Supporting Information

Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters

Peng-Fei Wang,^{†,‡,§} Jiao Yu,^{‡,§} Kai-Xin Guo,^{‡,||,§} Sheng-Peng Jiang,[‡] Ji-Jun Chen,[‡] Qiang-Shuai Gu,^{†,||} Ji-Ren Liu,[£] Xin Hong,[£] Zhong-Liang Li,^{||,*} and Xin-Yuan Liu^{†,‡,*}

[†]Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China

[‡]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

^{II}Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

[£]Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Table of contents

General information	2
The optimization of reaction conditions	3
The structures and synthesis of alkenylboronate esters	5
The synthesis of benzyl/propargyl halides	14
The synthesis of optimal chiral ligand L9 and L11	18
Experimental procedures	19
Determination of absolute configuration	21
Characteristic data of side products and products	23
Synthetic utility	63
Mechanistic studies	69
References	72
NMR spectra	74
HPLC spectra	177

General information

All reactions were carried out under argon atmosphere using Schlenk techniques, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Cuprous iodide (99.999%) was purchased from Sigma-Aldrich. Lithium tert-butoxide (99%) was purchased from Macklin, which was dry at 90 °C for 3 h under reduced pressure. N, Ndimethylformamide (DMF) was purchased from Titan, which was distilled over CaH2 prior to use. NMR spectra were recorded for ¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ¹⁹F NMR (376 MHz) using TMS as an internal standard and Bruker AV 400 as an instrument. The chemical shifts are expressed in ppm and coupling constants are given in Hertz (Hz). Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s = singlet; d = doublet; dd = doublet of doublets; t = triplet; td = triplet of doublets; q = quarter; m = multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectroscopy (HRMS) was obtained on Thermo Scientific Q Exactive mass spectrometer using ESI and APCI ion source by TOF and orbitrap mass analyzer. Enantiomeric excess (ee) was determined by Agilent and Shimadzu high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength).

The optimization of reaction conditions

Table S1. Screening of other NNP-Ligands^a

Br Ph~	B-O	Cul (5 mol%)	Et	
Ph Et +	°	LiO ^t Bu (2.0 equiv)	Ph	Ph
(±)-1a	2a 🔪	DMF, rt, Ar, 2 d	3	
~				
OMe	L12, Ar	= 3,5-(CF ₃) ₂ C ₆ H ₃	L16, Ar =	= 3-MeOC ₆ H₄
	L13, Ar	= 3,5-(MeO) ₂ C ₆ H ₃	L17, Ar =	2-Naphthyl
NH PAr	₂ L14, Ar	= 3,5- ⁱ Pr ₂ C ₆ H ₃	L18, Ar =	2,3,4,5,6-Me ₅ C ₆
	L15, Ar	= 3-MeC ₆ H ₄		
ů l				
entry	L	yield of 3	(%)	ee of 3 (%)
1	L12	17		31
2	L13	30		38
3	L14	30		40
4	L15	23		28
5	L16	20		36
6	L17	16		28
7	T 10	10		35

^{*a*}Reaction conditions: (\pm)-1a (0.30 mmol), 2a (0.20 mmol), CuI (5 mol%), L (7.5 mol%), LiO'Bu (2.0 equiv) and H₂O (1.0 equiv) in DMF (2.0 mL) at room temperature for 2 d under argon. Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Ee values were based on HPLC analysis.

Table S2. Screening of different boronate esters^{*a*}

E Ph (±)-	Br Et ^{+ Ph} 1a 2	Cul (L9 (7 ER ₂ LiO ^t Bu H ₂ O (DMF, -2	5 mol%) 7.5 mol%) (2.0 equiv) 1.0 equiv) 0 °C, Ar, 4 d	Ph 3
В	R₂ = - ₹ BF₃K	ÓH ₹BÚ OH	− ξ B O	
	2a1	2a2	2a3	
entry	2	у	vield of 3 (%)	ee of 3 (%)
1	2a	1	4	50
2	2a2	2	8	59
3	2a.	3	65	93

^{*a*}Reaction conditions: (±)-1a (0.30 mmol), 2 (0.20 mmol), CuI (5 mol%), L9 (7.5 mol%), LiO^{*t*}Bu (2.0 equiv) and H₂O (1.0 equiv) in DMF (2.0 mL) at -20 °C for 4 d under argon. Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Ee values were based on HPLC analysis.

Ph Et +	B(mp) 2f	Cul (5 mol%) L9 (7.5 mol%) base (2.0 equiv) H ₂ O (1.0 equiv) DMF, rt, Ar, 2 d	Et 8	+
entry	base	yield of 8 (%)	yield of 8' (%)	ee of 8 (%)
1	LiO ^t Bu	45	5	89
2	Cs ₂ CO ₃	6	30	18
3^b	LiO ^t Bu	78	trace	94

Scheme S1. Investigation of protodeboronation side products^a

^{*a*}Reaction conditions: (±)-1a (0.30 mmol), 2f (0.20 mmol), CuI (5 mol%), L9 (7.5 mol%), base (2.0 equiv) and H₂O (1.0 equiv) in DMF (2.0 mL) at room temperature for 2 d under argon. ^{*b*}The reaction was conducted at -20 °C for 4 d. Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Ee values were based on HPLC analysis. mp = methylpentanediol.

The structures and synthesis of alkenylboronate esters

2a was prepared from (E)-styrylboronic acid

Under an argon atmosphere, (*E*)-styrylboronic acid (3.551 g, 24 mmol) was dissolved in dry dichloromethane (24.0 mL), followed by the addition of 2-methylpentane-2,4-diol (3.121 g, 26.4 mmol, 1.1 equiv) and magnesium sulfate (19.2 g). The reaction mixture was stirred at room temperature overnight. After completion of the reaction, the reaction mixture was filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to afford the desired product **2a** as a colorless oil (4.3958 g, 80% yield).

2b-2p, **2r-2v**, **2y** were prepared according to previously reported procedure and slightly modified from the corresponding alkyne.¹

Under an argon atmosphere, to a solution of bis(cyclopentadienyl)zirconium chloride hydride Cp₂ZrHCl (10 mol%) in CH₂Cl₂ (1 M) was added alkynes (1 equiv) and 4,4,6-trimethyl-1,3,2-dioxaborinane MPBH (1.1 equiv) at ice water bath. The reaction mixture was stirred at room temperature overnight. After completion of the reaction, water was poured into the above reaction mixture, and the mixture was extracted with CH₂Cl₂ at three times. The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to provide the desired product.

2q was from boronic acid, which was obtained by hydrolysis of commercial boronic acid pinacol ester according to previously reported hydrolysis procedure.²

2w was prepared according to previously reported procedure.³

2x was prepared from boronic acid, which was obtained according to previously reported procedure.⁴

Characterization data for alkenylboronate esters (E)-4,4,6-trimethyl-2-styryl-1,3,2-dioxaborinane (2a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.35 – 7.21 (m, 4H), 6.11 (d, J = 18.3 Hz, 1H), 4.33 – 4.23 (m, 1H), 1.86 – 1.79 (m, 1H), 1.61 – 1.51 (m, 1H), 1.38 – 1.29 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 146.5, 138.0, 128.4, 128.3, 126.9 70.9, 64.8, 46.0, 31.3, 28.1, 23.2.

HRMS (ESI) m/z calcd. for C₁₄H₂₀BO₂ [M+H]⁺ 231.1551, found 231.1545.

(E)-2-(4-methoxystyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.26 (d, *J* = 18.2 Hz, 1H), 6.85 – 6.80 (m, 2H), 5.95 (d, *J* = 18.2 Hz, 1H), 4.29 – 4.19 (m, 1H), 3.75 (s, 3H), 1.80 – 1.73 (m, 1H), 1.56 – 1.45 (m, 1H), 1.35 – 1.25 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.7, 145.9, 130.8, 128.1, 113.7, 70.6, 64.6, 55.0, 45.9, 31.2, 28.0, 23.1.

HRMS (ESI) m/z calcd. for C₁₅H₂₂BO₃ $[M+H]^+$ 261.1657, found 261.1660.

(E)-4,4,6-trimethyl-2-(4-methylstyryl)-1,3,2-dioxaborinane (2c)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 18.0 Hz, 1H), 7.12 (d, J = 7.9 Hz, 2H), 6.05 (d, J = 18.2 Hz, 1H), 4.33 – 4.21 (m, 1H), 2.33 (s, 1H), 1.86 – 1.78 (m, 1H), 1.60 – 1.49 (m, 1H), 1.37 – 1.27 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 146.4, 138.2, 135.3, 129.3, 126.9, 70.8, 64.8, 46.0, 31.3, 28.1, 23.2, 21.3.

HRMS (ESI) m/z calcd. for C15H22BO2 [M+H]⁺ 245.1707, found 245.1710.

(E)-2-(4-fluorostyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2d)

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.25 (d, *J* = 18.2 Hz, 1H), 7.03 – 6.95 (m, 2H), 6.01 (d, *J* = 18.2 Hz, 1H), 4.31 – 4.21 (m, 1H), 1.84 – 1.77 (m, 1H), 1.58 – 1.49 (m, 1H), 1.35 – 1.28 (m, 9H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.8 (d, $J_{C-F} = 247.7$ Hz), 145.1, 134.2 (d, $J_{C-F} = 3.2$ Hz), 128.5 (d, $J_{C-F} = 8.0$ Hz), 115.3 (d, $J_{C-F} = 21.5$ Hz), 70.9, 64.8, 46.0, 31.2, 28.1, 23.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.48.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}BFO_2 [M+H]^+ 249.1457$, found 249.1457.

(E)-4,4,6-trimethyl-2-(2-(naphthalen-1-yl)vinyl)-1,3,2-dioxaborinane (2e)

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 17.9 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.55 – 7.40 (m, 3H), 6.19 (d, J = 17.9 Hz, 1H), 4.37 – 4.27 (m, 1H), 1.89 – 1.81 (m, 1H), 1.65 – 1.55 (m, 1H), 1.42 – 1.31 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 143.4, 135.9, 133.6, 131.2, 128.41, 128.42, 125.9, 125.6, 123.90, 123.86, 70.9, 64.9, 46.0, 31.3, 28.2, 23.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₂BO₂ [M+H]⁺ 281.1707, found 281.1705.

(E)-4,4,6-trimethyl-2-(2-(naphthalen-2-yl)vinyl)-1,3,2-dioxaborinane (2f)

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.75 (m, 4H), 7.70 (m, 1H), 7.51 – 7.41 (m, 3H), 6.23 (d, *J* = 18.2 Hz, 1H), 4.36 – 4.25 (m, 1H), 1.87 – 1.80 (m, 1H), 1.63–1.51 (m, 1H), 1.40 – 1.30 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 146.5, 135.5, 133.54, 133.49, 128.3, 128.1, 127.6, 127.5, 126.12, 126.05, 123.7, 70.9, 64.9, 46.0, 31.3, 28.2, 23.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₂BO₂ [M+H]⁺ 281.1707, found 281.1707.

(E)-4,4,6-trimethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborinane (2g)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 17.9 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.04 (d, J = 2.9 Hz, 1H), 6.98 – 6.94 (m, 1H), 5.86 (d, J = 17.9 Hz, 1H), 4.31 – 4.20 (m, 1H), 1.84 – 1.78 (m, 1H), 1.59 – 1.49 (m, 2H), 1.35 – 1.28 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.6, 138.9, 127.4, 126.8, 125.5, 70.9, 64.8, 46.0, 31.2, 28.1, 23.2.

HRMS (ESI) m/z calcd. for C₁₂H₁₈BO₂S [M+H]⁺ 237.1115, found 237.1117.

(E)-4,4,6-trimethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborinane (2h)

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 4H), 5.89 (d, J = 18.1 Hz, 1H), 4.31 – 4.21 (m, 1H), 1.84 – 1.77 (m, 1H), 1.58 – 1.49 (m, 1H), 1.35 – 1.27 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 140.2, 125.7, 125.2, 123.8, 70.8, 64.8, 46.0, 31.2, 28.1, 23.2. HRMS (ESI) m/z calcd. for C₁₂H₁₈BO₂S [M+H]⁺ 237.1115, found 237.1117.

(*E*)-3-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)pyridine (2i)

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (d, J = 2.3 Hz, 1H), 8.47 (dd, J = 4.8, 1.6 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.31 – 7.21 (m, 2H), 6.19 (d, J = 18.3 Hz, 1H), 4.33 – 4.23 (m, 1H), 1.87 – 1.79 (m, 1H), 1.60 – 1.50 (m, 1H), 1.37 – 1.28 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.0, 148.9, 142.5, 133.3, 132.9, 123.3, 70.9, 64.8, 45.8, 31.1, 28.0, 23.0.

HRMS (ESI) m/z calcd. for C₁₃H₁₉BNO₂ [M+H]⁺ 232.1503, found 232.1505.

(E)-4-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)pyridine (2j)

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 – 8.53 (m, 2H), 7.35 – 7.29 (m, 2H), 7.20 (d, J = 18.2 Hz, 1H), 6.32 (d, J = 18.2 Hz, 1H), 4.34 – 4.24 (m, 1H), 1.88 – 1.81 (m, 1H), 1.61 – 1.51 (m, 1H), 1.38 – 1.30 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 150.1, 145.0, 143.6, 121.2, 71.2, 65.1, 45.9, 31.2, 28.1, 23.1.

HRMS (ESI) m/z calcd. for C₁₃H₁₉BNO₂ [M+H]⁺ 232.1503, found 232.1505.

(E)-3-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)quinoline (2k)

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (d, J = 2.2 Hz, 1H), 8.14 (d, J = 2.2 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.72 – 7.64 (m, 1H), 7.57 – 7.49 (m, 1H), 7.45 (d, J = 18.3 Hz, 1H), 6.36 (d, J = 18.3 Hz, 1H), 4.36 – 4.27 (m, 1H), 1.90 – 1.81 (m, 1H), 1.63 – 1.57 (m, 1H), 1.41 – 1.31 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 149.7, 147.9, 142.9, 133.3, 130.7, 129.4, 129.2, 128.1, 128.0, 126.9, 71.1, 65.0, 46.0, 31.2, 28.2, 23.2.

HRMS (ESI) m/z calcd. for C₁₇H₂₁BNO₂ [M+H]⁺ 282.1660, found 282.1662.

(E)-2-(hept-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2l)

¹**H** NMR (400 MHz, CDCl₃) δ 6.60 – 6.46 (m, 1H), 5.34 (d, J = 17.7 Hz, 1H), 4.26 – 4.15 (m, 1H), 2.17 – 2.06 (m, 2H), 1.82 – 1.77 (m, 1H), 1.55 – 1.36 (m, 3H), 1.35 – 1.21 (m, 13H), 0.88 (t, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.2, 70.5, 64.5, 46.0, 35.4, 31.5, 31.2, 28.1, 23.2, 22.5, 14.0.

HRMS (ESI) m/z calcd. for C₁₃H₂₆BO₂ [M+H]⁺ 225.2020, found 225.2024.

(*E*)-2-(2-cyclopropylvinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2m)

¹**H** NMR (400 MHz, CDCl₃) δ 6.01 (dd, J = 17.6, 9.1 Hz, 1H), 5.40 (d, J = 17.4 Hz, 1H), 4.24 – 4.14 (m, 1H), 1.80 – 1.72 (m, 1H), 1.53 – 1.43 (m, 2H), 1.33 – 1.21 (m, 9H), 0.80 – 0.72 (m, 2H), 0.54 – 0.46 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.9, 70.5, 64.5, 46.0, 31.2, 28.0, 23.2, 16.5, 7.6. HRMS (ESI) m/z calcd. for C₁₁H₂₀BO₂ [M+H]⁺ 195.1551, found 195.1554.

(E)-4,4,6-trimethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane (2n)

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 7.22 – 7.15 (m, 3H), 6.65 (td, J = 17.6, 6.4 Hz, 1H), 5.37 (td, J = 17.6, 1.6 Hz, 1H), 4.25 – 4.14 (m, 1H), 3.44 (dd, J = 6.4, 1.6 Hz, 2H), 1.79 – 1.72 (m, 1H), 1.52 – 1.44 (m, 1H), 1.30 – 1.22 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.0, 139.7, 128.9, 128.4, 126.0, 70.6, 64.6, 45.9, 42.0, 31.2, 28.1, 23.1.

HRMS (ESI) m/z calcd. for $C_{15}H_{22}BO_2 [M+H]^+ 245.1707$, found 245.1711.

(E)-4,4,6-trimethyl-2-(3-methylbuta-1,3-dien-1-yl)-1,3,2-dioxaborinane (20)

¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (d, *J* = 18.0 Hz, 1H), 5.49 (d, *J* = 18.0 Hz, 1H), 5.12 – 5.08 (m, 2H), 4.29 – 4.18 (m, 1H), 1.84 (s, 3H), 1.82 – 1.76 (m, 1H), 1.56 – 1.46 (m, 1H), 1.35 – 1.25 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.2, 143.3, 118.7, 70.7, 64.7, 46.0, 31.2, 28.1, 23.1, 18.0.

HRMS (ESI) m/z calcd. for $C_{11}H_{20}BO_2 [M+H]^+$ 195.1551, found 195.1546.

(E)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2p)

¹**H** NMR (400 MHz, CDCl₃) δ 6.94 (d, J = 18.0 Hz, 1H), 5.94 – 5.86 (m, 1H), 5.36 (d, J = 18.0 Hz, 1H), 4.28 – 4.17 (m, 1H), 2.19 – 2.10 (m, 4H), 1.82 – 1.74 (m, 1H), 1.69 – 1.41 (m, 5H), 1.35 – 1.23 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.3, 137.3, 132.7, 70.6, 64.6, 46.0, 31.3, 28.1, 26.1, 24.0, 23.2, 22.50, 22.45.

HRMS (ESI) m/z calcd. for $C_{14}H_{24}BO_2 [M+H]^+ 235.1864$, found 235.1866.

Ethyl (E)-3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)acrylate (2q)

¹**H** NMR (400 MHz, CDCl₃) δ 6.72 (d, J = 18.0 Hz, 1H), 6.54 (d, J = 18.0 Hz, 1H), 4.30 – 4.15 (m, 3H), 1.86 –1.79 (m, 1H), 1.57 – 1.47 (m, 1H), 1.34 – 1.23 (m, 12H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.5, 136.0, 71.3, 65.1, 60.3, 45.8, 31.0, 28.0, 22.9, 14.2.

HRMS (ESI) m/z calcd. for $C_{11}H_{20}BO_4 [M+H]^+ 227.1449$, found 227.1451.

(E)-2-(3-methoxyprop-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane (2r)

¹**H** NMR (400 MHz, CDCl₃) δ 6.52 (td, J = 17.9, 5.1 Hz, 1H), 5.58 (td, J = 17.9, 1.6 Hz, 1H), 4.27 – 4.17 (m, 1H), 3.98 (dd, J = 5.1, 1.6 Hz, 2H), 3.34 (s, 3H), 1.82 – 1.75 (m, 1H), 1.54 – 1.45 (m, 1H), 1.31 – 1.23 (m, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 145.6, 74.5, 70.7, 64.7, 58.1, 45.9, 31.2, 28.1, 23.1.

HRMS (ESI) m/z calcd. for $C_{10}H_{20}BO_3 [M+H]^+$ 199.1500, found 199.1503.

(E)-4,4,6-trimethyl-2-(3-phenoxyprop-1-en-1-yl)-1,3,2-dioxaborinane (2s)

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 2H), 6.96 – 6.87 (m, 3H), 6.66 (td, J = 17.9, 4.7 Hz, 1H), 5.73 (td, J = 17.9, 1.7 Hz, 1H), 4.58 (dd, J = 4.8, 1.8 Hz, 2H), 4.27 – 4.17 (m, 1H), 1.82 – 1.74 (m, 1H), 1.55 – 1.45 (m, 1H), 1.34 – 1.23 (m, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.7, 143.9, 129.4, 120.6, 114.7, 70.8, 69.5, 64.8, 45.9, 31.2, 28.1, 23.1.

HRMS (ESI) m/z calcd. for C15H22BO3 [M+H]⁺ 261.1657, found 261.1661.

(E)-3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)allyl acetate (2t)

¹**H NMR** (400 MHz, CDCl₃) δ 6.59 – 6.41 (m, 1H), 5.59 (m, 1H), 4.62 (m, 2H), 4.27 – 4.16 (m, 1H), 2.08 (d, *J* = 1.7 Hz, 3H), 1.83 –1.76 (m, 1H), 1.55 – 1.45 (m, 1H), 1.33 – 1.23 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 142.5, 70.8, 65.8, 64.8, 45.9, 31.1, 28.0, 23.0, 20.8.

HRMS (ESI) m/z calcd. for C₁₁H₂₀BO₄ [M+H]⁺ 227.1449, found 227.1450.

(*E*)-tert-butyldimethyl((3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)allyl)oxy)silane (2u)

¹**H** NMR (400 MHz, CDCl₃) δ 6.55 (td, J = 17.7, 4.1 Hz, 1H), 5.61 (td, J = 17.7, 2.0 Hz, 1H), 4.27 – 4.14 (m, 3H), 1.82 – 1.74 (m, 1H), 1.53 – 1.44 (m, 1H), 1.32 – 1.23 (m, 9H), 0.91 (s, 9H), 0.06 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.7, 70.6, 64.9, 64.6, 46.0, 31.2, 28.1, 26.0, 23.2, 18.4, -5.3.

HRMS (ESI) m/z calcd. for C15H32BO3Si [M+H]⁺ 299.2208, found 299.2210.

(E)-4,4,6-trimethyl-2-(3-(phenylthio)prop-1-en-1-yl)-1,3,2-dioxaborinane (2v)

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 4H), 7.19 – 7.11 (m, 1H), 6.52 (td, J = 17.4, 6.6 Hz, 1H), 5.52 (td, J = 17.4, 1.4 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.61 (dd, J = 6.6, 1.4 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.52 – 1.43 (m, 1H), 1.30 – 1.21 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.2, 136.6, 128.8, 128.7, 125.7, 70.8, 64.7, 45.9, 38.2, 31.2, 28.1, 23.1. **HRMS** (ESI) m/z calcd. for C₁₅H₂₂BO₂S [M+H]⁺ 277.1428, found 277.1432.

4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane (2w)

¹**H NMR** (400 MHz, CDCl₃) δ 6.10 – 5.99 (m, 1H), 5.91 – 5.72 (m, 2H), 4.28 – 4.17 (m, 1H), 1.83 – 1.75 (m, 1H), 1.56 – 1.46 (m, 1H), 1.32 – 1.24 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 133.8, 70.7, 64.7, 45.9, 31.2, 28.1, 23.1. **HRMS** (ESI) m/z calcd. for C₈H₁₆BO₂ [M+H]⁺ 155.1238, found 155.1240.

(E)-4,4,6-trimethyl-2-(2-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane (2x)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 2H), 7.35 – 7.19 (m, 3H), 5.66 (s, 1H), 4.34 – 4.24 (m, 1H), 2.38 (s, 3H), 1.86 – 1.78 (m, 1H), 1.61 – 1.52 (m, 2H), 1.37 – 1.28 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.7, 144.7, 128.0, 127.4, 125.8, 70.9, 64.8, 45.9, 31.4, 28.3, 23.3, 19.3.

HRMS (ESI) m/z calcd. for C₁₅H₂₂BO₂ [M+H]⁺ 245.1707, found 245.1712.

(E)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.18 (m, 2H), 7.10 – 7.02 (m, 2H), 6.84 – 6.79 (m, 1H), 6.10 (d, J = 18.2 Hz, 1H), 4.37 – 4.19 (m, 1H), 3.80 (s, 3H), 1.85 – 1.78 (m, 1H), 1.59 – 1.50 (m, 1H), 1.37 – 1.28 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.6, 146.3, 139.4, 129.3, 119.8, 114.4, 111.4, 70.8, 64.8, 55.1, 45.9, 31.2, 28.1, 23.1. HRMS (ESI) m/z calcd. for C₁₅H₂₂BO₃ [M+H]⁺ 261.1657, found 261.1651.

The synthesis of benzyl/propargyl halides The synthesis of benzyl bromides

To a solution of ketone (3.0 mmol) in MeOH (9.0 mL) was added NaBH4 (136.2 mg, 3.6 mmol) at ice bath and the reaction mixture was stirred at room temperature for 0.5–2 h. After completion of reaction (monitored by TLC), the reaction was quenched by water, and the mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the corresponding alcohol. The crude product was purified by flash chromatography on silica gel to provide the desired product.

To a solution of the residue obtained above in CH₂Cl₂ (9.0 mL) was added PBr₃ (0.20 mL, 2.1 mmol) under an argon atmosphere at ice water bath and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water at ice water bath, and the mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the corresponding crude benzyl bromides, which was directly used in the next step without further purification or stored in a refridgerator.

S58, S59 were prepared according to the above procedure.

Benzyl bromide 1d was purchased form Bide Pharmatech.

Other benzyl bromides were prepared according to previously reported procedure.^{5,6}

4-bromothiochromane (S58):

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.7 Hz, 1H), 7.12 – 6.87 (m, 3H), 3.70 (t, J = 12.8 Hz, 1H), 2.92 – 2.87 (m, 1H), 2.65 – 2.59 (m, 1H), 2.35 – 2.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 131.4, 128.8, 126.6, 124.1, 49.7, 31.4, 22.6. HRMS (APCI) m/z calcd. for C₉H₉S [M-Br]⁺ 149.0420, found 149.0418.

5-bromo-6,7,8,9-tetrahydro-5H-benzo[7]annulene (S59):

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 2H), 7.12 – 7.06 (m, 2H), 5.47 – 5.45 (m, 1H), 3.30 – 3.23 (m, 1H), 2.77 – 2.69 (m, 1H), 2.39 – 2.21 (m, 2H), 2.07 – 1.99 (m, 1H), 1.98 – 1.85 (m, 2H), 1.49 – 1.38 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 130.8, 128.9, 128.6, 126.0, 60.1, 36.4, 35.7, 28.0, 27.3. HRMS (APCI) *m/z* calcd. for C₁₁H₁₃ [M-Br]⁺ 145.1012, found 145.1009.

The synthesis of propargyl bromides

The propargyl bromides were prepared according to previously reported procedure.⁷

^{*n*}BuLi (2.4 M in hexane, 1.3 equiv) was added dropwise into a solution of alkynes (1.3 equiv) in anhydrous THF (1 M) at -78 °C. The mixture was stirred at room temperature for 30 min and cooled to -78 °C. Aldehyde (1.0 equiv) was added dropwise. Then the mixture was warmed up to room temperature and stirred for overnight. The mixture was quenched by a saturated NH4Cl aqueous solution, extracted with EtOAc, and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure and then subjected to flash chromatography to afford the desired product.

Under an argon atmosphere, to a solution of imidazole (1.2 equiv) in dry CH₂Cl₂ (1 M) was added propargyl alcohol (1.0 equiv). The solution was stirred for 15 min, followed by the addition of dibromotriphenylphosphorane (1.2 equiv). The reaction mixture was stirred at room temperature overnight. Then the reaction was quenched by the addition of silica gel. The solvent was removed under reduced pressure, and then the plug of silica gel was subjected to flash chromatography to afford the desired product.

S65, S70, S71, S74, S75, S77, S80, S82, S83, S84 were prepared according to the above procedure.

Other propargyl bromides were prepared according to previously reported procedure.^{5,7-}

Propargyl chloride was prepared according to previously reported procedure.⁷

(3-bromohex-1-yn-1-yl)triisopropylsilane (865):

S65

¹**H NMR** (400 MHz, CDCl₃) δ 4.55 (t, J = 6.8 Hz, 1H), 2.06 – 1.92 (m, 2H), 1.63 –

1.53 (m, 2H), 1.07 (s, 21H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 106.0, 88.6, 41.8, 37.3, 20.7, 18.5, 13.2, 11.2. HRMS (ESI) m/z calcd. for C₁₅H₃₀BrSi [M+H]⁺ 317.1295, found 317.1296.

(3-bromo-5-(5-methylfuran-2-yl)pent-1-yn-1-yl)triisopropylsilane (S70):

¹**H NMR** (400 MHz, CDCl₃) δ 5.95 – 5.80 (m, 2H), 4.51 – 4.37 (m, 1H), 2.81 (t, J = 7.6 Hz, 2H), 2.27 (s, 3H), 2.15 – 2.00 (m, 2H), 1.08 – 1.07 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.2, 150.5, 108.3, 105.79, 105.76, 85.9, 62.2, 36.3, 23.8, 18.5, 13.5, 11.1. **HRMS** (ESI) *m/z* calcd. for C₁₉H₃₂BrOSi [M+H]⁺ 383.1400, found 383.1393.

(3-bromooct-7-en-1-yn-1-yl)triisopropylsilane (S71):

¹**H** NMR (400 MHz, CDCl₃) δ 5.84 – 5.74 (m, 1H), 5.11 – 4.93 (m, 2H), 4.55 (t, *J* = 6.7 Hz, 1H), 2.15 – 1.95 (m, 4H), 1.74 – 1.60 (m, 2H), 1.07 (s, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 137.9, 115.1, 105.8, 88.8, 39.2, 37.2, 32.7, 26.5, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₁₇H₃₁Si [M-Br]⁺ 263.2190, found 263.2186.

4-bromo-6-(triisopropylsilyl)hex-5-ynenitrile (S74):

¹**H NMR** (400 MHz, CDCl₃) δ 4.68 (t, *J* = 6.1 Hz, 1H), 2.72 – 2.62 (m, 2H), 2.38 – 2.33 (m, 2H), 1.08 – 1.07 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 118.3, 103.2, 91.2, 35.0, 34.2, 18.5, 15.1, 11.0. HRMS (ESI) *m/z* calcd. for C₁₅H₂₇BrNSi [M+H]⁺ 328.1091, found 328.1086.

(3-bromo-6-(5,5-dimethyl-1,3-dioxan-2-yl)hex-1-yn-1-yl)triisopropylsilane (S75):

S75

¹**H** NMR (400 MHz, CDCl₃) δ 4.54 (t, *J* = 6.7 Hz, 1H), 4.42 (t, *J* = 4.4 Hz, 1H), 3.58 (d, *J* = 10.9 Hz, 2H), 3.41 (d, *J* = 10.9 Hz, 2H), 2.14 – 1.94 (m, 2H), 1.82 – 1.59 (m, 4H), 1.18 (s, 3H), 1.07 (s, 21H), 0.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 105.8, 101.7, 88.8, 77.2, 39.6, 37.2, 33.7, 30.1, 23.0, 21.9, 21.8, 18.5, 11.1.

HRMS (ESI) *m/z* calcd. for C₂₁H₄₀BrO₂Si [M+H]⁺ 431.1975, found 431.1969.

4-bromo-6-(triisopropylsilyl)hex-5-yn-1-yl benzoate (S77):

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 – 8.01 (m, 2H), 7.62 – 7.53 (m, 1H), 7.49 – 7.41 (m, 2H), 4.65 (t, *J* = 6.4 Hz, 1H), 4.40 – 4.36 (m, 2H), 2.23 – 2.17 (m, 2H), 2.12 – 2.02 (m, 2H), 1.07 (s, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 133.0, 130.1, 129.6, 128.4, 105.2, 89.4, 63.9, 36.6, 26.6, 18.5, 11.1.

HRMS (ESI) *m/z* calcd. for C₂₂H₃₄BrO₂Si [M+H]⁺ 437.1506, found 437.1499.

(3-bromo-5-phenylpent-1-yn-1-yl)(tert-butyl)dimethylsilane (S80):

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.17 (m, 3H), 4.45 (t, *J* = 6.8 Hz, 1H), 2.91 – 2.81 (m, 2H), 2.37 – 2.22 (m, 2H), 0.96 (s, 9H), 0.13 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.1, 128.6, 126.3, 104.2, 90.9, 41.2, 36.4, 33.4, 26.0, 16.6, -4.8.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₅Si [M-Br]⁺ 257.1720, found 257.1718.

(3-bromo-5-cyclohexylpent-4-yn-1-yl)benzene (S82):

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.23 – 7.17 (m, 3H), 4.51 (td, J = 6.7, 2.0 Hz, 1H), 2.85 (t, J = 7.6 Hz, 2H), 2.50 – 2.43 (m, 1H), 2.35 – 2.24 (m, 2H), 1.83 – 1.66 (m, 4H), 1.54 – 1.40 (m, 3H), 1.35 – 1.26 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.3, 128.52, 128.48, 126.2, 92.7, 79.1, 41.8, 37.8, 33.5, 32.33, 32.31, 29.1, 25.8, 24.7.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₁ [M-Br]⁺ 225.1638, found 225.1634.

(3-bromonon-4-yn-1-yl)benzene (S83):

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 4.52 – 4.47 (m, 1H), 2.84 (t, *J* = 7.6 Hz, 2H), 2.32 – 2.25 (m, 4H), 1.60 – 1.33 (m, 4H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.3, 128.5, 128.5, 126.2, 88.8, 79.0, 41.7, 37.8, 33.5, 30.5, 21.9, 18.6, 13.6.

HRMS (ESI) *m/z* calcd. for C₁₅H₁₉ [M-Br]⁺ 199.1481, found 199.1479.

(3-bromopent-1-yne-1,5-diyl)dibenzene (S84):

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.37 – 7.27 (m, 5H), 7.25 – 7.19 (m, 3H), 4.71 (t, J = 6.7 Hz, 1H), 2.95 – 2.91 (m, 2H), 2.45 – 2.39 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.1, 131.8, 128.8, 128.6, 128.3, 126.3, 87.7, 87.26. 41.3, 37.1, 33.5. **HPMS** (ESI) m/z colod, for CycHys [M Pr]⁺ 210 1168, found 210 1165.

HRMS (ESI) m/z calcd. for C₁₇H₁₅ [M-Br]⁺ 219.1168, found 219.1165.

The synthesis of optimal chiral ligand L9 and L11.

Quinine-derived chiral amine L9-1 was prepared from quinine according to the previously reported literature procedure.¹¹ Under an argon atmosphere, chiral amine L9-1 (857.1 mg, 2.65 mmol) was dissolved in CH_2Cl_2 (6.0 mL), followed by the addition of triethylamine (402.2 mg, 3.98 mmol) and 2-methylquinoline-8-sulfonyl chloride (672.5 mg, 2.78 mmol) at ice water bath. The reaction mixture was allowed to warm up to room temperature and stirred overnight. After completion of the reaction, water was poured to above mixture, and the mixture was extracted with CH_2Cl_2 . The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate = 1/1 to ethyl acetate as eluent to provide the product L9 as a white solid (1.064 g, 76% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.81 – 8.55 (m, 0.72H+0.27H), 8.25 – 8.07 (m, 0.72H×2+0.27H×2), 8.03 – 7.98 (m, 0.72H×2+0.27H×3), 7.65 (d, *J* = 5.0 Hz, 0.72H), 7.54 – 7.31 (m, 0.72H×3+0.27H×3), 7.09 (s, 0.72H), 5.70 – 5.47 (m, 1H), 4.89 (d, *J* = 16.1 Hz, 2H), 4.65 (d, *J* = 10.4 Hz, 0.72H), 4.00 – 3.75 (m, 0.72H×3+0.27H×4), 3.42 (0.27H) 3.20 – 2.62 (m, 72H×6+0.27H×5), 2.10 (s, 1H), 1.69 (d, *J* = 43.5 Hz, 2H), 1.54 – 1.39(s, 1H), 1.31 – 1.07 (m, 3H), 0.68 – 0.50 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.3, 157.5, 157.0, 147.6, 146.7, 145.1, 144.8, 144.2, 142.8, 141.7, 141.1, 136.4, 135.0, 133.0, 132.9, 131.7, 131.1, 130.7, 128.3, 127.2, 126.7, 124.3, 124.1, 123.0, 121.1, 120.7, 119.8, 114.4, 103.8, 100.9, 62.9, 61.3, 56.8, 55.7, 55.2, 52.8, 39.3, 38.8, 27.6, 27.1, 25.5, 24.8.

HRMS (ESI) m/z calcd. for C₃₀H₃₃N₄O₃S [M+H]⁺ 529.2268, found: 529.2278.

Under atmosphere, commercial (1*R*,2*R*)-*N*,*N*-dimethyl-1,2an argon diphenylethane-1,2-diamine (432.6 mg, 1.8 mmol) was dissolved in dichloromethane (5.0 mL), followed by the addition of triethylamine (273.2 mg, 2.7 mmol) and 2methylquinoline-8-sulfonyl chloride (456.8 mg, 1.9 mmol) at an ice water bath. The reaction mixture was allowed to warm up to room temperature and stirred overnight. After completion of the reaction, water was poured to above mixture, and the mixture was extracted with CH2Cl2. The combined organic phase was dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate = 1/1 to ethyl acetate as eluent to provide the product L11 as a white solid (641.7 mg, 80% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 7.3, 1.5 Hz, 1H), 8.10 (d, J = 8.4 Hz, 2H), 7.96 (dd, J = 8.2, 1.5 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.10 - 7.05 (m, 3H), 7.04 - 6.93 (m, 3H), 6.84 - 6.77 (m, 2H), 4.47 (d, J

= 10.8 Hz, 1H), 3.63 (d, J = 10.8 Hz, 1H), 2.88 (s, 3H), 1.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 143.2, 140.5, 136.4, 136.1, 132.6, 131.4, 130.5, 129.7, 128.0, 127.5, 127.4, 127.3, 126.84, 126.78, 124.5, 122.9, 73.8, 58.3, 40.1, 25.8. **HRMS** (ESI) m/z calcd. for C₂₆H₂₈N₃O₂S [M+H]⁺ 446.1897, found: 446.1904

Experimental procedures

Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters

General procedure A:

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand (7.5 mol%), LiO'Bu (32.0 mg, 0.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (2.0 mL) and H₂O (3.6 mg, 1.0 equiv) were added under a counter flow of argon. Finally, alkenylboronate esters (0.2 mmol, 1.0 equiv) and benzyl bromides (0.3 mmol, 1.5 equiv) were added by microsyringe under a counter flow of argon. The tube was sealed and the reaction mixture was allowed to stir at -20 °C for 4–6 d. Upon completion of the reaction (monitored by TLC), the mixture was quenched with water. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the desired product.

General procedure B:

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand (7.5 mol%), LiO'Bu (32.0 mg, 0.4 mmol, 2.0 equiv) and alkenylboronate esters (0.2 mmol, 1.0 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (2.0 mL) and H₂O (3.6 mg, 1.0 equiv) were added under a counter flow of argon. Finally, benzyl bromides (0.3 mmol, 1.5 equiv) was added by microsyringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -20 °C for 4-6 d. Upon completion of the reaction (monitored by TLC), the mixture was quenched with water. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the desired product.

General procedure C:

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand (7.5 mol%), LiO'Bu (32.0 mg, 0.4 mmol, 2.0 equiv) and benzyl bromides (0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (2.0 mL) and H₂O (3.6 mg, 1.0 equiv) were added under a counter flow of argon. Finally, alkenyl boronates (0.2 mmol, 1.0 equiv) was added by microsyringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -20 °C for 4-6 d. Upon completion of the reaction (monitored by TLC), the mixture was quenched with water. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the desired product.

$$\mathbb{R}^{1} \xrightarrow{\text{(\pm)-1}} \mathbb{R}^{2} + \mathbb{R}^{3} \xrightarrow{\text{B(mp)}} \frac{\text{Cul (5 mol \%), L9 (5 mol \%)}}{\text{LiO'Bu (1.5 equiv), H_2O (3.0 equiv)}} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{3}$$

General procedure D:

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand L9 (5 mol%), LiO'Bu (24.2 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (1.0 mL) and H₂O (10.8 mg, 3.0 equiv) were added by syringe and microsyringe under a counter flow of argon. Finally, alkenyl boronates (0.2 mmol, 1.0 equiv) and propargyl bromides (0.25 mmol, 1.25 equiv) were added by microsyringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -30 °C for 5 d. Upon completion of the reaction (monitored by TLC), the mixture was quenched with water. The mixture was extracted with dichloromethane (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the desired product.

General procedure E:

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand L9 (5 mol%), LiO'Bu (24.2 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (1.0 mL) and H₂O (10.8 mg, 3.0 equiv) were added by syringe and microsyringe under a counter flow of argon. Finally, alkenyl boronates 2a (0.2 mmol, 1.0 equiv) and propargyl chloride (0.25 mmol, 1.25 equiv) were added by microsyringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at 0 °C for 5 d. Upon completion of the reaction (monitored by TLC), the mixture was quenched with water. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product **69** (33.0 mg, 41% yield, 90% ee).

Determination of absolute configuration

The absolute configuration of **3** was determined by comparing the HPLC spectrum and specific rotation with those reported in literature.⁵ Measured specific rotation of **3**: $[\alpha]_D^{22} = -40.30$ (c 0.71 CH₂Cl₂, 95% ee), Reported specific optical rotation of **3**: $[\alpha]_D^{27} = -24$ (c 0.71 CH₂Cl₂, 96% ee).⁵ The product **3** was determined to be of an *S* absolute configuration according to the reported data.

Figure S1. Determination of absolute stereochemistry

Characteristic data of side products and products

(1*E*,3*E*)-1,4-diphenylbuta-1,3-diene (3')¹²

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 4H), 7.38 – 7.29 (m, 4H), 7.28 – 7.19 (m, 2H), 7.01 – 6.90 (m, 2H), 6.73 – 6.62 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 137.3, 132.8, 129.2, 128.7, 127.6, 126.4.

2-vinylnaphthalene (8')¹³

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 3H), 7.75 (s, 1H), 7.64 (dd, J = 8.6, 1.8 Hz, 1H), 7.49 – 7.40 (m, 2H), 6.93 – 6.83 (m, 1H), 5.87 (d, J = 17.6 Hz, 1H), 5.37 – 5.31 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.9, 135.0, 133.5, 133.1, 128.1, 128.0, 127.7, 126.4, 126.2, 125.9, 123.2, 114.2.

(*S*,*E*)-pent-1-ene-1,3-diyldibenzene (3)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-styryl-1,3,2-dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) for 4 d. the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **3** as a colorless oil (35.4 mg, 80% yield, 95% ee).

HPLC analysis: Chiralcel OJ-H (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.36 min, t_R (minor) = 22.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.13 (m, 10H), 6.45 – 6.26 (m, 2H), 3.31 (q, J = 7.3 Hz, 1H), 1.90 – 1.76 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.5, 137.6, 134.2, 129.4, 128.4, 127.7, 127.0, 126.2, 126.1, 51.0, 28.8, 12.3.

HRMS (APCI) m/z calcd. for $C_{17}H_{19}$ [M+H]⁺ 223.1481, found: 223.1480.

(S,E)-1-methoxy-4-(3-phenylbut-1-en-1-yl)benzene (4)

According to **general produce A** with (1-bromoethyl)benzene **1d** (55.5 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(4-methoxystyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2b** (52.0 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **4** as a colorless oil (34.2 mg, 72% yield, 89% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 14.29 min, *t*_R(major) = 17.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 6H), 7.22 – 7.18 (m, 1H), 6.89 – 6.78 (m, 2H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.24 (dd, *J* = 15.9, 6.7 Hz, 1H), 3.79 (s, 3H), 3.65 – 3.58 (m, 1H), 1.45 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 145.9, 133.1, 130.4, 128.4, 127.8, 127.3, 127.2, 126.1, 113.9, 55.3, 42.5, 21.3.

HRMS (APCI) m/z calcd. for C₁₇H₁₉O [M + H]⁺ 239.1430, found 239.1425.

(*S*,*E*)-1-methyl-4-(3-phenylpent-1-en-1-yl)benzene (5)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(4-methylstyryl)-1,3,2-dioxaborinane **2c** (48.8 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **5** as a colorless oil (38.3 mg, 81% yield, 95% ee).

HPLC analysis: Chiralcel OJ-3 (n-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 19.33 min, t_R (minor) = 30.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (m, 2H), 7.26 – 7.16 (m, 5H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.42 – 6.22 (m, 2H), 3.29 (q, *J* = 7.4 Hz, 1H), 2.30 (s, 3H), 1.88 – 1.74 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.7, 136.7, 134.8, 133.2, 129.3, 129.1, 128.4, 127.7, 126.1, 126.0, 50.9, 28.8, 21.1, 12.3.

HRMS (APCI) m/z calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found: 237.1633.

(*S*,*E*)-1-fluoro-4-(3-phenylpent-1-en-1-yl)benzene (6)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(4-fluorostyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2d** (49.6 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **6** as a colorless oil (36.4 mg, 76% yield, 93% ee).

HPLC analysis: Chiralcel OJ-3 (n-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 20.06 min, t_R (minor) = 29.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 4H), 7.25 – 7.17 (m, 3H), 7.00 – 6.92 (m, 2H), 6.35 (d, J = 15.8 Hz, 1H), 6.24 (dd, J = 15.8, 7.7 Hz, 1H), 3.29 (q, J = 7.5 Hz, 1H), 1.88 – 1.76 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.0 (d, $J_{C-F} = 245.8$ Hz), 144.4, 134.0 (d, $J_{C-F} = 2.2$ Hz), 133.7 (d, $J_{C-F} = 3.3$ Hz), 128.5, 128.3, 127.7, 127.5 (d, $J_{C-F} = 7.8$ Hz), 126.2, 115.3 (d, $J_{C-F} = 21.5$ Hz), 50.9, 28.8, 12.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.47.

HRMS (APCI) m/z calcd. for C₁₇H₁₈F [M+H]⁺ 241.1387, found: 241.1383.

(S,E)-1-(3-phenylpent-1-en-1-yl)naphthalene (7)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(2-(naphthalen-1-yl)vinyl)-1,3,2-dioxaborinane **2e** (56.0 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 7 as a colorless oil (37.8 mg, 69% yield, 93% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 11.37 min, t_R (minor) = 15.60 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.5 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.1 Hz, 1H), 7.51 – 7.26 (m, 7H), 7.26 – 7.19 (m, 1H), 7.13 (d, J = 15.6 Hz, 1H), 6.39 – 6.31 (m, 1H), 3.44 (q, J = 7.6 Hz, 1H), 1.97 – 1.82 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 137.5, 135.5, 133.6, 131.2, 128.5, 128.4, 127.7, 127.4, 126.8, 126.2, 125.8, 125.6, 125.6, 123.9, 123.7, 51.3, 29.0, 12.4. HRMS (APCI) m/z calcd. for C₂₁H₂₁ [M+H]⁺ 273.1638, found: 273.1637.

(S,E)-2-(3-phenylpent-1-en-1-yl)naphthalene (8)

According to the **general procedure B** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(2-(naphthalen-2-yl)vinyl)-1,3,2-dioxaborinane **2f** (56.0 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **8** as a white solid (39.7 mg, 73% yield, 94% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 33.50 min, t_R (minor) = 39.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (t, *J* = 8.3 Hz, 3H), 7.67 (s, 1H), 7.60 – 7.52 (m 1H), 7.46 – 7.36 (m, 2H), 7.36 – 7.25 (m, 4H), 7.21 (m, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 6.46 (dd, *J* = 15.8, 7.5 Hz, 1H), 3.36 (q, *J* = 7.4 Hz, 1H), 1.95 – 1.79 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 135.1, 134.7, 133.7, 132.7, 129.6, 128.5, 128.00, 127.8, 127.7, 127.6, 126.2, 126.1, 125.7, 125.5, 123.6, 51.1, 28.8, 12.3.

HRMS (APCI) m/z calcd. for $C_{21}H_{21}$ [M+H]⁺ 273.1638, found: 273.1631.

(*S*,*E*)-2-(3-phenylpent-1-en-1-yl)thiophene (9)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborinane **2g** (47.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **9** as a colorless oil (32.3 mg, 71% yield, 95% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.25 mL/min, λ = 254 nm), t_R (major) = 58.31 min, t_R (minor) = 62.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.27 – 7.17 (m, 3H), 7.08 (d, J = 5.1 Hz, 1H), 6.93 – 6.90 (m, 1H), 6.87 (d, J = 3.6 Hz, 1H), 6.50 (d, J = 15.7 Hz, 1H), 6.18 (dd, J = 15.7, 7.7 Hz, 1H), 3.26 (q, J = 7.5 Hz, 1H), 1.90 – 1.73 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.8, 134.1, 128.5, 127.7, 127.2, 126.2, 124.7, 123.4, 122.7, 50.8, 28.7, 12.3.

HRMS (ESI) m/z calcd. for C₁₅H₁₇S [M+H]⁺ 229.1045, found: 229.1047.

(*S*,*E*)-3-(3-phenylpent-1-en-1-yl)thiophene (10)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2dioxaborinane **2h** (47.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **10** as a colorless oil (36.9 mg, 81% yield, 95% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 25.67 min, t_R (minor) = 30.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (t, J = 7.5 Hz, 2H), 7.25 – 7.15 (m, 5H), 7.05 (d, J = 1.7 Hz, 1H), 6.39 (d, J = 15.8 Hz, 1H), 6.18 (dd, J = 15.9, 7.7 Hz, 1H), 3.26 (q, J = 7.6 Hz, 1H), 1.89 – 1.73 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.2, 134.2, 128.4, 127.7, 126.2, 125.7, 125.0, 123.7, 120.9, 50.8, 28.7, 12.3.

HRMS (ESI) m/z calcd. for C₁₅H₁₇S [M+H]⁺ 229.1045, found: 229.1047.

(S,E)-3-(3-phenylpent-1-en-1-yl)pyridine (11)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-3-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)pyridine **2i** (46.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **11** as a colorless oil (39.0 mg, 87% yield, 89% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 27.19 min, t_R (minor) = 30.06 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.42 (d, J = 4.6 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.37 – 7.29 (m, 2H), 7.28 – 7.16 (m, 4H), 6.47 – 6.31 (m, 2H), 3.33 (q, J = 7.2 Hz, 1H), 1.91 – 1.79 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.09, 148.05, 143.9, 136.7, 133.1, 132.5, 128.6, 127.6, 126.4, 125.9, 123.3, 51.1, 28.6, 12.2.

HRMS (ESI) m/z calcd. for C₁₆H₁₈N [M+H]⁺ 224.1434, found: 224.1435.

(S,E)-4-(3-phenylpent-1-en-1-yl)pyridine (12)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)pyridine **2j** (46.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **12** as a colorless oil (33.8 mg, 76% yield, 89% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 14.04 min, t_R (minor) = 27.16 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.50 (s, 2H), 7.36 – 7.29 (m, 2H), 7.28 – 7.15 (m, 5H), 6.58 (dd, J = 15.9, 7.8 Hz, 1H), 6.32 (d, J = 15.9 Hz, 1H), 3.34 (q, J = 7.6 Hz, 1H), 1.91 – 1.79 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.9, 144.9, 143.4, 139.3, 128.6, 127.7, 127.3, 126.5, 120.8, 51.0, 28.5, 12.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}N [M+H]^+ 224.1434$, found: 224.1435.

(S,E)-3-(3-phenylpent-1-en-1-yl)quinoline (13)

According to the **general procedure B** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-3-(2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)quinoline **2k** (56.2 mg, 0.20 mmol, 1.0 equiv) for 5.5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **13** as a colorless oil (43.7 mg, 80% yield, 86% ee).

HPLC analysis: Chiralcel AD-3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 28.38 min, *t*_R (major) = 41.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 2.2 Hz, 1H), 8.10 – 7.95 (m, 2H), 7.74 (d, J = 8.1 Hz, 1H), 7.67 – 7.58 (m, 1H), 7.53 – 7.43 (m, 1H), 7.39 – 7.31 (m, 2H), 7.31 – 7.20 (m, 3H), 6.63 – 6.48 (m, 2H), 3.38 (q, J = 7.2 Hz, 1H), 1.96 – 1.83 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 147.2, 143.9, 136.9, 131.8, 130.4, 129.1, 128.9, 128.6, 128.1, 127.7, 127.6, 126.8, 126.4, 126.3, 51.2, 28.6, 12.3.

HRMS (ESI) m/z calcd. for $C_{20}H_{20}N [M+H]^+ 274.1590$, found: 274.1592.

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(hept-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2l** (44.8 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **14** as a colorless oil (22.7 mg, 52% yield, 91% ee).

HPLC analysis: Chiralcel OJ (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.3 mL/min, $\lambda = 214$ nm), t_R (minor) = 13.74 min, t_R (major) = 14.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 5.57 – 5.38 (m, 2H), 3.08 (q, *J* = 7.4 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.74 – 1.64 (m, 2H), 1.39 – 1.20 (m, 6H), 0.90 – 0.82 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.5, 133.7, 130.4, 128.3, 127.5, 125.8, 50.7, 32.6, 31.4, 29.2, 29.0, 22.5, 14.1, 12.2.

HRMS (APCI) m/z calcd. for C₁₆H₂₅ [M+H]⁺ 217.1951, found: 217.1947.

(S,E)-(1-cyclopropylpent-1-en-3-yl)benzene (15)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(2-cyclopropylvinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2m** (38.4 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **15** as a colorless oil (23.9 mg, 64% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 18.41 min, t_R (minor) = 19.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 5.69 – 5.58 (m, 1H), 5.30 – 4.92 (m, 1H), 3.06 (q, *J* = 7.5 Hz, 1H), 1.74 – 1.63 (m, 2H), 1.39 – 1.30 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H), 0.69 – 0.60 (m, 2H), 0.36 – 0.26 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.4, 133.7, 131.7, 128.3, 127.6, 125.9, 50.6, 29.1, 13.6, 12.2, 6.54, 6.48.

HRMS (APCI) m/z calcd. for C₁₄H₁₉ [M+H]⁺ 187.1481, found: 187.1477.

(S,E)-hex-2-ene-1,4-diyldibenzene (16)

According to the **general procedure B** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane **2n** (48.9 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **16** as a colorless oil (33.5 mg, 71% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 13.52 min, t_R (minor) = 20.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (m, 4H), 7.18 (m, 6H), 5.73 – 5.55 (m, 2H), 3.35 (d, *J* = 5.9 Hz, 2H), 3.14 (q, *J* = 7.3 Hz, 1H), 1.77 – 1.66 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.1, 140.8, 135.5, 128.6, 128.5, 128.33, 128.32, 127.6, 126.0, 125.9, 50.6, 39.0, 28.9, 12.3.

HRMS (APCI) m/z calcd. for $C_{18}H_{21}$ [M+H]⁺ 237.1638, found: 237.1633.

(S,E)-(6-methylhepta-4,6-dien-3-yl)benzene (17)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(3-methylbuta-1,3-dien-1-yl)-1,3,2-

dioxaborinane **20** (38.8 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **17** as a colorless oil (23.5 mg, 63% yield, 93% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 230 nm), t_R (major) = 12.08 min, t_R (minor) = 14.20 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.22 – 7.15 (m, 3H), 6.15 (d, J = 15.7 Hz, 1H), 5.76 (dd, J = 15.6, 7.9 Hz, 1H), 4.88 (s, 2H), 3.19 (q, J = 7.6 Hz, 1H), 1.85 – 1.80 (s, 3H), 1.80 – 1.71 (m, 2H), 0.90 – 0.82 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.8, 142.0, 134.1, 132.4, 128.4, 127.6, 126.1, 115.0, 50.8, 28.9, 18.7, 12.2.

HRMS (APCI) m/z calcd. for C₁₄H₁₉ [M+H]⁺ 187.1481, found: 187.1477.

(S,E)-(1-(cyclohex-1-en-1-yl)pent-1-en-3-yl)benzene (18)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2p** (46.8 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **18** as a colorless oil (32.1 mg, 71% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 16.09 min, t_R (minor) = 21.05 min

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.21 – 7.15 (m, 3H), 6.03 (d, J = 15.7 Hz, 1H), 5.70 – 5.60 (m, 2H), 3.16 (q, J = 7.6 Hz, 1H), 2.18 – 2.03 (m, 4H), 1.80 – 1.69 (m, 2H), 1.69 – 1.55 (m, 4H), 0.86 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 135.6, 133.1, 130.0, 128.3, 128.0, 127.6, 125.9, 50.9, 29.0, 25.8, 24.6, 22.6, 22.5, 12.3.

HRMS (APCI) m/z calcd. for $C_{17}H_{23}$ [M+H]⁺ 227.1794, found: 227.1787.

Ethyl (*S*,*E*)-4-phenylhex-2-enoate (19)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and Ethyl (*E*)-3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)acrylate **2q** (45.2 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **19** as a colorless oil (31.8 mg, 73% yield, 86% ee).

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 214 nm), t_R (major) = 9.00 min, t_R (minor) = 12.79 min

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.26 – 7.14 (m, 3H), 7.07 (dd, J = 15.7, 7.9 Hz, 1H), 5.79 (dd, J = 15.7, 1.3 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 7.5 Hz, 1H), 1.91 – 1.72 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 151.7, 142.1, 128.6, 127.8, 126.7, 120.8, 60.2, 50.2, 27.9, 14.2, 12.1.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}O_2 [M+H]^+ 219.1380$, found: 219.1381.

(S,E)-(6-methoxyhex-4-en-3-yl)benzene (20)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-2-(3-methoxyprop-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane **2r** (39.6 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **20** as a colorless oil (31.0 mg, 81% yield, 90% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 8.60 min, t_R (minor) = 10.26 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.22 – 7.11 (m, 3H), 5.90 – 5.78 (m, 1H), 5.61 – 5.49 (m, 1H), 3.88 (d, *J* = 6.2 Hz, 2H), 3.30 (s, 3H), 3.16 (q, *J* = 7.5 Hz, 1H), 1.80-1.68 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 137.8, 128.4, 127.6, 126.1, 125.9, 73.1, 57.7, 50.4, 28.5, 12.2.

HRMS (ESI) m/z calcd. for C₁₃H₁₈ONa [M+Na]⁺ 213.1250, found: 213.1251.

(S,E)-(6-phenoxyhex-4-en-3-yl)benzene (21)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(3-phenoxyprop-1-en-1-yl)-1,3,2dioxaborinane **2s** (52.0 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1) to yield the product **21** as a colorless oil (38.4 mg, 76% yield, 86% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 24.87 min, t_R (minor) = 33.36 min

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 4H), 7.22 – 7.14 (m, 3H), 6.96 – 6.86 (m, 3H), 6.01 – 5.91 (m, 1H), 5.77 – 5.65 (m, 1H), 4.49 (d, *J* = 5.7 Hz, 2H), 3.20 (q, *J* = 7.5 Hz, 1H), 1.82 – 1.67 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 144.1, 138.3, 129.4, 128.4, 127.7, 126.2, 124.8, 120.7, 114.8, 68.6, 50.4, 28.5, 12.2.

HRMS (ESI) m/z calcd. fo C₁₈H₂₁O [M+H]⁺ 253.1587, found: 253.1589.

(*S*,*E*)-4-phenylhex-2-en-1-yl acetate (22)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)allyl acetate **2t** (45.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **22** as a colorless oil (32.7 mg, 75% yield, 89% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 16.22 min, t_R (minor) = 23.00 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.23 – 7.14 (m, 3H), 5.94 – 5.84 (m, 1H), 5.63 – 5.62 (m, 1H), 4.58 – 4.47 (m, 2H), 3.16 (q, *J* = 7.5 Hz, 1H), 2.05 (s, 3H), 1.82-1.67 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.8, 143.9, 139.3, 128.4, 127.6, 126.2, 123.6, 65.1, 50.3, 28.5, 21.0, 12.1.

HRMS (ESI) m/z calcd. for C14H18NaO2 [M+Na]⁺241.1199, found: 241.1199.

(*S*,*E*)-tert-butyldimethyl((4-phenylhex-2-en-1-yl)oxy)silane (23)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-tert-butyldimethyl((3-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)allyl)oxy)silane **2u** (59.7 mg, 0.20 mmol, 1.0 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **23** as a colorless oil (46.3 mg, 80% yield, 91% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.20 – 7.13 (m, 3H), 5.84 – 5.73 (m, 1H), 5.58 – 5.49 (m, 1H), 4.14 (d, J = 5.2 Hz, 2H), 3.14 (q, J = 7.5 Hz, 1H), 1.80 – 1.64 (m, 2H), 0.87 (d, J = 15.8 Hz, 12H), 0.04 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 144.7, 134.4, 129.1, 128.3, 127.7, 126.0, 63.9, 50.2, 28.8, 26.0, 18.4, 12.2, -5.10.

HRMS (APCI) m/z calcd. for C₁₈H₃₀OSiNa [M+Na]⁺ 313.1958, found: 313.1948.

Note: The ee value (91%) of product 23 was determined by chiral HPLC analysis of (S,E)-4-phenylhex-2-en-1-ol (23'), which was obtained by transformation of product 23.

Under an argon atmosphere, to a solution of product **23** (23.3 mg, 0.115 mmol) in anhydrous THF (2.0 mL) was added tetrabutylammonium fluoride (TBAF, 0.23 mL, 2.0 equiv, 1M in THF) at ice bath. The reaction mixture was allowed to stir at room temperature for 4 h, and then quenched with water. The reaction mixture was extracted with ethyl acetate three times. The organic layers were combined and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate = 5/1 as eluent to provide the product **23**' as a colorless oil (17.2 mg, 85% yield, 91% ee).

(S,E)-4-phenylhex-2-en-1-ol (23'):

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 23.12 min, t_R (minor) = 26.49 min

¹**H** NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 2H), 7.22 – 7.14 (m, 3H), 5.88 – 5.76 (m, 1H), 5.69 – 5.58 (m, 1H), 4.10 (d, *J* = 5.8 Hz, 2H), 3.15 (q, *J* = 7.5 Hz, 1H), 1.80 – 1.68 (m, 2H), 1.33 (s, 1H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 136.4, 128.7, 128.4, 127.6, 126.2, 63.7, 50.4, 28.6, 12.2.

HRMS (APCI) m/z calcd. for C₁₂H₁₇O [M+H]⁺ 177.1274, found: 177.1269.

(S,E)-phenyl(4-phenylhex-2-en-1-yl)sulfane (24)

According to the **general procedure B** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv) and (*E*)-4,4,6-trimethyl-2-(3-(phenylthio)prop-1-en-1-yl)-1,3,2-dioxaborinane **2v** (55.2 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **24** as a colorless oil (44.1 mg, 82% yield, 88% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 19.78 min, t_R (minor) = 29.18 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.28 – 7.19 (m, 4H), 7.19 – 7.12 (m, 2H), 7.06 (d, J = 7.1 Hz, 2H), 5.67 – 5.58 (m, 1H), 5.55 – 5.45 (m, 1H), 3.57 – 3.44 (m, 2H), 3.07 (q, J = 7.5 Hz, 1H), 1.69 – 1.57 (m, 2H), 0.76 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 137.6, 135.8, 130.3, 128.7, 128.3, 127.5, 126.2, 126.0, 125.0, 50.2, 36.7, 28.5, 12.0.

HRMS (APCI) m/z calcd. for C₁₈H₂₁S [M+H]⁺ 269.1358, found: 269.1351.

(S)-pent-1-en-3-ylbenzene (25)

According to the general procedure A with (1-bromopropyl)benzene 1a (59.7 mg,

0.30 mmol, 1.5 equiv) and 4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane 2w (32.8 mg, 0.20 mmol, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 25 as a colorless oil (14.5 mg, 50% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 214 nm), t_R (minor) = 12.15 min, t_R (major) = 12.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.22 – 7.15 (m, 3H), 6.01 – 5.89 (m, 1H), 5.06 – 4.99 (m, 2H), 3.13 (q, *J* = 7.5 Hz, 1H), 1.80 – 1.66 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 142.3, 128.4, 127.6, 126.1, 114.0, 51.7, 28.3, 12.2.

HRMS (APCI) m/z calcd. for $C_{11}H_{15}$ [M+H]⁺ 147.1168, found: 147.1165.

(S,E)-hex-2-ene-2,4-diyldibenzene (26)

According to the **general procedure A** with (1-bromopropyl)benzene **1a** (59.7 mg, 0.30 mmol, 1.5 equiv.) and (*E*)-4,4,6-trimethyl-2-(2-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane **2x** (48.8 mg, 0.20 mmol, 1.0 equiv.), CuI (3.81 mg, 10 mol%), chiral ligand **L9** (15.86 mg, 15 mol%) and LiO'Bu (32.0 mg, 2.0 equiv) for 6 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **26** as a colorless oil (18.9 mg, 40% yield, 44% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.41 min, t_R (major) = 18.70 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.33 – 7.15 (m, 8H), 5.94 – 5.88 (m, 1H), 3.55 (q, *J* = 8.1 Hz, 1H), 2.07 (d, *J* = 1.4 Hz, 3H), 1.88 – 1.68 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.5, 143.9, 134.8, 132.3, 128.4, 128.1, 127.5, 126.6, 125.9, 125.8, 46.6, 30.3, 16.3, 12.2.

HRMS (APCI) m/z calcd. for $C_{18}H_{21}$ [M+H]⁺ 237.1638, found: 237.1635.

(*S*,*E*)-1-methoxy-3-(1-phenylpent-1-en-3-yl)benzene (27)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl) -3methoxybenzenee **S27** (68.7 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **27** as a colorless oil (46.9 mg, 93% yield, 94% ee). **HPLC** analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 16.84 min, t_R (minor) = 23.96 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.30 – 7.14 (m, 4H), 6.87 – 6.71 (m, 3H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.8, 7.5 Hz, 1H), 3.79 (s, 3H), 3.28 (q, *J* = 7.4 Hz, 1H), 1.87 – 1.76 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 146.3, 137.6, 134.1, 129.5, 129.4, 128.5, 127.0, 126.2, 120.2, 113.7, 111.2, 55.2, 51.1, 28.8, 12.3.

HRMS (ESI) *m/z* calcd. for C₁₈H₂₁O [M+H]⁺ 253.1587, found 253.1589.

(S,E)-1-methyl-3-(1-phenylpent-1-en-3-yl)benzene (28)

According to **general produce** A with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl)-3methylbenzene **S28** (63.9 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **28** as a colorless oil (35.3 mg, 75% yield, 95% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.64 min, t_R (minor) = 10.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.30 – 7.23 (m, 2H), 7.22 – 7.14 (m, 2H), 7.08 – 6.97 (m, 3H), 6.40 (d, J = 15.9 Hz, 1H), 6.32 (dd, J = 15.8, 7.4 Hz, 1H), 3.26 (q, J = 7.4 Hz, 1H), 2.33 (s, 3H), 1.88 – 1.73 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.5, 138.0, 137.7, 134.3, 129.3, 128.4, 128.3, 126.94 , 126.92 , 126.1, 124.6, 51.0, 28.8, 21.5, 12.3.

HRMS (APCI) *m/z* calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found 237.1634.

(S,E)-1-methyl-4-(1-phenylpent-1-en-3-yl)benzene (29)

According to general produce A with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane 2a (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl)-4methylbenzene S29 (63.9 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 29 as a colorless oil (39.6 mg, 84% yield, 93% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.50 min, t_R (minor) = 12.01 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.29 – 7.23 (m, 2H), 7.20 – 7.10 (m, 5H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.9, 7.3 Hz, 1H), 3.27 (q, *J* = 7.4 Hz,
1H), 2.32 (s, 3H), 1.87 – 1.75 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 137.7, 135.6, 134.4, 129.2, 129.1, 128.4, 127.5, 126.9, 126.1, 50.5, 28.8, 21.0, 12.3. HRMS (APCI) *m/z* calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found 237.1633.

(S,E)-1-methyl-2-(1-phenylpent-1-en-3-yl)benzene (30)

According to **general produce** A with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl)-2methylbenzene **S30** (63.9 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **30** as a colorless oil (31.2 mg, 66% yield, 90% ee).

HPLC analysis: Chiralcel OJ-H (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 17.37 min, t_R (minor) = 25.01 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.30 – 7.20 (m, 4H), 7.20 – 7.07 (m, 3H), 6.35 (d, *J* = 15.9 Hz, 1H), 6.27 (dd, *J* = 15.8, 7.2 Hz, 1H), 3.56 (q, *J* = 7.3

Hz, 1H), 2.36 (s, 3H), 1.90 – 1.76 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.5, 137.6, 136.0, 133.8, 130.4, 129.4, 128.4, 126.9, 126.4, 126.2, 126.1, 125.9, 46.1, 28.4, 19.7, 12.3.

HRMS (APCI) *m/z* calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found 237.1631.

(R,E)-1-fluoro-3-(1-phenylpent-1-en-3-yl)benzene (31)

According to **general produce** A with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 1-(1-bromopropyl)-3fluorobenzene **S31** (65.1 mg, 0.30 mmol, 1.5 equiv) and chiral ligand L11 (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **31** as a colorless oil (29.4 mg, 61% yield, 93% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.47 min, t_R (major) = 10.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.31 – 7.24 (m, 3H), 7.22 – 7.17 (m, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.97 – 6.86 (m, 2H), 6.40 (d, J = 15.9 Hz, 1H), 6.28 (dd, J = 15.8, 7.7 Hz, 1H), 3.31 (q, J = 7.5 Hz, 1H), 1.89 – 1.74 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, J = 245.4 Hz), 147.2 (d, J = 6.8 Hz), 137.3,

133.4, 129.9, 129.8 (d, J = 8.3 Hz), 128.5, 127.2, 126.1, 123.4 (d, J = 2.6 Hz), 114.4 (d, J = 21.2 Hz), 113.0 (d, J = 21.1 Hz), 50.7, 50.7, 28.7, 12.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.45. HRMS (APCI) m/z calcd. for C₁₇H₁₈F [M+H]⁺ 241,1387, found 241.1378.

(*S*,*E*)-1-chloro-3-(1-phenylpent-1-en-3-yl)benzene (32)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl)-3chlorobenzene **S32** (70.0 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **32** as a colorless oil (36.3 mg, 71% yield, 91% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.97 min, t_R (minor) = 11.90 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.31 – 7.27 (m, 2H), 7.24 – 7.19 (m, 4H), 7.14 – 7.10 (m, 1H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.27 (dd, *J* = 15.9, 7.7 Hz, 1H), 3.29 (q, *J* = 7.5 Hz, 1H), 1.90 – 1.73 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 146.6, 137.3, 134.2, 133.3, 130.0, 129.7, 128.5, 127.79, 127.2, 126.4, 126.2, 125.9, 50.7, 28.7, 12.2.

HRMS (APCI) *m/z* calcd. for C₁₇H₁₈Cl [M+H]⁺ 257.1092, found 257.1089.

(*R*,*E*)-1-(1-phenylpent-1-en-3-yl)-4-(trifluoromethyl)benzene (33)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 1-(1-bromopropyl)-4-(trifluoromethyl)benzene **S33** (80.1 mg, 0.30 mmol, 1.5 equiv) and chiral ligand L11 (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **33** as a colorless oil (45.2 mg, 78% yield, 88% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.38 min, t_R (minor) = 9.87 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H), 7.39 – 7.32 (m, 4H), 7.32 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 6.41 (d, J = 15.8 Hz, 1H), 6.29 (dd, J = 15.8, 7.7 Hz, 1H), 3.38 (q, J = 7.5 Hz, 1H), 1.93 – 1.76 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.7, 137.2, 133.1, 130.3, 128.6, 128.5 (q, *J*_{C-F} = 32.0 Hz), 128.0, 127.3, 126.2, 125.4 (q, *J*_{C-F} = 3.7 Hz), 124.3 (q, *J*_{C-F} = 272.7 Hz), 50.8, 28.7, 12.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.30 . HRMS (APCI) *m/z* calcd. for C₁₈H₁₈F₃ [M+H]⁺ 291.1355, found 291.1348.

(*S*,*E*)-4-(1-phenylpent-1-en-3-yl)-1,1'-biphenyl (34)

According to **general produce** C with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 4-(1-bromopropyl)-1,1'biphenyl **1c** (82.5 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **34** as a colorless oil (48.6 mg, 81% yield, 93% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.00 min, t_R (major) = 9.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.51 (m, 4H), 7.46 – 7.39 (m, 2H), 7.38 – 7.25 (m, 7H), 7.21 – 7.15 (m, 1H), 6.51 – 6.29 (m, 2H), 3.36 (q, *J* = 7.4 Hz, 1H), 1.94 – 1.79 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 141.0, 139.1, 137.6, 134.0, 129.6, 128.7, 128.5, 128.1, 127.2, 127.02, 127.00, 126.1, 50.6, 28.8, 12.3.

HRMS (APCI) *m/z* calcd. for C₂₃H₂₃ [M+H]⁺ 299.1794, found 299.1788.

(S,E)-1-(1-phenylpent-1-en-3-yl)naphthalene (35)

35

According to **general produce** C with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 1-(1-bromopropyl)naphthalene **S35** (74.7 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **35** as a colorless oil (42.4 mg, 78% yield, 99% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.79 min, t_R (major) = 6.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.76 - 7.70 (m, 1H), 7.53 - 7.43 (m, 4H), 7.36 - 7.31 (m, 2H), 7.29 - 7.22 (m, 2H), 7.20 - 7.14 (m, 1H), 6.47 (d, J = 3.2 Hz, 2H), 4.22 - 4.13 (m, 1H), 2.09 - 1.94 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.6, 137.6, 134.0, 133.9, 131.8, 129.9, 128.9, 128.4, 127.0, 126.7, 126.1, 125.8, 125.6, 125.3, 124.1, 123.5, 45.3, 28.6, 12.5.

HRMS (APCI) m/z calcd. for C₂₁H₂₁ [M+H]⁺ 273.1638, found 273.1637.

(S,E)-2-(1-phenylpent-1-en-3-yl)naphthalene (36)

According to general produce C with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane 2a (46.0 mg, 0.20 mmol, 1.0 equiv) and 2-(1-bromopropyl)naphthalene S36 (74.7 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 36 as a colorless oil (42.8 mg, 79% yield, 95% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 26.93 min, t_R (minor) = 30.87 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 3H), 7.67 (d, J = 1.7 Hz, 1H), 7.47 – 7.32 (m, 5H), 7.30 – 7.24 (m, 2H), 7.21 – 7.15 (m, 1H), 6.48 – 6.35 (m, 2H), 3.53 – 3.43 (m, 1H), 2.00 – 1.87 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.9, 137.6, 134.1, 133.6, 132.3, 129.7, 128.5, 128.1, 127.6, 127.6, 127.0, 126.4, 126.1, 126.0, 125.9, 125.3, 51.0, 28.6, 12.3.

HRMS (APCI) *m/z* calcd. for C₂₁H₂₁ [M+H]⁺ 273.1638, found 273.1642.

(S)-2-(pent-1-en-3-yl)naphthalene (37)¹⁴

According to **general produce** C with 4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane 2w (154.0 mg, 1.00 mmol, 1.0 equiv), 2-(1-bromopropyl)naphthalene S36 (373.7 mg, 1.50 mmol, 1.5 equiv), CuI (9.5 mg, 5 mol%), chiral ligand L9 (39.7 mg, 7.5 mol%) and LiO'Bu (160.0 mg, 2.0 equiv) in DMF (10.0 mL) and H₂O (18.0 mg, 1.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **37** as a colorless oil (131 mg, 67% yield, 90% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 7.93 min, t_R (major) = 8.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.73 (m, 3H), 7.62 (d, *J* = 1.7 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.34 (dd, *J* = 8.5, 1.8 Hz, 1H), 6.10 – 5.94 (m, 1H), 5.13 – 5.02 (m, 2H),

3.31 (q, J = 7.4 Hz, 1H), 1.90 - 1.77 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.2, 141.8, 133.6, 132.2, 128.0, 127.59, 127.56, 126.3, 125.9, 125.8, 125.2, 114.3, 51.7, 28.2, 12.2.

(*S*,*E*)-3-(1-phenylpent-1-en-3-yl)thiophene (38)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 3-(1-bromopropyl)thiophene **S38** (61.5 mg, 0.30 mmol, 1.5 equiv), CuI (3.81 mg, 10 mol%), chiral ligand **L9** (15.86 mg, 15 mol%) and LiO'Bu (32.0 mg, 2.0 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1) to yield the product **38** as a colorless oil (26.3 mg, 58% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.01 min, t_R (major) = 14.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 2H), 7.32 – 7.25 (m, 3H), 7.19 (t, J = 7.3 Hz, 1H), 7.04 – 6.95 (m, 2H), 6.47 – 6.17 (m, 2H), 3.43 (q, J = 7.5 Hz, 1H), 1.90 – 1.70 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 137.5, 133.5, 129.7, 128.5, 127.3, 127.0, 126.1, 125.3, 119.9, 46.3, 28.6, 12.2.

HRMS (ESI) *m/z* calcd. for C₁₅H₁₇S [M+H]⁺ 229.1045, found 229.1047.

(S,E)-3-(1-phenylpent-1-en-3-yl)benzo[b]thiophene (39)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 3-(1-bromopropyl)benzo[b] thiophene **S39** (76.5 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1) to yield the product **39** as a colorless oil (41.2 mg, 74% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 5.65 min, t_R (major) = 6.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.78 (m, 2H), 7.37 – 7.31 (m, 4H), 7.31 – 7.26 (m, 2H), 7.21 – 7.16 (m, 2H), 6.49 (d, *J* = 15.9 Hz, 1H), 6.34 (dd, *J* = 15.9, 7.8 Hz, 1H), 3.76 (q, *J* = 7.5 Hz, 1H), 2.08 – 1.88 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.6, 139.0, 138.7, 137.4, 132.6, 130.3, 128.5, 127.1, 126.2, 124.2, 123.8, 122.9, 122.2, 121.0, 44.5, 27.8, 12.4.

HRMS (ESI) *m/z* calcd. for C₁₉H₁₉S [M+H]⁺ 279.1202, found 279.1204.

(S,E)-3-(1-phenylpent-1-en-3-yl)quinoline (40)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 3-(1-bromopropyl)quinoline **S40** (75.0 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **40** as a colorless oil (32.9 mg, 60% yield, 88% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.41 min, t_R (minor) = 7.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, J = 2.3 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.79 (dd, J = 8.1, 1.4 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.55 – 7.48 (m, 1H), 7.38 – 7.16 (m, 5H), 6.50 – 6.33 (m, 2H), 3.54 (q, J = 7.4 Hz, 1H), 1.98 – 1.94 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.5, 147.0, 137.1, 137.0, 133.6, 132.7, 130.6, 129.1, 128.8, 128.5, 128.2, 127.5, 127.3, 126.6, 126.2, 48.4, 28.5, 12.2.

HRMS (ESI) *m/z* calcd. for C₂₀H₂₀N [M+H]⁺ 274.1590, found 274.1592.

(*R*,*E*)-but-1-ene-1,3-diyldibenzene (41)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), (1-bromoethyl)benzene **1d** (55.5 mg, 0.30 mmol, 1.5 equiv) and chiral ligand L11 (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **41** as a colorless oil (30.4 mg, 73% yield, 93% ee)

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 17.24 min, t_R (major) = 18.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 8H), 7.24 – 7.16 (m, 2H), 6.45 – 6.34 (m, 2H), 3.69 – 3.59 (m, 1H), 1.47 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.6, 137.5, 135.2, 128.5, 127.3, 127.0, 126.2, 126.1, 42.5, 21.2.

HRMS (ESI) *m/z* calcd. for C₁₆H₁₇ [M+H]⁺ 209.1325, found 209.1325.

(S,E)-hex-1-ene-1,3-diyldibenzene (42)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromobutyl)benzene **S42** (63.9 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **42** as a colorless oil (34.6 mg, 73% yield, 94% ee)

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.52 min, t_R (minor) = 9.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 8H), 7.22 – 7.14 (m, 2H), 6.43 – 6.28 (m, 2H), 3.42 (q, *J* = 7.4 Hz, 1H), 1.84 – 1.70 (m, 2H), 1.40 – 1.24 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.7, 137.6, 134.4, 129.2, 128.5, 128.4, 127.6, 127.0, 126.1, 126.1, 48.9, 38.1, 20.7, 14.0.

HRMS (APCI) *m/z* calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found 237.1636.

(S,E)-oct-1-ene-1,3-diyldibenzene (43)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromohexyl)benzene **S43** (72.3 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **43** as a colorless oil (34.8 mg, 66% yield, 94% ee)

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.84 min, t_R (major) = 10.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 8H), 7.22 – 7.15 (m, 2H), 6.43 – 6.26 (m, 2H), 3.39 (q, *J* = 7.4 Hz, 1H), 1.84 – 1.73 (m, 2H), 1.39 – 1.19 (m, 6H), 0.91 – 0.80 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 134.5, 129.2, 128.5, 128.4, 127.6, 127.0, 126.1, 126.1, 49.2, 35.9, 31.8, 27.3, 22.6, 14.1.

HRMS (APCI) *m/z* calcd. for C₂₀H₂₅ [M+H]⁺ 265.1951, found 265.1945.

(*S*,*E*)-(4-methylpent-1-ene-1,3-diyl)dibenzene (44)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromo-2-methylpropyl) benzene **S44** (63.9 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **44** as a colorless oil (32.5 mg, 69% yield, 98% ee)

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 8.49 min, t_R (major) = 9.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 6H), 7.24 – 7.15 (m, 4H), 6.45 – 6.33 (m, 2H), 3.09 – 2.99 (m, 1H), 2.09 – 1.99 (m, 1H), 1.00 (d, *J* = 6.7 Hz, 3H), 0.81 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 137.6, 133.2, 130.3, 128.41, 128.38, 127.9, 127.0, 126.1, 126.0, 57.6, 33.2, 21.2, 20.9.

HRMS (APCI) m/z calcd. for C₁₈H₂₁ [M+H]⁺ 237.1638, found 237.1633.

(S,E)-hex-1-ene-1,3,6-triyltribenzene (45)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromobutane-1,4-diyl) dibenzene **S45** (86.7 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **45** as a colorless oil (40.2 mg, 64% yield, 90% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 25.00 min, t_R (major) = 32.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.09 (m, 15H), 6.41 – 6.26 (m, 2H), 3.42 (q, J = 7.3 Hz, 1H), 2.63 (t, J = 7.6 Hz, 2H), 1.89 – 1.80 (m, 2H), 1.73 – 1.57 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 142.4, 137.5, 134.1, 129.4, 128.5, 128.44, 128.40, 128.3, 127.6, 127.0, 126.2, 126.1, 125.7, 49.1, 35.9, 35.4, 29.4

HRMS (APCI) *m/z* calcd. for C₂₄H₂₅ [M+H]⁺ 313.1951, found 313.1941.

(S,E)-2-(3,5-diphenylpent-4-en-1-yl)-5-methylfuran (46)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 2-(3-bromo-3-phenylpropyl)-5methylfuran **S46** (83.7 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to yield the product **46** as a colorless oil (37.0 mg, 61% yield, 94% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 5.36 min, *t*_R (minor) = 6.13 min.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.15 (m, 10H), 6.45 – 6.28 (m, 2H), 5.84 (s, 2H), 3.45 (q, J = 7.5 Hz, 1H), 2.67 – 2.48 (m, 2H), 2.24 (s, 3H), 2.20 – 2.06 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 153.9, 150.3, 143.9, 137.4, 133.6, 129.8, 128.6, 128.4, 127.7, 127.1, 126.4, 126.1, 105.8, 105.5, 48.4, 34.0, 26.1, 13.5.
HRMS (ESI) *m/z* calcd. for C₂₂H₂₃O [M+H]⁺ 303.1743, found 303.1747.

(S,E)-hepta-1,6-diene-1,3-diyldibenzene (47)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromopent-4-en-1-yl) benzene **S47** (67.5 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **47** as a colorless oil (26.0 mg, 52% yield, > 99% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.37 min, t_R (major) = 10.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 7H), 7.25 – 7.16 (m, 3H), 6.44 – 6.27 (m, 2H), 5.89 – 5.76 (m, 1H), 5.06 – 4.94 (m, 2H), 3.45 (q, *J* = 7.5 Hz, 1H), 2.14 – 1.98 (m, 2H), 1.94 – 1.86 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 138.4, 137.5, 134.0, 129.6, 128.52, 128.45, 127.7, 127.1, 126.3, 126.1, 114.8, 48.4, 34.9, 31.6

HRMS (APCI) m/z calcd. for C₁₉H₂₁ [M+H]⁺ 249.1638, found 249.1630.

(S,E)-(6-chlorohex-1-ene-1,3-diyl)dibenzene (48)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1-bromo-4-chlorobutyl) benzene **S48** (74.1 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **48** as a colorless oil (43.8 mg, 81% yield, 94% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 22.98 min, t_R (minor) = 27.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.14 (m, 10H), 6.42 (d, *J* = 15.9 Hz, 1H), 6.32 (dd, *J* = 15.8, 7.6 Hz, 1H), 3.54 (t, *J* = 6.5 Hz, 2H), 3.43 (q, *J* = 7.5 Hz, 1H), 2.05 – 1.90 (m, 2H), 1.90 – 1.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 137.3, 133.5, 129.8, 128.6, 128.5, 127.5, 127.2, 126.5, 126.2, 48.5, 45.0, 33.0, 30.7.

(S,E)-(5-bromopent-1-ene-1,3-diyl)dibenzene (49)

According to **general produce** A with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (1,3-dibromopropyl)benzene **S49** (83.1 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **49** as a colorless oil (48.3 mg, 80% yield, 96% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.98 min, t_R (minor) = 20.42 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.17 (m, 10H), 6.48 (d, *J* = 15.8 Hz, 1H), 6.29 (dd, *J* = 15.8, 7.9 Hz, 1H), 3.71 (q, *J* = 7.6 Hz, 1H), 3.45 – 3.26 (m, 2H), 2.39 – 2.26 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.7, 137.1, 132.1, 130.4, 128.7, 128.5, 127.6, 127.3, 126.7, 126.2, 47.1, 38.4, 31.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₈Br [M+H]⁺ 301.0586, found 301.0586.

(S,E)-tert-butyl((4,6-diphenylhex-5-en-1-yl)oxy)diphenylsilane (50)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (4-bromo-4-phenylbutoxy) (tertbutyl)diphenylsilane **S50** (140.0 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **50** as a colorless oil (65.4 mg, 67% yield, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.59 (m, 4H), 7.43 – 7.26 (m, 12H), 7.23 – 7.16 (m, 4H), 6.41 – 6.24 (m, 2H), 3.67 (t, *J* = 6.3 Hz, 2H), 3.39 (q, *J* = 7.4 Hz, 1H), 1.94 – 1.85 (m, 2H), 1.67 – 1.46 (m, 2H), 1.04 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 137.6, 135.6, 134.3, 134.0, 129.5, 129.3, 128.5, 128.4, 127.7, 127.6, 127.0, 126.2, 126.1, 63.7, 48.7, 31.9, 30.5, 26.9, 19.2.

HRMS (APCI) *m/z* calcd. for C₃₄H₃₉OSi [M+H]⁺ 491.2765, found 491.2764.

Note: The ee value (90%) of product **50** was determined by chiral HPLC analysis of (**S,E)-4,6-diphenylhex-5-en-1-ol** (**50**'), which was obtained by transformation of product **50**.

Under an argon atmosphere, to a solution of product **50** (45.2 mg, 0.092 mmol) in anhydrous THF (5.0 mL) was added tetrabutylammonium fluoride (TBAF, 0.18 mL, 2.0 equiv, 1M in THF) at ice water bath. The reaction mixture was allowed to stir at room temperature for 4 h, and then quenched with water. The reaction mixture was extracted with EtOAc three times. The organic layers were combined and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate = 5/1 as eluent to provide the product **50**' as a colorless oil (15.2 mg, 66% yield, 90% ee).

(S,E)-4,6-diphenylhex-5-en-1-ol (50')

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 13.55 min, t_R (minor) = 19.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 3H), 7.30 – 7.23 (m, 5H), 7.23 – 7.16 (m, 2H), 6.47 – 6.27 (m, 2H), 3.64 (t, *J* = 6.5 Hz, 2H), 3.42 (q, *J* = 7.5 Hz, 1H), 1.94 – 1.82 (m, 2H), 1.73 – 1.43 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.2, 137.4, 133.9, 129.5, 128.5, 128.4, 127.6, 127.1, 126.3, 126.1, 62.8, 48.9, 31.9, 30.8.

HRMS (ESI) *m/z* calcd. for C₁₈H₂₁O [M+H]⁺ 253.1587, found 253.1588.

(S,E)-(7-(benzyloxy)hept-1-ene-1,3-diyl)dibenzene (51)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (5-(benzyloxy)-1-bromopentyl) benzene **S51** (100.0 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **51** as a colorless oil (43.5 mg, 61% yield, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.11 (m, 15H), 6.44 – 6.26 (m, 2H), 4.47 (s, 2H), 3.50 – 3.35 (m, 3H), 1.88 – 1.75 (m, 2H), 1.71 – 1.59 (m, 2H), 1.49 – 1.29 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 138.6, 137.5, 134.2, 129.4, 128.5, 128.4, 128.3, 127.61, 127.59, 127.46, 127.0, 126.2, 126.1, 72.8, 70.2, 49.1, 35.7, 29.7, 24.3.

HRMS (ESI) m/z calcd. for C₂₆H₂₉O [M+H]⁺ 357.2213, found 357.2212.

Note: The ee value (91%) of product **51** was determined by chiral HPLC analysis of (S)-5,7-diphenylheptan-1-ol (51'), which was obtained by transformation of product **51**.

To mixture of Pd/C (1.0 mg, 10% w/t Pd on carbon) in THF (5.0 mL) was added **51** (9.0 mg, 0.025 mmol, 1.0 equiv.) under argon atmosphere. Then, the reaction flask was evacuated and refilled with hydrogen through a balloon. The resulting reaction mixture was stirred under the hydrogen atmosphere at room temperature for 12 h. After completion, the reaction mixture was filtered and rinsed with CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to afford **51**' as a colorless oil (6.6 mg, 99% yield, 91% ee)

(S)-5,7-diphenylheptan-1-ol (51')

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 210 nm), t_R (minor) = 14.41 min, t_R (major) = 15.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.28 – 7.20 (m, 3H), 7.20 – 7.12 (m, 3H), 7.12 – 7.07 (m, 2H), 3.55 (t, *J* = 6.6 Hz, 2H), 2.60 – 2.48 (m, 1H), 2.48 – 2.39 (m, 2H), 2.08 – 1.83 (m, 2H), 1.74 – 1.40 (m, 4H), 1.36 – 1.10 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 145.4, 142.5, 128.4, 128.2, 127.7, 126.1, 125.6, 62.9, 45.6, 38.5, 36.8, 33.8, 32.8, 23.7.

HRMS (ESI) *m/z* calcd. for C₁₉H₂₅O [M+H]⁺ 269.1900, found 269.1901.

(*R*,*E*)-(5-(phenylsulfonyl)pent-1-ene-1,3-diyl)dibenzene (52)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), (1-bromo-3-(phenylsulfonyl) propyl)benzene **S52** (101.8 mg, 0.30 mmol, 1.5 equiv) and chiral ligand **L11** (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **52** as a colorless oil (48.6 mg, 67% yield, 93% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 25.81 min, t_R (major) = 30.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.70 – 7.61 (m, 1H), 7.60 – 7.51 (m, 2H), 7.34 – 7.27 (m, 6H), 7.25 – 7.18 (m, 2H), 7.18 – 7.13 (m, 2H), 6.37 (d, *J* = 15.9 Hz, 1H), 6.21 (dd, *J* = 15.8, 7.8 Hz, 1H), 3.47 (q, *J* = 7.7 Hz, 1H), 3.18 – 3.08 (m, 1H), 3.07 – 2.95 (m, 1H), 2.30 – 2.16 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.1, 139.0, 136.7, 133.7, 131.7, 130.7, 129.3, 128.9, 128.5, 128.0, 127.5, 127.4, 127.0, 126.2, 54.5, 47.6, 28.3.

HRMS (ESI) *m/z* calcd. for C₂₃H₂₃O₂S [M+H]⁺ 363.1413, found 363.1416.

(*S*,*E*)-1,5,7-triphenylhept-6-en-1-one (53)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 5-bromo-1,5-diphenylpentan-1-one **S53** (95.1 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **53** as a colorless oil (47.6 mg, 70% yield, 90% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 35.20 min, t_R (major) = 47.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 7.55 – 7.48 (m, 1H), 7.41 (dd, J = 8.4, 7.0 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.29 – 7.23 (m, 5H), 7.22 – 7.14 (m, 2H), 6.45 – 6.25 (m, 2H), 3.46 (q, J = 7.3 Hz, 1H), 2.96 (t, J = 7.0 Hz, 2H), 1.93 – 1.86 (m, 2H), 1.85 – 1.77 (m, 1H), 1.75 – 1.64 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 200.1, 144.1, 137.4, 136.9, 133.8, 132.9, 129.5, 128.52, 128.49, 128.4, 128.0, 127.6, 127.0, 126.3, 126.1, 49.1, 38.4, 35.3, 22.4.

HRMS (ESI) m/z calcd. for C₂₅H₂₅O [M+H]⁺ 341.1900, found 341.1904.

Ethyl (*S*,*E*)-5,7-diphenylhept-6-enoate (54)

According to **general produce** A with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and ethyl 5-bromo-5phenylpentanoate **S54** (85.5 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to yield the product **54** as a colorless oil (42.6 mg, 69% yield, 92% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.75 min, *t*_R (minor) = 16.82 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.20 (m, 10H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.8, 7.5 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.42 (q, *J* = 7.4 Hz, 1H), 2.31 (t, *J* = 7.3 Hz, 2H), 1.94 – 1.84 (m, 2H), 1.76 – 1.60 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.5, 144.1, 137.4, 133.7, 129.6, 128.6, 128.4, 127.6, 127.1, 126.3, 126.1, 60.3, 48.9, 35.2, 34.2, 23.1, 14.2.

HRMS (ESI) m/z calcd. for C₂₁H₂₅O₂ [M+H]⁺ 309.1849, found 309.1852.

(S,E)-5,7-diphenylhept-6-enenitrile (55)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 5-bromo-5-phenylpentanenitrile **S55** (71.4 mg, 0.30 mmol, 1.5 equiv) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **55** as a colorless oil (36.8 mg, 70% yield, 93% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 19.51 min, *t*_R (minor) = 21.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 6H), 7.25 – 7.17 (m, 4H), 6.47 – 6.25 (m, 2H), 3.43 (q, *J* = 7.6 Hz, 1H), 2.33 (t, *J* = 7.1 Hz, 2H), 2.03 – 1.87 (m, 2H), 1.77 – 1.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3, 137.1, 133.0, 130.0, 128.7, 128.5, 127.5, 127.3, 126.6, 126.2, 119.5, 48.5, 34.6, 23.6, 17.1.

HRMS (ESI) *m/z* calcd. for C₁₉H₂₀N [M+H]⁺ 262.1590, found 262.1594.

(*R*,*E*)-1-styryl-2,3-dihydro-1H-indene (56)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 1-bromo-2,3-dihydro-1H-indene **S56** (59.1 mg, 0.30 mmol, 1.5 equiv) and chiral ligand **L11** (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **56** as a colorless oil (33.2 mg, 75% yield, 87% ee)

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 13.60 min, t_R (major) = 14.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.32 – 7.23 (m, 3H), 7.23 – 7.14 (m, 4H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.24 (dd, *J* = 15.7, 8.5 Hz, 1H), 3.91 (q, *J* = 8.3 Hz, 1H), 3.04 – 2.81 (m, 2H), 2.45 – 2.34 (m, 1H), 2.00 – 1.85 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.8, 143.9, 137.4, 133.0, 130.3, 128.5, 127.1, 126.7, 126.3, 126.2, 124.5, 49.1, 33.5, 31.7.

HRMS (APCI) *m*/*z* calcd. for C₁₇H₁₇ [M+H]⁺ 221.1325, found 221.1321.

(R,E)-4-styrylchromane (57)

According to **general produce A** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 4-bromochromane **S57** (63.9 mg, 0.30 mmol, 1.5 equiv) and chiral ligand **L11** (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **57** as a white solid (28.6 mg, 61% yield, 93% ee). **HPLC** analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 27.07 min, *t*_R (minor) = 29.56 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.24 – 7.18 (m, 1H), 7.15 – 7.09 (m, 2H), 6.91 – 6.77 (m, 2H), 6.44 (d, *J* = 15.7 Hz, 1H), 6.24 (dd, *J* = 15.7, 8.0 Hz, 1H), 4.31 – 4.13 (m, 2H), 3.67 (q, *J* = 7.0 Hz, 1H), 2.23 – 2.10 (m, 1H), 2.03 – 1.90 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.5, 137.0, 133.1, 131.6, 130.2, 128.5, 127.9, 127.3, 126.2, 123.7, 120.2, 116.8, 64.0, 38.5, 29.0.

HRMS (ESI) *m/z* calcd. for C₁₇H₁₇O [M+H]⁺ 237.1274, found 237.1275.

(*R*,*E*)-4-styrylthiochromane (58)

According to **general produce C** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2– dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 4-bromothiochromane **S58** (68.7 mg, 0.30 mmol, 1.5 equiv) and chiral ligand **L11** (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **58** as a colorless oil (23.7 mg, 47% yield, 88% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.06 min, t_R (minor) = 14.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.32 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 7.16 – 7.06 (m, 3H), 7.02 – 6.96 (m, 1H), 6.35 – 6.22 (m, 2H), 3.72 (q, *J* = 5.4 Hz, 1H), 3.19 – 3.06 (m, 1H), 3.02 – 2.91 (m, 1H), 2.27 – 2.16 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.1, 134.6, 132.9, 132.7, 131.8, 130.7, 128.5, 127.3, 126.9, 126.6, 126.2, 123.9, 41.7, 28.7, 24.0.

HRMS (ESI) *m/z* calcd. for C₁₇H₁₇S [M+H]⁺ 253.1045, found 253.1047.

(*R*,*E*)-5-styryl-6,7,8,9-tetrahydro-5H-benzo[7]annulene (59)

According to **general produce** A with (E)-4,4,6-trimethyl-2-styryl-1,3,2-dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv), 5-bromo-6,7,8,9-tetrahydro-5H-

benzo[7] annulene **S59** (67.5 mg, 0.30 mmol, 1.5 equiv) and chiral ligand **L11** (6.68 mg, 7.5 mol%) for 4 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **59** as a colorless oil (30.8 mg, 62% yield, 88% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 17.09 min, t_R (major) = 21.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.32 – 7.26 (m, 2H), 7.23 – 7.14 (m, 2H), 7.14 – 7.09 (m, 3H), 6.55 (dd, *J* = 16.0, 6.7 Hz, 1H), 6.30 – 6.21 (m, 1H), 3.85 – 3.74 (m, 1H), 2.95 – 2.74 (m, 2H), 2.00 – 1.90 (m, 2H), 1.88 – 1.75 (m, 2H), 1.72 – 1.59 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.7, 137.7, 133.2, 129.8, 129.6, 128.5, 128.3, 127.0, 126.3, 126.1, 126.0, 48.1, 36.3, 33.7, 29.0, 28.0.

HRMS (APCI) m/z calcd. for C₁₉H₂₁ [M+H]⁺ 249.1638, found 249.1637.

(*S*,*E*)-(3-ethyl-5-phenylpent-4-en-1-yn-1-yl)triisopropylsilane (60)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromopent-1-yn-1-yl) triisopropylsilane **S60** (75.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **60** as a colorless oil (56.0 mg, 86% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.4 mL/min, λ = 254 nm), *t*_R (minor) = 10.72 min, *t*_R (major) = 11.27 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.34 – 7.26 (m, 2H), 7.25 – 7.16 (m, 1H), 6.75 (dd, J = 15.7, 1.6 Hz, 1H), 6.13 (dd, J = 15.7, 5.8 Hz, 1H), 3.30 – 3.20 (m, 1H), 1.77 – 1.64 (m, 1H), 1.66 – 1.53 (m, 1H), 1.15 – 1.08 (m, 21H), 1.06 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.3, 130.4, 129.7, 128.5, 127.1, 126.2, 108.9, 83.7, 37.2, 29.0, 18.6, 11.34, 11.31.

HRMS (ESI) *m/z* calcd. for C₂₂H₃₅Si [M+H]⁺ 327.2503, found 327.2499.

(S,E)-(3-ethyl-5-(3-methoxyphenyl)pent-4-en-1-yn-1-yl)triisopropylsilane (61)

According to **general produce D** with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane **2y** (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromopent-1-yn-1-yl) triisopropylsilane **S60** (75.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **61** as a colorless oil (64.4 mg, 90% yield, 99% ee). **HPLC** analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 12.91 min, *t*_R (major) = 18.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 – 7.18 (m, 1H), 6.96 (d, J = 7.7 Hz, 1H), 6.93 – 6.87 (m, 1H), 6.81 – 6.74 (m, 1H), 6.73 (dd, J = 15.7, 1.6 Hz, 1H), 6.13 (dd, J = 15.7, 5.8 Hz, 1H), 3.81 (s, 3H), 3.31 – 3.20 (m, 1H), 1.80 – 1.63 (m, 1H), 1.66 – 1.51 (m, 1H), 1.13 – 1.08 (m, 21H), 1.05 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 138.7, 130.3, 130.0, 129.4, 118.9, 112.6, 111.7, 108.8, 83.8, 55.1, 37.2, 28.9, 18.6, 11.3, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₃H₃₇OSi [M+H]⁺ 357.2608, found 357.2604.

(S,E)-triisopropyl(3-phenethyl-5-(thiophen-3-yl)pent-4-en-1-yn-1-yl)silane (62)

According to general produce D with (*E*)-4,4,6-trimethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborinane **2h** (47.2 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-phenylpent-1- yn-1-yl)triisopropylsilane **S69** (94.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **62** as a colorless oil (70.1 mg, 86% yield, 99% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 22.85 min, t_R (minor) = 30.87 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.15 (m, 7H), 7.10– 7.07 (m, 1H), 6.77 (d, J = 15.7 Hz, 1H), 5.99 (dd, J = 15.7, 5.8 Hz, 1H), 3.32 – 3.23 (m, 1H), 2.92 – 2.76 (m, 2H), 2.00 – 1.81 (m, 2H), 1.16 – 1.07 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 139.7, 129.4, 128.5, 128.4, 125.91, 125.86, 125.0, 124.8, 121.5, 108.6, 84.4, 37.8, 35.1, 33.3, 18.7, 11.3.

HRMS (ESI) *m/z* calcd. for C₂₆H₃₇SSi [M+H]⁺ 409.2380, found 409.2379.

(S,E)-(3-ethyl-6-phenoxyhex-4-en-1-yn-1-yl)triisopropylsilane (63)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-(3-phenoxyprop-1- en-1yl)-1,3,2-dioxaborinane **2s** (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromopent- 1-yn-1-yl)triisopropylsilane **S60** (75.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **63** as a colorless oil (58.6 mg, 82% yield, 98% ee). **HPLC** analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 6.02 min, *t*_R (major) = 6.69 min.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.21 (m, 2H), 6.98 – 6.87 (m, 3H), 6.09 – 5.97

(m, 1H), 5.84 - 5.71 (m, 1H), 4.54 (d, J = 5.7 Hz, 2H), 3.17 - 3.07 (m, 1H), 1.70 - 1.56 (m, 1H), 1.59 - 1.46 (m, 1H), 1.11 - 1.03 (m, 21H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 133.6, 129.3, 125.7, 120.7, 114.7, 108.6, 83.5, 68.0, 36.7, 28.7, 18.6, 11.29, 11.25. HRMS (ESI) *m/z* calcd. for C₂₃H₃₇OSi [M+H]⁺ 357.2608, found 357.2603.

(S,E)-triisopropyl(3-methyl-5-phenylpent-4-en-1-yn-1-yl)silane (64)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromobut-1-yn-1-yl) triisopropylsilane **S64** (72.3 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **64** as a colorless oil (33.0 mg, 53% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 7.31 min, t_R (major) = 7.91 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.35 – 7.26 (m, 2H), 7.26 – 7.17 (m, 1H), 6.73 (dd, J = 15.7, 1.4 Hz, 1H), 6.16 (dd, J = 15.7, 5.6 Hz, 1H), 3.43 – 3.31 (m, 1H), 1.36 (d, J = 7.1 Hz, 3H), 1.14 – 1.03 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 137.2, 131.0, 129.5, 128.5, 127.2, 126.2, 110.2, 82.6, 29.9, 22.0, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₁H₃₃Si [M+H]⁺ 313.2346, found 313.2344.

(S,E)-triisopropyl(3-(3-methoxystyryl)hex-1-yn-1-yl)silane (65)

According to **general produce D** with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane 2y (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromohex-1-yn-1-yl) triisopropylsilane **S65** (79.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **65** as a colorless oil (56.0 mg, 76% yield, 96% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 6.14 min, t_R (major) = 6.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 6.92 – 6.86 (m, 1H), 6.81 – 6.73 (m, 1H), 6.71 (dd, *J* = 15.7, 1.6 Hz, 1H), 6.13 (dd, *J* = 15.7, 5.9 Hz, 1H), 3.81 (s, 3H), 3.39 – 3.22 (m, 1H), 1.69 – 1.42 (m, 4H), 1.15 – 1.05 (m, 21H), 0.94 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.7, 138.7, 130.3, 130.0, 129.4, 118.9, 112.6, 111.7, 109.0, 83.6, 55.1, 38.0, 35.5, 20.2, 18.6, 13.8, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₄H₃₉OSi [M+H]⁺ 371.2765, found 371.2764.

(S,E)-triisopropyl(5-methyl-3-styrylhex-1-yn-1-yl)silane (66)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-methylhex-1-yn- 1yl)triisopropylsilane **S66** (82.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **66** as a colorless oil (58.0 mg, 82% yield, 96% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.3 mL/min, λ = 254 nm), t_R (minor) = 13.20 min, t_R (major) = 13.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 15.7 Hz, 1H), 6.13 (dd, J = 15.7, 6.0 Hz, 1H), 3.43 – 3.24 (m, 1H), 2.05 – 1.82 (m, 1H), 1.62 – 1.49 (m, 1H), 1.47 – 1.36 (m, 1H), 1.16 – 1.01 (m, 21H), 0.95 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 137.3, 130.2, 129.9, 128.5, 127.1, 126.2, 109.1, 83.4, 45.1, 33.9, 25.9, 23.0, 21.8, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₄H₃₉Si [M+H]⁺ 355.2816, found 355.2813.

(*R*,*E*)-(3-(tert-butyl)-5-(3-methoxyphenyl)pent-4-en-1-yn-1-yl)triisopropylsilane (67)

According to general produce D with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane 2y (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-4,4-dimethylpent-1yn-1-yl)triisopropylsilane S67 (82.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 67 as a colorless oil (55.0 mg, 72% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 10.36 min, *t*_R (major) = 11.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 6.93 – 6.88 (m, 1H), 6.81 – 6.75 (m, 1H), 6.70 (dd, *J* = 15.7, 1.4 Hz, 1H), 6.22 (dd, *J* = 15.7, 6.8 Hz, 1H), 3.81 (s, 3H), 3.05 (dd, *J* = 6.8, 1.4 Hz, 1H), 1.14 – 1.07 (m, 21H), 1.04 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 138.9, 132.0, 129.4, 127.5, 118.9, 112.5, 111.9, 107.9, 84.7, 55.1, 47.7, 34.8, 27.5, 18.7, 11.3.

HRMS (ESI) *m/z* calcd. for C₂₅H₄₁OSi [M+H]⁺ 385.2921, found 385.2921.

(S,E)-(3-benzyl-5-phenylpent-4-en-1-yn-1-yl)triisopropylsilane (68)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-4-phenylbut-1- yn-1yl)triisopropylsilane **S68** (91.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **68** as a colorless oil (68.0 mg, 88% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 13.08 min, *t*_R (major) = 18.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.24 (m, 8H), 7.23 – 7.17 (m, 2H), 6.76 (dd, J = 15.7, 1.6 Hz, 1H), 6.16 (dd, J = 15.7, 5.7 Hz, 1H), 3.69 – 3.48 (m, 1H), 2.93 (s, 1H), 2.91 (s, 1H), 1.13 – 1.01 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 137.1, 130.8, 129.4, 128.9, 128.5, 128.1, 127.3, 126.3, 108.2, 84.9, 42.5, 37.8, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₇H₃₇Si [M+H]⁺ 389.2659, found 389.2658.

(S,E)-triisopropyl(3-phenethyl-5-phenylpent-4-en-1-yn-1-yl)silane (69)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-phenylpent-1- yn-1-yl)triisopropylsilane **S69** (94.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **69** as a colorless oil (79.0 mg, 98% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 33.63 min, *t*_R (major) = 35.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 6H), 7.24 – 7.16 (m, 4H), 6.77 (dd, J = 15.7, 1.6 Hz, 1H), 6.14 (dd, J = 15.7, 5.8 Hz, 1H), 3.40 – 3.23 (m, 1H), 2.97 – 2.74 (m, 2H), 2.09 – 1.77 (m, 2H), 1.20 – 1.03 (m, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.8, 137.1, 130.6, 129.4, 128.56, 128.52, 128.3, 127.2, 126.3, 125.8, 108.6, 84.4, 37.7, 35.2, 33.2, 18.7, 11.3.

HRMS (ESI) m/z calcd. for C₂₈H₃₉Si [M+H]⁺ 403.2816, found 403.2813.

(*S*,*E*)-triisopropyl(3-(2-(5-methylfuran-2-yl)ethyl)-5-phenylpent-4-en-1-yn-1-yl)silane (70)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-(5-methylfuran- 2yl)pent-1-yn-1-yl)triisopropylsilane **S70** (95.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **70** as a colorless oil (71.0 mg, 87% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 17.30 min, t_R (major) = 20.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.24 – 7.17 (m, 1H), 6.77 (dd, J = 15.7, 1.6 Hz, 1H), 6.13 (dd, J = 15.7, 5.9 Hz, 1H), 5.88 (d, J = 3.0 Hz, 1H), 5.85 – 5.81 (m, 1H), 3.46 – 3.29 (m, 1H), 2.80 (t, J = 7.7 Hz, 2H), 2.24 (s, 3H), 2.05 – 1.94 (m, 1H), 1.93 – 1.82 (m, 1H), 1.18 – 1.04 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 150.4, 137.1, 130.7, 129.2, 128.5, 127.2, 126.3, 108.3, 105.8, 105.7, 84.3, 35.1, 34.3, 25.5, 18.6, 13.4, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₇H₃₉OSi [M+H]⁺ 407.2765, found 407.2760.

(S,E)-triisopropyl(3-styryloct-7-en-1-yn-1-yl)silane (71)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromooct-7-en-1-yn-1-yl) triisopropylsilane **S71** (85.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **71** as a colorless oil (57.0 mg, 78% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 7.89 min, t_R (major) = 8.25 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 4H), 7.23 – 7.17 (m, 1H), 6.74 (dd, J = 15.7, 1.5 Hz, 1H), 6.13 (dd, J = 15.7, 5.9 Hz, 1H), 5.87 – 5.74 (m, 1H), 5.05 – 4.93 (m, 2H), 3.35 – 3.27 (m, 1H), 2.23 – 2.01 (m, 2H), 1.75 – 1.55 (m, 4H), 1.19 – 1.00 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.2, 130.3, 129.8, 128.5, 127.2, 126.2, 114.5, 108.9, 83.8, 35.6, 35.3, 33.4, 26.2, 18.6, 11.3.

HRMS (ESI) *m/z* calcd. for C₂₅H₃₉Si [M+H]⁺ 367.2816, found 367.2814.

Triisopropyl((*S*,*Z*)-3-((*E*)-styryl)undec-8-en-1-yn-1-yl)silane (72)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromooct-7-en-1-yn-1-yl) triisopropylsilane **S72** (96.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **72** as a colorless oil (73.0 mg, 89% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 8.25 min, t_R (major) = 9.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.23 – 7.18 (m, 1H), 6.74 (dd, J = 15.7, 1.5 Hz, 1H), 6.13 (dd, J = 15.7, 5.9 Hz, 1H), 5.41 – 5.27 (m, 2H), 3.36 – 3.24 (m, 1H), 2.13 – 1.94 (m, 4H), 1.73 – 1.47 (m, 4H), 1.45 – 1.32 (m, 2H), 1.17 – 1.03 (m, 21H), 0.95 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.3, 131.7, 130.2, 129.9, 128.9, 128.5, 127.1, 126.2, 109.0, 83.7, 35.8, 35.7, 29.4, 27.0, 26.6, 20.5, 18.6, 14.3, 11.3.

HRMS (ESI) *m/z* calcd. for C₂₈H₄₅Si [M+H]⁺ 409.3285, found 409.3285.

Ethyl (S,E)-8-phenyl-6-((triisopropylsilyl)ethynyl)oct-7-enoate (73)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and ethyl 6-bromo-8-(triisopropylsilyl)oct-7-ynoate **S73** (100.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **73** as a colorless oil (67.0 mg, 79% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 6.63 min, t_R (major) = 8.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 6.74 (dd, J = 15.7, 1.6 Hz, 1H), 6.12 (dd, J = 15.7, 5.9 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.41 – 3.26 (m, 1H), 2.30 (t, J = 7.5 Hz, 2H), 1.77 – 1.48 (m, 6H), 1.24 (t, J = 7.1 Hz, 3H), 1.13 – 1.06 (m, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.6, 137.1, 130.4, 129.6, 128.4, 127.2, 126.2, 108.7, 83.8, 60.1, 35.5, 35.5, 34.2, 26.5, 24.7, 18.6, 14.2, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₇H₄₃O₂Si [M+H]⁺ 427.3027, found 427.3025.

(S,E)-6-phenyl-4-((triisopropylsilyl)ethynyl)hex-5-enenitrile (74)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 4-bromo-6-(triisopropylsilyl) hex-5-ynenitrile **S74** (82.1 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **74** as a colorless oil (57.0 mg, 81% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 11.76 min, t_R (major) = 13.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 4H), 7.28 – 7.21 (m, 1H), 6.80 (dd, J = 15.7, 1.6 Hz, 1H), 6.07 (dd, J = 15.7, 5.8 Hz, 1H), 3.59 – 3.42 (m, 1H), 2.65 – 2.46 (m, 2H), 2.19 – 2.00 (m, 1H), 1.98 – 1.82 (m, 1H), 1.17 – 1.03 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 136.4, 132.1, 128.5, 127.7, 127.0, 126.3, 119.3, 105.9, 86.2, 34.7, 31.2, 18.6, 14.5, 11.1.

HRMS (ESI) *m/z* calcd. for C₂₃H₃₄NSi [M+H]⁺ 352.2455, found 352.2451.

(*S*,*E*)-(6-(5,5-dimethyl-1,3-dioxan-2-yl)-3-styrylhex-1-yn-1-yl)triisopropylsilane (75)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-6-(5,5-dimethyl-1,3dioxan-2- yl)hex-1-yn-1-yl)triisopropylsilane **S75** (107.9 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **75** as a colorless oil (84.0 mg, 92% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 10.58 min, t_R (major) = 22.95 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 2H), 7.23 – 7.18 (m, 1H), 6.74 (dd, J = 15.7, 1.6 Hz, 1H), 6.13 (dd, J = 15.7, 5.9 Hz, 1H), 4.42 – 4.38 (m, 1H), 3.58 (d, J = 11.3 Hz, 2H), 3.40 (d, J = 10.7 Hz, 2H), 3.34 – 3.26 (m, 1H), 1.78 – 1.58 (m, 6H), 1.18 (s, 3H), 1.14 – 1.03 (m, 21H), 0.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.2, 130.3, 129.7, 128.4, 127.1, 126.2, 108.8, 102.0, 83.8, 77.1, 35.8, 35.7, 34.5, 30.0, 22.9, 21.8, 21.5, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₉H₄₇O₂Si [M+H]⁺ 455.3340, found 455.3339.

(S,E)-(7-(benzyloxy)-3-styrylhept-1-yn-1-yl)triisopropylsilane (76)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (7-(benzyloxy)-3-bromohept-1-yn-1-yl)triisopropylsilane **S76** (109.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **76** as a colorless oil (66.0 mg, 72% yield, 98% ee). **HPLC** analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 7.37 min, *t*_R (major) = 14.31 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.17 (m, 10H), 6.74 (dd, *J* = 15.7, 1.6 Hz, 1H), 6.13 (dd, *J* = 15.7, 5.9 Hz, 1H), 4.49 (s, 2H), 3.47 (t, *J* = 6.0 Hz, 2H), 3.34 – 3.26 (m, 1H), 1.73 – 1.57 (m, 6H), 1.16 – 1.01 (m, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.6, 137.2, 130.3, 129.7, 128.4, 128.3, 127.5, 127.4, 127.2, 126.2, 108.9, 83.7, 72.8, 70.2, 35.74, 35.70, 29.4, 23.6, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₃₁H₄₅OSi [M+H]⁺ 461.3234, found 461.3232.

(S,E)-6-phenyl-4-((triisopropylsilyl)ethynyl)hex-5-en-1-yl benzoate (77)

According to **general produce D** with (*E*)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and 4-bromo-6-(triisopropylsilyl) hex-5-yn-1-yl benzoate **S77** (109.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **77** as a colorless oil (72.0 mg, 78% yield, 98% ee). **HPLC** analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 8.37 min, *t*_R (major) = 10.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 7.98 (m, 2H), 7.60 – 7.50 (m, 1H), 7.46 – 7.39 (m, 2H), 7.38 – 7.34 (m, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.18 (m, 1H), 6.78 (dd, *J* = 15.7, 1.6 Hz, 1H), 6.15 (dd, *J* = 15.7, 5.8 Hz, 1H), 4.42 – 4.33 (m, 2H), 3.45 – 3.36 (m, 1H), 2.10 – 1.93 (m, 2H), 1.91 – 1.80 (m, 1H), 1.80 – 1.69 (m, 1H), 1.15 – 1.05 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 137.0, 132.8, 130.7, 130.3, 129.5, 129.2, 128.5, 128.2, 127.3, 126.3, 108.2, 84.4, 64.6, 35.4, 32.4, 26.2, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₃₀H₄₁O₂Si [M+H]⁺ 461.2870, found 461.2868.

(S,E)-(6-chloro-3-styrylhex-1-yn-1-yl)triisopropylsilane (78)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-6-chlorohex-1- yn-1yl)triisopropylsilane **S78** (88.0 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **78** as a colorless oil (66.0 mg, 88% yield, 99% ee).

HPLC analysis: Chiralcel OD-H connected with Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.35 mL/min, $\lambda = 254$ nm), t_R (minor) = 52.87 min, t_R (major) = 54.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 4H), 7.26 – 7.18 (m, 1H), 6.77 (dd, J = 15.7, 1.6 Hz, 1H), 6.12 (dd, J = 15.7, 5.8 Hz, 1H), 3.59 (t, J = 6.5 Hz, 2H), 3.42 – 3.31 (m, 1H), 2.11 – 1.92 (m, 2H), 1.91 – 1.80 (m, 1H), 1.78 – 1.64 (m, 1H), 1.20 – 1.01 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 137.0, 130.8, 129.0, 128.5, 127.3, 126.3, 108.0, 84.5, 44.7, 35.0, 32.9, 29.9, 18.6, 11.2.

HRMS (ESI) *m/z* calcd. for C₂₃H₃₆ClSi [M+H]⁺ 375.2269, found 375.2257.

(S,E)-triethyl(5-(3-methoxyphenyl)-3-phenethylpent-4-en-1-yn-1-yl)silane (79)

According to **general produce D** with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane **2y** (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-phenylpent- 1-yn-1-yl)triethylsilane **S79** (84.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **79** as a colorless oil (58.0 mg, 74% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 7.76 min, t_R (major) = 8.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.25 – 7.12 (m, 4H), 6.95 (d, J = 7.6 Hz, 1H), 6.90 – 6.86 (m, 1H), 6.82 – 6.72 (m, 1H), 6.67 (dd, J = 15.7, 1.5 Hz, 1H), 6.12 (dd, J = 15.7, 6.1 Hz, 1H), 3.80 (s, 3H), 3.33 – 3.22 (m, 1H), 2.92 – 2.74 (m, 2H), 2.07 – 1.77 (m, 2H), 1.05 (t, J = 7.9 Hz, 9H), 0.65 (q, J = 7.9 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.7, 141.7, 138.6, 130.5, 129.7, 129.4, 128.5, 128.3, 125.8, 119.0, 112.8, 111.7, 108.0, 85.6, 55.1, 37.5, 35.2, 33.2, 7.5, 4.5.

HRMS (ESI) *m/z* calcd. for C₂₆H₃₅OSi [M+H]⁺ 391.2452, found 391.2452.

(*S*,*E*)-tert-butyl(5-(3-methoxyphenyl)-3-phenethylpent-4-en-1-yn-1-yl)dimethylsilane (80)

According to **general produce D** with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane **2y** (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-phenylpent- 1-yn-1-yl)(tert-butyl)dimethylsilane **S80** (84.4 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **80** as a colorless oil (63.0 mg, 81% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 7.72 min, t_R (major) = 9.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.26 – 7.14 (m, 4H), 6.95 (d, J = 7.7 Hz, 1H), 6.91 – 6.86 (m, 1H), 6.82 – 6.71 (m, 1H), 6.65 (dd, J = 15.7, 1.5 Hz, 1H), 6.12 (dd, J = 15.7, 6.2 Hz, 1H), 3.80 (s, 3H), 3.36 – 3.18 (m, 1H), 2.96 – 2.67 (m, 2H), 2.04 – 1.83 (m, 2H), 0.99 (s, 9H), 0.15 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 141.7, 138.5, 130.6, 129.6, 129.4, 128.5, 128.3, 125.8, 119.0, 112.8, 111.7, 107.5, 86.5, 55.1, 37.4, 35.1, 33.2, 26.1, 16.5, -4.39. HRMS (ESI) *m/z* calcd. for C₂₆H₃₅OSi [M+H]⁺ 391.2452, found 391.2449.

(S,E)-1-(6,6-dimethyl-3-phenethylhept-1-en-4-yn-1-yl)-3-methoxybenzene (81)

According to **general produce D** with (*E*)-2-(3-methoxystyryl)-4,4,6-trimethyl-1,3,2dioxaborinane **2y** (52.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-6,6-dimethylhept- 4yn-1-yl)benzene **S81** (69.8 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **81** as a colorless oil (56.0 mg, 84% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 7.71 min, t_R (major) = 8.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.24 – 7.14 (m, 4H), 6.95 (d, J = 7.7 Hz, 1H), 6.91 – 6.88 (m, 1H), 6.81 – 6.71 (m, 1H), 6.59 (dd, J = 15.6, 1.5 Hz, 1H), 6.12 (dd, J = 15.6, 6.3 Hz, 1H), 3.80 (s, 3H), 3.23 – 3.11 (m, 1H), 2.89 – 2.70 (m, 2H), 1.98 – 1.77 (m, 2H), 1.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 142.0, 138.7, 130.9, 129.9, 129.4, 128.5, 128.3, 125.7, 119.0, 112.7, 111.6, 93.1, 78.5, 55.1, 37.7, 34.1, 33.2, 31.4, 27.5. HRMS (ESI) *m/z* calcd. for C₂₄H₂₉O [M+H]⁺ 333.2213, found 333.2210.

(*S*,*E*)-(3-(cyclohexylethynyl)pent-1-ene-1,5-diyl)dibenzene (82)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromo-5-cyclohexylpent- 4yn-1-yl)benzene **S82** (76.3 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **82** as a colorless oil (56.0 mg, 85% yield, 97% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 54.92 min, *t*_R (major) = 57.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.25 (m, 4H), 7.24 – 7.15 (m, 4H), 6.64 (dd, J = 15.7, 1.5 Hz, 1H), 6.14 (dd, J = 15.7, 6.3 Hz, 1H), 3.31 – 3.14 (m, 1H), 2.93 – 2.71 (m, 2H), 2.55 – 2.41 (m, 1H), 1.98 – 1.80 (m, 4H), 1.79 – 1.70 (m, 2H), 1.56 – 1.45 (m, 3H), 1.39 – 1.26 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.9, 137.2, 130.5, 130.0, 128.5, 128.4, 128.3, 127.1, 126.2, 125.7, 88.6, 80.2, 37.7, 34.3, 33.2, 33.1, 29.1, 25.9, 24.8.

HRMS (ESI) *m/z* calcd. for C₂₅H₂₉ [M+H]⁺ 329.2264, found 329.2261.

(S,E)-(3-(hex-1-yn-1-yl)pent-1-ene-1,5-diyl)dibenzene (83)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromonon-4-yn-1-yl) benzene **S83** (69.8 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **83** as a colorless oil (54.0 mg, 89% yield, 94% ee).

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.81 min, t_R (major) = 16.63 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.33 – 7.24 (m, 4H), 7.24 – 7.14 (m, 4H), 6.63 (dd, J = 15.7, 1.5 Hz, 1H), 6.13 (dd, J = 15.7, 6.4 Hz, 1H), 3.33 – 3.12 (m, 1H), 2.91 – 2.67 (m, 2H), 2.34 – 2.17 (m, 2H), 1.98 – 1.80 (m, 2H), 1.62 – 1.40 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.9, 137.2, 130.5, 130.1, 128.5, 128.4, 128.3, 127.1, 126.2, 125.7, 84.2, 80.3, 37.7, 34.3, 33.2, 31.2, 21.9, 18.5, 13.6.

HRMS (ESI) *m/z* calcd. for C₂₃H₂₇ [M+H]⁺ 303.2107, found 303.2105.

(S,E)-(3-phenethylpent-1-en-4-yne-1,5-diyl)dibenzene (84)

According to **general produce D** with (E)-4,4,6-trimethyl-2-styryl-1,3,2dioxaborinane **2a** (46.0 mg, 0.20 mmol, 1.0 equiv) and (3-bromopent-1-yne-1,5-diyl) dibenzene **S84** (74.8 mg, 0.25 mmol, 1.25 equiv) for 5 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **84** as a colorless oil (51.0 mg, 79% yield, 96% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 15.20 min, t_R (major) = 16.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.40 – 7.35 (m, 2H), 7.34 – 7.27 (m, 7H), 7.26 – 7.17 (m, 4H), 6.70 (dd, J = 15.7, 1.3 Hz, 1H), 6.20 (dd, J = 15.7, 6.6 Hz, 1H), 3.54 – 3.38 (m, 1H), 2.98 – 2.80 (m, 2H), 2.03 (q, J = 7.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.6, 137.0, 131.6, 130.6, 129.5, 128.56, 128.51, 128.4, 128.2, 127.8, 127.3, 126.3, 125.9, 123.6, 90.1, 84.1, 37.3, 34.8, 33.3.

HRMS (ESI) *m/z* calcd. for C₂₅H₂₃ [M+H]⁺ 323.1794, found 323.1792.

Synthetic utility

Gram-scale reaction

$$\frac{Br}{Ph} + \frac{Ph}{B(mp)} + \frac{Cul (1 \text{ mol}\%), L9 (1.5 \text{ mol}\%)}{LiO^{t}Bu (2.0 \text{ equiv}), H_{2}O (1.0 \text{ equiv})}$$
1a (1.5 equiv)
2a, 1.15 g
DMF, -20 °C, 8 d
3, 73%, 94% ee

An oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with CuI (9.5 mg, 1 mol%), chiral ligand L9 (39.7 mg, 1.5 mol%), LiO'Bu (800.5 mg, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (25.0 mL) and H₂O (90.0 mg, 1.0 equiv) were added under a counter flow of argon. Finally alkenylboronate esters **2a** (1.15 g, 5.0 mmol), and benzyl bromide **1a** (1.493 g, 7.5 mmol, 1.5 equiv) were added by syringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -20 °C for 8 d. Upon completion of the reaction, water was poured into the mixture. The mixture was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the desired product **3** as a colorless oil (812.3 mg, 73% yield, 94% ee).

Synthesis of chiral building blocks (S)-3-(naphthalen-2-yl)pentan-1-ol (85)¹⁵

To a cooled solution of **37** (40 mg, 0.2 mmol) in THF (2.0 mL) was added a solution of BH₃·THF (1M in THF, 0.4 mL, 0.4 mmol) at ice water bath. The reaction mixture was stirred for 0.5 h, then it was allowed to reach room temperature. EtOH (2.5 mL), aq NaOH (1 M, 2.5 mL) and aq H₂O₂ (30%, 1.0 mL) were added sequentially. The resulting mixture was stirred vigorously overnight at room temperature, and then quenched with aq Na₂S₂O₃ (10 mL). The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford **85** as a colorless oil. (38.0 mg, 89% yield, 90% ee)

HPLC analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 11.23 min, t_R (minor) = 12.48 min.

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 3H), 7.59 (s, 1H), 7.49 – 7.38 (m, 2H), 7.31 (dd, *J* = 8.5, 1.8 Hz, 1H), 3.58 – 3.40 (m, 2H), 2.82 – 2.68 (m, 1H), 2.06 – 1.95 (m, 1H), 1.94 – 1.84 (m, 1H), 1.80 – 1.62 (m, 2H), 0.79 (t, *J* = 7.4 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 142.3, 133.5, 132.3, 128.1, 127.6, 127.5, 126.4, 125.9, 125.7, 125.2, 61.2, 44.3, 39.1, 29.7, 12.1.

(*R*)-2-phenylbutanoic acid (86)¹⁶

To a solution of **25** (29 mg, 0.2 mmol) and NaIO₄ (170 mg, 0.8 mmol) in CCl₄/MeCN/H₂O (1:1:1.5, 1.4 mL) was added RuCl₃·H₂O (2.3 mg, 0.01 mmol). The reaction mixture was stirred vigorously overnight. Afterward, CH₂Cl₂ (10 mL) and H₂O (5 mL) were added, and the organic layer was separated. The aqueous layer was further extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was dissolved in EtOAc (10 mL) and extracted with sat. aq NaHCO₃ (3 × 5 mL). The combined aqueous phase was acidified and extracted with CH₂Cl₂ (3 × 10 mL), dried over MgSO₄, filtered and concentrated in vacuo to afford the crude product. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1 – 3/1) to give the corresponding product **86** as a white solid (20.0 mg, 61% yield). **¹H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 4H), 7.28 – 7.23 (m, 1H), 3.45 (t, *J* = 7.7 Hz, 1H), 2.18 – 2.02 (m, 1H), 1.88 – 1.73 (m, 1H), 0.90 (t, *J* = 7.4 Hz, 3H). **¹³C NMR** (101 MHz, CDCl₃) δ 178.0, 138.4, 128.6, 128.1, 127.4, 53.3, 26.3, 12.1. *Note: The ee value (92%) of product* **86** *was determined by chiral HPLC analysis of*

methyl (*R*)-2-phenylbutanoate (87), which was obtained by transformation of product 86.

Methyl (R)-2-phenylbutanoate (87)¹⁶

To a solution of **86** (21 mg, 0.13 mmol) in MeOH (5 mL) was added SOCl₂ (30.9 mg, 0.26 mmol). This mixture was heated to reflux for 3 h before evaporation. The residue was dissolved in DCM (30 mL), washed sequentially with aqueous NaHCO₃, water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude residue. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to give the corresponding product **87** as a white solid (18.0 mg, 78% yield, 92% ee).

HPLC analysis: Chiralcel AS-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 4.40 min, t_R (major) = 4.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.20 (m, 5H), 3.65 (s, 3H), 3.45 (t, *J* = 7.7 Hz, 1H), 2.18 – 2.02 (m, 1H), 1.87 – 1.72 (m, 1H), 0.89 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.5, 139.1, 128.5, 127.9, 127.2, 53.4, 51.9, 26.7, 12.1.

(S)-4-(1-phenylpentan-3-yl)-1,1'-biphenyl (88)¹⁷

The procedure is followed the **general produce** C, except the following changes: After completion of the reaction, the reaction mixture was filtered by a short pad of silica gel (petroleum ether/ethyl acetate = 10/1) and concentrated under reduced pressure. Then crude product was dissolved in MeOH (5 mL) and followed by the addition of 10 mg Pd/C as solid (10 wt.%, wetted with ca. 55% water). Then a hydrogen-filled balloon was attached. The reaction was stirred at room temperature for 5 h. The resulting mixture was filtered and concentrated, and the residue was purified by column chromatography on silica gel as a colorless oil (39.0 mg, 65% yield, 93% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.34 min, *t*_R (minor) = 25.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.66 – 7.59 (m, 2H), 7.54 – 7.46 (m, 2H), 7.43 – 7.36 (m, 1H), 7.36 – 7.28 (m, 4H), 7.27 – 7.16 (m, 3H), 2.65 – 2.50 (m, 3H), 2.15 – 1.92 (m, 2H), 1.87 – 1.61 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.6, 142.6, 128.7, 128.4, 128.2, 127.0, 126.9, 125.6, 47.0, 38.1, 33.9, 29.8, 12.1.

(*S*,*E*)-(3-ethynylpent-1-ene-1,5-diyl)dibenzene (89-1):

The (*S*,*E*)-triisopropyl(3-phenethyl-5-phenylpent-4-en-1-yn-1-yl)silane **69** (80.5 mg, 0.20 mmol, 1.0 equiv) was dissolved in anhydrous THF (1 mL) under argon atmosphere in a 10 mL Schlenk flask. Then TBAF (0.72 mL, 0.72 mmol, 3.6 equiv, 1 M in THF) were added into the solution in three batches, and the mixture was stirred for 3 h at -10 °C. Upon completion of the reaction. The reaction mixture was poured into water (10 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to yield the product **89-1** as a colorless oil (35.0 mg, 71% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 10.25 min, t_R (major) = 11.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.33 – 7.26 (m, 4H), 7.25 – 7.16 (m, 4H), 6.66 (dd, J = 15.8, 1.4 Hz, 1H), 6.13 (dd, J = 15.8, 6.5 Hz, 1H), 3.30 – 3.18 (m, 1H), 2.94 – 2.71 (m, 2H), 2.33 (d, J = 2.4 Hz, 1H), 2.03 – 1.88 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.4, 136.9, 130.8, 128.9, 128.52, 128.51, 128.3, 127.4, 126.3, 125.9, 84.6, 71.8, 37.1, 33.9, 33.0.

HRMS (ESI) *m/z* calcd. for C₁₉H₁₉ [M+H]⁺ 247.1481, found 247.1478.

(*R*,*E*)-3-phenethyl-5-phenylpent-4-enal (89):

In a nitrogen-filled drybox, a 10-mL vial was charged sequentially with 5,5'bis(trifluoromethyl)-2,2'-bipyridine (1.31 mg, 45 µmol, 0.045 equiv), tris(acetonitrile) (η^5 -cyclopentadienyl)ruthenium hexafluorophosphate (1.95 mg, 45 µmol, 0.045 equiv), a mixture of water–*N*-methyl-2-pyrrolidinone (20% v/v, 0.5 mL), and (*S*,*E*)-(3ethynylpent-1-ene-1,5-diyl)dibenzene (**89-1**, 24.6 mg, 0.1 mmol, 1.0 equiv). The vial was sealed with a Teflon-lined cap and the sealed vial was removed from the drybox. The mixture was stirred for 24 h at 25 °C. Upon completion of the reaction. The reaction mixture was poured into water (10 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to yield the product **89** as a colorless oil (22.2 mg, 84% yield). The ee value of **89** was determined by converting it to the corresponding alcohol **90**.

¹**H NMR** (400 MHz, CDCl₃) δ 9.73 (t, J = 2.2 Hz, 1H), 7.40 – 7.14 (m, 10H), 6.45 (d,

J = 15.8 Hz, 1H), 6.07 (dd, J = 15.8, 8.8 Hz, 1H), 2.89 – 2.77 (m, 1H), 2.76 – 2.67 (m, 1H), 2.65 – 2.58 (m, 1H), 2.54 (dd, J = 6.9, 2.2 Hz, 2H), 1.91 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 141.7, 136.9, 132.1, 131.4, 128.5, 128.4, 128.4, 127.4, 126.2, 125.9, 49.1, 37.4, 36.7, 33.3.

HRMS (ESI) m/z calcd. for C₁₉H₂₁O [M+H]⁺ 265.1587, found 265.1587.

(*R*,*E*)-3-phenethyl-5-phenylpent-4-en-1-ol (90):

To an ordinary vial equipped with a magnetic stirring bar was added aldehyde **89** (13.2 mg, 0.05 mmol, 1 equiv) in CH₂Cl₂ (0.5 mL) at ambient temperature. MeOH (0.1 mL) and NaBH₄ (9.5 mg, 0.25 mmol, 5 equiv) was added, and the reaction was run until determined complete by TLC (CH₂Cl₂ as eluent). The reaction was quenched by addition of NH₄Cl and extracted with CH₂Cl₂ followed by drying with MgSO₄. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to yield the product **90** as a colorless oil (12.9 mg, 97% yield, 98% ee).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 12.03 min, t_R (major) = 13.27 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.12 (m, 8H), 6.42 (d, J = 15.8 Hz, 1H), 6.01 (dd, J = 15.8, 9.3 Hz, 1H), 3.73 – 3.62 (m, 2H), 2.73 – 2.66 (m, 1H), 2.62 – 2.54 (m, 1H), 2.40 – 2.33 (m, 1H), 1.86 – 1.74 (m, 2H), 1.75 – 1.66 (m, 1H), 1.65 – 1.56 (m, 1H), 1.32 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.4, 137.3, 134.1, 130.9, 128.5, 128.4, 128.3, 127.1, 126.1, 125.7, 61.1, 40.0, 38.3, 37.4, 33.6.

HRMS (ESI) *m/z* calcd. for C₁₉H₂₃O [M+H]⁺ 267.1743, found 267.1740.

The general procedures for late-stage

Under an argon atmosphere, alkane (0.3 mmol, 1.0 equiv) was dissolved in tetrachloromethane (2.0 mL), followed by the addition of N-bromosuccinimide (58.7 mg, 1.1 equiv) and benzoyl peroxide (3.6 mg, 5 mol%). The reaction mixture was stirred at 80 °C for 6 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature, and then filtered. The filtrate was washed with sodium thiosulfate aqueous solution (1 M), and the mixture was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was used directly for the next

step without further purification.

The crude product was transferred to a schlenk tube. The tube was evacuated and backfilled with argon three times. DMF (1.0 mL) was added via syringe, followed by the addition of CuI (1.90 mg), Chiral ligand L9 (7.93 mg, 7.5 mol%) and LiO'Bu (32.0 mg, 2.0 equiv). Then DMF (1.0 mL) and H₂O (3.6 mg, 1.0 equiv) were added under a counter flow of argon. Finally, alkenylboronate esters **2w** (32.8 mg, 0.2 mmol) was added by microsyringe. The mixture was allowed to stir at -20 °C for 4 d. Upon completion of the reaction (monitored by TLC), water was poured into the reaction mixture. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the desired product.

According to the general procedure, (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl 4ethylbenzoate was employed to yield the product **91** as a colorless oil (30.0 mg, 48% yield, dr>20:1). Dr value was based on ¹H NMR analysis of the crude product. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.31 – 7.23 (m, 2H), 6.04 – 5.94 (m, 1H), 5.11 – 5.03 (m, 2H), 4.97–4.87 (m, 1H), 3.58 – 3.47 (m, 1H), 2.16 – 2.08 (m, 1H), 2.00 – 1.90 (m, 1H), 1.77 – 1.68 (m, 2H), 1.62 – 1.50 (m, 3H), 1.37 (d, *J* = 7.0 Hz,

3H), 1.23 – 1.04 (m, 2H), 0.97 – 0.87 (m, 6H), 0.79 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 150.7, 142.3, 129.8, 128.8, 127.2, 113.8, 74.6, 47.3, 43.2, 41.0, 34.3, 31.4, 26.5, 23.6, 22.0, 20.8, 20.6, 16.5.

HRMS (ESI) m/z calcd. for $C_{21}H_{30}O_2Na \ [M+Na]^+ 337.2138$, found 337.2144.

Methyl (S)-4'-(oct-1-en-3-yl)-[1,1'-biphenyl]-4-carboxylate (92)

According to the general procedure, methyl 4'-hexyl-[1,1'-biphenyl]-4-carboxylate was employed to yield the product **92** as a white solid (30.3 mg, 47% yield, 87% ee). **HPLC** analysis: Chiralcel OJ-3 (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 22.14 min, t_R (major) = 24.70 min

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 8.06 (m, 2H), 7.67 – 7.62 (m, 2H), 7.59 – 7.53 (m, 2H), 7.31 – 7.26 (m, 2H), 6.03 – 5.91 (m, 1H), 5.10 – 5.00 (m, 2H), 3.93 (s, 3H), 3.29 (q, J = 7.5 Hz, 1H), 1.80 – 1.68 (m, 2H), 1.39 – 1.19 (m, 6H), 0.91 – 0.82 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 145.5, 144.9, 142.2, 137.7, 130.0, 128.6, 128.1, 127.3, 126.8, 114.1, 52.1, 49.6, 35.3, 31.8, 27.2, 22.5, 14.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₇O₂ [M+H]⁺ 323.2006, found: 323.2005.

Mechanism studies Scheme S2: TEMPO-trapped product

An oven-dried Schlenk equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand L9 (7.93 mg, 7.5mol%), LiO'Bu (32.0 mg, 2.0 equiv.), 1c (82.6 mg, 0.3 mmol) and TEMPO (62.5 mg, 0.4 mmol). The tube was evacuated and backfilled with argon three times. Then DMF (2.0 mL) and H₂O (3.6 mg, 1.0 equiv.) were added under a counter flow of argon. Finally, 2a (46 mg, 0.2 mmol) was added by microsyringe under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -20 °C for 4 d. Upon completion of the reaction, water was poured into the reaction mixture. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product.

1-(1-([1,1'-biphenyl]-4-yl)propoxy)-2,2,6,6-tetramethylpiperidine (93):

The reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to yield the product **93** as a white solid (26.1 mg, 25% yield based on **1c**).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.58 – 7.51 (m, 2H), 7.47 – 7.38 (m, 2H), 7.37 – 7.28 (m, 3H), 4.59 (dd, J = 9.5, 3.9 Hz, 1H), 2.22 – 2.07 (m, 1H), 1.91 – 1.75 (m, 1H), 1.60 – 0.96 (m, 16H), 0.71 (t, J = 7.5 Hz, 3H), 0.65 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.6, 141.1, 139.5, 128.7, 128.1, 127.00, 126.97, 126.4, 88.3, 59.7, 40.4, 34.2, 28.7, 20.4, 17.2, 9.7.

HRMS (APCI) *m/z* calcd. for C₂₄H₃₄ON [M+H]⁺ 352.2635, found 352.2625.

Radical clock experiment

An oven-dried Schlenk equipped with a magnetic stirring bar was charged with CuI (1.90 mg, 5 mol%), chiral ligand L9 (7.93 mg, 7.5 mol%) and LiO'Bu (32.0 mg, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then DMF (2.0 mL) and H₂O (3.6 mg, 1.0 equiv) were added under a counter flow of argon. Finally, **94** (94.5 mg, 0.3 mmol) and **2a** (46 mg, 0.2 mmol) were added by microsyringe in turn under a counter flow of argon. The tube was sealed and the mixture was allowed to stir at -20 °C for 4 d. Upon completion of the reaction, water was poured into the reaction mixture. The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel to afford **95** (21% yield, **95** containing inseparable impurities **95**' and an NMR yield is given. **95**' was produced via cross-coupling of **94** and **2a**).

(*E*)-(3-(2-phenylcyclopentyl)prop-1-ene-1,3-diyl)dibenzene (95):

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 7.25 – 7.10 (m, 10H), 6.46 – 6.29 (m, 2H), 3.41 – 3.31 (m, 1H), 2.61 – 2.53 (m, 1H), 2.10 – 1.99 (m, 1H), 1.84 – 1.65 (m, 4H), 1.39 – 1.29 (m, 2H).

HRMS (ESI) *m/z* calcd. for C₂₆H₂₇ [M+H]⁺ 339.2107, found 339.2102.

Experiments with racemic and enantioenriched alkyl bromide 1d:

According to general procedure with (1-bromoethyl)benzene (\pm)-1d (55.5 mg, 0.30 mmol, 1.5 equiv), (*E*)-2-(4-methoxystyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane 2b (52.0 mg, 0.20 mmol, 1.0 equiv), and for facile determination of yield by isolated, 4 (10.0 mg, 21% yield, 82% ee) was obtained.

Reaction time	Yield of 4	ee of remaining 1d	ee of 4
4 h	21%	0%	82%

The procedure for the reaction with (*S*)-(1-bromoethyl)benzene⁶ (*S*)-1d was the same with that for (\pm) -1d described above except that (*S*)-1d (55.5 mg, 67% ee, 0.30 mmol, 2.0 equiv.) was used instead of (\pm) -S1-1.

Reaction time	Yield of 4	ee of remaining 1d	ee of 4
4 h	22%	67%	82%

We speculate that the reaction temperature may not be easily controlled at -20 °C at the early stage of the reaction. The benzyl halide and **2b** may react a little at temperature above -20 °C and this may lead to the drop of ee in the coupling product especially when the product is formed in a small amount.
References

1. PraveenGanesh, N.; d'Hondt, S.; Chavant, P. Y. Methylpentanediolborane: Easy Access to New Air- and Chromatography-Stable, Highly Functionalized Vinylboronates. *J. Org. Chem.* **2007**, *72*, 4510–4514.

2. Boelke, A.; Caspers, L. D.; Boris J. Nachtsheim, B. J. NH₂-Directed C–H Alkenylation of 2-Vinylanilines with Vinylbenziodoxolones. *Org. Lett.* **2017**, 19, 5344–5347.

3. Lightfoot, A. P.; Steven J. R. Twiddle, S. J. R.; Whiting, A. A stereoselective synthesis of 1,6-diphenyl-1,3,5-hexatrienes utilising 4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane as a two-carbon alkenyl building block. *Org. Biomol. Chem.* **2005**, *3*, 3167–3172.

4. Park, Y.; Yun. J. Copper-Catalyzed Asymmetric Reduction of β , β -Disubstituted Alkenylboramides. *Org. Lett.* **2019**, *21*, 8779–8782.

5. Dong, X.-Y.; Zhang, Y.-F.; Can-Liang Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. A general asymmetric copper-catalysed Sonogashira C(sp³)– C(sp) coupling. *Nat. Chem.* **2019**, *11*, 1158–1166.

6. Li, C.-X.; Zhang, Y.-Y.; Sun, Q.; Gu, T.-N.; Peng, H.-P.; Tang, W.-J. Transition-Metal-Free Stereospecific Cross-Coupling with Alkenylboronic Acids as Nucleophiles. *J. Am. Chem. Soc.* **2016**, *138*, 10774–10777.

7. Jiang, S.-P.; Dong, X.-Y.; Gu, Q.-S.; Ye, L.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical Suzuki–Miyaura C(sp³)–C(sp²) Cross-Coupling. J. Am. Chem. Soc. **2020**, *142*, 19652–19659.

8. Smith, S. W.; Fu, G. C. Nickel-Catalyzed Negishi Cross-Couplings of Secondary Nucleophiles with Secondary Propargylic Electrophiles at Room Temperature. *Angew. Chem., Int. Ed.* **2008**, *47*, 9334–9336

9. Jones, G. B.; Wright, J. M.; Plourde, G. W.; Hynd, G.; Huber, R. S.; Mathews. J. E. A Direct and Stereocontrolled Route to Conjugated Enediynes. *J. Am. Chem. Soc.* **2000**, *122*, 1937–1944.

10. Ano, Y.; Kawai, N.; Chatani, N. Palladium-catalyzed 1,1-alkynylbromination of alkenes with alkynyl bromides. *Chem. Sci.* **2021**, *12*, 12326–12332.

11. Line, N. J.; Witherspoon, B. P.; Hancock, E. N.; Brown, M. K. Synthesis of *ent*-[3]-Ladderanol: Development and Application of Intramolecular Chirality Transfer [2+2] Cycloadditions of Allenic Ketones and Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 14392–14395.

12. Hostier, T.; Neouchy, Z.; Ferey, V.; Pardo, D. G.; Cossy, J. Nickel-Catalyzed System for the Cross-Coupling of Alkenyl Methyl Ethers with Grignard Reagents under Mild Conditions. *Org. Lett.* **2018**, *20*, 1815–1818.

13 Iwasaki, T.; Miyata, Y.; Akimoto, R.; Fujii, Y.; Kuniyasu, H.; Kambe, N. Diarylrhodates as Promising Active Catalysts for the Arylation of Vinyl Ethers with Grignard Reagents. *J. Am. Chem. Soc.* **2014**, *136*, 9260–9263.

14. Yoshikai, N.; Miura, K.; Nakamura, E. Enantioselective Copper-Catalyzed Allylic Substitution Reaction with Aminohydroxyphosphine Ligand. *Adv. Synth. Catal.* **2009**, *351*, 1014–1018.

15. Afewerki, S.; Breistein, P.; Pirttilä, K.; Deiana, L.; Dziedzic, P.; Ismail Ibrahem, I.; Córdova, A. Catalytic Enantioselectiveb-Alkylation of α,β -Unsaturated Aldehydes by

Combination of Transition-Metal- and Aminocatalysis: Total Synthesis of Bisabolane Sesquiterpenes. *Chem. Eur. J.* **2011**, *17*, 8784–8788.

16. Zhang, Y.; Han, Z.-B.; Li, F.-Y.; Ding, K.-L.; Zhang, A. Highly enantioselective hydrogenation of a-aryl-b-substituted acrylic acids catalyzed by Ir-SpinPHOX. *Chem. Commun.* **2010**, *46*, 156–158.

17. Zhao, S.-B.; Gensch, T.; Murray, B; Niemeyer, Z.-L; Sigman, M.-S.; Biscoe, M.-R. *Science* **2018**, *362*, 670–674.

NMR spectra

-0.00

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

$= \begin{array}{c} 7.33 \\ 7.25 \\ 7.25 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 7.27 \\ 6.91 \\ 6.91 \\ 6.91 \\ 6.17 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 6.17 \\ 6.18 \\ 1.17 \\ 1.27 \\$

8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
8.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
9.95
<li

$\begin{array}{c} 7.34\\ 7.138\\ 7.128\\ 7.128\\ 7.128\\ 7.127\\ 7.17\\ 7.17\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

7.7.35
 7.7.35
 7.7.34
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37
 7.7.37

 $\begin{array}{c} 7,35\\ 7,735\\ 7,735\\ 7,735\\ 7,735\\ 7,735\\ 7,735\\ 7,725\\ 7,$

7,733 7,737 7,737 7,7277 7,727 7,727 7,727 7,727 7,727 7,727 7,727 7,727 7,727 7,727

 $\begin{array}{c} 7.89\\ 7.87\\ 7.87\\ 7.88\\$

 $\begin{array}{c} 7,35\\ 7,75\\ 7,75\\ 7,75\\ 7,75\\ 7,75\\ 7,75\\ 7,75\\ 7,72\\$

 $\begin{array}{c} 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.73\\ 7.72\\$

110 100 f1 (ppm)

 $\begin{array}{c} 7.29\\ 7.79\\ 7.77\\ 7.77\\ 7.77\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.22\\$

HPLC spectra

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.382	BB	0.4469	4259.29492	144.07921	49.9422
2	22.156	VV R	0.7051	4269.14990	71.24496	50.0578

```
Totals :
```

8528.44482 215.32417

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.368	VV R	0.4474	1.40477e4	463.68643	97.3978
2	22.460	MM	0.9322	375.31482	6.71019	2.6022

Totals : 1.44230e4 470.39662

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.214	2577394	49.850			
2	17.734	2592879	50.150			

mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	14.296	724322	5.413
2	17.789	12657920	94.587

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	19.419	5236929	49.933			
2	29.990	5250877	50.067			

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	19.333	14384788	97.442				
2	30, 267	377594	2, 558				

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	20.1	298	12531163	49.903
2	29.	143	12579794	50.097

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.061	16816474	96. 328
2	29.485	641119	3.672

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.501	2531146	49.829	
2	15.453	2548493	50.171	

mAU

Peak Table

PDA Ch1 254nm

IDA UNI ZUTIM			TIIII		
	Peak#	Ret.	Time	Area	Area%
	1	11.	374	10362269	96.570
	2	15.	602	368003	3. 430

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	33.364	12924408	50.058	
2	39.275	12894276	49.942	

PDA Ch1 254nm Peak# Ret Time

reak#	Ret. IIme	Area	Area‰
1	33. 504	11023930	96.760
2	39.700	369169	3.240

Peak Table

PDA Ch	1 254	Inm		
Peak#	Ret.	Time	Area	Area%
1	58.	880	7920281	50.026
2	62.	946	7912176	49.974

Peak Table

PDA Chl 254nm					
	Peak#	Ret. T	ime	Area	Area%
	1	58.31	12	19454816	97.436
	2	62.88	35	511934	2.564

PDA Ch	1 254	1nm		
Peak#	Ret.	Time	Area	Area%
1	26.	275	8496280	50.029
2	29.	942	8486277	49.971

Peak Table

PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	25.	673	22295426	97.559
	2	30.	157	557783	2.441

<u>PDA Ch</u>	1 254nm		
Peak#	Ret. Time	Area	Area%
1	26.989	5566183	49.932
2	29.582	5581449	50.068

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.190	18591119	94.458
2	30.066	1090787	5.542

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.970	2773915	50. 04 2
2	27.023	2769303	49.958

mAU 400-PDA Multi 1 254nm, 4nm 14.048 Ph 300-12 200-100-27.1640-10 15 20 25 30 35 5 40 min Ó Peak Table

1 00	IL I	abre
PDA	Ch1	254m

PDA UNI ZO4NM						
Peak#	Ret.	Time	Area	Area%		
1	14.	048	7663201	94. 584		
2	27.	164	438814	5.416		

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	28.358	8422308	49.912				
2	41.710	8451944	50.088				

mAU

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	28.381	2919971	7.246			
2	41.667	37377632	92.754			

187

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.761	BV	0.3143	6093.77441	300.86780	49.3990
2	14.629	VB	0.3516	6242.06104	274.18552	50.6010

Totals :

1.23358e4 575.05331

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.746	BV	0.3023	381.19427	19.30851	4.4636
2	14.590	VB	0.3506	8158.77734	362.40811	95.5364

Totals : 8539.97162 381.71663

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.569	BV	0.3858	2101.98364	85.80315	48.7623
2	19.503	VB	0.4171	2208.68994	81.78945	51.2377

Totals :

4310.67358 167.59261

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 18.411 BV 0.3825 7887.74170 321.24454 95.9495 2 19.347 VB 0.4193 332.98212 11.86956 4.0505

Totals : 8220.72382 333.11409

PDA Ch1 214nm						
Peak#	Ret.	Time	Area	Area%		
1	13.	687	3334125	49.891		
2	20.	935	3348751	50.109		

mAU

Peak Table

 PDA
 Ch1
 214nm

 Peak#
 Ret.
 Time
 Area
 Area%

 1
 13.520
 3505032
 95.847

1	10.020	3000032	30.011
2	20.586	151857	4.153

PDA Ch1 230nm							
Peak#	Ret. Time	Area	Area%				
1	12.107	4039529	50.154				
2	14.221	4014672	49.846				

mAU

PDA Ch1 230nm							
Peak#	Ret. Time	Area	Area%				
1	12.088	8222229	96. 422				
2	14.208	305143	3. 578				

F	PDA Ch1 230nm							
	Peak#	Ret.	Time	Area	Area%			
	1	16.	169	12611418	50.062			
Γ	2	20.	962	12580262	49.938			

mAU

Peak Table

PDA Ch1 230nm

Peak#	Ret. Time	e Area	Area%
1	16.099	13395331	96.029
2	21.057	553967	3.971

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	9.019	BB	0.1899	2969.22778	237.44185	50.1620	
2	12.817	BB	0.2646	2950.04590	169.84706	49.8380	

Totals :

5919.27368 407.28891

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] % # [min] 9.009 BB 0.1907 4403.69189 350.16611 93.0148 1 2 12.799 BB 0.2639 330.70566 19.11171 6.9852

```
Totals : 4734.39755 369.27781
```


Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.601	MM	0.1635	1973.73047	201.19806	50.1654
2	10.251	BB	0.1715	1960.71582	173.97925	49.8346

3934.44629 375.17731

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 8.606 VV R 0.1522 7730.57520 776.23688 1 94.8136 2 10.265 BV R 0.1760 422.87125 37.38622 5.1864

Totals : 8153.44644 813.62309

PDA Ch1 214nm								
Peak#	Ret. Time	Area	Area%					
1	24.917	7102190	49.854					
2	33.106	7143716	50.146					

mAU

Peak Table

PDA Ch1 214nm

Peak#	Ret.	Time	Area	Area%
1	24.	874	13944820	92.850
2	33.	367	1073874	7.150

PDA Ch1 214nm							
Peak#	Ret.	Time	Area	Area%			
1	16.	054	4403116	49.876			
2	22.	546	4425062	50.124			

mAU

Peak Table

 PDA
 Ch1
 214nm

 Peak#
 Ret.
 Time
 Area
 Area%

 1
 16.226
 6809918
 94.379

 2
 23.002
 405552
 5.621

PDA Ch1 214nm							
Peak#	Ret. Time	Area	Area%				
1	22.825	3715738	50.048				
2	26.070	3708579	49.952				

mAU

PDA Ch1 214nm								
Peak#	Ret. Time	Area	Area%					
1	23.127	9400691	95.283					
2	26. 492	465389	4.717					

PDA Ch1 214nm							
Peak#	Ret. Time	Area	Area%				
1	19.795	5201816	49.773				
2	29.004	5249169	50. 227				

mAU

PDA Ch1 214nm							
Peal	k# Re	t. Time	Area	Area%			
1	1	9.786	14882116	94.242			
2	2	9. 187	909258	5.758			

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.258	BV	0.3180	7588.28662	372.04517	48.6869
2	12.922	VV R	0.3398	7997.59375	359.17606	51.3131

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.154	MF	0.3210	344.37976	17.87811	4.1637
2	12.850	FM	0.3710	7926.62891	356.12936	95.8363

Totals :

8271.00867 374.00747

10

15

20

min

Peak Table

0

ò

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.062	13414412	49.761	
2	18.118	13543295	50.239	

 $\frac{1}{5}$

mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	15.416	7892607	27.991
2	18.700	20304271	72.009

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	16. (061	1038976	50.267
2	22.8	862	1027948	49.733

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.836	389878	3.155
2	23.955	11966735	96.845

PDA Ch1 254nm					
Peak#	Ret. T	ime	Area	Area%	
1	8.624	4	4361865	49.940	
2	10.09	1	4372373	50.060	

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.642	16957985	97.277
2	10.078	474684	2.723

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.118	1678981	50.250
2	11.374	1662290	49.750

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	9.497	18075205	96.664
2	12.005	623820	3.336

Peak Table

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	17.905	2103237	50.249			
2	25.653	2082373	49.751			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.367	16311862	95.165
2	25.010	828703	4.835

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	9.421	4964212	50.286		
2	10.398	4907827	49.714		

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.472	284347	3.440
2	10.375	7980755	96.560

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	9.960	3204825	50.163		
2	11.828	3184054	49.837		

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.973	3686023	95.334	
2	11.902	180401	4.666	

mAU

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.442	5529223	49.830	
2	9.874	5566926	50.170	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.376	11659397	94.104
2	9.874	730566	5.896

mAU

Peak Table

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	6.007	16347870	50.177		
2	9.548	16232232	49.823		

mAU

DDA Ch1 254

PDA UN	PDA Chi 254nm				
Peak#	Ret. Time	Area	Area%		
1	6.008	598732	3.688		
2	9.402	15637633	96.312		

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	5.794	373442	50.459	
2	6.367	366643	49.541	

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.794	5112	0.692
2	6.356	733061	99.308

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	26.711	1911917	50.176		
2	30.459	1898528	49.824		

PDA C	h1 254nm		
Peak [‡]	Ret. Time	Area	Area%
1	26.928	12555528	97.450
2	30.866	328478	2.550

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	7.904	2759268	49.229
2	8.609	2845713	50.771

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.929	231583	5.111
2	8.580	4299310	94.889

 $\begin{array}{c} \text{PDA Multi 1 254nm, 4nm} \\ \text{figure} \\ \text{figur$

Peak Table

'DA Ch	1 254nm	12	
Peak#	Ret. Time	Area	Area%
1	11.043	1404322	49.794
2	11.580	1415966	50.206

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.009	1114859	4.128
2	11,473	25889175	95, 872

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	5.994	924523	49.117	
2	6.367	957760	50. 883	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.654	239892	4.034
2	6.204	5707033	95.966

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.325	6029450	49.600
2	7.809	6126663	50.400

PDA	Ch1 25	4nm		
Peak	# Ret.	Time	Area	Area%
1	7.	414	23905984	93.796
2	7.	945	1581173	6.204

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.307	32263624	49.895
2	18.763	32399268	50.105

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	17.237	116326	3.650	
2	18.602	3070298	96.350	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.254	7265842	49.789
2	9.055	7327479	50.211

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.517	1547199	96.759		
2	9.463	51826	3.241		

Data File D:\CHEM32\1\	DATA\GK)	(\GKX21-503E	-0D-3-100-0	-1.0.D
Sample Name: GKX21-503	E-0D-3-1	100-0-1.0-1		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
Totals :		9893.61948	751.81735	

Peak Table

Detect	or A Ch2 2	54nm	
Peak#	Ret. Time	Area	Area%
1	24.081	3632361	50.567
2	33.634	3550965	49.433

mV

Detector A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	25.006	1033876	4.880	
2	32, 387	20153083	95, 120	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.163	521088	49.946
2	6.142	522208	50.054

Peak Table

PDA Chi Zo4nm					
Peak#	Ret. Time	Area	Area%		
1	5.363	6773865	97.201		
2	6.126	195087	2.799		

220

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.048	2172552	49.654
2	10.631	2202853	50.346

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.368	93122	0.386
2	10.694	24024473	99.614

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.906	643914	49.972
2	28.050	644639	50.028

PDA Ch1 254r

PDA UNI ZO4NM					
Peak#	Ret. Time	Area	Area%		
1	23.983	22504279	96.855		
2	27.703	730640	3.145		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.455	2005914	50.091
2	19.589	1998614	49.909

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.976	8663351	98.134
2	20.424	164741	1.866

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.720	1761082	49.925
2	19.546	1766351	50.075

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.552	8145168	94.991
2	19.303	429547	5.009

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	14.044	1818042	50.178
2	15.612	1805109	49.822

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	14.407	1031494	4.524
2	15.961	21768930	95.476

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	25.557	4702934	50.197
2	31.730	4666071	49.803

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	25.813	3752170	3.326
2	30.580	109064753	96.674

PD	A Ch	$1 25^{\prime}$	4nm		
Pe	eak#	Ret.	Time	Area	Area%
	1	34.	427	18828969	49.483
	2	46.	623	19222355	50.517

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	35.199	634985	5.190
2	47.055	11598765	94.810

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.773	14554352	49.806
2	16.762	14667924	50.194

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.748	6855409	96.042
2	16.821	282543	3.958

mAU PDA Multi 1 254nm, 4nm CN 400-Ph 300rac **55** 200-19.922 22.243 100-0-10 15 5 20 25 min Ó

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.922	2250440	50.055
2	22.243	2245473	49.945

mAU

PI	PDA Ch1 254nm						
P	eak#	Ret.	Time	Area	Area%		
	1	19.	507	39151548	96.705		
	2	21.	865	1333831	3.295		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.293	625508	50.135			
2	15.078	622129	49.865			

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.601	266561	6.350
2	14.296	3931166	93.650

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	26.722	2219168	50.031			
2	28.334	2216389	49.969			

I DH OH	1 20 1111		
Peak#	Ret. Time	Area	Area%
1	27.074	7533281	96.747
2	29.555	253264	3.253

DA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.173	6966010	50.009
2	14.428	6963500	49.991

mAU

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.059	17881032	93.754				
2	14.350	1191276	6.246				

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	17.143	4001531	50.252				
2	21.875	3961431	49.748				

PDA	Ch1	254nm

Peak#	Ret. Time	Area	Area%
1	17.087	673338	5.954
2	21.864	10635750	94.046

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.927	MM	0.5480	5229.42383	159.03575	49.7320
2	30.282	BB	0.5599	5285.78711	134.09586	50.2680

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.856	BB	0.5324	1.23905e4	335.88403	99.3735
2	30.875	BB	0.3933	78.11899	2.39010	0.6265
Total	ls:			1.24686e4	338.27413	

Signal 3: DAD1 C, Sig=280,4 Ref=360,100

Peak F	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	6.024	MM	0.1383	5.21171	6.27988e-1	0.9729
2	6.687	BB	0.1213	530.45245	66.33139	99.0271
Totals	5 :			535.66416	66.95938	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.308	BV	0.1360	7616.53271	871.12329	98.7050
2	7.914	VV	0.1297	99.93106	11.68954	1.2950
Total	s :			7716.46378	882.81283	

Peak Re	etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.143 BV	0.0785	1.20891e4	2331.49658	98.0457
2	6.352 VB	0.0911	240.97211	37.44248	1.9543
Totals	:		1.23301e4	2368.93906	

1	13.197	MF	0.2366	5927.89941	417.64941	97.8248
2	13.689	FM	0.2654	131.80870	8.27800	2.1752

Totals :

6059.70811 425.92741

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.397	BB	0.1916	4575.04883	371.81555	49.9363
2	11. 387	BB	0.2117	4586.72363	335.17880	50.0637

```
Totals :
```

9161.77246 706.99435

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.361	BV	0.1941	1.21641e4	971.04169	98.8745
2	11.415	VB	0.2193	138.46420	9.54380	1.1255
Total	s :			1.23025e4	980.58549	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.863	BB	0.2208	8336.70508	582.99634	50.0502
2	18.355	BB	0.3289	8319.99316	393.18613	49.9498

Totals : 1.66567e4 976.18246

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.078	BB	0.2188	244.84978	17.12787	1.1411
2	18.658	BB	0.3866	2.12124e4	840.04626	98.8589

Totals : 2.14572e4 857.17414

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.298	BB	0.3449	1.58994e4	705.55365	98.9003
2	20.808	BB	0.3731	176.78403	7.23323	1.0997
Total	ls :			1.60762e4	712.78688	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 8.063
 BV
 0.1361
 1903.42468
 217.41853
 49.0046

 2
 8.372
 VB
 0.1477
 1980.74841
 206.81711
 50.9954

Totals :

3884.17310 424.23564

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.893	BV	0.1375	9307.23730	1048.64697	98.4109
2	8.250	VB	0.1491	150.28944	14.71640	1.5891

Totals :

9457.52675 1063.36337

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 8.612 MM 0.1576 2074.46729 219.40526 49.9922 9.411 VB 2 0.1686 2075.11499 191.17545 50.0078

Totals :

4149.58228 410.58070

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.630	BB	0.1483	1.04873e4	1070.08130	98.8753
2	8.091	VB	0.1647	119.29053	10.64615	1.1247

Totals : 1.06065e4 1080.72745

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.177	BB	0.8769	1.04890e4	206.41016	49.9353	
2	23.192	BB	0.5987	1.05161e4	274.63007	50.0647	

Totals : 2.10051e4 481.04022

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.575	BB	0.3155	1.56205e4	794.19183	99.0976
2	22.947	BB	0.4662	142.23900	4.55583	0.9024

Totals :

1.57627e4 798.74767

249

1	7.365	BV R	0.1359	5238.53711	586.85236	98.9338
2	14.305	VB	0.2397	56,45603	2,86703	1,0662

Totals :

5294.99314 589.71939

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	52.296	BB	0.5788	2787.01831	57.56633	49.9850
2	54.644	BB	0.6168	2788.69043	54.70142	50.0150

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area [mAll*s]	Height	Area %	
т 	[]			[IIIAO 3]			
1	52.874	BB	0.4779	97.19391	2.43381	0.6244	
2	54.876	BB	0.7296	1.54681e4	311.34787	99.3756	
lota.	LS :			1.55653e4	313./8168		

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.761	BB	0.1418	7699.46875	818.01874	98.7634
2	8.882	BB	0.1613	96.40506	9.11997	1.2366

Totals : 7795.87381 827.13870

Totals : 1.02532e4 1085.70986

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	55.000	BB	0.6957	1004.69342	21.96265	49.3786
2	57.036	BB	0.4714	1029.97961	34.39271	50.6214
Tota	ls :			2034.67303	56.35536	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	54.917	BB	0.8073	5725.44922	108.90945	98.3717
2	57.506	BB	0.4452	94.76952	3.01128	1.6283
Tota	ls :			5820.21874	111.92074	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.101	BV	0.6890	9077.45898	203.25929	49.6070
2	17.107	VBA	0.9036	9221.29004	155.09615	50.3930

Totals : 1.82987e4 358.35544

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.808	MF	0.7171	1.41503e4	328.88361	97.0295
2	16.626	FM	1.0646	433.19785	6.78197	2.9705
Tota	ls :			1.45835e4	335.66558	

Peak Table

Peak#	Ret. Time	Area	Area%
1	11.287	1114967	50.049
2	12.485	1112805	49.951

Peak#	Ret. Time	Area	Area%
1	11.229	7654771	95.010
2	12.476	402014	4.990

PDA Ch3 214nm										
Peak#	Ret. Time	Area	Area%							
1	4.460	2746792	49.912							
2	4.976	2756504	50.088							

PDA Ch	3 214nm		
Peak#	Ret. Time	Area	Area%
1	4.395	185547	3.937
2	4.891	4527035	96.063

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 16.131 BV R 0.7939 7103.76855 120.13342 49.5165 2 24.319 MM 3.8751 7242.49609 31.14961 50.4835 Totals : 1.43463e4 151.28303

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.344	BB	0.9145	2.24337e4	348.75208	96.7013
2	25.882	MM	3.3980	765.27399	3.75354	3.2987
Tota]	ls :			2.31990e4	352.50561	

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	22.001	9402283	49.937
2	24.736	9425888	50.063

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	22.147	1111182	6.465	
2	24, 705	16077459	93, 535	

Detector A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.200	2442319	50.171	
2	11.720	2425633	49.829	

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.656	405103	16.305	
2	10.474	2079408	83.695	

Detector A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.404	1136429	49.450	
2	11.572	1161705	50.550	

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.119	94491	16.579	
2	10.773	475458	83.421	

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	14.199	599548	9.036	
2	17.687	6035663	90.964	

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	14.177	415502	8.923	
2	17.660	4240983	91.077	