Supporting Information

Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative

C(sp³)–H/C(sp)–H Cross-Coupling with Rationally Designed

Oxazoline-Derived N,N,P(O)-Ligand

Lin Liu, Kai-Xin Guo, Yu Tian, Chang-Jiang Yang, Qiang-Shuai Gu, Zhong-Liang Li, Liu Ye,* and Xin-Yuan Liu*

Table of contents

Scheme S1-S7, Figures S1-S4 and Table S1-S3	2
General information	15
The synthesis of N-F reagents and ligands	16
The synthesis of C(sp ³)–H substrates	23
Asymmetric oxidative C(sp ³)-H/C(sp)-H cross-coupling	34
Procedure for synthetic application	67
Mechanistic studies	71
Assignment of absolute stereochemistry	78
References	83
NMR spectra	84
HPLC spectra	171

(a) Repeat experiment with (MeO)₃Si-prefunctionalized alkyne as nucleophile (ref 6d in the manuscript. *J. Am. Chem. Soc.* **2020**, *142*, 12493).

(b) Test of terminal alkyne as nucleophile using chiral bisoxazoline ligand

	$\begin{array}{c c} & \text{Cul (10 mol9}\\ & & \text{N-F reagent (3)}\\ & & & 1,2,4,5\text{-}C_6H_2\\ & & 4 \text{ equiv.} \end{array}$	%), L-1 * (12 mol%), equiv.), base (3 equ F ₄ :DMA=4:1, rt, 2 d	(iv.) + Ph Ph Ph	B
Entry	N-F reagent	Base	Yield of A (%)	Yield of B (%)
1	NFSI	Na ₂ CO ₃	0	0
2	N-F-2	Na ₂ CO ₃	0	0
3	NFSI	Cs ₂ CO ₃	0	5%
4	N-F-2	Cs ₂ CO ₃	0	17%

When Na₂CO₃ was used as base, both alkynylated product **A** and homo-coupling product **B** were not detected in the reaction mixture (entries **1** and **2**). When Cs₂CO₃ was used as base, only **B** was detected in 5% and 17% yield, respectively, while **A** was not detected in the reaction mixture (entries **3** and **4**).

Scheme S1 Result of benzylic $C(sp^3)$ -H alkynylation using terminal alkyne with Cu/chiral Box ligand catalytic system.

Scheme S2. An initial attempt with $Cu^{I}/N,N,P$ -ligand in intermolecular asymmetric oxidative $C(sp^{3})$ -H/C(*sp*)-H cross-coupling

Scheme S3 Competition experiments between different types of C-H substrates

Scheme S4 Sonogashira $C(sp^3)$ –C(sp) coupling reaction of cyclic benzylic halide and benzyl halide with *p*-OMe substituent with terminal alkyne under our previous Cu/chiral N.N.P-ligand catalytic system (refer 9c in the manuscript: *Nat. Chem.* 2019, *11*,1158)

Scheme S5 Asymmetric alkynylation of S44 with phosphine oxide ligand L7

Scheme S6 Result of asymmetric alkynylation of substrates with other potentially reactive C–H bonds.

4-(3-(naphthalen-2-yl)prop-1-yn-1-yl)benzonitrile

¹**H NMR (400 MHz, CDCl₃)** δ 7.96-7.75 (m, 4H), 7.60 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.51-7.43 (m, 3H), 4.01 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 133.5, 133.4, 132.4, 132.2, 132.0, 128.6, 128.4, 127.7, 127.6, 126.31, 126.30, 125.8, 118.6, 111.2, 92.6, 81.5, 26.1.

(R)-4-(4-methyl-3-phenylpent-1-yn-1-yl)benzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.53 (m, 2H), 7.52-7.45 (m, 2H), 7.42-7.31 (m, 4H), 7.30-7.21 (m, 1H), 3.90 (dd, J = 9.2, 6.2 Hz, 1H), 1.90-1.70 (m, 2H), 1.69-1.49 (m, 1H), 0.98 (dd, J = 6.5, 5.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.2, 131.9, 128.8, 128.6, 127.3, 126.9, 118.6, 111.0, 96.9, 81.6, 47.6, 36.6, 26.1, 22.9, 21.8.

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(minor) = 8.2 min, t(major) = 12.4 min, 67% ee.

Scheme S7 Results of benzylic $C(sp^3)$ -H alkynylation using copper-phenylacetylide and chiral Box ligand system.

Test of stability of ligand L1 and L4 under different N-F reagents

Figure S1: Test of stability of ligand L1 under different N-F reagents. ³¹P NMR spectrum of reaction system resulting from ligand L1 (1 equiv.) and different N-F reagents (1.2 equiv.) under the ultrasonic conditions in CDCl₃ for 1h at rt. (a) ³¹P NMR of ligand L1 and N-F-1; (c) ³¹P NMR of ligand L1 and N-F-2; (d) ³¹P NMR of ligand L1 and NFSI.

In **Figure S1b**: No change in phosphine spectrum indicates L1 is stable under mild oxidant N-fluoroalkylamide (N-F-1)

In **Figure S1c**: Partial changes in phosphine spectrum indicates L1 proceeds slow decomposition under relatively strong oxidant N-fluoroalkylsulfonamide (N-F-2).

In **Figure S1d**: Complete change of phosphine spectrum indicates L1 is incompatible with strong oxidant NFSI.

Conclusion: Order of ligand L1 tolerance to oxidants: N-F-1 > N-F-2 > NFSI

Figure S2: Test of stability of ligand L4 under different N-F reagents. ³¹P NMR spectrum of reaction system resulting from ligand L4 (1 equiv.) and different N-F reagents (1.2 equiv.) under the ultrasonic conditions in CDCl₃ for 1h at rt. (a) ³¹P NMR of ligand L4; (b) ³¹P NMR of ligand L4 and N-F-1; (c) ³¹P NMR of ligand L4 and N-F-2; (d) ³¹P NMR of ligand L4 and NFSI. (e) ³¹P NMR of ligand L5.

In **Figure S2b**: No change in phosphine spectrum indicates L1 is stable under mild oxidant N-fluoroalkylamide (N-F-1).

In **Figure S2c**: Partial changes in phosphine spectrum **L4** proceeds slow decomposition under relatively strong oxidant N-fluoroalkylsulfonamide (**N-F-2**). Interestingly, new signals might be assigned to phosphine oxide **L5** (30.2 ppm) and possible phosphine-fluorine ligands^[1-3] (-45.1 and -49.3).

In **Figure S2d**: Complete change of phosphine spectrum indicates L4 is incompatible with strong oxidant NFSI.

Conclusion: Order of ligand L4 tolerance to oxidants: N-F-1 > N-F-2 > NFSI.

Quantitative Analysis of Ligand L4 with N-F-2

Figure S3-1. (a) ³¹P NMR of ligand L5; (b) ³¹P NMR of reaction mixture.

Figure S3-2. ³¹P NMR of reaction mixture shown in **S3-1** after further reaction for 4 h under ultrasonic conditions under air using Ph₃P(O) as internal standard.

Conclusion: In the reaction system, complete conversion of phosphine ligand L4 into the possible phosphine-fluorine ligands^[1-3] and ligand L5 was observed. Moreover, the possible phosphine-fluorine ligand could be finally converted to L5 under air conditions. Actually, the pentavalent phosphine oxide L5 is also active for catalyzing this transformation.

Figure S4. (a) ³¹P NMR of reaction mixture at different time. (b) Yield and ee of **3** at different time.

$\begin{array}{c} H \\ H $						
$Ar = 4-CN-C_{6}H_{4}$						
entrv	[Cu]	L	oxidant	solvent	vield(%) ^[b] (conv.)	ee(%) ^[c]
1	CuTc	L4	$(^{t}BuO)_{2}$	PhCl	0	ND
2	CuTc	L4	^t BuO ₂ H	PhCl	0	ND
3	CuTc	L4	PhCO ₃ ^t Bu	PhCl	0	ND
4	CuTc	L4	BPO	PhCl	0	ND
5	CuTc	L4	$Na_2S_2O_8$	PhCl	0	ND
6	CuTc	L4	PhI(OAc) ₂	PhCl	0	ND
7	CuTc	L4	DDQ	PhCl	0	ND
8	CuTc	L4	Selectfluor	PhCl	0	ND
9	CuTc	L4	N-F-2	PhCl	43	85
10	CuI	L4	N-F-2	PhCl	51	87
11	Cu(MeCN) ₄ PF ₆	L4	N-F-2	PhCl	45	88
12	Cu(MeCN) ₄ BF ₄	L4	N-F-2	Benzene	24(68)	86
13	Cu(MeCN) ₄ BF ₄	L4	N-F-2	PhCF ₃	27(81)	87
14	Cu(MeCN) ₄ BF ₄	L4	N-F-2	PhF	17(60)	86
15	Cu(MeCN) ₄ BF ₄	BOX	NFSI	PhCl	trace(82)	ND
16	Cu(MeCN) ₄ BF ₄	BOX	N-F-2	PhCl	trace	ND
17	—	L4	N-F-2	PhCl	trace	ND
18	Cu(MeCN) ₄ BF ₄	-	N-F-2	PhCl	trace	ND
19 ^[d]	Cu(MeCN) ₄ BF ₄	L4	N-F-4	PhCl	trace	ND

Table S1 Screening of reaction conditions for benzylic alkynylation^[a]

[a] Reaction conditions: **1a** (0.5 mmol), **2a** (0.05 mmol), [Cu] (10 mol%), L (15 mol%), Cs₂CO₃ (0.2 mmol) and oxidant (0.15 mmol) in dry PhCl (0.4 mL) at rt for 36 h. [b] Yield based on ¹H NMR analysis of the crude product using Cl₂CHCHCl₂ as an internal standard. [c] Ee values based on HPLC analysis. [d] Without base.

Note: In case that Selectfluor, (${}^{t}BuO$)₂, PhCO₃ ${}^{t}Bu$, and Na₂S₂O₈ are used as the oxidant, the Glaser homocoupling product (5–20%) was observed.

H L 1a	+ Ar 2a	CuTc (10 mol%), L4 Cs ₂ CO ₃ (x eq.), N-F PhCl, 0 °C Ar = 4-CN-6	4 (15 mol%) F-2 (3.0 eq.) C, 5d C ₆ H₄	Ar 3
entry	X (eq.)	conv. of 2a (%)	yield of 3 (%)	ee (%)
1	1.0	52	28	94
2	2.0	71	42	93
3	3.0	90	52	93
4	4.0	98	68	93
5	5.0	98	57	93

Table S2 Screening of the effect of the amount of base for benzylic alkynylation^[a]

[a] Reaction conditions: **1a** (0.5 mmol), **2a** (0.05 mmol), CuTc (10 mol%), **L4** (15 mol%), Cs₂CO₃ (x eq.) and **N-F-2** (0.30 mmol) in dry PhCl (0.8 mL) at 0 °C for 5 d.

	3a (E/Z=2.0	+ Ar D/1)	H CuT L (1 N-F - 2a PhC Ar =	ic (10 mol%) 5 mol%), Ba - 2 (3.0 eq.) I, T = 4-CN-C ₆ H₄	se 38	Ar
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $						
entry	L	base (equiv.)	$T(^{\circ}C)$	t	Yield (%) ^[b] (conv.)	ee (%) ^[c]
1	L4	$Cs_2CO_3(4.0)$	0	5 d	3(70)	ND
2	L4	$Cs_2CO_3(4.0)$	rt	5 d	10	-17
3	L8	$Cs_2CO_3(4.0)$	rt	5 d	16(80)	65
4	L6	$Cs_2CO_3(4.0)$	rt	5 d	15(85)	77
5	L6	$Rb_2CO_3(5.0)$	rt	5 d	51(95)	85
6 ^[d]	L6	$Rb_2CO_3(5.0)$	rt	5 d	40(95)	84
7 ^[e]	L6	Rb ₂ CO ₃ (5.0)	rt	5 d	38(98)	86
8 ^[f]	L6	$Rb_2CO_3(5.0)$	rt	5 d	32	87
9[g]	L6	$Rb_2CO_3(5.0)$	rt	5 d	50(98)	88

Table S3 Screening of reaction conditions for allylic alkynylation^[a]

[a] Reaction conditions: **3a** (0.5 mmol), **2a** (0.05 mmol), CuTc (10 mol%), L (15 mol%), base (x eq.) and N-F-2 (0.15 mmol) in dry solvent. [b] Yield based on ¹H NMR analysis of the crude product using Cl₂CHCHCl₂ as an internal standard. [c] Ee values based on HPLC analysis. [d] **3a** (5 eq.). [e] PhCl/n-hex (v/v=2/1) as solvent. [f] CuTc (15 mol%) and L6 (20 mol%). [g] CuTc (10 mol%), L6 (18 mol%) and PhCl/n-hex (v/v=3/1) as solvent, **2a** (0.1 mmol).

General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuTc and Cu(MeCN)₄BF₄ were purchased from TCI. Anhydrous chlorobenzene (PhCl) was purchased from Shanghai Energy-Chemical Reagent Co. Ltd, which was directly used without further treatment. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR 376 MHz for ¹⁹F NMR and 162 MHz for ³¹P NMR respectively, in CDCl₃ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength).

The synthesis of N-F reagents and ligands

General Procedure for Synthesis of N-F reagents

In a 250 mL round-bottomed flask, to a solution of N-(tert-butyl)-4-(trifluoromethyl)benzamide^[4] (7.35 g, 30 mmol, 1 equiv.) in anhydrous THF (60 mL) was slowly added *n*-BuLi (15 mL, 2.4 M in hexane, 36 mmol, 1.2 equiv.) at 0 °C under argon atmosphere. After stirring for 30 min, N-fluoro-benzenesulfonimide (NFSI, 18.6 g, 60 mmol, 2 equiv.) was added. The reaction mixture was stirred for another 12 h, then quenched with 1 M HCl. The reaction mixture was extracted with CH₂Cl₂. The organic layers were combined and dried over anhydrous Na₂SO₄, and filtered through a pad of Celite. The organic solvent was removed under vaccum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) to afford the product **N-F-1** (4.02 g, 51% yield) as a white solid.

N-(tert-butyl)-N-fluoro-4-(trifluoromethyl)benzamide

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 1.55 (d, J = 2.0 Hz, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.11, -65.08.

¹³C NMR (101 MHz, CDCl₃) δ 173.1 (d, *J*_{C-F} = 8.3 Hz), 137.4, 133.3 (q, *J*_{C-F} = 32.6 Hz), 129.22, 129.16, 125.0 (q, *J*_{C-F} = 3.6 Hz), 123.5 (q, *J*_{C-F} = 273.71 Hz), 64.4 (d, *J*_{C-F} = 10.5 Hz), 26.8 (d, *J*_{C-F} = 5.9 Hz).

HRMS (ESI) m/z calcd. for C₁₂H₁₄F₄NO [M + H]⁺ 264.1006, found 264.1003.

N-(tert-butyl)-N-fluoro-4-(trifluoromethyl)benzenesulfonamide

According to the general procedure with N-(tert-butyl)-4-(trifluoromethyl) benzenesulfonamide^[5] (8.43 g, 30 mmol, 1.0 equiv) and N-fluoro-benzenesulfonimide (NFSI, 18.6 g, 60 mmol, 2 equiv.) for 12 h, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product N-F-2 (4.31 g) in 48% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 1.50 (d, J = 2.1 Hz, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.78, -63.38.

¹³C NMR (101 MHz, CDCl₃) δ 140.9, 135.7 (q, $J_{C-F} = 33.1$ Hz), 132.9, 129.6, 126.1 (q, $J_{C-F} = 3.7$ Hz), 123.1 (q, $J_{C-F} = 273.7$ Hz), 67.1 (d, $J_{C-F} = 12.3$ Hz), 27.2 (d, $J_{C-F} = 6.0$ Hz).

HRMS (ESI) m/z calcd. for C₁₁H₁₃F₄NNaO₂S [M + Na]⁺ 322.0495, found 322.0493.

N-(tert-butyl)-N-fluoro-4-methoxybenzenesulfonamide

According to general procedure with N-(tert-butyl)-4-methoxybenzenesulfonamide^[6] (7.29 g, 30 mmol, 1.0 equiv) and N-fluoro-benzenesulfonimide (NFSI, 18.6 g, 60 mmol, 2 equiv.) for 12 h, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product N-F-4 (2.90 g) in 37% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.88

(s, 3H), 1.45 (d, J = 1.8 Hz, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.33.

¹³C NMR (101 MHz, CDCl₃) δ 164.2, 131.4 (d, $J_{C-F} = 1.3$ Hz), 128.7, 114.2, 66.3 (d, $J_{C-F} = 12.1$ Hz), 55.7, 27.1 (d, $J_{C-F} = 6.1$ Hz).

HRMS (ESI) m/z calcd. for C₁₁H₁₆FNNaO₃S [M + Na]⁺ 284.0727, found 284.0724.

General Procedure for Synthesis of chiral ligand (L2-L4)

Under argon atmosphere, a dry 100mL Schlenk flask equipped with a magnetic stir bar was charged with substituted-2-aminobenzonitrile (10 mmol, 1 equiv.), (*1R*,2*S*)-1-amino-2-indanol (1.79 g, 12 mmol, 1.2 equiv), dry ZnCl₂ (2.05 g, 15 mmol, 1.5 equiv.), and 40 mL of chlorobenzene, then reflux the reaction mixture for 3-5 d, Upon completion (monitored by TLC), Dissolve the residue in H₂O, EA and 2 mL ethylenediamine. Extract the mixture with EA. Remove the solvent under vacuum to obtain the crude red oil. Purify the crude red oil by silica gel. to obtain substituted-2-((*3aR*,8*aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)aniline as a white solid. Under argon atmosphere, to a solution of substituted-2-((*3aR*,8*aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)aniline (10 mmol, 1 equiv.) in anhydrous DCM (30 mL) was added 2-(diphenylphosphino)benzoic acid (6.12 g, 20 mmol, 2 equiv.), 4-

dimethylaminopyridine (2.44 g, 20 mmol, 2 equiv.) and 1-(3-Dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (3.84 g, 20 mmol, 2 equiv.). The reaction mixture was stirred at ambient temperature for 24 h, concentrated and purified by flash chromatography (PE/ EA = 4/1) to provide the chiral ligand as a white solid. N-(2-((*3aR*,8*aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L2)

According to the general procedure with 2-aminobenzonitrile (1.18 g, 10 mmol, 1.0 equiv), (1R,2S)-1-amino-2-indanol (1.79 g, 12 mmol, 1.2 equiv) and 2-(diphenylphosphino)benzoic acid (6.12 g, 20 mmol, 2 equiv.), the reaction mixture was purified by column chromatography on silica gel to give the corresponding product L2 (2.72 g, 5.1 mmol) in 51% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 12.75 (s, 1H), 8.70 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.87 (ddd, *J* = 7.8, 3.9, 1.3 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.54 (td, *J* = 7.5, 1.3 Hz, 1H), 7.43 (td, *J* = 7.6, 1.3 Hz, 1H), 7.40-7.18 (m, 15H), 7.10 (ddd, *J* = 7.8, 3.9, 1.2 Hz, 1H), 7.02 (td, *J* = 7.7, 1.2 Hz, 1H), 5.75 (d, *J* = 7.9 Hz, 1H), 5.42 (ddd, *J* = 8.2, 6.9, 1.7 Hz, 1H), 3.52 (dd, *J* = 18.1, 6.9 Hz, 1H), 3.37 (dd, *J* = 17.9, 1.6 Hz, 1H).

³¹P NMR (162 MHz, CDCl₃) δ -7.84.

¹³C NMR (101 MHz, CDCl₃) δ 167.1, 163.9, 141.7, 141.5, 141.3, 139.9, 139.7, 139.1, 138.8, 138.6, 138.5, 138.1, 138.0, 134.8, 134.1, 133.9, 133.8, 133.6, 132.5, 129.0, 128.7, 128.4, 128.31, 128.27, 128.25, 128.22, 128.15, 127.49, 127.45, 127.41, 125.5, 125.0, 122.3, 120.0, 113.3, 81.7, 76.6, 39.8.

HRMS (ESI) m/z calcd. for $C_{35}H_{28}N_2O_2P [M+H]^+ 539.1883$, found 539.1884.

N-(2-((*3aR*,*8aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)-3-fluorophenyl)-2-(diphenylphosphanyl)benzamide (L3)

According to the general procedure with 2-amino-6-fluorobenzonitrile (1.36 g, 10 mmol, 1.0 equiv), (1R,2S)-1-amino-2-indanol (1.79 g, 12 mmol, 1.2 equiv), and 2-(diphenylphosphino)benzoic acid (6.12 g, 20 mmol, 2 equiv.), the reaction mixture was purified by column chromatography on silica gel to give the corresponding product L3 (2.50 g, 4.5 mmol) in 45% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 12.53 (s, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.74 (ddd, J = 7.7, 3.7, 1.3 Hz, 1H), 7.52 (td, J = 7.5, 1.3 Hz, 1H), 7.43 (td, J = 7.6, 1.3 Hz, 1H), 7.37-

7.12 (m, 13H), 7.08 (ddd, *J* = 7.8, 4.0, 1.2 Hz, 1H), 7.07-6.94 (m, 2H), 6.75 (ddd, *J* = 11.5, 8.3, 1.1 Hz, 1H), 5.65 (d, *J* = 8.0 Hz, 1H), 5.47 (ddd, *J* = 8.2, 6.7, 1.8 Hz, 1H), 3.49 (dd, *J* = 18.1, 6.7 Hz, 1H), 3.39 (dd, *J* = 18.2, 1.7 Hz, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -106.56; ³¹P NMR (162 MHz, CDCl₃) δ -7.61.

¹³C NMR (101 MHz, CDCl₃) δ 167.1, 162.8, 162.3, 162.2, 160.2, 141.3, 141.2, 140.9, 140.7, 140.6, 139.6, 138.8, 138.6, 137.9, 137.8, 137.7, 137.6, 134.6, 134.1, 133.88, 133.85, 133.7, 133.0, 132.9, 130.3, 128.6, 128.5, 128.33, 128.31, 128.28, 128.2, 128.12, 128.05, 127.4, 127.3, 127.20, 127.16, 125.5, 125.3, 125.2, 124.9, 115.99, 115.96, 110.6, 110.3, 103.3, 103.2, 82.4, 75.0, 39.7.

HRMS (ESI) m/z calcd. for C₃₅H₂₇FN₂O₂P [M+H]⁺ 557.1789, found 557.1788.

N-(2-((*3aR*,*8aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)-3-(trifluoromethyl)phenyl)-2-(diphenylphosphanyl)benzamide (L4)

According to the general procedure with 2-amino-6-trifluoromethylbenzonitrile (1.86 g, 20 mmol, 1.0 equiv), (IR,2S)-1-amino-2-indanol (1.79 g, 12 mmol, 1.2 equiv) and 2-(diphenylphosphino)benzoic acid (6.12 g, 20 mmol, 2 equiv.), the reaction mixture was purified by column chromatography on silica gel to give the corresponding product L4 (2.55 g, 4.2 mmol) in 42% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 10.81 (s, 1H), 8.44-8.40 (m, 1H), 7.58 (ddd, J = 7.5, 3.6, 1.6 Hz, 1H), 7.50-7.32 (m, 4H), 7.34-7.28 (m, 5H), 7.25-7.16 (m, 4H), 7.13-7.09 (m, 2H), 7.06-7.01 (m, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.77 (td, J = 7.6, 1.2 Hz, 1H), 5.72 (d, J = 7.8 Hz, 1H), 5.48 (ddd, J = 7.7, 5.6, 2.2 Hz, 1H), 3.49-3.39 (m, 2H).

¹⁹F NMR (376 MHz, CDCl₃): δ -58.86; ³¹P NMR (162MHz, CDCl₃): δ -7.52.

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 162.3, 141.0, 140.5, 140.3, 139.5, 138.7, 138.6, 138.4, 137.6, 137.5, 137.4, 134.53, 134.51, 134.2, 134.1, 134.0, 133.9, 131.1, 130.6, 130.0 (q, *J*_{C-F} = 31.8 Hz), 128.8, 128.7, 128.6, 128.5, 128.5, 128.3, 128.2, 127.5, 127.3, 127.2, 125.5, 124.7, 124.6, 123.6 (q, *J*_{C-F} = 272.1 Hz), 121.7 (q, *J*_{C-F} = 5.5 Hz), 114.3-114.2 (m, 1C), 83.8, 76.4, 39.0.

HRMS (ESI) m/z calcd. for C₃₆H₂₇F₃N₂O₂P [M+H]⁺ 607.1757, found 607.1759.

N-(2-((*3aR*,*8aS*)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)-3-(trifluoromethyl)phenyl)-2-(diphenylphosphoryl)benzamide (L5)

To a solution of L4 (303 mg, 0.5 mmol) in CH₂Cl₂ (2 mL) was added H₂O₂ (30 wt%, 95 μ L, 2.0 mmol). The reaction was kept at room temperature with stirring overnight. Water (20 mL) was added to the reaction mixture. The mixture was extracted with CH₂Cl₂ (20 × 5 mL). The organic layer was dried over Na₂SO₄ and filtered. The organic solvent was removed under vaccum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) to afford the product L5 (283 mg, 91% yield) as a white solid.

¹**H NMR (400 MHz, CDCl**₃) δ 10.62 (s, 1H), 7.99-7.86 (m, 2H), 7.78-7.60 (m, 4H), 7.52 (ddd, J = 7.3, 4.0, 1.5 Hz, 1H), 7.44-7.25 (m, 5H), 7.24-7.12 (m, 5H), 7.08 (td, J = 7.4, 3.1 Hz, 2H), 6.87 (dt, J = 8.2, 4.1 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 5.68 (d, J = 7.6 Hz, 1H), 5.48 (ddd, J = 7.5, 5.0, 2.3 Hz, 1H), 3.46 (t, J = 3.3 Hz, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -58.92; ³¹P NMR (162 MHz, CDCl₃) δ 29.95.

¹³C NMR (101 MHz, CDCl₃) δ 166.3, 166.2, 161.6, 141.0, 140.5, 140.4, 139.3, 137.9, 134.5, 134.4, 132.5, 132.4, 132.14, 132.11, 132.0, 131.9, 131.8, 131.6, 131.5, 131.39, 131.37, 131.2, 131,1, 130.9, 130.5, 130.0, 129.90, 129.85, 129.5, 128.8, 128.2, 128.1, 127.90, 127.86, 127.8, 127.6, 125.3, 124.6, 124.4, 122.0, 121.9-121.6 (m, 1C), 115.0, 83.9, 76.2, 38.8.

HRMS (ESI) m/z calcd. for C₃₆H₂₇F₃N₂O₃P [M + H]⁺ 623.1708, found 623.1706.

L6, Ar = $3,5^{-t}Bu_2C_6H_3$

Under argon atmosphere, a dry 100mL Schlenk flask equipped with a magnetic stir bar was charged with 2-aminobenzonitrile (0.71 g, 6 mmol, 1 equiv.), (S)-2-amino-3,3-diphenylpropan-1-ol (2.05 g, 9 mmol, 1.5 equiv), dry $ZnCl_2$ (1.64 g, 12 mmol, 2 equiv.), and 20 mL of chlorobenzene, then reflux the reaction mixture for 3 d, Upon completion (monitored by TLC), Dissolve the residue in H₂O, EA and 2 mL ethylenediamine. Extract the mixture with EA. Remove the solvent under vacuum to obtain the crude red

oil. Purify the crude red oil by silica gel. to obtain (S)-2-(4-benzhydryl-4,5-dihydrooxazol-2-yl)aniline (1.41 g, 4.3 mmol) in 72% isolated yield.

Under argon atmosphere, to a solution of (*S*)-2-(4-benzhydryl-4,5-dihydrooxazol-2-yl) aniline (0.492 g, 1.5 mmol, 1 equiv.) in anhydrous DCM (10 mL) was added 2-(bis(3,5-di-tert-butylphenyl)phosphanyl) benzoic acid (0.83 g, 1.6 mmol, 1.1 equiv.), 4-dimethylaminopyridine (0.55 g, 4.5 mmol, 3 equiv.) and 1-(3-dimethylaminopropyl) - 3-ethylcarbodiimide hydrochloride (0.89 g, 4.5 mmol, 3 equiv.). The reaction mixture was stirred at ambient temperature for 24 h, concentrated and purified by flash chromatography (PE/ EA 8/1) to provide the chiral ligand L6 (0.64 g, 0.77 mmol) as a white solid in 51% isolated yield.

(S)-N-(2-(4-benzhydryl-4,5-dihydrooxazol-2-yl)phenyl)-2-(bis(3,5-di-tertbutylphenyl)phosphanyl)benzamide (L6)

L6, Ar = $3,5^{-t}Bu_2C_6H_3$

¹**H NMR (400 MHz, CDCl₃)** δ 12.21 (s, 1H), 8.50 (dd, J = 8.6, 1.1 Hz, 1H), 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.39 (ddd, J = 7.8, 3.7, 1.3 Hz, 1H), 7.33 (tq, J = 4.3, 1.8 Hz, 3H), 7.28-7.11 (m, 12H), 7.05-6.91 (m, 6H), 5.14 (td, J = 9.3, 7.5 Hz, 1H), 4.30 (t, J = 9.1 Hz, 1H), 4.05 (dd, J = 8.7, 7.5 Hz, 1H), 3.98 (d, J = 9.2 Hz, 1H), 1.20 (d, J = 8.4 Hz, 36H). ³¹**P NMR (162 MHz, CDCl₃)** δ -4.35.

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 164.2, 150.08, 150.05, 150.02, 149.98, 141.8, 141.5, 139.9, 134.2, 132.4, 129.6, 128.8, 128.7, 128.4, 128.31, 128.29, 128.2, 128.1, 127.0, 126.7 126.4, 122.3, 122.2, 122.1, 120.3, 113.3, 70.1, 70.1, 56.7, 34.8, 34.7, 31.33, 31.31.

HRMS (ESI) m/z calcd. for C₅₇H₆₆N₂O₂P [M+H]⁺ 841.4856, found 841.4849.

(S)-N-(2-(4-benzhydryl-4,5-dihydrooxazol-2-yl)phenyl)-2-(bis(3,5-di-tertbutylphenyl)phosphoryl)benzamide (L7)

L7, Ar = $3, 5^{-t}Bu_2C_6H_3$

The ligand L7 (77.1 mg, 0.09 mmol) from L6 (85.0 mg, 0.1 mmol) was obtained in 90% isolated yield following the same procedure as the preparation of L5

¹**H NMR (400 MHz, CDCl₃)** δ 11.95 (s, 1H), 8.04-7.93 (m, 1H), 7.77-7.69 (m, 2H), 7.61 (dd, J = 19.6, 13.1Hz, 4H), 7.46 (dd, J = 11.7, 8.5 Hz, 3H), 7.37-7.31 (m, 1H), 7.30-7.26 (m, 1H), 7.25-7.13 (m, 9.6 H), 7.07-6.99 (m, 3H), 6.96 (t, J = 7.6 Hz, 1H), 5.18 (q, J = 8.0 Hz, 1H), 4.31 (t, J = 9.1 Hz, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.96 (d, J = 9.7 Hz, 1H), 1.20 (d, J = 2.1 Hz, 36H). ³¹**P NMR (162 MHz, CDCl₃)** δ 32.34.

¹³C NMR (101 MHz, CDCl₃) δ 166.3, 166.28, 164.1, 150.3, 150.1, 142.0, 141.7, 140.5, 140.4, 139.3, 135.1, 135.0, 133.3, 132.7, 132.5, 132.4, 132.1, 131.8, 131.8, 131.7, 131.5, 129.7, 129.6, 128.8, 128.8, 128.4, 128.3, 128.2, 127.1, 127.0, 126.8, 126.6, 126.3, 126.3, 126.2, 126.2, 125.5, 122.4, 120.4, 113.7, 70.3, 70.2, 56.8, 34.9, 31.3.

HRMS (ESI) m/z calcd. for C₅₇H₆₆N₂O₃P [M+H]⁺ 857.4806, found 857.4795.

The synthesis of $C(sp^3)$ -H substrates

In a 100 mL round-bottomed flask, to a solution of 6,7-dimethoxy-3,4dihydronaphthalen-1(2H)-one (1.03 g, 5 mmol) and aluminium trichloride (2.0 g, 15 mmol) in THF (30 mL), sodium borohydride (0.95 g, 25 mmol) was added at 0 °C under Ar atmosphere. The resulting solution was heated to reflux overnight. The reaction was slowly quenched with saturated aqueous NH₄Cl. The aqueous phase was extracted with ethyl acetate, then the combined organic layer was dried over MgSO₄ and then concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel (PE:EA=20:1) to afford the target compound **S5** (0.53 g, 55% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 6.56 (s, 2H), 3.84 (s, 6H), 2.67-2.70 (m, 4H), 1.87-1.70 (m, 4H);

¹³C NMR (101 MHz, CDCl₃) δ 146.9, 128.8, 112.0, 55.9, 29.0, 23.4.

1-(3-ethylphenyl)-1*H*-pyrazole (S13)

To an oven-dried flask were added Cu₂O (143 mg, 1 mmol), Cs₂CO₃ (6.52 g, 20 mmol) and pyrazole (0.68 g, 10 mmol). Under argon atmosphere, 1-bromo-3-ethylbenzene (2.76 g, 15 mmol) was added followed by anhydrous DMF (20 mL). The flask was sealed and heated up to 110 °C with stirring. After 20 h, the reaction mixture was cooled to room temperature and diluted with dichloromethane. The resulting solution was filtered through a pad of silica gel and the solvent was removed under reduced pressure. The residue was then diluted with EtOAc and washed with water, and the organic phase was dried over MgSO₄, filtered and concentrated in vaccum. The crude residue was purified by silica column chromatography to afford the target compound **S13** (0.95 g, 5.5 mmol, 55% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.91 (d, J = 2.4 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 7.46 (dd, J = 8.0, 1.3 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.17-7.05 (m, 1H), 6.52-6.31 (m, 1H), 2.71 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.8, 140.8, 140.2, 129.2, 126.7, 126.0, 118.9, 116.4, 107.4, 28.8, 15.4.

Methyl 3-(3,4-dimethoxyphenyl)propanoate (S15)

To a solution of substituted 3-(3,4-dimethoxyphenyl)propanoic acid (2.10 g, 10 mmol) in methanol (30 mL) was added thionyl chloride (3.6 mL, 50 mmol) dropwise. After completion of addition, the reaction mixture was stirred for another 2 h under reflux condition. After completion of reaction, the reaction mixture was poured into water, extracted with ethyl acetate. The extract was washed with water, brine solution, dried over MgSO4 and concentrated. The crude compound was subjected to column chromatography on silica gel to afford methyl 3-(3,4-dimethoxyphenyl)propanoate (**S15**) with 80% yield.

¹**H NMR (400 MHz, CDCl₃)** δ 6.79 (m, 1H), 6.74 (m, 2H), 3.86 (d, *J* = 6.2 Hz, 6H), 3.67 (s, 3H), 2.90 (t, *J* = 7.8 Hz, 2H), 2.61 (t, *J* = 8.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 148.7, 147.4, 133.0, 120.0, 111.5, 111.2, 55.8, 55.7, 51.5, 35.9, 30.5.

4-(3-chloropropyl)-1,2-dimethoxybenzene (S16)

LiAlH₄ (3.0 g, 80 mmol) was added slowly to the THF (80 ml) solution of 3-(3,4dimethoxyphenyl)propanoic acid (8.4 g, 40 mmol) at 0 °C and then the solution was stirred for 2 h at room temperature. After that, a solution of NaOH (10% in water) was added carefully until a white solid precipitated. After filtration over MgSO₄ and evaporation of the solvent the crude 3-(3,4-dimethoxyphenyl)propan-1-ol was obtained in quantitative yields.

To a stirred solution of 3-(3,4-dimethoxyphenyl)propan-1-ol (3.92 g, 10 mmol) in dry CH₂Cl₂ (20 mL) was added Et₃N (2.76 ml, 20 mmol). The mixture was cooled to 0 °C, and mesyl chloride (0.98 ml, 12 mmol) was slowly added. The mixture was stirred overnight at rt. The reaction mixture was then concentrated to remove MsCl, and then LiCl (2.1 g, 50 mmol) and acetone (30 ml) were added. The resulting mixture was stirred at 50 °C for 4 h. The residue was purified by flash column chromatography on silica gel to afford **S16** (52% yield for two steps, 1.11 g).

¹H NMR (400 MHz, CDCl₃) δ 6.85-6.75 (m, 1H), 6.75-6.65 (m, 2H), 3.85 (d, J = 8.6 Hz, 6H), 3.26 (t, J = 6.8 Hz, 2H), 2.64 (dd, J = 8.2, 6.8 Hz, 2H), 1.93-1.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 147.1, 133.1, 120.0, 111.2, 111.0, 55.6, 55.5, 50.3, 32.0, 30.3.

4-(3-azidopropyl)-1,2-dimethoxybenzene (S17)

The product **S16** (48% yield two steps) was obtained following the same procedure as **S15**. The reaction mixture was then concentrated to remove MsCl, and then NaN₃ (3.2 g, 50 mmol) and DMF (30 ml) were added. The resulting mixture was stirred at rt for 4 h. The residue was purified by flash column chromatography on silica gel to afford **S17** (48% yield two steps).

¹H NMR (400 MHz, CDCl₃) δ 6.85-6.78 (m, 1H), 6.74 (d, J = 7.2 Hz, 2H), 3.87 (d, J = 7.5 Hz, 6H), 3.53 (t, J = 6.5 Hz, 2H), 2.79-2.67 (m, 2H), 2.13-2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 147.2, 133.1, 120.2, 111.7, 111.2, 55.8, 55.7, 44.1, 34.0, 32.2.

9-ethylphenanthrene (S22)

In a 100 mL round-bottomed flask, to a suspension of methyltriphenylphosphonium bromide (4.29 g, 12 mmol) in THF (20 mL) were added *n*-BuLi (2.4 M in *n*-hexane) (5 mL, 12 mmol) at 0 °C, and the resulting mixture was stirred at ambient temperature for 1 h. Then 9-phenanthrenecarbaldehyde (2.06 g, 10 mmol) was added and stirred for 5 h at rt. The mixture was quenched with saturated aqueous NH4Cl and extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford olefin (82% yield, 1.38 g).

The olefin (1.38 g, 8.2 mmol) and 10 % Pd/C (138 mg, 10 wt % of the substrate) in MeOH (20 mL) in a 100 mL flask was stirred under atmospheric (balloon) H₂ pressure at 25 °C for 6 h. Filter the catalyst on filter paper and wash the catalyst with ethanol. The residue was purified by flash column chromatography on silica gel to afford **S22** (99% yield, 1.38 g).

¹**H NMR (400 MHz, CDCl₃)** δ 8.78-8.70 (m, 1H), 8.65 (dd, *J* = 7.4, 1.9 Hz, 1H), 8.17-8.08 (m, 1H), 7.87-7.80 (m, 1H), 7.69-7.53 (m, 5H), 3.16 (q, *J* = 7.5 Hz, 2H), 1.45 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.2, 132.0, 131.3, 130.6, 129.6, 128.0, 126.5, 126.5, 126.1, 125.8, 124.9, 124.3, 123.2, 122.4, 26.1, 14.5.

1-isopentyl-4-methoxybenzene (S52)

The substrate **S52** (64% yield two steps) was obtained following the same procedure as **S22**.

¹**H** NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 2.61-2.50 (m, 2H), 1.57 (dp, J = 13.1, 6.6 Hz, 1H), 1.52-1.43 (m, 2H), 0.92 (d, J = 6.5 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6, 135.2, 129.2, 113.7, 55.2, 41.1, 32.8, 27.6, 22.5.

2-(pent-1-en-1-yl)naphthalene (S38) (E:Z = 2:1)

In a 250 mL round-bottomed flask, to a suspension of butyltriphenylphosphonium bromide (9.65 g, 24 mmol) in THF (40 mL) were added *n*-BuLi (2.4 M in *n*-hexane) (10 mL, 24 mmol) at 0 °C, and the resulting mixture was stirred at ambient temperature for 1 h. Then, 2-naphthaldehyde (3.12 g, 20 mmol) was added and stirred for 5 h in room temperature. The mixture was quenched with saturated aqueous NH₄Cl and extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **S38** (68% yield, 2.66 g).

¹**H** NMR (400 MHz, CDCl₃) δ 7.83-7.72 (m, 3.36H), 7.69 (s, 1H), 7.57 (dd, J = 8.5, 1.8 Hz, 0.67H), 7.48-7.36 (m, 2.33H), 6.63-6.46 (m, 1H), 6.41 (dt, J = 15.8, 6.9 Hz, 0.66H), 5.81 (dt, J = 11.6, 7.2 Hz, 0.33H)., 2.39 (qd, J = 7.3, 1.9 Hz, 0.69H), 2.24 (qd, J = 7.1, 1.4 Hz, 1.31H), 1.52 (m, 2H), 0.96 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 33.7, 133.5, 132.6, 131.5, 123.0, 128.9, 128.0, 127.9, 127.8, 127.59, 127.55, 127.50, 127.4, 127.3, 126.1, 126.0, 125.6, 125.4, 125.2, 123.6, 35.3, 30.8, 23.2, 22.6, 13.9, 13.8.

9-(pent-1-en-1-yl)phenanthrene (S39) (E:Z = 1:3)

The product **S39** (71% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 8.82-8.65 (m, 2H), 8.25-8.22 (m, 0.25H), 8.15-8.13 (m, 0.75H), 7.93-7.90 (m, 1H), 7.83 (s, 0.25H), 7.74-7.60 (m, 4.75H), 7.16 (dq, J = 11.6, 1.6 Hz, 0.25H), 6.94 (dq, J = 11.6, 1.6 Hz, 0.75H), 6.37 (dt, J = 15.6, 6.8 Hz, 0.25H), 6.05 (dt, *J* = 15.6, 6.8 Hz, 0.75H), 2.40 (qd, *J* = 7.4, 1.6 Hz, 0.5H), 2.26 (qd, *J* = 7.4, 1.6 Hz, 1.5H), 1.72-1.62 (m, 0.5H), 1.60-1.43 (m, 1.5H), 1.10 (t, *J* = 7.4 Hz, 0.75H), 0.92 (t, *J* = 7.4 Hz, 2.25H).

¹³C NMR (101 MHz, CDCl₃) δ 134.8(1), 134.8(0), 134.7, 133.5, 132.1, 131.7, 131.5, 130.9, 130.4, 129.9(9), 129.9, 128.52, 128.50, 127.7, 127.3, 126.9, 126.7, 126.6(6), 126.5, 126.5, 126.4, 126.3(6), 126.3(1), 126.2, 125.8, 124.9, 124.3, 123.0, 122.9, 122.5(4), 122.5(1), 35.5, 30.8, 23.0, 22.6, 13.8(8), 13.8(6).

1-chloro-3-(pent-1-en-1-yl)benzene (S41) (E/Z = 1/1.3)

The product **S41**(71% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.34-7.21 (m, 1.6H), 7.21-7.11 (m, 2.4H), 6.39-6.28 (m, 1H), 6.23 (dt, *J* = 15.8, 6.5 Hz, 0.41H), 5.70 (dt, *J* = 11.7, 7.3 Hz, 0.52H), 2.28 (qd, *J* = 7.3, 1.9 Hz, 1.12H), 2.18 (q, *J* = 7.1 Hz, 0.86H), 1.53-1.44 (m, 2H), 0.96-0.91 (m, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 139.8, 139.6, 134.4, 133.9, 132.6, 129.6, 129.3, 128.7, 128.6, 127.6, 126.9, 126.7, 126.4, 125.8, 124.1, 30.6, 23.0, 22.4, 13.8, 13.7.

2-(but-1-en-1-yl)naphthalene (S42) (E:Z = 2:1)

The product **S42** (77% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.78 (m, 3H), 7.69 (d, *J* = 14.9 Hz, 1H), 7.62-7.53 (m, 1H), 7.49-7.37 (m, 2H), 6.54 (d, *J* = 16.2 Hz, 1H), 6.40 (dt, *J* = 16.0, 6.4 Hz, 0.68H), 5.74 (dt, *J* = 11.7, 7.2 Hz, 0.32H), 2.43 (tt, *J* = 9.4, 6.7 Hz, 0.67H), 2.29 (tt, *J* = 7.4, 1.4 Hz, 1.33H), 1.12 (dt, *J* = 14.1, 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 135.4, 135.2, 133.7, 133.1, 132.6, 128.9, 128.3, 128.0, 127.9, 127.8, 127.6, 127.54, 127.52, 127.3, 127.2, 126.1, 126.0, 125.6, 125.4, 125.3, 123.6, 26.2, 22.1, 14.5, 13.7.

1-(but-1-en-1-yl)-3-methoxybenzene (S43) (E:Z = 1:1)

The product **S43** (83% yield) was obtained following the same procedure as **S38**. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 15.3, 7.7 Hz, 1H), 6.97 (d, J = 7.7 Hz, 0.5H), 6.94-6.88 (m, 1H), 6.84 (s, 0.5H), 6.83-6.74 (m, 1H), 6.36 (m, 1H), 6.29 (dt, J = 15.8, 6.1 Hz, 0.5H), 5.68 (dt, J = 11.6, 7.3 Hz, 0.5H), 3.84 (s, 3H), 2.38 (pd, J = 7.5, 1.8 Hz, 1H), 2.26 (qd, J = 7.4, 6.0 Hz, 1H), 1.10 (dt, J = 12.0, 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 159.4, 139.4, 139.1, 135.0, 133.0, 129.4, 129.1, 128.7, 128.1, 121.3, 118.6, 114.3, 112.4, 112.0, 111.2, 55.2, 26.0, 22.0, 14.5, 13.6.

1-(but-1-en-1-yl)-3-methoxybenzene (S44) (E:Z = 1.2:1)

S44

The product S44 (86% yield) was obtained following the same procedure as S38.

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, J = 7.7 Hz, 1H), 7.28-7.16 (m, 1H), 6.99-6.85 (m, 2H), 6.77-6.68 (d, J = 15.9 Hz, 0.55H), 6.52 (d, J = 11.6 Hz, 0.45H), 6.28 (dt, J = 15.9, 6.6 Hz, 0.55H), 5.74 (dt, J = 11.5, 7.3 Hz, 0.45H), 3.87 (d, J = 3.4 Hz, 3H), 2.36-2.23 (m, 2H), 1.10 (dt, J = 22.0, 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.0, 156.3, 134.6, 133.4, 130.0, 128.0, 127.8, 127.0, 126.5, 126.4, 123.6, 123.3, 120.6, 120.0, 110.8, 110.4, 55.44, 55.42, 26.5, 22.0, 14.4, 13.8.

3-(pent-1-en-1-yl)furan (S45) (E:Z = 1:1.5)

The product S45 (58% yield) was obtained following the same procedure as S38.

¹**H** NMR (400 MHz, CDCl₃) δ 7.48-7.28 (m, 2H), 6.48 (d, J = 18.8, Hz, 1H), 6.28-6.08 (m, 1H), 5.94 (dt, J = 15.7, 6.9 Hz, 0.38H), 5.57 (dt, J = 11.4, 7.1 Hz, 0.62H), 2.25 (qd, J = 7.2, 1.8 Hz, 1.27H), 2.13 (qd, J = 7.2, 1.5 Hz, 0.73H), 1.48 (m, 2H), 0.95 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.2, 142.6, 140.8, 139.3, 132.0, 130.6, 119.3, 118.7, 111.0, 107.6, 35.0, 31.3, 22.7, 22.5, 13.9, 13.7.

2-(pent-1-en-1-yl)thiophene (S46) (E:Z = 1:2)

The product **S46** (61% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.27 (dd, J = 4.9, 2.9 Hz, 0.57H), 7.24 (dd, J = 5.0, 2.9 Hz, 0.37H), 7.18 (dd, J = 5.0, 1.3 Hz, 0.33H), 7.15 (m 0.60H), 7.10 (dd, J = 4.9, 1.3 Hz, 0.62H), 7.04 (dd, J = 3.0, 1.2 Hz, 0.33H), 6.43–6.28 (m, 1H), 6.08 (dt, J = 15.9, 7.0 Hz, 0.33H), 5.61 (dt, J = 11.5, 7.1 Hz, 0.68H), 2.33 (qd, J = 7.2, 1.9 Hz, 1.27H), 2.15 (qd, J = 7.2, 1.5 Hz, 0.73H), 1.48 (m, 2H), 0.95 (q, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 131.0, 128.6, 125.7, 125.0, 124.8, 124.2, 123.0, 122.5, 120.3, 35.0, 31.2, 22.9, 22.5, 13.9, 13.7.

2-methoxy-6-(pent-1-en-1-yl)naphthalene (S48) (E:Z = 1.5:1)

The product **S48** (91% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.77-7.65 (m, 3H), 7.61 (dd, J = 8.6, 1.7 Hz, 0.6H), 7.47 (dd, J = 8.6, 1.7 Hz, 0.33H), 7.23-7.12 (m, 2H), 6.65-6.52 (m, 1H), 6.36 (dt, J = 15.4, 6.9Hz, 0.62H), 5.77 (dt, J = 11.7, 7.3Hz, 0.38H), 3.96 (d, J = 4.0 Hz, 3H), 2.46 (qd, J = 7.3, 1.8 Hz, 1H), 2.30 (qd, J = 7.3, 1.4 Hz, 1H), 1.59 (m, 2H), 1.04 (m, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 157.6, 157.4, 133.7, 133.3, 133.2, 132.8, 130.3, 123.0, 129.4, 129.3, 129.1, 128.9, 128.8, 127.8, 127.2, 126.9, 126.4, 125.1, 124.1, 118.80, 118.76, 105.8, 105.6, 55.24, 55.21, 35.2, 30.8, 23.2, 22.6, 13.9, 13.8.

1-(but-1-en-1-yl)-3-methylbenzene (S56) (E:Z = 2:1)

The product **S56** (71% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.24-7.12 (m, 2.33H), 7.10-7.05 (m, 0.67H), 7.05-6.97 (m, 1H), 6.38-6.30 (m, 1H), 6.25 (dt, *J* = 15.8, 6.2 Hz, 0.67H), 5.63 (dt, *J* = 11.6, 7.3 Hz, 0.33H), 2.34 (d, *J* = 6.8 Hz, 3.5H), 2.26-2.18 (m, 1.5H), 1.07 (dt, *J* = 11.6, 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.0, 137.9, 137.7, 137.6, 134.6, 132.4, 129.5, 128.8, 128.4, 128.3, 128.0, 127.5, 127.2, 126.6, 125.8, 123.1, 26.1, 22.0, 21.4, 21.4, 14.5, 13.7.

1-(but-1-en-1-yl)-4-isopropylbenzene (S57) (E:Z = 1.5:1)

The product **S57** (73% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.38-7.32 (m, 1H), 7.32-7.24 (m, 2H), 7.24-7.20 (m, 1H), 6.43 (d, *J* = 14.2 Hz, 1H), 6.29 (dt, *J* = 15.8, 6.4 Hz, 0.6H), 5.68 (dt, *J* = 11.6, 7.2 Hz, 0.4H), 2.95 (dq, *J* = 14.1, 6.9 Hz, 1H), 2.43 (pd, *J* = 7.4, 1.8 Hz, 1H), 2.35-2.23 (m, 1H), 1.32 (dd, *J* = 6.9, 6.2 Hz, 6H), 1.14 (q, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.5, 147.1, 135.6, 135.3, 134.0, 131.7, 128.7, 128.6, 128.1, 126.5, 126.1, 125.8, 33.8, 33.8, 26.1, 24.0, 22.0, 14.5, 13.7.

1-(but-1-en-1-yl)-4-ethylbenzene (S58) (E:Z = 1.5:1)

The product **S58** (62% yield) was obtained following the same procedure as **S38**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.33-7.21 (m, 2.2H), 7.17 (dt, *J* = 3.8, 1.7 Hz, 0.8H), 7.11 (m, 1H), 6.48-6.39 (m, 1H), 6.32 (dt, *J* = 15.8, 6.3 Hz, 0.6H), 5.70 (dt, *J* = 11.6, 7.3 Hz, 0.4H), 2.70 (p, *J* = 7.4 Hz, 2H), 2.42 (pd, *J* = 7.5, 1.8 Hz, 1.2H), 2.29 (m, 0.8H), 1.30 (dt, *J* = 7.6, 3.0 Hz, 3H), 1.14 (dt, *J* = 11.3, 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 144.0, 137.9, 137.7, 134.5, 132.4, 128.9, 128.42, 128.38, 128.32, 128.0, 126.4, 126.02, 126.01, 125.5, 123.3, 28.9, 26.1, 22.0, 15.7, 15.6, 14.5, 13.7.

4-ethylbenzyl acetate (S54)

A mixture of substituted (4-ethylphenyl)methanol (1.0 g, 7.34 mmol) and trimethylamine (3.18 mL, 23 mmol) in dichloromethane (20 mL) was treated slowly with acetyl chloride (0.57 mL, 8 mmol) drop wise at 0 °C. After completion of addition, the reaction mixture was stirred for another 2 h at rt. After completion of reaction, the reaction mixture was poured into water (50 mL), extract with DCM. The extract was washed with water, brine solution, dried over MgSO4 and concentrated. The crude compound was subjected to column chromatography on silica gel to obtained 4-ethylbenzyl acetate **S54** with 74% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 2.65 (q, J = 7.6 Hz, 2H), 2.09 (s, 3H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 144.5, 133.1, 128.5, 128.1, 66.3, 28.6, 21.0,

1-(but-3-en-1-yl)-4-methoxybenzene (\$55)

15.5.

In a 50 mL round-bottomed flask, to a suspension of 1-(chloromethyl)-4methoxybenzene (1.57 g, 10 mmol, 1.0 equiv.) in THF (10 mL) were added allylmagnesium bromide (1.0 M in Et₂O) (20 mL, 2.0 equiv.) at -78 °C, and the resulting mixture was stirred at low temperature for 1 h. Then, stir overnight at room temperature. The mixture was quenched with saturated aqueous NH4Cl and extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **S55** (61% yield, 1.0 g).

¹**H NMR (400 MHz, CDCl₃)** δ 7.17-7.06 (m, 2H), 6.89-6.77 (m, 2H), 5.85 (m, 1H), 5.10-4.91 (m, 2H), 3.78 (s, 3H), 2.65 (t, *J* = 8.9 Hz, 2H), 2.34 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.7, 138.2, 134.0, 129.3, 114.8, 113.7, 55.2, 35.8, 34.5.

5-isopropyl-2-methylphenyl-3-(3,4-dimethoxyphenyl)propanoate (S61)

A 100 mL round-bottom flask was charged with 3-(3,4-dimethoxyphenyl)propanoic acid (1.05 g, 5 mmol), dry DCM (30 mL) and catalytic amount of DMF. The reaction mixture was cooled to 0 °C and stirred for 5 minutes. And then (COCl)₂ (0.85 mL, 10 mmol) was added dropwise to the reaction mixture and stirred at room temperature for 4 h. then concentrated to obtain the acyl chloride crude product.

A mixture of carvacrol (0.75 g, 5 mmol) and trimethylamine (1.4 mL, 10 mmol) in DCM (20 mL) was treated slowly with the acyl chloride crude product at 0 °C. After completion of addition, the reaction mixture was stirred for another 2 h at rt. After completion of reaction, the reaction mixture was poured into water, extract with DCM. The extract was washed with water, brine solution, dried over MgSO₄ and concentrated. The crude compound was subjected to column chromatography on silica gel to obtained **S61** (1.40 g, 4.1 mmol) in 82% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.04 (d, *J* = 7.8 Hz, 1H), 6.92 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.75 (d, *J* = 1.0 Hz, 2H), 6.73 (d, *J* = 1.2 Hz, 1H), 6.69 (d, *J* = 1.8 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 2.97 (t, *J* = 7.4 Hz, 2H), 2.88-2.67 (m, 3H), 1.97 (s, 3H), 1.14 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.2, 149.1, 148.9, 148.0, 147.6, 132.8, 130.8, 127.1, 124.1, 120.2, 119.6, 111.7, 111.3, 55.9, 55.8, 36.0, 33.5, 30.6, 23.8, 15.6.

(*1R*,*2R*,*5S*)-2-isopropyl-5-methylcyclohexyl 3-(3,4-dimethoxyphenyl) propanoate (S62)

The product S62 (2.85 g, 8.2 mmol, 82% yield) was obtained from 3-(3,4-dim ethoxyphenyl)propanoic acid (2.10 g, 10 mmol) and L-menthol (1.56 g, 10 mm ol) following the same procedure as S61.

¹**H NMR (400 MHz, CDCl₃)** δ 6.82-6.70 (m, 3H), 4.67 (td, *J* = 10.9, 4.4 Hz, 1H), 3.86 (d, *J* = 6.0 Hz, 6H), 2.90 (t, *J* = 7.7 Hz, 2H), 2.59 (dd, *J* = 8.4, 7.0 Hz, 2H), 1.97-1.91

(m, 1H), 1.78-1.61 (m, 3H), 1.37-1.29 (m, 1H), 1.03 (qd, *J* = 13.3, 12.6 Hz, 1H), 0.98-0.81 (m, 8H), 0.70 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 133.2, 120.1, 111.6, 111.2, 74.2, 55.9, 55.80, 47.0, 41.0, 36.5, 34.3, 31.4, 30.7, 26.2, 23.4, 22.0, 20.8, 16.3.

(*1R*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl-5-ethyl-2-methoxybenzoate (S63)

The product S63 (0.39 g, 1.23 mmol, 85% yield) was obtained from 5-ethyl-2methoxybenzoic acid (0.271 g, 1.5 mmol) and (+)-Borneol (0.23 g, 1.5 mmol) following the same procedure as S61.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62 (d, J = 2.4 Hz, 1H), 7.39-7.12 (m, 1H), 6.90 (d, J = 8.5 Hz, 1H), 5.10 (ddd, J = 9.9, 3.5, 2.1 Hz, 1H), 3.87 (s, 3H), 2.62 (q, J = 7.6 Hz, 2H), 2.52-2.36 (m, 1H), 2.15 (ddd, J = 12.5, 9.0, 4.4 Hz, 1H), 1.85-1.64 (m, 2H), 1.41-1.26 (m, 2H), 1.23 (t, J = 7.6 Hz, 3H), 1.13 (dd, J = 13.8, 3.5 Hz, 1H), 0.96 (s, 3H), 0.92 (s, 3H), 0.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 157.3, 135.8, 132.5, 130.6, 120.6, 112.1, 80.4, 56.0, 48.9, 47.8, 45.0, 36.9, 28.0, 27.7, 27.3, 19.7, 18.9, 15.6, 13.6.

2-(4-ethyl-2-methoxyphenoxy)-6-fluoropyridine (864)

A mixture of substituted 4-ethyl-2-methoxyphenol (1.62 mL, 10 mmol) and KOH (560 mg, 10 mmol) in DMF (5 mL) was treated slowly with 2,6-difluoropyridine (1.0 mL, 10 mmol) drop wise. After completion of addition, the reaction mixture was stirred for another 20 h at 110 °C. After completion of reaction, , the reaction mixture was poured into water, extract with ethyl acetate. The extract was washed with water, brine solution, dried over MgSO4 and concentrated. The crude compound was subjected to column chromatography on silica gel to obtained 2-(4-ethyl-2-methoxyphenoxy)-6-fluoropyridine (**S64**) in 35% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (q, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.89-6.75 (m, 2H), 6.68 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.54 (dd, *J* = 7.8, 2.7 Hz, 1H), 3.76 (s, 3H), 2.66 (q, *J* = 7.6 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H).

¹⁹F NMR (**376** MHz, CDCl₃) δ -68.59.

¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, $J_{C-F} = 240.3$ Hz), 162.8 (d, $J_{C-F} = 67.6$ Hz),

151.3, 143.1 (d, $J_{C-F} = 7.9$ Hz), 142.7, 139.8, 122.6, 120.2, 112.7, 106.4 (d, $J_{C-F} = 5.1$ Hz), 102.0, 101.7, 55.9, 28.8, 15.5.

Asymmetric oxidative radical C(sp³)-H/C(sp)-H cross-coupling

General procedure A:

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 10 mol%), L4 (9.2 mg, 0.015 mmol, 15 mol%), alkyne (0.10 mmol, 1.0 equiv., if solid), $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if solid), N-F-2 (90.0 mg, 0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (130.4 mg, 0.40 mmol, 4.0 equiv.), The tube was evacuated and backfilled with argon for three times, anhydrous PhCl (0.8 mL), alkyne (0.10 mmol, 1.0 equiv., if liquid) and $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if liquid) were added into the mixture and the reaction mixture was stirred at 0 °C for 5-7 d. Upon alkyne completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure B:

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 10 mol%), L4 (9.2 mg, 0.015 mmol, 15 mol%), alkyne (0.10 mmol, 1.0 equiv., if solid), $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if solid), N-F-2 (90.0 mg, 0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (130.4 mg, 0.40 mmol, 4.0 equiv.), The tube was evacuated and backfilled with argon for three times, anhydrous PhCl (0.8 mL), alkyne (0.10 mmol, 1.0 equiv., if liquid) and $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if liquid) were added into the mixture and the reaction mixture was stirred at -15 °C under irradiation of blue LED (24 W) for 10 d. Upon alkyne completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure C:

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(MeCN)4BF4 (3.2 mg, 0.010 mmol, 10 mol%), L4 (9.2 mg, 0.015 mmol, 15 mol%),

alkyne (0.10 mmol, 1.0 equiv., if solid), $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if solid), N-F-2 (90.0 mg, 0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (130.4 mg, 0.40 mmol, 4.0 equiv.), The tube was evacuated and backfilled with argon for three times, anhydrous PhCl (0.8 mL), alkyne (0.10 mmol, 1.0 equiv., if liquid) and $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if liquid) were added into the mixture and the reaction mixture was stirred at 0 °C for 5–7 d. Upon alkyne completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D:

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added CuTc (1.9 mg 10 mol%), **L6** (15.1 mg, 18 mol%), alkyne (0.10 mmol, 1.0 equiv., if solid), $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if solid), **N-F-2** (90 mg, 0.3 mmol), and Rb₂CO₃ (116 mg, 0.5 mmol). The tube was evacuated and backfilled with argon for three times, alkyne (0.10 mmol, 1.0 equiv., if liquid) and $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if liquid) and $C(sp^3)$ -H substrate (1.0 mmol, 10 equiv., if liquid) and the reaction mixture was filtered through a short celite. The filtrate solvent was removed under reduced pressure, and the residue was purified by column chromatography to afford the desired product.

(S)-4-((1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)benzonitrile (3)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1,2,3,4-tetrahydronaphthalene (136 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **3** (17.2 mg) in 62% isolated yield.

Procedure for large-scale synthesis:

To a flame-dried Schlenk tube equipped with a magnetic stir bar were charged with

CuTc (152 mg, 0.8 mmol, 10 mol%), L4 (736 mg, 1.2 mmol, 15 mol%), 4cyanophenylacetylene (1.0160 g, 8 mmol, 1.0 equiv.), N-F-2 (7.21 g, 24 mmol, 3.0 equiv.) and Cs₂CO₃ (10.4 g, 32 mmol, 4.0 equiv.), The tube was evacuated and backfilled with argon for three times, anhydrous PhCl (64 mL) and 1,2,3,4tetrahydronaphthalene (10.9 mL, 80 mmol, 10 equiv.) were added into the mixture and the reaction mixture was stirred at 0 °C for 12 d. Upon alkyne completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **3** (1.52 g, 5.92 mmol) in 74% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.58-7.54 (m, 2H), 7.50-7.45 (m, 3H), 7.21-7.15 (m, 2H), 7.14-7.08 (m, 1H), 4.04 (t, *J* = 6.4 Hz, 1H), 2.87-2.78 (m, 2H), 2.26-2.13 (m, 1H), 2.13-1.94 (m, 2H), 1.87-1.78 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.3, 135.5, 132.2, 131.9, 129.4, 129.0, 128.9, 126.8, 126.1, 118.6, 111.0, 98.1, 80.2, 32.1, 30.0, 29.1, 21.2.

HRMS (ESI) m/z calcd. for C₁₉H₁₆N [M + H]⁺ 258.1277, found 258.1275.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 19.0 min, t(major) = 24.4 min, 93% ee (96.5:3.5 er).

(S)-4-((2,3-dihydro-1H-inden-1-yl)ethynyl)benzonitrile (4)

According to **General Procedure B** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1,2-hydrindene (124 μ L, 1 mmol, 10 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **4** (17.2 mg) in 71% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59-7.52 (m, 2H), 7.52-7.46 (m, 2H), 7.43 (dd, *J* = 4.3, 3.9 Hz, 1H), 7.30-7.20 (m, 3H), 4.21 (t, *J* = 8.4 Hz, 1H), 3.13-2.82 (m, 2H), 2.59-2.57 (m, 1H), 2.23-2-17 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.9, 142.8, 132.2, 131.9, 128.7, 127.3, 126.7, 124.6, 124.1, 118.5, 111.0, 96.6, 80.3, 77.3, 77.0, 76.7, 36.8, 34.1, 31.5.

HRMS (ESI) m/z calcd. for C₁₈H₁₄N [M + H]⁺ 244.1121, found 244.1119.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 20.5 min, t(major) = 29.2 min, 72% ee (86.1:13.9 er).

(S)-4-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)benzonitrile (5)

According to **General Procedure B** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **5** (20.8 mg) in 66% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.62-7.52 (m, 2H), 7.52-7.39 (m, 2H), 6.94 (s, 1H), 6.59 (s, 1H), 3.98 (t, J = 6.3 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.93-2.61 (m, 2H), 2.26-2.09 (m, 1H), 2.07-1.96 (m, 2H), 1.89-1.71 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.9, 147.32, 132.1, 131.9, 128.8, 128.3, 127.0, 118.6, 111.8, 110.9, 98.3, 80.1, 56.0, 55.9, 31.7, 30.0, 28.7, 21.2.

HRMS (ESI) m/z calcd. for C₂₁H₂₀N [M + H]⁺ 318.1489, found 318.1485.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 25.3 min, t(major) = 36.1 min, 92% ee (95.8:4.2 er).

(S)-4-((1,2,3,6,7,8-hexahydropyren-1-yl)ethynyl)benzonitrile (6)

According to **General Procedure A**, while $Cu(MeCN)_4BF_4$ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1,2,3,6,7,8-hexahydropyrene (208 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **6** (18.2 mg) in 54% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59-7.54 (m, 2H), 7.53-7.46 (m, 3H), 7.24-7.14 (m, 3H), 4.33 (dd, J = 7.9, 4.3 Hz, 1H), 3.32 (ddd, J = 16.1, 7.7, 4.2 Hz, 1H), 3.19-2.98 (m, 5H), 2.36 (ddt, J = 12.1, 8.2, 4.3 Hz, 1H), 2.25 (dtd, J = 12.4, 8.2, 4.2 Hz, 1H), 2.14-1.99 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 135.8, 134.5, 132.5, 132.2, 131.9, 131.7, 130.2, 128.8, 124.0, 123.8, 123.7, 123.6, 118.6, 111.0, 96.9, 81.5, 33.7, 31.5, 31.4, 29.4, 29.0, 23.2. HRMS (ESI) *m*/*z* calcd. for C₂₅H₂₀N [M + H]⁺ 334.1590, found 334.1585.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 25.0 min, t(major) = 32.4 min, 84% ee (92.0:8.0 er).

(S)-4-((1,2-dihydroacenaphthylen-1-yl)ethynyl)benzonitrile (7)

CN

According to **General Procedure A**, while $Cu(MeCN)_4BF_4$ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1,2dihydroacenaphthylene (154 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 7 (14.1 mg) in 50% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.78-7.64 (m, 2H), 7.60-7.57 (m, 3H), 7.56-7.48 (m, 4H), 7.35 (dd, J = 6.9, 1.6 Hz, 1H), 4.83-4.79 (m, 1H), 3.99-3.92 (m, 1H), 3.66-3.61 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 142.4, 137.6, 132.2, 131.9, 131.6, 128.6, 128.2, 128.1, 123.7, 122.9, 119.6, 119.5, 118.5, 111.2, 96.2, 80.3, 39.4, 34.7.

HRMS (ESI) m/z calcd. for C₂₁H₁₄N [M + H]⁺ 280.1121, found 280.1119.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 29.2 min, t(major) = 32.0 min, 75% ee (87.7:12.3 er).

(S)-4-((2,3-dihydrobenzofuran-3-yl)ethynyl)benzonitrile (8)

5 ling t

According to **General Procedure A**, while Cu(MeCN)₄BF₄ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2,3-dihydrobenzofuran (113 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **8** (11.2 mg) in 45% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62-7.56 (m, 2H), 7.52-7.46 (m, 2H), 7.41-7.34 (m, 1H), 7.24-7.17 (m, 1H), 6.95 (td, *J* = 7.5, 1.0 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 1H), 4.84 (dd, *J* = 9.1, 8.1 Hz, 1H), 4.61 (t, *J* = 8.8 Hz, 1H), 4.52 (t, *J* = 8.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.4, 132.2, 132.0, 129.2, 127.9, 126.6, 124.7, 121.2,

118.4, 111.6, 110.1, 92.7, 81.4, 76.2, 34.5. **HRMS** (ESI) m/z calcd. for C₁₇H₁₂NO [M + H]⁺ 246.0913, found 246.0912. **HPLC condition:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 31.1 min, t(major) = 42.0 min, 83% ee (91.5:8.5 er).

(S)-4-(chroman-4-ylethynyl)benzonitrile (9)

According to **General Procedure A**, while Cu(MeCN)₄BF₄ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and chromane (125 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **9** (15.5 mg) in 59% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.65-7.53 (m, 2H), 7.53-7.45 (m, 2H), 7.37 (dt, J = 7.6, 1.3 Hz, 1H), 7.17 (td, J = 7.7, 1.7 Hz, 1H), 6.92 (td, J = 7.5, 1.3 Hz, 1H), 6.84 (dd, J = 8.2, 1.3 Hz, 1H), 4.39 (ddd, J = 10.8, 7.5, 3.0 Hz, 1H), 4.24 (ddd, J = 10.7, 7.2, 3.0 Hz, 1H), 4.10 (t, J = 6.1 Hz, 1H), 2.45-2.27 (m, 1H), 2.25-2.21 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 153.9, 132.2, 131.9, 129.6, 128.7, 128.3, 120.9, 120.7, 118.5, 117.2, 111.3, 96.0, 80.8, 64.2, 28.8, 28.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₄NO [M + H]⁺ 260.1070, found 260.1067.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 32.1 min, t(major) = 37.9 min, 86% ee (92.8:7.2 er).

(*R*)-4-(3-(4-methoxyphenyl)but-1-yn-1-yl)benzonitrile (10)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-ethyl-4-methoxybenzene (142 μ L, 1 mmol, 10 equiv) for 7 d,

the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **10** (16.6 mg) in 63% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.57 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.43-7.22 (m, 2H), 6.89 (d, *J* = 8.7 Hz, 1H), 3.95 (q, *J* = 7.1 Hz, 1H), 3.80 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 134.6, 132.1, 131.9, 128.8, 127.8, 118.6, 114.0, 111.0, 98.0, 80.9, 55.3, 31.7, 24.1.

HRMS (ESI) m/z calcd. for C₁₈H₁₆NO [M + H]⁺ 262.1226, found 262.1223.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 280 nm, t(major) = 25.8 min, t(minor) = 27.6 min, 85% ee (92.4:7.6 er).

(*R*)-4-(3-(4-bromophenyl)but-1-yn-1-yl)benzonitrile (11)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-bromo-4-ethylbenzene (185.1 mg, 1.0 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **11** (12.4 mg) in 47% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62-7.55 (m, 2H), 7.53-7.42 (m, 4H), 7.33-7.26 (m, 2H), 3.96 (q, *J* = 7.1 Hz, 1H), 1.57 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.5, 132.2, 131.9, 131.8, 128.6, 128.4, 120.7, 118.5, 111.3, 96.8, 81.4, 32.1, 23.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₂BrNNa [M + Na]⁺ 332.0045, found 332.0042. HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min. λ = 230 nm, t(minor) = 16.2 min, t(major) = 17.9 min, 78% ee (10.9:89.1 er).

(R)-4-(3-([1,1'-biphenyl]-4-yl)but-1-yn-1-yl)benzonitrile (12)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 4-ethyl-1,1'-biphenyl (182 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **12** (20.2 mg) in 65% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.63-7.56 (m, 6H), 7.50 (dd, J = 12.7, 8.3 Hz, 4H), 7.44 (t, J = 7.7 Hz, 2H), 7.38-7.31 (m, 1H), 4.05 (q, J = 7.1 Hz, 1H), 1.63 (d, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.5, 140.7, 140.0, 132.2, 131.9, 128.8, 128.7, 127.4, 127.3, 127.0, 118.6, 111.1, 97.5, 81.1, 32.2, 24.0.

HRMS (ESI) m/z calcd. for C₂₃H₁₈N [M + H]⁺ 308.1434, found 308.1438.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 39.9 min, t(major) = 51.0 min, 90% ee (95.1:4.9 er).

(R)-4-(3-(3-(1H-pyrazol-1-yl)phenyl)but-1-yn-1-yl)benzonitrile (13)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(3-ethylphenyl)-1*H*-pyrazole (172 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **13** (25.1 mg) in 84% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, J = 2.4 Hz, 1H), 7.81 (t, J = 2.0 Hz, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.63-7.56 (m, 2H), 7.56 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.54-7.50 (m, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.36 (dt, J = 7.7, 1.4 Hz, 1H), 6.48 (t, J = 2.2 Hz, 1H), 4.08 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.2, 141.2, 140.5, 132.2, 131.9, 129.7, 128.5, 126.8, 124.9, 118.5, 118.1, 117.6, 111.2, 107.7, 96.9, 81.4, 32.6, 23.9.

HRMS (ESI) m/z calcd. for C₂₀H₁₆N₃ [M + H]⁺ 298.1339, found 298.1336.

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 15.2 min, t(major) = 24.0 min, 81% ee (90.5:9.5 er).

(R)-4-(3-(3,4-dimethoxyphenyl)but-1-yn-1-yl)benzonitrile (14)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 4-ethyl-1,2-dimethoxybenzene (83 mg, 0.5 mmol, 5 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **14** (17.6 mg) in 61% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.64-7.57 (m, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.03-6.93 (m, 2H), 6.88 (d, J = 8.1 Hz, 1H), 3.98 (q, J = 7.2 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 1.61 (d, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.1, 148.0, 135.1, 132.1, 131.9, 128.7, 118.8, 118.5, 111.3, 111.1, 110.3, 97.8, 81.0, 56.0, 55.9, 32.1, 24.1.

HRMS (ESI) m/z calcd. for C₁₉H₁₈NO₂ [M + H]⁺ 292.1332, found 292.1329.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 12.8 min, t(major) = 15.1 min, 88% ee (94.0:6.0 er).

methyl (R)-5-(4-cyanophenyl)-3-(3,4-dimethoxyphenyl)pent-4-ynoate (15)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and methyl 3-(3,4-dimethoxyphenyl)propanoate (224 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **15** (14.9 mg) in 42% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.01-6.90 (m, 2H), 6.85 (d, J = 8.3 Hz, 1H), 4.36 (dd, J = 8.2, 6.9 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.70 (s, 3H), 2.92 (dd, J = 15.4, 8.3 Hz, 1H), 2.82 (dd, J = 15.4, 6.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 149.1, 148.4, 132.2, 132.1, 131.9, 131.5, 129.2, 128.2, 119.4, 118.5, 111.40, 111.35, 110.6, 94.9, 82.0, 77.2, 55.9, 51.9, 42.8, 34.4. HRMS (ESI) m/z calcd. for C₂₁H₂₀NO4 [M + H]⁺ 350.1387, found 350.1383. HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.7 mL/min. $\lambda =$ 254 nm, t(minor) = 84.0 min, t(major) = 88.0 min, 82% ee (91.1:8.9 er). (R)-4-(5-chloro-3-(3,4-dimethoxyphenyl)pent-1-yn-1-yl)benzonitrile (16)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 4-(3-chloropropyl)-1,2-dimethoxybenzene (214 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **16** (14.1 mg) in 41% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.63-7.57 (m, 2H), 7.54-7.48 (m, 2H), 6.96 (dd, J = 8.2, 2.1 Hz, 1H), 6.91 (d, J = 2.1 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 4.12 (dd, J = 8.2, 6.6 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 3.74 (ddd, J = 11.0, 7.6, 5.7 Hz, 1H), 3.58 (dt, J = 11.1, 6.1 Hz, 1H), 2.40-2.17 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.4, 132.2, 132.0, 128.2, 119.5, 118.4, 111.4, 110.7, 95.1, 82.3, 56.0, 42.4, 40.6, 35.2.

HRMS (ESI) m/z calcd. for C₂₀H₁₉ClNO₂ [M + H]⁺ 340.1099, found 340.1095.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 15.7 min, t(major) = 18.9 min, 93% ee (96.3:3.7 er).

(R)-4-(5-azido-3-(3,4-dimethoxyphenyl)pent-1-yn-1-yl)benzonitrile (17)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 4-(3-azidopropyl)-1,2-dimethoxybenzene (221 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **17** (12.0 mg) in 35% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.3, 1.8 Hz, 2H), 7.56-7.49 (m, 2H), 6.95 (dd, J = 8.2, 2.1 Hz, 1H), 6.93-6.83 (m, 2H), 4.05-3.97 (m, 1H), 3.91 (s, 3H), 3.89 (s, 1H), 3.55-3.49 (m, 1H), 3.43-3.37 (m, 1H), 2.16-2.04 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.3, 132.4, 132.2, 132.0, 128.2, 119.5, 118.4, 111.43, 111.41, 110.6, 95.1, 82.4, 56.0, 49.2, 37.1, 35.2.

HRMS (ESI) m/z calcd. for C₂₀H₁₉N₄O₂ [M + H]⁺ 347.1503, found 347.1498.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 18.2 min, t(major) = 21.2 min, 94% ee (97.0:3.0 er).

(R)-4-(3-(naphthalen-2-yl)but-1-yn-1-yl)benzonitrile (18)

According to **General Procedure A**, while Cu(MeCN)₄BF₄ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2-ethylnaphthalene (157 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **18** (16.0 mg) in 62% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.90-7.77 (m, 4H), 7.60-7.49 (m, 5H), 7.48-7.44 (m, 2H), 4.16 (q, *J* = 7.2 Hz, 1H), 1.67 (dd, *J* = 7.2, 1.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.8, 133.5, 132.5, 132.2, 131.9, 128.6, 128.5, 127.7, 127.6, 126.2, 125.8, 125.3, 125.1, 118.5, 111.1, 97.5, 81.3, 32.7, 23.9.

HRMS (ESI) m/z calcd. for C₂₁H₁₆N [M + H]⁺ 282.1277, found 282.1275.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 31.4 min, t(major) = 44.4 min, 83% ee (91.6:8.4 er).

(R)-4-(3-(6-methoxynaphthalen-2-yl)but-1-yn-1-yl)benzonitrile (19)

19

According to **General Procedure A**, while Cu(MeCN)₄BF₄ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2-ethyl-6-methoxynaphthalene (186 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **19** (17.9 mg) in 57% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.77-7.75 (m, 1H), 7.73 (dd, *J* = 8.6, 5.8 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 (m, 3H), 7.18-7.10 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 1H), 3.92 (s,

3H), 1.66 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6, 137.5, 133.6, 132.2, 131.9, 129.2, 128.9, 128.7, 127.3, 125.8, 125.0, 119.0, 118.6, 111.1, 105.7, 97.8, 81.2, 55.3, 32.5, 23.9. HRMS (ESI) *m*/*z* calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383, found 282.1379. HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 27.1 min, t(major) = 40.2 min, 86% ee (93.0:7.0 er).

(R)-2-(4-phenylbut-3-yn-2-yl)naphthalene (20)

According to **General Procedure A** with phenylacetylene (11.1 μ L, 0.10 mmol, 1.0 equiv) and 2-ethylnaphthalene (157 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **20** (10.2 mg) in 40% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.91-7.87 (m, 1H), 7.86-7.80 (m, 3H), 7.58 (dd, J = 8.5, 1.8 Hz, 1H), 7.51-7.41 (m, 4H), 7.35-7.27 (m, 3H), 4.15 (q, J = 7.1 Hz, 1H), 1.67 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.7, 133.5, 132.4, 131.7, 128.3, 128.2, 127.79, 127.78, 127.6, 126.1, 125.6, 125.1, 123.7, 92.5, 82.7, 32.6, 24.3.

The NMR spectra was in accord with that reported in literature.^[7]

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 5.1 min, t(major) = 5.4 min, 90% ee (94.8:5.2 er).

(S)-1-(4-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)naphthalene (21)

According to **General Procedure A** with 1-ethynyl-4-(trifluoromethyl)benzene (16.3 μ L, 0.10 mmol, 1.0 equiv) and 1-ethylnaphthalene (155 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **21** (12.1 mg) in 43% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.89 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.86-7.69 (m, 2H), 7.70-7.37 (m, 7H), 4.75 (q, *J* = 7.1 Hz, 1H), 1.75 (d, *J* = 7.1 Hz, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.74. ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 134.0, 131.9, 130.5, 129.1, 127.7, 126.1, 125.64, 125.60, 125.1 (q, $J_{C-F} = 3.8$ Hz), 124.2, 123.1, 95.6, 81.5, 29.1, 23.1. HRMS (ESI) m/z calcd. for C₂₁H₁₆F₃ [M + H]⁺ 325.1199, found 325.1195. HPLC condition: Chiralcel OJ-3, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min. $\lambda =$ 254 nm, t(minor) = 10.9 min, t(major) = 16.9 min, 92% ee (96.1:3.9 er).

(S)-4-(3-(phenanthren-9-yl)but-1-yn-1-yl)benzonitrile (22)

According to **General Procedure A**, while $Cu(MeCN)_4BF_4$ (3.2 mg, 10 mol%) was used with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 9-ethylphenanthrene (206.3 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **22** (17.2 mg) in 55% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.85-8.76 (m, 1H), 8.71 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.32-8.23 (m, 1H), 8.03 (s, 1H), 7.98-7.90 (m, 1H), 7.79-7.69 (m, 2H), 7.70-7.62 (m, 2H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 4.80 (q, *J* = 7.0 Hz, 1H), 1.86 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.0, 132.2, 131.9, 131.5, 131.0, 129.9, 129.7, 128.7, 128.5, 126.8, 126.7, 126.6, 126.4, 124.9, 123.8, 123.5, 122.4, 118.6, 111.1, 97.6, 81.6, 29.3, 22.4.

HRMS (ESI) m/z calcd. for C₂₅H₁₈N [M + H]⁺ 332.1434, found 332.1430.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 29.3 min, t(major) = 47.9 min, 91% ee (95.7:4.3 er).

(S)-4-(3-(2-phenylbenzo[d]thiazol-7-yl)but-1-yn-1-yl)benzonitrile (23)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 7-ethyl-2-phenylbenzo[d]thiazole^[8] (240 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to

give the corresponding product 23 (16.7 mg) in 46% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.16-8.08 (m, 2H), 8.02 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.63-7.57 (m, 2H), 7.57-7.48 (m, 6H), 7.48-7.43 (m, 1H), 4.29 (q, *J* = 7.1 Hz, 1H), 1.75 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.0, 155.1, 136.1, 133.5, 133.1, 132.2, 132.0, 131.1, 129.1, 128.3, 127.6, 126.8, 123.2, 122.2, 118.5, 111.4, 95.6, 82.1, 33.1, 21.4. HRMS (ESI) *m*/*z* calcd. for C₂₄H₁₇N₂S [M + H]⁺ 365.1107, found 365.1104.

HPLC condition: Chiralcel AD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 16.5 min, t(major) = 22.2 min, 90% ee (95:5 er).

(S)-4-(3-(thiophen-3-yl)but-1-yn-1-yl)benzonitrile (24)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 3-ethylthiophene (112 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **24** (14.1 mg) in 59% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.64-7.55 (m, 2H), 7.53-7.47 (m, 2H), 7.31 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.20 (dt, *J* = 2.9, 1.2 Hz, 1H), 7.11 (dd, *J* = 5.0, 1.3 Hz, 1H), 4.08 (q, *J* = 7.0 Hz, 1H), 1.60 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.7, 132.1, 131.9, 128.6, 126.7, 126.1, 120.4, 118.5, 111.1, 97.3, 80.4, 27.9, 22.8.

HRMS (ESI) m/z calcd. for C₁₅H₁₂NS [M + H]⁺ 238.0685, found 238.0682. **HPLC condition:** Chiralcel AD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min. λ =

254 nm, t(minor) = 12.3 min, t(major) = 14.5 min, 85% ee (92.3:7.7 er).

(S)-4-(3-(furan-2-yl)but-1-yn-1-yl)benzonitrile (25)

According to General Procedure A with 4-cyanophenylacetylene (12.8 mg, 0.10

mmol, 1.0 equiv) and 2-ethylfuran (96 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **25** (10.0 mg) in 45% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 1.8 Hz, 1H), 6.34 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.23 (d, *J* = 3.1 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.4, 141.8, 132.2, 131.9, 128.4, 118.5, 111.3, 110.3, 105.0, 94.8, 80.1, 26.4, 20.1.

HRMS (ESI) m/z calcd. for C₁₅H₁₂NO [M + H]⁺ 222.0913, found 222.0911.

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min. λ = 254 nm, t(minor) = 9.5 min, t(major) = 10.9 min, 84% ee (92.0:8.0 er).

(S)-6,7-dimethoxy-1-((3-methoxyphenyl)ethynyl)-1,2,3,4-tetrahydronaphthalene (26)

According to **General Procedure B** with 1-ethynyl-3-methoxybenzene (12.7 μ L, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **26** (17.1 mg) in 53% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.19 (t, *J* = 7.9 Hz, 1H), 7.06-6.97 (m, 2H), 6.94 (dd, *J* = 2.7, 1.4 Hz, 1H), 6.83 (ddd, *J* = 8.3, 2.7, 1.0 Hz, 1H), 6.58 (s, 1H), 3.99-3.89 (m, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 2.85-2.64 (m, 2H), 2.24-2.11 (m, 1H), 2.06-1.96 (m, 2H), 1.78-1.73 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 147.7, 147.3, 129.2, 128.2, 127.9, 124.8, 124.1, 116.5, 114.2, 111.9, 111.7, 93.1, 81.3, 56.0, 55.9, 55.2, 31.7, 30.4, 28.8, 21.5.

HRMS (ESI) m/z calcd. for C₂₁H₂₃O₃ [M + H]⁺ 323.1642, found 323.1638.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 17.0 min, t(minor) = 21.6 min, 91% ee (95.6:4.4 er).

(S)-1-((3-fluorophenyl)ethynyl)-6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (27)

According to **General Procedure B** with 1-ethynyl-3-fluorobenzene (11.6 μ L, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **27** (27.4 mg) in 88% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.20 (m, 1H), 7.18 (dt, J = 7.7, 1.3 Hz, 1H), 7.14 – 7.06 (m, 1H), 7.02-6.92 (m, 2H), 6.58 (s, 1H), 3.98-3.90 (m, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 2.85-2.65 (m, 2H), 2.22-2.08 (m, 1H), 2.10-1.90 (m, 2H), 1.86-1.67 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.36.

¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 246.4 Hz), 161.1, 147.8, 147.3, 129.7 (d, J_{C-F} = 8.7 Hz), 128.2, 127.6, 127.4 (d, J_{C-F} = 3.0 Hz), 125.7 (d, J_{C-F} = 9.6 Hz), 118.5, 118.3, 115.1, 114.9, 111.8, 111.7, 94.4, 80.3 (d, J_{C-F} = 3.4 Hz), 55.9 (d, J_{C-F} = 11.5 Hz), 31.6, 30.2, 28.7, 21.4.

HRMS (ESI) m/z calcd. for C₂₀H₂₀FO₂ [M + H]⁺ 311.1442, found 311.1438.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 8.7 min, t(minor) = 9.8 min, 90% ee (94.8:5.2 er).

(S)-2-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)benzaldehyde (28)

According to **General Procedure B** with 2-ethynylbenzaldehyde (13.0 mg, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **28** (28.7 mg) in 89% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 10.54 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 4.2 Hz, 3H), 7.39 (m, 1H), 6.97 (s, 1H), 6.59 (s, 1H), 4.03 (t, J = 6.4 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 2.84-2.69 (m, 2H), 2.20-2.15 (m, 1H), 2.08-1.99 (m, 2H), 1.85-1.80 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 191.9, 148.0, 147.4, 136.0, 133.7, 133.3, 128.3, 128.1,

127.6, 127.11, 127.07, 111.8, 111.7, 100.9, 56.0, 55.9, 31.9, 30.2, 28.7, 21.3. **HRMS** (ESI) m/z calcd. for C₂₁H₂₁O₃ [M + H]⁺ 321.1485, found 321.1482. **HPLC condition:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 27.4 min, t(minor) = 30.1 min, 92% ee (96.0:4.0 er).

(S)-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)triphenylsilane (29)

According to **General Procedure A** with ethynyltriphenylsilane (28.4 mg, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) at 0 °C for 4 d and then at rt for 4 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **29** (21.2 mg) in 45% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (dt, *J* = 6.7, 1.5 Hz, 6H), 7.52-7.29 (m, 9H), 7.05 (s, 1H), 6.56 (s, 1H), 3.91 (t, *J* = 7.0 Hz, 1H), 3.84 (s, 2H), 3.71 (s, 2H), 2.92-2.57 (m, 2H), 2.24-2.21 (m, 1H), 2.12-1.89 (m, 2H), 1.76-1.73 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.7, 147.2, 135.5, 134.0, 129.8, 128.0, 127.9, 127.3, 115.2, 111.6, 111.5, 80.3, 55.9, 55.7, 32.5, 30.2, 28.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₂H₃₁O₂Si [M + H]⁺ 475.2088, found 475.2087.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min. λ = 214 nm, t(major) = 13.7 min, t(minor) = 18.1 min, 92% ee (95.8:4.2 er).

(S)-3-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)thiophene (30)

30

According to **General Procedure B** with 3-ethynylthiophene (10.8 mg, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **30** (17.6 mg) in 59% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.23 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.08 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.00 (s, 1H), 6.57 (s, 1H), 3.94-3.90 (m, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 2.78-2.68 (m, 2H), 2.16-2.11 (m, 1H), 2.10-1.91 (m, 2H), 1.85-

1.72 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.3, 130.0, 128.2, 127.9, 127.8, 125.0, 122.8, 111.9, 111.7, 92.7, 76.4, 56.0, 55.9, 31.7, 30.4, 28.8, 21.4. HRMS (ESI) *m*/*z* calcd. for C₁₈H₁₉O₂S [M + H]⁺ 299.1100, found 299.1098. HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 20.2 min, t(minor) = 26.8 min, 92% ee (95.8:4.2 er).

(S)-5-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)ethynyl)quinoline (31)

According to **General Procedure A** with 5-ethynylquinoline (15.3 mg, 0.10 mmol, 1.0 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene (96.2 mg, 0.5 mmol, 5 equiv) for 10 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **31** (14.9 mg) in 43% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.84 (d, J = 4.5 Hz, 1H), 8.25 (dd, J = 8.3, 1.4 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.56 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.46 (d, J = 4.5 Hz, 1H), 7.08 (s, 1H), 6.62 (s, 1H), 4.14 (t, J = 6.4 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 2.84-2.77 (m, 2H), 2.36-2.20 (m, 1H), 2.15-2.07 (m, 2H), 1.95-1.79 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 149.7, 148.0, 147.4, 129.8, 129.7, 128.4, 128.2, 127.03, 126.97, 126.0, 123.6, 111.8, 111.7, 103.6, 77.5, 56.0, 55.9, 32.1, 30.2, 28.7, 21.5.

HRMS (ESI) m/z calcd. for C₂₃H₂₂NO₂ [M + H]⁺ 344.1645, found 344.1641.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 22.7 min, t(major) = 23.7 min, 87% ee (93.3:6.7 er).

(S)-1-(3-phenylprop-1-yn-1-yl)-1,2,3,4-tetrahydronaphthalene (32)

According to **General Procedure A** with prop-2-yn-1-ylbenzene (11.6 mg, 0.10 mmol, 1.0 equiv) and 1,2,3,4-tetrahydronaphthalene (132 mg, 1.0 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **32** (6.8 mg) in 28% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (dt, J = 7.1, 1.4 Hz, 1H), 7.39-7.27 (m, 4H), 7.24-7.19 (m, 1H), 7.15 (tt, J = 7.2, 5.3 Hz, 2H), 7.07 (dd, J = 7.2, 1.9 Hz, 1H), 3.84 (td, J = 5.8, 2.8 Hz, 1H), 3.63 (d, J = 2.3 Hz, 2H), 2.90-2.66 (m, 2H), 2.17-2.08 (m, 1H), 2.08-1.97 (m, 1H), 1.97-1.87 (m, 1H), 1.84-1.70 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 137.4, 136.8, 136.1, 129.1, 129.0, 128.4, 127.8, 126.39, 126.36, 125.9, 85.7, 78.6, 31.6, 30.5, 29.1, 25.2, 21.3.

HRMS (ESI) m/z calcd. for C₁₉H₁₉ [M + H]⁺ 247.1481, found 247.1479.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 0.7 mL/min. $\lambda = 214 \text{ nm}, \text{ t(major)} = 42.5 \text{ min}, \text{ t(minor)} = 54.9 \text{ min}, 78\%$ ee (88.9:11.1 er).

(*R*)-(cyclohex-2-en-1-ylethynyl)benzene (33)

According to **General Procedure C** with phenylacetylene (11.1 μ L, 0.10 mmol, 1.0 equiv) and cyclohexene (100 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **33** (7.7 mg) in 42% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57-7.33 (m, 2H), 7.28-7.25 (m,3H), 5.79-5.73 (m, 2H), 3.29 (td, *J* = 5.0, 2.6 Hz, 1H), 2.00 (m, 2H), 1.93-1.72 (m, 2H), 1.62-1.52 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 131.6, 128.1, 128.0, 127.5, 127.0, 123.9, 92.9, 80.3, 29.4, 28.0, 24.7, 20.6.

The NMR spectra were in accord with that reported in literature.^[9]

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 12.9 min, t(major) = 15.9 min, 89% ee (94.6:5.4 er).

(R)-4-(cyclohex-2-en-1-ylethynyl)benzonitrile (34)

According to **General Procedure C** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and cyclohexene (101 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **34** (13.5 mg) in 65% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 5.83-5.78 (m, 1H), 5.72-5.67 (m, 1H), 3.34-3.29 (m, 1H), 2.09-1.95 (m, 3H), 1.90-1.76 (m, 2H), 1.67-1.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 131.9, 129.0, 128.7, 126.1, 118.7, 110.9, 97.9, 79.2, 29.1, 28.1, 24.6, 20.5. HRMS (ESI) *m*/*z* calcd. for C₁₅H₁₄N [M + H]⁺ 208.1121, found 208.1120. HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 99.3/0.7, flow rate 0.3 mL/min. λ = 254 nm, t(major) = 33.1 min, t(minor) = 35.4 min, 89% ee (94.3:5.7 er).

methyl-(*R*)-4-(cyclohex-2-en-1-ylethynyl)benzoate (35)

According to **General Procedure C** with 4-(methoxycarbonyl)phenylacetylene (16.0 mg, 0.10 mmol, 1.0 equiv) and cyclohexene (101 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **35** (13.2 mg) in 55% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 5.83-5.78 (m, 1H), 5.74-5.69 (m, 1H), 3.91 (s, 3H), 3.34-3.29 (m, 1H), 2.08-1.95 (m, 3H), 1.91-1.77 (m, 2H), 1.67-1.58 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 131.6, 129.4, 128.9, 128.8, 128.4, 126.5, 96.3, 79.9, 52.2, 29.2, 28.1, 24.7, 20.6.

HRMS (ESI) m/z calcd. for $C_{16}H_{17}O_2$ [M+H]⁺241.1223, found 241.2220.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(minor) =23.7 min, t(major) = 25.4 min, 85% ee (92.3:7.7 er).

(R)-4-(cyclohept-2-en-1-ylethynyl)benzonitrile (36)

According to **General Procedure C** with 4-cyanophenylacetylene (12.8 mg , 0.10 mmol, 1.0 equiv) and cycloheptene (117 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding

product **36** (12.0 mg) in 53% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.57 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 5.90-5.79 (m, 2H), 3.51 (td, *J* = 6.3, 5.6, 2.2 Hz, 1H), 2.26-2.23 (m, 1H), 2.19-1.99 (m, 2H), 1.97-1.86 (m, 1H), 1.83-1.66 (m, 2H), 1.67-1.44 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 133.3, 132.3, 132.1, 131.9, 129.0, 118.6, 110.8, 98.0, 79.6, 33.3, 32.5, 29.5, 28.3, 26.6.

HRMS (ESI) m/z calcd. for C₁₆H₁₆N [M + H]⁺ 222.1277, found 222.1275.

HPLC condition: Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 33.2 min, t(minor) = 36.6 min, 89% ee (94.4:5.6 er).

(*R*,*Z*)-4-(cyclooct-2-en-1-ylethynyl)benzonitrile (37)

According to **General Procedure C** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and (Z)-cyclooctene (130 μ L, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **37** (8.9 mg) in 38% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 5.76-5.73 (m, 1H), 5.57-5,52 (m, 1H), 3.75-3.58 (m, 1H), 2.18-2.14 (m, 2H), 2.04-1.91 (m, 1H), 1.87-1.66 (m, 2H), 1.66-1.48 (m, 3H), 1.45-1.28 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 132.1, 131.9, 130.7, 130.0, 129.0, 118.6, 110.8, 98.7, 79.3, 36.7, 29.13, 29.10, 26.4, 26.2, 25.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₈N [M + H]⁺ 236.1434, found 236.1431.

HPLC condition: Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min. λ = 254 nm, t(minor) = 34.9 min, t(major) = 40.7 min, 86% ee (93.2:6.8 er).

(S,E)-4-(3-ethyl-5-(naphthalen-2-yl)pent-4-en-1-yn-1-yl)benzonitrile (38)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2-(pent-1-en-1-yl)naphthalene (196 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **38** (16.2 mg) in 50% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82-7.76 (m, 3H), 7.74 (s, 1H), 7.63-7.56 (m, 3H), 7.54 (dd, J = 8.5, 2.0 Hz, 2H), 7.48-7.39 (m, 2H), 6.82 (dd, J = 15.8, 1.4 Hz, 1H), 6.30 (dd, J = 15.8, 6.6 Hz, 1H), 3.48-3.43 (m, 1H), 1.86-1.74 (m, 2H), 1.12 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 134.4, 133.6, 133.0, 132.3, 132.0, 131.1, 129.3, 128.8, 128.2, 127.9, 127.7, 126.3, 126.2, 125.9, 123.6, 118.7, 111.1, 95.7, 82.5, 37.2, 28.9, 11.6.

HRMS (ESI) m/z calcd. for C₂₄H₂₀N [M+H]⁺ 322.1590, found 322.1587.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 19.7 min, t(major) = 21.2 min, 88% ee (94:6 er).

(S,E)-4-(3-ethyl-5-(phenanthren-9-yl)pent-4-en-1-yn-1-yl)benzonitrile (39)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 9-(pent-1-en-1-yl)phenanthrene (246 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **39** (14.9 mg) in 40% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.73 (dd, J = 8.0, 1.6 Hz, 1H), 8.68 (dd, J = 8.0, 1.6 Hz, 1H), 8.15 (dd, J = 7.9, 1.6 Hz, 1H), 7.88 (dd, J = 7.6, 2.0 Hz, 1H), 7.81 (s, 1H), 7.72-7.53 (m, 8H), 7.42 (dt, J = 15.2, 1.2 Hz, 1H), 6.27 (dd, J = 15.2, 6.4 Hz, 1H), 3.61-3.55 (m, 1H), 1.94-1.82 (m, 2H), 1.19 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 133.8, 132.5, 132.3, 132.0, 131.8, 130.7, 130.4, 130.2,

129.0, 128.8, 128.6, 126.8, 126.7, 126.54, 126.51, 124.8, 124.7, 123.1, 122.6, 118.6, 111.2, 95.7, 82.7, 37.4, 28.9, 11.6. **HRMS** (ESI) m/z calcd. for C₂₈H₂₂N [M+H]⁺ 372.1747, found 372.1746. **HPLC condition:** Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 13.4 min, t(minor) = 17.3 min, 80% ee (90.2:9.8 er).

(*S*,*E*)-4-(3-ethyl-5-phenylpent-4-en-1-yn-1-yl)benzonitrile (40)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and pent-1-en-1-ylbenzene (146 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **40** (12.2 mg) in 45% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62 (d, *J* = 7.9 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 1H), 6.69 (d, *J* = 15.8 Hz, 1H), 6.21 (dd, *J* = 15.8, 6.8 Hz, 1H), 3.44 (q, *J* = 6.8 Hz, 1H), 1.84-1.74 (m, 2H), 1.13 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.9, 132.2, 131.7 131.0, 128.9, 128.8, 128.6, 127.5, 126.4, 118.6, 111.1, 95.6, 82.4, 37.1, 28.8, 11.5.

HRMS (ESI) m/z calcd. for $C_{20}H_{18}N [M+H]^+ 272.1434$, found 272.1431.

HPLC condition: Chiralcel OJ-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 270 nm, t(major) = 31.6 min, t(minor) = 40.7 min, 88% ee (93.8:6.2 er).

(*S*,*E*)-4-(5-(3-chlorophenyl)-3-ethylpent-4-en-1-yn-1-yl)benzonitrile (41)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-chloro-3-(pent-1-en-1-yl)benzene (180.0 mg, 1.0 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica

gel to give the corresponding product 41 (13.9 mg) in 46% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.66-7.57 (m, 2H), 7.56-7.47 (m, 2H), 7.38 (q, *J* = 1.2 Hz, 1H), 7.31-7.17 (m, 3H), 6.61 (dd, *J* = 15.7, 1.4 Hz, 1H), 6.19 (dd, *J* = 15.7, 6.6 Hz, 1H), 3.45-3.39 (m, 1H), 1.84 – 1.66 (m, 2H), 1.09 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.8, 134.5, 132.2, 132.0, 130.4, 129.8, 129.7, 128.6, 127.4, 126.2, 124.6, 118.6, 111.2, 95.1, 82.6, 37.0, 28.6, 11.5.

HRMS (ESI) m/z calcd. for C₂₀H₁₇ClN [M + H]⁺ 306.1044, found 306.1041.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.7 mL/min. λ = 254 nm, t(major) = 19.3 min, t(minor) = 25.0 min, 83% ee (91.5:8.5 er).

(S,E)-4-(3-methyl-5-(naphthalen-2-yl)pent-4-en-1-yn-1-yl)benzonitrile (42)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2-(but-1-en-1-yl)naphthalene (182 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **42** (12.9 mg) in 42% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.83-7.77 (m, 3H), 7.77-7.71 (m, 1H), 7.64-7.57 (m, 3H), 7.57-7.51 (m, 2H), 7.50-7.41 (m, 2H), 6.81 (dd, *J* = 15.8, 1.6 Hz, 1H), 6.35 (dd, *J* = 15.8, 6.4 Hz, 1H), 3.71-3.55 (m, 1H), 1.50 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 134.3, 133.6, 133.0, 132.2, 132.0, 130.6, 130.1, 128.7, 128.2, 127.9, 127.7, 126.3, 126.2, 125.9, 123.6, 118.6, 111.2, 96.7, 81.5, 29.8, 21.5. HRMS (ESI) m/z calcd. for C₂₃H₁₈N [M+H]⁺ 308.1434, found 308.1431.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ

= 254 nm, t(minor) = 23.0 min, t(major) = 24.4 min, 84% ee (92.1:7.9 er).

(*S*,*E*)-4-(5-(3-methoxyphenyl)-3-methylpent-4-en-1-yn-1-yl)benzonitrile (43)

According to General Procedure D with 4-cyanophenylacetylene (12.8 mg, 0.10

mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-3-methoxybenzene (162 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **43** (13.8 mg) in 48% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.26-7.20 (m, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.92 (s, 1H), 6.80 (dd, J = 8.0, 2.4 Hz, 1H), 6.62 (dd, J = 15.8, 1.6 Hz, 1H), 6.26-6.16 (m, 1H), 3.82 (s, 3H), 3.62-3.51 (m, 1H), 1.45 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.8, 138.3, 132.2, 132.0, 130.5, 129.9, 129.6, 128.7, 119.0, 118.6, 113.2, 111.8, 111.1, 96.6, 81.4, 55.3, 29.7, 21.5.

HRMS (ESI) m/z calcd. for C₂₀H₁₈NO [M+H]⁺ 288.1383, found 288.1381.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 28.1 min, t(minor) = 37.5min, 87% ee (93.5:6.5 er).

(S,E)-4-(5-(2-methoxyphenyl)-3-methylpent-4-en-1-yn-1-yl)benzonitrile (44)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-2-methoxybenzene (162 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **44** (14.9 mg) in 52% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.44 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.22 (ddd, *J* = 8.2, 7.4, 1.7 Hz, 1H), 6.99-6.90 (m, 2H), 6.87 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.23 (dd, *J* = 15.9, 6.4 Hz, 1H), 3.85 (s, 3H), 3.62-3.54 (m, 1H), 1.46 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.6, 132.2, 131.9, 130.8, 128.9, 128.6, 126.9, 125.8, 124.9, 120.7, 118.7, 111.0, 110.9, 97.2, 81.2, 55.5, 30.2, 21.5.

HRMS (ESI) m/z calcd. for C₂₀H₁₈NO [M+H]⁺ 288.1383, found 288.1381.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(minor) = 22.6 min, t(major) = 23.8 min, 84% ee (92.1:7.9 er).

(S,E)-4-(3-ethyl-5-(furan-3-yl)pent-4-en-1-yn-1-yl)benzonitrile (45)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 3-(pent-1-en-1-yl)furan (136 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **45** (10.5 mg) in 40% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.45 – 7.40 (m, 1H), 7.37 (td, *J* = 1.7, 0.7 Hz, 1H), 6.51 (ddd, *J* = 14.2, 1.7, 0.8 Hz, 2H), 5.90 (dd, *J* = 16.0, 6.6 Hz, 1H), 3.39-3.36 (m, 1H), 1.81-1.66 (m, 2H), 1.08 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 140.3, 132.2, 132.0, 128.8, 128.4, 123.7, 120.6, 118.7, 111.1, 107.5, 95.6, 82.3, 36.9, 28.8, 11.5.

HRMS (ESI) m/z calcd. for C₁₈H₁₆NO [M+H]⁺ 262.1226, found 262.1229.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 96/4, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 23.4 min, t(minor) = 27.4 min, 85% ee (92.5:7.5 er).

(S,E)-4-(3-ethyl-5-(thiophen-3-yl)pent-4-en-1-yn-1-yl)benzonitrile (46)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 3-(pent-1-en-1-yl)thiophene (152 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **46** (10.0 mg) in 35% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.28 (dd, J = 5.2, 3.2 Hz, 1H), 7.22 (dd, J = 5.2, 1.2 Hz, 1H), 7.15 (dd, J = 3.2, 1.2 Hz, 1H), 6.66 (dd, J = 16.0, 1.4 Hz, 1H), 6.03 (dd, J = 16.0, 6.8 Hz, 1H), 3.41-3.35 (m, 1H), 1.79-1.69 (m, 2H), 1.09 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.5, 132.2, 132.0, 128.8, 128.7, 126.1, 125.2, 125.0, 121.9, 118.6, 111.1, 95.7, 82.4, 37.0, 28.8, 11.6.

HRMS (ESI) m/z calcd. for C₁₈H₁₆NS [M+H]⁺ 278.0998, found 278.0996.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 14.6 min, t(minor) = 15.8 min, 87% ee (93.5:6.5 er).

(S,E)-2-(3-ethyl-5-(naphthalen-2-yl)pent-4-en-1-yn-1-yl)benzaldehyde (47)

According to **General Procedure D** with 2-ethynylbenzaldehyde (13.0 mg, 0.10 mmol, 1.0 equiv) and 2-(but-1-en-1-yl)naphthalene (182 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product 47 (13.7 mg) in 42% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 10.63 (d, J = 0.8 Hz, 1H), 7.93 (dd, J = 7.8, 1.2 Hz, 1H), 7.81-7.78 (m, 3H), 7.75 (s, 1H), 7.64-7.58 (m, 2H), 7.55 (td, J = 7.4, 1.2 Hz, 1H), 7.50-7.38 (m, 3H), 6.86 (dd, J = 15.8, 1.4 Hz, 1H), 6.33 (dd, J = 15.8, 6.6 Hz, 1H), 3.56-3.51 (m, 1H), 1.90-1.76 (m, 2H), 1.15 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 192.0, 136.0, 134.4, 133.8, 133.6, 133.5, 133.0, 131.1, 129.3, 128.2, 128.2, 128.0, 127.7, 127.5, 127.1, 126.3, 126.2, 125.8, 123.6, 98.2, 79.5, 37.4, 28.9, 11.7.

HRMS (ESI) m/z calcd. for $C_{24}H_{21}O [M+H]^+ 325.1587$, found 325.1587.

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(major) =11.6 min, t(minor) = 15.4 min, 91% ee (95.3:4.7 er).

(S,E)-2-(3-ethyl-6-phenylhex-1-en-4-yn-1-yl)-6-methoxynaphthalene (48)

According to **General Procedure D** with prop-2-yn-1-ylbenzene (11.6 mg, 0.10 mmol, 1.0 equiv) and 2-(but-1-en-1-yl)-6-methoxynaphthalene (212 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **48** (10.3 mg) in 42% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (t, *J* = 8.0 Hz, 2H), 7.64 (s, 1H), 7.55 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.35-7.32 (m, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.13-7.10 (m, 2H), 6.77 (dd, *J* = 16.0, 1.6 Hz, 1H), 6.23 (dd, *J* = 16.0, 6.4 Hz, 1H), 3.91 (s, 3H), 3.70 (d, *J* = 2.4 Hz, 2H), 3.29-3.26 (m, 1H), 1.76-1.64 (m, 2H), 1.07 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6, 137.5, 134.0, 132.7, 130.3, 129.8, 129.4, 129.1, 128.5, 127.9, 126.9, 126.5, 125.8, 124.3, 105.9, 83.3, 81.0, 55.3, 36.6, 29.2, 25.3, 11.6.

HRMS (ESI) m/z calcd. for C₂₅H₂₅O [M+H]⁺ 341.1900, found 341.1898. **HPLC condition:** Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 11.9 min, t(minor) = 13.7 min, 82% ee (91.2:8.8 er).

(*S*,*E*)-(3-ethyl-5-(6-methoxynaphthalen-2-yl)pent-4-en-1-yn-1-yl)triphenylsilane (49)

According to **General Procedure D** with ethynyltriphenylsilane (28.4 mg, 0.10 mmol, 1.0 equiv) and 2-(but-1-en-1-yl)-6-methoxynaphthalene (212 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **49** (13.8 mg) in 27% isolated yield (48% yield based on recovered alkyne).

¹**H NMR (400 MHz, CDCl₃)** δ 7.75-7.62 (m, 8H), 7.61-7.49 (m, 2H), 7.47-7.33 (m, 9H), 7.16-7.07 (m, 2H), 6.86 (dd, *J* = 15.8, 1.5 Hz, 1H), 6.25 (dd, *J* = 15.8, 6.2 Hz, 1H), 3.92 (s, 3H), 3.45-3.40 (m, 1H), 1.86-1.71 (m, 2H), 1.13 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.7, 135.6, 134.1, 134.0, 132.4, 131.1, 129.8, 129.4, 129.0, 128.3, 128.0, 127.0, 126.0, 124.2, 118.9, 112.7, 105.9, 83.0, 55.3, 37.6, 28.9, 11.6.

HRMS (ESI) m/z calcd. for C₃₆H₃₃OSi [M+H]⁺ 509.2295, found 509.2299. **HPLC condition:** Chiralcel AD-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min. λ = 254 nm, t(major) =12.2 min, t(minor) = 18.6 min, 91% ee (95.3:4.7 er).

(S,E)-trimethyl(3-methyl-5-phenylpent-4-en-1-yn-1-yl)silane (50)

According to **General Procedure D** with trimethylsilylacetylene (9.8 mg, 0.10 mmol, 1.0 equiv) and but-1-en-1-ylbenzene (132 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **50** (5.5 mg) in 24% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.38-7.35 (m, 2H), 7.32-7.28 (m, 2H), 7.25-7.19 (m, 1H), 6.61 (dd, *J* = 15.8, 1.6 Hz, 1H), 6.15 (dd, *J* = 15.8, 6.0 Hz, 1H), 3.38-3.32 (m, 1H), 1.35 (d, *J* = 7.1 Hz, 3H), 0.19 (s, 9H).

The ¹H NMR spectra were in accord with that reported in literature.^[10]

HRMS (ESI) m/z calcd. for C₁₅H₂₁Si [M+H]⁺ 229.1407, found 229.1406. **HPLC condition:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min. λ = 214 nm, t(major) =11.8 min, t(minor) = 17.8 min, 84% ee (91.8:8.2 er).

(S,E)-6-(2-methoxyphenyl)-4-methylhex-5-en-2-yn-1-yl acetate (51)

According to **General Procedure D** with prop-2-yn-1-yl acetate (9.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-2-methoxybenzene (162 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **51** (9.8 mg) in 38% isolated yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 7.6, 2.0 Hz, 1H), 7.21 (ddd, J = 8.1, 7.6, 2.0 Hz, 1H), 6.95-6.83 (m, 3H), 6.16 (dd, J = 16.0, 6.4 Hz, 1H), 4.73 (d, J = 2.0 Hz, 2H), 3.85 (s, 3H), 3.42-3.35 (m, 1H), 2.10 (s, 3H), 1.36 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 156.6, 131.2, 128.5, 126.9, 126.0, 124.6, 120.6, 110.8, 89.5, 75.80, 55.5, 52.9, 29.5, 21.5, 20.9.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}O_3$ [M+H]⁺259.1329, found 259.1331.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 11.5 min, t(minor) = 12.6 min, 75% ee (87.4:12.6 er).

(*R*)-4-(3-(4-methoxyphenyl)-5-methylhex-1-yn-1-yl)benzonitrile (52)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-isopentyl-4-methoxybenzene (178 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **52** (14.8 mg) in 49% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.5 Hz, 2H), 7.51-7.43 (m, 2H), 7.34-7.27 (m, 2H), 6.96-6.82 (m, 2H), 3.88-3.82 (m, 1H), 3.80 (s, 3H), 1.90-1.72 (m, 2H), 1.66-1.53 (m, 1H), 0.97 (dd, J = 6.4, 3.5 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 133.9, 132.7, 132.1, 132.0, 131.9, 128.9, 128.3, 118.6, 114.0, 111.0, 97.3, 81.5, 81.4, 55.3, 47.7, 35.7, 26.1, 22.9, 21.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NO [M + H]⁺ 304.1696, found 304.1694. **HPLC condition:** Chiralcel OJ-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 16.8 min, t(minor) = 18.8 min, 82% ee (91.0:9.0 er).

(*R*)-4-(3-(4-isobutylphenyl)but-1-yn-1-yl)benzonitrile (53)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-ethyl-4-isobutylbenzene (162 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **53** (18.5 mg) in 64% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 8.4, 2.0 Hz, 2H), 7.54-7.47 (m, 2H), 7.35-7.28 (m, 2H), 7.16-7.08 (m, 2H), 3.97 (q, J = 7.3 Hz, 1H), 2.46 (d, J = 7.2 Hz, 2H), 1.98-1.74 (m, 1H), 1.57 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.7, 132.2, 131.9, 129.4, 128.8, 126.5, 118.6, 111.0, 98.0, 80.9, 45.0, 32.1, 30.2, 24.1, 22.4.

HRMS (ESI) m/z calcd. for C₂₁H₂₂N [M + H]⁺ 288.1747, found 288.1745.

HPLC condition: Chiralcel OJ-3, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min. λ = 254 nm, t(major) = 21.3 min, t(minor) = 23.7 min, 90% ee (95.0:5.0 er).

(*R*)-4-(4-(4-cyanophenyl)but-3-yn-2-yl)benzyl acetate (54)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 4-ethylbenzyl acetate (178 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **54** (9.1 mg) in 30% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.63-7.55 (m, 2H), 7.55-7.46 (m, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 5.10 (s, 2H), 4.01 (q, *J* = 7.1 Hz, 1H), 2.10 (s, 3H), 1.59 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 142.6, 134.6, 132.2, 131.9, 128.7, 128.6, 127.1, 118.6, 111.2, 100.0, 97.3, 81.1, 66.0, 32.3, 30.2, 24.0, 21.0.

HRMS (ESI) m/z calcd. for C₂₀H₁₈NO₂ [M + H]⁺ 304.1332, found 304.1331. HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 48.9 min, t(minor) = 54.6 min, 85% ee (92.3:7.7 er).

(R)-4-(3-(4-methoxyphenyl)hex-5-en-1-yn-1-yl)benzonitrile (55)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-3-en-1-yl)-4-methoxybenzene (162 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **55** (10.0 mg) in 36% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 1H), 5.94-5.84 (m, 1H), 5.20-5.03 (m, 2H), 3.91 (t, J = 7.1 Hz, 1H), 3.83 (s, 3H), 2.80-2.34 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 135.1, 132.7, 132.2, 132.1, 131.9, 129.5, 128.7, 128.5, 118.6, 117.4, 114.0, 111.1, 96.4, 82.2, 55.3, 42.5, 37.8.

HRMS (ESI) m/z calcd. for C₂₀H₁₈NO [M + H]⁺ 288.1383, found 288.1380.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 27.3 min, t(minor) = 33.8 min, 93% ee (96.4:3.6 er).

(S,E)-4-(3-methyl-5-(m-tolyl)pent-4-en-1-yn-1-yl)benzonitrile (56)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-3-methylbenzene (146 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **56** (12.5 mg) in 46% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.23-7.17 (m, 3H), 7.09-7.03 (m, 1H), 6.61 (dd, J = 15.8, 1.6 Hz, 1H), 6.20 (dd, J = 15.8, 6.4 Hz, 1H), 3.59-3.53 (m, 1H), 2.34 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.2, 136.8, 132.2, 132.0, 130.0, 130.0, 128.8, 128.5, 128.4, 127.1, 123.5, 118.6, 111.1, 96.8, 81.3, 29.7, 21.5, 21.4.

HRMS (ESI) m/z calcd. for C₂₀H₁₈N [M+H]⁺ 272.1434, found 272.1432. **HPLC condition:** Chiralcel OJ-3, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 31.1 min, t(minor) = 39.3 min, 86% ee (93:7 er).

(*S*,*E*)-4-(5-(4-isopropylphenyl)-3-methylpent-4-en-1-yn-1-yl)benzonitrile (57)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-4-isopropylbenzene (174 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **57** (13.2 mg) in 44% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 6.61 (dd, *J* = 15.8, 1.4 Hz, 1H), 6.16 (dd, *J* = 15.8, 6.4 Hz, 1H), 3.59-3.52 (m, 1H), 2.94-2.84 (m, 1H), 1.44 (d, *J* = 7.1 Hz, 3H), 1.25 (s, 3H), 1.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.5, 134.5, 132.2, 132.0, 129.8, 129.3, 128.8, 126.7, 126.3, 118.6, 111.1, 96.9, 81.3, 33.9, 29.7, 24.0, 21.5.

HRMS (ESI) m/z calcd. for C₂₂H₂₂N [M+H]⁺300.1747, found 300.1745.

HPLC condition: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min. λ = 254 nm, t(major) = 28.7 min, t(minor) = 37.8 min, 80% ee (89.8:10.2 er).

(*S*,*E*)-4-(5-(3-ethylphenyl)-3-methylpent-4-en-1-yn-1-yl)benzonitrile (58)

58, (C1:C1'=4.0:1)

According to **General Procedure D** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(but-1-en-1-yl)-3-ethylbenzene (160 mg, 1 mmol, 10 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **58** (12.8 mg) in 45% isolated yield.

¹H NMR (400 MHz, CDCl₃, major isomer) δ 7.59 (d, J = 8.6 Hz, 2H), 7.51 (d, J =

8.6 Hz, 2H), 7.25-7.16 (m, 3H), 7.08 (dt, *J* = 6.8, 2.0 Hz, 1H), 6.63 (dd, *J* = 16.0, 1.6 Hz, 1H), 6.21 (dd, *J* = 16.0, 6.4 Hz, 1H), 3.60-3.53 (m, 1H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.45 (d, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.6 Hz, 4H).

¹**H** NMR (400 MHz, CDCl₃, minor isomer) δ 7.59 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.38-7.26 (m, 3H), 7.25-7.16 (m, 1H), 6.42-6.37 (m, 1H), 6.29 (dt, J = 16.0, 6.0 Hz, 1H), 5.67 (dt, J = 11.6, 7.6 Hz, 1H), 4.02-3.95 (m, 1H), 2.39-2.32 (m, 2H), 2.28-2.20 (m, 2H), 1.59 (dd, J = 7.2, 2.8 Hz, 1H), 1.10 (t, J = 7.6 Hz, 1H), 1.06 (t, J = 7.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, major isomer) δ 144.6, 136.8, 132.2, 132.0, 130.1, 130.0, 128.8, 128.6, 127.2, 125.9, 123.7, 118.6, 111.1, 96.8, 81.3, 29.7, 28.9, 21.5, 15.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₀N [M+H]⁺286.1590, found 286.1589.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.2 mL/min. λ = 214 nm, t(major) = 37.9 min, t(minor) = 39.9 min, 80% ee (89.7:10.3 er).

Procedure for synthetic application

(R)-5-(3-phenylbut-1-yn-1-yl)pyrazolo[1,5-a]pyrimidine (59)

According to **General Procedure A** with 5-ethynylpyrazolo[1,5-*a*]pyrimidine⁷ (14.3 mg, 0.10 mmol, 1.0 equiv) and ethylbenzene (212 mg, 2 mmol, 20 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **59** (10.2 mg) in 42% isolated yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.59 (dd, J = 7.2, 0.9 Hz, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.47-7.41 (m, 2H), 7.39-7.33 (m, 2H), 7.31-7.24 (m, 1H), 6.85 (d, J = 7.2 Hz, 1H), 6.68 (dd, J = 2.4, 0.9 Hz, 1H), 4.05 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 145.6, 142.5, 141.8, 134.5, 128.7, 127.0, 126.9, 110.8, 97.3, 97.0, 81.0, 32.5, 23.7.

The NMR spectra were in accord with that reported in literature.^[7]

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 96/4, flow rate 0.3 mL/min. λ = 240 nm, t(minor) = 59.5 min, t(major) = 62.3 min, 94% ee (97:3 er).

(S)-4-((4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1yl)ethynyl)benzonitrile (60)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 1-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalene^[11] (276 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **60** (20.8 mg) in 52% isolated yield and recover 223 mg C–H substrate.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62-7.55 (m, 2H), 7.53-7.46 (m, 2H), 7.36 (dd, J = 8.3, 1.9 Hz, 1H), 7.27-7.22 (m, 2H), 7.20-7.10 (m, 2H), 6.94 (ddd, J = 11.7, 8.3, 2.1 Hz, 1H), 6.85 (ddd, J = 9.0, 7.8, 1.3 Hz, 1H), 4.22-4.09 (m, 2H), 2.38 (m, 1H), 2.26 (m, 1H), 2.22-2.12 (m, 1H), 2.12-1.95 (m, 1H), 1.85 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.2, 147.0, 137.33, 137.3, 136.2, 135.9, 132.4, 132.2, 131.9, 130.64, 130.60, 130.4, 130.32, 130.29, 130.2, 129.2, 129.1, 128.61, 128.60,

128.2, 128.1, 127.4, 127.3, 127.0, 118.6, 111.1, 97.5, 97.4, 81.0, 80.4, 44.7, 44.4, 32.4, 32.1, 31.4, 30.4, 29.7, 28.0, 27.1.

HRMS (ESI) m/z calcd. for C₂₅H₁₈Cl₂N [M + H]⁺ 402.0811, found 402.0807.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99.3/0.7, flow rate 0.7 mL/min. $\lambda = 254$ nm, t(major) = 28.2 min, t(minor) = 30.9 min, 90% ee; t(major) = 37.2 min, t(minor) = 48.7 min, 87% ee; dr = 1.2:1.

5-isopropyl-2-methylphenyl-(*R*)-5-(4-cyanophenyl)-3-(3,4-dimethoxyphenyl)pent-4-ynoate (61)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 5-isopropyl-2-methylphenyl 3-(3,4-dimethoxyphenyl) propanoate (342 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **61** (20.2 mg) in 43% isolated yield and recover 277 mg C–H substrate.

¹**H NMR (400 MHz, CDCl₃)** δ 7.65-7.55 (m, 2H), 7.56-7.46 (m, 2H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.06-7.00 (m, 3H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.74 (d, *J* = 1.8 Hz, 1H), 4.56-4.45 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.17-3.07 (m, 2H), 2.86-2.79 (m, 1H), 2.04 (s, 3H), 1.18 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 149.2, 149.1, 148.6, 148.1, 132.2, 132.0, 131.9, 130.9, 128.1, 127.1, 124.4, 119.6, 119.5, 118.4, 111.5, 111.4, 110.7, 94.8, 82.3, 56.0, 42.9, 34.7, 33.5, 23.84, 23.79, 15.7.

HRMS (ESI) m/z calcd. for C₃₀H₃₀NO₄ [M + H]⁺ 468.2169, found 468.2170. HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 34.5 min, t(minor) = 42.9 min, 85% ee (92.4:7.6 er).

(*1S*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl(*R*)-5-(4-cyanophenyl)-3-(3,4-dimethoxyphenyl)pent-4-ynoate (62)

According to General Procedure A with 4-cyanophenylacetylene (12.8 mg, 0.10

mmol, 1.0 equiv) and (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl3-(3,4-dimethoxy-phenyl)propanoate (348 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **62** (29.1 mg) in 62% isolated yield and recover 292 mg C–H substrate.

¹**H NMR (400 MHz, CDCl₃)** δ 7.60-7.55 (m, 2H), 7.51-7.45 (m, 2H), 6.97 (dd, J = 8.2, 2.1 Hz, 1H), 6.92 (d, J = 2.1 Hz, 1H), 6.84 (d, J = 8.3 Hz, 1H), 4.69 (td, J = 10.9, 4.4 Hz, 1H), 4.34 (t, J = 7.8 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 2.84 (ddd, J = 22.1, 14.8, 7.8 Hz, 2H), 1.96 (dd, J = 7.1, 4.8 Hz, 1H), 1.72-1.53 (m, 4H), 1.52-1.39 (m, 1H), 1.39-1.21 (m, 2H), 1.04-0.98 (m, 1H), 0.94 (d, J = 11.2 Hz, 1H), 0.86 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 7.0 Hz, 3H), 0.62 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 149.1, 148.4, 132.2, 132.1, 131.9, 128.3, 119.5, 118.5, 111.4, 111.3, 110.6, 95.1, 82.0, 74.7, 55.9, 46.9, 43.5, 41.0, 34.7, 34.1, 31.3, 26.0, 23.3, 22.0, 20.7, 16.1.

HRMS (ESI) m/z calcd. for C₃₀H₃₆NO₄ [M + H]⁺ 474.2639, found 474.2639.

(*1R*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl-5-((*R*)-4-(4-cyanophenyl)but-3-yn-2-yl)-2-methoxybenzoate (63)

According to **General procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and (1R, 2R, 4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 5-ethyl-2-methoxybenzoate (316 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **63** (27.2 mg) in 62% isolated yield and recover 259 mg C–H substrate.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (d, *J* = 2.4 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.52-7.48 (m, 3H), 6.97 (d, *J* = 8.6 Hz, 1H), 5.16-4.97 (m, 1H), 3.98 (dd, *J* = 12.2, 6.3 Hz, 1H), 3.90 (s, 3H), 2.53-2.41 (m, 1H), 2.15-2.09 (m, 1H), 1.77-1.72 (m, 2H), 1.58 (d, *J* = 7.1 Hz, 3H), 1.37-1.18 (m, 3H), 1.15-1.07 (m, 1H), 0.96 (s, 3H), 0.90 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 158.2, 134.1, 132.2, 131.9, 131.6, 129.9, 128.5, 120.9, 118.5, 112.4, 111.2, 97.2, 81.3, 80.7, 56.0, 49.0, 47.8, 45.0, 37.0, 31.5, 28.1, 27.3, 24.0, 19.7, 18.9, 13.6.

HRMS (ESI) m/z calcd. for C₂₉H₃₁NNaO₃ [M + Na]⁺ 464.2196, found 464.2194.

(*R*)-4-(3-(4-((6-fluoropyridin-2-yl)oxy)-3-methoxyphenyl)but-1-yn-1-yl)benzonitrile (64)

According to **General Procedure A** with 4-cyanophenylacetylene (12.8 mg, 0.10 mmol, 1.0 equiv) and 2-(4-ethyl-2-methoxyphenoxy)-6-fluoropyridine (247 mg, 1 mmol, 10 equiv) for 7 d, the reaction mixture was purified by column chromatography on silica gel to give the corresponding product **64** (11.1 mg) in 32% isolated yield and recover 212 mg C–H substrate.

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (q, J = 8.0 Hz, 1H), 7.64-7.57 (m, 2H), 7.55-7.49 (m, 2H), 7.11 (d, J = 8.0 Hz, 1H), 7.07-6.99 (m, 2H), 6.74 (dd, J = 7.9, 1.5 Hz, 1H), 6.57 (dd, J = 7.8, 2.6 Hz, 1H), 4.02 (q, J = 7.1 Hz, 1H), 3.79 (s, 3H), 1.63 (d, J = 7.1 Hz, 3H). ¹⁹**F NMR (376 MHz, CDCl₃)** δ -68.69.

¹³**C** NMR (101 MHz, CDCl₃) δ 162.4 (d, $J_{C-F} = 14.1$ Hz), 162.1 (d, $J_{C-F} = 242.4$ Hz), 160.9, 151.6, 143.2, 143.1, 140.7, 140.7, 132.2, 132.0, 128.6, 122.9, 119.3, 118.5, 111.7, 111.2, 106.7 (d, $J_{C-F} = 4.9$ Hz), 102.2, 101.8, 97.3, 81.2, 55.9, 32.5, 24.1.

HRMS (ESI) m/z calcd. for C₂₃H₁₈FN₂O₂ [M + H]⁺ 373.1347, found 373.1344.

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 93/7, flow rate 0.8 mL/min. λ = 254 nm, t(minor) = 32.7 min, t(major) = 38.2 min, 88% ee (93.8:6.2 er).

Mechanistic studies

Control experiment with copper phenylacetylide:

with **L4** (1.0 eq.), **65** (48%, 86% ee), **66** (11%) without **L4**, **65** (0%), **66** (46%)

Copper phenylacetylide was synthesized according to literature.^[13]

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with copper phenylacetylide (16.5 mg, 0.10 mmol, 1.0 equiv.), N-F-2 (90.0 mg, 0.30 mmol, 3.0 equiv.), L4 (92 mg, 0.10 mmol, 1.0 equiv.), and anhydrous PhCl (0.8 mL). The resulting reaction mixture was stirred at room temperature for 4 d. Upon completion of reaction (monitored by TLC), the reaction mixture was filtered and washed by EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether) to afford 65 (11.1 mg, 48% yield, 86% ee) and 66 (2.2 mg, 11% yield).

The procedure for the reaction without L4 was the same with that described above except that L4 was not added. Upon completion of reaction (monitored by TLC), the reaction mixture was filtered and washed by EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether) to afford **66** (9.2 mg, 46% yield). No desired product **65** was observed.

(S)-1-(phenylethynyl)-1,2,3,4-tetrahydronaphthalene (65)

65

¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (dd, *J* = 6.8, 2.1 Hz, 1H), 7.41 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.31-7.23 (m, 3H), 7.20-7.13 (m, 2H), 7.09 (d, *J* = 6.4 Hz, 1H), 4.02 (dd, *J* = 7.9, 5.4 Hz, 1H), 2.87-2.80 (m, 2H), 2.21-2.17 (m, 1H), 2.13-1.92 (m, 2H), 1.88-1.74 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.3, 136.2, 131.6, 129.2, 129.1, 128.1, 127.6, 126.5, 126.0, 123.8, 93.0, 81.4, 32.1, 30.3, 29.1, 21.3.

The NMR spectra were in accord with that reported in literature.^[12]

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min. $\lambda = 254$ nm, t(minor) = 19.5 min, t(major) = 21.7 min, 86% ee (93:7 er).

1,4-diphenylbuta-1,3-diyne (66) Ph=____Ph

66

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.46 (m, 2H), 7.45-7.28 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5, 129.2, 128.4, 121.8, 81.5, 73.9. The NMR spectra were in accord with that reported in literature.^[12]
KIE Experiment:

6

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added 4ethynylbenzonitrile (6.5 mg, 0.05 mmol), Cu(MeCN)₄BF₄ (2.4 mg, 15 mol%), L4 (6.1 mg, 20 mol%), N-F-2 (45 mg, 0.15 mmol, 3.0 eq.) and Cs₂CO₃ (97.5 mg, 0.3 mmol, 6.0 eq.). The tube were evacuated and backfilled with argon for three times, the 1a (43.3 mg, 34 μ L,0.25 mmol) or D-1a (43.5 mg, 35 μ L, 0.25 mmol) and dry PhCl (0.5 mL) was added via syringe. The tube was stirred at 0 °C and the yield of 3 and D-3 were determined by crude ¹H NMR using CH₂Br₂ as internal standard at different times to determine the intermolecular KIE value.

time (h)	1 st run yield of H (%)	2^{nd} run yield of H (%)	average (%)	-
1	5	3	4	-
2	8	5	6.5	
3	9	9	9	
4	14	13	13.5	
5	18	13	15.5	
6	21	20	20.5	
time (h)	1^{st} run yield of D (%)	2^{nd} run yield of D (%)	average (%)	
1	1.4	1.4	1.4	-
2	2.1	1.8	2.0	
3	2.5	2.5	2.5	
4	2.8	3.5	3.2	
5	3.5	4.2	3.9	

4.9

4.8

4.6

¹**H NMR (400 MHz, CDCl₃)** δ 7.06 (p, *J* = 4.8 Hz, 4H), 2.76-2.70 (m, 0.2H), 1.77 (s, 4H). ¹³**C NMR (101 MHz, CDCl₃)** δ 137.1, 129.2, 125.5, 28.8 (dq, *J*_{C-D} = 38.7, 19.4 Hz), 23.04.

(S)-4-((1,2,3,4-tetrahydronaphthalen-1-yl-1,4,4-d₃)ethynyl)benzonitrile (D-3)

¹**H NMR (400 MHz, CDCl₃)** δ 7.55 (d, J = 8.4 Hz, 2H), 7.50-7.43 (m, 3H), 7.22-7.14 (m, 2H), 7.11 (dt, J = 4.4, 2.9 Hz, 1H), 2.22-2.12 (m, 1H), 2.09-1.95 (m, 2H), 1.80 (ddd, J = 13.8, 9.6, 3.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2, 135.5, 132.2, 131.9, 129.4, 129.0, 128.9, 126.8, 126.1, 118.6, 111.0, 98.1, 80.2, 32.3-31.2 (m, 1C), 29.9, 28.9-28.1 (m, 1C), 21.0. HRMS (ESI) *m/z* calcd. for C₁₉H₁₂D₃NNa [M + Na]⁺ 283.1285, found 283.1284.

Radical-trapping experiment:

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuTc (1.9 mg, 0.010 mmol, 10 mol%), L4 (9.2 mg, 0.015 mmol, 15 mol%), 4cyanophenylacetylene (2a, 12.8 mg, 0.10 mmol, 1.0 equiv), 1b (364 mg, 1.0 mmol, 10 equiv.), TEMPO (62.5 mg, 0.2 mmol, 2.0 equiv.), N-F-2 (90.0 mg, 0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (130.4 mg, 0.40 mmol, 4.0 equiv.). The tube was evacuated and backfilled with argon for three times, and anhydrous PhCl (0.8 mL) was then added. The reaction mixture was stirred at rt for 4 d. After the completion of reaction, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ¹H NMR, the desired product 12 was not detected in the reaction mixture. The residue was purified by column chromatography on basic alumina to afford the desired product 67 (5.2 mg) in 15% isolated yield.

1-(1-([1,1'-biphenyl]-4-yl)ethoxy)-2,2,6,6-tetramethylpiperidine (67)

¹**H NMR (400 MHz, CDCl₃)** δ 7.56-7.51 (m, 2H), 7.50-7.44 (m, 2H), 7.41-7.29 (m, 4H), 7.29-7.21 (m, 1H), 4.76 (q, *J* = 6.7 Hz, 1H), 1.52-1.45 (m, 6H), 1.44 (d, *J* = 6.6 Hz, 3H), 1.40-1.28 (m, 1H), 1.24 (s, 3H), 1.11 (s, 2H), 1.04 (s, 1H), 0.98 (s, 3H), 0.65 (s, 2H).

HRMS (ESI) m/z calcd. for C₂₃H₃₂NO [M + H]⁺ 338.2478, found 338.2475.

Radical clock experiments:

Under argon atmosphere, an oven-dried Schlenk tube equipped with a magnetic stir bar were charged with CuTc (1.9 mg, 0.010 mmol, 10 mol%), L4 (9.2 mg, 0.015 mmol, 15 mol%), N-F-2 (90.0 mg, 0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (130.4 mg, 0.40 mmol, 4.0 equiv.). The tube was evacuated and backfilled with argon for three times, and 1c (132 mg, 1.0 mmol, 10 equiv.), phenylacetylene (11.1 μ L, 0.10 mmol, 1.0 equiv) and anhydrous PhCl (0.8 mL) were then added successively. Then, the reaction mixture was stirred at rt for 5 d. After the completion of reaction, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the product **68** (5.3 mg) in 23% isolated yield, and the ring-opening product **69** (4.6 mg) in 20% isolated yield.

(*R*)-(3-cyclopropylprop-1-yne-1,3-diyl)dibenzene (68)

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (dd, *J* = 7.6, 1.5 Hz, 2H), 7.43 (dd, *J* = 6.6, 3.1 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.32-7.24 (m, 4H), 3.69 (d, *J* = 6.6 Hz, 1H), 1.21 (dt, *J* = 7.7, 6.2 Hz, 1H), 0.68-0.42 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.0, 131.7, 128.9, 128.4, 128.2, 127.8, 127.5, 126.8, 89.6, 83.2, 41.3, 17.5, 4.1, 3.1.

The NMR spectra were in accord with that reported in literature.^[12]

HPLC condition: Chiralcel AD-3, *n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 0.8 mL/min. $\lambda = 254$ nm, t(minor) = 8.7 min, t(major) = 10.2 min, 77% ee (88.5:11.5 er).

(E)-hex-1-en-5-yne-1,6-diyldibenzene (69)

¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 4H), 7.34-7.25 (m, 5H), 7.25-7.18 (m, 1H), 6.50 (d, J = 15.8 Hz, 1H), 6.41-6.18 (m, 1H), 2.94-2.18 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 131.6, 131.1, 128.8, 128.5, 128.2, 127.6, 127.1, 126.1, 123.9, 89.4, 81.2, 32.3, 19.8.

The NMR spectra were in accord with that reported in literature.^[12]

Assignment of absolute stereochemistry

For cyclic benzyl products:

The absolute configuration of **3** was assigned to be *S* by comparing HPLC spectra of **3**-**1** and the one deriving from commercial (*S*)-(-)-1,2,3,4-tetrahedro-naphthoic acid (*purchased from Shanghai Bidepharm*) technology Ltd.), as shown below.

Entry	Sample	Absolute	ee/%
		configuration	
1	(S)-3-1 derived from commercial (S)-	<i>(S)</i>	-99
	(-)-1,2,3,4-tetrahedro-naphthoic acid		
2	3-1	(<i>R</i>)	86

To a flamed Schlenk tube charged with a stir bar were added **3** (92% ee, 162.1 mg, 0.63 mmol, 1.0 equiv.), NaOt-Bu (121.2 mg, 1.26 mmol, 2.0 equiv.), Pd(OAc)₂ (7.1 mg, 0.032 mmol, 5 mol%), **L** (dicyclohexyl(2'-Methoxy-[1,1'-biphenyl] -2-yl)phosphine) (24.0 mg, 0.063 mmol, 10 mol%), IPrCuCl (30.7 mg, 0.063 mmol, 10 mol%), TMDSO (1,1,3,3-tetramethyldisiloxane) (223 μ L, 1.26 mmol, 2.0 equiv.), MeOH (128 μ L, 3.15 mmol, 5.0 equiv.), and toluene (5.0 mL). The reaction mixture was stirred at 60 °C for 10 h. Upon completion, the reaction mixture was filtered through a short plug of silica gel eluted with EtOAc and purified by column chromatography to afford olefin (140.5 mg, 0.54 mmol, 85% yield).

To a mixture of RuCl₃ (6.1 mg, 0.010 mmol, 5.0 mol%) and sodium periodate (464.0 mg, 0.80 mmol, 4.0 equiv.) in a mixed solvent of CCl₄ (2 mL) and water (3 mL) was added a solution of olefin (250.9 mg, 0.54 mmol, 1.0 equiv.) in MeCN (2 mL) in one portion. The reaction mixture was stirred at room temperature for 6 h, and then, was concentrated. The residue was purified by column chromatography on silica gel to afford the product (*R*)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (80.0 mg, 0.45 mmol, 84% yield).

To a solution of (*R*)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (80.0 mg, 0.45 mmol, 1.0 equiv.) in MeOH (2.0 mL) was added SOCl₂(119.0 mg, 1.0 mmol, 2.0 equiv.) dropwise at 0 °C. Then, the reaction mixture was warmed up to room temperature and stirred for another 6 h. After completion of reaction, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the product **3-1** (78.0 mg, 0.41 mmol, 91% yield) as a slight yellow oil.

methyl (R)-1,2,3,4-tetrahydronaphthalene-1-carboxylate (3-1)

¹H NMR (400 MHz, CDCl₃) δ 7.27-6.92 (m, 4H), 3.83 (t, *J* = 5.7 Hz, 1H), 3.70 (s, 3H), 2.85-2.72 (m, 2H), 2.16-2.11 (m, 1H), 2.06-1.88 (m, 2H), 1.86-1.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 137.1, 133.2, 129.3, 129.2, 126.8, 125.7, 51.9, 44.7, 29.1, 26.6, 20.5.

The NMR spectra was in accord with that reported in literature.^[14]

HPLC condition: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min. λ = 214 nm, t(minor) = 15.5 min, t(major) = 16.6 min, 86% ee (93.2:6.8 er).

For acyclic benzyl products:

The absolute configuration of **20** was assigned to be *R* by comparing its HPLC spectra with the product **98** (90% ee) in the literature (see ref. *Nat. Chem.* **2019**, *11*, 1158.). Using the same HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min. $\lambda = 254$ nm, t(minor) = 5.1 min, t(major) = 5.4 min, 90% ee (94.8:5.2 er).

For cyclic allyl products:

The absolute configuration of **33** was assigned to be *R* by comparing its optical rotation (**33**, 89% ee, $[\alpha]^{24.5}D$ +190.7 (c 0.12 in CH₂Cl₂)) and the product **3a** (91% ee, $[\alpha]^{23}D$ +260.8 (c 1.60 in CH₂Cl₂)) in the literature (see ref. *J. Am. Chem. Soc.* **2018**, *140*, 8448).

For acyclic allyl products:

The absolute configuration of **50** was assigned to be *S* by comparing its HPLC spectra with the product *S*-**5a** (99% ee) in the literature (see ref. *Tetrahedron Lett.* **2010**, *51*, 5592). HPLC condition of **50**: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min., t(major) = 11.8 min, t(minor) = 17.8 min, 84% ee (91.8:8.2 er).

References

[1] W. J. Marshall, V. V. Grushin, Organometallics, 2003, 22, 555.

[2] S. A. Macgregor, D. C. Roe, W. J. Marshall, K. M. Bloch, V. I. Bakhmutov, V. V. Grushin. *J. Am. Chem. Soc.* **2005**, *127*, 15304.

[3] M. Arisawa, T. Suzuki, T. Ishikawa, M. Yamaguchi. J. Am. Chem. Soc., 2008, 130, 12214.

[4] S. S. Bera, S. Debbarma, A.K. Ghosh, S. Chand, M. S. Maji. J. Org. Chem. 2017, 82, 420

[5] K. Born, S. Doye. Eur. J. Org. Chem. 2012, 764.

[6] H. Zhang, C. Jiang, J.-P. Tan, H.-L. Hu, Y. Chen, X. Ren, H.-S. Zhang, T. Wang. ACS Catal. **2020**, *10*, 5698.

[7] X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu. *Nat. Chem.* **2019**, *11*, 1158.

[8] W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl. G. Liu. *Science* **2016**, *353*, 1014.

[9] X.-Y. Cui, Y. Ge, S. M. Tan, H. Jiang, D. Tan, Y. Lu, R. Lee, C.-H. Tan. J. Am. Chem. Soc., **2018**, *140*, 8448

[10] Q. Wang, Y. Kobayashi. Tetrahedron Lett. 2010, 51, 5592.

[11] J. R. Clark, K. Feng, A. Sookezian, M. C. White. Nat. Chem. 2018, 10, 583.

[12] H.-D. Xia, Z.-L. Li, Q.-S. Gu, X.-Y. Dong, J.-H. Fang, X.-Y. Du, L.-L. Wang, X.-Y. Liu. Angew. Chem., Int. Ed. 2020, 59, 16926; Angew. Chem., 2020, 132, 17074.

[13] A. Sagadevan, A. Ragupathi & K. C. Hwang. Angew. Chem., Int. Ed. 2015, 54, 13896; Angew. Chem., 2015, 127, 14102.

[14] B. A. Sandoval, A. J. Meichan, T. K. Hyster. J. Am. Chem. Soc., 2017, 139, 11313.

NMR Spectra

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253]
[1253

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

y11590-L5.19.fid

y11590-L5.31.fid

93

-52 -54 -71 -53 -55 -56 -57 -58 -59 -60 -61 -62 fl (ppm) -63 -64 -65 -66 -67 -68 -69 -70

- 29.95

-140 120 100 80 60 40 20 0 -20 40 -60 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Ligand-P(0).2.fid

L7, Ar = $3,5^{-t}Bu_2C_6H_3$

77.7 7.7.7 7.7.7 7.8.7 7.8.7 7.7.49 7.7.49 7.7.49 7.7.44 7.7.7 7.7.48 7.7.48 7.7.48 7.7.48 7.7.48 7.7.48 7.7.48 7.7.722 7.7.722 7.7.722 7.7.722 7.7.722 7.7.722 7.7222 7.7222 7.7222 7.7222 7.7222 7.7222 7.72227

 $\begin{array}{c} 7.55\\ 7.57\\ 7.57\\ 7.57\\ 7.58\\ 7.48\\ 8.33\\ 3.33\\ 5.59\\ 5.59\\ 7.46\\ 6.59\\ 7.46\\ 8.33\\ 5.59\\$

 $\begin{array}{c} 7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.5\\ 7.7.7\\ 7.7.5\\ 7.7.7\\ 7.7.5\\ 7.7.5\\ 7.7.7\\ 7.7.5\\ 7.7.$

$\begin{array}{c} 7.60\\ 7.76\\ 7.75\\$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

— -113.36

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 fl (ppm)

 $\begin{array}{c} 7.66\\ 7.56\\ 7.56\\ 7.58\\$

7.56% 7.54% 7.148% 7.148% 7.19 7.173 7.17

2.204 2.2194 2.2181 2.169 2.169 2.165 2.169 2.169 2.162 2.2169 2.2169 2.2169 2.2169 2.2043 2.2043 2.2043 2.2045 2.

80 75 fl (ppm)

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.744 MM	0.6453	1.06191e4	274.25906	49.4295
2	24.432 MM	0.5994	1.08642e4	302.06860	50.5705
Total	ls :		2.14832e4	576.32767	

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.016	MP	0.5678	658.27899	19.32092	3.5444
2	24.449	BB	0.5656	1.79140e4	493.32886	96.4556
Total	ls :			1.85723e4	512.64977	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	20.232	MM	0.6399	1.57493e4	410.20657	51.4867
2	27.905	BB	1.2662	1.48397e4	174.49814	48.5133

3.05890e4 584.70471

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] # [min] [min] [mAU] % 1 20.472 BB 0.5397 881.01862 24.84333 13.8924 2 29.173 BB 1.2960 5460.70654 62.09615 86.1076

Totals :

6341.72516 86.93948

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	25.819	BB	1.0682	3480.47363	47.53834	51.1261
2	35.917	BB	1.8780	3327.15015	20.82483	48.8739

6807.62378 68.36316

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	25.352	BB	1.0946	1.02878e4	141.77747	95.8438
2	36.123	MM	2.1118	446.11734	3.52075	4.1562
Total	ls :			1.07339e4	145.29822	

Signal 8: DAD1 H, Sig=290,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.986	MM	1.5773	859.84338	9.08578	51.3061
2	32.662	MM	2.2070	816.06635	6.16258	48.6939

1675.90973 15.24836

Signal 8: DAD1 H, Sig=290,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.016	MM	1.7006	136.90688	1.34173	7.9087
2	32.430	MM	2.3593	1594.18835	11.26183	92.0913

Totals :

1731.09523 12.60357

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area % [min] [min] [mAU*s] [mAU] # 1 28.957 BB 0.9967 7101.71436 106.39526 49.7058 2 32.378 BB 1.0273 7185.78076 103.84354 50.2942

1.42875e4 210.23879

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU] % # [min] [mAU*s] 1 29.220 BB 0.9776 4835.99023 74.67343 12.2940 2 32.028 BB 1.1131 3.45002e4 463.15054 87.7060

Totals : 3.93362e4 537.82397

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.931	BB	0.8019	5892.03125	112.33083	50.1645
2	42.311	BB	1.0722	5853.39404	81.66998	49.8355

1.17454e4 194.00082

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	31.144	 BB	0.7636	1141.87073	22.29045	8.4956
2	42.014	BB	1.0918	1.22989e4	170.86789	91.5044

Totals :

1.34407e4 193.15834

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.122	BB	0.8889	983.72339	16.09814	51.0491
2	38.215	BB	0.9923	943.29181	13.85436	48.9509

Totals :

1927.01520 29.95250

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.154	BB	0.7928	374.17508	5.63410	7.1748
2	37.960	BB	1.0431	4840.98730	69.62732	92.8252
Total	ls :			5215.16238	75.26142	

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	25.694	BV	0.6223	9874.61035	241.89417	50.0526
2	27.518	VB	0.6697	9853.84863	223.78572	49.9474

Totals :

1.97285e4 465.67989

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.801	BV	0.6727	3.43594e4	781.82532	92.3782
2	27.569	VB	0.6579	2834.87061	65.11900	7.6218

Totals :

3.71942e4 846.94432

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.682	BB	0.5564	2699.37549	71.83487	47.5746
2	18.503	BB	0.6335	2974.60400	66.29469	52.4254

Height Peak RetTime Type Width Area Area # [min] [min] [mAU*s] [mAU] % 1 16.212 BB 0.4185 259.66724 7.45337 10.9333 2 17.886 BB 0.5862 2115.34985 51.60865 89.0667 Totals : 2375.01709 59.06202

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	39.935	BB	1.1440	2011.45593	25.34231	50.5959
2	51.672	BB	1.7072	1964.07288	13.54894	49.4041

Totals :

3975.52881 38.89125

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	39.928	BB	1.1574	2133.40234	27.07096	4.8728
2	50.975	BBA	2.1892	4.16489e4	282.30133	95.1272
Totals :				4.37823e4	309.37230	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 15.214 BB 0.4983 7009.51074 211.67659 50.1301 24.059 BB 0.8074 6973.13184 2 130.92867 49.8699

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.193	BB	0.4926	1637.15198	49.92568	9.4349
2	24.008	BB	0.8075	1.57150e4	294.07220	90.5651
Total	ls :			1.73521e4	343.99789	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.720	BB	0.2981	5656.65967	265.98544	50.3593
2	15.172	BB	0.4353	5575.94238	195.18159	49.6407

1.12326e4 461.16704

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	12.854 15.138	 BB BB	0.3096 0.4401	545.78674 8586.24707	23.79666 296.29031	 5.9766 94.0234

Totals :

9132.03381 320.08697

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	84.283	вв	1.6988	2939.90405	20.60299	49.9896
2	90.066	BB	1.8418	2941.12280	19.06445	50.0104

5881.02686 39.66744

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	84.069	BB	1.4632	1583.22583	12.83423	8.9424
2	87.987	BB	2.4149	1.61216e4	89.78024	91.0576

Totals :

1.77048e4 102.61448

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.808	MM .	0.5072	2816.04297	92.53878	49.7851
2	19.266	BB	0.5542	2840.35181	78.12350	50.2149

5656.39478 170.66228

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
# 	[min]		[min]	[mAU*s] 	[mau]	~
1	15.738	BB	0.3890	614.82294	20.20588	3.7744
2	18.973	BV R	0.5636	1.56747e4	419.82751	96.2256

Totals : 1.62895e4 440.03339

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.137	BB	0.5081	1958.29224	58.26832	49.9348
2	21.360	BB	0.5380	1963.40942	50.23597	50.0652

3921.70166 108.50429

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.195	BB	0.3988	170.49489	5.08993	2.9836
2	21.246	BB	0.5686	5543.83008	140.42360	97.0164

Totals :

5714.32497 145.51353

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.894	BB	0.8658	2.16758e4	382.09894	49.9964
2	43.985	BB	1.2124	2.16790e4	270.68146	50.0036

4.33548e4 652.78040

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.437	MM	0.8671	1221.78076	23.48451	8.4358
2	44.444	BB	1.2362	1.32616e4	163.16200	91.5642
Total	ls :			1.44833e4	186.64652	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.893	BB	0.7540	3991.10059	71.86034	50.9392
2	40.312	BB	1.0187	3843.93091	44.90318	49.0608

7835.03149 116.76353

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.114	BB	0.6578	537.09344	9.70217	7.0268
2	40.256	BB	1.0623	7106.35352	80.93707	92.9732

Totals :

7643.44696 90.63923

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.393	BV	0.1073	3439.54175	493.45621	49.5256
2	5.711	VB	0.1123	3505.43701	473.62903	50.4744

6944.97876 967.08524

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.117	BV	0.1052	494.33380	71.04460	5.2466
2	5.431	VV	0.1122	8927.70605	1207.94934	94.7534

Totals :

9422.03986 1278.99394

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.506	BB	0.3468	4139.64014	185.20062	50.0451
2	17.386	BB	0.6676	4132.17383	95.73479	49.9549

8271.81396 280.93541

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.961	BB	0.3450	606.51294	27.11358	3.8847
2	16.942	BB	0.6913	1.50064e4	334.57190	96.1153

Totals :

1.56129e4 361.68548

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	28.602	BB	1.5859	3.09708e4	288.16101	50.3627	
2	47.698	MM	2.6190	3.05248e4	194.25427	49.6373	

6.14956e4 482.41528


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.293	MM	1.7195	647.77594	6.27878	4.2915
2	47.897	MM	2.6313	1.44465e4	91.50255	95.7085
Tota]	ls :			1.50943e4	97.78133	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.683	MM	1.3667	9905.44043	120.79878	48.4518
2	22.279	MM	1.6778	1.05385e4	104.68726	51.5482

2.04439e4 225.48605

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.502	MM	1.2050	1005.04987	9.82534	4.9915
2	22.260	BB	1.5122	1.91300e4	167.77661	95.0085

Totals :

2.01350e4 177.60195


```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|-------|
 -----|------|-------|
 -----|
 1

 1
 12.212
 BV
 0.7025
 7621.47412
 152.63591
 47.8319

 2
 14.443
 VBA
 0.8604
 8312.40039
 133.13379
 52.1681

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime Typ	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.267 BV	0.6910	963.41077	19.61568	7.6947
2	14.514 VBA	0.8684	1.15571e4	184.58902	92.3053
Tota]	ls :		1.25205e4	204.20470	

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak RetTime Type Width Height Area Area % # [min] [min] [mAU*s] [mAU] 1 9.680 BV 0.5595 2081.77734 51.94943 47.4325 2 11.056 VB 0.6771 2307.15039 46.97017 52.5675

4388.92773 98.91959

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 9.562 BV 0.5165 448.87595 12.05347 8.0432 2 10.927 VBA 0.6638 5131.95264 106.57375 91.9568

Totals :

5580.82858 118.62722

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.270	BB	0.7187	3013.56763	62.47997	49.7538
2	21.498	BB	1.0709	3043.38623	40.95895	50.2462

6056.95386 103.43892

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.005	BB	0.7337	6507.14551	133.72081	95.6306
2	21.633	MM	1.0617	297.31555	4.66718	4.3694

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.838	BV	0.3390	3539.99951	160.73064	49.2916	
2	9.858	VB	0.4137	3641.75098	132.87816	50.7084	

7181.75049 293.60880

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.733	BV	0.3276	7567.80615	353.78061	94.7284
2	9.803	VB	0.4207	421.14703	14.94743	5.2716

```
Totals :
```

7988.95319 368.72804

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	29.232	BV R	0.7732	1674.43567	26.07538	51.8193
2	31.608	VB	0.8788	1556.85999	20.85736	48.1807

Totals :

3231.29565 46.93274

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	27.418	MM	0.9985	4014.38550	67.00638	95.8277
2	29.932	MM	1.3694	174.78462	2.12728	4.1723
Total	s:			4189.17012	69.13366	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.834	BB	0.4608	2.31174e4	755.79272	50.4983
2	17.893	BB	0.6284	2.26611e4	543.57141	49.5017

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] % # [min] 1 13.731 BB 0.4720 3.79327e4 1209.10510 95.7938 2 18.113 BB 0.6029 1665.56592 41.79293 4.2062 Totals : 3.95983e4 1250.89803

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.874	BB	0.6491	2503.91699	55.42449	50.5112
2	25.024	BB	0.7821	2453.23218	39.85449	49.4888

4957.14917 95.27898

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 21.552 BB 0.7053 4373.75195 92.56031 95.8089 2 26.220 BB 0.6574 191.32921 3.45833 4.1911 Totals : 4565.08116 96.01864

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·	·	-		
1	25.829	BB	0.8119	467.02777	8.23242	50.3962
2	28.492	BB	0.4827	459.68427	13.44975	49.6038

926.71204 21.68218

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] % # [mAU] 1 22.701 BV 0.5631 275.33337 7.18381 6.7315 2 23.744 VB 0.7229 3814.91162 80.20061 93.2685 Totals : 4090.24500 87.38443

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	41.544	MM	1.6203	9397.79395	96.66846	50.1554
2	52.830	MM	1.8019	9339.55273	86.38586	49.8446

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	42.523	VB	1.1314	8599.57813	89.14636	88.9279
2	54.890	MM	1.6548	1070.70715	10.78371	11.0721
Total	ls :			9670.28528	99.93007	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.250	BB	0.2033	8226.61719	634.37061	49.6566
2	14.937	BB	0.2530	8340.39063	514.76636	50.3434

1.65670e4 1149.13696

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.891	BB	0.1989	312.07657	24.45831	5.3816
2	15.855	BB	0.2565	5486.90967	332.55722	94.6184

Totals :

5798.98624 357.01553

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	27.400	BV	1.0711	2854.00659	40.25534	49.3100	
2	30.035	VB	1.2403	2933.87842	36.24854	50.6900	

5787.88501 76.50388

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.186	MM	0.8373	7385.69238	147.02200	94.2582
2	35.432	MM	0.8090	449.90024	9.26872	5.7418

Totals :

7835.59262 156.29072

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	22.129	BB	0.6237	3703.46606	90.83044	49.9699	
2	24.121	BB	0.6350	3707.93311	89.18979	50.0301	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	23.662	BB	0.4667	3737.74048	123.63723	7.5642	
2	25.441	BB	0.5285	4.56760e4	1337.21387	92.4358	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area	
[min]		[min]	[mAU*s]	[mAU]	%	
35.263	BB	0.9822	2622.28906	40.03397	51.2245	
38.667	BBA	0.9920	2496.92285	38.12967	48.7755	
	RetTime [min] 35.263 38.667	RetTime Type [min] 35.263 BB 38.667 BBA	RetTime Type Width [min] [min] 35.263 BB 0.9822 38.667 BBA 0.9920	RetTime Type Width Area [min] [min] [mAU*s] 	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 35.263 BB 0.9822 2622.28906 40.03397 38.667 BBA 0.9920 2496.92285 38.12967	RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % 35.263 BB 0.9822 2622.28906 40.03397 51.2245 38.667 BBA 0.9920 2496.92285 38.12967 48.7755

5119.21191 78.16364

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.245	BB	1.0382	2.24029e4	334.99173	94.3956
2	36.602	BB	0.9760	1330.08228	19.69328	5.6044
Tota]	ls :			2.37330e4	354.68501	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.485	BB	1.4978	1549.72607	12.23448	48.9793
2	44.234	MM	3.2327	1614.31628	8.32276	51.0207

3164.04236 20.55724

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	34.935	MM	1.8739	296.01071	2.63274	6.7511
2	40.695	MM	3.4432	4088.62769	19.79087	93.2489

Totals :

4384.63840 22.42361

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 19.588 BV 0.4542 4.93333e4 1643.28809 49.4857 21.041 VB 0.5360 5.03588e4 50.5143 2 1392.26843 DAD1 A, Sig=254,4 Ref=360,100 (E:\CHEM32\...IU\YL1599PA-1580PC-1 2021-04-02 16-15-25\yl1580PC-I-C-OD-H.D) CN mAU 1750 -1500 -1250 21.162 1000 750 · 500 · 19.731 38 250 -0 -20 5 10 15 25 min ό

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.731	BB	0.4014	1703.13477	61.44896	6.0400
2	21.162	BB	0.5084	2.64944e4	779.74469	93.9600

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Height Width Area Area [mAU] [min] [min] [mAU*s] % # 108.11101 1 13.400 BB 0.4265 3025.88794 49.7662 83.41529 2 17.307 BB 50.2338 0.5592 3054.31470 DAD1 B, Sig=254,4 Ref=360,100 (D:\CHEM32\1\DATA\YELIU\YL1582PF-AD-H.D) mAU 13.375 800 600 17.255 Base 17.255 400 200 39 0 12 10 14 16 Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	13.375	BB	0.4266	2.08804e4	745.86005	90.1865	
2	17.255	MM	0.5922	2272.06665	63.94063	9.8135	

Signal 3: DAD1 C, Sig=214,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.891	VV R	0.5303	5473.40869	130.76518	51.2861
2	25.112	VV R	0.5966	5198.89600	106.66969	48.7139

1.06723e4 237.43487

Signal 1: DAD1 A, Sig=254,4 Ref=off

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|
 -----|------|

 1
 19.338
 VB R
 0.7929
 4.70396e4
 728.93915
 91.4912

 2
 24.985
 BV R
 0.5813
 4374.73242
 91.91467
 8.5088

Totals : 5.14144e4 820.85382


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.329	BV	0.4676	6687.55225	216.94937	49.7251
2	23.751	VB	0.4911	6761.50146	209.17957	50.2749

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.631	VV R	0.4185	5997.34570	216.64156	7.8957
2	23.782	VB	0.5077	6.99596e4	2105.18286	92.1043

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	22.201	BB	0.5293	6564.82813	188.04828	50.0148	
2	26.001	BB	0.7170	6560.94092	139.93434	49.9852	


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.350	BB	0.5826	5416.79688	141.50156	92.4155
2	27.371	BB	0.7672	444.55246	8.92397	7.5845

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.503	BB	0.2200	1190.02991	82.61703	87.3544
2	12.550	MM	0.2509	172.27078	11.44510	12.6456

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.663	MM	0.6494	3850.55957	98.81837	47.8635
2	18.556	MM	0.6699	4194.31738	104.35616	52.1365

```
Totals :
```

8044.87695 203.17453

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.851	BB	0.6008	9945.89258	253.99646	91.0407
2	18.829	MM	0.7002	978.77856	23.29738	8.9593

Totals : 1.09247e4 277.29384

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.861	BB	0.6104	3299.30249	83.97447	49.9606
2	24.165	BB	0.7646	3304.51221	65.72065	50.0394

```
Totals :
```

6603.81470 149.69512

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.272	BB	0.5998	5195.53809	134.15295	95.0469
2	23.693	BB	0.6438	270.75308	5.64270	4.9531

Totals :

5466.29117 139.79565

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	50.376	BB	0.9828	2735.78687	40.98225	51.5565
2	55.873	BB	1.0201	2570.60205	36.48064	48.4435

5306.38892 77.46288

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	48.972	BB	1.0121	3652.34546	53.79363	92.2974
2	54.653	MM	1.1831	304.80457	4.29405	7.7026
Tota]	ls :			3957.15002	58.08768	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.350	BB	0.8014	2604.68994	50.02668	49.6538
2	33.500	BB	0.9977	2641.01294	39.31342	50.3462

5245.70288 89.34010

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.315	BB	0.7974	2545.39771	47.94524	96.3525
2	33.832	MM	1.0238	96.35753	1.56856	3.6475

Totals :

2641.75523 49.51380

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	31.066	BB	0.9280	2.40301e4	391.54980	92.9496	
2	39.262	BB	0.8187	1822.74170	26.42632	7.0504	

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
28.683	BB	0.9745	1.15901e5	1759.40808	89.7790
37.811	BB	1.0722	1.31950e4	184.53462	10.2210
	RetTime [min] 28.683 37.811	RetTime Type [min] 28.683 BB 37.811 BB	RetTime Type Width [min] [min] 28.683 BB 0.9745 37.811 BB 1.0722	RetTime TypeWidthArea[min][min][mAU*s]28.683BB0.97451.15901e537.811BB1.07221.31950e4	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 28.683 BB 0.9745 1.15901e5 1759.40808 37.811 BB 1.0722 1.31950e4 184.53462

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.855	BV	0.9034	9.71088e4	1667.59058	89.7204
2	39.915	VB	0.9189	1.11261e4	181.56084	10.2796

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	57.617 BB	1.1269	2166.95190	22.83898	49.9061
2	60.871 BB	1.3352	2175.10449	19.47202	50.0939
Total	ls :		4342.05640	42.31100	

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 0.8942 624.01251 1 59.547 BB 8.34686 2.9615 2 62.332 BB 1.6905 2.04470e4 172.80002 97.0385 Totals : 181.14688 2.10710e4

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.591	BV	0.5943	3716.23364	89.89716	34.4913
2	29.736	VB	0.6618	3652.67407	76.94755	33.9014
3	36.574	BB	0.6278	1787.47681	34.88399	16.5900
4	48.151	BV R	0.8853	1618.00867	21.76522	15.0172

Totals :

1.07744e4 223.49393

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.164	BB	0.5482	1181.90564	28.71334	48.2797
2	30.935	BB	0.4908	130.83554	3.18774	5.3445
3	37.231	BB	0.6186	989.73999	19.03477	40.4299
4	48.681	MM	1.1703	145.55620	2.07299	5.9458
Tota]	ls :			2448.03737	53.00884	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.335	MM	1.3794	1631.69092	19.71524	49.6373
2	40.657	MM	1.8709	1655.53955	14.74791	50.3627

3287.23047 34.46314

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	34.514	BB	1.3291	3983.74634	42.98977	92.3869
2	42.942	MM	1.7479	328.27893	3.13024	7.6131

Totals :

4312.02527 46.12001

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
# 	[min]		[min] 	[mAU*s]	[mAU]	%
1	32.382	BB	0.9194	4877.32373	73.57573	50.1889
2	38.795	BB	0.9986	4840.60303	58.91498	49.8111

9717.92676 132.49071

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.751	BB	0.7647	892.09424	13.75428	6.2215
2	38.203	MM	1.5028	1.34468e4	149.13438	93.7785

Totals :

1.43389e4 162.88866

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.911	BB	0.4555	3011.47974	91.14550	50.3091
2	20.391	BB	0.5210	2974.47827	79.77512	49.6909

5985.95801 170.92062

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.507	BB	0.3387	345.44034	12.56646	7.3173
2	21.765	BB	0.4632	4375.40820	148.75182	92.6827

Totals :

4720.84854 161.31828

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.842	BB	0.3625	1073.78394	45.31363	49.0106
2	10.404	BB	0.6455	1117.13721	26.19519	50.9894

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.733	BB	0.3484	54.12192	2.23558	11.4552
2	10.188	BB	0.5898	418.34201	10.38952	88.5448
Tota]	ls :			472.46393	12.62510	

Signal 8: DAD1 H, Sig=280,4 Ref=off

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 8.149
 BB
 0.2702
 1714.12891
 98.92181
 49.8364

 2
 12.305
 BB
 0.3866
 1725.38501
 65.22168
 50.1636

3439.51392 164.14349

Signal 8: DAD1 H, Sig=280,4 Ref=off

Peak RetTime Type Width Area Height Area [min] % # [min] [mAU*s] [mAU] 0.2830 261.47672 1 8.169 VB 13.80089 16.6819 2 12.339 MM 0.4479 1305.94714 48.59459 83.3181 Totals : 1567.42386 62.39548