Supporting Information

Copper-Catalyzed anti-Selective Radical 1,2-Alkylarylation of

Terminal Alkynes

Jun-Bin Tang,^{†,‡,§} Jun-Qian Bian,[§] Yu-Shuai Zhang,[§] Yong-Feng Cheng,[§] Han-Tao Wen,[§] Zhang-Long Yu,[§] Zhong-Liang Li,^{||} Qiang-Shuai Gu,^{||,*} Guo-Qiang Chen,^{†,*} and Xin-Yuan Liu^{§,*}

[†]College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China

[‡]College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

[§]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

^{II}Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Emails: guqs@sustech.edu.cn; gqchen@szu.edu.cn; liuxy3@sustech.edu.cn

Table of contents

General information	2
The synthesis of substrates	3
Typical procedure for 1,2-alkylarylation of alkynes	5
Gram-scale reaction	
Transformations of trisubstituted alkenes (4 and 35)	
X-Ray crystallography data of 9 and 11	
Reference	
NMR spectra	50

General information

All reactions were carried out under argon atmosphere using Schlenk techniques unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuI and L3 were purchased from Bide Pharmatech Ltd. K₂CO₃ was purchased from Aladdin. Toluene and Et₂O was purchased from Aladdin, which was distilled with sodium and benzophenone under argon atmosphere. Anhydrous THF, DMF and DCE were purchased from J&K Scientific. Other solvents and reagents were purchased from Aladdin, J&K Scientific, Tansoole, and Bidepharm. For reactions that need heating, an oil bath was employed and the temperature of the oil bath was denoted. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV colorless (254 nm), iodine, or basic KMnO4 indicator.

NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃ with tetramethylsilane (TMS) as an internal standard. The chemical shifts were expressed in ppm and coupling constants were given in Hz. Data for ¹H NMR were recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR were reported in terms of chemical shift (δ , ppm). HRMS measurements were performed with a Thermo Q Exactive mass spectrometer with an orbitrap mass analyzer. X-ray diffraction was measured on a Bruker D8 VENTURE diffractometer with MoK α ($\lambda = 0.71073$) radiation.

The synthesis of substrates

All alkynes and aryl boronic acids and most of radical precursors were purchased from commercial sources. The radical precursors **2b** and **2c** were synthesized according to the reported literature.¹

$$\begin{array}{c|c} Br \\ Br \\ O \end{array} + R-OH \xrightarrow{Et_3N(1.5 \text{ equiv})} Br \\ THF, RT \end{array} \xrightarrow{Br} O R$$

To a solution of phenol or alcohol (10 mmol, 1.0 equiv) and Et₃N (2.08 mL, 15 mmol, 1.5 equiv) in THF (30 mL) in an ice bath was added a solution of 2-bromoisobutyryl bromide (1.8 mL, 15 mmol, 1.5 equiv) dropwise under argon for 5 min. The reaction mixture was stirred at room temperature for 12 h, and then filtrated through a short pad of silica. The filtrate was concentrated in *vacuo*, and the residue was diluted in DCM (60 mL), washed with 0.1 M HCl aq. (40 mL), and sat. NaHCO₃ solution (40 mL) sequentially. The organic layer was dried with Na₂SO₄ and concentrated in *vacuo*. Further purification by flash column chromatography.

p-tolyl 2-bromo-2-methylpropanoate (2b)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to afford **2b** (2.31 g, 90% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H), 2.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 170.6, 148.6, 135.9, 130.1, 120.8, 55.6, 30.8, 21.0. HRMS (ESI) *m/z* calcd. for C₁₁H₁₄BrO₂ [M + H]⁺ 257.0099, found 257.0010.

4-methoxybenzyl 2-bromo-2-methylpropanoate (2c)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **2c** (2.53 g, 88% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 5.14 (s, 2H), 3.79 (s, 3H), 1.93 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 171.5, 159.7, 129.9, 127.5, 113.9, 67.5, 55.9, 55.2, 30.8. HRMS (ESI) *m/z* calcd. for C₁₂H₁₆BrO₃ [M + H]⁺ 287.0277, found 287.0281.

Typical procedure for 1,2-alkylarylation of alkynes

To a 10 mL sealable tube were sequentially added alkene 1 (0.20 mmol), 2 (0.40 mmol, 2.0 equiv), 3 (0.40 mmol, 2.0 equiv), CuI (3.81 mg, 0.020 mmol, 10 mol %), L3 (8.02 mg, 0.020 mmol, 10 mol %), K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv), and toluene (2.0 mL) under argon atmosphere. Then the tube was sealed and the reaction mixture was stirred in an oil bath at 80 °C for 24 h. After the completion of reaction, the pure product was isolated by flash column chromatography.

tert-Butyl 2,2-dimethyl-4,4-diphenylbut-3-enoate (4)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40/1) to afford 4 (65.7 mg, 98% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.27 (m, 3H), 7.27 – 7.14 (m, 7H), 6.13 (s, 1H), 1.38 (s, 9H), 1.17 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.2, 144.0, 141.7, 140.2, 134.1, 130.3, 128.1, 128.0, 127.4, 127.3, 127.1, 80.3, 45.0, 28.0, 27.5.

HRMS (ESI) *m/z* calcd. for C₂₂H₂₆NaO₂ [M + Na]⁺ 345.1825, found 345.1831.

tert-Butyl-2,2-dimethyl-4-phenyl-4-(p-tolyl)but-3-enoate (5)

The product mixture was purified by silica gel column chromatography (petroleum

ether/ethyl acetate = 30/1) to afford 5 (65.3 mg, *anti/syn* = 17/1, 97% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): *δ* 7.28 – 7.15 (m, 5H), 7.13 – 7.11 (m, 2H), 7.06 – 7.03 (m, 2H), 6.10 (s, 1H), 2.35 (s, 3H), 1.38 (s, 9H), 1.17 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 176.2, 144.2, 141.7, 137.2, 136.9, 134.0, 130.1, 128.8,

128.1, 127.5, 127.0, 80.2, 45.0, 28.0, 27.5, 21.4.

HRMS (ESI) m/z calcd. for C₂₃H₂₈NaO₂ [M + Na]⁺ 359.1982, found 359.1988.

tert-Butyl-4-(4-methoxyphenyl)-2,2-dimethyl-4-phenylbut-3-enoate (6)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **6** (63.4 mg, *anti/syn* = 5/1, 90% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.16 (m, 5H), 7.11 – 7.03 (m, 2H), 6.87 – 6.84 (m, 2H), 6.09 (s, 1H), 3.81 (s, 3H), 1.38 (s, 9H), 1.18 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.2, 158.9, 144.3, 141.4, 134.1, 132.5, 131.3, 128.1,
127.5, 127.1, 113.5, 80.2, 55.3, 45.0, 28.0, 26.8.

HRMS (ESI) *m/z* calcd. for C₂₃H₂₈NaO₃ [M + Na]⁺ 375.1931, found 375.1938.

tert-Butyl-4-(4-bromophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (7)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford 7 (62.0 mg, *anti/syn* > 20/1, 77% yield) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 8.0 Hz, 2H), 7.27 – 7.19 (m, 3H), 7.19 – 7.10 (m, 2H), 7.05 (d, J = 7.9 Hz, 2H), 6.12 (s, 1H), 1.38 (s, 9H), 1.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.9, 143.4, 140.5, 139.2, 134.7, 132.0, 131.3, 128.2, 127.4, 127.4, 121.5, 80.5, 45.0, 28.0, 27.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₅BrNaO₂ [M + Na]⁺ 423.0930, found 423.0940.

tert-Butyl-4-(4-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (8)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **8** (71.0 mg, *anti/syn* > 20/1, 97% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.28 (m, 2H), 7.28 – 7.19 (m, 3H), 7.18 – 7.08 (m, 4H), 6.13 (s, 1H), 1.38 (s, 9H), 1.18 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 143.5, 140.6, 138.7, 134.8, 133.3, 131.6, 128.3, 128.2, 127.4, 127.4, 80.5, 45.0, 28.0, 27.6.

HRMS (ESI) *m/z* calcd. for C₂₂H₂₅ClNaO₂ [M + Na]⁺ 379.1435, found 379.1442.

tert-Butyl-4-(4-cyanophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (9)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **9** (57.0 mg, *anti/syn* = 6/1, 82% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.60 (m, 2H), 7.34 – 7.28 (m, 2H), 7.28 – 7.23 (m, 3H), 7.16 – 7.06 (m, 2H), 6.17 (s, 1H), 1.37 (s, 9H), 1.18 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.6, 145.4, 142.8, 140.1, 135.5, 131.9, 131.1, 128.4, 127.7, 127.4, 118.9, 111.3, 80.7, 45.1, 28.0, 27.6.

HRMS (ESI) m/z calcd. for C₂₃H₂₆NO₂ [M + H]⁺ 348.1958, found 348.1966.

Methyl-4-(4-(tert-butoxy)-3,3-dimethyl-4-oxo-1-phenylbut-1-en-1-yl)benzoate (10)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **10** (62.3 mg, *anti/syn* = 12/1, 82% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.05 – 7.97 (m, 2H), 7.31 – 7.19 (m, 5H), 7.19 – 7.11 (m, 2H), 6.17 (s, 1H), 3.92 (s, 3H), 1.38 (s, 9H), 1.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 167.1, 145.4, 143.2, 140.8, 134.8, 130.3, 129.6, 129.1, 129.0, 128.3, 127.4, 80.5, 52.2, 45.1, 28.0, 27.5.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₈NaO₄ [M + Na]⁺ 403.1880, found 403.1888.

tert-Butyl-2,2-dimethyl-4-(4-nitrophenyl)-4-phenylbut-3-enoate (11)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **11** (44.8 mg, *anti/syn* = 16/1, 61% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.31
- 7.22 (m, 3H), 7.19 - 7.03 (m, 2H), 6.20 (s, 1H), 1.38 (s, 9H), 1.19 (s, 6H).
¹³C NMR (100 MHz, CDCl₃): δ 175.5, 147.5, 147.3, 142.6, 139.9, 135.8, 131.2, 128.5, 127.8, 127.4, 123.4, 80.8, 45.1, 28.0, 27.6.

HRMS (ESI) *m/z* calcd. for C₂₂H₂₅NO₄Na [M + Na]⁺ 390.1676, found 390.1683.

tert-Butyl-4-(3-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (12)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **12** (43.7 mg, *anti/syn* > 20/1, 60% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.18 (m, 5H), 7.14 – 7.19 (m, 3H), 7.08 (ddd, J = 6.1, 2.4, 1.6 Hz, 1H), 6.13 (s, 1H), 1.39 (s, 9H), 1.18 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 143.3, 142.0, 140.4, 134.9, 134.0, 130.2, 129.4,
128.5, 128.3, 127.6, 127.4, 80.6, 45.0, 28.0, 27.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₅ClNaO₂ [M + Na]⁺ 379.1435, found 379.1442.

tert-Butyl-4-(3-fluorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (13)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **13** (65.8 mg, *anti/syn* = 7/1, 96% yield) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.19 (m, 4H), 7.22 – 7.14 (m, 2H), 7.07 – 6.93 (m, 2H), 6.90 (ddd, *J* = 9.6, 2.6, 1.5 Hz, 1H), 6.13 (s, 1H), 1.39 (s, 9H), 1.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 176.0, 162.6 (d, *J* = 246.3 Hz), 143.3, 142.4 (d, *J* = 7.6 Hz), 140.5, 138.8, 134.7, 129.6 (d, *J* = 8.4 Hz), 128.3, 127.4, 126.1 (d, *J* = 3.1 Hz), 117.3 (d, *J* = 21.1 Hz), 114.3 (d, *J* = 21.0 Hz), 80.5, 45.0, 28.0, 27.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.6. HRMS (ESI) m/z calcd. for C₂₂H₂₅FNaO₂ [M + Na]⁺ 363.1731, found 363.1737.

tert-Butyl-4-(3-methoxyphenyl)-2,2-dimethyl-4-phenylbut-3-enoate (14)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **14** (41.4 mg, *anti/syn* = 20/1, 57% yield) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): *δ* 7.28 – 7.16 (m, 6H), 6.84 (ddd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 6.77 (dt, *J* = 7.5, 1.2 Hz, 1H), 6.71 (dd, *J* = 2.6, 1.4 Hz, 1H), 6.11 (s, 1H), 3.78 (s, 3H), 1.38 (s, 9H), 1.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.1, 159.4, 143.8, 141.5(1), 141.4(5), 134.0, 129.0,
128.1, 127.4, 127.1, 122.9, 115.9, 112.9, 80.3, 55.3, 45.1, 28.0, 27.4.

HRMS (ESI) m/z calcd. for C₂₃H₂₈NaO₃ [M + Na]⁺ 375.1931, found 375.1938.

tert-Butyl-4-(2-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (15)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **15** (55.8 mg, *anti/syn* = 16/1, 78% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): *δ* 7.41 – 7.33 (m, 1H), 7.31 – 7.20 (m, 6H), 7.23 – 7.16 (m, 2H), 6.26 (s, 1H), 1.43 (s, 9H), 1.23 (s, 3H), 1.04 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 142.0, 138.9, 138.5, 134.9, 134.3, 132.2, 129.8, 129.0, 128.3, 127.3, 126.8, 126.3, 80.5, 45.4, 28.1, 27.2, 25.0.

HRMS (ESI) m/z calcd. for C₂₂H₂₅ClNaO₂ [M + Na]⁺ 379.1435, found 379.1442.

tert-Butyl-4-(2-methoxyphenyl)-2,2-dimethyl-4-phenylbut-3-enoate (16)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **16** (65.0 mg, *anti/syn* = 16/1, 92% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.30 (ddd, J = 8.2, 7.4, 1.8 Hz, 1H), 7.27 – 7.14 (m, 5H), 7.11 (dd, J = 7.4, 1.8 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.88 (dd, J = 8.2, 1.1 Hz, 1H), 6.24 (s, 1H), 3.68 (s, 3H), 1.42 (s, 9H), 1.11 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.3, 157.2, 143.2, 138.0, 134.3, 131.7, 129.1, 129.0,
128.1, 126.9, 126.6, 120.3, 110.9, 80.2, 55.5, 45.1, 28.1.

HRMS (ESI) m/z calcd. for C₂₃H₂₈NaO₃ [M + Na]⁺ 375.1931, found 375.1938.

tert-Butyl-2,2-dimethyl-4-(naphthalen-2-yl)-4-phenylbut-3-enoate (17)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **17** (66.5 mg, *anti/syn* = 9/1, 88% yield) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.84 – 7.76 (m, 4H), 7.69 (s, 1H), 7.52 – 7.43 (m, 2H), 7.26 – 7.18 (m, 5H), 6.21 (s, 1H), 1.34 (s, 9H), 1.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.1, 143.8, 141.6, 137.7, 134.6, 133.2, 132.7, 128.9, 128.5, 128.2, 128.1, 127.8, 127.7, 127.6, 127.2, 126.2, 126.1, 80.3, 45.1, 28.0, 27.6.
HRMS (ESI) *m/z* calcd. for C₂₆H₂₈NaO₂ [M + Na]⁺ 395.1982, found 395.1989.

tert-Butyl-2,2-dimethyl-4-phenyl-4-(thiophen-2-yl)but-3-enoate (18)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **18** (48.0 mg, *anti/syn* = 20/1, 73% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, J = 5.1, 1.2 Hz, 1H), 7.30 – 7.21 (m, 5H), 7.00 (dd, J = 5.1, 3.5 Hz, 1H), 6.94 (dd, J = 3.5, 1.2 Hz, 1H), 6.10 (s, 1H), 1.35 (s, 9H), 1.30 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 175.9, 144.1, 141.1, 137.5, 134.6, 128.6, 128.1, 127.6, 127.5, 126.7, 126.3, 80.4, 45.1, 28.0, 27.5.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NaO₂S [M + Na]⁺ 351.1389, found 351.1396.

tert-Butyl-4-([1,1'-biphenyl]-4-yl)-2,2-dimethyl-4-phenylbut-3-enoate (19)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **19** (36.0 mg, *anti/syn* > 20/1, 44% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.1 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.37 – 7.28 (m, 4H), 7.29 – 7.22 (m, 2H), 7.20 (d, *J* = 7.0 Hz, 2H), 6.21 (s, 1H), 1.39 (s, 9H), 1.18 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.1, 142.9, 141.2, 140.9, 140.1, 140.0, 134.1, 130.3, 128.9, 128.1, 127.8, 127.3(8), 127.3(5), 127.1, 126.9, 80.3, 45.1, 28.0, 27.5.
HRMS (ESI) *m/z* calcd. for C₂₈H₃₀NaO₂ [M + Na]⁺ 421.2138, found 421.2145.

tert-Butyl-4-(4-methoxyphenyl)-2,2-dimethyl-4-phenylbut-3-enoate (20)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **20** (50.4 mg, *anti/syn* > 20/1, 71% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.26 (m, 3H), 7.17 (d, J = 2.0 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 6.05 (s, 1H), 3.77 (s, 3H), 1.38 (s, 9H), 1.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.3, 158.9, 141.1, 140.5, 136.7, 132.5, 130.2, 128.5, 128.0, 127.2, 113.5, 80.2, 55.4, 45.0, 28.0, 27.5.

HRMS (ESI) m/z calcd. for C₂₃H₂₈NaO₃ [M + Na]⁺ 375.1931, found 375.1937.

tert-Butyl-2,2-dimethyl-4-(4-phenoxyphenyl)-4-phenylbut-3-enoate (21)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **21** (54.1 mg, *anti/syn* > 20/1, 65% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.24 (m, 5H), 7.21 – 7.10 (m, 4H), 7.10 – 7.02 (m, 1H), 6.99 (dt, *J* = 7.8, 1.1 Hz, 2H), 6.92 – 6.83 (m, 2H), 6.10 (s, 1H), 1.38 (s, 9H), 1.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 176.2, 157.3, 156.5, 141.0, 140.2, 139.1, 133.4, 130.2,

129.8, 128.7, 128.1, 127.3, 123.4, 119.0, 118.4, 80.3, 45.0, 28.0, 27.5. HRMS (ESI) *m/z* calcd. for C₂₈H₃₀NaO₃ [M + Na]⁺ 437.2087, found 437.2095.

tert-Butyl-4-(4-iodophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (22)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **22** (63.7 mg, *anti/syn* = 6/1, 70% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.5 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.17 – 7.10 (m, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.12 (s, 1H), 1.37 (s, 9H), 1.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.0, 143.6, 140.8, 139.6, 137.2, 134.6, 130.2, 129.3,

128.2, 127.5, 92.8, 80.4, 45.1, 28.0, 27.4.

HRMS (ESI) m/z calcd. for C₂₂H₂₅NaO₂I [M + Na]⁺ 471.0791, found 471.0802.

tert-Butyl-4-(3-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (23)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **23** (50.8 mg, *anti/syn* > 20/1, 71% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.27 (m, 3H), 7.21 – 7.11 (m, 5H), 7.04 (dt, J = 6.8, 1.9 Hz, 1H), 6.13 (s, 1H), 1.38 (s, 9H), 1.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 145.9, 140.6, 139.4, 135.3, 134.1, 130.1, 129.3,
128.2, 127.6, 127.5, 127.1, 125.7, 80.4, 45.1, 28.0, 27.4.
HRMS (ESI) *m/z* calcd. for C₂₂H₂₅ClNaO₂ [M + Na]⁺ 379.1435, found 379.1442.

tert-Butyl-4-(2-fluorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (24)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **24** (55.6 mg, *anti/syn* > 20/1, 81% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.22 (m, 3H), 7.24 – 7.09 (m, 4H), 7.07 – 6.92 (m, 2H), 5.97 (s, 1H), 1.36 (s, 9H), 1.20 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.0, 160.0 (d, J = 247.8 Hz), 140.2, 137.9 (d, J = 3.0 Hz), 136.4, 132.6 (d, J = 13.3 Hz), 131.2 (d, J = 3.3 Hz), 129.6, 128.7 (d, J = 8.2 Hz), 128.0, 127.3, 123.8 (d, J = 3.7 Hz), 115.9 (d, J = 22.6 Hz), 80.3, 45.1, 27.9, 27.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.9 ppm.

HRMS (ESI) *m/z* calcd. for C₂₂H₂₅FNaO₂ [M + Na]⁺ 363.1731, found 363.1738.

tert-Butyl-4-(3,5-dimethoxyphenyl)-2,2-dimethyl-4-phenylbut-3-enoate (25)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **25** (32.0 mg, *anti/syn* > 20/1, 40% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.22 (m, 3H), 7.23 – 7.10 (m, 2H), 6.36 – 6.33 (m, 3H), 6.13 (s, 1H), 3.73 (s, 6H), 1.37 (s, 9H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 160.5, 146.3, 141.6, 139.9, 134.3, 130.1, 128.0, 127.3, 106.1, 98.9, 80.3, 55.4, 45.0, 28.0, 27.4.

HRMS (ESI) m/z calcd. for C₂₄H₃₀NaO₄ [M + Na]⁺ 405.2036, found 405.2044.

tert-Butyl-4-(dibenzo[b,d]furan-2-yl)-2,2-dimethyl-4-phenylbut-3-enoate (26)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **26** (31.2 mg, *anti/syn* > 20/1, 36% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 1.9 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.46 – 7.40 (m, 2H), 7.37 – 7.27 (m, 5H), 7.26 – 7.20 (m, 2H), 6.17 (s, 1H), 1.40 (s, 9H), 1.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.3, 156.8, 155.7, 141.8, 140.5, 139.4, 134.1, 130.3,
128.2, 127.4, 127.2(4), 127.1(6), 124.4, 124.1, 122.8, 120.9, 119.6, 111.8, 111.1, 80.4,
45.1, 28.1, 27.6.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₈NaO₃ [M + Na]⁺ 435.1931, found 435.1941.

tert-Butyl-2,2-dimethyl-4-(naphthalen-1-yl)-4-phenylbut-3-enoate (27)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to afford **27** (45.8 mg, *anti/syn* > 20/1, 60% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.33 – 8.23 (m, 1H), 7.86 – 7.77 (m, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.48 – 7.35 (m, 3H), 7.33 – 7.26 (m, 3H), 7.26 – 7.15 (m, 3H), 5.82 (s, 1H), 1.35 (s, 9H), 1.33 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.0, 143.0, 141.1, 139.7, 137.7, 134.1, 132.1, 129.1,
128.3, 128.1, 127.4, 127.2, 126.8, 126.3, 126.0, 125.7, 125.4, 80.4, 45.0, 28.0, 27.9.
HRMS (ESI) *m/z* calcd. for C₂₆H₂₈NaO₂ [M + Na]⁺ 395.1982, found 395.1990.

tert-Butyl-2,2-dimethyl-4-(naphthalen-2-yl)-4-phenylbut-3-enoate (28)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to afford **28** (36.0 mg, *anti/syn* > 20/1, 47% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.71 (m, 3H), 7.57 (s, 1H), 7.48 – 7.42 (m, 3H), 7.42 – 7.35 (m, 3H), 7.29 – 7.23 (m, 2H), 6.31 (s, 1H), 1.43 (s, 9H), 1.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.2, 141.7, 141.4, 140.1, 134.7, 133.4, 132.7, 130.4,
128.3, 128.1, 127.6(1), 127.5(9), 127.4, 126.5, 126.2, 125.9, 125.6, 80.4, 45.1, 28.0,
27.5.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₈NaO₂ [M + Na]⁺ 395.1982, found 395.1989.

tert-Butyl-2,2-dimethyl-4-(phenanthren-9-yl)-4-phenylbut-3-enoate (29)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to afford **29** (40.6 mg, *anti/syn* > 20/1, 47% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.69 – 8.63 (m, 2H), 8.28 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.64 – 7.51 (m, 5H), 7.39 – 7.33 (m, 2H), 7.26 – 7.20 (m, 2H), 7.20 – 7.14 (m, 1H), 5.91 (s, 1H), 1.37 (s, 6H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 176.1, 141.5, 140.7, 140.0, 137.7, 131.7, 131.6, 130.9,
130.0, 129.1, 128.7, 128.1, 127.3(4), 127.2(6), 127.2(1), 126.8, 126.6, 126.5, 126.4,
122.9, 122.6, 80.4, 44.9, 28.1, 27.9.

HRMS (ESI) *m/z* calcd. for C₃₀H₃₀NaO₂ [M + Na]⁺ 445.2138, found 445.2148.

tert-Butyl 4,4-bis(4-bromophenyl)-2,2-dimethylbut-3-enoate (30)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40/1) to afford **30** (92.0 mg, 96% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 7.02 (dd, J = 8.5, 5.1 Hz, 4H), 6.11 (s, 1H), 1.37 (s, 9H), 1.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.7, 142.4, 139.6, 138.6, 135.2, 131.9, 131.5, 131.3,

129.0, 121.8, 121.5, 80.7, 45.1, 28.0, 27.5.

HRMS (ESI) m/z calcd. for C₂₂H₂₄Br₂NaO₂ [M + Na]⁺ 501.0035, found 501.0048.

tert-Butyl 4,4-bis(4-chlorophenyl)-2,2-dimethylbut-3-enoate (31)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **31** (45.4 mg, 57% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 7.08 (dd, *J* = 8.5, 4.6 Hz, 4H), 6.11 (s, 1H), 1.37 (s, 9H), 1.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.8, 142.0, 139.6, 138.2, 135.2, 133.6, 133.3, 131.5, 128.7, 128.5, 128.4, 80.6, 45.1, 28.0, 27.5. HRMS (ESI) *m/z* calcd. for C₂₂H₂₄Cl₂NaO₂ [M + Na]⁺ 413.1046, found 413.1054.

tert-Butyl 4,4-bis(3-chlorophenyl)-2,2-dimethylbut-3-enoate (32)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **32** (58.0 mg, 74% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.24 (m, 2H), 7.23 – 7.12 (m, 4H), 7.06 (dt, J = 6.5, 1.8 Hz, 1H), 7.01 (dt, J = 6.9, 1.9 Hz, 1H), 6.13 (s, 1H), 1.39 (s, 9H), 1.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.6, 145.1, 141.3, 139.3, 136.1, 134.3, 134.2, 130.1, 129.5(4), 129.4(7), 128.4, 127.9, 127.4, 125.7, 80.7, 45.1, 28.0, 27.5. HRMS (ESI) *m/z* calcd. for C₂₂H₂₄Cl₂NaO₂ [M + Na]⁺ 413.1046, found 413.1054. tert-Butyl 4,4-bis(4-methoxyphenyl)-2,2-dimethylbut-3-enoate (33)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **33** (40.8 mg, 52% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 6.01 (s, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 1.38 (s, 9H), 1.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.4, 158.9(2), 158.8(5), 140.8, 137.1, 132.7, 132.5, 131.3, 128.6, 113.45, 113.42, 80.2, 55.4, 55.3, 44.9, 28.0, 27.6.

HRMS (ESI) m/z calcd. for C₂₄H₃₀NaO₄ [M + Na]⁺ 405.2036, found 405.2044.

tert-Butyl 2,2-dimethyl-4,4-di(naphthalen-2-yl)but-3-enoate (34)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **34** (56.4 mg, 66% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.65 (m, 7H), 7.54 (s, 1H), 7.52 – 7.37 (m, 5H), 7.29 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.35 (s, 1H), 1.35 (s, 9H), 1.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 141.6, 141.2, 137.7, 135.2, 133.4, 133.2, 132.8, 132.7, 129.0, 128.6, 128.3, 128.2, 127.9, 127.7(4), 127.6(6), 127.6, 126.7, 126.3, 126.2, 126.1, 126.0, 125.8, 80.4, 45.2, 28.0, 27.7.

HRMS (ESI) m/z calcd. for C₃₀H₃₀NaO₂ [M + Na]⁺ 445.2138, found 445.2146.

p-Tolyl 2,2-dimethyl-4,4-diphenylbut-3-enoate (35)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **35** (66.0 mg, 92% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.35 (m, 3H), 7.25 – 7.19 (m, 7H), 7.10 (d, J = 8.3 Hz, 2H), 6.74 (d, J = 8.5 Hz, 2H), 6.22 (s, 1H), 2.31 (s, 3H), 1.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 148.9, 143.5, 142.6, 139.6, 135.2, 133.3, 130.3, 129.8, 128.3, 128.2, 127.6, 127.5, 127.4, 121.1, 44.5, 27.9, 21.0. HRMS (ESI) *m/z* calcd. for C₂₅H₂₄NaO₂ [M + Na]⁺ 379.1609, found 379.1677.

p-Tolyl-4-(4-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (36)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **36** (40.2 mg, *anti/syn* > 20/1, 51% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.22 (m, 4H), 7.22 – 7.06 (m, 7H), 6.73 (d, J = 8.5 Hz, 2H), 6.21 (s, 1H), 2.32 (s, 3H), 1.42 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.0, 148.8, 143.1, 141.5, 138.0, 135.3, 133.9, 133.7, 131.7, 129.9, 128.6, 128.3, 127.6, 127.4, 120.9, 44.5, 27.9, 21.0.

HRMS (ESI) *m/z* calcd. for C₂₅H₂₃ClNaO₂ [M + H]⁺ 391.1459, found 391.1466.

4-Methoxybenzyl 2,2-dimethyl-4,4-diphenylbut-3-enoate (37)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **37** (71.4 mg, 92% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.26 (m, 3H), 7.26 – 7.14 (m, 7H), 7.12 – 7.06 (m, 2H), 6.90 – 6.81 (m, 2H), 6.09 (s, 1H), 4.67 (s, 2H), 3.79 (s, 3H), 1.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 176.3, 159.5, 143.4, 141.8, 139.4, 134.1, 130.3, 129.8, 128.5, 128.2, 128.0, 127.4, 127.3(4), 127.2(6), 113.9, 66.0, 55.4, 44.3, 27.8. HRMS (ESI) *m/z* calcd. for C₂₆H₂₆NaO₃ [M + Na]⁺ 409.1774, found 409.1782.

4-Methoxybenzyl-4-(4-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (38)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **38** (74.3 mg, *anti/syn* = 20/1, 88% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.26 – 7.17 (m, 6H), 7.17 – 7.10 (m, 2H), 7.05 – 6.96 (m, 2H), 6.94 – 6.79 (m, 3H), 6.09 (s, 1H), 4.71 (s, 2H), 3.80 (s, 3H), 1.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 159.6, 143.0, 140.7, 137.8, 134.7, 133.4, 131.60, 129.8, 128.3, 128.3, 127.5, 127.3, 114.0, 66.2, 55.4, 44.3, 30.9, 27.8. HRMS (ESI) *m/z* calcd. for C₂₆H₂₅ClNaO₃ [M + Na]⁺ 443.1384, found 443.1383.

Ethyl 2,2-dimethyl-4,4-diphenylbut-3-enoate (39)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **39** (44.8 mg, 76% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.27 (m, 3H), 7.27 – 7.16 (m, 5H), 7.16 – 7.09 (m, 2H), 6.09 (s, 1H), 3.73 (q, *J* = 7.1 Hz, 2H), 1.29 (s, 6H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.5, 143.5, 141.6, 139.4, 134.3, 130.2, 128.2, 128.0, 127.4, 127.4, 127.2, 60.5, 44.2, 27.9, 14.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₂NaO₂ [M + Na]⁺ 317.1512, found 317.1518.

Ethyl-4-(4-chlorophenyl)-2,2-dimethyl-4-phenylbut-3-enoate (40)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **40** (51.2 mg, *anti/syn* > 20/1, 77% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.19 (m, 5H), 7.18 – 7.11 (m, 2H), 7.11 – 7.02 (m, 2H), 6.09 (s, 1H), 3.76 (q, *J* = 7.1 Hz, 2H), 1.30 (s, 6H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.3, 143.0, 140.5, 137.9, 134.9, 133.4, 131.6, 128.3, 128.2, 127.5, 127.3, 60.7, 44.2, 27.9, 14.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₁ClNaO₂ [M + Na]⁺ 351.1122, found 351.1118.

Methyl 1-(2,2-diphenylvinyl)cyclohexane-1-carboxylate (41)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **41** (50.2 mg, 78% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.28 (m, 3H), 7.28 – 7.16 (m, 5H), 7.12 – 7.06 (m, 2H), 6.04 (s, 1H), 3.39 (s, 3H), 1.91 – 1.85 (m, 2H), 1.64 – 1.47 (m, 4H), 1.47 – 1.32 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 176.0, 143.7, 142.4, 139.4, 133.2, 130.0, 128.8, 128.2, 128.0, 127.4, 127.3(3), 127.2(7), 126.5, 51.6, 48.3, 35.8, 25.7, 22.7.

HRMS (ESI) m/z calcd. for C₂₂H₂₅O₂ [M + H]⁺ 321.1849, found 321.1856.

Methyl 1-(2,2-diphenylvinyl)cyclopentane-1-carboxylate (42)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **42** (45.6 mg, 73% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.28 (m, 3H), 7.28 – 7.17 (m, 5H), 7.14 – 7.06

(m, 2H), 6.16 (s, 1H), 3.31 (s, 3H), 2.23 – 2.11 (m, 2H), 1.79 – 1.58 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 176.4, 143.3, 142.0, 139.6, 134.0, 130.3, 128.2, 128.0, 127.49, 127.46, 127.3, 55.4, 51.7, 39.3, 24.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₃O₂ [M + H]⁺ 307.1693, found 307.1699.

Gram-scale reaction

To a 100 mL Schlenk bottle were sequentially added alkene **1a** (0.82 g, 8.0 mmol), **2a** (3.57 g, 16.0 mmol, 2.0 equiv), **3a** (1.95 g, 16.0 mmol, 2.0 equiv), CuI (3.04 mg, 0.016 mmol, 2.0 mol ‰), L**3** (6.44 mg, 0.016 mmol, 2.0 mol ‰), K₂CO₃ (3.32 g, 24.0 mmol, 3.0 equiv), and toluene (40 mL) under argon atmosphere. Then the bottle was sealed and the reaction mixture was stirred in an oil bath at 80 °C for 8 d. After the completion of reaction, the pure product **4** was isolated by flash column chromatography (2.14 g, 83% yield).

Transformations of trisubstituted alkenes (4 and 35)

Procedure a: Hydrolysis² of ester group in 4

To a 25 mL Schlenk bottle containing a mixture of product **4** (322 mg, 1.0 mmol) and KOH (561 mg, 10.0 mmol, 10.0 equiv) was added EtOH (5.0 mL) under argon. Then the reaction bottle was sealed and heated to 100 °C in an oil bath for 24 h under argon. After completion of the reaction (as indicated by TLC), the solvent was removed and the residue was dissolved in water. The aqueous solution was extracted with Et₂O, acidified, and then extracted again with Et₂O. The second combined organic layer was dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by silica-gel column chromatography to afford desired the product **43**.

2,2-Dimethyl-4,4-diphenylbut-3-enoic acid (43)

The product mixture was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 3/1) to afford **43** (232.0 mg, 87% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 10.39 (s, 1H), 7.35 – 7.12 (m, 10H), 6.13 (s, 1H), 1.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 183.3, 143.1, 142.4, 139.2, 133.2, 130.3, 128.2, 128.0, 127.5, 127.4, 127.2, 44.2, 27.4.

HRMS (ESI) m/z calcd. for C₁₈H₁₉O₂ [M + H]⁺ 267.1380, found 267.1376.

Procedure b: Reduction¹ of ester group in **4**

To a dry tube containing **4** (322 mg, 1.0 mmol) in anhydrous Et₂O (20.0 mL) was added LiAlH₄ (113.8 mg, 3.0 mmol, 3.0 equiv) at 0 °C. The mixture was allowed to warm to room temperature. After being stirred for 4 h, the reaction was slowly quenched with sat. NH₄Cl and then extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford desired the product **44**.

2,2-Dimethyl-4,4-diphenylbut-3-en-1-ol (44)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **44** (242.2 mg, 96% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.27 (m, 3H), 7.27 – 7.13 (m, 7H), 6.03 (s, 1H), 3.29 (s, 2H), 0.93 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 143.7, 141.9, 140.5, 135.8, 130.1, 128.2, 1281, 127.2, 127.02, 126.99, 72.4, 39.5, 25.9.

HRMS (ESI) m/z calcd. for C₁₈H₂₁O [M + H]⁺ 253.1587, found 253.1585.

Procedure c: Sonogashira coupling of 30

To a 25 mL Schlenk bottle containing a mixture of product **30** (480 mg, 1.0 mmol), CuI (19 mg, 0.10 mmol, 10 mol %) and Pd(PPh₃)₂Cl₂ (35 mg, 0.050 mmol, 5.0 mol %) was added diisopropylamine (5.0 mL) under nitrogen and the mixture was degassed for 3 times. Then ethynyltrimethylsilane (294.6 mg, 3.0 mmol, 3.0 equiv) was added via syringe and the reaction was heated to 100 °C in an oil bath for 24 h under argon. After completion of the reaction, the mixture was filtered through frits and the filtrate was collected and concentrated. After evaporation of the solvent, the crude product was purified by silica gel column chromatography to afford the TMS-aryl acetylene.

Next, the obtained TMS-aryl acetylene and K₂CO₃ (276.4 mg, 2.0 mmol, 2.0 equiv) were mixed with MeOH (10 mL) and stirred at rt for 2 h. Upon completion, the mixture was diluted with water and extracted with DCM. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford desired the product **45**.

tert-Butyl 4,4-bis(4-ethynylphenyl)-2,2-dimethylbut-3-enoate (45)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **45** (340.8 mg, 92% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.12 (dd, J = 8.4, 7.5 Hz, 4H), 6.17 (s, 1H), 3.10 (s, 1H), 3.08 (s, 1H), 1.37 (s, 9H), 1.17 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.7, 143.8, 140.4, 140.3, 135.5, 131.9(8), 131.9(6), 130.2, 127.3, 121.3, 120.9, 83.6(3), 83.5(5), 80.6, 77.9, 77.7, 45.1, 28.0, 27.4.
HRMS (ESI) *m/z* calcd. for C₂₆H₂₇O₂ [M + H]⁺ 371.2006, found 371.2009.

Procedure d: Suzuki³ coupling of 30

To a mixture of **30** (240 mg, 0.50 mmol), aryl boronic acid (1.1 mmol, 2.2 equiv), $Pd(PPh_3)_2Cl_2$ (58 mg, 0.050 mmol, 10 mol %), and K_2CO_3 (415 mg, 3.0 mmol, 6.0 equiv) was added THF/H₂O (3/1, 4.0 mL) under argon. Then the reaction was stirred in an oil bath at 80 °C under argon for 24 h. After completion of the reaction, the reaction mixture was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography to give the desired product.

tert-Butyl 4,4-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)-2,2-dimethylbut-3enoate (46)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **46** (332.0 mg, 82% yield) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.30 – 7.20 (m, 12H), 7.16 – 7.09 (m, 12H), 7.04 – 6.99 (m, 4H), 6.20 (s, 1H), 1.38 (s, 9H), 1.23 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.2, 147.8(0), 147.7(7), 147.3(2), 147.2(6), 142.5,

141.0, 139.5, 139.4, 138.7, 134.8, 134.7, 134.1, 130.7, 129.4, 129.3, 127.9, 127.8, 127.7, 126.4, 126.2, 124.6, 124.5, 124.1, 123.9, 123.1, 123.0, 80.4, 45.1, 28.0, 27.6. HRMS (ESI) *m/z* calcd. for C₅₈H₅₂NaO₂N₂ [M + Na]⁺ 831.3921, found 831.3910.

Dimethyl 4',4'''-(4-(*tert*-butoxy)-3,3-dimethyl-4-oxobut-1-ene-1,1-diyl)bis([1,1'biphenyl]-4-carboxylate) (47)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **47** (272.0 mg, 92% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (dd, *J* = 13.2, 8.4 Hz, 4H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.63 (dd, *J* = 8.3, 2.9 Hz, 4H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.31 (dd, *J* = 8.3, 4.6 Hz, 4H), 6.24 (s, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 1.39 (s, 9H), 1.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 175.9, 167.0(9), 167.0(6), 145.2(3), 145.1(5), 143.7, 140.5, 140.0, 139.0, 138.8, 135.0, 130.8, 130.2(4), 130.2(2), 129.0, 128.9, 128.0, 127.1, 127.0(2), 126.9(8), 126.9(2), 80.5, 52.3, 52.2, 45.1, 28.0, 27.6. HRMS (ESI) *m/z* calcd. for C₃₈H₃₈NaO₆ [M + Na]⁺ 613.2561, found 613.2555.

tert-Butyl 4,4-bis(4'-cyano-[1,1'-biphenyl]-4-yl)-2,2-dimethylbut-3-enoate (48)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **48** (231.0 mg, 88% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): *δ* 7.98 – 7.43 (m, 12H), 7.43 – 7.12 (m, 4H), 6.27 (s, 1H), 1.39 (s, 9H), 1.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.7, 147.9, 145.2, 145.1, 144.0, 140.3, 140.2, 139.6,
138.2, 137.9, 137.7, 135.5, 132.7, 132.0, 130.9(4), 130.8(8), 128.1, 128.0, 119.0, 111.0,
110.9, 80.5, 45.1, 27.9, 27.6.

HRMS (ESI) m/z calcd. for C₃₆H₃₃N₂O₂ [M + H]⁺ 525.2537, found 525.2528.

X-Ray crystallography data of 9 and 11

Figure S1. ORTEP diagram of **9** (CCDC: 2142776). Thermal ellipsoids are shown at the 50% probability level. A colorless square-shaped crystal of **9** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **9** in dichloromethane. The single crystal was then subjected to X-ray diffraction analysis.

Identification code	9
Empirical formula	C ₂₃ H ₂₅ NO ₂
Formula weight	347.44
Temperature/K	100.05
Crystal system	monoclinic
Space group	P21
a/Å	8.6624(5)
b/Å	19.1106(12)
c/Å	11.8131(8)
$\alpha ^{ m /\circ}$	90
β/°	94.569(2)
$\gamma/^{\circ}$	90

Table S1. Crystal data and structure refinement for 9

Volume/Å ³	1949.4(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.184
μ/mm^{-1}	0.075
F(000)	744.0
Crystal size/mm ³	$0.33 \times 0.26 \times 0.25$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.262 to 56.87
Index ranges	$? \le h \le ?, ? \le k \le ?, ? \le l \le ?$
Reflections collected	9740
Independent reflections	9740 [$R_{int} = 0.085$, $R_{sigma} = 0.0774$]
Data/restraints/parameters	9740/1/481
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0592, wR_2 = 0.1328$
Final R indexes [all data]	$R_1 = 0.0834, wR_2 = 0.1432$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.33
Flack parameter	0.4(16)

Table S2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 9. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	x	у	z	U(eq)
01	6681(3)	6205.9(13)	7097(2)	20.0(5)
02	5354(3)	6450.3(14)	8617(2)	23.7(6)
03	8180(3)	6134.1(13)	2410(2)	18.9(5)
O4	9691(3)	6832.2(13)	1429(2)	22.9(6)
N1	4371(4)	4259(2)	13072(3)	33.6(9)
N2	9939(5)	4322(2)	8250(3)	39.8(10)
C1	7497(5)	7410(2)	7588(5)	36.5(11)
C2	8020(4)	6658(2)	7478(3)	22.6(8)
C3	5459(4)	6162.0(18)	7723(3)	16.0(6)
C4	4179(4)	5703.7(18)	7135(3)	15.5(6)
C5	4817(4)	5010.9(17)	6753(3)	15.4(6)
C6	5152(4)	4426.4(17)	7356(3)	13.1(6)
C7	5027(4)	4374.1(17)	8602(3)	14.1(6)
C8	3915(4)	3932.9(19)	9028(3)	19.7(7)
С9	3761(4)	3890(2)	10180(3)	21.3(7)
C10	4730(4)	4280.5(19)	10921(3)	19.2(7)
C11	4541(4)	4261(2)	12120(3)	24.6(8)
C12	8813(4)	6372(2)	8571(4)	28.1(9)

Atom	x	у	Z.	U(eq)
C13	5879(4)	4706.1(19)	10527(3)	18.5(7)
C14	6022(4)	4747.7(18)	9367(3)	17.5(7)
C15	5747(4)	3790.0(17)	6808(3)	15.2(6)
C16	5365(4)	3639.2(18)	5659(3)	17.1(7)
C17	6040(4)	3073.1(19)	5151(3)	20.9(7)
C18	7110(5)	2657.1(19)	5761(3)	22.3(8)
C19	7473(4)	2790.6(19)	6907(3)	21.7(8)
C20	6788(4)	3349.4(18)	7424(3)	18.4(7)
C21	2857(4)	5634.1(19)	7918(3)	21.5(7)
C22	3548(4)	6104.3(19)	6061(3)	21.2(7)
C23	9071(5)	6585(3)	6513(4)	35.3(10)
C24	5829(5)	6296(2)	3235(4)	30.9(9)
C25	6949(4)	6670.9(18)	2507(3)	19.2(7)
C26	9461(4)	6285.9(17)	1903(3)	16.4(7)
C27	10664(4)	5692.8(18)	2053(3)	16.5(7)
C28	9913(4)	4991.3(17)	1769(3)	15.3(6)
C29	9573(4)	4444.9(18)	2418(3)	15.0(6)
C30	9697(4)	4432.9(18)	3696(3)	15.8(6)
C31	10873(4)	4060.5(19)	4295(3)	19.9(7)
C32	10944(4)	4027(2)	5473(3)	22.9(8)
C33	9812(4)	4358(2)	6058(3)	20.2(7)
C34	9874(4)	4330(2)	7286(3)	25.5(8)
C35	6179(5)	6839(2)	1341(3)	26.7(8)
C36	7619(5)	7315(2)	3115(3)	26.6(8)
C37	11446(4)	5766.0(19)	3265(3)	19.4(7)
C38	8942(4)	3786.1(17)	1875(3)	16.0(7)
C39	9334(4)	3576.6(19)	803(3)	18.6(7)
C40	8677(5)	2981.1(19)	289(3)	22.7(8)
C41	7603(5)	2590.6(19)	827(3)	25.4(8)
C42	7211(5)	2788.2(19)	1892(3)	23.8(8)
C43	7897(4)	3372.4(18)	2423(3)	18.2(7)
C44	8568(4)	4759.8(18)	4285(3)	17.6(7)
C45	8615(4)	4726.0(19)	5461(3)	19.9(7)
C46	11885(4)	5816(2)	1198(3)	22.3(7)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 9. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U12
01	17.7(12)	22.7(13)	19.9(12)	-2.0(11)	2.6(10)	-4.8(10)
02	23.4(13)	28.4(14)	19.0(13)	-6.4(11)	0.5(10)	2.2(11)

Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U ₁₂
03	16.6(12)	15.6(11)	24.9(13)	0.9(10)	5.8(10)	3.2(9)
O4	24.8(13)	17.5(12)	27.0(14)	6.7(11)	5.5(11)	0.2(10)
N1	32.0(19)	54(2)	14.7(15)	8.4(16)	4.0(14)	12.1(17)
N2	40(2)	60(3)	19.5(17)	4.2(18)	0.9(15)	-22(2)
C1	28(2)	19.2(19)	61(3)	-2(2)	-3(2)	-5.2(16)
C2	18.6(17)	21.2(17)	27.8(19)	-4.9(16)	0.9(14)	-4.1(14)
C3	16.0(15)	14.4(14)	17.3(15)	0.9(13)	0.0(12)	3.0(12)
C4	15.7(15)	15.0(15)	15.6(15)	1.3(13)	0.8(12)	0.2(12)
C5	16.0(15)	16.4(15)	13.6(15)	-0.5(13)	0.8(12)	-1.1(12)
C6	14.4(14)	15.8(15)	9.2(14)	0.5(13)	1.9(12)	-2.3(13)
C7	16.7(15)	13.9(15)	11.7(14)	-0.9(13)	1.7(12)	3.7(13)
C8	22.2(17)	18.0(17)	18.6(17)	-0.7(14)	-0.1(14)	-2.8(14)
C9	20.3(17)	22.2(18)	22.4(18)	6.1(15)	7.3(14)	-0.7(14)
C10	22.1(17)	21.2(17)	15.1(16)	3.7(14)	5.3(13)	8.9(14)
C11	21.4(18)	29(2)	23.8(19)	5.1(16)	3.4(15)	7.9(15)
C12	18.5(17)	33(2)	32(2)	-3.6(18)	-4.2(15)	-3.0(16)
C13	20.0(17)	20.5(16)	14.4(15)	-1.3(14)	-1.8(13)	3.0(14)
C14	16.3(16)	17.8(16)	18.7(17)	1.5(14)	2.3(13)	0.7(13)
C15	17.2(16)	13.7(15)	14.9(15)	0.8(13)	2.9(13)	-0.8(12)
C16	21.1(17)	18.3(16)	11.8(15)	1.9(13)	1.3(13)	-2.9(13)
C17	29.1(19)	20.7(17)	13.8(16)	-3.4(14)	6.1(14)	-7.5(15)
C18	29.4(19)	14.0(16)	24.3(18)	-3.7(14)	7.7(15)	-0.5(14)
C19	23.1(18)	17.9(17)	23.9(18)	-1.9(15)	1.3(15)	2.8(14)
C20	20.9(17)	15.9(15)	18.5(17)	0.1(14)	1.0(13)	-1.9(13)
C21	17.8(17)	19.6(17)	27.4(18)	-0.7(15)	4.6(14)	1.4(14)
C22	23.5(17)	18.2(16)	21.0(17)	2.8(14)	-2.9(14)	3.8(14)
C23	25(2)	50(3)	32(2)	-1(2)	4.8(17)	-15.7(19)
C24	25.4(19)	28(2)	41(2)	4.9(18)	15.0(17)	7.2(16)
C25	20.1(16)	17.2(16)	20.6(17)	-0.3(14)	3.0(13)	5.3(14)
C26	17.5(16)	16.0(16)	15.7(15)	-0.7(13)	0.9(12)	-1.2(13)
C27	16.3(16)	14.5(15)	19.2(16)	1.8(13)	3.7(13)	0.6(13)
C28	14.6(15)	17.6(15)	13.8(15)	-0.9(13)	2.5(12)	2.7(12)
C29	14.3(15)	15.1(15)	15.9(15)	-0.7(13)	3.5(12)	3.1(13)
C30	17.5(15)	12.9(14)	17.6(16)	1.0(13)	3.9(13)	-3.4(13)
C31	20.7(17)	19.2(16)	19.8(17)	1.6(14)	2.6(14)	2.6(14)
C32	22.7(18)	24.6(18)	20.6(18)	5.8(15)	-3.5(14)	0.2(15)
C33	24.4(17)	23.3(18)	13.1(16)	1.1(14)	2.4(14)	-8.3(15)
C34	24.6(19)	32(2)	19.7(18)	0.6(17)	2.4(15)	-12.5(17)
C35	27(2)	28.0(19)	24.0(19)	-0.8(16)	-3.3(16)	7.1(16)

Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U ₁₂
C36	32(2)	23.9(19)	23.4(19)	-7.1(16)	0.5(16)	5.1(16)
C37	19.4(17)	19.5(17)	18.8(16)	2.5(14)	-1.6(13)	-3.4(14)
C38	20.0(16)	13.2(15)	14.4(15)	0.5(13)	-1.1(13)	3.9(13)
C39	22.7(17)	18.5(16)	14.4(16)	0.6(13)	-0.1(13)	5.0(14)
C40	32.4(19)	20.1(17)	14.8(16)	-1.9(14)	-3.1(15)	9.5(15)
C41	31(2)	14.9(17)	28(2)	-6.1(15)	-7.8(16)	2.9(15)
C42	26.2(19)	16.9(17)	27.8(19)	0.7(15)	-0.9(16)	-3.5(15)
C43	23.0(17)	15.3(16)	16.4(16)	1.8(13)	1.5(13)	1.5(13)
C44	17.1(16)	16.4(15)	19.5(17)	1.1(14)	3.6(13)	-0.3(13)
C45	19.6(17)	20.9(16)	20.1(17)	-2.8(15)	7.4(14)	-3.9(14)
C46	17.7(16)	22.4(17)	27.3(19)	5.2(15)	5.4(14)	-0.1(14)

Table S4. Bond Lengths for 9.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C2	1.488(4)	C16	C17	1.389(5)
01	C3	1.342(4)	C17	C18	1.381(6)
O2	C3	1.201(4)	C18	C19	1.388(5)
O3	C25	1.491(4)	C19	C20	1.387(5)
O3	C26	1.334(4)	C24	C25	1.525(5)
O4	C26	1.209(4)	C25	C35	1.517(5)
N1	C11	1.146(5)	C25	C36	1.517(5)
N2	C34	1.136(5)	C26	C27	1.540(5)
C1	C2	1.516(6)	C27	C28	1.516(5)
C2	C12	1.516(6)	C27	C37	1.541(5)
C2	C23	1.521(6)	C27	C46	1.538(5)
C3	C4	1.535(5)	C28	C29	1.342(5)
C4	C5	1.517(5)	C29	C30	1.506(4)
C4	C21	1.534(5)	C29	C38	1.497(5)
C4	C22	1.545(5)	C30	C31	1.390(5)
C5	C6	1.344(5)	C30	C44	1.392(5)
C6	C7	1.488(4)	C31	C32	1.389(5)
C6	C15	1.489(5)	C32	C33	1.396(5)
C7	C8	1.403(5)	C33	C34	1.448(5)
C7	C14	1.395(5)	C33	C45	1.397(5)
C8	C9	1.381(5)	C38	C39	1.395(5)
C9	C10	1.382(5)	C38	C43	1.399(5)
C10	C11	1.440(5)	C39	C40	1.390(5)
C10	C13	1.393(5)	C40	C41	1.386(6)
C13	C14	1.388(5)	C41	C42	1.381(6)
Atom	Atom	Length/Å	Atom	Atom	Length/Å
------	------	----------	------	------	----------
C15	C16	1.401(4)	C42	C43	1.391(5)
C15	C20	1.395(5)	C44	C45	1.388(5)

Table S5. Bond Angles for 9.

1 Aton	n Atom	Angle/°	Atom	1 Atom	n Atom	Angle/°
01	C2	120.0(3)	C19	C20	C15	121.1(3)
03	C25	120.7(3)	03	C25	C24	102.2(3)
C2	C1	110.2(3)	03	C25	C35	109.9(3)
C2	C12	109.7(3)	03	C25	C36	110.3(3)
C2	C23	102.6(3)	C35	C25	C24	111.0(3)
C2	C23	110.7(4)	C35	C25	C36	112.4(3)
C2	C1	112.8(4)	C36	C25	C24	110.6(3)
C2	C23	110.3(3)	03	C26	C27	111.6(3)
C3	C4	111.0(3)	O4	C26	03	124.7(3)
C3	01	125.1(3)	O4	C26	C27	123.6(3)
C3	C4	123.8(3)	C26	C27	C37	106.5(3)
C4	C22	106.6(3)	C28	C27	C26	110.5(3)
C4	C3	111.4(3)	C28	C27	C37	115.8(3)
C4	C21	114.3(3)	C28	C27	C46	107.2(3)
C4	C22	107.6(3)	C46	C27	C26	107.8(3)
C4	C3	108.9(3)	C46	C27	C37	108.8(3)
C4	C22	107.8(3)	C29	C28	C27	132.2(3)
C5	C4	129.5(3)	C28	C29	C30	125.7(3)
C6	C7	123.4(3)	C28	C29	C38	119.9(3)
C6	C15	121.1(3)	C38	C29	C30	114.3(3)
C6	C15	115.5(3)	C31	C30	C29	120.6(3)
C7	C6	120.1(3)	C31	C30	C44	119.4(3)
C7	C6	121.1(3)	C44	C30	C29	119.9(3)
C7	C8	118.8(3)	C32	C31	C30	120.4(3)
C8	C7	120.8(3)	C31	C32	C33	119.8(3)
C9	C10	119.4(3)	C32	C33	C34	120.5(3)
C10	C11	119.9(3)	C32	C33	C45	120.1(3)
C10	C13	121.2(3)	C45	C33	C34	119.4(3)
C10	C11	118.9(3)	N2	C34	C33	178.5(4)
C11	C10	178.5(4)	C39	C38	C29	121.5(3)
C13	C10	119.0(3)	C39	C38	C43	118.1(3)
C14	C7	120.8(3)	C43	C38	C29	120.3(3)
C15	C6	121.7(3)	C40	C39	C38	120.7(3)
C15	C6	119.9(3)	C41	C40	C39	120.4(3)
	Aton O1 O3 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C3 C3 C3 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	AtomAtomO1C2O3C25C2C1C2C12C2C23C2C23C2C1C2C23C3C4C3C1C4C22C4C3C4C22C4C3C4C22C4C3C4C22C4C3C4C22C4C3C4C22C5C4C6C15C7C6C7C6C7C6C7C6C7C10C10C11C10C13C10C11C11C10C13C10C14C7C15C6C15C6C15C6C15C6	AtomAngle/°O1C2 $120.0(3)$ O3C25 $120.7(3)$ C2C1 $110.2(3)$ C2C12 $109.7(3)$ C2C23 $102.6(3)$ C2C23 $110.7(4)$ C2C23 $110.7(4)$ C2C23 $110.3(3)$ C3C4 $111.0(3)$ C3C4 $111.0(3)$ C3C4 $123.8(3)$ C4C22 $106.6(3)$ C4C21 $114.3(3)$ C4C22 $107.6(3)$ C4C22 $107.8(3)$ C4C22 $107.8(3)$ C4C22 $107.8(3)$ C5C4 $129.5(3)$ C6C15 $115.5(3)$ C7C6 $120.1(3)$ C7C6 $121.1(3)$ C10C11 $119.9(3)$ C10C11 $119.9(3)$ C10C11 $119.9(3)$ C10C11 $119.0(3)$ C14C7 $120.8(3)$ C15C6 $121.7(3)$ C15C6 $121.7(3)$	AtomAtomAngle/°AtomO1C2 $120.0(3)$ C19O3C25 $120.7(3)$ O3C2C1 $110.2(3)$ O3C2C12 $109.7(3)$ O3C2C23 $102.6(3)$ C35C2C23 $110.7(4)$ C35C2C23 $110.7(4)$ C36C2C23 $110.3(3)$ O3C3C4 $111.0(3)$ O4C3O1 $125.1(3)$ O4C3C4 $123.8(3)$ C26C4C22 $106.6(3)$ C28C4C21 $114.3(3)$ C28C4C22 $107.6(3)$ C46C4C22 $107.8(3)$ C29C5C4 $129.5(3)$ C28C6C15 $115.5(3)$ C31C7C6 $120.1(3)$ C31C7C6 $120.1(3)$ C32C10C11 $119.9(3)$ C32C10C11 $119.9(3)$ C32C10C11 $119.9(3)$ C32C10C11 $119.0(3)$ C39C14C7 $120.8(3)$ C43C15C6 $121.7(3)$ C40C15C6 $121.7(3)$ C40	AtomAngle/°Atom AtomO1C2 $120.0(3)$ C19C20O3C25 $120.7(3)$ O3C25C2C1 $110.2(3)$ O3C25C2C12 $109.7(3)$ O3C25C2C23 $102.6(3)$ C35C25C2C23 $110.7(4)$ C35C25C2C23 $110.7(4)$ C35C25C2C23 $110.7(4)$ C35C25C2C23 $110.3(3)$ O3C26C3C4 $111.0(3)$ O4C26C3C4 $125.1(3)$ O4C26C3C4 $123.8(3)$ C26C27C4C22 $106.6(3)$ C28C27C4C21 $114.3(3)$ C28C27C4C22 $107.6(3)$ C46C27C4C22 $107.6(3)$ C46C27C4C22 $107.8(3)$ C28C29C6C7 $123.4(3)$ C28C29C6C15 $115.5(3)$ C31C30C7C6 $120.1(3)$ C34C30C7C6 $121.1(3)$ C34C32C8C7 $120.8(3)$ C32C33C10C11 $119.9(3)$ C32C33C10C11 $119.9(3)$ C32C33C10C11 $119.0(3)$ C39C38C13C10 $119.0(3)$ C39C38C14C7 $120.8(3)$ <	AtomAtogle/°AtomAtomAtomO1C2120.0(3)C19C20C15O3C25120.7(3)O3C25C24C2C1110.2(3)O3C25C35C2C12109.7(3)O3C25C36C2C23102.6(3)C35C25C24C2C23110.7(4)C35C25C24C2C23110.3(3)O3C26C27C3C4111.0(3)O4C26O3C3O1125.1(3)O4C26C27C3C4123.8(3)C26C27C37C4C22106.6(3)C28C27C36C4C3111.4(3)C28C27C26C4C3111.4(3)C28C27C36C4C21114.3(3)C28C27C36C4C22107.6(3)C46C27C37C4C22107.8(3)C29C30C4C3108.9(3)C46C27C37C4C22107.8(3)C31C30C29C5C4129.5(3)C38C29C30C6C15115.5(3)C31C30C44C7C6120.1(3)C31C30C49C7C6121.1(3)C44C30C29C7C8118.8(3)C32C33C34C10C11119.

Atom Atom Atom	Angle/°	A	tom Ato	m Ator	n	Angle/°
C20 C15 C16	118.3(3)	C	42 C41	C40		119.6(3)
C17 C16 C15	120.3(3)	C	41 C42	C43		120.2(4)
C18 C17 C16	120.7(3)	C	42 C43	C38		120.9(3)
C17 C18 C19	119.6(3)	C	45 C44	C30		120.9(3)
C20 C19 C18	119.9(3)	C	44 C45	C33		119.4(3)
Table S6. Torsion	Angles for 9.		р	C	р	A 1 /9
A B C D	Angle/	A	B	C	D	Angle/
01 C3 C4 C5	49.6(4)	C16	CI7	C18	C19	2.4(5)
01 C3 C4 C21	176.5(3)	CI7	CI8	C19	C20	-1.5(6)
01 C3 C4 C22	-67.4(3)	C18	C19	C20	C15	-0.9(5)
O2 C3 C4 C5	-131.6(4)	C20	C15	C16	C17	-1.4(5)
O2 C3 C4 C21	-4.7(5)	C21	C4	C5	C6	-43.2(5)
O2 C3 C4 C22	111.3(4)	C22	C4	C5	C6	-162.8(3)
O3 C26C27C28	48.3(4)	C25	03	C26	04	-5.0(5)
O3 C26C27C37	-78.3(3)	C25	O3	C26	C27	171.7(3)
O3 C26C27C46	165.2(3)	C26	03	C25	C24	-174.4(3)
O4 C26C27C28	-134.9(3)	C26	03	C25	C35	67.7(4)
O4 C26C27C37	98.6(4)	C26	O3	C25	C36	-56.8(4)
O4 C26C27C46	-18.0(5)	C26	C27	C28	C29	-109.0(4)
C2 O1 C3 O2	-2.2(5)	C27	C28	C29	C30	8.4(6)
C2 O1 C3 C4	176.5(3)	C27	C28	C29	C38	-174.7(3)
C3 O1 C2 C1	-59.2(4)	C28	C29	C30	C31	-107.2(4)
C3 O1 C2 C12	65.6(4)	C28	C29	C30	C44	76.9(4)
C3 O1 C2 C23	-177.1(3)	C28	C29	C38	C39	30.5(5)
C3 C4 C5 C6	80.7(4)	C28	C29	C38	C43	-147.6(3)
C4 C5 C6 C7	-3.9(5)	C29	C30	C31	C32	-177.3(3)
C4 C5 C6 C15	178.8(3)	C29	C30	C44	C45	176.8(3)
C5 C6 C7 C8	113.5(4)	C29	C38	C39	C40	-176.8(3)
C5 C6 C7 C14	-67.8(4)	C29	C38	C43	C42	175.1(3)
C5 C6 C15C16	-28.9(5)	C30	C29	C38	C39	-152.2(3)
C5 C6 C15C20	147.2(3)	C30	C29	C38	C43	29.6(4)
C6 C7 C8 C9	-178.5(3)	C30	C31	C32	C33	1.2(5)
C6 C7 C14C13	178.8(3)	C30	C44	C45	C33	-0.1(5)
C6 C15C16C17	174.7(3)	C31	C30	C44	C45	0.9(5)
C6 C15C20C19	-173.9(3)	C31	C32	C33	C34	-179.7(3)
C7 C6 C15C16	153.6(3)	C31	C32	C33	C45	-0.4(5)
C7 C6 C15C20	-30.3(4)	C32	C33	C45	C44	-0.2(5)
C7 C8 C9 C10	-0.9(5)	C34	C33	C45	C44	179.2(3)

A	B	С	D	Angle/°	Α	В	С	D	Angle/°
C8	C7	C14	C13	-2.5(5)	C37	C27	C28	C29	12.2(5)
C8	C9	C10	C11	177.6(3)	C38	C29	C30	C31	75.7(4)
C8	C9	C10	C13	-1.2(5)	C38	C29	C30	C44	-100.1(4)
C9	C10)C13	C14	1.4(5)	C38	C39	C40	C41	0.9(5)
C10)C13	8C14	C7	0.5(5)	C39	C38	C43	C42	-3.2(5)
C11	C10)C13	C14	-177.4(3)	C39	C40	C41	C42	-1.3(6)
C14	C7	C8	C9	2.8(5)	C40	C41	C42	C43	-0.4(6)
C15	5C6	C7	C8	-69.0(4)	C41	C42	C43	C38	2.7(6)
C15	5 C 6	C7	C14	109.7(4)	C43	C38	C39	C40	1.4(5)
C15	5C16	6C17	C18	-0.9(5)	C44	C30	C31	C32	-1.4(5)
C16	5C15	5 C 2 0	C19	2.3(5)	C46	C27	C28	C29	133.8(4)

Table	S7.	Hydrogen	Atom	Coordinates	(Å×104)	and	Isotropic	Displacement
Param	neter	•s (Å2×103)	for 9.					

Atom	x	У	Z.	U(eq)
H1A	6913.26	7556	6882.76	55
H1B	8403.94	7713.15	7733.6	55
H1C	6833.79	7448.44	8220.35	55
Н5	5008.16	4986.82	5973.33	18
H8	3261.07	3660.01	8516.97	24
H9	2995.31	3595.49	10461.49	26
H12A	8111.84	6408.83	9179.29	42
H12B	9755.87	6642.17	8776.71	42
H12C	9085.39	5880.11	8463.36	42
H13	6554.2	4963.96	11045.57	22
H14	6806.95	5033.83	9091.31	21
H16	4641.35	3925.39	5225.97	20
H17	5761.48	2971	4374.18	25
H18	7595.09	2281.53	5400	27
H19	8190.82	2499.56	7336.31	26
H20	7031.12	3433.57	8210.45	22
H21A	2061.26	5319.74	7569.02	32
H21B	2402.18	6095.69	8033.24	32
H21C	3262.31	5442.35	8651.68	32
H22A	4390.61	6187.12	5570.87	32
H22B	3116.22	6553.66	6281.22	32
H22C	2735.04	5826.38	5647.95	32
H23A	9327.94	6090.75	6414.3	53
H23B	10024.15	6852.68	6693.61	53
H23C	8537.93	6765.12	5809.93	53

Atom	x	у	Z.	U(eq)
H24A	5471.14	5862.09	2856.85	46
H24B	4939.28	6599.3	3337.42	46
H24C	6357.8	6184.83	3977.56	46
H28	9629.27	4926.17	982.33	18
H31	11633.48	3827.64	3896.8	24
H32	11762.07	3778.72	5879.26	27
H35A	6931.35	7063.07	879.92	40
H35B	5306.25	7157.45	1418.14	40
H35C	5801.68	6406.28	970.23	40
H36A	8245.32	7173.13	3804.22	40
H36B	6774.05	7619.27	3321.07	40
H36C	8270.15	7569.97	2612.88	40
H37A	10659.07	5739.32	3814.95	29
H37B	11979.16	6218.01	3340.27	29
H37C	12198.8	5387.27	3410.76	29
H39	10058.33	3843.59	421.44	22
H40	8966.2	2841.04	-436.59	27
H41	7139.85	2189.65	466.68	30
H42	6470.3	2524.26	2262.76	29
H43	7653.64	3492.11	3169.02	22
H44	7754.38	5009.25	3876.51	21
H45	7840.2	4950.99	5855.62	24
H46A	12679.42	5450.7	1287.73	33
H46B	12368.11	6275.14	1337.4	33
H46C	11387.17	5801.16	423.85	33

Figure S2. ORTEP diagram of **11** (CCDC: 2142777). Thermal ellipsoids are shown at the 50% probability level. A colorless stick-shaped crystal of **11** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **11** in dichloromethane. The single crystal was then subjected to X-ray diffraction analysis.

Identification code	11
Empirical formula	C22H25NO4
Formula weight	367.43
Temperature/K	100
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	11.598(4)
b/Å	8.730(3)
c/Å	19.743(7)
α/°	90
β/°	90
$\gamma^{\prime \circ}$	90
Volume/Å ³	1999.0(12)

Table S8. Crystal data and structure refinement for 11

Z	4
$\rho_{cale}g/cm^3$	1.221
μ/mm^{-1}	0.084
F(000)	784.0
Crystal size/mm ³	$0.32 \times 0.31 \times 0.28$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	5.102 to 55.218
Index ranges	$-12 \le h \le 15, -11 \le k \le 8, -25 \le l \le 24$
Reflections collected	15392
Independent reflections	$4399 \ [R_{int} = 0.0370, R_{sigma} = 0.0407]$
Data/restraints/parameters	4399/28/281
Goodness-of-fit on F ²	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0481, wR_2 = 0.1015$
Final R indexes [all data]	$R_1 = 0.0793, wR_2 = 0.1154$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.16
Flack parameter	-0.7(18)

Table S9. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 11. Useq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	x	у	Z.	U(eq)
03	7781(2)	6753(2)	6493.3(12)	55.7(6)
01	2076(2)	5639(3)	4991.9(14)	68.5(7)
04	6350(3)	5237(4)	6789.6(18)	76.4(10)
O2	2248(2)	4101(3)	4152.9(16)	75.1(8)
N1	2659(2)	4910(3)	4595.5(15)	49.3(6)
C12	8419(6)	9201(7)	6853(4)	90(2)
C11	7486(8)	8035(9)	6980(5)	54.3(15)
C10	7210(4)	5465(4)	6473(2)	44.2(9)
С9	7793(3)	4278(3)	6006.2(16)	45.4(7)
C7	7561(2)	5297(3)	4787.2(15)	38.3(6)
C4	6281(2)	5180(3)	4743.9(14)	37.8(6)
C3	5581(3)	6150(3)	5116.6(15)	41.3(7)
C2	4394(3)	6069(3)	5072.6(16)	42.8(7)
C1	3918(2)	5007(3)	4643.2(15)	38.6(6)
C14	6934(5)	2947(5)	5914(3)	61.6(14)
C13	6326(5)	8686(8)	6760(4)	77.3(18)
C15	8835(5)	3675(6)	6383(3)	64.2(14)
C16	8144(3)	5859(3)	4164.8(15)	40.8(7)
C17	9271(3)	5428(4)	4003.5(16)	49.5(8)

x	у	Z.	U(eq)
9804(3)	6021(5)	3436(2)	62.2(10)
9258(4)	7054(5)	3033(2)	66.9(10)
8147(4)	7478(4)	3182.1(18)	62.8(10)
7592(3)	6873(4)	3732.2(17)	50.3(8)
5765(3)	4148(4)	4308.8(17)	48.7(8)
4580(3)	4052(3)	4251.8(17)	48.5(8)
8165(3)	4989(3)	5345.0(16)	41.6(7)
7496(9)	7430(8)	7693(3)	111(3)
8009(16)	5404(15)	6594(7)	44.2(9)
8475(12)	5055(15)	7124(8)	76.4(10)
8838(19)	3070(30)	6127(12)	64.2(14)
6683(19)	3420(30)	6075(16)	61.6(14)
6730(30)	7200(40)	7591(14)	111(3)
6740(30)	9000(40)	6647(19)	77.3(18)
8580(20)	8590(30)	7223(17)	90(2)
7480(30)	7750(50)	6990(20)	54.3(15)
	x 9804(3) 9258(4) 8147(4) 7592(3) 5765(3) 4580(3) 8165(3) 7496(9) 8009(16) 8475(12) 8838(19) 6683(19) 6730(30) 6740(30) 8580(20) 7480(30)	x y 9804(3)6021(5)9258(4)7054(5)8147(4)7478(4)7592(3)6873(4)5765(3)4148(4)4580(3)4052(3)8165(3)4989(3)7496(9)7430(8)8009(16)5404(15)8475(12)5055(15)8838(19)3070(30)6683(19)3420(30)6730(30)7200(40)6740(30)9000(40)8580(20)8590(30)7480(30)7750(50)	x y z 9804(3)6021(5)3436(2)9258(4)7054(5)3033(2)8147(4)7478(4)3182.1(18)7592(3)6873(4)3732.2(17)5765(3)4148(4)4308.8(17)4580(3)4052(3)4251.8(17)8165(3)4989(3)5345.0(16)7496(9)7430(8)7693(3)8009(16)5404(15)6594(7)8475(12)5055(15)7124(8)8838(19)3070(30)6127(12)6683(19)3420(30)6075(16)6730(30)7200(40)7591(14)6740(30)9000(40)6647(19)8580(20)8590(30)7223(17)7480(30)7750(50)6990(20)

Table S10. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 11. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

-		1				
Atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
O3	78.6(16)	40.7(11)	47.8(13)	-4.1(10)	8.2(13)	5.9(11)
01	46.6(15)	79.3(17)	79.5(19)	-4.5(15)	9.0(13)	7.8(12)
O4	80(2)	64.8(19)	84(2)	-6.9(17)	33.2(19)	-6.2(16)
O2	54.2(15)	82.0(18)	89(2)	-15.1(17)	-14.2(15)	-14.6(13)
N1	45.7(16)	48.1(14)	54.0(16)	7.7(13)	-2.1(14)	-3.9(14)
C12	90(4)	59(4)	122(6)	-33(3)	8(4)	-6(3)
C11	82(3)	40(4)	41.6(18)	-7(3)	5.0(18)	9(2)
C10	46(3)	47(2)	40(2)	5.0(17)	0(2)	1.0(18)
C9	55(2)	37.4(15)	44.0(17)	1.3(14)	-3.2(15)	2.7(13)
C7	38.4(16)	36.8(13)	39.6(16)	-7.0(12)	-0.9(13)	4.7(12)
C4	41.2(16)	38.2(14)	34.0(15)	1.1(12)	-2.0(13)	2.8(12)
C3	44.7(18)	39.6(14)	39.5(16)	-6.0(12)	0.9(14)	1.5(12)
C2	44.9(19)	40.5(14)	43.0(17)	-3.5(13)	-0.7(14)	5.6(12)
C1	37.3(15)	39.5(13)	38.9(15)	5.4(13)	-2.6(13)	-0.1(12)
C14	69(3)	49(3)	67(4)	7(3)	-1(2)	-1(3)
C13	67(5)	72(4)	93(5)	-20(3)	11(4)	12(3)
C15	65(3)	68(3)	59(3)	10(2)	-12(3)	15(3)
C16	43.1(17)	43.4(15)	36.0(16)	-9.4(13)	0.7(13)	-2.4(13)
C17	45.6(19)	55.6(17)	47.3(18)	-10.7(15)	-0.8(15)	-1.0(14)
C18	49(2)	81(3)	56(2)	-20(2)	12.3(18)	-11.7(18)

Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U ₁₂
C19	76(3)	80(2)	46(2)	-6(2)	14(2)	-17(2)
C20	77(3)	67(2)	44.5(19)	5.5(18)	0.1(18)	1.3(19)
C21	52(2)	55.4(19)	43.3(17)	-1.8(15)	-0.4(15)	4.6(15)
C5	43.6(18)	51.4(17)	50.9(19)	-13.5(15)	0.5(15)	8.1(14)
C6	51(2)	43.7(16)	50.7(19)	-12.9(14)	-11.3(16)	-1.3(14)
C8	38.8(17)	39.9(14)	46.1(17)	-5.7(13)	-1.6(14)	3.1(13)
C22	208(9)	81(4)	45(3)	-13(3)	-15(4)	4(5)
C10A	46(3)	47(2)	40(2)	5.0(17)	0(2)	1.0(18)
O4A	80(2)	64.8(19)	84(2)	-6.9(17)	33.2(19)	-6.2(16)
C15A	65(3)	68(3)	59(3)	10(2)	-12(3)	15(3)
C14A	69(3)	49(3)	67(4)	7(3)	-1(2)	-1(3)
C22A	208(9)	81(4)	45(3)	-13(3)	-15(4)	4(5)
C13A	67(5)	72(4)	93(5)	-20(3)	11(4)	12(3)
C12A	90(4)	59(4)	122(6)	-33(3)	8(4)	-6(3)
C11A	82(3)	40(4)	41.6(18)	-7(3)	5.0(18)	9(2)

Table S11. Bond Lengths for 11.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O3	C11	1.513(11)	C7	C16	1.486(4)
O3	C10	1.305(4)	C7	C8	1.332(4)
O3	C10A	1.223(13)	C4	C3	1.384(4)
O3	C11A	1.36(5)	C4	C5	1.381(4)
01	N1	1.214(4)	C3	C2	1.381(4)
O4	C10	1.194(5)	C2	C1	1.372(4)
O2	N1	1.221(4)	C1	C6	1.372(4)
N1	C1	1.465(4)	C16	C17	1.396(4)
C12	C11	1.507(9)	C16	C21	1.387(4)
C11	C13	1.524(9)	C17	C18	1.381(5)
C11	C22	1.504(10)	C18	C19	1.359(6)
C10	C9	1.542(5)	C19	C20	1.373(6)
C9	C14	1.541(6)	C20	C21	1.369(5)
C9	C15	1.514(5)	C5	C6	1.381(5)
C9	C8	1.508(4)	C10A	O4A	1.218(17)
C9	C10A	1.541(14)	C22A	C11A	1.54(3)
C9	C15A	1.627(16)	C13A	C11A	1.55(3)
С9	C14A	1.494(19)	C12A	C11A	1.54(3)
C7	C4	1.491(4)			

Table S12. Bond Angles for 11.

Atom	Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10	03	C11	122.8(4)	C3	C4	C7	120.7(2)
C10A	03	C11A	123.7(17)	C5	C4	C7	120.8(2)
01	N1	O2	123.2(3)	C5	C4	C3	118.4(3)
01	N1	C1	118.9(3)	C2	C3	C4	121.3(3)
O2	N1	C1	118.0(3)	C1	C2	C3	118.3(3)
03	C11	C13	107.1(6)	C2	C1	N1	118.7(3)
C12	C11	03	103.4(7)	C6	C1	N1	119.1(3)
C12	C11	C13	109.6(6)	C6	C1	C2	122.2(3)
C22	C11	03	109.4(6)	C17	C16	C7	121.7(3)
C22	C11	C12	112.8(7)	C21	C16	C7	120.6(3)
C22	C11	C13	113.8(8)	C21	C16	C17	117.6(3)
03	C10	C9	112.0(3)	C18	C17	C16	120.2(3)
04	C10	03	123.4(4)	C19	C18	C17	121.0(3)
04	C10	C9	124.5(3)	C18	C19	C20	119.4(3)
C14	C9	C10	107.1(3)	C21	C20	C19	120.5(4)
C15	C9	C10	106.8(3)	C20	C21	C16	121.2(3)
C15	C9	C14	108.2(3)	C6	C5	C4	121.4(3)
C8	C9	C10	111.5(2)	C1	C6	C5	118.3(3)
C8	C9	C14	113.1(3)	C7	C8	С9	130.4(3)
C8	C9	C15	109.9(3)	03	C10A	C9	117.2(11)
C8	C9	C10A	110.0(6)	O4A	C10A	.03	118.5(13)
C8	C9	C15A	100.5(9)	O4A	C10A	C9	124.1(12)
C10A	C9	C15A	100.6(10)	03	C11A	C22A	120(3)
C14A	C9	C8	122.0(13)	03	C11A	C13A	106(3)
C14A	C9	C10A	113.0(12)	03	C11A	C12A	108(3)
C14A	C9	C15A	107.6(14)	C22A	C11A	C13A	104(3)
C16	C7	C4	115.4(2)	C12A	C11A	C22A	113(3)
C8	C7	C4	123.9(3)	C12A	C11A	C13A	105(3)
C8	C7	C16	120.7(3)				

Table S13. Torsion Angles for 11.

Α	В	С	D	Angle/° A	B C	D	Angle/°
03	C10	С9	C14	-169.3(4)C14	C9 C8	C7	39.6(5)
03	C10	С9	C15	75.0(4)C15	C9 C8	C7	160.6(3)
03	C10	С9	C8	-45.0(4)C16	C7 C4	C3	-111.5(3)
01	N1 (C1	C2	-8.5(4)C16	C7 C4	C5	65.6(3)
01	N1 (C1	C6	172.3(3)C16	C7 C8	C9	-173.6(3)
O4	C10	С9	C14	12.0(6)C16	C17C18	C19	1.4(5)
O4	C10	С9	C15	-103.7(5)C17	C16C21	C20	-2.6(5)

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
O4	C10)C9	C8	136.2(4)	C17	C18	8C19	C20	-2.0(5)
O2	N1	C1	C2	171.0(3)	C18	C19	C20	C21	0.2(5)
O2	N1	C1	C6	-8.1(4)	C19	C20	C21	C16	2.1(5)
N1	C1	C6	C5	-179.3(3)	C21	C16	5C17	C18	0.9(4)
C11	03	C10	04	6.9(7)	C5	C4	C3	C2	1.8(4)
C11	03	C10)C9	-171.8(4)	C8	C9	C10A	.03	41.0(15)
C10	03	C11	C12	175.8(5)	C8	C9	C10A	O4A	-132.8(16)
C10	03	C11	C13	-68.4(6)	C8	C7	C4	C3	65.8(4)
C10	03	C11	C22	55.4(8)	C8	C7	C4	C5	-117.1(3)
C10	C9	C8	C7	-81.1(4)	C8	C7	C16	C17	31.2(4)
C7	C4	C3	C2	179.0(3)	C8	C7	C16	C21	-147.0(3)
C7	C4	C5	C6	-178.5(3)	C10A	.03	C11A	C22A	-36(4)
C7	C16	5C17	C18	-177.3(3)	C10A	03	C11A	C13A	-153.9(18)
C7	C16	5C21	C20	175.6(3)	C10A	03	C11A	C12A	95(3)
C4	C7	C16	6C17	-151.4(3)	C10A	C9	C8	C7	-119.9(8)
C4	C7	C16	5C21	30.4(4)	C15A	C9	C8	C7	134.7(9)
C4	C7	C8	C9	9.2(5)	C15A	C9	C10A	.03	146.3(15)
C4	C3	C2	C1	-0.6(4)	C15A	C9	C10A	O4A	-27(2)
C4	C5	C6	C1	-0.3(5)	C14A	C9	C8	C7	16.0(12)
C3	C4	C5	C6	-1.3(5)	C14A	C9	C10A	.03	-99.2(18)
C3	C2	C1	N1	179.8(3)	C14A	C9	C10A	O4A	87(2)
C3	C2	C1	C6	-1.1(4)	C11A	03	C10A	C9	152.8(19)
C2	C1	C6	C5	1.6(5)	C11A	03	C10A	O4A	-33(3)

Table	S14.	Hydrogen	Atom	Coordinates	(Å×104)	and	Isotropic	Displacement
Paran	neters	(Å2×103) f	for 11.					

Atom	x	у	z	U(eq)
H12A	9175.28	8728.98	6926.59	135
H12B	8322.09	10065.02	7164.97	135
H12C	8366.65	9569.36	6385.02	135
H3	5924.66	6885.55	5408.27	50
H2	3919.75	6732.16	5333.04	51
H14A	6795.23	2453.68	6352.54	92
H14B	7254.45	2197.53	5596.61	92
H14C	6204.53	3345.04	5735.06	92
H13A	6362.91	8982.61	6281.99	116
H13B	6141.67	9586.18	7036.25	116
H13C	5725.71	7907.29	6821.28	116
H15A	9377.01	4516.12	6465.57	96
H15B	9212.59	2881.48	6111.65	96

Atom	x	у	Z.	U(eq)
H15C	8589.24	3238.56	6817.36	96
H17	9671.11	4723.41	4285.03	59
H18	10564.67	5702.43	3325.81	75
H19	9642.55	7479.55	2652.06	80
H20	7760.68	8197.19	2901.09	75
H21	6814.15	7153.11	3819.29	60
H5	6234.9	3491.05	4042.83	58
H6	4233.08	3341.95	3949.43	58
H8	8956.9	5260.6	5322.61	50
H22A	6908.08	6630.52	7739.57	167
H22B	7329.66	8266.31	8008.86	167
H22C	8256.67	6998.24	7794.19	167
H15D	9576.48	3609.39	6118.19	96
H15E	8826.23	2290.16	5768.17	96
H15F	8739.28	2565.86	6567.91	96
H14D	6712.07	2774.95	6479.8	92
H14E	6565.3	2780.16	5673.82	92
H14F	6045.04	4152.51	6115.85	92
H22D	6064.97	6633.04	7416.45	167
H22E	6468.91	8079.69	7854.11	167
H22F	7192.05	6519.68	7881.37	167
H13D	7122.12	9339.28	6230.36	116
H13E	6653.14	9875.48	6954.88	116
H13F	5979.49	8582.95	6538	116
H12D	9042.14	7908.63	7507.22	135
H12E	8365.98	9505.62	7482.62	135
H12F	9027.82	8896.25	6824.39	135
H22B	7329.66	8266.31	8008.86	167
H22C	8256.67	6998.24	7794.19	167
H15D	9576.48	3609.39	6118.19	96
H15E	8826.23	2290.16	5768.17	96
H15F	8739.28	2565.86	6567.91	96
H14D	6712.07	2774.95	6479.8	92
H14E	6565.3	2780.16	5673.82	92
H14F	6045.04	4152.51	6115.85	92
H22D	6064.97	6633.04	7416.45	167
H22E	6468.91	8079.69	7854.11	167
H12F	9027.82	8896.25	6824.39	135

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
O4	0.802(3)	C12	0.802(3)	H12A	0.802(3)
H12B	0.802(3)	H12C	0.802(3)	C11	0.802(3)
C10	0.802(3)	C14	0.802(3)	H14A	0.802(3)
H14B	0.802(3)	H14C	0.802(3)	C13	0.802(3)
H13A	0.802(3)	H13B	0.802(3)	H13C	0.802(3)
C15	0.802(3)	H15A	0.802(3)	H15B	0.802(3)
H15C	0.802(3)	C22	0.802(3)	H22A	0.802(3)
H22B	0.802(3)	H22C	0.802(3)	C10A	0.198(3)
O4A	0.198(3)	C15A	0.198(3)	H15D	0.198(3)
H15E	0.198(3)	H15F	0.198(3)	C14A	0.198(3)
H14D	0.198(3)	H14E	0.198(3)	H14F	0.198(3)
C22A	0.198(3)	H22D	0.198(3)	H22E	0.198(3)
H22F	0.198(3)	C13A	0.198(3)	H13D	0.198(3)
H13E	0.198(3)	H13F	0.198(3)	C12A	0.198(3)
H12D	0.198(3)	H12E	0.198(3)	H12F	0.198(3)
C11A	0.198(3)				

Table S15. Atomic Occupancy for 11.

Reference

1. Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. Directed Copper-Catalyzed Intermolecular Heck-Type Reaction of Unactivated Olefins and Alkyl Halides. *J. Am. Chem. Soc.* **2018**, *140*, 16929–16935.

2. Armesto, D.; Ortiz, M. J.; Agarrabeitia, A. R.; Aparicio-Lara, S.; Martin-Fontecha, M.; Liras, M.; Martinez-Alcazar, M. P. Photochemical Reactivity of 1-Substituted-1aza-1,4-dienes Promoted by Electron Acceptor Sensitizers. Di- π -methane Rearrangements and Alternative Reactions via Radical-Cation Intermediates. *J. Org. Chem.* **2002**, *67*, 9397–9405.

3. Zeng, X.; Lu, Z.; Liu, S.; Hammond, G. B.; Xu, B. Metal-free, Regio-, and Stereo-Controlled Hydrochlorination and Hydrobromination of Ynones and Ynamides. *J. Org. Chem.* **2017**, *82*, 13179–13187.

NMR spectra

$$\chi^{7,19}_{6,99}$$

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S51

400 MHz, CDCl₃

- 1.38 - 1.17

400 MHz, CDCl₃

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

400 MHz, $CDCl_3$

-1.38-1.18

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

400 MHz, CDCl₃

- 1.38 - 1.18

7.65 7.75.64 7.75.64 7.75.65 7.75.65 7.75.65 7.75.65 7.75.65 7.75.65 7.75.65 7.75.65 7.75.75 7.75.75 7.72.75

-1.39-1.18

$\begin{array}{c} 7.7_{20}\\$

400 MHz, CDCl₃

S70

S71

40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -1 fl (ppm)

$\begin{array}{c} 7,790\\ 7,752\\ 7,$

S75

$\begin{array}{c} 7.82\\ 7.81\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.73\\$

-1.37-1.17

$$-6.11$$

-1.37-1.17

7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.24 7.7.24 7.7.25 7.7.75 7.777 7.75 7.777 7.75

$\begin{array}{c} 7.73\\ 7.728\\ 7.728\\ 7.729\\ 7.7$

7,735 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,738 7,729 7,728 7,729

S89

$\begin{array}{c} 7.35\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.72\\$

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

~ 1.39 ~ 1.25

