 1.95 (d, J

= 54.5 Hz, 2H), 1.84–1.65 (m, 3H), 1.64–1.45 (m, 5H).

¹³C NMR (125 MHz, CDCl₃) δ 155.7, 144.8, 143.9, 140.2, 131.5, 131.6 (q, J = 33.0 Hz), 129.6, 129.2, 127.4, 125.3, 123.1 (q, J = 273.2 Hz), 118.8, 115.0, 71.2, 63.6, 62.4, 56.4, 54.8, 46.6, 46.0, 39.4, 38.2, 25.1, 24.2, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{35}H_{39}O_3N_4F_6S[M + H]^+$ 709.2642, found 709.2637.

 $[\alpha]_{D}^{27} = +32.5 (c 1.22, CH_2CI_2).$

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-phenyl-3-((4-tosyl-1,4-diaz epan-1-yl)methyl)-2-azaspiro[4.4]nonane-2-carboxamide (3Zk) HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_{R} (major) = 15.46 min, t_{R} (minor) = 17.37 min. ¹H NMR (500 MHz, CDCl₃) δ 11.39 (s, 1H) 7.78–7.43 (m, 4H), 7.39–7.24 (m, 7H), 7.20 (t, J = 7.0 Hz, 1H), 3.86–3.59 (m, 3H),

3.55–3.27 (m, 2H), 3.18–3.15 (m, 3H), 3.00–2.73 (m, 4H), 2.41 (s, 3H), 2.27 (d, *J* = 13.5 Hz, 1H), 2.17 (s, 1H), 1.87–1.79 (m, 3H), 1.76–1.49 (m, 6H), 1.49–1.46 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.9, 143.9, 143.7, 141.6, 135.6, 131.9 (q, *J* = 33.0 Hz), 129.9, 128.9, 127.4, 126.9, 125.8, 123.4 (q, *J* = 273.2 Hz), 118.1, 114.9, 71.1, 62.3, 60.8, 57.1, 56.5, 55.7, 46.8, 45.9, 38.9, 38.0, 27.4, 24.8, 24.5, 21.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.1 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{36}H_{41}O_3N_4F_6S [M + H]^+$ 723.2798, found 723.2797. $[\alpha]_D^{27} = +6.2 (c \ 0.56, CH_2CI_2).$

Synthesis of 3ZI

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was added urea substrate **1a** (0.1 mmol, 1.0 equiv), CuCN (1.3 mg, 0.015 mmol, 15 mol%), chiral phosphoric acid (*R*)-**A11** (13.0 mg, 0.02 mmol, 20 mol%) and *N*-fluorobenzenesulfonimide (NFSI, 63 mg, 0.20 mmol, 2 equiv) under argon. Then 2.0 mL of anhydrous CH₃CN was added at room temperature and followed by trimethylsilyl acetate (26.5 mg, 0.20 mmol, 2 equiv). The sealed tube was stirred at 29 °C for 24 h. Upon completion, the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography (eluent: petroleum ether/CH₂Cl₂ = 6/1 to 2/1) to give **3ZI**

(38.4 mg, 52% yield).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-phenyl-2-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)pyrrolidine-1-carboxami de (3ZI)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/05, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 13.66 min, $t_{\rm R}$ (minor) = 20.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 2H), 7.85–7.46 (m, 9H), 7.47–7.28 (m, 6H), 7.22 (t, J = 7.3 Hz, 1H), 6.71 (s, 1H), 5.51 (d, J = 17.2 Hz, 1H), 4.27 (d, J = 17.2 Hz, 1H), 3.57 (d, J = 7.6 Hz, 1H), 3.43 (d, J = 7.8 Hz, 1H), 2.87 (d, J = 13.0 Hz, 1H), 2.25 (d, J = 13.0 Hz, 1H), 1.16 (s, 3H), 0.82 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 154.3, 144.5, 141.1, 134.2, 132.2 (q, *J* = 33.2 Hz), 129.1, 128.2, 127.3, 127.1, 123.4 (q, *J* = 272.6 Hz), 119.3 (d, *J* = 3.0 Hz), 116.2 (t, *J* = 3.8 Hz), 73.3, 61.4, 54.1, 52.7, 37.0, 28.4, 27.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{34}H_{32}O_5N_3F_6S_2$ [M + H]⁺ 740.1682, found 740.1663. [α]_D²⁷ = -12.2 (*c* 0.60, CH₂Cl₂).

4. General procedures for asymmetric azidoamination of unactivated alkenes

General procedures for asymmetric azidoamination of substrates 1a, 1bb, 1cc, 1dd and 1h with 4a

To an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was added urea substrate **1** (0.1 mmol, 1.0 equiv), Cul (1.9 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid (*S*)-**A5** (7.2 mg, 0.01 mmol, 10 mol%), 1-azido- $1\lambda^3$ -benzo[d][1,2]iodaoxol-3(1H)-one **4a** (34.7 mg, 0.12 mmol, 1.2 equiv), NaHCO₃ (10.1 mg, 0.12 mmol, 1.2 equiv) and activated 4 Å molecular sieves (100 mg) under argon. Then 4.0 mL of anhydrous 1,4-dioxane was added at room temperature and the sealed tube was stirred at 25 °C. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel chromatography (eluent: petroleum ether/EtOAc = 50/1 to 20/1) to afford the desired product **5A–5E**.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

General procedures for preparation of racemic 5A–5E

The racemic products **5A–5E** were prepared by following similar procedures as described above using Cul (1.9 mg, 0.01 mmol, 10 mol%) and 4-hydroxydinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide (34.8 mg, 0.01 mmol, 10 mol%) as catalyst at 25 °C in anhydrous 1,4-dioxane (2.0 mL) for 24 h. Upon completion (monitored by TLC), the solvent was removed *in vacuo* and the residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 50/1 to 20/1) to give the racemic products.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

(S)-2-(azidomethyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2-p henylpyrrolidine-1-carboxamide (5A)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 10.18 min, $t_{\rm R}$ (major) = 11.70 min.

¹**H NMR** (500 MHz, $CDCl_3$) δ 7.89 (s, 2H), 7.49 (s, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 3H), 6.89 (s, 1H), 4.57 (s, 1H), 3.62 (s, 1H), 3.53 (s, 2H), 2.47 (d, *J* = 8.0 Hz, 1H), 2.10 (d, *J* = 8.0 Hz, 1H), 1.18 (s, 3H), 0.90 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 153.4, 142.8, 140.3, 132.0 (q, J = 33.0 Hz), 128.5, 127.3, 125.8, 123.2 (q, J = 271.0 Hz), 119.6, 116.3, 71.5, 62.2, 56.9, 52.2, 36.3, 28.0, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{22}H_{22}F_6N_5O[M + H]^+$ 486.1723, found 486.1718. $[\alpha]_D^{27} = +37.6 \ (c \ 1.00, \ CH_2Cl_2).$

(*S*)-2-(azidomethyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(4-chlorophe nyl)-4,4-dimethylpyrrolidine-1-carboxamide (5B)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 23.42 min, $t_{\rm R}$ (major) = 24.89 min.

¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 2H), 7.52 (s, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 6.82 (s, 1H), 4.57 (d, J = 12.5 Hz, 1H), 3.56 (d, J = 12.5 Hz, 1H), 3.51 (t, J = 12.5 Hz, 2H), 2.48 (d, J = 12.5 Hz, 1H), 2.04 (d, J = 12.5Hz, 1H), 1.18 (s, 3H), 0.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 141.5, 140.2, 133.0, 132.1 (q, J = 33.1 Hz), 128.6, 127.3, 123.2 (q, J = 271.1 Hz), 119.6, 116.5, 71.4, 62.1, 56.6, 52.1, 36.5, 27.9, 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{22}H_{21}F_6N_5OCI [M + H]^+$ 520.1333, found 520.1333. $[\alpha]_D^{27} = +44.6 \ (c \ 1.00, \ CH_2CI_2).$

(*S*)-2-(azidomethyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(4-fluorophen yl)-4,4-dimethylpyrrolidine-1-carboxamide (5C)

HPLC analysis: Chiralcel ASH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 10.86 min, $t_{\rm R}$ (major) = 16.28 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (s, 2H), 7.53 (s, 1H), 7.26-7.23 (m, 2H), 7.02 (t, *J* = 9.0 Hz, 2H), 6.80 (s, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 3.56 (d, *J* = 12.0 Hz, 1H), 3.52 (t, *J* = 12.0 Hz, 2H), 2.48 (d, *J* = 12.5 Hz, 1H), 2.05 (d, *J* = 12.5Hz, 1H), 1.19 (s, 3H), 0.90 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 161.7 (d, *J* = 245.0 Hz), 153.3, 140.2, 138.7, 132.1 (q, *J* = 33.2 Hz), 127.5 (d, *J* = 7.9 Hz), 123.2 (q, *J* = 271.0 Hz), 119.6, 116.5, 115.3 (d, *J* = 21.3 Hz), 71.4, 62.1, 56.8, 52.4, 36.5, 27.9, 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.0 (s, 6F), –115.7 (s, 1F). **HRMS** (ESI) *m*/*z* calcd. for C₂₂H₂₁F₇N₅O [M + H]⁺ 504.1629, found 504.1624. [α]_D²⁷ = +30.7 (*c* 1.00, CH₂Cl₂).

(S)-2-(azidomethyl)-*N*-(3,5-dichlorophenyl)-4,4-dimethyl-2-phenylpyrr olidine-1-carboxamide (5D)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 9.77 min, $t_{\rm R}$ (major) = 12.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 5.6 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.27-7.23 (m, 3H), 7.01 (t, J = 5.6 Hz, 1H), 6.55 (s, 1H), 4.56 (d, J = 11.6 Hz, 1H), 3.60 (d, J = 11.6 Hz, 1H), 3.49 (s, 2H), 2.45 (d, J = 12.8 Hz, 1H), 2.08 (d, J = 12.8Hz, 1H), 1.18 (s, 3H), 0.90 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 153.9, 143.5, 141.3, 135.6, 129.0, 127.7, 126.4, 123.6, 118.6, 72.0, 62.6, 57.5, 53.1, 36.9, 28.6, 28.5.

HRMS (ESI) *m*/*z* calcd. for $C_{20}H_{22}N_5OCI_2[M + H]^+$ 418.1196, found 418.1198. $[\alpha]_D^{27} = +35.1 \ (c \ 1.00, \ CH_2CI_2).$

(*S*)-3-(azidomethyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-3-phenyl-2-aza spiro[4.4]nonane-2-carboxamide (5E)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 9.35 min, $t_{\rm R}$ (major) = 11.68 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (s, 2H), 7.50 (s, 1H), 7.34 (t, J = 7.0 Hz, 2H), 7.27 (d, J = 7.0 Hz, 3H), 6.81 (s, 1H), 4.58 (s, 1H), 3.69 (s, 1H), 3.60 (s, 2H), 2.60 (d, J = 9.0 Hz, 1H), 2.16 (d, J = 9.0Hz, 1H), 1.72-1.63 (m, 2H), 1.59 (s, 4H), 1.44-1.42 (m, 1H), 1.05 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 153.1, 142.3, 140.3, 132.1 (q, J = 33.0 Hz), 128.5, 127.4, 125.8, 123.2 (q, J = 271.0 Hz), 119.4, 116.3, 70.9, 62.0, 56.5, 50.7, 46.9, 38.7, 38.0, 25.0, 24.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{24}H_{24}F_6N_5O[M + H]^+$ 512.1880, found 512.1878. [α]_D²⁷ = +33.0 (*c* 0.90, CH₂Cl₂).

5. Mechanistic study

Trapping with TEMPO

To an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was added urea substrate **1a** (0.05 mmol, 1.0 equiv), Cu(CH₃CN)₄BF₄ (1.6 mg, 0.005 mmol, 10 mol%), chiral phosphoric acid (*S*)-**A4** (3.1 mg, 0.005 mmol, 10 mol%), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 11.7 mg, 0.075 mmol, 1.5 equiv), *O*-benzoyl hydroxylmorpholine **2c** (0.075 mmol, 1.5 equiv) and activated 5 Å molecular sieves (50 mg) under argon. Then 1.0 mL of anhydrous 1,4-dioxane was added at room temperature and the sealed tube was stirred at 40 °C for 60 h. Upon completion, PhOCF₃ (internal standard, 0.1 mmol, 2.0 equiv) was added to the reaction mixture for direct NMR charaterization. Yield was based on ¹⁹F NMR analysis of the crude product.

Note: Since the reaction is sensitive to water and air, Schlenk tubes and the reagents must be dried prior to use.

Control reactions

Control reactions were conducted by following the same procedures as described above without addition of TEMPO together with special modifications, as listed below.

For eq. 2, no **2c** was added.

6. Transformations

Synthesis of 6

Compound **6** was prepared by following literature procedures.⁵ An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **3A** (158.7 mg, 0.3 mmol), *tert*-butylamine (0.064 mL, 0.6 mmol) and toluene (5.0 mL). The sealed tube was then stirred at 80 °C for 72 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. Then the crude product was concentrated *in vacuo* and purified by flash chromatography using dichloromethane/methanol (10/1) as the eluent to give **6** (56.1 mg, 68% yield).

Synthesis of 7

Compound **7** was prepared by following literature procedures.⁶ An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **3A** (52.9 mg, 0.1 mmol), Cul (1.9 mg, 0.010 mmol), DMAP (3.7 mg, 0.030 mmol), (*t*-BuO)₂ (29.2 mg, 0.20 mmol) and DCE (0.5 mL). The flask was then sealed and the mixture was stirred at 100 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and quenched by water (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL) and the organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the residue was purified by flash chromatography using petroleum ether/EtOAc (8/1) as the eluent to give **7-syn** (25.3 mg, 48% yield) and **7-anti** (25.4 mg, 48% yield).

(S)-4-((4,4-dimethyl-2-phenylpyrrolidin-2-yl)methyl)morpholine (6)

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 8.64 min, t_R (major) = 9.29 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (m, 2H), 7.30 (m, 2H), 7.19 (m, 1H), 3.57 (t, *J* = 4.4 Hz, 4H), 2.82 (d, *J* = 10.4 Hz, 1H), 2.72 (d, 10.4 Hz, 1H), 2.63 (d, *J* = 13.6 Hz,

1H), 2.55 (d, *J* = 13.6 Hz, 1H), 2.35–2.29 (m, 2H), 2.28–2.21 (m, 2H), 1.94 (d, *J* = 12.8 Hz, 1H), 1.87 (d, *J* = 12.8 Hz, 1H) 1.15 (s, 3H), 0.94 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 148.3, 128.0, 126.1(3), 126.0(7), 69.2, 68.7, 67.3, 59.6, 55.7, 52.6, 40.1, 29.2, 29.1.

HRMS (ESI) m/z calcd. for C₁₇H₂₇ON₂ [M + H]⁺ 275.2118, found 275.2118. [α]_D²⁷ = -11.7 (*c* 0.86, CH₂Cl₂).

(1*S*,7a*S*)-2-(3,5-bis(trifluoromethyl)phenyl)-6,6-dimethyl-1-morpholin o-7a-phenyltetrahydro-1H-pyrrolo[1,2-c]imidazol-3(2H)-one (7-*syn*) HPLC analysis: Chiralcel ASH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 9.27 min, t_R (minor) = 12.66 min. ¹H NMR (500 MHz, Acetone- d_6) δ 8.38 (s, 2H), 7.75 (s, 1H), 7.57–7.24 (m,

5H), 5.92 (s, 1H), 3.87 (d, *J* = 12.5 Hz, 1H), 3.24 (br s, 1H), 3.02 (d, *J* = 12.5 Hz, 1H), 2.97–2.92 (m, 2H), 2.82 (d, *J* = 17.0 Hz, 1H) 2.68 (br s, 1H), 2.50–2.10 (m, 5H), 1.06

(s, 3H), 0.67 (s, 3H).

¹³**C NMR** (125 MHz, Acetone-*d*₆) δ 161.5, 142.9, 141.4, 132.4 (q, *J* = 33.1 Hz), 130.1, 129.0, 128.6, 128.0, 126.5, 124.5 (q, *J* = 272.7 Hz), 122.5, 117.3 (p, *J* = 3.8 Hz), 82.4, 75.5, 67.8, 66.9, 60.7, 55.7, 53.7, 44.8, 40.1, 31.7, 29.1.

¹⁹**F NMR** (376 MHz, Acetone- d_6) δ –63.4 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{26}H_{28}O_2N_3F_6[M + H]^+$ 528.2080, found 528.2075. $[\alpha]_D^{27} = -7.3$ (*c* 0.97, CH₂Cl₂).

(1*R*,7a*S*)-2-(3,5-bis(trifluoromethyl)phenyl)-6,6-dimethyl-1-morpholino-7a-phenyltetrahydro-1H-pyrrolo[1,2-c]imidazol-3(2H)-one(7-*anti*)

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 10.27 min, $t_{\rm R}$ (major) = 11.15 min.

¹**H NMR** (500 MHz, Acetone- d_6) δ 8.39 (s, 2H), 7.62 (s, 1H), 7.49–7.47 (m,

2H), 7.44–7.38 (m, 2H), 7.31–7.28 (m, 1H), 5.17 (s, 1H), 3.61–3.57 (m, 2H), 3.53 (d, *J* = 11.0 Hz, 1H), 3.51–3.48 (m, 1H), 3.16 (d, *J* = 10.5 Hz, 1H), 3.03–3.00 (m, 2H), 2.97–2.88 (m, 2H), 2.84 (s, 1H), 2.67 (d, *J* = 13.0 Hz, 1H), 2.29 (d, *J* = 13.5 Hz, 1H), 1.26 (s, 3H), 0.78 (s, 3H).

¹³C NMR (125 MHz, Acetone-*d*₆) δ 158.1, 147.3, 143.0, 132.2 (q, *J* = 33.0 Hz), 129.8, 128.2, 126.1, 124.6 (q, *J* = 272.7 Hz), 120.3, 116.3 (p, *J* = 3.8 Hz), 86.3, 74.7, 67.9, 58.0, 48.6, 47.7, 42.8, 30.1, 29.3.

¹⁹**F NMR** (376 MHz, Acetone- d_6) δ –63.5 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{26}H_{28}O_2N_3F_6$ [M + H]⁺ 528.2080, found 528.2081. $[\alpha]_D^{27} = -17.5$ (*c* 0.95, CH₂Cl₂).

Synthesis of 10

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **5A** (145.5 mg, 0.3 mmol), triphenylphosphane (118.0 mg, 0.45 mmol), 0.1mL H₂O and tetrahydrofuran (3.0 mL). The sealed tube was then stirred at 80 °C for 12 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. Then the crude product was concentrated *in vacuo* and purified by flash chromatography using dichloromethane/methanol (10/1) as the eluent to give **10** (111 mg, 81% yield).

Synthesis of 11

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **10** (66.0 mg, 0.14 mmol), di-*tert*-butyl dicarbonate (49.0 μ L, 0.21 mmol) and 2.0 mL dichloromethane, then added triethylamine (39.0 μ L, 0.28 mmol) at 0 °C. The solution was stirred at room temperature for 2 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. Then the crude product was concentrated *in vacuo* and purified by flash chromatography using petroleum ether/EtOAc (8/1) as the eluent to give **11** (70 mg, 87% yield).

Synthesis of 12

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **10** (66.0 mg, 0.14 mmol), (bromomethyl)benzene (42 μ L, 0.35 mmol), K₂CO₃ (97.0 mg, 0.7 mmol) and 2.0 mL acetonitrile. The solution was stirred at 80 °C for 12 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. The solid was filtered, and the liquid was concentrated *in vacuo* and purified by flash chromatography using petroleum ether/EtOAc (6/1) as the eluent to give **12** (49 mg, 55% yield).

(S)-2-(aminomethyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4,4-dimethyl-2 -phenylpyrrolidine-1-carboxamide (10)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 15.81 min, $t_{\rm R}$ (major) = 25.43 min.

¹H NMR (500 MHz, CDCl₃) δ 12.60 (s, 1H), 7.90 (s, 2H), 7.38 (t, J = 7.5 Hz, 3H), 7.27 (s, 1H), 7.24 (d, J = 7.5 Hz, 2H), 3.81 (d, J = 13.5 Hz, 1H), 3.81 (dd, J = 11.2 Hz, 15 Hz,

2H), 3.33 (d, *J* = 13.5 Hz, 1H), 2.23 (d, *J* = 13.0 Hz, 1H), 2.13 (d, *J* = 13.0 Hz, 1H), 1.76 (br s, 2H), 1.15 (s, 3H), 0.83 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 155.5, 142.5, 142.4, 131.6 (q, J = 32.7 Hz), 129.2, 127.1, 125.8, 124.4 (q, J = 271.0 Hz), 118.2, 114.5, 70.4, 63.1, 59.0, 51.1, 34.2, 28.9, 27.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{22}H_{24}F_6N_3O[M + H]^+$ 460.1818, found 460.1817. $[\alpha]_D^{27} = -9.5$ (*c* 1.00, CH₂Cl₂).

(S)-tert-butyl (1-((3,5-bis(trifluoromethyl)phenyl)carbamoyl) -4,4-dimethyl-2-phenylpyrrolidin-2-yl)methyl)carbamate (11) HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.4

mL/min, $\lambda = 254$ nm), t_R (minor) = 14.67 min, t_R (major) = 18.02 min.

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (s, 2H), 7.50 (s, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.0 Hz, 3H), 6.95 (s, 1H), 5.50 (s, 1H), 4.01 (d, *J* = 7.5 Hz, 1H), 3.74 (d, *J* = 7.5 Hz, 1H), 3.51 (s, 2H), 2.31 (d, *J* = 13.0 Hz, 1H), 2.16 (d, *J* = 13.0 Hz, 1H), 1.39 (s, 9H), 1.14 (s, 3H), 0.84 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.7, 153.7, 142.9, 140.5, 133.9 (q, J = 33.1 Hz), 128.5, 126.9, 125.7, 124.1 (q, J = 271.1 Hz), 119.4, 116.3, 79.4, 73.3, 62.2, 53.8, 48.5, 36.0, 29.0, 28.3, 28.1. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{27}H_{31}F_6N_3O_3Na[M + Na]^+$ 582.2162, found 582.2156. $[\alpha]_D^{27} = +25.1$ (*c* 0.60, CH₂Cl₂).

(*S*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-((dibenzylamino)methyl)-4,4-di methyl-2-phenylpyrrolidine-1-carboxamide(12)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.4 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 15.34 min, $t_{\rm R}$ (major) = 17.20 min.

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.78 (s, 1H), 8.25 (s, 2H), 7.52 (s, 1H), 7.35-7.30 (m, 8H), 7.25-7.19 (m, 6H), 7.15 (t, J = 7.2 Hz, 1H), 3.98 (d, J = 14.4 Hz, 1H), 3.87 (d, J = 14.4 Hz, 2H), 3.66 (d, J = 10.0 Hz, 2H), 3.62 (s, 1H), 3.52 (d, J = 9.6 Hz, 1H), 3.02 (d, J = 14.4 Hz, 1H), 2.73 (d, J = 12.8 Hz, 1H), 1.60 (d, J = 12.8 Hz, 1H), 1.10 (s, 3H), 0.74 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.0, 145.9, 143.1, 139.6, 130.8 (q, *J* = 32.4 Hz), 129.2, 128.6, 127.9, 127.3, 127.0, 126.2, 123.9 (q, *J* = 270.8 Hz), 119.7, 114.5, 73.9, 62.2, 59.1, 51.5, 36.1, 28.6, 28.2.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ –61.7 (s, 6F).

HRMS (ESI) *m*/*z* calcd. for $C_{36}H_{36}F_6N_3O[M + H]^+$ 640.2757, found 640.2754. $[\alpha]_D^{27} = +17.5 \ (c \ 0.60, \ CH_2Cl_2).$

Synthesis of 13

An resealable Schlenk tube equipped with a magnetic stir bar was charged with **5A** (48.5 mg, 0.1 mmol), KOH (16.5 mg, 0.3 mmol), EtOH (1.0 mL) and water (1.0 mL). The solution was stirred at 90 °C for 4 h. Upon completion (monitored by TLC), the reaction mixture was cooled down to temperature. The solution was extracted with EA (5.0 mL) three times and dried with Na₂SO₄, then the solution was concentrated *in vacuo* and purified by flash chromatography using petroleum ether/EtOAc (50/1) as the eluent to give **5I** (39.8 mg, 90% yield).

(*S*)-2-(3,5-bis(trifluoromethyl)phenyl)-6,6-dimethyl-7a-phenylhexahy dro-3H-pyrrolo[1,2-c]imidazol-3-one (13)

HPLC analysis: Chiralcel ASH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.4 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ (minor) = 12.26 min, $t_{\rm R}$ (major) = 15.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 2H), 7.51 (s, 1H), 7.47–7.38 (m, 4H), 7.35-7.29 (m, 1H), 4.19 (d, *J* = 9.1 Hz, 1H), 3.82 (d, *J* = 12.0 Hz, 1H),

3.76 (d, *J* = 9.1 Hz, 1H), 2.99 (d, *J* = 12.0 Hz, 1H), 2.45 (d, *J* = 12.9 Hz, 1H), 2.12 (d, *J* = 12.9 Hz, 1H), 1.16 (s, 3H), 0.87 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 159.9, 144.7, 141.3, 132.1 (q, *J* = 33.4 Hz), 129.2, 127.7, 124.5, 123.3 (q, *J* = 271.4 Hz), 116.9, 115.7, 67.8, 59.0, 58.0, 53.8, 41.1, 30.1, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.9 (s, 6F)

HRMS (ESI) m/z calcd. for $C_{22}H_{21}F_6N_2O[M + H]^+$ 443.1553, found 443.1540. $[\alpha]_D^{27} = -49.9 \ (c \ 1.00, \ CH_2Cl_2).$

7. Application Asymmetric Michael addition

The reaction was conducted by following literature procedures.⁷ To a solution of β -nitrostyrene (0.05 mmol) in THF (0.2 mL) was added propionaldehyde (0.15 mmol) and pyrrolidine-derived diamine catalyst **6** or **8** (0.015 mmol, 30 mol%). The reaction was stirred at 28 °C for the appropriate time (for **6**: 60 h; for **8**: 4 h). The solution was then diluted with MeOH (1 mL) and NaBH₄ (0.25 mmol) was added at 0 °C. The reaction mixture was stirred at 0 °C for 2 h. Upon workup, the solvent was removed *in vacuo*. The residue was treated with saturated NH₄Cl solution (2 mL) and extracted thoroughly with EtOAc (3 × 2 mL). The combined organic phases were dried (Na₂SO₄), concentrated and purified by silica gel chromatography (eluent: petroleum ether/EtOAc = 8/1) to give the desired product **9**.

The racemic products **9a** and **9aa** were prepared by following the same procedures as described above with pyrrolidine as the catalyst.

(2*R*,3*S*)-2-methyl-4-nitro-3-phenylbutan-1-ol (9a), (2*R*,3*R*)-2-methyl-4-nitro-3-phenylbutan-1-ol (9aa)

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 96/4, flow rate 1.2 mL/min, λ = 214 nm), t_{R} (major) = 26.36 min, t_{R} (minor) = 31.04 min.

¹**H NMR (400 MHz, CDCl**₃) δ 7.44–7.10 (m, 5H, $-C_6H_5$), 4.90 (syn) and 4.86 (*anti*) (dd, J = 12.8, 6.4 and 12.8, 5.6 Hz, 1H, $-CHHNO_2$), 4.78 (*anti*) and 4.76 (syn) (dd, J = 12.8, 10.0 and 14.4, 9.6 Hz, 1H, $-CHHNO_2$), 3.69–3.63 (syn) and 3.56–3.52 (*anti*) (m, 1H, -CH–Ph), 3.61 (syn) and 3.43 (*anti*) (dd, J = 10.8, 4.4 and 10.8, 6.0 Hz, 1H, -CHHOH), 3.49 (syn) and 3.37 (*anti*) (dd, J = 10.8, 6.8 and 10.8, 5.2 Hz, 1H, -CHHOH), 2.16–1.94 (m, 1H, -CH–CH₃), 1.04 (*anti*) and 0.82 (syn) (d, J = 6.8 and 6.8 Hz, 3H, $-CH_3$).

¹³**C NMR** (125 MHz, CDCl₃) (*anti*) δ 138.1, 128.9, 128.3, 127.8, 79.1, 65.5, 47.3, 38.7, 15.2; (*syn*) δ 137.8, 128.8, 128.5, 127.7, 78.9, 65.8, 46.3, 38.5, 14.2.

 $[\alpha]_{D}^{27} = -9.6 \ (c \ 0.82, \ CH_{2}Cl_{2}).$

(2*R*,3*S*)-2-methyl-4-nitro-3-phenylbutan-1-ol (9b), (2*R*,3*R*)-2-methyl-4-nitro-3-phenylbutan-1-ol (9bb)

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 96/4, flow rate 1.2 mL/min, λ = 214 nm), $t_{\rm R}$ (major) = 27.12 min, $t_{\rm R}$ (minor) = 31.97 min.

¹**H NMR (400 MHz, CDCl₃)** δ 7.44–7.10 (m, 5H, $-C_6H_5$), 4.90 (syn) and 4.86 (*anti*) (dd, J = 12.4, 6.0 and 12.8, 5.6 Hz, 1H, $-CHHNO_2$), 4.78 (*anti*) and 4.76 (syn) (dd, J = 12.4, 10.0 and 12.8, 9.6 Hz, 1H, $-CHHNO_2$), 3.69–3.63 (syn) and 3.56–3.52 (*anti*) (m, 1H, -CH–Ph), 3.61 (syn) and 3.43 (*anti*) (dd, J = 11.2, 4.8 and 10.8, 6.0 Hz, 1H, -CHHOH), 3.49 (syn) and 3.37 (*anti*) (dd, J = 10.8, 6.8 and 10.8, 5.2 Hz, 1H, -CHHOH), 2.16–1.94 (m, 1H, -CH–CH₃), 1.04 (*anti*) and 0.82 (syn) (d, J = 7.2 and 7.2 Hz, 3H, $-CH_3$).

¹³**C NMR** (125 MHz, CDCl₃) (*anti*) δ 138.1, 129.0, 128.3, 127.8, 79.2, 65.5, 47.3, 38.7, 15.2; (*syn*) δ 137.8, 128.8, 128.5, 127.7, 78.9, 65.8, 46.4, 38.5, 14.2. $[\alpha]_{D}^{27} = -32.0 (c \ 0.68, CH_{2}Cl_{2}).$

IV. Supplemental Figures

Figure S1. X-ray structure of chiral compound 3T

Figure S2. Representative biologically active molecules bearing a pyrrolo[1,2-c]imidazol-3(2H)-one motif

Figure S4. ¹³C NMR spectrum of **3A**

Figure S6. ¹H NMR spectrum of **3B**

Figure S8. ¹⁹F NMR spectrum of **3B**

Figure S10. ¹³C NMR spectrum of **3C**

Figure S12. ¹H NMR spectrum of **3D**

Figure S14. ¹H NMR spectrum of 3E

Figure S16. ¹⁹F NMR spectrum of **3E**

Figure S18. ¹³C NMR spectrum of **3F**

Figure S20. ¹H NMR spectrum of **3G**

Figure S22. ¹⁹F NMR spectrum of **3G**

Figure S24. ¹³C NMR spectrum of **3H**

Figure S26. ¹H NMR spectrum of **3I**

Figure S28. ¹⁹F NMR spectrum of **3I**

Figure S30. ¹³C NMR spectrum of **3J**

Figure S32. ¹H NMR spectrum of **3K**

Figure S34. ¹⁹F NMR spectrum of **3K**

Figure S36. ¹³C NMR spectrum of **3L**

Figure S38. ¹H NMR spectrum of **3M**

Figure S40. ¹⁹F NMR spectrum of **3M**

Figure S42. ¹³C NMR spectrum of **3N**

Figure S44. ¹H NMR spectrum of **30**

Figure S46. ¹⁹F NMR spectrum of **30**

Figure S48. ¹³C NMR spectrum of **3P**

Figure S50. ¹H NMR spectrum of **3Q**

Figure S52. ¹H NMR spectrum of **3R**

Figure S54. ¹H NMR spectrum of **3S**

Figure S56. ¹⁹F NMR spectrum of **3S**

Figure S58. ¹³C NMR spectrum of **3T**

Figure S60. ¹H NMR spectrum of **3U**

Figure S62. ¹⁹F NMR spectrum of **3U**

Figure S66. ¹H NMR spectrum of **3W**

Figure S68. ¹⁹F NMR spectrum of **3W**

Figure S70. ¹³C NMR spectrum of **3X**

Figure S72. ¹H NMR spectrum of **3Y**

Figure S74. ¹⁹F NMR spectrum of **3Y**

Figure S76. ¹³C NMR spectrum of **3Z**

Figure S78. ¹H NMR spectrum of **3Za**

Figure S80. ¹⁹F NMR spectrum of **3Za**

Figure S82. ¹³C NMR spectrum of **3Zb**

Figure S84. ¹H NMR spectrum of **3Zc**

Figure S86. ¹⁹F NMR spectrum of **3Zc**

Figure S88. ¹³C NMR spectrum of **3Zd**

Figure S90. ¹H NMR spectrum of **3Ze**

Figure S92. ¹⁹F NMR spectrum of **3Ze**

Figure S94. ¹³C NMR spectrum of **3Zf**

Figure S96. ¹H NMR spectrum of **3Zg**

Figure S98. ¹⁹F NMR spectrum of **3Zg**

Figure S100. ¹³C NMR spectrum of **3Zh**

Figure S102. ¹H NMR spectrum of **3Zi**

Figure S104. ¹⁹F NMR spectrum of **3Zi**

Figure S108. ¹H NMR spectrum of **3Zk**

Figure S110. ¹⁹F NMR spectrum of **3Zk**

Figure S112. ¹³C NMR spectrum of **3ZI**

Figure S114. ¹H NMR spectrum of **5A**

Figure S116. ¹⁹F NMR spectrum of **5A**

Figure S118. ¹³C NMR spectrum of **5B**

Figure S120. ¹H NMR spectrum of **5C**

Figure S122. ¹⁹F NMR spectrum of **5C**

Figure S124. ¹³C NMR spectrum of **5D**

Figure S126. ¹³C NMR spectrum of **5E**

Figure S128. ¹H NMR spectrum of **6**

Figure S130. ¹H NMR spectrum of **7-syn**

Figure S132. ¹⁹F NMR spectrum of **7-syn**

Figure S134. ¹³C NMR spectrum of **7-anti**

Figure S138. ¹H NMR spectrum of **9b** & **9bb**

Figure S140. ¹H NMR spectrum of **10**

Figure S144. ¹³C NMR spectrum of **11**

Figure S172. HPLC spectrum of rac 3K

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.587	BB	0.4768	196.72939	6.22365	8.3985
2	26.941	BB	0.5307	2145.69507	62.17069	91.6015
Totals :			2342.42445	68.39434		

Figure S175. HPLC spectrum of 3L

Figure S177. HPLC spectrum of 3M

Signal :	1:	DAD1	Α,	Sig=254,4	Ref=360,100
----------	----	------	----	-----------	-------------

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	19.741 27.237	BB MF R	0.5000 0.7593	1537.44739 1570.57251	45.76218 34.47292	49.4671 50.5329
Totals :				3108.01990	80.23510	

Figure S180. HPLC spectrum of rac 30

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

1 20.364 MF R 0.4594 1635.63232

2 21.646 FM R 0.4825 1644.52307

[min]

Peak RetTime Type Width

[min]

Totals :

Figure S182. HPLC spectrum of rac 3P

Area

[mAU*s]

Height

[mAU]

3280.15540 116.15365

56.80907

Area

59.34458 49.8645

%

50.1355

Figure S187. HPLC spectrum of 3R

Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Height Peak RetTime Type Width Area Area # [min] [mAU*s] [mAU] % [min] 1 12.871 MM R 0.3693 249.86975 11.27717 4.9290 2 14.386 MM R 0.4741 4819.46777 169.42479 95.0710 5069.33752 180.70196 Totals : Figure S205. HPLC spectrum of 3Za mAU 25 -20 -15 -10 rac-3Zb 5 -0 -10 15 20 ó 5 25 min Signal 2: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] % [mAU] ----|-----|----|-----|------| ----| ----| 30.67630 50.3983 1 19.793 BB 0.6306 1242.68701 2 22.815 BB 0.7190 1223.04529 26.37282 49.6017 Totals : 2465.73230 57.04913

Figure S207. HPLC spectrum of 3Zb

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.707	BB	0.6952	1 466.37354	30.92336	50.0579
2	24.467	вв	0.7824	1 462.98083	27.60225	49.9421

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Totals :

2929.35437 58.52561

Figure S210. HPLC spectrum of rac 3Zd

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.706	BB	0.7068	3590.05713	76.31993	95.7342
2	24.451	BB	0.6059	159.96895	3.14229	4.2658

Totals : 3750.02608 79.46222

Figure S211. HPLC spectrum of **3Zd**

Figure S212. HPLC spectrum of rac 3Ze

Figure S222. HPLC spectrum of rac 3Zj

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % ----| 1 10.404 BB 0.3549 1150.64478 49.91942 50.2689 2 11.910 BB 0.4055 1138.33252 42.91208 49.7311 Totals : 2288.97729 92.83150

Figure S228. HPLC spectrum of rac 5A

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 10.184 BB 0.3870 99.26238 3.47816 3.8321 2 **11.702 BB** 0.4900 2491.01221 78.12312 96.1679

Totals : 2590.27459 81.60128 Figure S229. HPLC spectrum of **5A**

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 23.900 BB 0.6348 264.19931 6.28031 50.0801 2 25.635 BB 0.7215 263.35376 5.43275 49.9199 Totals : 527.55307 11.71306

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Figure S230. HPLC spectrum of rac 5B

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	23.420	вв	0.5752	107.56152	2.89666	3.2085
2	24.891	BB	0.7114	3244.80518	67.91323	96.7915

Totals :

3352.36669 70.80989

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % ----| 1 10.876 BB 0.6237 1797.20117 44.07240 49.7510 2 16.575 BB 1.5793 1815.19019 16.27353 50.2490 Totals : 3612.39136 60.34594

Figure S232. HPLC spectrum of rac 5C

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] # [min] [min] % ----| 1 10.858 BB 0.6264 265.60690 6.61492 4.5749 2 16.282 BB 1.5965 5540.12012 52.61150 95.4251 Totals : 5805.72702 59.22642

Figure S233. HPLC spectrum of 5C

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime Type [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
	9 752 BB	0 3767	634 27411	25 45434	
2	12.838 BB	0.5139	626.57532	18.65434	49.6947
Total	ls:		1260.84943	44.10868	

Figure S234. HPLC spectrum of rac 5D

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 9.774 BB	0.3778	344.374 1 8	13.86341	5.6698
2 12.717 BB	0.5080	5729.47949	171.40201	94.3302
Totals :		6073.85367	185.26542	

Figure S235. HPLC spectrum of 5D

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.343	BB	0.3467	6693.34180	294.97217	49.8633
2	11.958	вв	0.4508	6730.04443	229.07372	50 .1 367

Figure S236. HPLC spectrum of rac 5E

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.348	вв	0.3527	159.22681	6.91258	7.4091
2	11.683	вв	0.4425	1989.83850	68.57190	92.5909

Figure S237. HPLC spectrum of 5E

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 1 9.258 MF R 0.4592 3787.45117 137.47520 50.7088 2 12.598 BB 1.0270 3681.56348 54.03018 49.2912 Totals : 7469.01465 191.50538

Figure S240. HPLC spectrum of rac 7-syn

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	15.539 24.955	BB BB	0.6606 1.5539	3814.62500 3775.65723	83.56472 33.32157	50.2567 49.7433
Total	Ls :			7590.28223	116.88629	

Figure S244. HPLC spectrum of rac 10

	Signal 1	1:	DAD1	Α,	Sig=254,4	Ref=360,100
--	----------	----	------	----	-----------	-------------

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.812	BB	0.6843	206.53178	4.27023	6.0728
2	25.429	BB	1.6489	3194.38745	26.87149	93.9272
Total	Ls :			3400.91924	31.14172	

Figure S245. HPLC spectrum of 10

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime T [min]	Type Width [min]	n Area [mAU*s]	Height [mAU]	Area %
	-				
1	1 4.656 B	3B 0.542	6 3.59867e	4 1022.58588	49.5784
2	18.129 B	3B 0.797	6 3.65987e	4 702.79205	50.4216
Total	Ls :		7.25854e	4 1725.37793	

Figure S246. HPLC spectrum of rac 11

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.664	вв	0.5573	2353.77808	64.57205	7.0277
2	18.017	BB	0.8011	3 .11 390e4	583.01276	92.9723
Tota	Ls :			3.34928e4	647.58481	

Figure S247. HPLC spectrum of 11

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.438	вв	0.4519	2596.16919	87.57681	50 .1 735
2	17.405	вв	0.5447	2578.21265	72.19179	49.8265
Tota]	Ls :			5174.38184	159.76859	

Figure S248. HPLC spectrum of rac 12

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.338	BB	0.4988	1049.80200	32.50508	5.9872
2	17.198	BB	0.5963	1.64842e4	425.23407	94.0128
Tota.	ls :			1.75340e4	457.73915	

Figure S249. HPLC spectrum of 12

Signal 2	2:	DAD1	Β,	Sig=254,4	Ref=off
----------	----	------	----	-----------	---------

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 12.171 BB 2 15.802 BB	0.4196 0.8068	 4469.82227 4505.68945	163.16736 85.22007	 49.8002 50.1998
Totals :		8975.51172	248.38743	

8975.51172 248.38743

Signal 2: DAD1 B, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	26.860	MM R	0.7401	1327.02100	29.88384	14.7732
2	31.624	MM R	0.8611	1336.03625	25.85786	14.8736
3	36.212	MF	0.9559	3065.63306	53.45036	34.1286
4	37.631	FM	1.0610	3253.91504	51.11221	36.2246

Totals : 8982.60535 160.30427

Figure S253. HPLC spectrum of 9a & 9aa

Figure S254. HPLC spectrum of 9b & 9bb

Figure S255. H,H-COSY NMR spectrum of 7-syn

Figure S256. ROESY NMR spectrum of 7-syn

relatively strong NOErelatively weak NOE

7-anti

Figure S257. H,H-COSY NMR spectrum of 7-anti

Figure S258. NOESY NMR spectrum of 7-anti

V. X-ray Crystallographic Data

A colorless single crystal of **3T** was obtained by recrystallization from EtOAc:Hexane = 1:5. Crystallographic data for **3T** have been deposited in the Cambridge Crystallographic Data Centre (CCDC: 1542541).

Empirical formula	$C_{31}H_{33}F_6N_3O_{2.5}$
Formula weight	601.60
Temperature/K	150.0
Crystal system	monoclinic
Space group	C2
a/Å	28.5401(7)
b/Å	13.2816(3)
c/Å	21.1191(5)
α/°	90
β/°	132.150(2)
γ/°	90
Volume/Å ³	5935.1(3)

Z	8
ρ _{calc} g/cm ³	1.347
µ/mm ⁻¹	0.954
F(000)	2512.0
Crystal size/mm ³	0.4 × 0.2 × 0.17
Radiation	CuKα (λ = 1.54178)
20 range for data collection/	² 5.644 to 149.194
Index ranges	$-35 \le h \le 35, -16 \le k \le 16, -26 \le l \le 26$
Reflections collected	114376
Independent reflections	12000 [$R_{int} = 0.0418, R_{sigma} = 0.0195$]
Data/restraints/parameters	12000/83/804
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	$R_1 = 0.0397$, $wR_2 = 0.1014$
Final R indexes [all data]	$R_1 = 0.0429$, $wR_2 = 0.1046$
Largest diff. peak/hole / e $Å^{-3}$	0.53/-0.40
Flack parameter	0.02(3)

VI. Supplemental References

- 1. Lin, J.-S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X.-Y. *Angew. Chem., Int. Ed.* **2015**, *54*, 7847.
- 2. Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. *J. Am. Chem. Soc.* **2016**, *138*, 9357.
- 3. Rösner, C.; Hennecke, U. Org. Lett. 2015, 17, 3226.
- (a) Berman, A. M.; Johnson, J. S. J. Org. Chem. 2006, 71, 219. (b) He, J.; Shigenari, T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2015, 54, 6545.
- Hutchby, M.; Houlden, C. E.; Ford, J. G.; Tyler, S. N. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48, 8721.
- 6. Nozawa-Kumada, K.; Kadokawa, J.; Kameyama, T.; Kondo, Y. Org. Lett. 2015, 17, 4479.
- 7. Betancort, J. M.; Barbas III, C. F. Org. Lett. 2001, 3, 3737.