## **Supporting Information**

### Cu/Chiral Phosphoric Acid-Catalyzed Radical-Initiated Asymmetric Aminosilylation of Alkene with Hydrosilane

Yang Zeng<sup>1+</sup>, Xiao-Dong Liu<sup>1+</sup>, Xian-Qi Guo<sup>1</sup>, Qiang-Shuai Gu<sup>2\*</sup>, Zhong-Liang Li<sup>2\*</sup>, Xiao-Yong Chang<sup>3</sup> & Xin-Yuan Liu<sup>1\*</sup>

<sup>1</sup>Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China <sup>2</sup>Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science

and Technology, Shenzhen, 518055, China.

<sup>3</sup>Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

liuxy3@sustc.edu.cn

#### **Table of Contents**

| Figure S1                                                                         | S2  |  |  |
|-----------------------------------------------------------------------------------|-----|--|--|
| Table S1                                                                          | S3  |  |  |
| Table S2                                                                          | S4  |  |  |
| General Information                                                               | S5  |  |  |
| Procedures for synthesis of substrates                                            | S6  |  |  |
| General procedure for 1,2-aminosilylation of alkenes for construction of          |     |  |  |
| pyrrolidine                                                                       |     |  |  |
| General procedure for 1,2-aminosilylation of alkenes for construction of          | S24 |  |  |
| indoline                                                                          |     |  |  |
| General procedure for 1,2-aminosilylation of alkene <b>1v</b> for construction of | S29 |  |  |
| isoindoline                                                                       |     |  |  |
| Synthetic application                                                             | S31 |  |  |
| Mechanistic study                                                                 | S32 |  |  |
| References                                                                        | S38 |  |  |
| NMR Spectra                                                                       | S39 |  |  |
| HPLC Spectra                                                                      | S74 |  |  |





Figure S1. X-ray of chiral compound 3U

| Ph    | $CF_3$<br>$CF_3$ +    | HSiR <sub>3</sub> trime | CuTc (5 mol%)<br>Rac-PA (15 mol%)<br>oxidant (2.0 equiv)<br>thoxymethane (2.0 equiv<br>DME, 48 h | $\stackrel{O}{\rightarrow} \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{CF_3}{\longrightarrow} CF_3$ |
|-------|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry | Hydrosilane           | Oxidant                 | T (°C)                                                                                           | Result                                                                                                                                                      |
| 1     | Et <sub>3</sub> SiH   | LPO                     | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 2     | Ph <sub>3</sub> SiH   | LPO                     | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 3     | Ph <sub>2</sub> MeSiH | LPO                     | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 4     | Et <sub>3</sub> SiH   | DTBP                    | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 5     | Et <sub>3</sub> SiH   | DCP                     | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 6     | Et <sub>3</sub> SiH   | TBHP                    | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 7     | Et <sub>3</sub> SiH   | DTBP                    | 80                                                                                               | Almost no conv. of 1a                                                                                                                                       |
| 8     | Et <sub>3</sub> SiH   | DCP                     | 80                                                                                               | Almost no conv. of 1a                                                                                                                                       |
| 9     | Et <sub>3</sub> SiH   | TBHP                    | 80                                                                                               | Almost no conv. of 1a                                                                                                                                       |
| 10    | Ph <sub>3</sub> SiH   | DTBP                    | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 11    | Ph <sub>3</sub> SiH   | DCP                     | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 12    | Ph <sub>3</sub> SiH   | TBHP                    | RT                                                                                               | No conv. of <b>1a</b>                                                                                                                                       |
| 13    | Ph <sub>3</sub> SiH   | DTBP                    | 80                                                                                               | Almost no conv. of 1a                                                                                                                                       |
| 14    | Ph <sub>3</sub> SiH   | DCP                     | 80                                                                                               | Almost no conv. of 1a                                                                                                                                       |
| 15    | Ph <sub>3</sub> SiH   | TBHP                    | 80                                                                                               | Almost no conv. of <b>1a</b>                                                                                                                                |

### Table S1. Screening of Reaction Conditions for Other Hydrosilanes<sup>a)</sup>

a) Reaction conditions: **1a** (0.025 mmol), **2** (2 equiv), CuTc (5 mol %), Rac-PA (15 mol %), oxidant (2.0 equiv), trimethoxymethane (2.0 equiv), DME (0.5 mL), 48 h under argon.

Table S2. Screening of Reaction Conditions for the Construction of Indoline<sup>a)</sup>

| Ph       | NH CF <sub>3</sub><br>CF <sub>3</sub><br>CF <sub>3</sub> | , + (TMS)₃Si-H<br>2                                                                     | CuTc (5 mol%)<br>CPA (15 mol%)<br>LPO (2.0 equiv)<br>DME, 0 °C, 96 h<br>additive (1.0 equiv)           | $ \begin{array}{c}                                     $                                                                                                                                                                       |
|----------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                          | (R) <b>-A1</b> : Ar = 4-Ph<br>(R) <b>-A2</b> : Ar = 2-Na<br>(R) <b>-A3</b> : Ar = 4-Cl( | $C_6H_4$<br>$P_6H_4$<br>$C_6H_4$<br>O<br>O<br>P<br>O<br>O<br>P<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | ( <i>R</i> )- <b>A4</b> : Ar = 2-Naphthyl<br>( <i>R</i> )- <b>A5</b> : Ar = 4-PhC <sub>6</sub> H <sub>4</sub><br>( <i>R</i> )- <b>A6</b> : Ar = 4-ClC <sub>6</sub> H <sub>4</sub><br>( <i>R</i> )- <b>A7</b> : Ar = 1-Naphthyl |
|          | Entry                                                    | СРА                                                                                     | Additive                                                                                               | ee (%) <sup>b)</sup>                                                                                                                                                                                                           |
|          | 1                                                        | ( <i>R</i> )-A1                                                                         | -                                                                                                      | 70                                                                                                                                                                                                                             |
|          | 2                                                        | ( <i>R</i> )-A2                                                                         | -                                                                                                      | 36                                                                                                                                                                                                                             |
|          | 3                                                        | (R)-A3                                                                                  | -                                                                                                      | 64                                                                                                                                                                                                                             |
|          | 4                                                        | (R)-A4                                                                                  | -                                                                                                      | 42                                                                                                                                                                                                                             |
|          | 5                                                        | ( <i>R</i> )-A5                                                                         | -                                                                                                      | 62                                                                                                                                                                                                                             |
|          | 6                                                        | (R)-A6                                                                                  | -                                                                                                      | 63                                                                                                                                                                                                                             |
|          | 7                                                        | (R)- <b>A7</b>                                                                          | -                                                                                                      | 3                                                                                                                                                                                                                              |
|          | 8                                                        | ( <i>R</i> )-A1                                                                         | -                                                                                                      | 73                                                                                                                                                                                                                             |
|          | 9 <sup>c)</sup>                                          | ( <i>R</i> )-A1                                                                         | 5Å MS                                                                                                  | 74                                                                                                                                                                                                                             |
|          | 10                                                       | ( <i>R</i> )-A1                                                                         | methylparaben                                                                                          | 87                                                                                                                                                                                                                             |
|          | 11                                                       | ( <i>R</i> )-A1                                                                         | pivalic anhydride                                                                                      | 82                                                                                                                                                                                                                             |
| <u>.</u> | 12                                                       | ( <i>R</i> )-A1                                                                         | 4-(tert-butyl)phenol                                                                                   | 80                                                                                                                                                                                                                             |

a) Reaction conditions: **1p** (0.025 mmol), **2** (2 equiv), CuTc (5 mol %), CPA (15 mol %), LPO (2.0 equiv), DME (0.5 mL), Additive (1.0 equiv), 0 °C, 96 h under argon. b) ee value based on HPLC analysis. c) 5Å MS (25 mg). DME, 1,2-dimethoxyethane; LPO, dilauroyl peroxide; CuTc, copper (I) thiophene-2-carboxylate; 5Å MS, 5Å molecular sieves.

#### **General Information**

All reactions were carried out under argon using Schlenk techniques. Reagents were purchased at the commercial quality and used without further purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm), KMnO4 or iodine stain. NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for <sup>1</sup>H NMR, 100 MHz for <sup>13</sup>C NMR and 376 MHz for <sup>19</sup>F NMR in CDCl3 with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). Mass spectrometric data are obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector ( $\lambda = 320, 254, 230$  or 214 nm). Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-K $\alpha$  radiation.

#### Procedures for synthesis of substrates Procedures for synthesis of substrates 1a-1o.

The preparation and characterization data of substrates **1a-1f**, **1j-1l** are the same as that reported in literature[1-3].

1-phenyl-3-((1-(2-phenylallyl)cycloheptyl)methyl)urea (1g)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (t, *J* = 7.9 Hz, 2H), 7.26-7.19 (m, 7H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.23 (s, 1H), 5.17 (d, *J* = 1.8 Hz, 1H), 5.00 (d, *J* = 1.4 Hz, 1H), 4.54 (t, *J* = 6.1 Hz, 1H), 2.92 (d, *J* = 6.3 Hz, 2H), 2.42 (s, 2H), 1.52-1.22 (m, 12H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  156.1, 146.8, 143.7, 138.6, 129.4, 128.6, 127.4, 126.4,

124.2, 121.8, 117.8, 47.3, 43.7, 41.6, 36.3, 31.2, 22.7.

HRMS (ESI) m/z calcd. for  $C_{24}H_{31}N_2O [M + H]^+ 363.2431$ , found 363.2430

1-((1-(2-phenylallyl)cycloheptyl)methyl)-3-(m-tolyl)urea (1h)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.14 (m, 6H), 7.10 (s, 1H), 7.02 (d, *J* = 6.1 Hz, 1H), 6.93 (d, *J* = 6.1 Hz, 1H), 6.44 (s, 1H), 5.16 (s, 1H), 5.00 (s, 1H), 4.74 (s, 1H), 2.93 (d, *J* = 4.5 Hz, 2H), 2.42 (s, 2H), 2.33 (s, 3H), 1.51-1.20 (m, 12H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  156.3, 146.9, 143.6, 139.3, 138.5, 129.2, 128.5, 127.4, 126.4, 124.9, 122.4, 118.8, 117.7, 47.3, 43.7, 41.6, 36.3, 31.2, 22.7, 21.5. **HRMS** (ESI) m/z calcd. for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O [M + H]<sup>+</sup> 377.2587, found 377.2586.

1-(3-chlorophenyl)-3-((1-(2-phenylallyl)cycloheptyl)methyl)urea (1i)



<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.21 (m, 6H), 7.20-7.09 (m, 2H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.76 (s, 1H), 5.20 (s, 1H), 5.03 (s, 1H), 4.81 (s, 1H), 2.93 (d, *J* = 6.0 Hz, 2H), 2.43 (s, 2H), 1.49-1.19 (m, 12H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 155.8, 146.6, 143.7, 140.2, 134.8, 130.1, 128.6, 127.5, 126.5, 123.3, 120.3, 118.2, 117.9, 47.5, 43.6, 41.4, 36.3, 31.1, 22.7.

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{30}CIN_2O[M + H]^+$  397.2041, found 397.2039.

1-(3,4-dichlorophenyl)-3-((1-(2-phenylallyl)cycloheptyl)methyl)urea (1m)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.44 (s, 1H), 7.39-7.28 (m, 6H), 7.07 (d, *J* = 8.2 Hz, 1H), 5.76 (s, 1H), 5.25 (s, 1H), 5.07 (s, 1H), 4.09 (s, 1H), 2.88 (s, 2H), 2.46 (s, 2H), 1.51-1.17 (m, 12H).

<sup>13</sup>C NMR (100 MHz, DMSO) δ 155.0, 146.3, 143.1, 140.8, 131.0, 130.5, 128.3, 127.2, 126.2, 122.1, 118.5, 117.5, 117.4, 46.6, 42.6, 40.9, 35.7, 30.6, 22.4. HRMS (ESI) m/z calcd. for C<sub>24</sub>H<sub>29</sub>Cl<sub>2</sub>N<sub>2</sub>O [M + H]<sup>+</sup> 431.1651, found 431.1650.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-(2-(m-tolyl)allyl)cycloheptyl)methyl)urea (1n)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (s, 2H), 7.45 (s, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.21-7.16 (m, 2H), 7.09 (d, J = 7.3 Hz, 1H), 6.38 (s, 1H), 5.25 (d, J = 1.7 Hz, 1H),

5.06 (d, *J* = 1.4 Hz, 1H), 4.42 (t, *J* = 6.1 Hz, 1H), 2.92 (d, *J* = 6.2 Hz, 2H), 2.46 (s, 2H), 2.34 (s, 3H), 1.50-1.35 (m, 10H), 1.34-1.24 (m, 2H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.7, 146.5, 143.8, 140.5, 138.6, 132.3 (q, *J* = 33.3 Hz), 128.5, 128.5, 127.5, 123.5, 123.2 (q, *J* = 272.7 Hz), 118.5 (d, *J* = 3.2 Hz), 118.1, 116.0-115.7, 47.5, 43.8, 41.4, 36.3, 31.1, 22.6, 21.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.01 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{27}H_{31}F_6N_2O [M + H]^+ 513.2335$ , found 513.2334.

#### 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-phenylpent-4-en-1-yl)urea (10)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (s, 2H), 7.45 (s, 1H), 7.38 – 7.32 (m, 2H), 7.33-7.28 (m, 2H), 7.28-7.25 (m, 1H), 7.08 (s, 1H), 5.28 (s, 1H), 5.07 (d, *J* = 5.7 Hz, 1H), 5.05 (d, *J* = 1.0 Hz, 1H), 3.26 (dd, *J* = 13.1, 6.8 Hz, 2H), 2.55 (t, *J* = 7.3 Hz, 2H), 1.75-1.63 (m, 2H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.9, 147.3, 140.7, 140.4, 132.3 (q, *J* = 33.2 Hz), 128.5, 127.7, 126.1, 123.2 (q, *J* = 272.8 Hz), 118.7 (q, *J* = 3.3 Hz), 113.2, 40.1, 32.6, 28.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{20}H_{19}F_6N_2O [M + H]^+ 417.1396$ , found 417.1393.

#### Procedures for synthesis of substrates 1p-1u.

**S-1p-1u** were synthesized according to the procedures [3].

1p-1u were synthesized according to the procedures [2].



1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(2-phenylallyl)phenyl)urea (1p)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.73 (s, 2H), 7.47 (d, *J* = 10.0 Hz, 2H), 7.39 (d, *J* = 6.5 Hz, 2H), 7.34-7.19 (m, 6H), 6.89 (s, 1H), 6.54 (s, 1H), 5.43 (s, 1H), 4.84 (s, 1H), 3.80 (s, 2H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 153.2, 146.1, 140.4, 139.8, 134.9, 134.2, 132.2 (q, *J* = 33.3 Hz), 131.7, 128.6, 128.2, 128.1, 127.2, 126.2, 126.0, 123.2 (q, *J* = 272.6 Hz), 119.0 (d, *J* = 3.0 Hz), 116.7-116.4 (m), 114.5, 37.6.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{19}F_6N_2O [M + H]^+ 465.1396$ , found 465.1393.

#### 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-fluoro-2-(2-phenylallyl)phenyl)urea (1q)



<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.60 (s, 1H), 8.24 (s, 1H), 8.12 (s, 2H), 7.64-7.55 (m, 2H), 7.50 (d, J = 7.3 Hz, 2H), 7.38-7.23 (m, 3H), 7.04 (td, J = 8.5, 3.0 Hz, 1H), 6.96 (dd, J = 9.8, 2.9 Hz, 1H), 5.59 (s, 1H), 4.97 (s, 1H), 3.84 (s, 2H). <sup>13</sup>**C NMR** (100 MHz, DMSO) δ 159.1 (d, J = 241.1 Hz), 153.1, 144.5, 142.0, 139.5, 135.2 (d, J = 7.6 Hz), 132.6 (d, J = 2.6 Hz), 130.7 (q, J = 32.5 Hz), 128.4, 127.8, 126.7 (d, J = 8.3 Hz), 125.8, 123.3 (q, J = 272.7 Hz), 117.8 (d, J = 3.2 Hz), 115.8 (d, J = 22.7 Hz), 114.7, 114.4-114.0 (m), 113.2 (d, J = 22.1 Hz), 36.0. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -61.7 (s, 6F), -118.1 (s, 1F). **HRMS** (ESI) m/z calcd. for C<sub>24</sub>H<sub>18</sub>F<sub>7</sub>N<sub>2</sub>O [M + H]<sup>+</sup> 483.1302, found 483.1298.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-chloro-2-(2-phenylallyl)phenyl)urea (1r)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.81 (s, 2H), 7.53 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.43 (dt, *J* = 8.5, 2.3 Hz, 2H), 7.38-7.28 (m, 5H), 6.44 (s, 1H), 6.21 (s, 1H), 5.50 (s, 1H), 4.93 (s, 1H), 3.81 (s, 2H).

<sup>13</sup>**C NMR** (100 MHz, DMSO) δ 152.8, 144.4, 141.8, 139.5, 135.5, 133.7, 130.8 (q, *J* = 32.3 Hz), 129.2, 128.4, 128.1, 127.9, 126.6, 125.8, 125.4, 123.3 (q, *J* = 272.7 Hz), 117.9 (d, *J* = 3.1 Hz), 114.7, 114.6-114.3 (m), 35.7.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{18}CIF_6N_2O [M + H]^+ 499.1006$ , found 499.1002.

#### 1-(3,5-bis(trifluoromethyl)phenyl)-3-(5-methyl-2-(2-phenylallyl)phenyl)urea (1s)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (s, 2H), 7.51 (s, 1H), 7.44-7.38 (m, 2H), 7.32-7.26 (m, 4H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.08 (dd, *J* = 7.8, 0.7 Hz, 1H), 6.53 (s, 1H), 6.24 (s, 1H), 5.43 (d, *J* = 0.7 Hz, 1H), 4.90 (d, *J* = 1.0 Hz, 1H), 3.81 (s, 2H), 2.36 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, DMSO) δ 152.9, 145.2, 142.0, 139.9, 136.1, 135.8, 130.8 (q, *J* = 32.7 Hz), 129.6, 128.3, 128.2, 127.7, 125.8, 125.0, 124.7, 124.4, 123.4 (q, *J* = 272.7 Hz), 117.7 (q, *J* = 3.3 Hz), 114.1, 35.7, 20.8.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{25}H_{21}F_6N_2O [M + H]^+ 479.1553$ , found 479.1552.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(5-bromo-2-(2-phenylallyl)phenyl)urea (1t)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.86-7.78 (m, 3H), 7.53 (s, 1H), 7.43 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.38-7.29 (m, 4H), 7.17 (d, *J* = 8.2 Hz, 1H), 6.57 (s, 1H), 6.35 (s, 1H), 5.49 (s, 1H), 4.91 (s, 1H), 3.78 (s, 2H).

<sup>13</sup>**C NMR** (100 MHz, DMSO) δ 152.6, 144.4, 141.7, 139.5, 138.1, 131.6, 131.0, 130.6, 129.8, 128.4, 127.8, 126.5, 125.8, 125.2, 123.3 (q, *J* = 272.7 Hz), 119.1, 118.0 (d, *J* = 2.4 Hz), 114.5, 35.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{18}BrF_6N_2O[M + H]^+$  543.0501, found 543.0501.

#### 1-(3,5-bis(trifluoromethyl)phenyl)-3-(5-chloro-2-(2-phenylallyl)phenyl)urea (1u)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.80 (s, 2H), 7.72 (s, 1H), 7.51 (s, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.37-7.30 (m, 3H), 7.20 (d, *J* = 8.2 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 6.93 (s, 1H), 6.51 (s, 1H), 5.49 (s, 1H), 4.87 (s, 1H), 3.77 (s, 2H).

<sup>13</sup>**C NMR** (100 MHz, DMSO) δ 152.6, 144.5, 141.7, 139.5, 137.9, 131.3, 131.0, 130.8, 130.6, 129.2, 128.4, 127.8, 125.8, 123.6, 123.3 (q, *J* = 272.7 Hz), 122.3, 118.0 (d, *J* = 2.4 Hz), 114.5, 35.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{18}ClF_6N_2O [M + H]^+ 499.1006$ , found 499.1008.

Procedure for synthesis of substrate 1v.



In a flame-dried flask, benzene (3.51 g, 45 mmol) was added to the solution of isobenzofuran-1,3-dione (4.44 g, 30 mmol) and AlCl<sub>3</sub> (8.00 g, 60 mmol) in anhydrous DCM (60 mL) at 0 °C. The mixture was allowed to stir at room temperature for 12 h, then quenched by addition of ice water at 0 °C, and extracted with DCM ( $3 \times 100$  mL). The combined organic extracts were washed with brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo* to afford the crude product **S-1v-a**, which was used for next step without further purification. Concentrated sulfuric acid (5 mL) was added to the solution of **S-1v-a** in EtOH (30 mL) and the mixture was stirred at reflux for 12 h. The resulting solution was concentrated *in vacuo* and purified by flash column chromatography to give **S-1v-b** (6.33 g, 83% yield over two steps).

In a flame-dried flask, *t*-BuOK (4.21 g, 37.5 mmol) was added to the solution of PPh<sub>3</sub>MeBr (13.40 g, 37.5 mmol) in anhydrous THF (50 mL) and the mixture was stirred at room temperature for 2 h, and compound **S-1v-b** (6.33 g, 25 mmol) in THF

(20 mL) was slowly added. The resulting mixture was stirred overnight, then acidified with saturated aqueous NH<sub>4</sub>Cl (100 mL) and extracted with EtOAc ( $3 \times 100$  mL). The combined organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by flash column chromatography to give **S-1v-c** (3.91 g, 62% yield).

In a flame-dried flask, LiAlH<sub>4</sub> (1.18 g, 31 mmol) was slowly added to the solution of **S-1v-c** (3.91 g, 15.5 mmol) in anhydrous Et<sub>2</sub>O (100 mL) at 0 °C and the resulting mixture was allowed to stir at room temperature for 1 h. The resulting mixture was quenched by saturated aqueous NH<sub>4</sub>Cl (50 mL) and extracted with EtOAc ( $3 \times 100$  mL). The combined organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by flash column chromatography to give **S-1v-d** (2.93 g, 90% yield).

In a flame-dried flask, isoindoline-1,3-dione (2.05 g, 13.9 mmol), DIAD (3.11 g, 15.35 mmol) and PPh<sub>3</sub> (4.03 g, 15.35 mmol) were added to the solution of **S-1v-d** (2.93 g, 13.95 mmol) in anhydrous THF (30 mL) and the resulting mixture was allowed to stir at room temperature for 12 h. The resulting mixture was concentrated *in vacuo*. To a solution of crude product in MeOH (30 mL) was added NH<sub>2</sub>NH<sub>2</sub>•H<sub>2</sub>O (1.40 g, 27.9 mmol) and the resulting mixture was stirred at reflux for 12 h. The resulting mixture was concentrated *in vacuo* and purified by flash column chromatography to give **S-1v** (1.98 g, 68% yield).

Substrate 1v was synthesized according to the procedure [2].

#### 1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(1-phenylvinyl)benzyl)urea (1v)



<sup>1</sup>**H NMR** (400 MHz, DMSO)  $\delta$  9.34 (s, 1H), 8.05 (s, 2H), 7.53 (s, 1H), 7.42-7.24 (m, 8H), 7.18 (d, *J* = 7.2 Hz, 1H), 6.77 (t, *J* = 5.8 Hz, 1H), 5.91 (d, *J* = 0.9 Hz, 1H), 5.23 (d, *J* = 0.9 Hz, 1H), 4.06 (d, *J* = 5.8 Hz, 2H).

<sup>13</sup>**C NMR** (100 MHz, DMSO) δ 154.7, 147.5, 142.5, 140.0, 139.8, 137.2, 130.6 (q, *J* = 32.5 Hz), 129.7, 128.6, 128.3, 127.9, 127.8, 126.9, 126.2, 123.4 (q, *J* = 272.6 Hz), 117.3 (d, *J* = 2.7 Hz), 115.8, 113.8-113.4 (m), 40.7.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -61.8 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{24}H_{19}F_6N_2O[M + H]^+$  465.1396, found 465.1395.

# General procedure for 1,2-aminosilylation of alkenes for construction of pyrrolidine



#### **General Procedure A**

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1** (0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-**A2** (9.12 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), trimethoxymethane (21.2 mg, 0.2 mmol, 2.0 equiv) and 1,2-dimethoxyethane (2.0 mL) at room temperature, and the sealed tube was then stirred at 0 °C for 72 h, the reaction mixture was directly purified by a silica gel chromatography [eluent: petroleum ether/EtOAc = 20/1, using dichloromethane (100%) to remove the solvent (1,2-dimethoxyethane) at first] to afford the desired product **3**.

#### **General Procedure B**

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1** (0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-**A2** (9.12 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), trimethoxymethane (21.2 mg, 0.2 mmol, 2.0 equiv) and 1,2-dimethoxyethane (2.0 mL) at room temperature, and the sealed tube was then stirred at room temperature for 48 h, the reaction mixture was directly purified by a silica gel chromatography [eluent: petroleum ether/EtOAc = 20/1, using dichloromethane (100%) to remove the solvent (1,2-dimethoxyethane) at first] to afford the desired product **3**.

*Note:* Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-4,4-dimethyl-2-phenylpyrrolidine-1-carboxamide (3A)



According to General Procedure **A** with **1a** (44.4 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3A** as a white solid (35.2 mg, 51% yield, 93% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.18 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 24.40 min,  $t_R$  (major) = 26.46 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (s, 2H), 7.40-7.55 (m, 5H), 7.30-7.39 (m, 1H), 6.41 (s, 1H), 3.64 (d, J = 10.4 Hz, 1H), 3.56 (d, J = 10.4 Hz, 1H), 2.37 (d, J = 13.2 Hz, 1H), 2.32 (d, J = 13.2 Hz, 1H), 2.17 (s, 1H), 1.99 (d, J = 14.8 Hz, 1H), 1.26 (s, 3H), 1.07 (s, 3H), 0.18 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 153.7, 146.6, 140.6, 132.1 (q, *J* = 33.2 Hz), 129.2, 127.9, 126.9, 123.3 (q, *J* = 272.6 Hz), 118.5 (d, *J* = 3.2 Hz), 115.8 (dt, *J* = 7.8, 3.8 Hz), 71.0, 60.9, 58.2, 35.6, 29.5, 29.2, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{31}H_{49}F_6N_2OSi_4 [M + H]^+ 691.2821$ , found 691.2819.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-6-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-6-phenyl-5-azaspiro[2.4]heptane-5-carboxamide (3B)



According to General Procedure **A** with **1b** (44.2 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3B** as a white solid (39.9 mg, 58% yield, 88% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 33.03 min,  $t_R$  (major) = 35.23 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.67-7.31 (m, 8H), 6.29 (s, 1H), 3.94 (d, J = 10.4 Hz, 1H), 3.53 (d, J = 10.2 Hz, 1H), 2.77 (d, J = 12.7 Hz, 1H), 2.16 (d, J = 13.6 Hz, 1H), 1.87 (d, J = 12.6 Hz, 1H), 1.60 (s, 1H), 0.83-0.54 (m, 3H), 0.44 (s, 1H), 0.19 (s, 27H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 153.1, 146.4, 140.6, 132.1 (q, J = 33.2 Hz), 129.1, 128.1, 126.4, 123.2 (q, J = 272.6 Hz), 118.6, 115.8 (dt, J = 7.7, 3.8 Hz), 70.0, 56.0, 53.1, 20.8, 18.7, 16.7, 6.3, 1.5.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{31}H_{47}F_6N_2OSi_4[M + H]^+ 689.2664$ , found 689.2655.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-7-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-7-phenyl-6-azaspiro[3.4]octane-6-carboxamide (3C)



According to General Procedure **A** with **1c** (45.6 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3C** as a white solid (42.8 mg, 61% yield, 91% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99.2/0.8, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 24.46 min,  $t_R$  (major) = 27.08 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83-7.28 (m, 8H), 6.36 (s, 1H), 4.07 (s, 1H), 3.66 (d, J = 10.5 Hz, 1H), 2.47 (d, J = 12.9 Hz, 1H), 2.42 (d, J = 12.9 Hz, 1H), 2.16-1.66 (m, 7H), 1.60 (s, 1H), 0.18 (s, 27H).

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.4, 146.2, 140.6, 132.1 (q, *J* = 33.2 Hz), 129.0, 127.8, 126.5, 123.3 (q, *J* = 272.7 Hz), 118.6, 115.8 (dt, *J* = 7.7, 3.8 Hz), 70.3, 60.1, 57.3, 42.3, 36.6, 30.7, 21.4, 16.4, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{32}H_{49}F_6N_2OSi_4$  [M + H]<sup>+</sup> 703.2821, found 703.2804.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-3-phenyl-2-azaspiro[4.4]nonane-2-carboxamide (3D)



According to General Procedure **A** with **1d** (47.0 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3D** as a white solid (35.8 mg, 50% yield, 89% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/01, flow rate 0.20 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 20.77 min,  $t_R$  (major) = 21.86 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.69 (s, 2H), 7.50-7.27 (m, 6H), 6.48 (s, 1H), 3.74 (d, *J* = 9.5 Hz, 1H), 3.56 (d, *J* = 10.3 Hz, 1H), 2.56 (d, *J* = 12.9 Hz, 1H), 2.37 (d, *J* = 12.9

Hz, 1H), 1.99 (d, J = 14.8 Hz, 1H), 1.83-1.48 (m, 8H), 1.23 (s, 1H), 0.20 (s, 27H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 146.6, 140.7, 132.1 (q, J = 33.2 Hz), 129.1, 127.8, 126.8, 123.3 (q, J = 272.7 Hz), 118.5, 116.0-115.4 (m), 70.5, 60.0, 56.8, 46.6, 39.7, 39.2, 24.7, 24.2, 21.6, 1.5.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>51</sub>F<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 717.2977, found 717.2962.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-3-phenyl-2-azaspiro[4.5]decane-2-carboxamide (3E)



According to General Procedure **A** with **1e** (48.4 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3E** as a white solid (43.1 mg, 59% yield, 92% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 28.65 min,  $t_R$  (major) = 30.19 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (s, 2H), 7.50-7.38 (m, 5H), 7.37-7.29 (m, 1H), 6.44 (s, 1H), 3.76 (d, *J* = 10.0 Hz, 1H), 3.49 (d, *J* = 10.7 Hz, 1H), 2.44 (d, *J* = 13.3 Hz, 1H), 2.22 (d, *J* = 13.3 Hz, 1H), 1.96 (d, *J* = 14.7 Hz, 1H), 1.67-1.23 (m, 11H), 0.18 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.8, 146.7, 140.6, 132.1 (q, *J* = 33.2 Hz), 129.2, 127.9, 126.9, 123.3 (q, *J* = 272.6 Hz), 118.5, 115.8 (dt, *J* = 7.4, 3.6 Hz), 70.3, 58.4, 56.4, 39.4, 39.3, 36.8, 25.7, 24.2, 23.0, 21.9, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{34}H_{53}F_6N_2OSi_4[M + H]^+$  731.3134, found 731.3116.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-3-phenyl-2-azaspiro[4.6]undecane-2-carboxamide (3F)



According to General Procedure **A** with **1f** (49.8 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3F** as a white solid (55.1 mg, 74% yield, 96% ee).

**HPLC** analysis: Chiralcel IC (hexane/*i*-PrOH = 99.5/0.5, flow rate 0.20 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 23.16 min,  $t_R$  (major) = 25.15 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.48 (m, 4H), 7.43 (dd, J = 13.4, 5.1 Hz, 3H), 7.36 (t, J = 7.2 Hz, 1H), 6.34 (s, 1H), 3.71 (d, J = 10.6 Hz, 1H), 3.45 (d, J = 10.7 Hz, 1H), 2.45 (d, J = 13.3 Hz, 1H), 2.31 (d, J = 13.3 Hz, 1H), 1.97 (d, J = 14.6 Hz, 1H), 1.79-1.36 (m, 12H), 1.25 (s, 1H), 0.18 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.9, 146.6, 140.6, 132.1 (q, *J* = 33.2 Hz), 129.3, 128.1, 127.2, 123.3 (q, *J* = 272.7 Hz), 118.4 (d, *J* = 2.5 Hz), 116.9-115.4 (m), 70.6, 60.3, 58.3, 42.6, 41.9, 40.5, 29.8, 29.7, 29.2, 24.6, 23.4, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F).

HRMS (ESI) m/z calcd. for C<sub>35</sub>H<sub>55</sub>F<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 745.3290, found 745.3276.

(*S*)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-N,3-diphenyl -2-azaspiro[4.6]undecane-2-carboxamide (3G)



According to General Procedure **B** with **1g** (36.2 mg, 0.1 mmol, 1.0 equiv), 48 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3G** as a white solid (54.1 mg, 89% yield, 74% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 98/02, flow rate 0.70 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 23.50 min,  $t_R$  (major) = 13.75 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.93 (t, *J* = 7.2 Hz, 1H), 6.10 (s, 1H), 3.71 (d, *J* = 10.6 Hz, 1H), 3.45 (d, *J* = 10.6 Hz, 1H), 2.43 (d, *J* = 13.2 Hz, 1H), 2.29 (d, *J* = 13.2 Hz, 1H), 2.05 (s, 1H), 1.88-1.56 (m, 7H), 1.54-1.35 (m, 6H), 0.19 (s, 27H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.6, 147.0, 139.2, 128.9, 128.8, 127.5, 127.2, 122.5, 118.9, 70.0, 60.4, 58.4, 42.4, 42.0, 40.4, 29.7, 29.2, 24.6, 23.4, 21.1, 1.6.

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>57</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 609.3542, found 609.3533.



m-tolyl)-2-azaspiro[4.6]undecane-2-carboxamide (3H)



According to General Procedure **B** with **1h** (37.6 mg, 0.1 mmol, 1.0 equiv), 48 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3H** as a white solid (51.0 mg, 82% yield, 71% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 98/02, flow rate 0.70 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 17.50 min,  $t_R$  (major) = 12.05 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 14.8, 7.5 Hz, 1H), 7.07 (s, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 7.5 Hz, 1H), 6.05 (s, 1H), 3.69 (d, *J* = 10.6 Hz, 1H), 3.44 (d, *J* = 10.6 Hz, 1H), 2.42 (d, *J* = 13.2 Hz, 1H), 2.28 (d, *J* = 13.3 Hz, 1H), 2.25 (s, 3H), 2.04 (s, 1H), 1.87-1.56 (m, 7H), 1.52-1.34 (m, 6H), 0.18 (s, 27H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.7, 147.1, 139.1, 138.6, 128.9, 128.6, 127.5, 127.2, 123.3, 119.7, 116.0, 70.0, 60.5, 58.4, 42.4, 42.0, 40.4, 29.7, 29.2, 24.7, 23.4, 21.6, 21.1, 1.6.

**HRMS** (ESI) m/z calcd. for C<sub>34</sub>H<sub>59</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 623.3699, found 623.3687.

(*S*)-N-(3-chlorophenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) methyl)-3-phenyl-2-azaspiro[4.6]undecane-2-carboxamide (3I)



According to General Procedure **A** with **1i** (39.6 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3I** as a white solid (39.8 mg, 62% yield, 90% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 98/02, flow rate 0.70 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 14.14 min,  $t_R$  (major) = 9.86 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.31 (dd, J = 14.4, 7.1 Hz, 2H), 7.07 (t, J = 8.1 Hz, 1H), 6.92-6.88 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.09 (s, 1H), 3.68 (d, J = 10.6 Hz, 1H), 3.43 (d, J = 10.7 Hz, 1H), 2.43 (d, J = 13.3 Hz, 1H), 2.28 (d, J = 13.3 Hz, 1H), 2.01 (s, 1H), 1.85-1.58 (m, 7H), 1.53-1.33

(m, 6H), 0.18 (s, 27H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.3, 146.9, 140.4, 134.5, 129.7, 129.1, 127.7, 127.2, 122.5, 118.9, 116.7, 70.2, 60.4, 58.4, 42.5, 42.0, 40.4, 29.7, 29.2, 24.6, 23.4, 21.1, 1.6. HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>56</sub>ClN<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 643.3153, found 643.3139.

(S)-N-(3-fluorophenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) methyl)-3-phenyl-2-azaspiro[4.6]undecane-2-carboxamide (3J)



According to General Procedure **A** with **1j** (38.0 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3J** as a white solid (38.2 mg, 61% yield, 84% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/01, flow rate 0.50 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 13.86 min,  $t_R$  (major) = 10.44 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.05 (dd, J = 8.3, 4.8 Hz, 2H), 6.87 (t, J = 8.7 Hz, 2H), 6.04 (s, 1H), 3.68 (d, J = 10.5 Hz, 1H), 3.43 (d, J = 10.6 Hz, 1H), 2.42 (d, J = 13.2 Hz, 1H), 2.28 (d, J = 13.3 Hz, 1H), 2.03 (s, 1H), 1.86-1.56 (m, 7H), 1.54-1.33 (m, 6H), 0.18 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 158.5 (d, *J* = 240.9 Hz), 154.7, 147.1, 135.2 (d, *J* = 2.4 Hz), 129.0, 127.6, 127.1, 120.6, 120.6, 115.4, 115.2, 70.1, 60.5, 58.3, 42.5, 42.0, 40.4, 29.7, 29.2, 24.6, 23.4, 21.1, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -120.9 (s, 1F).

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>56</sub>FN<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 627.3448, found 627.3434.

(S)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-phenyl-N-( 3-(trifluoromethyl)phenyl)-2-azaspiro[4.6]undecane-2-carboxamide (3K)



According to General Procedure **A** with **1k** (43.0 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3K** as a white solid (29.8 mg, 44%)

yield, 90% ee).

**HPLC** analysis: Chiralcel ID (hexane/*i*-PrOH = 99/01, flow rate 0.30 mL/min,  $\lambda = 254$  nm),  $t_R$  (minor) = 38.75 min,  $t_R$  (major) = 29.60 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, *J* = 7.6 Hz, 2H), 7.46 (s, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.25-7.12 (m, 3H), 6.21 (s, 1H), 3.68 (d, *J* = 10.6 Hz, 1H), 3.43 (d, *J* = 10.7 Hz, 1H), 2.42 (d, *J* = 13.3 Hz, 1H), 2.28 (d, *J* = 13.3 Hz, 1H), 2.00 (s, 1H), 1.84-1.55 (m, 7H), 1.50-1.33 (m, 6H), 0.16 (s, 27H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 154.3, 146.8, 139.7, 131.1 (q, J = 32.2 Hz), 129.2, 129.1, 127.88, 127.2, 124.0 (q, J = 272.2 Hz), 121.7, 119.0 (q, J = 3.7 Hz), 115.5 (q, J = 3.7 Hz), 70.3, 60.4, 58.3, 42.5, 41.9, 40.4, 29.7, 29.2, 24.6, 23.4, 21.1, 1.6. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.8 (s, 3F).

**HRMS** (ESI) m/z calcd. for  $C_{34}H_{56}F_{3}N_{2}OSi_{4}[M + H]^{+} 677.3416$ , found 677.3402.

(*S*)-N-(3,5-dichlorophenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-phenyl-2-azaspiro[4.6]undecane-2-carboxamide (3L)



According to General Procedure **A** with **11** (43.0 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3L** as a white solid (50.0 mg, 74% yield, 97% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.20 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 33.28 min,  $t_R$  (major) = 25.25 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.49 (d, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.1 Hz, 1H), 7.05 (s, 2H), 6.91 (t, J = 1.7 Hz, 1H), 6.10 (s, 1H), 3.66 (d, J = 10.6 Hz, 1H), 3.42 (d, J = 10.7 Hz, 1H), 2.43 (d, J = 13.3 Hz, 1H), 2.28 (d, J = 13.3 Hz, 1H), 1.99 (s, 1H), 1.82-1.57 (m, 7H), 1.54-1.34 (m, 6H), 0.18 (s, 27H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 153.9, 146.7, 141.1, 134.9, 129.2, 127.9, 127.1, 122.4,

117.0, 70.4, 60.4, 58.2, 42.6, 42.0, 40.4, 29.7, 29.2, 24.6, 23.4, 21.3, 1.6.

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>55</sub>Cl<sub>2</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 677.2763, found 677.2751.

(*S*)-N-(3,4-dichlorophenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2yl)methyl)-3-phenyl-2-azaspiro[4.6]undecane-2-carboxamide (3M)



According to General Procedure **A** with **1m** (43.0 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3M** as a white solid (40.6 mg, 60% yield, 88% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.20 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 14.76 min,  $t_R$  (major) = 12.18 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.49 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.5 Hz, 3H), 7.32 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 6.84 (d, J = 7.1 Hz, 1H), 6.10 (s, 1H), 3.67 (d, J = 10.6 Hz, 1H), 3.42 (d, J = 10.7 Hz, 1H), 2.42 (d, J = 13.3 Hz, 1H), 2.28 (d, J = 13.3 Hz, 1H), 1.99 (s, 1H), 1.87-1.54 (m, 7H), 1.53-1.32 (m, 6H), 0.17 (s, 27H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.0, 146.7, 138.7, 132.5, 130.2, 129.1, 127.8, 127.1, 125.4, 120.4, 118.0, 70.3, 60.4, 58.2, 42.5, 41.9, 40.4, 29.7, 29.1, 24.6, 23.3, 21.1, 1.6. **HRMS** (ESI) m/z calcd. for C<sub>33</sub>H<sub>55</sub>Cl<sub>2</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 677.2763, found 677.2749.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-3-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-3-(m-tolyl)-2-azaspiro[4.6]undecane-2-carboxamide (3N)



According to General Procedure **A** with **1n** (51.2 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3N** as a white solid (51.6 mg, 68% yield, 87% ee).

**HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 27.17 min,  $t_R$  (major) = 30.77 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (s, 2H), 7.40 (s, 1H), 7.35 (d, *J* = 5.6 Hz, 3H), 7.20 (d, *J* = 5.0 Hz, 1H), 6.42 (s, 1H), 3.73 (d, *J* = 10.9 Hz, 1H), 3.42 (d, *J* = 11.0 Hz, 1H), 2.49 (d, *J* = 13.5 Hz, 1H), 2.41 (s, 3H), 2.31 (d, *J* = 13.5 Hz, 1H), 2.02-1.85 (m, 3H), 1.77-1.38 (m, 11H), 0.17 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.0, 146.3, 140.7, 139.3, 132.1 (q, J = 33.2 Hz), 129.2, 129.2, 128.0, 124.5, 123.3 (q, J = 272.7 Hz), 118.2 (d, J = 2.2 Hz), 115.9-115.4 (m), 70.3, 60.0, 58.4, 42.5, 41.8, 40.6, 29.8, 29.3, 24.6, 23.4, 21.8, 20.4, 1.6. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F). **HRMS** (ESI) m/z calcd. for C<sub>36</sub>H<sub>57</sub>F<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 759.3447, found 759.3446.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-2-phenylpyrrolidine-1-carboxamide (3O)



According to General Procedure **A** with **1o** (41.6 mg, 0.1 mmol, 1.0 equiv), 72 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3O** as a white solid (26.5 mg, 40% yield, 66% ee).

**HPLC** analysis: Chiralcel IB (hexane/*i*-PrOH = 99/01, flow rate 0.20 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 34.02 min,  $t_R$  (major) = 40.52 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.65-7.29 (m, 8H), 6.24 (s, 1H), 3.95-3.75 (m, 2H), 2.51-2.24 (m, 2H), 2.15 (d, *J* = 14.7 Hz, 1H), 1.85-2.05 (m, 2H), 1.59 (s, 1H), 0.19 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 146.0, 140.6, 132.0 (q, *J* = 33.3 Hz), 129.4, 128.2, 126.6, 123.3 (q, *J* = 272.7 Hz), 118.5, 115.9-115.6 (m), 69.3, 48.3, 44.9, 22.2, 19.7, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{29}H_{45}F_6N_2OSi_4 [M + H]^+ 663.2508$ , found 663.2496.

#### General procedure for 1,2-aminosilylation of alkenes for construction of indoline



#### **General Procedure C**

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1** (0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-A1 (9.9 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), methylparaben (15.2 mg, 0.1 mmol, 1.0 equiv) and 1,2-dimethoxyethane (2.0 mL) at room temperature, and the sealed tube was then stirred at 0 °C for 96 h. The reaction mixture was directly purified by a silica gel chromatography [eluent: petroleum ether/EtOAc = 20/1, using dichloromethane (100%) to remove the solvent (1,2-dimethoxyethane) at first] to afford the desired product **3**.

#### **General Procedure D**

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1** (0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-**A1** (9.9 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), pivalic anhydride (18.6 mg, 0.1 mmol, 1.0 equiv) and 1,2-dimethoxyethane (2.0 mL) at room-temperature, and the sealed tube was then stirred at 0 °C for 96 h. The reaction mixture was directly purified by a silica gel chromatography [eluent: petroleum ether/EtOAc = 20/1, using dichloromethane (100%) to remove the solvent (1,2-dimethoxyethane) at first] to afford the desired product **3**.

Note: Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-2-phenylindoline-1-carboxamide (3P)



According to General Procedure C with 1p (46.4 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 3P as a white solid (50.4 mg, 71%)

yield, 87% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 27.14 min,  $t_R$  (major) = 25.14 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 6.9 Hz, 2H), 7.55-7.46 (m, 3H), 7.44 (s, 3H), 7.29 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.1 Hz, 1H), 7.07 (td, J = 7.4, 0.6 Hz, 1H), 6.54 (s, 1H), 3.65 (d, J = 16.5 Hz, 1H), 3.59 (d, J = 16.5 Hz, 1H), 2.30 (d, J = 14.7 Hz, 1H), 1.96 (d, J = 14.7 Hz, 1H), 0.13 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 152.1, 145.6, 142.9, 140.0, 132.2 (q, *J* = 33.4 Hz), 129.9, 129.3, 128.3, 127.5, 126.9, 124.5, 123.4, 123.2 (q, *J* = 273.4 Hz), 118.7 (d, *J* = 3.3 Hz), 116.8, 116.5-116.1 (m), 72.5, 48.4, 19.0, 1.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{33}H_{45}F_6N_2OSi_4$  [M + H]<sup>+</sup> 711.2508, found 711.2506.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-5-fluoro-2-((1,1,1,3,3,3-hexamethyl-2-(tri methylsilyl)trisilan-2-yl)methyl)-2-phenylindoline-1-carboxamide (3Q)



3Q

According to General Procedure **C** with **1q** (48.2 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3Q** as a white solid (49.5 mg, 68% yield, 83% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 28.15 min,  $t_R$  (major) = 30.34 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (dd, J = 9.0, 4.8 Hz, 1H), 7.63 (d, J = 6.8 Hz, 2H), 7.57-7.48 (m, 3H), 7.44 (s, 1H), 7.41 (s, 2H), 6.98 (td, J = 8.9, 2.6 Hz, 1H), 6.88 (dd, J = 7.8, 2.5 Hz, 1H), 6.47 (s, 1H), 3.63 (d, J = 16.8 Hz, 1H), 3.57 (d, J = 16.9 Hz, 1H), 2.28 (d, J = 14.7 Hz, 1H), 1.93 (d, J = 14.7 Hz, 1H), 0.13 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.2 (d, J = 241.9 Hz), 152.0, 145.2, 139.9, 139.1, 132.2 (q, J = 33.3 Hz), 130.0, 129.6, 129.1 (d, J = 8.3 Hz), 126.9, 123.1 (q, J = 272.7 Hz), 118.7 (d, J = 3.5 Hz), 117.9 (d, J = 7.8 Hz), 116.6-116.0 (m), 114.7 (d, J = 22.5 Hz), 111.5 (d, J = 23.9 Hz), 72.8, 48.2, 19.0, 1.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F), -120.1 (s, 1F).

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>44</sub>F<sub>7</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 729.2413, found 729.2412.

#### (S) - N-(3,5-bis(trifluoromethyl) phenyl) - 5-chloro-2-((1,1,1,3,3,3-hexamethyl-2-(trifluoromethyl) phenyl) - 5-chloro-2-(trifluoromethyl) phenyl) - 5-chloro-2-(trifluoromethyl) - 5-chloro-2-(trifluoromethyl) - 5-chloro-2-(trifluoromethyl) phenyl) - 5-chloro-2-(trifluoromethyl) - 5-chloro-2-(trifluoromethyl) phenyl) - 5-chloro-2-(trifluoromethyl) - 5-chloro-2-(trifluoromethyloro-2-(trifluoromethyl) - 5-chloro-2-(trifluoromethyl) - 5-chlo

methylsilyl)trisilan-2-yl)methyl)-2-phenylindoline-1-carboxamide (3R)



According to General Procedure **D** with **1r** (49.8 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3R** as a white solid (46.9 mg, 63% yield, 82% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 22.66 min,  $t_R$  (major) = 25.02 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 8.8 Hz, 1H), 7.60 (dd, J = 8.1, 1.5 Hz, 2H), 7.56-7.48 (m, 3H), 7.45 (s, 1H), 7.40 (s, 2H), 7.25 (dd, J = 8.6, 2.2 Hz, 1H), 7.13 (d, J = 2.0 Hz, 1H), 6.48 (s, 1H), 3.62 (d, J = 16.7 Hz, 1H), 3.55 (d, J = 16.9 Hz, 1H), 2.28 (d, J = 14.7 Hz, 1H), 1.92 (d, J = 14.7 Hz, 1H), 0.13 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 145.2, 141.7, 139.7, 132.3 (q, *J* = 33.4 Hz), 130.0, 129.6, 129.3, 128.3, 128.2, 126.8, 124.5, 123.1 (q, *J* = 272.6 Hz), 118.7 (d, *J* = 2.9 Hz), 117.9, 116.8-116.4 (m), 72.8, 48.0, 19.1, 1.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F).

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>44</sub>ClF<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 745.2118, found 745.2117.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsily l)trisilan-2-yl)methyl)-6-methyl-2-phenylindoline-1-carboxamide (3S)



According to General Procedure **D** with **1s** (47.8 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3S** as a white solid (43.5 mg, 60% yield, 81% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 26.04 min,  $t_R$  (major) = 22.96 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (s, 1H), 7.61 (d, *J* = 6.9 Hz, 2H), 7.55-7.44 (m, 3H), 7.43 (d, *J* = 6.8 Hz, 3H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 7.4 Hz, 1H), 6.52

(s, 1H), 3.59 (d, J = 16.3 Hz, 1H), 3.53 (d, J = 16.4 Hz, 1H), 2.39 (s, 3H), 2.27 (d, J = 14.7 Hz, 1H), 1.94 (d, J = 14.7 Hz, 1H), 0.12 (s, 27H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 145.7, 143.0, 140.0, 138.3, 132.2 (q, J = 33.3 Hz), 129.9, 129.3, 126.9, 124.6, 124.2, 124.1, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 118.6 (d, J = 14.7 Hz, 123.2 (q, J = 272.6 Hz), 124.7 (q,

3.2 Hz), 117.4, 116.5-116.1 (m), 72.8, 48.2, 21.9, 19.0, 1.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{34}H_{47}F_6N_2OSi_4[M + H]^+$  725.2664, found 725.2664.

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-6-bromo-2-((1,1,1,3,3,3-hexamethyl-2-(tri methylsilyl)trisilan-2-yl)methyl)-2-phenylindoline-1-carboxamide (3T)



According to General Procedure **D** with **1t** (54.2 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3T** as a white solid (45.7 mg, 58% yield, 82% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 26.59 min,  $t_R$  (major) = 24.95 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (d, J = 1.7 Hz, 1H), 7.65-7.60 (m, 2H), 7.55-7.49 (m, 3H), 7.44 (d, J = 9.9 Hz, 1H), 7.40 (s, 2H), 7.19 (dd, J = 7.9, 1.8 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.50 (s, 1H), 3.59 (d, J = 16.6 Hz, 1H), 3.52 (d, J = 16.6 Hz, 1H), 2.26 (d, J = 14.7 Hz, 1H), 1.91 (d, J = 14.7 Hz, 1H), 0.13 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 151.9, 145.1, 144.2, 139.7, 132.3 (q, *J* = 33.6 Hz), 130.1, 129.7, 127.0, 126.4, 126.3, 125.5, 123.1 (q, *J* = 273.1 Hz), 121.9, 120.1, 118.7 (d, *J* = 3.0 Hz), 116.7-116.5 (m), 73.3, 47.9, 19.0, 1.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F).

HRMS (ESI) m/z calcd. for C<sub>33</sub>H<sub>44</sub>BrF<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 789.1613, found 789.1609.

(S)-N-(3,5-bis(trifluoromethyl)phenyl)-6-chloro-2-((1,1,1,3,3,3-hexamethyl-2-(tri methylsilyl)trisilan-2-yl)methyl)-2-phenylindoline-1-carboxamide (3U)



According to General Procedure **D** with **1u** (49.8 mg, 0.1 mmol, 1.0 equiv), 96 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3U** as a white solid (46.9 mg, 63% yield, 80% ee).

**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm), *t*<sub>R</sub> (minor) = 26.09 min, *t*<sub>R</sub> (major) = 24.87 min. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.20 (d, *J* = 1.6 Hz, 1H), 7.62 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.57-7.47 (m, 3H), 7.46 (s, 1H), 7.40 (s, 2H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.04 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.50 (s, 1H), 3.60 (d, *J* = 16.6 Hz, 1H), 3.54 (d, *J* = 16.6 Hz, 1H), 2.26 (d, *J* = 14.7 Hz, 1H), 1.91 (d, *J* = 14.7 Hz, 1H), 0.13 (s, 27H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 151.9, 145.1, 144.0, 139.7, 134.0, 132.3 (q, *J* = 33.4 Hz), 130.1, 129.7, 127.0, 125.9, 125.0, 123.4, 123.1 (q, *J* = 272.7 Hz), 118.7 (d, *J* = 3.5 Hz), 117.3, 116.6 (dt, *J* = 7.7, 3.8 Hz), 73.4, 47.9, 19.0, 1.3. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.2 (s, 6F). **HRMS** (ESI) m/z calcd. for C<sub>33</sub>H<sub>44</sub>ClF<sub>6</sub>N<sub>2</sub>OSi<sub>4</sub> [M + H]<sup>+</sup> 745.2118, found 745.2116.

## General procedure for 1,2-aminosilylation of alkene 1v for construction of isoindoline



#### **General Procedure E**

Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1v** (46.4 mg, 0.1 mmol, 1.0 equiv), Cu(OAc)<sub>2</sub> (0.91 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-**A7** (9.0 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), pivalic anhydride (37.2 mg, 0.2 mmol, 2.0 equiv) and HCO<sub>2</sub>C<sub>4</sub>H<sub>9</sub> (2.0 mL) at room temperature, and the sealed tube was then stirred at room temperature for 48 h. The reaction mixture was directly purified by a silica gel chromatography [eluent: petroleum ether/EtOAc = 10/1, using dichloromethane (100%) to remove the solvent (HCO<sub>2</sub>C<sub>4</sub>H<sub>9</sub>) at first] to afford the desired product **3V**.

*Note: Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.* 

# (*R*)-N-(3,5-bis(trifluoromethyl)phenyl)-1-((1,1,1,3,3,3-hexamethyl-2-(trimethylsil yl)trisilan-2-yl)methyl)-1-phenylisoindoline-2-carboxamide (3V)



According to General Procedure **E** with 1v (46.4 mg, 0.1 mmol, 1.0 equiv), 48 h later, the reaction mixture was purified by the column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 3V as a white solid (53.3 mg, 75% yield, 74% ee).

**HPLC** analysis: Chiralcel AD3 (hexane/*i*-PrOH = 99/01, flow rate 0.15 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 31.86 min,  $t_R$  (major) = 34.77 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.50-7.16 (m, 11H), 6.88 (d, *J* = 5.7 Hz, 1H), 6.22 (s, 1H), 5.18 (d, *J* = 14.8 Hz, 1H), 5.11 (d, *J* = 14.8 Hz, 1H), 2.56-2.25 (m, 2H), 0.06 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.2, 147.6, 146.5, 140.2, 134.1, 132.0 (q, *J* = 33.3 Hz), 129.5, 128.8, 128.4, 125.9, 123.6, 123.3, 123.2 (q, *J* = 272.3 Hz), 119.2 (d, *J* = 3.3 Hz), 116.4-116.1 (m), 73.1, 54.5, 21.5, 1.6.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.1 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{33}H_{45}F_6N_2OSi_4 [M + H]^+ 711.2508$ , found 711.2507.

### Synthetic application



General procedure: To a mixture of KF (12.2 mg, 0.21 mmol, 2.1 equiv) and KHCO<sub>3</sub> (21.0 mg. 0.21 mmol, 2.1 equiv) in MeOH (1 mL) and THF (1 mL) was added **3C** (70.2 mg, 0.1 mmol, 1.0 equiv) and then aqueous 30% H<sub>2</sub>O<sub>2</sub> (0.34 g, 3 mmol, 30 equiv). The mixture was stirred at 60 °C for 48 h. [4] After being cooled at room temperature, the reaction mixture was treated with water. The mixture was extracted with EtOAc ( $3 \times 10$  mL), and combined organic phase was washed with 15% aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (10 mL). Drying over Na<sub>2</sub>SO<sub>4</sub> and subsequent silica gel chromatography (hexane/EtOAc = 5/1) to yield the product **4** as a white solid (26 mg, 55% yield, 88% ee).

(*S*)-N-(3,5-bis(trifluoromethyl)phenyl)-7-(hydroxymethyl)-7-phenyl-6-azaspiro[3.4]octane-6-carboxamide (4)



**HPLC** analysis: Chiralcel OD3 (hexane/*i*-PrOH = 85/15, flow rate 0.30 mL/min,  $\lambda$  = 254 nm),  $t_R$  (minor) = 15.65 min,  $t_R$  (major) = 12.65 min.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (s, 2H), 7.43 (s, 1H), 7.36-7.30 (m, 2H), 7.26-7.19 (m, 3H), 4.37 (s, 1H), 4.04 (d, *J* = 11.8 Hz, 1H), 3.95 (d, *J* = 8.6 Hz, 1H), 3.75 (d, *J* = 8.6 Hz, 1H), 2.29 (d, *J* = 12.8 Hz, 1H), 2.11 (d, *J* = 12.8 Hz, 1H), 2.09-1.93 (m, 2H), 1.87-1.40 (m, 6H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 154.7, 141.3, 140.9, 132.0 (q, *J* = 33.8 Hz), 128.9, 127.4, 126.0, 123.3 (q, *J* = 272.8 Hz), 118.9, 115.8, 68.5, 61.6, 41.9, 32.0, 29.8, 29.3, 16.3, 14.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{23}H_{23}F_6N_2O_2 [M + H]^+ 473.1658$ , found 473.1656.

### Mechanistic study



a) Trapping with TEMPO or inhibition with BQ



Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1g** (36.2 mg, 0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-**A2** (9.12 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), trimethoxymethane (21.2 mg, 0.2 mmol, 2.0 equiv), DME (2.0 mL) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 31.3 mg, 0.2 mmol, 2.0 equiv) at room temperature, and the sealed tube was then stirred at room-temperature for 48 h. Conversion was based on <sup>1</sup>H NMR/<sup>19</sup>F NMR/LC-MS/GC-MS analysis of the crude product.



Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1g** (36.2 mg, 0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((*R*)-A2 (9.12 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), trimethoxymethane (21.2 mg, 0.2 mmol, 2.0 equiv), DME (2.0 mL) and benzoquinone (BQ, 21.6 mg, 0.2 mmol, 2.0 equiv) at room temperature, and the sealed tube was then stirred at room temperature for 48 h. Conversion was based on <sup>1</sup>H NMR/<sup>19</sup>F NMR/LC-MS/GC-MS analysis of the crude product.

*Note:* Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.







Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1g** (9.06 mg, 0.025 mmol, 1.0 equiv), chiral phosphoric acid ((*R*)-A2 (2.28 mg, 0.0038 mmol, 15 mol%), LPO (19.90 mg, 0.05 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (12.40 mg, 0.05 mmol, 2.0 equiv), trimethoxymethane (5.30 mg, 0.05 mmol, 2.0 equiv), DME (0.5 mL) at room temperature, and the sealed tube was then stirred at 0 °C for 48 h. Conversion was based on <sup>1</sup>H NMR/<sup>19</sup>F NMR analysis of the crude product.



Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1g** (9.06 mg, 0.025 mmol, 1.0 equiv), CuTc (0.24 mg, 0.0013 mmol, 5 mol%), LPO (19.90 mg, 0.05 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (12.40 mg, 0.05 mmol, 2.0 equiv), trimethoxymethane (5.30 mg, 0.05 mmol, 2.0 equiv), DME (0.5 mL) at room temperature, and the sealed tube was then stirred at 0 °C for 48 h. Conversion was based on <sup>1</sup>H NMR/<sup>19</sup>F NMR analysis of the crude product.

#### b) $\beta$ -hydride elimination



Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1d** (47.0 mg, 0.1 mmol, 1.0 equiv), CuTc (0.95 mg, 0.005 mmol, 5 mol%), chiral phosphoric acid ((R)-A1 (9.90 mg, 0.015 mmol, 15 mol%), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), 1,4-dioxane (2.0 mL) at room temperature, and the sealed tube was then stirred at room-temperature for 24 h. The product **3D** was obtained in 87% yield and the by-product **3D**' was obtained in about 10% yield purified by the column chromatography on silica gel.



Under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene substrate **1d** (47.0 mg, 0.1 mmol, 1.0 equiv), LPO (79.7 mg, 0.2 mmol, 2.0 equiv), (TMS)<sub>3</sub>SiH **2** (49.7 mg, 0.2 mmol, 2.0 equiv), 1,4-dioxane (2.0 mL) at room temperature, and the sealed tube was then stirred at 40 °C for 24 h. The product **3D** was obtained in 71% yield and the byproduct **3D**' was obtained in 10% yield purified by the column chromatography on silica gel.

# 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-(3-(1,1,1,3,3,3-hexamethyl-2-(trimethylsil yl)trisilan-2-yl)-2-phenylallyl)cyclopentyl)methyl)urea (3D')


<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (s, 2H), 7.47 (s, 1H), 7.36-7.23 (m, 5H), 6.20 (d, J = 12.3 Hz, 1H), 5.68 (s, 1H), 4.05 (s, 1H), 2.91 (d, J = 5.9 Hz, 2H), 2.60 (s, 2H), 1.65-1.56 (m, 5H), 1.38-1.26 (m, 3H), 0.04 (s, 27H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 155.3, 154.4, 145.6, 140.5, 132.2 (q, *J* = 33.3 Hz), 128.9, 128.5, 127.5, 124.9, 123.3 (q, *J* = 272.9 Hz), 118.6 (d, *J* = 3.0 Hz), 116.1-115.7 (m), 51.2, 48.1, 46.4, 35.72, 24.2, 1.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 6F).

**HRMS** (ESI) m/z calcd. for  $C_{33}H_{51}F_6N_2OSi_4 [M + H]^+$  717.2977, found 717.2979.

c) Control reaction<sup>a)</sup>



<sup>a)</sup> Reaction conditions: **1d** (0.025 mmol), **2** (2 equiv), CuTc (5 mol %), (*R*)-**A2** (15 mol %), LPO (2.0 equiv), trimethoxymethane (2.0 equiv), DME (0.5 mL), rt, 48 h under argon. b) Yield based on <sup>1</sup>H NMR analysis of the crude product with CH<sub>2</sub>Br<sub>2</sub> as an internal standard. c) ee value based on HPLC analysis.

### References

(1) Lin JS, Yu P, Huang L, Zhang P, Tan B, Liu XY. *Angew Chem Int Ed*, 2015, 54: 7847–7851

(2) Lin JS, Dong XY, Li TT, Jiang NC, Tan B, Liu XY. J Am Chem Soc, 2016, 138: 9357–9360

(3) Pan Z, Pound SM, Rondla NR, Douglas CJ. Angew Chem Int Ed, 2014, 53: 5170–5174

(4) Itami K, Kamei T, Mitsudo K, Nokami T, Yoshida J. J Org Chem, 2001, 66: 3970-3976







--63.10









210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



---63.11





7.36 7.44 7.44 7.35 7.34 7.33 7.33 7.33









7.55 7.52 7.40 7.53 7.53 7.53 7.73 7.73 7.73 7.73 7.715 7.715 7.715 7.716 7.716 7.716 7.716 7.716 7.716 7.716 7.716 7.716 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720 7.720





80 20 10 ( 170 160 140 130 90 f1 (ppm) 70 50 40 30 150 . 120 110 100 80 60

















TT ANNO













# 8.10 7.28 8.10 7.28 8.10 7.28 8.10 7.28 8.10

3.67 3.67 3.67 3.57 3.57 3.57 7.2.32 7.1.94







f1 (ppm) 





















f1 (ppm) Ċ



--63.16







f1 (ppm) Ċ



#### 7.78 7.43 7.35 7.31 7.31 7.25 7.25 7.25 7.25 7.22 7.22

---63.09









S72


## **HPLC Spectra**





| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 24.378  | MM R | 0.4810 | 3105.92505 | 107.62045 | 49.6747 |
| 2    | 26.960  | MM R | 0.5018 | 3146.60913 | 104.50945 | 50.3253 |

Totals :

6252.53418 212.12990



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU\*s] [mAU] % 1 24.400 BB 0.4367 227.98178 7.80599 3.4794 2 26.455 BB 0.4889 6324.39404 198.95967 96.5206 Totals : 6552.37582 206.76566





Signal 2: DAD1 B, Sig=254,4 Ref=360,100



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak RetTime Type | e Width | Area      | Height    | Area    |
|-------------------|---------|-----------|-----------|---------|
| # [min]           | [min]   | [mAU*s]   | [mAU]     | %       |
|                   |         |           |           |         |
| 1 33.030 BB       | 0.7488  | 627.61761 | 12.26927  | 5.7777  |
| 2 35.230 BB       | 0.7895  | 1.02350e4 | 195.27679 | 94.2223 |
|                   |         |           |           |         |
| Totals :          |         | 1.08627e4 | 207.54606 |         |





Totals : 1.57017e4 620.07730





| Peak  | RetTime | Туре | Width  | Area       | Height    | Area    |
|-------|---------|------|--------|------------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|       |         |      |        |            |           |         |
| 1     | 20.768  | BB   | 0.3502 | 340.84579  | 15.16444  | 5.5782  |
| 2     | 21.859  | BB   | 0.3468 | 5769.47656 | 258.05911 | 94.4218 |
|       |         |      |        |            |           |         |
| Total | ls :    |      |        | 6110.32236 | 273.22356 |         |



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area      | Height    | Area    |
|------|---------|------|--------|-----------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | %       |
|      |         |      |        |           |           |         |
| 1    | 28.392  | BV   | 0.6873 | 1.30752e4 | 296.05612 | 49.3343 |
| 2    | 30.048  | MM R | 0.7773 | 1.34281e4 | 287.92062 | 50.6657 |

2.65033e4

583.97675



Peak RetTime Type Width Area Height Area [min] [min] [mAU\*s] [mAU] % # 0.6584 981.57251 1 28.652 BV 22.88684 4.1504 2 30.185 VB 0.7265 2.26683e4 480.41513 95.8496 Totals : 2.36499e4 503.30197



```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 22.497  | BB   | 0.5321 | 3038.14136 | 87.28475 | 49.8869 |
| 2    | 24.557  | BB   | 0.5741 | 3051.91553 | 82.02641 | 50.1131 |



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU\*s] [mAU] % # [min] 1 23.156 MM R 0.5679 127.71933 3.74823 1.7514 2 25.150 BB 0.6278 7164.79395 177.16504 98.2486 7292.51328 180.91327 Totals :













Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 12.048  | BB   | 0.4965 | 2605.75830 | 80.74287 | 85.6732 |
| 2     | 17.497  | BB   | 0.5218 | 435.75159  | 9.85655  | 14.3268 |
|       |         |      |        |            |          |         |
| Tota] | ls :    |      |        | 3041.50989 | 90.59942 |         |



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 9.967   | BB   | 0.3691 | 976.72272  | 40.82310 | 50.0893 |
| 2     | 14.298  | BB   | 0.4330 | 973.24072  | 31.28032 | 49.9107 |
|       |         |      |        |            |          |         |
| Tota] | ls :    |      |        | 1949.96344 | 72.10342 |         |



```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 9.860   | BB   | 0.4095 | 985.97034  | 29.23462 | 95.0243 |
| 2     | 14.139  | BB   | 0.3486 | 51.62785   | 1.74786  | 4.9757  |
|       |         |      |        |            |          |         |
| Total | ls :    |      |        | 1037.59819 | 30.98248 |         |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Area       |
|------------|
| %          |
|            |
| 37 49.4624 |
| 25 50.5376 |
|            |



## Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 10.439  | BB   | 0.5047 | 2300.13062 | 71.61303 | 92.1745 |
| 2     | 13.855  | BB   | 0.4173 | 195.27914  | 5.73467  | 7.8255  |
|       |         |      |        |            |          |         |
| Tota] | s:      |      |        | 2495.40976 | 77.34770 |         |





| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 29.437  | BB   | 1.8007 | 1566.51257 | 10.24044 | 49.7368 |
| 2    | 38.592  | BB   | 1.4888 | 1583.09387 | 14.15536 | 50.2632 |



| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 29.595  | BB   | 1.3336 | 2111.62866 | 24.11465 | 95.2216 |
| 2    | 38.747  | BB   | 0.9827 | 105.96600  | 1.27889  | 4.7784  |



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 25.418  | BB   | 0.9587 | 6087.22998 | 101.64815 | 50.5827 |
| 2    | 33.088  | BB   | 0.7831 | 5946.97168 | 118.17153 | 49.4173 |
|      |         |      |        |            |           |         |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area      | Height    | Area    |
|------|---------|------|--------|-----------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | %       |
|      |         |      |        |           |           |         |
| 1    | 25.253  | BB   | 0.9769 | 2.98133e4 | 494.86295 | 98.3730 |
| 2    | 33.277  | BB   | 0.7404 | 493.10059 | 9.91173   | 1.6270  |
|      |         |      |        |           |           |         |

Totals : 3.03064e4 504.77468



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|
 ----|------|
 -----|
 -----|

 1
 11.929
 BB
 0.5890
 2207.39380
 55.61713
 51.1291

 2
 14.594
 BB
 0.6593
 2109.90381
 46.15851
 48.8709



4317.29761 101.77564



## Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 12.182  | BB   | 0.6107 | 3950.54272 | 97.92069 | 94.1067 |
| 2    | 14.760  | BB   | 0.5279 | 247.39568  | 5.68291  | 5.8933  |
|      |         |      |        |            |          |         |

```
Totals :
```

4197.93840 103.60360



 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU\*s]
 [mAU]
 %

 ----|-----|-----|-----|------|
 -----|------|------|------|
 -----|

 1
 27.130 BB
 0.5217 7031.41113
 206.25945
 50.1230

 2
 30.880 BV
 0.5761 6996.91260
 188.91048
 49.8770



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Totals :

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 27.165  | MM R | 0.5079 | 352.58975  | 11.57123  | 6.5808  |
| 2    | 30.767  | BV   | 0.5468 | 5005.28613 | 142.16365 | 93.4192 |
|      |         |      |        |            |           |         |

5357.87589 153.73488



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak RetTime Type Width Area Height Area [min] [min] [mAU\*s] [mAU] % # 1 33.862 BB 1.0271 2775.87695 33.48772 50.0626 2 40.617 BB 0.9855 2768.93726 34.09581 49.9374 Totals : 5544.81421 67.58353





| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 34.016  | MM R | 1.3740 | 397.68863  | 4.82414  | 17.0148 |
| 2     | 40.522  | MM R | 1.3429 | 1939.62537 | 24.07229 | 82.9852 |
|       |         |      |        |            |          |         |
| Total | ls :    |      |        | 2337.31400 | 28.89644 |         |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 25.167  | W    | 0.4307 | 7200.58057 | 260.30338 | 50.8283 |
| 2    | 27.164  | VB   | 0.4026 | 6965.89209 | 268.58215 | 49.1717 |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU\*s] # [min] [min] [mAU] % 0.4303 4799.44385 174.78868 93.4629 1 25.138 BB 2 27.140 MM R 0.3987 335.69080 14.03443 6.5371

5135.13464 188.82311





10

Peak RetTime Type Width Height Area Area # [min] [min] [mAU\*s] [mAU] % 1 28.153 MM R 0.4238 53.54969 2.10599 8.3950 2 30.338 VB 0.5257 584.32654 17.14060 91.6050 Totals : 637.87623 19.24659

25



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

| Peak | RetTime | Туре | Width  | Area      | Height   | Area    |
|------|---------|------|--------|-----------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]    | %       |
|      |         |      |        |           |          |         |
| 1    | 22.851  | BB   | 0.5325 | 628.68469 | 17.60877 | 50.0646 |
| 2    | 25.446  | BB   | 0.5877 | 627.06219 | 16.05362 | 49.9354 |
|      |         |      |        |           |          |         |

Totals :

1255.74689 33.66239





| Peak  | RetTime | Туре | Width  | Area      | Height   | Area    |
|-------|---------|------|--------|-----------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]   | [mAU]    | %       |
|       |         |      |        |           |          |         |
| 1     | 22.660  | MM R | 0.5124 | 78.55956  | 2.55538  | 9.0933  |
| 2     | 25.016  | VB   | 0.5653 | 785.36810 | 21.14494 | 90.9067 |
|       |         |      |        |           |          |         |
| Total | s :     |      |        | 863.92766 | 23.70032 |         |



Peak RetTime Type Width Area Height Area # [min] [min] [mAU\*s] [mAU] % 1 22.908 MM R 0.4550 1759.99487 64.46854 50.5834 49.4166 2 25.836 MM R 0.4395 1719.39648 65.21011



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 22.961  | MM R | 0.4526 | 3741.23462 | 137.76720 | 90.5637 |
| 2    | 26.035  | MM R | 0.4211 | 389.81985  | 15.42861  | 9.4363  |
|      |         |      |        |            |           |         |

4131.05447 153.19581



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU\*s] [mAU] % # 1 24.928 BV 0.4969 1135.02063 33.70488 49.9346 2 26.588 VB 0.4825 1137.99329 36.82647 50.0654 Totals : 2273.01392 70.53135





| Peak  | RetTime | Туре | Width  | Area       | Height   | Area    |
|-------|---------|------|--------|------------|----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|       |         |      |        |            |          |         |
| 1     | 24.945  | BV   | 0.4452 | 1373.83203 | 47.53037 | 91.1496 |
| 2     | 26.585  | MM R | 0.4273 | 133.39557  | 5.20352  | 8.8504  |
|       |         |      |        |            |          |         |
| Tota] | ls :    |      |        | 1507.22760 | 52.73389 |         |





| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 24.815  | BV   | 0.4289 | 1571.78564 | 57.15018 | 49.3935 |
| 2    | 25.983  | VB   | 0.4143 | 1610.38708 | 60.15856 | 50.6065 |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU\*s] [mAU] % # 1 24.869 MM R 0.4662 1681.94568 60.12774 90.1373 2 26.089 MM R 0.4063 184.03568 7.54875 9.8627

```
Totals :
```

1865.98135 67.67649



```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

| Peak | RetTime | Туре | Width  | Area      | Height   | Area    |
|------|---------|------|--------|-----------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]    | %       |
|      |         |      |        |           |          |         |
| 1    | 31.941  | BB   | 0.5718 | 747.76959 | 20.10867 | 49.1828 |
| 2    | 34.925  | MM R | 0.4381 | 772.62030 | 29.39170 | 50.8172 |



Peak RetTime Type Width Area Height Area [mAU\*s] [min] [min] [mAU] % # 1 31.857 MM R 0.5725 660.46344 19.22672 12.7969 2 34.769 BB 0.4271 4500.64551 167.70924 87.2031 Totals : 5161.10895 186.93597



Signal 4: DAD1 D, Sig=254,4 Ref=360,100

| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|      |         |      |        |            |           |         |
| 1    | 12.594  | VB   | 0.3568 | 9281.96484 | 382.87515 | 49.9556 |
| 2    | 15.572  | BB   | 0.5154 | 9298.47266 | 271.63275 | 50.0444 |
|      |         |      |        |            |           |         |





Signal 4: DAD1 D, Sig=254,4 Ref=360,100

| Peak     | RetTime | Туре | Width  | Area       | Height    | Area    |
|----------|---------|------|--------|------------|-----------|---------|
| #        | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
|          |         |      |        |            |           |         |
| 1        | 12.648  | MM R | 0.3896 | 7168.04395 | 306.65359 | 93.8050 |
| 2        | 15.652  | MM R | 0.5289 | 473.39035  | 14.91725  | 6.1950  |
|          |         |      |        |            |           |         |
| Totals : |         |      |        | 7641.43430 | 321.57085 |         |