Supporting Information

A Cobalt-Catalyzed Enantioconvergent Radical Negishi C(sp³)–C(sp²) Cross-Coupling with Chiral Multidentate N,N,P-Ligand

Zhuang Li,^{†,‡,§} Xian-Yan Cheng,^{‡,§} Ning-Yuan Yang,[‡] Ji-Jun Chen,[‡] Wen-Yue Tang,[‡] Jun-Qian Bian,[‡] Yong-Feng Cheng,[‡] Zhong-Liang Li,^{||} Qiang-Shuai Gu,^{*,†,||} and Xin-Yuan Liu^{*,‡}

[†]Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China

[‡]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Table of contents

The synthesis of benzyl chloride substrates	
The synthesis of organozinc reagents	S3
Experimental Procedures	S3
Determination of absolute configuration	S3
Mechanistic Study	S4
Characteristic data of products 3a-3y	S5
NMR Spectra	S16
HPLC Spectra	
References	S70

The synthesis of benzyl chloride substrates

The benzyl chlorides were prepared from the corresponding substituted acetophenone according to the reported literature with slight modification.¹

The synthesis of organozinc reagents

The organozinc reagents 2 were prepared from the corresponding aryl bromide according to the reported literature with no modification.²

Experimental Procedures

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CoBr₂ (40 μ L, 0.5 M in THF, 0.020 mmol, 10 mol%) and L6 (20.0 mg, 0.024 mmol, 15 mol%). The mixture was stirred for 15 min. To this solution was added 1 (0.20 mmol, 1.0 equiv.), 2 (0.60 mmol, 3.0 equiv.) and anhydrous toluene (2 mL). Then the reaction mixture was stirred at 0 °C for 72 h. and quenched with sat. NH4Cl solution (4 mL). EtOAc was used to extract the product from the aqueous layer (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

Determination of absolute configuration

The absolute configuration of **31** was determined by comparing the HPLC spectrum and specific rotation with those reported in literature.³ { $[\alpha]_D^{24.9} = -1.8 (c = 0.10, CHCl_3, 77:23 \text{ e.r.})$. Lit. $[\alpha]_D^{24.8} = -24.1 (c = 0.60, CHCl_3, 90\% \text{ ee})$ } The product **31** was determined to be of an "*R*" absolute configuration according to the reported data.

Figure S1 HPLC spectrum comparison for 31

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CoBr₂ (40 μ L, 0.5 M in THF, 0.020 mmol, 10 mol%) and L6 (20.0 mg, 0.024 mmol, 15 mol%). The mixture was stirred for 15 min. To this solution was added 1b (28 mg, 0.20 mmol, 1.0 equiv.), 2a (2.15 mL, 0.28 M in THF, 0.60 mmol, 3.0 equiv.), TEMPO (62.5 mg, 0.40 mmol, 2.0 equiv.), and anhydrous toluene (2 mL). Then the reaction mixture was stirred at 0 °C for 72 h. and quenched with sat. NH4Cl solution (4 mL). EtOAc was used to extract the product from the aqueous layer (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product. Trace amount of product **3b** was observed and 4⁴ could be isolated (35%).

2,2,6,6-tetramethyl-1-(1-phenylethoxy)piperidine (4)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.21 (m, 5H), 4.81 (q, *J* = 6.7 Hz, 1H), 1.56 – 1.46 (m, 6H), 1.44 – 1.37 (m, 2H), 1.35 – 1.26 (m, 4H), 1.20 (s, 3H), 1.06 (s, 3H), 0.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.87, 128.01, 126.78, 126.62, 83.13, 59.68, 40.37, 34.47, 34.13, 23.58, 20.34, 17.24.

Characteristic data of products 3a-3y

(S)-3-(1-(4-methoxyphenyl)ethyl)benzonitrile (3a)

According to the general procedure, 3a (45 mg, 0.19 mmol, 95% yield, 74.5:25.5 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, λ = 214 nm), tR (major) = 31.39 min, tR (minor) = 34.73 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.14 – 7.06 (m, 2H), 6.89 – 6.81 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 1H), 3.79 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.25, 148.29, 136.86, 132.22, 131.13, 129.77, 129.14, 128.48, 119.10, 114.04, 112.37, 55.29, 43.61, 21.76.

HRMS (ESI) m/z calcd. for C₁₆H₁₆NO [M + H]⁺ 238.1226, found 238.1224.

(*R*)-1-methoxy-4-(1-phenylethyl)benzene (3b)

According to the general procedure, 3b (26 mg, 0.12 mmol, 61% yield, 71.5:28.5 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 95/5, flow rate 0.50 mL/min, λ = 214 nm), tR (minor) = 23.65 min, tR (major) = 25.18 min.

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.27 – 7.13 (m, 5H), 6.90 – 6.81

(m, 2H), 4.13 (q, J = 7.2 Hz, 1H), 3.81 (s, 3H), 1.64 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.84, 146.78, 138.57, 128.52, 128.34, 127.54, 125.94, 113.73, 55.25, 43.94, 22.06. HRMS (ESI) *m/z* calcd. for C₁₅H₁₇O [M + H]⁺ 213.1274, found 213.1271.

(S)-1-chloro-3-(1-(4-methoxyphenyl)ethyl)benzene (3c)

According to the general procedure, 3c (40 mg, 0.16 mmol, 82% yield, 71.5:28.5 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 95/5, flow rate 0.80 mL/min, λ = 214 nm), tR (minor) = 11.97 min, tR (major) = 12.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.07 (m, 6H), 6.90 – 6.82 (m, 2H), 4.10 (q, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.04, 148.90, 137.66, 134.15, 129.59, 128.48, 127.68, 126.13, 125.80, 113.87, 55.26, 43.73, 21.88.

HRMS (ESI) m/z calcd. for C₁₅H₁₆ClO [M + H]⁺ 247.0884, found 274.0876.

(S)-1-chloro-4-(1-(4-methoxyphenyl)ethyl)benzene (3d)

According to the general procedure, 3d (44 mg, 0.18 mmol, 89% yield, 76:24 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 98/2, flow rate 0.80 mL/min, λ = 214 nm), tR (major) = 14.31 min, tR (minor) = 15.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.19 – 7.10 (m, 4H), 6.90 – 6.83 (m, 2H), 4.11 (q, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.99, 145.30, 137.98, 131.64, 128.91, 128.45, 128.44, 113.84, 55.26, 43.36, 22.00.

HRMS (ESI) m/z calcd. for C₁₅H₁₆ClO [M + H]⁺ 247.0884, found 247.0884.

(S)-1-fluoro-3-(1-(4-methoxyphenyl)ethyl)benzene (3e)

According to the general procedure, 3e (31 mg, 0.14 mmol, 68% yield, 76:24 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OBH (hexane/*i*-PrOH = 95/5, flow rate 0.70 mL/min, λ = 214 nm), tR (major) = 11.92 min, tR (minor) = 13.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.17 (m, 1H), 7.16 – 7.08 (m, 2H), 7.01 – 6.95 (m, 1H), 6.93 – 6.80 (m, 4H), 4.09 (q, *J* = 7.2 Hz, 1H), 3.77 (s, 3H), 1.59 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.96 (d, *J* = 245.2 Hz), 158.04, 149.50 (d, *J* = 6.7 Hz), 137.81, 129.71 (d, *J* = 8.3 Hz), 128.49, 123.23 (d, *J* = 2.8 Hz), 114.41 (d, *J* = 21.3 Hz), 113.86, 112.79 (d, *J* = 21.1 Hz), 55.26, 43.73 (d, *J* = 1.7 Hz), 21.91.

¹⁹F NMR (376 MHz, CDCl₃) δ -109.52 – -123.46 (m).

HRMS (ESI) m/z calcd. for C₁₅H₁₆FO [M + H]⁺ 231.1180, found 231.1180.

(S)-1-fluoro-4-(1-(4-methoxyphenyl)ethyl)benzene (3f)

According to the general procedure, 3f(34 mg, 0.14 mmol, 74% yield, 73:27 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 98/2, flow rate 0.80 mL/min, λ = 214 nm), tR (major) = 16.46 min, tR (minor) = 24.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.11 (m, 4H), 7.05 – 6.95 (m, 2H), 6.92 – 6.84 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 1H), 3.82 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.24 (d, J = 243.7 Hz), 157.95, 142.49 (d, J = 3.3 Hz), 138.37, 128.90 (d, J = 7.7 Hz), 128.44, 115.05 (d, J = 21.1 Hz), 113.82, 55.25, 43.23, 22.24.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.59.

HRMS (ESI) m/z calcd. for C₁₅H₁₆FO [M + H]⁺ 231.1180, found 231.1178.

(*R*)-1-methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene (3g)

According to the general procedure, 3g (39 mg, 0.14 mmol, 70% yield, 80:20 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 90/10, flow rate 0.70 mL/min, λ = 214 nm), tR (minor) = 7.59 min, tR (major) = 9.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.15 – 7.08 (m, 2H), 6.88 – 6.81 (m, 2H), 4.16 (q, J = 7.2 Hz, 1H), 3.78 (s, 3H), 1.62 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.12, 150.88, 137.41, 128.50, 127.85, 125.67 (q, *J* = 272.0 Hz), 125.31 (q, *J* = 3.8 Hz), 122.97, 113.92, 55.26, 43.85, 21.82.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.32.

HRMS (ESI) m/z calcd. for C₁₆H₁₆F₃O [M + H]⁺ 281.1148, found 281.1147.

(S)-1-(3-(1-(4-methoxyphenyl)ethyl)phenyl)ethan-1-one (3h)

According to the general procedure, 3h (20 mg, 0.08 mmol, 40% yield, 75.5:24.5 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 90/10, flow rate 0.70 mL/min, λ = 214 nm), tR (minor) = 55.01 min, tR (major) = 67.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 1H), 7.76 (dt, J = 7.2, 1.7 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.17 – 7.09 (m, 2H), 6.87 – 6.79 (m, 2H), 4.17 (q, J = 7.2 Hz, 1H), 3.78 (s, 3H), 2.58 (s, 3H), 1.64 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.39, 158.01, 147.42, 137.82, 137.28, 132.46, 128.61, 128.48, 127.15, 126.29, 113.88, 55.26, 43.89, 26.72, 21.97.

HRMS (ESI) m/z calcd. for C₁₇H₁₉O₂ [M + H]⁺ 255.1380, found 255.1375.

Methyl (S)-3-(1-(4-methoxyphenyl)ethyl)benzoate (3i)

According to the general procedure, **3i** (37 mg, 0.14 mmol, 69% yield, 68:32 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 90/10, flow rate 0.70 mL/min, λ = 214 nm), tR (minor) = 29.86 min, tR (major) = 34.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 1H), 7.93 – 7.86 (m, 1H), 7.45 – 7.33 (m, 2H), 7.20 – 7.12 (m, 2H), 6.90 – 6.82 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 3.93 (s, 3H), 3.80 (s, 3H), 1.67 (d, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.27, 158.00, 147.17, 137.92, 132.30, 130.24, 128.57, 128.50, 128.45, 127.33, 113.87, 55.25, 52.08, 43.85, 21.96.
HRMS (ESI) *m/z* calcd. for C₁₇H₁₉O₃ [M + H]⁺ 271.1329, found 271.1323.

Methyl (R)-4-(1-(4-methoxyphenyl)ethyl)benzoate (3j)

According to the general procedure, 3j (44 mg, 0.16 mmol, 82% yield, 76:24 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 10.59 min, tR (major) = 12.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.93 (m, 2H), 7.33 – 7.28 (m, 2H), 7.17 – 7.10 (m, 2H), 6.90 – 6.82 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 1H), 3.91 (s, 3H), 3.80 (s, 3H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.09, 158.05, 152.17, 137.60, 129.75, 128.52, 127.93, 127.58, 113.87, 55.26, 52.00, 44.00, 21.79.

HRMS (ESI) m/z calcd. for C₁₇H₁₉O₃ [M + H]⁺ 271.1329, found 271.1322.

(S)-1-(1-(4-methoxyphenyl)ethyl)-3-methylbenzene (3k)

According to the general procedure, 3k (9 mg, 0.04 mmol, 20% yield, 61:39 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 98/2, flow rate 0.80 mL/min, λ = 214 nm), tR (minor) = 19.32 min, tR (major) = 21.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.21 – 7.10 (m, 3H), 7.04 – 6.95 (m, 3H), 6.86 – 6.78 (m, 2H), 4.06 (q, *J* = 7.2 Hz, 1H), 3.77 (s, 3H), 2.31 (s, 3H), 1.60 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.79, 146.72, 138.68, 137.86, 128.50, 128.35, 128.24, 126.72, 124.53, 113.71, 55.25, 43.89, 22.09, 21.52.

HRMS (ESI) m/z calcd. for C₁₆H₁₉O [M + H]⁺ 227.1436, found 227.1441

(R)-4-(1-(4-methoxyphenyl)ethyl)-1,1'-biphenyl (3l)

According to the general procedure, 3l (30 mg, 0.10 mmol, 52% yield, 77:23 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 95/5, flow rate 0.50 mL/min, λ = 214 nm), tR (major) = 10.69 min, tR (minor) = 11.75 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.58 – 7.52 (m, 2H), 7.50 – 7.42 (m, 2H), 7.40 – 7.30 (m, 3H), 7.26 – 7.19 (m, 2H), 6.92 – 6.85 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 3.82 (s, 3H), 1.69 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.93, 145.94, 141.06, 138.89, 138.46, 128.73, 128.55, 127.95, 127.12, 127.05, 127.04, 113.82, 55.27, 43.67, 22.09.

HRMS (ESI) m/z calcd. for C₂₁H₂₁O [M + H]⁺ 289.1587, found 289.1607.

(S)-2-(1-(4-methoxyphenyl)ethyl)naphthalene (3m)

According to the general procedure, $3m^5$ (26 mg, 0.10 mmol, 50% yield, 70.5:29.5 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 214 nm), tR (minor) = 18.43 min, tR (major) = 21.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 2H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.67 (brs, 1H), 7.49 – 7.36 (m, 2H), 7.29 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.20 – 7.12 (m, 2H), 6.86 – 6.78 (m, 2H), 4.26 (q, *J* = 7.2 Hz, 1H), 3.76 (s, 3H), 1.70 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.93, 144.21, 138.43, 133.57, 132.10, 128.69, 127.96, 127.75, 127.60, 126.84, 125.95, 125.35, 125.24, 113.80, 55.27, 44.05, 21.99.

(S)-4-(1-(4-methoxyphenyl)ethyl)pyridine (3n)

According to the general procedure, 3n (38 mg, 0.18 mmol, 90% yield, 72:28 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJ-3 (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, λ = 214 nm), tR (minor) = 19.91 min, tR (major) = 23.05 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 – 8.46 (m, 2H), 7.15 – 7.07 (m, 4H), 6.88 – 6.81 (m, 2H), 4.06 (q, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 1.61 (d, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.28, 155.60, 149.78, 136.50, 128.56, 122.94, 113.99, 55.26, 43.42, 21.24.

HRMS (ESI) m/z calcd. for C₁₄H₁₆NO [M + H]⁺ 214.1226, found 214.1222.

(R)-3-(1-(3-methoxyphenyl)ethyl)benzonitrile (30)

According to the general procedure, 30 (44 mg, 0.19 mmol, 93% yield, 69:31 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 14.27 min, tR (major) = 15.88 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.42 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.9 Hz, 1H), 6.83 – 6.70 (m, 3H), 4.14 (q, *J* = 7.2 Hz, 1H), 3.77 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.83, 147.72, 146.42, 132.28, 131.18, 129.90, 129.70, 129.20, 119.98, 119.08, 113.88, 112.41, 111.40, 55.21, 44.41, 21.49.

HRMS (ESI) m/z calcd. for C₁₆H₁₆NO [M + H]⁺ 238.1226, found 238.1223.

(S)-3-(1-(4-phenoxyphenyl)ethyl)benzonitrile (3p)

According to the general procedure, 3p (30 mg, 0.18 mmol, 90% yield, 72:28 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 95/5, flow rate 1.00 mL/min, λ = 214 nm), tR (major) = 30.14 min, tR (minor) = 33.74 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 – 7.46 (m, 3H), 7.45 – 7.33 (m, 3H), 7.20 – 7.10 (m, 3H), 7.08 – 7.02 (m, 2H), 7.02 – 6.95 (m, 2H), 4.20 (q, *J* = 7.2 Hz, 1H), 1.67 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.14, 155.94, 147.93, 139.53, 132.24, 131.20, 129.91, 129.78, 129.24, 128.78, 123.34, 119.07, 118.95, 118.92, 112.47, 43.78, 21.76. **HRMS** (ESI) *m/z* calcd. for C₂₁H₁₈NO [M + H]⁺ 300.1383, found 300.1377.

(S)-3-(1-(4-(dimethylamino)phenyl)ethyl)benzonitrile (3q)

According to the general procedure, 3q (45 mg, 0.18 mmol, 90% yield, 70:30 e.r.) was

obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel AS (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 9.88 min, tR (major) = 11.44 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 1H), 7.52 – 7.45 (m, 2H), 7.43 – 7.34 (m, 1H), 7.14 – 7.06 (m, 2H), 6.79 – 6.69 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 1H), 2.96 (s, 6H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.37, 148.84, 132.65, 132.26, 131.16, 129.60, 129.07, 128.15, 119.23, 112.82, 112.27, 43.51, 40.69, 21.77.

HRMS (ESI) m/z calcd. for C₁₇H₁₉N₂ [M + H]⁺ 251.1543, found 251.1537.

(S)-3-(1-(4-cyclohexylphenyl)ethyl)benzonitrile (3r)

According to the general procedure, 3r (40 mg, 0.14 mmol, 69% yield, 68:32 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 90/10, flow rate 0.70 mL/min, λ = 214 nm), tR (major) = 11.99 min, tR (minor) = 16.31 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 1H), 7.52 – 7.46 (m, 2H), 7.44 – 7.36 (m, 1H), 7.21 – 7.16 (m, 2H), 7.15 – 7.08 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 1H), 2.56 – 2.45 (m, 1H), 1.96 – 1.73 (m, 5H), 1.66 (d, *J* = 7.3 Hz, 3H), 1.52 – 1.22 (m, 5H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.16, 146.43, 142.01, 132.32, 131.25, 129.77, 129.13, 127.38, 127.08, 119.13, 112.36, 44.10, 34.46, 26.92, 26.17, 21.66.

HRMS (ESI) m/z calcd. for C₂₁H₂₄N [M + H]⁺ 290.1903, found 290.1898.

(S)-3-(1-(p-tolyl)ethyl)benzonitrile (3s)

According to the general procedure, 3s (19 mg, 0.09 mmol, 44% yield, 81:19 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ODH (hexane/*i*-PrOH = 95/5, flow rate 0.30 mL/min, λ = 214 nm), tR (minor) = 20.65 min, tR (major) = 21.72 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.44 (m, 3H), 7.43 – 7.35 (m, 1H), 7.18 – 7.07 (m, 4H), 4.17 (q, *J* = 7.2 Hz, 1H), 2.35 (s, 3H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.12, 141.78, 136.23, 132.26, 131.17, 129.78, 129.37, 129.14, 127.40, 119.10, 112.38, 44.04, 21.62, 20.99.

(S)-3-(1-phenylethyl)benzonitrile (3t)

According to the general procedure, 3t (28 mg, 0.14 mmol, 68% yield, 70:30 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 8.59 min, tR (major) = 9.59 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.45 (m, 3H), 7.44 – 7.30 (m, 3H), 7.28 – 7.19 (m, 3H), 4.20 (q, *J* = 7.2 Hz, 1H), 1.67 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.86, 144.75, 132.30, 131.21, 129.87, 129.17, 128.70, 127.54, 126.65, 119.06, 112.42, 44.43, 21.56.

HRMS (ESI) m/z calcd. for C₁₅H₁₄N [M + H]⁺ 208.1121, found 208.1119.

(S)-3-(1-(4-chlorophenyl)ethyl)benzonitrile (3u)

According to the general procedure, 3u (46 mg, 0.19 mmol, 95% yield, 75:25 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 95/5, flow rate 0.70 mL/min, λ = 214 nm), tR (major) = 21.26 min, tR (minor) = 22.98 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.47 – 7.37 (m, 2H), 7.34 – 7.26 (m, 2H), 7.17 – 7.10 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 1H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.29, 143.23, 132.45, 132.20, 131.09, 130.08, 129.31, 128.90, 128.83, 118.91, 112.58, 43.82, 21.52.

HRMS (ESI) m/z calcd. for C₁₅H₁₃ClN [M + H]⁺ 242.0731, found 242.0725.

(R)-3-(1-(3-fluorophenyl)ethyl)benzonitrile (3v)

According to the general procedure, 3v (42 mg, 0.18 mmol, 92% yield, 77:23 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 95/5, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 8.64 min, tR (major) = 10.06 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.49 – 7.38 (m, 2H), 7.35 – 7.25 (m, 1H), 7.02 – 6.86 (m, 3H), 4.20 (q, *J* = 7.2 Hz, 1H), 1.66 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.02 (d, J = 245.9 Hz), 147.31 (d, J = 6.6 Hz), 147.12, 132.20, 131.15, 130.20 (d, J = 8.4 Hz), 130.13, 129.32, 123.25 (d, J = 2.8 Hz), 118.92, 114.49 (d, J = 21.5 Hz), 113.58 (d, J = 21.0 Hz), 112.59, 44.14, 21.42.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.68.

HRMS (ESI) m/z calcd. for C₁₅H₁₃FN [M + H]⁺ 226.1027, found 226.1024.

(S)-3-(1-(4-fluorophenyl)ethyl)benzonitrile (3w)

According to the general procedure, 3w (41 mg, 0.18 mmol, 92% yield, 78:22 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (minor) = 12.93 min, tR (major) = 14.19 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.48 – 7.36 (m, 2H), 7.20 – 7.12 (m, 2H), 7.07 – 6.97 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.55 (d, *J* = 245.3 Hz), 147.65, 140.45 (d, *J* = 3.1 Hz), 132.19, 131.10, 129.99, 129.27, 128.98 (d, *J* = 7.9 Hz), 118.96, 115.49 (d, *J* = 21.3 Hz), 112.53, 43.69, 21.73.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.33.

HRMS (ESI) m/z calcd. for C₁₅H₁₃FN [M + H]⁺ 226.1027, found 226.1021.

(S)-3-(1-(4-(trifluoromethyl)phenyl)ethyl)benzonitrile (3x)

According to the general procedure, 3x (46 mg, 0.19 mmol, 98% yield, 72:28 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel OJH (hexane/*i*-PrOH = 95/5, flow rate 0.70 mL/min, λ = 214 nm), tR (major) = 16.83 min, tR (minor) = 19.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.57 – 7.51 (m, 3H), 7.50 – 7.39 (m, 2H), 7.32 (d, J = 8.2 Hz, 2H), 4.27 (q, J = 7.2 Hz, 1H), 1.69 (d, J = 7.2 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.79, 146.74, 132.25, 131.13, 130.26, 129.42, 129.02 (q, *J* = 32.5 Hz), 127.92, 125.66 (q, *J* = 3.6 Hz), 124.12 (q, *J* = 271.8 Hz), 118.83, 112.70, 44.27, 21.37.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.49. HRMS (ESI) m/z calcd. for C₁₆H₁₃F₃N [M + H]⁺ 276.0995, found 276.0988.

(*R*)-3-(1-(benzo[*d*][1,3]dioxol-5-yl)ethyl)benzonitrile (3y)

According to the general procedure, 3y (37 mg, 0.15 mmol, 74% yield, 77:23 e.r.) was obtained from the reaction of the corresponding benzyl chloride (0.20 mmol) and arylzinc reagent.

HPLC analysis: Chiralcel ASH (hexane/*i*-PrOH = 98/2, flow rate 1.00 mL/min, λ = 214 nm), tR (major) = 28.15 min, tR (minor) = 31.06 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 3H), 7.43 – 7.37 (m, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.73 – 6.60 (m, 2H), 5.95 (s, 2H), 4.12 (q, J = 7.2 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.95, 146.22, 138.74, 132.14, 131.10, 129.87, 129.19, 120.46, 119.05, 112.43, 108.29, 108.03, 101.04, 44.08, 21.72.

HRMS (ESI) m/z calcd. for C₁₆H₁₄NO₂ [M + H]⁺ 252.1019, found 252.1015.

NMR Spectra

S18

S19

Figure S10 ¹H NMR (400 MHz, CDCl₃, 25 °C) of **3e**

Figure S13 ¹H NMR (400 MHz, CDCl₃, 25 °C) of **3f**

-60

-70

-50

10

6

-10

-20

-30

-40

 7.22
 7.22

 7.21
 7.21

 7.21
 7.21

 7.21
 7.21

 7.22
 7.19

 7.7.19
 7.19

 7.7.19
 7.17

 7.17
 7.18

 7.17
 7.19

 7.17
 7.13

 7.17
 7.13

 7.17
 7.14

 7.17
 7.15

 7.17
 7.15

 7.17
 7.15

 7.17
 7.15

 7.17
 7.15

 7.17
 7.16

 7.17
 7.17

 7.17
 7.16

 7.17
 7.17

 7.17
 7.16

 7.17
 7.17

 7.17
 7.17

 7.17
 7.17

 7.16
 7.16

 7.16
 7.16

 7.16
 7.16

 7.16
 7.16

 7.16
 7.16

 7.17
 7.17

 7.16
 7.16

 7.17
 7.17

 7.16
 7.16

 7.17
 7.17

 7.17
 7.17

 7.17
 7.17

 7.17
 7.14

 7.18
 7.14

 7.19
 7.14

-90 -100 f1 (ppm)

80

-110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

Figure S21 ¹H NMR (400 MHz, CDCl₃, 25 °C) of **3i**

S26

S27

Figure S27 ¹H NMR (400 MHz, CDCl₃, 25 °C) of **3**I

Figure S29 ¹H NMR (400 MHz, CDCl₃, 25 °C) of 3m

S29

10 0

-20 -30 -40 -50 -60 -70 -80

-10

-90 -100 f1 (ppm)

-110 -120 -130 -140 -150 -160 -170 -180 -190

-200 -210

Figure S52 ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of **3w**

Figure S55 ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of **3x**

HPLC Spectra

Chiralcel OJ-3: hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min

Figure S61 HPLC spectrum comparison for 3b

Chiralcel OJH: hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min

S47

Figure S63 HPLC spectrum comparison for 3d

Chiralcel OJ-3: hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min

50

0

Chiralcel OBH : hexane/*i*-PrOH = 95/5, flow rate 0.7 mL/min

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.462	BB	0.3787	2453.96460	100.55206	72.9211	
2	24.876	BB	0.5710	911.26587	25.01552	27.0789	

Chiralcel OJ-3: hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	7.705	1748899	50.075			
2	9.571	1743663	49.925			

Chiralcel OJH: hexane/i-PrOH = 90/10, flow rate 0.7 mL/min

Figure S67 HPLC spectrum comparison for 3h

Chiralcel OJH: hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	29.744	5912668	50.053		
2	34.146	5900071	49.947		

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	29.858	3322957	32.217		
2	34.218	6991393	67.783		

Chiralcel OJH: hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min

Figure S69 HPLC spectrum comparison for **3**j

Chiralcel ASH: hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min

Figure S70 HPLC spectrum comparison for $\mathbf{3k}$

PDA Ch3 214nm						
Peak#	Ret. Time	Area	Area%			
1	19.124	14034822	50.026			
2	21.097	14019986	49.974			

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	19.324	6810080	39.374			
2	21.373	10485857	60.626			

Chiralcel OJ-3: hexane/i-PrOH = 98/2, flow rate 0.8mL/min

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	10.757	993807	49.754		
2	11.818	1003646	50.246		

Chiralcel ODH: hexane/i-PrOH = 95/5, flow rate 0.5 mL/min

Chiralcel OJ-3: hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min

Figure S73 HPLC spectrum comparison for 3n

515.86389 71.7349

0.6168 2.14360e4

2 23.053 BB

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	14.229	12862870	49.920			
2	15.844	12904181	50.080			

Chiralcel ASH: hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min

Figure S75 HPLC spectrum comparison for **3p**

Chiralcel OJH: hexane/i-PrOH = 95/5, flow rate 1.0 mL/min

Figure S76 HPLC spectrum comparison for 3q

NMe₂

3q

300

200

100

0

Chiralcel AS: hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	12.006	3249735	50.033			
2	16.272	3245436	49.967			

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	11.989	20351200	67.817		
2	16.305	9657989	32.183		

Chiralcel OJH: hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min

Figure S78 HPLC spectrum comparison for 3s

Figure S80 HPLC spectrum comparison for **3u**

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	21.177	14055511	49.952			
2	22.813	14082500	50.048			

Реак#	Ret. lime	Area	Area%	
1	21.256	2646236	75.139	
2	22.978	875557	24.861	

Chiralcel OJH: hexane/*i*-PrOH = 95/5, flow rate 0.7 mL/min

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	9.043	6415106	49.913			
2	10.701	6437466	50.087			

Chiralcel ASH: hexane/i-PrOH = 95/5, flow rate 1.0 mL/min

геакн	Ret. IIme	Area	ALEa%
1	12.931	2122723	22.204
2	14.189	7437389	77.796

Chiralcel ASH: hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min

Peak#	Ret.	Time	Area	Area%	
1	28.	151	10109757	77.005	
2	31.	055	3018910	22.995	

30.782

10898414

Chiralcel ASH: hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min

References:

(1) Sun, L.; Peng, G.; Niu, H.; Qiang, W.; Li, C. Cheminform abstract: a highly chemoselective and rapid chlorination of benzyl alcohols under neutral conditions. *ChemInform* **2009**, *40*, 3919.

(2) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Jie, W.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-Catalyzed Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters. *J. Am. Chem. Soc.* 2016, *138*, 2174.
(3) Chen, Y.-G.; Shuai, B.; Xu, X.-T.; Li, Y.-Q.; Yang, Q.-L.; Qiu, H.; Zhang, K.; Fang, P.; Mei, T.-S. Nickel-catalyzed Enantioselective Hydroarylation and Hydroalkenylation of Styrenes. *J. Am. Chem. Soc.* 2019, *141*, 3395.

(4) Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. Cu-Facilitated C–O Bond Formation Using *N*-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C–H Bonds. *J. Am. Chem. Soc.* **2008**, *130*, 7824.

(5) Noji, N.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. Secondary Benzylation Using Benzyl Alcohols Catalyzed by Lanthanoid, Scandium, and Hafnium Triflate. *J. Org. Chem.* **2003**, *68*, 9340.