Supplementary information

Mechanism-based ligand design for coppercatalysed enantioconvergent $C(sp^3)-C(sp)$ cross-coupling of tertiary electrophiles with alkynes

In the format provided by the authors and unedited

Supplementary information for

Mechanism-basedliganddesignforcopper-catalysedenantioconvergent $C(sp^3)-C(sp)$ cross-couplingoftertiary

electrophiles with alkynes

Fu-Li Wang,^{1,4} Chang-Jiang Yang,^{1,4} Ji-Ren Liu,^{2,4} Ning-Yuan Yang,¹ Xiao-Yang Dong,¹ Ruo-Qi Jiang,¹ Xiao-Yong Chang,¹ Zhong-Liang Li,³ Guo-Xiong Xu,² Dai-Lei Yuan,¹ Yu-Shuai Zhang,¹ Qiang-Shuai Gu,^{3*} Xin Hong,^{2*} Xin-Yuan Liu^{1*}

Correspondence to: guqs@sustech.edu.cn; hxchem@zju.edu.cn; liuxy3@sustech.edu.cn

Table of Contents

Supplementary figures for experiments	S3
Supplementary tables for experiments	S9
General information	S13
General procedure for synthesis of substrates	S14
Enantioconvergent cross-coupling of tertiary electrophiles with al	kynesS35
General procedure for the synthesis of racemates	S39
Analytical data for products 1–87	S41
Procedure for synthetic applications (88–99)	
Mechanistic studies	S99
X-ray crystallography	S113
Computational studies	S121
NMR spectra	S143
HPLC spectra	S259
Supplementary references	

Supplementary figures for experiments

Supplementary Fig. 1 The effect of quinine-derived N,N,P-ligands in the model reaction. Reaction conditions: E1 (0.025 mmol), phenylacetylene A1 (1.5 equiv.), Cu(OTf)₂ (10 mol%), L* (15 mol%) and Cs₂CO₃ (3.0 equiv.) in dry CF₃Ph (0.50 mL) under argon at room temperature for 36 h. Yield is based on ¹HNMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. E.e. of 1 is based on HPLC analysis.

Supplementary Fig. 2 Results of *N***-alkyl and** *N***,***N***-dialkyl substituted substrates.** MTBE, methyl *tert*-butyl ether

Supplementary Fig. 3 Results of other types of alkyl bromides. MTBE, methyl *tert*-butyl ether.

Supplementary Fig. 4 The effect of α , α -dialkyl-substituted tertiary α -haloamides.

Reaction conditions: alkyl halide E (0.025 mmol), phenylacetylene A1 (1.5 equiv.), Cu(OTf)₂ (10 mol%), L*11 (15 mol%) and Cs₂CO₃ (3.0 equiv.) in MTBE/cyclohexane (v/v = 2/3, 0.50 mL) under argon at 10 °C for 80 h. Yield is based on ¹HNMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. E.e. of 62 is based on HPLC analysis. MTBE, methyl *tert*-butyl ether.

Supplementary Fig. 5 ¹H-NMR studies of E1' with E1'-Cs (298K, 400 MHz, DMSO- d_6). a, E1' (25 mM). b, E1' (75 mM) with 0.67 equiv. of E1'-Cs (50 mM). c, E1' (50 mM) with 1.0 equiv. of E1'-Cs (50 mM). d, E1' (25 mM) with 2.0 equiv. of E1'-Cs (50 mM). e, E1'-Cs (50 mM).

Supplementary Fig. 6 ¹H-NMR studies of E1' (25 mM, 298K, 400 MHz, DMSO- d_6) with Cs₂CO₃. a, E1'. b, E1' with 0.50 equiv. of Cs₂CO₃. c, E1' with 1.0 equiv. of Cs₂CO₃. d, E1' with 2.0 equiv. of Cs₂CO₃. e, E1' with 3.0 equiv. of Cs₂CO₃.

Supplementary tables for experiments

Supplementary Table 1 Screening of reaction conditions^a

	NHPh _ /	_H _[Cu] (10 mol%).	, L*11 (15 mo	I%)	Ph tNHPh
Ph M	Ph	Cs ₂ CO ₃ (3.0 equiv.), Solvent, rt			M
E1	A1				1
Entry	[Cu]	Solvent	Time (h)	Yield (%) ^b	E.e. (%) ^c
1	Cu(OTf) ₂	CF ₃ Ph	36	80	86
2	CuI	CF ₃ Ph	36	73	78
3	CuBr	CF ₃ Ph	36	63	81
4	CuCN	CF ₃ Ph	36	25	80
5	Cu(CH ₃ CN) ₄ PF ₆	CF ₃ Ph	36	80	79
6	$Cu(OAc)_2$	CF ₃ Ph	36	72	86
7	Cu(OTf) ₂	PhCl	48	63	85
8	Cu(OTf) ₂	Et ₂ O	48	75	74
9	Cu(OTf) ₂	MTBE	48	83	77
10	Cu(OTf) ₂	cyclohexane	48	45	88
11	Cu(OTf) ₂	CF ₃ Ph/cyclohexane	60	71	88
		(v/v = 2/3)			
12	Cu(OTf) ₂	MTBE/cyclohexane	60	76	88
		(v/v = 2/3)			
13 ^d	Cu(OTf) ₂	MTBE/cyclohexane	60	70	89
		(v/v = 2/3)			
14 ^e	Cu(OTf) ₂	MTBE/cyclohexane	60 55		53
		(v/v = 2/3)			
15 ^f	Cu(OTf) ₂	MTBE/cyclohexane	60	53	89
		(v/v = 2/3)			
16 ^g	Cu(OTf) ₂	MTBE/cyclohexane	80	21	91
		(v/v = 2/3)			
17^{h}	Cu(OTf) ₂	MTBE/cyclohexane	80	13	91
		(v/v = 2/3)			
$18^{i,j}$	Cu(OTf) ₂	MTBE/cyclohexane	80	8	89
		(v/v = 2/3)			
21 ^k	Cu(OTf) ₂	CF ₃ Ph/cyclohexane	80	72	91
		(v/v = 2/3)			
22 ^k	Cu(OTf) ₂	MTBE/cyclohexane	80	75	92
		(v/v = 2/3)			

^aReaction conditions: **E1** (0.025 mmol), phenylacetylene **A1** (1.5 equiv.), [Cu] (10 mol%), **L*11** (15 mol%) and Cs_2CO_3 (3.0 equiv.) in solvent (0.50 mL) under argon at room temperature. ^bYield is based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, ^cE.e. of **1** is based on HPLC analysis. ^dThe reaction was carried out in the dark. ^eThe

reaction was carried out under irradiation of blue LED (24 W). ^f[Cu] (5 mol%), L*11 (7.5 mol%). ^g[Cu] (3 mol%), L*11 (4.5 mol%). ^h[Cu] (2 mol%), L*11 (3 mol%). ⁱ[Cu] (1 mol%), L*11 (1.5 mol%). ^jE1 (0.05 mmol) scale. ^kThe reaction was carried out at 10 °C for 80 h. MTBE, methyl *tert*-butyl ether.

Me Br [Cu] (10 mol%), L* (15 mol%) Me Solvent, Cs₂CO₃ (3.0 equiv.),10 °C, 80 h ö A1 E62 62 NMe₂ NΗ . NMe₂ ĨН L*10, R = 1-Naphthyl Ph **L*11**, R = 4^{-t} BuPh L*26, R = 3,5-Diphenylphenyl L*27, R = 1-Pyrenyl L*28, R = 9-Phenanthracenyl L*16 L*29, R = 9-Anthryl Ρĥ Yield (%)^b Entry [Cu] Ligand Solvent E.e. (%)^c MTBE/cyclohexane Cu(OTf)₂ 1 L*11 31 70 (v/v = 2/3)2 Cu(OTf)₂ L*11 CF₃Ph 54 45 3 Cu(OAc)₂ L*11 CF₃Ph 61 55 4 Cu(OAc)₂ L*10 CF₃Ph 65 68 5 Cu(OAc)₂ L*26 CF₃Ph 47 28 6 Cu(OAc)₂ L*27 CF₃Ph 45 71 7 Cu(OAc)₂ L*28 CF_3Ph 65 76 8 L*29 CF₃Ph 87 $Cu(OAc)_2$ 67 9 L*16 CF₃Ph 90 $Cu(OAc)_2$ 67

Supplementary Table 2 Screening of reaction conditions^a

^aReaction conditions: **E62** (0.025 mmol), phenylacetylene **A1** (1.5 equiv.), [Cu] (10 mol%), ligand (15 mol%) and Cs_2CO_3 (3.0 equiv.) in solvent (0.50 mL) under argon at 10 °C for 80 h. ^bYield is based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. ^cE.e. value is based on HPLC analysis. MTBE, methyl *tert*-butyl ether.

$Bn = N \xrightarrow{Br}_{Ph} + \underbrace{[Cu](13 \text{ mol}\%), L^{\star}(15 \text{ mol}\%)}_{Cs_2CO_3(3.0 \text{ equiv.}), \text{ Solvent, rt}} \xrightarrow{O}_{Ph} + \underbrace{[Cu](13 \text{ mol}\%), L^{\star}(15 \text{ mol}\%)}_{Ph} + \underbrace{CN}_{Ph}$							
$ \begin{array}{c} OMe \\ \downarrow \\ $							
Entry	[Cu]	Ligand	Solvent	Time (h)	Yield (%) ^b	E.e. (%) ^c	
1	CuTc	L*1	Et ₂ O	36	75	73	
2	CuTc	L*5	Et ₂ O	36	50	28	
3	CuTc	L*17	Et ₂ O	36	82	86	
4	CuTe	L*18	Et ₂ O	36	76	92	
5	CuTc	L*20	Et ₂ O	36	70	72	
6	CuTc	L*21	Et ₂ O	36	75	85	
7 ^d	CuTc	L*17	Et ₂ O	60	85	90	

Supplementary Table 3 Screening of reaction conditions^a

^aReaction conditions: **E71** (0.025 mmol), 4-cyanophenylacetylene **A3** (1.2 equiv.), [Cu] (13 mol%), L* (15 mol%) and Cs₂CO₃ (3.0 equiv.) in dry solvent (0.50 mL) under argon at room temperature for 36 h. ^bYield is based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. ^cE.e. of **71** is based on HPLC analysis. ^dThe reaction was carried out at 10 ^oC for 60 h.

General information

Reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Cu(OTf)2 was purchased from Alfa Aesar. Cu(OAc)2 was purchased from Sigma-Aldrich. CuTc was purchased from Bide Pharmatech Ltd. Anhydrous diethyl ether (Et₂O) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was directly used without further treatment. Anhydrous MTBE, CF₃Ph and cyclohexane were purchased from J&K Chemical Ltd. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-500 spectrometers at 400 or 500 MHz for ¹H NMR, 100 or 125 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃ with tetramethylsilane (TMS) as internal standard. The chemical shifts were expressed in ppm and coupling constants were given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR were reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using SHIMADZU LC-20AD with SPD-20AV detector or Agilent high-performance liquid chromatography (HPLC) with Hatachi detector (at appropriate wavelength). Column conditions were reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation.

General procedure for synthesis of substrates

General procedure SM-A for the synthesis of tertiary *a*-chloroamides (E1–E11)

According to the literature reported procedure¹ with slightly modification: 2phenylbutanoic acid (1.64 g, 10 mmol) was dissolved in SOCl₂ (5.0 mL), and the resulting solution was heated at 80 °C for 30 min with vigorous stirring (CaCl₂ drying tube). The mixture was allowed to cool to room temperature, and then *N*chlorosuccinimide (3.34 g, 25 mmol), SOCl₂ (3.0 mL), and HCl (concentrated; 3 drops) were added. The resulting mixture was heated at 90 °C for 2.5 h and then allowed to cool to room temperature. The precipitate was removed by filtration, washed by CCl₄ (5.0 mL) and the filtrate was concentrated by evaporation. The resulting liquid residue was used directly in the next step.

The α -chloro acid chloride in anhydrous CH₂Cl₂ (5.0 mL) was added dropwise to a solution of the corresponding amine (10 mmol) and triethylamine (4.2 mL, 30 mmol) in CH₂Cl₂ (30 mL) at 0 °C. The reaction was stirred at 0 °C for 15 min and then warmed up to room temperature. After completion (monitored by TLC), the reaction was quenched by the addition of 1.0 M HCl, the organic layer was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material, which was purified by flash chromatography to yield the tertiary α -chloroamide.

2-Chloro-N,2-diphenylbutanamide (E1)

According to general procedure **SM-A** with aniline (0.93 g, 10 mmol, 1.0 equiv.) to afford **E1** as a white amorphous solid (2.16 g, 79% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.65 – 7.58 (m, 2H), 7.57 – 7.51 (m, 2H), 7.43 – 7.30 (m, 5H), 7.18 – 7.10 (m, 1H), 2.67 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.43 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.08 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 140.4, 137.2, 129.0, 128.6, 128.5, 126.3, 124.9, 119.9, 79.4, 34.9, 9.5.

HRMS (ESI) m/z calcd. for C₁₆H₁₇ClNO [M + H]⁺ 274.0993, found 274.0993.

2-Chloro-*N*-(naphthalen-1-yl)-2-phenylbutanamide (E2)

According to general procedure **SM-A** with 1-naphthylamine (1.43 g, 10 mmol, 1.0 equiv.) to afford **E2** as a white solid (2.69 g, 83% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.92 – 7.82 (m, 1H), 7.79 – 7.63 (m, 4H), 7.57 – 7.32 (m, 6H), 2.74 (dq, J = 14.3, 7.1 Hz, 1H), 2.50 (dq, J = 14.4, 7.2 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 140.5, 134.1, 131.7, 128.8, 128.7, 128.6, 127.1, 126.6, 126.4, 126.1, 125.7, 120.2, 80.1, 34.9, 9.6.

HRMS (ESI) m/z calcd. for C₂₀H₁₉ClNO [M + H]⁺ 324.1150, found 324.1150.

N-(4-(tert-Butyl)phenyl)-2-chloro-2-phenylbutanamide (E3)

According to general procedure **SM-A** with 4-*tert*-butylaniline (1.49 g, 10 mmol, 1.0 equiv.) to afford **E3** as a white solid (2.70 g, 82% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.64 – 7.56 (m, 2H), 7.51 – 7.43 (m, 2H), 7.41 – 7.29 (m, 5H), 2.67 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.41 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.30 (s, 9H), 1.08 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 148.0, 140.6, 134.6, 128.5, 128.4, 126.3, 125.9, 119.6, 79.4, 34.9, 34.4, 31.3, 9.5.

HRMS (ESI) m/z calcd. for C₂₀H₂₅ClNO [M + H]⁺ 330.1619, found 330.1619.

N-([1,1'-Biphenyl]-4-yl)-2-chloro-2-phenylbutanamide (E4)

According to general procedure **SM-A** with 4-phenylbenzylamine (1.83 g, 10 mmol, 1.0 equiv.) to afford **E4** as a slightly yellow solid (2.69 g, 77% yield over two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.66 – 7.60 (m, 4H), 7.60 – 7.54 (m, 4H), 7.47 – 7.29 (m, 6H), 2.69 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.44 (dq, *J* = 14.4, 7.2 Hz, 1H),

1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 140.3, 137.8, 136.4, 128.8, 128.6, 128.5, 127.7, 127.2, 126.9, 126.3, 120.2, 79.4, 34.9, 9.5.

HRMS (ESI) m/z calcd. for C₂₂H₂₁ClNO [M + H]⁺ 350.1306, found 350.1306.

N-(4-Bromophenyl)-2-chloro-2-phenylbutanamide (E5)

According to general procedure **SM-A** with 4-bromoaniline (1.72 g, 10 mmol, 1.0 equiv.) to afford **E5** as a slightly yellow solid (2.54 g, 72% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.63 – 7.54 (m, 2H), 7.44 (s, 4H), 7.41 – 7.31 (m, 3H), 2.64 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.41 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 140.0, 136.2, 132.0, 128.61, 128.56, 126.3, 121.5, 117.6, 79.4, 34.9, 9.4.

HRMS (ESI) m/z calcd. for C₁₆H₁₆BrClNO [M + H]⁺ 352.0098, found 352.0099.

2-Chloro-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (E6)

According to general procedure **SM-A** with 4-aminobenzotrifluoride (1.61 g, 10 mmol, 1.0 equiv.) to afford **E6** as a white solid (2.39 g, 70% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.67 (d, J = 8.7 Hz, 2H), 7.63 – 7.54 (m, 4H), 7.44 – 7.30 (m, 3H), 2.65 (dq, J = 14.3, 7.1 Hz, 1H), 2.43 (dq, J = 14.4, 7.2 Hz, 1H), 1.06 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 140.2, 139.8, 128.7, 128.6, 126.7 (q, *J* = 32.7 Hz), 126.3, 126.2, 123.9 (q, *J* = 270.2 Hz), 119.5, 79.3, 34.9, 9.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.22 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₇H₁₆ClF₃NO [M + H]⁺ 342.0867, found 342.0869.

2-Chloro-N-(3-fluorophenyl)-2-phenylbutanamide (E7)

According to general procedure **SM-A** with 3-fluoroaniline (1.11 g, 10 mmol, 1.0 equiv.) to afford **E7** as a white solid (2.22 g, 76% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.63 – 7.56 (m, 2H), 7.53 (dt, *J* = 10.8, 2.3 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.31 – 7.23 (m, 1H), 7.15 (ddd, *J* = 8.1, 2.1, 1.0 Hz, 1H), 6.84 (tdd, *J* = 8.3, 2.5, 0.9 Hz, 1H), 2.65 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.42 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 163.0 (d, *J* = 245.5 Hz), 140.0, 138.7 (d, *J* = 11.1 Hz), 130.1 (d, *J* = 9.4 Hz), 128.63, 128.58, 126.3, 115.1 (d, *J* = 3.0 Hz), 111.6 (d, *J* = 21.4 Hz), 107.4 (d, *J* = 26.5 Hz), 79.4, 34.9, 9.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –111.14 (s, 1F). HRMS (ESI) *m/z* calcd. for C₁₆H₁₆ClFNO [M + H]⁺ 292.0899, found 292.0898.

2-Chloro-N-(3,5-dimethylphenyl)-2-phenylbutanamide (E8)

According to general procedure **SM-A** with 3,5-dimethylaniline (1.21 g, 10 mmol, 1.0 equiv.) to afford **E8** as a white solid (2.47 g, 82% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.65 – 7.55 (m, 2H), 7.43 – 7.28 (m, 3H), 7.20 (s, 2H), 6.79 (s, 1H), 2.67 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.42 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.30 (s, 6H), 1.08 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 140.5, 138.8, 137.0, 128.5, 128.4, 126.6, 126.3, 117.7, 79.4, 34.8, 21.3, 9.5.

HRMS (ESI) m/z calcd. for C₁₈H₂₁ClNO [M + H]⁺ 302.1306, found 302.1307.

2-Chloro-N-(3,5-dimethoxyphenyl)-2-phenylbutanamide (E9)

According to general procedure **SM-A** with 3,5-dimethoxyaniline (1.53 g, 10 mmol, 1.0 equiv.) to afford **E9** as a white solid (2.50 g, 75% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.69 – 7.52 (m, 2H), 7.44 – 7.29 (m, 3H), 6.79 (d, *J* = 2.2 Hz, 2H), 6.27 (t, *J* = 2.3 Hz, 1H), 3.78 (s, 6H), 2.66 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.42 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.08 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.9, 161.0, 140.3, 138.9, 128.6, 128.5, 126.3, 97.9, 97.4, 79.3, 55.4, 34.8, 9.5.

HRMS (ESI) m/z calcd. for C₁₈H₂₁ClNO₃ [M + H]⁺ 334.1204, found 334.1205.

2-Chloro-N-(naphthalen-2-yl)-2-phenylbutanamide (E10)

According to general procedure **SM-A** with 2-naphthylamine (1.43 g, 10 mmol, 1.0 equiv.) to afford **E10** as a white solid (2.59 g, 80% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.31 (d, J = 2.1 Hz, 1H), 7.87 – 7.76 (m, 3H), 7.72 – 7.62 (m, 2H), 7.54 – 7.32 (m, 6H), 2.74 (dq, J = 14.3, 7.1 Hz, 1H), 2.49 (dq, J = 14.4, 7.2 Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 140.4, 134.6, 133.7, 130.9, 128.8, 128.6, 128.5, 127.7, 127.6, 126.6, 126.4, 125.3, 119.7, 116.8, 79.5, 35.0, 9.5. HRMS (ESI) *m/z* calcd. for C₂₀H₁₉ClNO [M + H]⁺ 324.1150, found 324.1151.

2-Chloro-*N*-(4-methoxyphenyl)-2-phenylbutanamide (E11)

According to general procedure **SM-A** with *p*-anisidine (1.23 g, 10 mmol, 1.0 equiv.) to afford **E11** as a slightly yellow solid (2.61 g, 86% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.69 – 7.57 (m, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.29 (m, 3H), 6.93 – 6.82 (m, 2H), 3.79 (s, 3H), 2.67 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.42 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.08 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 156.8, 140.6, 130.2, 128.5, 128.4, 126.3, 121.8, 114.1, 79.4, 55.5, 34.9, 9.5.

HRMS (ESI) m/z calcd. for C₁₇H₁₉ClNO₂ [M + H]⁺ 304.1099, found 304.1098.

General procedure SM-B for the synthesis of tertiary α -chloroamides (E12–E28, E62')

To a solution of corresponding aryl acetic acid (20.0 mmol, 1.0 equiv.) in anhydrous THF (40.0 mL) was added LDA (44.0 mL, 44.0 mmol, 2.2 equiv., 1.0 M in THF) via syringe at -78 °C under argon. The reaction was stirred at -78 °C for 30 min, warmed up to 0 °C and stirred for another 1 h. The solution was then cooled to -78 °C again and the corresponding alkyl iodide (21.0 mmol, 1.05 equiv.) was added in one portion. The reaction was warmed up to room temperature slowly and stirred overnight. The resulting solution was used directly in the next step.

To the resulting solution was added hexamethylphosphoramide (HMPA, 6.0 mL) and LDA (22.0 mL, 22.0 mmol, 1.1 equiv., 1.0 M in THF) via syringe at -78 °C under argon. The reaction was slowly warmed up to 0 °C and stirred for another 1 h. Then the solution was cooled to -78 °C again and carbon tetrachloride (26.24 g, 80.0 mmol, 4.0 equiv.) was added in one portion. The reaction was stirred at -78 °C for 2 h, warmed up to room temperature slowly and stirred overnight. Then, the reaction was quenched with 1.0 M HCl (60 mL) at 0 °C, extracted with ethyl acetate twice and the combined organic layer was washed by brine, dried over Na₂SO₄ and filtered. The filtrate was

then concentrated under reduced pressure to afford the crude tertiary α -chloroacetic acid, which was directly used in the next step.

To a solution of the crude acetic acid in anhydrous CH₂Cl₂ (80.0 mL) was added oxalyl chloride (3.02 g, 24.0 mmol, 1.2 equiv.) at 0 °C, and then few drops of DMF was added as catalyst. After warmed up to room temperature and stirred for 30 min, the resulting acyl chloride was cooled to -20 °C. Anhydrous triethylamine (5.05 g, 50.0 mmol, 2.5 equiv.) and 1-naphthylamine (3.43 g, 24.0 mmol, 1.2 equiv.) were added, then the reaction mixture was warmed up to room temperature and stirred at that temperature. After completion (monitored by TLC), the reaction was quenched by addition of 1.0 M HCl. The organic layer was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material which was purified by flash chromatography to yield the tertiary α -chloroamide.

2-Chloro-*N*-(naphthalen-1-yl)-2-phenylpropanamide (E12)

According to general procedure **SM-B** with 2-phenylacetic acid (2.72 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E12** as a white amorphous solid (1.21 g, 19% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 7.94 – 7.86 (m, 1H), 7.78 – 7.72 (m, 4H), 7.59 – 7.37 (m, 6H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 141.5, 134.1, 131.7, 128.9, 128.8, 128.7, 127.0, 126.6, 126.14, 126.10, 125.7, 120.2, 73.9, 30.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₇ClNO [M + H]⁺ 310.0993, found 310.0992.

2-Chloro-N-(naphthalen-1-yl)-2-phenylpentanamide (E13)

According to general procedure **SM-B** with 2-phenylacetic acid (2.72 g, 20 mmol, 1.0 equiv.) and 1-iodopropane (3.57 g, 21 mmol, 1.05 equiv.) to afford **E13** as a yellowish amorphous solid (0.85 g, 13% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.76 – 7.68 (m, 4H), 7.60 – 7.29 (m, 6H), 2.74 – 2.60 (m, 1H), 2.48 – 2.38 (m, 1H), 1.69 – 1.56 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 140.8, 134.1, 131.7, 128.8, 128.7, 128.6, 127.0, 126.6, 126.4, 126.11, 126.07, 125.7, 120.2, 120.1, 79.3, 43.8, 18.5, 13.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₁ClNO [M + H]⁺ 338.1306, found 338.1306

2-Chloro-N-(naphthalen-1-yl)-2,4-diphenylbutanamide (E14)

According to general procedure **SM-B** with 2-phenylacetic acid (1.36 g, 10 mmol, 1.0 equiv.) and (2-iodoethyl)benzene (2.44 g, 10.5 mmol, 1.05 equiv.) to afford **E14** as a yellow amorphous solid (0.85 g, 21% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.94 – 7.89 (m, 1H), 7.82 – 7.75 (m, 4H), 7.59 – 7.51 (m, 3H), 7.50 – 7.39 (m, 3H), 7.36 – 7.21 (m, 5H), 3.12 – 3.02 (m, 1H), 2.99 – 2.90 (m, 2H), 2.82 – 2.71 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 141.0, 140.4, 134.1, 132.0, 128.9, 128.83, 128.76, 128.6, 128.5, 127.1, 126.7, 126.35, 126.25, 126.18, 126.15, 125.7, 120.4, 120.2, 78.8, 44.0, 31.7.

HRMS (ESI) m/z calcd. for C₂₆H₂₃ClNO [M + H]⁺ 400.1463, found 400.1464.

2-Chloro-5,5,5-trifluoro-N-(naphthalen-1-yl)-2-phenylpentanamide (E15)

According to general procedure **SM-B** with 2-phenylacetic acid (1.36 g, 10 mmol, 1.0 equiv.) and 1,1,1-trifluoro-3-iodopropane (2.35 g, 10.5 mmol, 1.05 equiv.) to afford **E15** as an off-white amorphous solid (0.61 g, 16% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.94 – 7.86 (m, 1H), 7.81 – 7.71 (m, 3H), 7.68 – 7.60 (m, 1H), 7.57 – 7.42 (m, 6H), 3.01 – 2.89 (m, 1H), 2.79 – 2.67 (m, 1H), 2.57 – 2.24 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.7, 139.0, 134.1, 131.3, 129.2, 129.1, 128.9, 128.2 (q, *J* = 276.5 Hz), 127.1, 126.7, 126.5, 126.2, 126.1, 125.7, 120.5, 120.1, 76.8, 34.8 (q, *J* = 3.3 Hz), 30.3 (q, *J* = 29.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ –66.06 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₁H₁₈ClF₃NO [M + H]⁺ 392.1024, found 392.1023.

2-Chloro-4-methoxy-N-(naphthalen-1-yl)-2-phenylbutanamide (E16)

According to general procedure **SM-B** with 2-phenylacetic acid (1.36 g, 10 mmol, 1.0 equiv.) and 1-iodo-2-methoxyethane (1.95 g, 10.5 mmol, 1.05 equiv.) to afford **E16** as a brown amorphous solid (0.96 g, 27% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.79 – 7.72 (m, 4H), 7.57 – 7.38 (m, 6H), 3.81 – 3.63 (m, 2H), 3.34 (s, 3H), 3.15

(ddd, J = 14.6, 8.4, 6.5 Hz, 1H), 2.74 (ddd, J = 14.3, 8.2, 4.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 140.4, 134.1, 131.7, 128.83, 128.82, 128.77, 127.1, 126.6, 126.3, 126.2, 126.1. 125.7, 120.3, 120.2, 76.6, 69.2, 58.8, 40.8. HRMS (ESI) *m/z* calcd. for C₂₁H₂₁ClNO₂ [M + H]⁺ 354.1255, found 354.1256.

2,6-Dichloro-N-(naphthalen-1-yl)-2-phenylhexanamide (E17)

According to general procedure **SM-B** with 2-phenylacetic acid (1.36 g, 10 mmol, 1.0 equiv.) and 1-chloro-4-iodobutane (2.29 g, 10.5 mmol, 1.05 equiv.) to afford **E17** as a brown amorphous solid (0.63 g, 16% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.00 (d, J = 7.4 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.78 – 7.69 (m, 4H), 7.58 – 7.37 (m, 6H), 3.62 – 3.51 (m, 2H), 2.79 – 2.65 (m, 1H), 2.56 – 2.41 (m, 1H), 1.98 – 1.69 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 140.3, 134.1, 131.6, 128.8, 128.8, 128.7, 127.1, 126.7, 126.3, 126.24, 126.16, 125.7, 120.3, 120.2, 78.9 44.6, 41.1, 32.4, 22.7.

HRMS (ESI) m/z calcd. for C₂₂H₂₂Cl₂NO [M + H]⁺ 386.1073, found 386.1075

2-Chloro-N-(naphthalen-1-yl)-2-phenylpent-4-enamide (E18)

According to general procedure **SM-B** with 2-phenylacetic acid (1.36 g, 10 mmol, 1.0 equiv.) and 3-bromoprop-1-ene (1.27 g, 10.5 mmol, 1.05 equiv.) to afford **E18** as a yellow amorphous solid (0.51 g, 14% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.88 – 7.81 (m, 1H), 7.73 – 7.67 (m, 4H), 7.52 – 7.32 (m, 6H), 5.89 (ddt, J = 17.1, 10.3, 6.9 Hz, 1H), 5.32 – 5.11 (m, 2H), 3.45 (dd, J = 14.5, 6.9 Hz, 1H), 3.21 (dd, J = 14.6, 7.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2, 140.1, 134.1, 132.1, 131.7, 128.8, 128.76, 128.74, 127.2, 126.6, 126.5, 126.2, 126.1, 125.7, 120.4, 120.3, 77.7, 45.9. **HRMS** (ESI) *m/z* calcd. for C₂₁H₁₉ClNO [M + H]⁺ 336.1150, found 336.1149

2-Chloro-N-(naphthalen-1-yl)-2-(p-tolyl)propenamide (E19)

According to general procedure **SM-B** with 2-(p-tolyl)acetic acid (3.00 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E19** as a white

amorphous solid (0.96 g, 15% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.11 – 8.05 (m, 1H), 7.95 – 7.88 (m, 1H), 7.83 – 7.73 (m, 2H), 7.70 – 7.63 (m, 2H), 7.63 – 7.47 (m, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.36 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.3, 138.71, 138.69, 134.1, 131.9, 129.5, 128.9, 127.1, 126.6, 126.2, 126.10, 126.09, 125.8, 120.3, 120.2, 74.0, 30.4, 21.1.

HRMS (ESI) m/z calcd. for C₂₀H₁₉ClNO [M + H]⁺ 324.1150, found 324.1153.

2-Chloro-2-(4-isobutylphenyl)-N-(naphthalen-1-yl)propenamide (E20)

According to general procedure **SM-B** with slightly modification. 2-(4-isobutylphenyl)propanoic acid (2.06 g, 10 mmol, 1.0 equiv.) and LDA (22.0 mL, 22.0 mmol, 2.2 equiv., 1.0 M in THF) to afford **E20** as a white amorphous solid (1.27 g, 35% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.00 (d, J = 7.6, 1.0 Hz, 1H), 7.88 – 7.79 (m, 1H), 7.70 – 7.56 (m, 4H), 7.50 – 7.40 (m, 3H), 7.18 (d, J = 7.5 Hz, 2H), 2.48 (d, J = 7.1 Hz, 2H), 2.27 (s, 3H), 1.87 (dp, J = 13.6, 6.7 Hz, 1H), 0.91 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 142.5, 138.8, 134.1, 131.8, 129.6, 128.9, 127.0, 126.6, 126.1, 126.1, 125.9, 125.8, 120.2, 120.1, 73.9, 45.0, 30.3, 30.2, 22.5. HRMS (ESI) m/z calcd. for C_{23H25}ClNO [M + H]⁺ 366.1619, found 366.1624.

2-(4-(*tert*-Butyl)phenyl)-2-chloro-N-(naphthalen-1-yl)butanamide(E21)

According to general procedure **SM-B** with 2-(4-(*tert*-butyl)phenyl)acetic acid (1.92 g, 10 mmol, 1.0 equiv.) and iodoethane (1.64 g, 10.5 mmol, 1.05 equiv.) to afford **E21** as a yellow amorphous solid (1.25 g, 33% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.91 – 7.83 (m, 1H), 7.75 – 7.68 (m, 2H), 7.65 – 7.59 (m, 2H), 7.54 – 7.40 (m, 5H), 2.76 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.49 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.33 (s, 9H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 151.6, 137.5, 134.0, 131.7, 128.8, 127.0, 126.9, 126.5, 126.14, 126.05, 125.96, 125.8, 125.7, 125.6, 120.2, 120.0, 80.1, 34.6, 34.6, 31.3, 31.2, 9.6.

HRMS (ESI) m/z calcd. For C₂₄H₂₇ClNO [M + H]⁺ 380.1776, found 380.1775.

2-Chloro-2-(3-methoxyphenyl)-N-(naphthalen-1-yl)propenamide (E22)

According to general procedure **SM-B** with 2-(4-methoxyphenyl)acetic acid (3.32 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E22** as a white amorphous solid (0.74 g, 11% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.06 – 8.00 (m, 1H), 7.94 – 7.86 (m, 1H), 7.78 – 7.70 (m, 2H), 7.57 – 7.47 (m, 3H), 7.43 – 7.35 (m, 1H), 7.35 – 7.26 (m, 2H), 6.98 – 6.91 (m, 1H), 3.86 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 159.8, 142.9, 134.1, 131.7, 129.9, 128.8, 127.1, 126.6, 126.1, 125.7, 120.21, 120.20,118.4, 113.9, 112.4, 73.6, 55.4, 30.3.

HRMS (ESI) m/z calcd. for C₂₀H₁₉ClNO₂ [M + H]⁺ 340.1099, found 340.1101.

2-Chloro-2-(4-chlorophenyl)-N-(naphthalen-1-yl)propenamide (E23)

According to general procedure **SM-B** with 2-(4-chlorophenyl)acetic acid (3.41 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E23** as a white amorphous solid (1.27 g, 18% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.99 (d, J = 7.4 Hz, 1H), 7.94 – 7.85 (m, 1H), 7.77 – 7.70 (m, 2H), 7.67 – 7.61 (m, 2H), 7.57 – 7.46 (m, 3H), 7.42 – 7.36 (m, 2H), 2.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 140.1, 134.8, 134.1, 131.5, 128.9, 127.6, 127.0, 126.7, 126.3, 126.2, 125.7, 120.2, 120.1, 73.3, 30.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₆Cl₂NO [M + H]⁺ 344.0603, found 344.0606.

2-Chloro-2-(3-fluorophenyl)-N-(naphthalen-1-yl)propenamide (E24)

According to general procedure **SM-B** with 2-(3-fluorophenyl)acetic acid (3.08 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E24** as a yellowish amorphous solid (1.32 g, 20% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.94 – 7.87 (m, 1H), 7.80 – 7.73 (m, 2H), 7.61 – 7.37 (m, 6H), 7.15 – 7.06 (m, 1H), 2.32 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 162.8 (d, J = 247.0 Hz), 143.9 (d, J = 7.3 Hz), 134.1, 131.5, 130.4 (d, J = 8.3 Hz), 128.9, 127.0, 126.7, 126.3, 126.2, 125.7, 121.8 (d, J = 3.1 Hz), 120.3, 120.1, 115.7 (d, J = 21.1 Hz), 113.7 (d, J = 23.9 Hz), 73.1, 30.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ –111.75 – –111.85 (m, 1F). **HRMS** (ESI) *m/z* calcd. for C₁₉H₁₆ClFNO [M + H]⁺ 328.0899, found 328.0901.

2-Chloro-N-(naphthalen-1-yl)-2-(3-(trifluoromethyl)phenyl)propenamide (E25)

According to general procedure **SM-B** with 2-(3-(trifluoromethyl)phenyl)acetic acid (4.08 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E25** as a yellowish amorphous solid (2.4 g, 32% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.00 (s, 1H), 7.91 (d, J = 7.5, 1.1 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.75 – 7.68 (m, 2H), 7.64 – 7.59 (m, 1H), 7.55 – 7.42 (m, 4H), 2.30 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 142.6, 134.1, 131.5, 131.2 (q, *J* = 32.5 Hz), 129.7, 129.4, 128.9, 127.3, 126.8, 126.6, 126.3, 125.7, 125.6 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.6 Hz), 123.1 (q, *J* = 3.9 Hz), 120.7, 120.2, 73.0, 30.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.51 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₀H₁₆ClF₃NO [M + H]⁺ 378.0867, found 378.0870.

2-(3-Benzoylphenyl)-2-chloro-N-(naphthalen-1-yl)propenamide (E26)

According to general procedure SM-A with 2-(4-benzoylphenyl)propanoic acid (2.54 g, 10 mmol, 1.0 equiv.) and naphthalen-1-amine (1.43 g, 10 mmol, 1.0 equiv.) to afford E26 as a brown viscous liquid (0.91 g, 22% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.18 (t, *J* = 1.9 Hz, 1H), 7.97 – 7.83 (m, 3H), 7.81 – 7.69 (m, 5H), 7.61 – 7.38 (m, 7H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.9, 168.8, 142.0, 138.0, 137.2, 134.1, 132.7, 131.5, 130.3, 130.08, 130.06, 128.9, 128.8, 128.4, 127.8, 127.2, 126.7, 126.4, 126.2, 125.7, 120.5, 120.2, 73.3, 30.3.

HRMS (ESI) m/z calcd. for C₂₆H₂₁ClNO₂ [M + H]⁺ 414.1255, found 414.1259.

2-Chloro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)-N-(naphthalen-1-yl)propenamide (E27)

According to general procedure **SM-B** with slightly modification. 2-(2-fluoro-[1,1'biphenyl]-4-yl)propanoic acid (2.44 g, 10 mmol, 1.0 equiv.) and LDA (22.0 mL, 22.0 mmol, 2.2 equiv., 1.0 M in THF) to afford **E27** as a white amorphous solid (2.30 g, 57%) yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.97 – 7.88 (m, 1H), 7.87 – 7.81 (m, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.64 – 7.39 (m, 11H), 2.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 159.6 (d, J = 249.3 Hz), 142.7 (d, J = 7.5 Hz), 134.9, 134.1, 131.6, 131.1 (d, J = 4.0 Hz), 129.5 (d, J = 13.6 Hz), 129.02, 129.00, 128.9, 128.6, 128.1, 127.1, 126.8, 126.4, 126.2, 125.7, 122.1 (d, J = 3.5 Hz), 120.2 (d, J = 15.7 Hz), 114.5 (d, J = 25.6 Hz), 73.0 (d, J = 1.5 Hz), 30.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.18 – –116.27 (m, 1F).

HRMS (ESI) m/z calcd. for C₂₅H₂₀ClFNO [M + H]⁺ 404.1212, found 404.1215.

2-Chloro-N-(naphthalen-1-yl)-2-(naphthalen-2-yl)propenamide (E28)

According to general procedure **SM-B** with 2-(naphthalen-2-yl)acetic acid (3.64 g, 20 mmol, 1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford **E28** as a white solid (1.66 g, 23% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.16 (d, J = 2.1 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.92 – 7.80 (m, 4H), 7.78 – 7.66 (m, 3H), 7.54 – 7.42 (m, 5H), 2.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 138.6, 134.0, 133.0, 132.8, 131.6, 128.8, 128.5, 127.5, 127.0, 126.9, 126.7, 126.6, 126.14, 126.07, 125.6, 125.0, 123.9, 120.23, 120.16, 74.0, 30.2.

HRMS (ESI) m/z calcd. for C₂₃H₁₉ClNO [M + H]⁺ 360.1150, found 360.1154.

2-Chloro-2-cyclohexyl-N-(naphthalen-1-yl)propenamide (E62')

According to general procedure SM-B with 2-cyclohexylacetic acid (2.84 g, 20 mmol,

1.0 equiv.) and iodomethane (2.98 g, 21 mmol, 1.05 equiv.) to afford E62' as a white

solid (2.58 g, 41% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 7.89 – 7.85 (m, 2H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.59 – 7.44 (m, 3H), 2.20 – 2.13 (m, 1H), 2.01 – 1.94 (m, 1H), 1.90 (s, 3H), 1.86 – 1.67 (m, 4H), 1.46 – 1.14 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 134.0, 131.7, 128.8, 126.8, 126.6, 126.0, 125.8, 125.7, 120.1, 119.8, 80.3, 47.1, 28.5, 27.5, 26.8, 26.1, 26.04, 26.02.

HRMS (ESI) m/z calcd. for C₁₉H₂₃ClNO [M + H]⁺ 316.1463, found 316.1461.

General procedure SM-C for the synthesis of tertiary α -methyl- α -alkyl- α -bromoamides (E62, E67–E70)

To a solution of corresponding alkyl acetic acid (20.0 mmol, 1.0 equiv.) in anhydrous THF (40 mL) was added LDA (1.0 M solution in THF, 50 mL, 50.0 mmol, 2.5 equiv.) dropwise via syringe at -78 °C under argon atmosphere. The resulting mixture was warmed up to -5 °C and stirred for 2 h. Then MeI (2.74 mL, 44.0 mmol, 2.2 equiv.) in anhydrous THF (10 mL) was added dropwise into the reaction mixture, and the resulting mixture was warmed up to room temperature and stirred for 12 h. The reaction mixture was quenched by saturated NH4Cl (40 mL) and concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (50 mL × 2). The combined organic layers were washed with brine (40 mL × 2), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude substituted carboxylic acid, which was directly used in the next step without further purification.

The crude substituted acetic acid was dissolved in SOCl₂ (5.0 mL), and the mixture was stirred at 80 °C for 0.5 h. The reaction was cooled to room temperature, and then Br₂ (2.20 mL, 40.0 mmol, 2.0 equiv.) and SOCl₂ (4.0 mL) were added. The resulting mixture was stirred at 50 °C for 24 h. The reaction mixture was concentrated under reduced pressure to remove the solvent and excess Br₂ to afford the crude α -bromo acyl chloride, which was subsequently dissolved in CH₂Cl₂ (40 mL) followed by the addition of 1-naphthylamine (2.86 g, 20.0 mmol, 1.0 equiv.) and triethylamine (8.34 mL, 60.0 mmol, 3.0 equiv.) at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 3 h. The reaction was quenched by HCl (1 M, 40 mL) and extracted with CH₂Cl₂ (30 mL × 2). The combined organic layers were washed with HCl (50 mL × 2) and brine (100 mL × 2), dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100/1–50/1) to give the desired product as a white solid.

2-Bromo-2-cyclohexyl-N-(naphthalen-1-yl)propenamide (E62)

According to general procedure **SM-C** with 2-cyclohexylacetic acid (2.84 g, 20 mmol) to afford **E62** as a white solid (2.30 g, 32% yield over four steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.03 (d, *J* = 7.3 Hz, 1H), 7.88 (t, *J* = 8.9 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.43 (m, 3H), 2.07 (s, 3H), 2.01 – 1.56 (m, 6H), 1.43 – 1.14 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 134.0, 132.0, 128.8, 126.9, 126.6, 126.0, 125.8, 125.7, 120.2, 119.8, 78.2, 48.2, 29.7, 28.6, 28.1, 26.08, 26.05, 26.03. HRMS (ESI) *m/z* calcd. for C₁₉H₂₃BrNO [M + H]⁺ 360.0958, found 360.3959.

2-Bromo-2-cyclopentyl-*N*-(naphthalen-1-yl)propenamide (E67)

According to general procedure **SM-C** with 2-cyclohexylacetic acid (2.56 g, 20 mmol) to afford **E67** as a white solid (2.84 g, 41% yield over four steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.65 – 7.48 (m, 3H), 2.68 – 2.55 (m, 1H), 2.14 (s, 3H), 2.01 – 1.84 (m, 2H), 1.82 – 1.57 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 134.1, 132.1, 128.9, 127.1, 126.6, 126.1, 126.0, 125.7, 120.4, 120.0, 78.5, 50.4, 30.2, 30.1, 29.0, 25.7, 25.6.

HRMS (ESI) m/z calcd. for C₁₈H₂₁BrNO [M + H]⁺ 346.0801, found 346.0802.

2-Bromo-2,3-dimethyl-N-(naphthalen-1-yl)butanamide (E68)

According to general procedure **SM-C** with 3-methylbutanoic acid (2.04 g, 20 mmol) to afford **E68** as a white solid (2.95 g, 46% yield over four steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.01 (d, *J* = 7.4 Hz, 1H), 7.88 (t, *J* = 9.0 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.43 (m, 3H), 2.41 – 2.30 (m, 1H), 2.08 (s, 3H), 1.17 – 1.10 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 134.0, 132.0, 128.8, 127.0, 126.6, 126.1, 125.9, 125.7, 120.3, 119.9, 79.5, 38.4, 29.1, 19.9, 18.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₉BrNO [M + H]⁺ 320.0645, found 320.0645.

2-Bromo-2-methyl-N-(naphthalen-1-yl)hexanamide (E69)

According to general procedure **SM-C** with hexanoic acid (2.32 g, 20 mmol) to afford **E69** as a white solid (2.47 g, 37% yield over four steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.71 (d, J = 8.2 Hz, 1H), 7.59 – 7.45 (m, 3H), 2.37 – 2.28 (m, 1H), 2.12 (s, 3H), 2.10 – 2.03 (m, 1H), 1.69 – 1.58 (m, 1H), 1.55 – 1.45 (m, 1H), 1.44 – 1.33 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 134.0, 132.0, 128.8, 127.0, 126.6, 126.1, 126.0, 125.7, 120.3, 119.9, 71.5, 44.2, 31.4, 28.5, 22.4, 13.9. HRMS (ESI) *m/z* calcd. for C₁₇H₂₁BrNO [M + H]⁺ 334.0801, found 334.0800.

2-Bromo-2-methyl-N-(naphthalen-1-yl)butanamide (E70)

According to general procedure **SM-C** with hexanoic acid (1.76 g, 20 mmol) to afford **E70** as a white solid (2.66 g, 43% yield over four steps).

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 7.99 (d, *J* = 7.5 Hz, 1H), 7.88 (t, *J* = 7.0 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.46 (m, 3H), 2.37 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.17 – 2.05 (m, 4H), 1.15 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 134.0, 132.0, 128.8, 127.0, 126.6, 126.1, 126.0, 125.6, 120.3, 120.0, 72.4, 37.6, 31.0, 10.9.

HRMS (ESI) m/z calcd. for C₁₅H₁₇BrNO [M + H]⁺ 306.0488, found 306.0488.

General procedure SM-D for preparation of β -lactam of E71, E76–E87

1-Benzyl-3-bromo-3-phenylazetidin-2-one (E71)

To a solution of the atropic acid (1.48 g, 10.0 mmol) in anhydrous CH₂Cl₂ (30 mL) was added oxalyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) at 0 °C, and then a few drops of DMF was added as catalyst. After warmed up to room temperature and stirred for 30 min, the resulting acyl chloride was cooled to -20 °C. Anhydrous triethylamine (2.53 g, 25.0 mmol, 2.5 equiv.) and benzylamine (1.18 g, 11.0 mmol, 1.1 equiv.) were added, and then the reaction mixture was warmed up to room temperature and stirred at that temperature. After completion (monitored by TLC), the reaction was quenched by addition of 1.0 M HCl. The organic layer was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material, which was purified by flash chromatography to yield acrylamide **E71-b** (2.14 g, 90%).

E71 was synthesized according to a modified literature procedure²: to a mixture of E71-b (1.19 g, 5.0 mmol) and sodium acetate (1.23 g, 15.0 mmol) in chloroform (30 mL) was added bromine (0.10 mL, 10.0 mmol) dropwise at 0 °C under argon atmosphere. After being stirred for 40 min, the mixture was poured into a solution of 10% sodium thiosulfate, and then extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure to give E71-c. The crude product was used directly in the next step. A mixture of the dibromide E71-c and potassium carbonate (2.07 g, 15.0 mmol) in acetone (20 mL) was heated to reflux for 24 h under argon atmosphere. After being cooled to room temperature, the mixture was filtered through a short pat of silica gel column. The filtrate was concentrated under reduced pressure, and then the residue was purified by column chromatography on silica gel to afford the β -lactam E71 as a white solid (1.00 g, 63%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.52 (m, 2H), 7.42 – 7.28 (m, 6H), 7.25 – 7.18 (m, 2H), 4.56 (d, J = 15.1 Hz, 1H), 4.39 (d, J = 15.2 Hz, 1H), 3.88 (d, J = 6.0 Hz, 1H), 3.86 (d, J = 6.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 137.5, 134.3, 129.1, 129.0, 128.9, 128.1, 127.1, 60.5, 57.6, 46.2.

HRMS (ESI) m/z calcd. for C₁₆H₁₅BrNO [M + H]⁺ 316.0332, found 316.0334.

3-Bromo-1-ethyl-3-phenylazetidin-2-one (E76)

According to **general procedure SM-D** with atropic acid (0.74 g, 5.0 mmol, 1.0 equiv.) and ethylamine (0.25 g, 5.5 mmol, 1.1 equiv.) to afford **E76** as a colorless oil (0.902 g, 71% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.42 – 7.29 (m, 3H), 4.00 (d, J = 6.0 Hz, 1H), 3.98 (d, J = 6.0 Hz, 1H), 3.44 – 3.24 (m, 2H), 1.19 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 137.8, 129.0, 128.8, 127.1, 60.1, 57.4, 36.9, 12.3. HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNO [M + H]⁺ 254.0175, found 254.0173.

3-Bromo-1-cyclopropyl-3-phenylazetidin-2-one (E77)

According to **general procedure SM-D** with atropic acid (0.74 g, 5.0 mmol, 1.0 equiv.) and cyclopropylamine (0.31 g, 5.5 mmol, 1.1 equiv.) to afford **E77** as a yellowish solid (0.931 g, 70% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 2H), 7.41 – 7.29 (m, 3H), 3.95 (d, J = 6.0 Hz, 1H), 3.92 (d, J = 5.9 Hz, 1H), 2.61 (tt, J = 7.2, 3.8 Hz, 1H), 0.91 – 0.72 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 137.7, 129.1, 128.9, 127.1, 59.6, 58.6, 24.6, 5.3. HRMS (ESI) m/z calcd. for C₁₂H₁₃BrNO [M + H]⁺ 266.0175, found 266.0174.

3-Bromo-1-cyclopentyl-3-phenylazetidin-2-one (E78)

According to **general procedure SM-D** with atropic acid (0.742 g, 5.0 mmol, 1.0 equiv.) and cyclopentylamine (0.47 g, 5.5 mmol, 1.1 equiv.) to afford **E78** as a yellow oil (0.956 g, 65% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.57 (m, 2H), 7.41 – 7.29 (m, 3H), 4.18 – 4.03 (m, 1H), 3.96 (d, *J* = 5.9 Hz, 1H), 3.94 (d, *J* = 5.8 Hz, 1H), 1.99 – 1.53 (m, 8H).

¹³C NMR (100 MHz, CDCl₃) δ 164.4, 137.8, 129.0, 128.8, 127.1, 59.3, 56.2, 53.7, 30.0, 29.9, 23.99, 23.95.

HRMS (ESI) m/z calcd. for C₁₄H₁₇BrNO [M + H]⁺ 294.0488, found 294.0490.

3-Bromo-1-cyclohexyl-3-phenylazetidin-2-one (E79)

According to **general procedure SM D** with atropic acid (0.74 g, 5.0 mmol, 1.0 equiv.) and cyclohexylamine (0.55 g, 5.5 mmol, 1.1 equiv.) to afford **E79** as a yellowish solid (0.924 g, 60% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.59 (m, 2H), 7.44 – 7.30 (m, 3H), 3.98 (s, 2H), 3.64 (tt, *J* = 11.0, 3.9 Hz, 1H), 2.03 – 1.93 (m, 1H), 1.91 – 1.72 (m, 3H), 1.69 – 1.60 (m, 1H), 1.48 – 1.25 (m, 4H), 1.22 – 1.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 137.8, 129.0, 128.8, 127.1, 59.4, 55.7, 51.5, 30.4, 30.2, 25.2, 24.64, 24.62.

HRMS (ESI) m/z calcd. for C₁₅H₁₉BrNO [M + H]⁺ 308.0645, found 308.0647.

3-Bromo-1-cycloheptyl-3-phenylazetidin-2-one (E80)

According to **general procedure SM D** with atropic acid (0.74 g, 5.0 mmol, 1.0 equiv.) and cycloheptylamine (0.62 g, 5.5 mmol, 1.1 equiv.) to afford **E80** as a yellowish-brown solid (1.03 g, 64% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.44 – 7.31 (m, 3H), 3.99 (s, 2H), 3.90 – 3.77 (m, 1H), 2.06 – 1.96 (m, 1H), 1.95 – 1.83 (m, 1H), 1.78 – 1.40 (m, 10H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.8, 137.8, 129.0, 128.8, 127.1, 59.7, 55.9, 53.5, 32.5, 32.2, 27.9, 27.8, 24.1.

HRMS (ESI) m/z calcd. for C₁₆H₂₁BrNO [M + H]⁺ 322.0801, found 322.0804.

1-Benzyl-3-bromo-3-(4-bromophenyl)azetidin-2-one (E81)

According to **general procedure SM-D** with 2-(4-bromophenyl)acrylic acid (1.14 g, 5.0 mmol, 1.0 equiv.) and benzylamine (0.59 g, 5.5 mmol, 1.1 equiv.) to afford **E81** as a white solid (1.32 g, 67% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 4H), 7.40 – 7.28 (m, 3H), 7.24 – 7.20 (m, 2H), 4.53 (d, *J* = 15.1 Hz, 1H), 4.40 (d, *J* = 15.1 Hz, 1H), 3.85 (d, *J* = 6.1 Hz, 1H), 3.83 (d, *J* = 6.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.6, 136.6, 134.1, 132.1, 129.0, 128.8, 128.2, 128.1, 123.4, 59.4, 57.4, 46.3.

HRMS (ESI) m/z calcd. for C₁₆H₁₄Br₂NO [M + H]⁺ 393.9437, found 393.9435.

1-Benzyl-3-bromo-3-(3-bromophenyl)azetidin-2-one (E82)

According to **general procedure SM-D** with 2-(3-bromophenyl)acrylic acid (1.14 g, 5.0 mmol, 1.0 equiv.) and benzylamine (0.59 g, 5.5 mmol, 1.1 equiv.) to afford **E82** as a white solid (1.40 g, 71% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (t, J = 1.8 Hz, 1H), 7.55 (ddd, J = 7.9, 1.8, 1.0 Hz, 1H), 7.47 (ddd, J = 8.1, 1.9, 1.0 Hz, 1H), 7.36 (m, 3H), 7.25 – 7.20 (m, 3H), 4.55 (d, J = 15.1 Hz, 1H), 4.39 (d, J = 15.0 Hz, 1H), 3.84 (s, 2H).

¹³C NMR (10 MHz, CDCl₃) δ 164.5, 139.7, 134.1, 132.3, 130.5, 130.2, 129.1, 128.23, 128.15, 125.8, 122.8, 59.1, 57.5, 46.3.

HRMS (ESI) m/z calcd. for C₁₆H₁₄Br₂NO [M + H]⁺ 393.9437, found 393.9435.

1-Benzyl-3-bromo-3-(p-tolyl)azetidin-2-one (E83)

According to **general procedure SM-D** with 2-(*p*-tolyl)acrylic acid (0.81 g, 5.0 mmol, 1.0 equiv.) and benzylamine (0.59 g, 5.5 mmol, 1.1 equiv.) to afford **E83** as a white solid (1.14 g, 69% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.38 – 7.28 (m, 3H), 7.25 – 7.21 (m, 2H), 7.20 – 7.15 (m, 2H), 4.54 (d, *J* = 15.1 Hz, 1H), 4.39 (d, *J* = 15.1 Hz, 1H), 3.87 (d, *J* = 6.0 Hz, 1H), 3.85 (d, *J* = 6.0 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 139.2, 134.3, 129.6, 129.0, 128.07, 128.05, 127.0, 60.7, 57.6, 46.2, 21.2.

HRMS (ESI) m/z calcd. for C₁₇H₁₇BrNO [M + H]⁺ 330.0488, found 330.0485.

1-Benzyl-3-bromo-3-(4-(tert-butyl)phenyl)azetidin-2-one (E84)

According to **general procedure SM-D** with 2-(4-(*tert*-butyl)phenyl)acrylic acid (1.02 g, 5.0 mmol, 1.0 equiv.) and benzylamine (0.59 g, 5.5 mmol, 1.1 equiv.) to afford **E84** as a white solid (1.02 g, 55% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 7.41 – 7.29 (m, 5H), 7.25 – 7.21 (m, 2H), 4.56 (d, J = 15.2 Hz, 1H), 4.35 (d, J = 15.2 Hz, 1H), 3.89 (d, J = 6.0 Hz, 1H), 3.85 (d, J = 6.0 Hz, 1H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 152.3, 134.3, 129.0, 128.1, 128.1, 126.9, 125.9, 60.7, 57.6, 46.2, 34.7, 31.2.

HRMS (ESI) m/z calcd. for C₂₀H₂₃BrNO [M + H]⁺ 372.0958, found 372.0956.

3-Bromo-1-(4-bromophenyl)-3-cyclopentylazetidin-2-one (E85)

According to general procedure SM-D with 2-cyclopentylacrylic acid (0.70 g, 5.0 mmol, 1.0 equiv.) and 4-bromoaniline (0.95 g, 5.5 mmol, 1.1 equiv.) to afford E85 as a white solid (1.31 g, 70% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.25 – 7.20 (m, 2H), 3.94 (d, J = 6.4 Hz, 1H), 3.90 (d, J = 6.5 Hz, 1H), 2.58 – 2.42 (m, 1H), 2.06 – 1.93 (m, 1H), 1.91 – 1.80 (m, 1H), 1.79 – 1.61 (m, 4H), 1.56 – 1.44 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.1, 136.5, 132.3, 118.2, 117.4, 66.6, 54.3, 45.6, 29.3, 29.1, 25.7, 25.6.

HRMS (ESI) m/z calcd. for C₁₄H₁₆Br₂NO [M + H]⁺ 371.9593, found 371.9596.

3-Bromo-1-(4-bromophenyl)-3-isopropylazetidin-2-one (E86)

According to **general procedure SM-D** with 3-methyl-2-methylenebutanoic acid (0.57 g, 5.0 mmol, 1.0 equiv.) and 4-bromoaniline (0.95 g, 5.5 mmol, 1.1 equiv.) to afford **E86** as a white solid (1.28 g, 74% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 7.28 – 7.22 (m, 2H), 3.91 (d, J = 6.8 Hz, 1H), 3.90 (d, J = 6.8 Hz, 1H), 2.20 – 2.10 (m, 1H), 1.19 (d, J = 6.5 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.1, 136.5, 132.3, 118.2, 117.4, 69.4, 54.2, 34.5, 18.6, 18.5.

HRMS (ESI) m/z calcd. for C₁₂H₁₄Br₂NO [M + H]⁺ 345.9437, found 345.9438.

3-Bromo-1-(4-bromophenyl)-3-ethylazetidin-2-one (E87)

According to general procedure SM-D with 2-methylenebutanoic acid (0.50 g, 5.0

mmol, 1.0 equiv.) and 4-bromoaniline (0.95 g, 5.5 mmol, 1.1 equiv.) to afford **E87** as a white solid (1.33 g, 80% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 2H), 7.30 – 7.24 (m, 2H), 3.98 (d, J = 6.4 Hz, 1H), 3.93 (d, J = 6.4 Hz, 1H), 2.27 – 2.10 (m, 2H), 1.19 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 163.2, 136.5, 132.3, 118.2, 117.4, 63.4, 55.0, 30.7, 10.1. HRMS (ESI) *m*/*z* calcd. for C₁₁H₁₂Br₂NO [M + H]⁺ 331.9280, found 331.9281.

Enantioconvergent cross-coupling of tertiary electrophiles with alkynes

General procedure A: Substrate scope of α -aminocarbonyl- α -aryl alkyl chlorides and alkynes (Table 2, 1–48, 50 and 53)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*11 (8.8 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure B: Substrate scope of alkynes (Table 2, 49, 51, 52, 54–61)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*12 (9.4 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.
General procedure C: Substrate scope of racemic tertiary alkyl halides. (Table 3, 62–70)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $Cu(OAc)_2$ (1.8 mg, 0.010 mmol, 10 mol%), L*16 (12.4 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D: Substrate scope of racemic α -bromo- β -lactams. (Table 4, 71, 76–81, and 83)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (2.5 mg, 0.013 mmol, 10 mol%), L*17 (7.4 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and Et₂O (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.12 mmol, 1.2 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 60 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure E: Substrate scope of racemic α -bromo- β -lactams. (Table 4, 72–75, 82, and 84)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (2.5 mg, 0.013 mmol, 10 mol%), L*18 (9.0 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and Et₂O (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.12 mmol, 1.2 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 60 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure F: Substrate scope of racemic α -bromo- β -lactams. (Table 4, 85–87)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (2.5 mg, 0.013 mmol, 10 mol%), L*19 (7.2 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.12 mmol, 1.2 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 40 °C for 64 h. Upon completion, the mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The procedure for the large-scale reaction (Table 2, 1)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (72.3 mg, 0.20 mmol, 10 mol%), L*11 (176.4 mg, 0.30 mmol, 15 mol%), Cs₂CO₃ (1.95 g, 6.0 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 40 mL). Then, alkyl halide E1 (547.5 mg, 2.0 mmol, 1.0 equiv.) and alkyne A1 (329 μ L, 3.0 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 40/1) to afford the desired product 1 as a slightly yellow solid (475.2 mg, 70% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (minor) = 18.963 min, t_R (major) = 21.592 min.

General procedure for the synthesis of racemates

General procedure G for the synthesis of racemates 1-70

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), Lrac (2.9 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure H for the synthesis of racemates 71-84

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (2.5 mg, 0.013 mmol, 10 mol%), Lrac (2.9 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and Et₂O (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.12 mmol, 1.2 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 36 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure I for the synthesis of racemates 85-87

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuTc (2.5 mg, 0.013 mmol, 10 mol%), Lrac (2.9 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, alkyl halide (0.10 mmol, 1.0 equiv.) and alkyne (0.12 mmol, 1.2 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 50 °C for 36 h. Upon completion, the mixture was then allowed to cool to room temperature,

the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-2-Ethyl-N,2,4-triphenylbut-3-ynamide (1)

According to the **general procedure A**, substrate **E1** (27.4 mg, 0.10 mmol) was employed to yield the product **1** as a slightly yellow solid (24.8 mg, 73% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (minor) = 24.71 min, t_R (major) = 28.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.83 – 7.74 (m, 2H), 7.64 – 7.56 (m, 2H), 7.55 – 7.48 (m, 2H), 7.44 – 7.35 (m, 5H), 7.34 – 7.27 (m, 3H), 7.14 – 7.05 (m, 1H), 2.53 (dq, J = 13.5, 7.3 Hz, 1H), 2.19 (dq, J = 13.5, 7.3 Hz, 1H), 1.08 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 139.8, 137.7, 131.7, 129.0, 128.9, 128.6, 128.5, 127.66, 126.62, 124.4, 122.2, 119.7, 89.9, 88.7, 55.3, 33.3, 10.2. **HRMS** (ESI) *m/z* calcd. for C₂₄H₂₂NO [M + H]⁺ 340.1696, found 340.1691. [α]²⁷_D = +50.0 (*c* 0.50, CH₂Cl₂).

(S)-2-Ethyl-N-(4-methoxyphenyl)-2,4-diphenylbut-3-ynamide (2)

According to the **general procedure A**, substrate **E11** (30.4 mg, 0.10 mmol) was employed to yield the product **2** as a white solid (20.0 mg, 54% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.60 mL/min, λ = 254 nm), t_R (major) = 18.37 min, t_R (minor) = 21.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.85 – 7.71 (m, 2H), 7.67 – 7.51 (m, 2H), 7.49 – 7.34 (m, 7H), 7.34 – 7.28 (m, 1H), 6.89 – 6.79 (m, 2H), 3.77 (s, 3H), 2.51 (dq, *J* = 13.3, 7.1 Hz, 1H), 2.19 (dq, *J* = 13.3, 7.1 Hz, 1H), 1.08 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 156.5, 139.9, 131.7, 130.8, 128.9, 128.6, 128.5, 127.6, 126.6, 122.2, 121.5, 114.1, 89.8, 88.9, 55.5, 55.1, 33.3, 10.2.

HRMS (ESI) m/z calcd. for C₂₅H₂₄NO₂ [M + H]⁺ 370.1802, found 370.1795. [α]_D²⁷ = +45.0 (*c* 1.00, CH₂Cl₂).

(S)-N-(4-(tert-Butyl)phenyl)-2-ethyl-2,4-diphenylbut-3-ynamide (3)

According to the **general procedure A**, substrate **E3** (33.0 mg, 0.10 mmol) was employed to yield the product **3** as a colorless oil (20.6 mg, 52% yield, 92% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (minor) = 33.33 min, t_R (major) = 50.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.86 – 7.72 (m, 2H), 7.63 – 7.54 (m, 2H), 7.48 – 7.27 (m, 10H), 2.53 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.19 (dq, *J* = 13.2, 7.3 Hz, 1H), 1.29 (s, 9H), 1.08 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 147.4, 139.9, 135.1, 131.7, 128.9, 128.6, 128.5, 127.6, 126.6, 125.7, 122.2, 119.4, 89.7, 88.9, 55.2, 34.3, 33.3, 31.3, 10.2. HRMS (ESI) *m/z* calcd. for C₂₈H₃₀NO [M + H]⁺ 396.2322, found 396.2315.

 $[\alpha]_{D}^{27} = +46.0 \ (c \ 1.00, CH_2Cl_2).$

(S)-N-([1,1'-Biphenyl]-4-yl)-2-ethyl-2,4-diphenylbut-3-ynamide (4)

According to the **general procedure A**, substrate **E4** (35.0 mg, 0.10 mmol) was employed to yield the product **4** as a slightly yellow solid (26.2 mg, 63% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 33.37 min, t_R (minor) = 36.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.85 – 7.76 (m, 2H), 7.68 – 7.49 (m, 8H), 7.47 – 7.35 (m, 7H), 7.35 – 7.29 (m, 2H), 2.55 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.21 (dq, *J* = 14.3, 7.2 Hz, 1H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 140.5, 139.8, 137.4, 137.0, 131.8, 129.0, 128.8, 128.64, 128.61, 127.7, 127.6, 127.1, 126.9, 126.7, 122.2, 120.0, 90.0, 88.8, 55.4, 33.4, 10.2.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₆NO $[M + H]^+$ 416.2009, found 416.2003. $[\alpha]_D^{27} = +28.0 \ (c \ 1.00, CH_2Cl_2).$

(S)-N-(4-Bromophenyl)-2-ethyl-2,4-diphenylbut-3-ynamide (5)

According to the **general procedure A**, substrate **E5** (35.3 mg, 0.10 mmol) was employed to yield the product **5** as a slightly yellow solid (19.2 mg, 46% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 99/1, flow rate 0.50 mL/min, $\lambda = 254$ nm), t_R (major) = 25.06 min, t_R (minor) = 26.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.82 – 7.70 (m, 2H), 7.64 – 7.53 (m, 2H), 7.45 – 7.34 (m, 9H), 7.34 – 7.28 (m, 1H), 2.51 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.20 (dq, *J* = 14.3, 7.2 Hz, 1H), 1.06 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 139.5, 136.8, 131.9, 131.8, 129.0, 128.62, 128.60, 127.8, 126.6, 122.1, 121.3, 117.0, 90.1, 88.5, 55.3, 33.3, 10.1.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₁BrNO $[M + H]^+$ 418.0801, found 418.0794. $[\alpha]_D^{27} = +48.8$ (*c* 0.80, CH₂Cl₂).

(S)-2-Ethyl-2,4-diphenyl-N-(4-(trifluoromethyl)phenyl)but-3-ynamide (6)

According to the general procedure A, substrate E6 (34.2 mg, 0.10 mmol) was employed to yield the product 6 as a white solid (15.9 mg, 39% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (minor) = 21.37 min, t_R (major) = 23.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.82 – 7.72 (m, 2H), 7.67 – 7.51 (m, 6H), 7.46 – 7.36 (m, 5H), 7.35 – 7.29 (m, 1H), 2.52 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.20 (dq, *J* = 14.4, 7.3 Hz, 1H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.3, 140.7, 139.4, 131.8, 129.1, 128.67, 128.65, 127.9, 126.6, 126.2 (q, *J* = 3.9 Hz), 124.0 (q, *J* = 271.5 Hz), 122.0, 119.3, 90.2, 88.3, 55.4, 33.3, 10.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.15 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₅H₂₁F₃NO [M + H]⁺ 408.1570, found 408.1564. [α]_D²⁷ = +19.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(3-fluorophenyl)-2,4-diphenylbut-3-ynamide (7)

According to the **general procedure A**, substrate **E7** (29.2 mg, 0.10 mmol) was employed to yield the product 7 as a slightly yellow oil (13.9 mg, 39% yield, 94% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/1, flow rate 0.30 mL/min, λ = 254 nm), t_R (minor) = 23.78 min, t_R (major) = 27.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.85 – 7.75 (m, 2H), 7.66 – 7.58 (m, 2H), 7.53 (dt, J = 10.9, 2.3 Hz, 1H), 7.48 – 7.39 (m, 5H), 7.37 – 7.31 (m, 1H), 7.27 – 7.21 (m, 1H), 7.13 (ddd, J = 8.3, 2.0, 0.9 Hz, 1H), 6.82 (tdd, J = 8.4, 2.6, 0.9 Hz, 1H), 2.54 (dq, J = 13.6, 7.2 Hz, 1H), 2.22 (dq, J = 13.5, 7.3 Hz, 1H), 1.10 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 163.0 (d, J = 245.1 Hz), 139.5, 139.2 (d, J = 10.6 Hz), 131.8, 130.0 (d, J = 9.5 Hz), 129.0, 128.6, 127.8, 126.6, 122.0, 114.9 (d, J = 3.0

Hz), 111.1 (d, *J* = 21.2 Hz), 107.2 (d, *J* = 26.3 Hz), 90.1, 88.4, 55.3, 33.3, 10.1.

```
<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ –111.39 (s, 1F).
```

HRMS (ESI) m/z calcd. for C₂₄H₂₁FNO [M + H]⁺ 358.1602, found 358.1595. [α]_D²⁷ = +33.0 (*c* 1.00, CH₂Cl₂).

(S)-N-(3,5-Dimethylphenyl)-2-ethyl-2,4-diphenylbut-3-ynamide (8)

According to the **general procedure A**, substrate **E8** (30.2 mg, 0.10 mmol) was employed to yield the product **8** as a colorless oil (23.2 mg, 63% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 99/1, flow rate 0.30 mL/min, λ = 254 nm), t_R (minor) = 21.76 min, t_R (major) = 25.79 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.84 – 7.73 (m, 2H), 7.64 – 7.55 (m, 2H), 7.45 – 7.34 (m, 5H), 7.34 – 7.27 (m, 1H), 7.16 (s, 2H), 6.74 (s, 1H), 2.53 (dq, J = 13.7, 7.4 Hz, 1H), 2.28 (s, 6H), 2.19 (dq, J = 13.7, 7.4 Hz, 1H), 1.08 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 168.8, 139.9, 138.7, 137.5, 131.8, 128.9, 128.6, 128.5, 127.6, 126.6, 126.1, 122.3, 117.4, 89.8, 88.8, 55.2, 33.3, 21.3, 10.2.

HRMS (ESI) m/z calcd. for C₂₆H₂₆NO [M + H]⁺ 368.2009, found 368.2002. [α]_D²⁷ = +62.0 (*c* 1.00, CH₂Cl₂).

(S)-N-(3,5-Dimethoxyphenyl)-2-ethyl-2,4-diphenylbut-3-ynamide (9)

According to the **general procedure A**, substrate **E9** (33.4 mg, 0.10 mmol) was employed to yield the product **9** as a slightly yellow solid (17.2 mg, 43% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 96/4, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 14.39 min, t_R (minor) = 24.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.83 – 7.69 (m, 2H), 7.63 – 7.53 (m, 2H), 7.44 – 7.34 (m, 5H), 7.33 – 7.28 (m, 1H), 6.76 (d, *J* = 2.2 Hz, 2H), 6.22 (t, *J* = 2.2 Hz, 1H), 3.76 (s, 6H), 2.52 (dq, *J* = 13.1, 7.2 Hz, 1H), 2.19 (dq, *J* = 13.4, 7.3 Hz, 1H), 1.07 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 161.0, 139.7, 139.5, 131.7, 128.9, 128.59, 128.57, 127.7, 126.6, 122.1, 97.8, 96.9, 90.0, 88.6, 55.4, 33.2, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₆NO₃ [M + H]⁺ 400.1907, found 400.1900. $[\alpha]_D^{27} = +31.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-2-yl)-2,4-diphenylbut-3-ynamide (10)

According to the general procedure A, substrate E10 (32.4 mg, 0.10 mmol) was employed to yield the product 10 as a slightly yellow solid (28.8 mg, 74% yield, 86% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 19.15 min, t_R (minor) = 26.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.26 (s, 1H), 7.86 – 7.80 (m, 2H), 7.80 – 7.72 (m, 3H), 7.67 – 7.58 (m, 2H), 7.48 – 7.35 (m, 8H), 7.35 – 7.28 (m, 1H), 2.58 (dq, *J* = 14.3, 7.3 Hz, 1H), 2.24 (dq, *J* = 14.5, 7.3 Hz, 1H), 1.11 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 139.8, 135.1, 133.8, 131.8, 130.7, 129.0, 128.7, 128.62, 128.58, 127.71, 127.65, 127.5, 126.7, 126.5, 125.0, 122.2, 119.6, 116.5, 90.0, 88.7, 55.4, 33.4, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₄NO [M + H]⁺ 390.1852, found 390.1845. $[\alpha]_D^{27} = +65.0 \ (c \ 1.00, CH_2Cl_2).$

(S)-2-Ethyl-N-(naphthalen-1-yl)-2,4-diphenylbut-3-ynamide (11)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 11 as a colorless oil (32.0 mg, 82% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 214 nm), t_R (major) = 24.62 min, t_R (minor) = 29.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.90 (dd, J = 7.6, 1.6 Hz, 2H), 7.85 (dd, J = 8.2, 1.3 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.71 – 7.64 (m, 3H), 7.51 – 7.31 (m, 9H), 2.63 (dq, J = 14.3, 7.2 Hz, 1H), 2.30 (dq, J = 13.6, 7.2 Hz, 1H), 1.16 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 139.9, 134.0, 132.1, 131.8, 129.0, 128.8, 128.6, 128.6, 127.7, 126.7, 126.6, 126.3, 125.9, 125.8, 125.4, 122.1, 120.0, 119.5, 90.2, 89.2, 55.6, 33.2, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₄NO [M + H]⁺ 390.1852, found 390.1845. $[\alpha]_D^{27} = -7.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Methyl-N-(naphthalen-1-yl)-2,4-diphenylbut-3-ynamide (12)

According to the general procedure A, substrate E12 (30.9 mg, 0.10 mmol) was employed to yield the product 12 as a colorless oil (31.2 mg, 83% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 27.82 min, t_R (minor) = 34.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.06 (d, *J* = 7.5 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 2H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.70 – 7.62 (m, 3H), 7.51 – 7.34 (m, 9H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 141.3, 134.0, 132.1, 131.7, 128.9, 128.79, 128.76, 128.6, 127.8, 126.7, 126.3, 126.2, 125.9, 125.7, 125.5, 122.1, 120.0, 119.6, 90.6, 88.3, 49.6, 27.4.

HRMS (ESI) *m/z* calcd. for C₂₇H₂₂NO [M + H]⁺ 376.1696, found 376.1690. $[\alpha]_D^{27} = +5.0$ (*c* 1.00, CH₂Cl₂).

(S)-N-(Naphthalen-1-yl)-2-phenyl-2-(phenylethynyl)pentanamide (13)

According to the general procedure A, substrate E13 (33.8 mg, 0.10 mmol) was employed to yield the product 13 as a colorless oil (24.9 mg, 62% yield, 86% e.e.).

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.06 min, t_R (minor) = 9.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.06 (d, J = 7.4 Hz, 1H), 7.91 – 7.86 (m, 2H), 7.83 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.67 – 7.63 (m, 3H), 7.48 – 7.29 (m, 9H), 2.54 (ddd, J = 13.2, 11.8, 4.8 Hz, 1H), 2.20 (ddd, J = 13.2, 12.0, 4.8 Hz, 1H), 1.70 – 1.49 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 140.2, 134.0, 132.2, 131.8, 129.0, 128.8, 128.7, 128.6, 127.7, 126.7, 126.6, 126.3, 125.9, 125.8, 125.4, 122.2, 120.0, 119.5, 90.2, 89.5, 54.9, 42.1, 19.3, 14.2.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₆NO $[M + H]^+$ 404.2009, found 404.2003. $[\alpha]_D^{27} = -3.0$ (*c* 1.00, CH₂Cl₂).

(S)-N-(Naphthalen-1-yl)-2-phenethyl-2,4-diphenylbut-3-ynamide (14)

According to the general procedure A, substrate E14 (40.0 mg, 0.10 mmol) was employed to yield the product 14 as a yellow oil (28.9 mg, 62% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.81 min, t_R (minor) = 25.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.48 – 7.40 (m, 7H), 7.39 – 7.32 (m, 2H), 7.29 – 7.23 (m, 4H), 7.18 – 7.13 (m, 1H), 2.98 – 2.83 (m, 3H), 2.55 – 2.44 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 141.6, 139.8, 134.0, 132.1, 131.8, 129.1, 128.9, 128.8, 128.7, 128.5, 128.3, 127.9, 126.7, 126.6, 126.3, 125.9, 125.8, 125.5, 122.0, 120.0, 119.6, 90.6, 89.0, 54.7, 41.9, 32.4.

HRMS (ESI) m/z calcd. for C₃₄H₂₈NO [M + H]⁺ 466.2165, found 466.2160. $[\alpha]_D^{27} = -1.5$ (*c* 1.00, CH₂Cl₂).

(S)-5,5,5-Trifluoro-*N*-(naphthalen-1-yl)-2-phenyl-2-(phenylethynyl)pentanamide (15)

According to the general procedure A, substrate E15 (39.2 mg, 0.10 mmol) was employed to yield the product 15 as a colorless oil (33.7 mg, 74% yield, 89% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 18.82 min, t_R (minor) = 22.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.99 (d, J = 7.4 Hz, 1H), 7.88 – 7.83 (m, 3H), 7.69 – 7.62 (m, 4H), 7.49 – 7.42 (m, 7H), 7.41 – 7.34 (m, 2H), 2.83 – 2.72 (m, 1H), 2.54 – 2.41 (m, 2H), 2.29 – 2.18 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 138.8, 134.0, 131.9, 131.8, 129.4, 129.1, 128.9, 128.8, 128.4, 126.8, 126.42, 126.39, 126.0, 125.9, 125.7, 121.5, 119.92, 119.88, 90.9, 87.5, 53.5, 32.3 (q, *J* = 2.8 Hz), 30.8 (q, *J* = 29.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ –66.03 (s, 3F).

HRMS (ESI) m/z calcd. for C₂₉H₂₃F₃NO [M + H]⁺ 458.1726, found 458.1717. [α]_D²⁷ = +4.9 (*c* 1.00, CH₂Cl₂).

(S)-2-(2-Methoxyethyl)-N-(naphthalen-1-yl)-2,4-diphenylbut-3-ynamide (16)

According to the general procedure A, substrate E16 (35.4 mg, 0.10 mmol) was employed to yield the product 16 as a yellow oil (32.0 mg, 76% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.16 min, t_R (minor) = 31.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.99 (s, 1H), 8.01 (d, J = 7.4 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.67 – 7.63 (m, 3H), 7.47 – 7.38 (m, 7H), 7.37 – 7.31 (m, 2H), 3.77 (td, J = 9.2, 6.7 Hz, 1H), 3.60 (td, J = 9.2, 4.6 Hz, 1H), 3.32 (s, 3H), 2.99 (ddd, J = 13.4, 8.8, 6.7 Hz, 1H), 2.46 (ddd, J = 13.4, 8.7, 4.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 139.8, 133.9, 132.1, 131.7, 129.1, 128.8, 128.7, 128.6, 127.9, 126.7, 126.5, 126.2, 125.8, 125.7, 125.5, 121.9, 120.0, 119.6, 90.4, 88.5, 70.0, 58.7, 52.4, 38.7.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₆NO₂ [M + H]⁺ 420.1958, found 420.1950. $[\alpha]_D^{27} = +5.0$ (*c* 1.00, CH₂Cl₂).

(S)-6-Chloro-N-(naphthalen-1-yl)-2-phenyl-2-(phenylethynyl)hexanamide (17)

According to the **general procedure A**, substrate **E17** (38.6 mg, 0.10 mmol) was employed to yield the product **17** as a slightly yellow oil (29.8 mg, 66% yield, 89% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 33.53 min, t_R (minor) = 35.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.70 – 7.64 (m, 3H), 7.50 – 7.32 (m, 9H), 3.55 (t, *J* = 6.6 Hz, 2H), 2.63 – 2.52 (m, 1H), 2.30 – 2.19 (m, 1H), 1.96 – 1.63 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 139.8, 134.0, 132.0, 131.8, 129.1, 128.8, 128.7, 128.6, 127.8, 126.7, 126.5, 126.3, 125.9, 125.7, 125.5, 122.0, 120.0, 119.6, 90.4, 88.9, 54.7, 44.7, 39.1, 32.5, 23.3.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₇ClNO $[M + H]^+$ 452.1776, found 452.1777. $[\alpha]_D^{27} = +3.0$ (*c* 1.00, CH₂Cl₂).

(S)-N-(Naphthalen-1-yl)-2-phenyl-2-(phenylethynyl)pent-4-enamide (18)

According to the **general procedure A**, substrate **E18** (33.6 mg, 0.10 mmol) was employed to yield the product **18** as a slightly yellow oil (26.1 mg, 65% yield, 92% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 22.78 min, t_R (minor) = 26.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 8.03 (d, J = 7.4 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.82 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.68 – 7.61 (m, 3H), 7.47 – 7.39 (m, 7H), 7.39 – 7.31 (m, 2H), 5.94 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.28 – 5.20 (m, 1H), 5.18 – 5.12 (m, 1H), 3.32 (dd, J = 13.6, 7.1 Hz, 1H), 2.99 (dd, J = 13.6, 7.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 139.5, 134.0, 133.5, 132.0, 131.8, 129.0, 128.8, 128.7, 128.6, 127.8, 126.8, 126.7, 126.3, 125.9, 125.8, 125.5, 122.1, 120.0, 119.6, 119.1, 90.7, 88.9, 54.5, 44.3.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₄NO [M + H]⁺ 402.1852, found 402.1845. $[\alpha]_D^{27} = +2.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-(4-Cyanophenyl)-2-methyl-N-(naphthalen-1-yl)-2-(*p*-tolyl)but-3-ynamide (19)

According to the **general procedure A**, substrate **E19** (32.4 mg, 0.10 mmol) was employed to yield the product **19** as a yellow oil (26.0 mg, 63% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.74 min, t_R (minor) = 19.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.72 – 7.65 (m, 7H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.39 – 7.35 (m, 1H), 7.28 – 7.23 (m, 2H), 2.38 (s, 3H), 2.04 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.4, 137.9, 137.8, 134.0, 132.3, 132.2, 132.0, 129.7, 128.9, 127.1, 126.8, 126.3, 126.1, 125.9, 125.8, 125.7, 120.0, 119.8, 118.2, 112.3, 95.3, 86.0, 49.4, 27.2, 21.0.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₃N₂O [M + H]⁺ 415.1805, found 415.1797. $[\alpha]_D^{27} = +2.2$ (*c* 1.00, CH₂Cl₂).

(S)-4-(4-Cyanophenyl)-2-(4-isobutylphenyl)-2-methyl-N-(naphthalen-1-yl)but-3-

ynamide (20)

According to the general procedure A, substrate E20 (36.6 mg, 0.10 mmol) was employed to yield the product 20 as a slightly yellow solid (24.1 mg, 53% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.09 min, t_R (minor) = 13.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.00 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.72 – 7.65 (m, 7H), 7.51 – 7.43 (m, 3H), 7.36 – 7.31 (m, 1H), 7.23 (d, *J* = 8.3 Hz, 2H), 2.51 (d, *J* = 7.2 Hz, 2H), 2.05 (s, 3H), 1.93 – 1.84 (m, 1H), 0.93 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 141.8, 138.0, 134.0, 132.3, 132.2, 131.9, 129.8, 128.9, 127.2, 126.8, 126.3, 126.0, 125.9, 125.8, 125.7, 119.9, 119.7, 118.2, 112.3, 95.3, 85.9, 49.4, 44.9, 30.2, 27.1, 22.4.

HRMS (ESI) *m/z* calcd. for C₃₂H₂₉N₂O [M + H]⁺ 457.2274, found 457.2265. $[\alpha]_D^{27} = +5.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-(4-(*tert*-Butyl)phenyl)-2-ethyl-*N*-(naphthalen-1-yl)-4-phenylbut-3-ynamide (21)

According to the **general procedure A**, substrate **E21** (38.0 mg, 0.10 mmol) was employed to yield the product **21** as a slightly yellow oil (30.2 mg, 68% yield, 82% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.81 min, t_R (minor) = 13.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.09 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.73 (d, J = 8.5 Hz, 1H), 7.68 – 7.62 (m, 3H), 7.48 – 7.40 (m, 7H), 7.39 – 7.34 (m, 1H), 2.61 (dq, J = 14.5, 7.3 Hz, 1H), 2.24 (dq, J = 14.5, 7.3 Hz, 1H), 1.33 (s, 9H), 1.15 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 150.6, 136.9, 134.0, 132.2, 131.8, 128.9, 128.8, 128.6, 126.6, 126.4, 126.2, 125.9, 125.8, 125.6, 125.3, 122.3, 120.0, 119.3, 89.9, 89.5, 55.2, 34.5, 33.0, 31.3, 10.3.

HRMS (ESI) m/z calcd. for C₃₂H₃₂NO [M + H]⁺ 446.2478, found 446.2470.

 $[\alpha]_{D}^{27} = -10.0 \ (c \ 0.80, \ CH_2Cl_2).$

(*S*)-2-(3-Methoxyphenyl)-2-methyl-*N*-(naphthalen-1-yl)-4-phenylbut-3-ynamide (22)

According to the **general procedure A**, substrate **E22** (34.0 mg, 0.10 mmol) was employed to yield the product **22** as a yellow oil (19.3 mg, 48% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 32.39 min, t_R (minor) = 35.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.49 – 7.39 (m, 7H), 7.38 – 7.32 (m, 2H), 6.92 – 6.85 (m, 1H), 3.84 (s, 3H), 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 159.9, 143.0, 134.0, 132.2, 131.8, 129.8, 128.9, 128.8, 128.6, 126.8, 126.3, 125.9, 125.8, 125.5, 122.2, 120.1, 119.7, 118.6, 113.0, 112.5, 90.5, 88.2, 55.3, 49.6, 27.4.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₄NO₂ [M + H]⁺ 406.1802, found 406.1794. $[\alpha]_D^{27} = -6.4$ (*c* 1.00, CH₂Cl₂).

(S)-2-(4-Chlorophenyl)-2-methyl-N-(naphthalen-1-yl)-4-phenylbut-3-ynamide (23)

According to the **general procedure A**, substrate **E23** (35.8 mg, 0.10 mmol) was employed to yield the product **23** as a white solid (23.2 mg, 55% yield, 87% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 26.46 min, t_R (minor) = 39.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.88 – 7.80 (m, 3H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.50 – 7.35 (m, 8H), 2.57 (dq, J = 14.4, 7.2 Hz, 1H), 2.24 (dq, J = 14.5, 7.4 Hz, 1H), 1.14 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 138.4, 134.0, 133.7, 132.0, 131.8, 129.2, 128.9, 128.70, 128.68, 128.2, 126.7, 126.4, 125.9, 125.8, 125.6, 121.9, 119.9, 119.6, 90.8, 88.6, 55.2, 33.5, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃ClNO $[M + H]^+$ 424.1463, found 424.1463. $[\alpha]_D^{27} = -5.4$ (*c* 0.50, CH₂Cl₂).

(S)-4-(4-Cyanophenyl)-2-ethyl-2-(3-fluorophenyl)-N-(naphthalen-1-yl)but-3-

ynamide (24)

According to the general procedure A, substrate E24 (34.2 mg, 0.10 mmol) was employed to yield the product 24 as a yellow oil (24.5 mg, 57% yield, 89% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 16.59 min, t_R (minor) = 19.17 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.78 – 7.68 (m, 5H), 7.64 (d, J = 8.5 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.50 – 7.45 (m, 2H), 7.43 – 7.37 (m, 2H), 7.10 – 7.03 (m, 1H), 2.59 (dq, J = 14.5, 7.3 Hz, 1H), 2.27 (dq, J = 14.5, 7.3 Hz, 1H), 1.13 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 162.9 (d, J = 246.5 Hz), 141.8 (d, J = 7.2 Hz), 134.0, 132.4, 131.7, 130.3 (d, J = 8.1 Hz), 129.0, 126.8, 126.6, 126.5, 126.0, 125.9, 125.8, 122.2 (d, J = 2.9 Hz), 120.1, 119.7, 118.1, 115.0 (d, J = 21.1 Hz), 114.0 (d, J = 23.3 Hz), 112.7, 93.0, 88.6, 55.4, 33.2, 10.1.

¹⁹F NMR (376 MHz, CDCl₃) δ –111.75 (s, 1F).

HRMS (ESI) *m/z* calcd. for C₂₉H₂₂FN₂O [M + H]⁺ 433.1711, found 433.1703. $[\alpha]_D^{27} = -6.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Methyl-N-(naphthalen-1-yl)-4-phenyl-2-(3-(trifluoromethyl)phenyl)but-3-ynamide (25)

According to the general procedure A, substrate E25 (37.8 mg, 0.10 mmol) was employed to yield the product 25 as a yellow oil (32.6 mg, 74% yield, 80% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 99/1, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 20.99 min, t_R (minor) = 25.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.17 (s, 1H), 8.06 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.66 – 7.60 (m, 3H), 7.55 (t, J = 7.8 Hz, 1H), 7.49 – 7.36 (m, 6H), 2.09 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 142.3, 134.0, 131.9, 131.8, 131.0 (q, J = 32.3 Hz), 129.9, 129.3, 129.2, 128.9, 128.7, 126.8, 126.4, 126.0, 125.8, 125.7, 124.7 (q, J = 3.7 Hz), 124.1 (q, J = 272.6 Hz), 123.3 (q, J = 3.8 Hz), 121.7, 119.9, 119.8, 89.6, 89.3, 49.5, 27.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –62.46 (s, 3F).

HRMS (ESI) *m*/*z* calcd. for C₂₈H₂₁F₃NO [M + H]⁺ 444.1570, found 444.1563. $[\alpha]_D^{27} = -5.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-(3-Benzoylphenyl)-4-(4-cyanophenyl)-2-methyl-N-(naphthalen-1-yl)but-3-ynamide (26)

According to the general procedure A, substrate E26 (41.4 mg, 0.10 mmol) was employed to yield the product 26 as a yellow solid (50.5 mg, 51% yield, 88% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 13.66 min, t_R (minor) = 15.62 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.34 (t, J = 1.7 Hz, 1H), 8.02 (ddd, J = 7.9, 1.9, 1.0 Hz, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.84 – 7.78 (m, 3H), 7.71 – 7.59 (m, 7H), 7.58 – 7.55 (m, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.45 (d, J = 7.3 Hz, 2H), 7.39 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 2.10 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.2, 168.7, 141.2, 138.1, 137.3, 134.0, 132.6, 132.3, 132.3, 131.7, 130.2, 130.1, 129.8, 129.0, 128.9, 128.4, 127.9, 126.8, 126.6, 126.5, 126.1, 126.0, 125.7, 120.1, 119.7, 118.1, 112.6, 94.3, 87.1, 49.6, 27.3.

HRMS (ESI) m/z calcd. for C₃₅H₂₅N₂O₂ [M + H]⁺ 505.1911, found 505.1902. [α]_D²⁷ = +13.2 (*c* 1.00, CH₂Cl₂).

(*S*)-2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-2-methyl-*N*-(naphthalen-1-yl)-4-phenylbut-3-ynamide (27)

According to the general procedure A, substrate E27 (40.4 mg, 0.10 mmol) was employed to yield the product 27 as a white solid (25.0 mg, 53% yield, 88% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 10.34 min, t_R (minor) = 12.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 1H), 7.72 – 7.68 (m, 2H), 7.67 – 7.64 (m, 3H), 7.58 – 7.54 (m, 2H), 7.52 – 7.35 (m, 10H), 2.10 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.2, 159.7 (d, J = 248.5 Hz), 142.7 (d, J = 7.4 Hz), 135.3, 134.0, 132.0, 131.8, 130.9 (d, J = 3.9 Hz), 129.1 (d, J = 28.8 Hz), 129.0 (d, J = 2.9 Hz), 128.7, 128.5, 128.5, 128.4, 127.8, 126.6, 126.4, 126.0, 125.8, 125.7, 122.3 (d, J = 3.4 Hz), 121.8, 119.9, 119.6, 114.5 (d, J = 25.1 Hz), 89.9, 88.8, 49.3 (d, J = 1.4 Hz), 27.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.71 (s, 1F). **HRMS** (ESI) *m/z* calcd. for C₃₃H₂₅FNO [M + H]⁺ 470.1915, found 470.1907. $[\alpha]_D^{27} = -23.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Methyl-N-(naphthalen-1-yl)-2-(naphthalen-2-yl)-4-phenylbut-3-ynamide (28)

According to the **general procedure A**, substrate **E28** (36.0 mg, 0.10 mmol) was employed to yield the product **28** as a yellow oil (24.3 mg, 57% yield, 82% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.39 min, t_R (minor) = 13.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.33 (s, 1H), 8.03 (d, *J* = 7.4 Hz, 1H), 7.95 – 7.89 (m, 3H), 7.87 – 7.81 (m, 2H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.69 – 7.64 (m, 3H), 7.53 – 7.41 (m, 7H), 7.37 – 7.31 (m, 1H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 138.7, 134.0, 133.3, 132.8, 132.1, 131.8, 129.0, 128.8, 128.6, 128.3, 127.6, 126.8, 126.4, 126.3, 125.9, 125.8, 125.6, 125.2, 124.3, 122.2, 120.1, 119.8, 90.6, 88.5, 49.8, 27.4.

HRMS (ESI) *m/z* calcd. for C₃₁H₂₄NO [M + H]⁺ 426.1852, found 426.1846. $[\alpha]_D^{27} = +8.4$ (*c* 0.50, CH₂Cl₂).

(S)-4-(4-Chlorophenyl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (29)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **29** as a colorless oil (33.0 mg, 78% yield, 94% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 21.83 min, t_R (minor) = 28.34 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.06 (d, *J* = 7.5 Hz, 1H), 7.92 – 7.81 (m, 3H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.53 – 7.31

(m, 8H), 2.62 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.29 (dq, *J* = 14.4, 7.3 Hz, 1H), 1.15 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 139.7, 135.1, 134.0, 133.0, 132.0, 129.0, 128.8, 128.7, 127.8, 126.7, 126.6, 126.3, 125.9, 125.8, 125.5, 120.6, 119.8, 119.6, 90.2, 88.9, 55.5, 33.1, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃ClNO $[M + H]^+$ 424.1463, found 424.1455. $[\alpha]_D^{27} = -4.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-(3-Chlorophenyl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (30)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 30 as a colorless oil (27.6 mg, 65% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 214 nm), t_R (major) = 23.73 min, t_R (minor) = 29.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.90 – 7.82 (m, 3H), 7.75 – 7.63 (m, 3H), 7.57 – 7.52 (m, 1H), 7.51 – 7.39 (m, 6H), 7.39 – 7.32 (m, 2H), 2.62 (dq, J = 14.3, 7.2 Hz, 1H), 2.29 (dq, J = 14.5, 7.3 Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 139.6, 134.5, 134.0, 132.0, 131.6, 129.9, 129.3, 128.9, 128.7, 127.8, 126.7, 126.6, 126.3, 125.9, 125.8, 125.5, 123.8, 119.9, 119.7, 90.5, 88.6, 55.5, 33.1, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃ClNO $[M + H]^+$ 424.1463, found 424.1455. $[\alpha]_D^{27} = -3.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-(2-Chlorophenyl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (31)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **31** as a slightly yellow oil (22.5 mg, 53% yield, 91% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 214 nm), t_R (major) = 32.62 min, t_R (minor) = 38.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.02 – 7.88 (m, 3H), 7.84 (dd, J = 8.3, 1.4 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.72 – 7.63 (m, 2H), 7.55 – 7.28 (m, 9H), 2.65 (dq, J = 13.2, 7.2 Hz, 1H), 2.32 (dq, J = 13.5, 7.3 Hz, 1H), 1.19 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 169.2, 139.7, 136.2, 134.0, 133.4, 132.2, 129.9, 129.4, 128.6, 127.7, 127.2, 126.8, 126.2, 125.9, 125.8, 125.6, 122.2, 120.6, 120.4, 94.5, 86.9, 55.6, 33.0, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃ClNO $[M + H]^+$ 424.1463, found 424.1455. $[\alpha]_D^{27} = +1.2$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-4-(4-fluorophenyl)-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (32)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **32** as a slightly yellow oil (30.6 mg, 75% yield, 93% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 21.87 min, t_R (minor) = 27.08 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.93 – 7.79 (m, 3H), 7.76 – 7.59 (m, 4H), 7.52 – 7.29 (m, 6H), 7.13 (t, J = 8.5 Hz, 2H), 2.61 (dq, J = 14.3, 7.2 Hz, 1H), 2.28 (dq, J = 14.4, 7.3 Hz, 1H), 1.14 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.2, 162.9 (d, J = 250.5 Hz), 139.8, 134.0, 133.7 (d, J = 8.4 Hz), 132.1, 128.9, 128.7, 127.8, 126.68, 126.65, 126.3, 125.9, 125.8, 125.5, 119.9, 119.6, 118.3 (d, J = 3.6 Hz), 116.0 (d, J = 22.1 Hz), 89.02, 88.98 (d, J = 1.5 Hz), 55.5, 33.1, 10.2.

¹⁹F NMR (376 MHz, CDCl₃) δ –109.60 (s, 1F).

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃FNO [M + H]⁺ 408.1758, found 408.1752. $[\alpha]_D^{27} = -2.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-(4-Bromophenyl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (33)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 33 as a slightly yellow oil (40.2 mg, 86% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 22.92 min, t_R (minor) = 30.79 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.91 – 7.81 (m, 3H), 7.74 – 7.63 (m, 2H), 7.60 – 7.51 (m, 4H), 7.50 – 7.32 (m, 6H), 2.62 (dq, J = 14.3, 7.2 Hz, 1H), 2.29 (dq, J = 14.3, 7.3 Hz, 1H), 1.15 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 139.6, 134.0, 133.1, 132.0, 131.9, 128.8, 128.7, 127.8, 126.7, 126.6, 126.3, 125.9, 125.8, 125.5, 123.3, 121.0, 119.8, 119.6, 90.4, 88.9, 55.6, 33.1, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₃BrNO [M + H]⁺ 468.0958, found 468.0952. $[\alpha]_D^{27} = -5.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-4-(4-methoxyphenyl)-*N*-(naphthalen-1-yl)-2-phenylbut-3-ynamide (34)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **34** as a slightly yellow oil (35.2 mg, 84% yield, 91% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 18.44 min, t_R (minor) = 24.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.09 (dd, J = 7.6, 2.5 Hz, 1H), 7.97 – 7.87 (m, 2H), 7.85 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.52 – 7.31 (m, 6H), 6.99 – 6.93 (m, 2H), 3.87 (s, 3H), 2.62 (dq, J = 14.2, 7.4 Hz, 1H), 2.29 (dq, J = 14.2, 7.4 Hz, 1H), 1.16 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 160.1, 140.1, 133.9, 133.2, 132.2, 128.8, 128.5, 127.6, 126.7, 126.6, 126.2, 125.82, 125.76, 125.3, 120.0, 119.3, 114.22, 114.16, 90.2, 87.7, 55.6, 55.3, 33.2, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₆ClNO₂ [M + H]⁺ 420.1958, found 420.1950. $[\alpha]_D^{27} = -6.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-4-(3-methoxyphenyl)-*N*-(naphthalen-1-yl)-2-phenylbut-3-ynamide (35)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **35** as a slightly yellow oil (28.5 mg, 68% yield, 93% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 29.36 min, t_R (minor) = 38.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.51 – 7.38 (m, 5H), 7.38 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 7.18 (dd, *J* = 2.7, 1.4 Hz, 1H), 7.00 (ddd, *J* = 8.4, 2.6, 1.1 Hz, 1H), 3.86 (s, 3H), 2.61 (dq, *J* = 13.2, 7.4 Hz, 1H), 2.29 (dq, *J* = 13.2, 7.4 Hz, 1H), 1.16 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 160.1, 140.1, 133.9, 133.2, 132.2, 128.8, 128.5, 127.6, 126.7, 126.6, 126.2, 125.82, 125.77, 125.3, 120.0, 119.3, 114.2, 114.2, 90.2, 87.7, 55.6, 55.3, 33.2, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₆ClNO₂ [M + H]⁺ 420.1958, found 420.1951. $[\alpha]_D^{27} = -5.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(p-tolyl)but-3-ynamide (36)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 36 as a white solid (25.3 mg, 63% yield, 95% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, $\lambda = 254$ nm), t_R (major) = 18.38 min, t_R (minor) = 22.54 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.07 (dd, J = 7.5, 1.1 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.84 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.49 – 7.30 (m, 6H), 7.24 (d, J = 7.9 Hz, 2H), 2.60 (dq, J = 13.2, 7.3 Hz, 1H), 2.42 (s, 3H), 2.27 (dq, J = 13.4, 7.4 Hz, 1H), 1.14 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 140.0, 139.2, 134.0, 132.2, 131.6, 129.4, 128.8, 128.6, 127.7, 126.7, 126.6, 126.3, 125.84, 125.78, 125.4, 120.0, 119.4, 119.1, 90.4, 88.4, 55.6, 33.2, 21.5, 10.2.

HRMS (ESI) m/z calcd. for C₂₉H₂₆NO [M + H]⁺ 404.2009, found 404.2003. [α]_D²⁷ = -7.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-4-(4-ethylphenyl)-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (37)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 37 as a yellow oil (34.2 mg, 82% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 21.45 min, t_R (minor) = 26.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.09 (d, J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 2H), 7.85 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 7.9 Hz, 2H), 7.51 – 7.32 (m, 6H), 7.28 (d, J = 8.0 Hz, 2H), 2.73 (q, J = 7.6 Hz, 2H), 2.69 – 2.57 (m, 1H), 2.36 – 2.23 (m, 1H), 1.30 (t, J = 7.6 Hz, 3H), 1.17 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 145.5, 140.0, 133.9, 132.2, 131.7, 128.8, 128.6, 128.2, 127.6, 126.7, 126.6, 126.2, 125.83, 125.76, 125.3, 120.0, 119.4, 119.3, 90.4, 88.4, 55.6, 33.2, 28.9, 15.4, 10.2.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₇NO [M + H]⁺ 418.2165, found 418.2159. $[\alpha]_D^{27} = -7.0$ (*c* 1.00, CH₂Cl₂).

(*S*)-4-([1,1'-Biphenyl]-4-yl)-2-ethyl-*N*-(naphthalen-1-yl)-2-phenylbut-3-ynamide (38)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 38 as a slightly yellow solid (35.8 mg, 77% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, $\lambda = 254$ nm), t_R (major) = 28.28 min, t_R (minor) = 48.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.96 – 7.90 (m, 2H), 7.86 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1), 7.78 – 7.74 (m, 2H), 7.72 – 7.63 (m, 5H), 7.54 – 7.34 (m, 9H), 2.66 (dq, J = 13.3, 7.3 Hz, 1H), 2.32 (dq, J = 13.3, 7.3 Hz, 1H), 1.19 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 141.8, 140.1, 139.9, 134.0, 132.2, 132.1, 128.9, 128.8, 128.6, 127.8, 127.7, 127.3, 127.0, 126.69, 126.66, 126.3, 125.9, 125.8, 125.4, 121.0, 120.0, 119.5, 90.1, 89.8, 55.6, 33.2, 10.2. HRMS (ESI) *m*/*z* calcd. for C₃₄H₂₈NO [M + H]⁺ 466.2165, found 466.2159. [α]_D²⁷ = -14.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-4-(4-formylphenyl)-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (39)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product **39** as a slightly yellow solid (25.4 mg, 61% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, λ = 276 nm), t_R (major) = 13.93 min, t_R (minor) = 18.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.79 (s, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.88 – 7.77 (m, 5H), 7.71 – 7.63 (m, 2H), 7.51 – 7.41 (m, 4H), 7.41 – 7.32 (m, 2H), 2.63 (dq, J = 14.4, 7.3 Hz, 1H), 2.30 (dq, J = 14.4, 7.3 Hz, 1H), 1.15 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.2, 168.8, 139.4, 136.0, 134.0, 132.3, 131.9, 129.8, 128.9, 128.8, 128.3, 127.9, 126.8, 126.6, 126.3, 125.9, 125.8, 125.7, 119.9, 119.8, 93.3, 88.9, 55.6, 33.0, 10.2.

HRMS (ESI) m/z calcd. for C₂₉H₂₄NO₂ [M + H]⁺ 418.1802, found 418.1802. [α]_D²⁷ = -7.5 (*c* 1.00, CH₂Cl₂).

Methyl (S)-4-(3-(Naphthalen-1-ylcarbamoyl)-3-phenylpent-1-yn-1-yl)benzoate (40)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **40** as a white solid (21.0 mg, 47% yield, 93% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, λ = 254 nm), t_R (major) = 9.36 min, t_R (minor) = 12.09 min. ¹**H** NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.09 (d, J = 8.3 Hz, 2H), 8.03 (d, J = 7.4 Hz, 1H), 7.88 – 7.82 (m, 3H), 7.71 (d, J = 8.3 Hz, 2H), 7.67 (t, J = 8.7 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.39 – 7.32 (m, 2H), 3.95 (s, 3H), 2.61 (dq, J = 14.6, 7.3 Hz, 1H), 2.28 (dq, J = 14.6, 7.3 Hz, 1H), 1.14 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 166.3, 139.6, 134.0, 132.0, 131.7, 130.3, 129.8, 128.9, 128.7, 127.9, 126.8, 126.7, 126.6, 126.3, 125.9, 125.8, 125.6, 119.9, 119.7, 92.2, 89.2, 55.6, 52.3, 33.1, 10.2.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₆NO₃ [M + H]⁺ 448.1907, found 448.1901. $[\alpha]_D^{27} = -5.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-(4-Cyanophenyl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (41)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **41** as a slightly yellow solid (22.7 mg, 55% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, $\lambda = 254$ nm), t_R (major) = 15.10 min, t_R (minor) = 18.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.82 (dd, J = 7.5, 1.6 Hz, 2H), 7.76 – 7.66 (m, 5H), 7.61 (d, J = 8.5 Hz, 1H), 7.50 – 7.41 (m, 4H), 7.40 – 7.34 (m, 2H), 2.62 (dq, J = 14.4, 7.3 Hz, 1H), 2.29 (dq, J = 14.4, 7.4 Hz, 1H), 1.12 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 139.3, 134.0, 132.34, 132.30, 131.9, 128.9, 128.8, 128.0, 127.0, 126.8, 126.5, 126.3, 126.0, 125.78, 125.76, 120.0, 119.8, 118.2, 112.4, 93.8, 88.1, 55.6, 33.0, 10.1.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₃N₂O [M + H]⁺ 415.1805, found 415.1797. $[\alpha]_D^{27} = -3.3$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(4-vinylphenyl)but-3-ynamide (42)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was

employed to yield the product **42** as a slightly yellow oil (30.0 mg, 72% yield, 92% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 14.10 min, t_R (minor) = 18.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.93 – 7.88 (m, 2H), 7.85 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.52 – 7.32 (m, 8H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 5.85 (dd, J = 17.6, 0.8 Hz, 1H), 5.37 (dd, J = 10.9, 0.7 Hz, 1H), 2.63 (dq, J = 13.2, 7.2 Hz, 1H), 2.30 (dq, J = 13.3, 7.3 Hz, 1H), 1.16 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 139.9, 138.2, 136.0, 134.0, 132.1, 131.9, 128.8, 128.6, 127.7, 126.7, 126.6, 126.4, 126.3, 125.9, 125.8, 125.4, 121.3, 120.0, 119.5, 115.3, 90.2, 89.8, 55.6, 33.2, 10.2.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₆NO [M + H]⁺ 416.2009, found 416.2001. $[\alpha]_D^{27} = -8.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N,4-di(naphthalen-1-yl)-2-phenylbut-3-ynamide (43)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 43 as a white solid (32.0 mg, 73% yield, 88% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 36.73 min, t_R (minor) = 39.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.57 – 8.43 (m, 1H), 8.12 (d, *J* = 7.5 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.98 – 7.92 (m, 3H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.57 – 7.45 (m, 4H), 7.44 – 7.37 (m, 2H), 7.24 – 7.18 (m, 1H), 2.75 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.42 (dq, *J* = 14.4, 7.3 Hz, 1H), 1.28 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 140.0, 133.9, 133.30, 133.28, 132.1, 131.0, 129.5, 128.72, 128.70, 128.6, 127.8, 127.3, 126.7, 126.64, 126.63, 126.2, 125.8, 125.73, 125.71, 125.5, 125.2, 120.1, 119.8, 119.5, 94.0, 88.3, 56.0, 33.3, 10.4.

HRMS (ESI) *m/z* calcd. for C₃₂H₂₆NO $[M + H]^+$ 440.2009, found 440.2001. $[\alpha]_D^{27} = +5.0$ (*c* 1.00, CH₂Cl₂).

(*S*)-2-Ethyl-4-(6-methoxynaphthalen-2-yl)-*N*-(naphthalen-1-yl)-2-phenylbut-3-ynamide (44)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 44 as a white solid (37.9 mg, 81% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.60 mL/min, $\lambda = 254$ nm), t_R (major) = 17.66 min, t_R (minor) = 23.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.13 – 8.07 (m, 2H), 7.94 – 7.91 (m, 2H), 7.83 – 7.73 (m, 4H), 7.67 – 7.62 (m, 2H), 7.48 – 7.40 (m, 4H), 7.36 – 7.31 (m, 2H), 7.20 (dd, J = 8.9, 2.5 Hz, 1H), 7.15 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H), 2.63 (dq, J = 14.6, 7.3 Hz, 1H), 2.30 (dq, J = 14.6, 7.3 Hz, 1H), 1.18 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 158.6, 140.0, 134.5, 134.0, 132.2, 131.6, 129.3, 128.9, 128.8, 128.6, 128.5, 127.7, 127.2, 126.7, 126.6, 126.3, 125.9, 125.8, 125.3, 120.0, 119.8, 119.4, 116.9, 105.9, 90.8, 88.7, 55.7, 55.4, 33.2, 10.3.

HRMS (ESI) *m/z* calcd. for C₃₃H₂₈NO₂ [M + H]⁺ 470.2115, found 470.2107. $[\alpha]_D^{27} = -22.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(thiophen-2-yl)but-3-ynamide (45)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **45** as a colorless oil (24.4 mg, 62% yield, 94% e.e.).

HPLC analysis: Nu-Analytical Solutions INA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, $\lambda = 254$ nm), t_R (major) = 24.72 min, t_R (minor) = 31.18 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.89 – 7.83 (m, 3H), 7.78 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.51 – 7.40 (m, 6H), 7.40 – 7.33 (m, 2H), 7.10 (dd, J = 5.2, 3.6 Hz, 1H), 2.62 (dq, J = 14.3, 7.3 Hz, 1H), 2.29 (dq, J = 14.6, 7.3 Hz, 1H), 1.15 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 139.7, 134.0, 132.6, 132.1, 128.8, 128.7, 127.8, 127.7, 127.3, 126.6, 126.6, 126.3, 125.9, 125.7, 125.4, 121.9, 120.0, 119.5, 93.0, 83.3, 55.8, 33.1, 10.2.

HRMS (ESI) m/z calcd. for C₂₆H₂₂NOS [M + H]⁺ 396.1417, found 396.1410. [α]_D²⁷ = -6.0 (*c* 0.50, CH₂Cl₂). (S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(thiophen-3-yl)but-3-ynamide (46)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 46 as a colorless oil (34.0 mg, 86% yield, 94% e.e.).

HPLC analysis: Nu-Analytical Solutions INA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, $\lambda = 254$ nm), t_R (major) = 27.88 min, t_R (minor) = 35.71 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.52 – 7.30 (m, 8H), 2.61 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.28 (dq, *J* = 14.4, 7.4 Hz, 1H), 1.15 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 139.8, 134.0, 132.1, 129.8, 129.4, 128.8, 128.6, 127.7, 126.7, 126.6, 126.3, 125.93, 125.86, 125.78, 125.4, 121.1, 119.9, 119.5, 88.8, 85.3, 55.6, 33.1, 10.2.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₂NOS $[M + H]^+$ 396.1417, found 396.1411. $[\alpha]_D^{27} = -6.3$ (*c* 1.00, CH₂Cl₂).

(S)-4-(Benzo[b]thiophen-3-yl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (47)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **47** as a colorless oil (33.7 mg, 76% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 214 nm), t_R (major) = 36.56 min, t_R (minor) = 42.25 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.12 – 8.02 (m, 2H), 7.96 – 7.88 (m, 3H), 7.82 (s, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.50 – 7.31 (m, 7H), 7.23 (t, J = 7.7 Hz, 1H), 2.67 (dq, J = 14.5, 7.3 Hz, 1H), 2.34 (dq, J = 14.4, 7.4 Hz, 1H), 1.21 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 139.8, 139.0, 138.9, 133.9, 132.1, 130.9, 128.8, 128.7, 127.8, 126.69, 126.65, 126.3, 125.9, 125.7, 125.5, 125.3, 125.1, 122.9, 122.8, 120.0, 119.6, 117.2, 91.8, 83.9, 55.9, 33.2, 10.4.

HRMS (ESI) m/z calcd. for C₃₀H₂₄NOS [M + H]⁺ 446.1573, found 446.1566. [α]_D²⁷ = -1.2 (*c* 1.00, CH₂Cl₂). (S)-4-(Benzofuran-3-yl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (48)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 48 as a yellow oil (26.2 mg, 61% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 28.88 min, t_R (minor) = 33.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 8.02 (s, 1H), 7.95 – 7.88 (m, 2H), 7.83 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.50 – 7.39 (m, 5H), 7.39 – 7.33 (m, 2H), 7.31 – 7.26 (m, 1H), 2.66 (dq, J = 14.3, 7.3 Hz, 1H), 2.31 (dq, J = 13.5, 7.3 Hz, 1H), 1.19 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 154.7, 148.0, 139.7, 134.0, 132.1, 128.8, 128.7, 127.8, 127.5, 126.70, 126.67, 126.3, 125.9, 125.8, 125.6, 125.5, 123.7, 120.3, 119.9, 119.6, 111.9, 103.6, 94.1, 79.8, 55.9, 33.2, 10.3.

HRMS (ESI) *m/z* calcd. for C₃₀H₂₄NO₂ [M + H]⁺ 430.1802, found 430.1794. $[\alpha]_D^{27} = -1.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(pyridin-2-yl)but-3-ynamide (49)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **49** as a slightly yellow oil (25.0 mg, 64% yield, 93% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.60 mL/min, λ = 254 nm), t_R (major) = 15.09 min, t_R (minor) = 18.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.71 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.03 (dd, J = 7.6, 1.2 Hz, 1H), 7.92 – 7.86 (m, 3H), 7.85 – 7.81 (m, 1H), 7.74 (td, J = 7.7, 1.8 Hz, 1H), 7.66 (dt, J = 8.3, 1.0 Hz, 1H), 7.62 (dt, J = 7.8, 1.1 Hz, 1H), 7.49 – 7.39 (m, 5H), 7.37 – 7.30 (m, 2H), 2.64 (dq, J = 13.4, 7.3 Hz, 1H), 2.32 (dq, J = 13.4, 7.3 Hz, 1H), 1.17 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 150.3, 142.5, 139.4, 136.4, 134.0, 132.2, 128.7, 128.6, 127.8, 127.3, 126.9, 126.7, 126.3, 125.9, 125.63, 125.57, 123.5, 120.6, 119.8, 89.5, 89.0, 55.4, 32.9, 10.2. **HRMS** (ESI) *m/z* calcd. for C₂₇H₂₃N₂O [M + H]⁺ 391.1805, found 391.1797. [α]_D²⁷ = -9.3 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2-phenyl-4-(quinolin-3-yl)but-3-ynamide (50)

According to the general procedure A, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 50 as a white solid (30.7 mg, 70% yield, 94% e.e.).

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 93/7, flow rate 0.80 mL/min, $\lambda = 254$ nm), t_R (minor) = 53.93 min, t_R (major) = 59.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (d, J = 2.1 Hz, 1H), 8.86 (s, 1H), 8.45 (d, J = 2.1 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.79 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.63 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.50 – 7.35 (m, 6H), 2.66 (dq, J = 14.3, 7.2 Hz, 1H), 2.33 (dq, J = 14.3, 7.3 Hz, 1H), 1.18 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 151.8, 147.2, 139.6, 138.9, 134.0, 132.0, 130.6, 129.5, 128.9, 128.8, 127.9, 127.6, 127.6, 127.2, 126.8, 126.6, 126.4, 126.0, 125.8, 125.7, 119.9, 119.8, 116.3, 92.7, 87.1, 55.7, 33.1, 10.3.

HRMS (ESI) *m/z* calcd. for C₃₁H₂₅N₂O [M + H]⁺ 441.1961, found 441.1955. $[\alpha]_D^{27} = -2.3$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-4-(ferrocenyl)-2-phenylbut-3-ynamide (51)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **51** as a slightly yellow oil (44.7 mg, 90% yield, 91% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 36.07 min, t_R (minor) = 39.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.12 (d, *J* = 7.5 Hz, 1H), 7.95 – 7.83 (m, 4H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.57 – 7.41 (m, 5H), 7.39 – 7.32 (m, 1H), 4.76 – 4.56 (m, 2H), 4.33 (t, *J* = 1.9 Hz, 2H), 4.29 (s, 5H), 2.61 (dq, *J* = 13.3, 7.2 Hz, 1H), 2.26 (dq, *J* = 13.1, 7.4 Hz, 1H), 1.18 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 140.2, 134.0, 132.2, 128.9, 128.5, 127.6, 126.7, 126.5, 126.2, 125.9, 125.8, 125.3, 120.0, 119.2, 89.1, 85.3, 71.5, 71.4, 69.8, 69.0, 64.0, 55.7, 33.1, 10.3. **HRMS** (ESI) *m/z* calcd. for C₃₂H₂₈FeNO [M + H]⁺ 498.1515, found 498.1506. [α]_D²⁷ = -8.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-2,5-diphenylpent-3-ynamide (52)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **52** as a colorless oil (19.0 mg, 47% yield, 88% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 214

nm), t_R (major) = 28.25 min, t_R (minor) = 36.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.87 – 7.79 (m, 3H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.23 (m, 12H), 3.96 (s, 2H), 2.54 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.21 (dq, *J* = 14.4, 7.4 Hz, 1H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 140.2, 136.3, 133.9, 132.2, 128.9, 128.7, 128.5, 127.9, 127.6, 127.0, 126.70, 126.65, 126.2, 125.8, 125.7, 125.4, 120.0, 119.5, 88.2, 82.3, 55.1, 33.2, 25.5, 10.2.

HRMS (ESI) m/z calcd. for C₂₉H₂₆NO [M + H]⁺ 404.2009, found 404.2002. [α]_D²⁷ = +7.7 (*c* 1.00, CH₂Cl₂).

(S)-4-(Cyclohex-1-en-1-yl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (53)

According to the **general procedure A**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **53** as a slightly yellow oil (28.7 mg, 73% yield, 92% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 221 nm), t_R (major) = 18.68 min, t_R (minor) = 22.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.07 (dd, J = 7.6, 1.1 Hz, 1H), 7.89 – 7.76 (m, 4H), 7.66 (d, J = 8.3 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.42 – 7.36 (m, 2H), 7.34 – 7.28 (m, 1H), 6.42 – 6.36 (m, 1H), 2.52 (dq, J = 13.3, 7.3 Hz, 1H), 2.41 – 2.30 (m, 2H), 2.27 – 2.11 (m, 3H), 1.80 – 1.73 (m, 2H), 1.72 – 1.65 (m, 2H), 1.08 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 140.2, 136.1, 134.0, 132.3, 128.8, 128.5, 127.5, 126.7, 126.6, 126.1, 125.8, 125.2, 120.1, 120.0, 119.3, 92.2, 86.3, 55.5, 33.2, 29.5, 25.7, 22.3, 21.5, 10.2. HRMS (ESI) *m/z* calcd. for C₂₈H₂₈NO [M + H]⁺ 394.2165, found 394.2160. [α]_D²⁷ = -4.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-5-methyl-N-(naphthalen-1-yl)-2-phenylhex-5-en-3-ynamide (54)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **54** as a slightly yellow oil (24.0 mg, 68% yield, 92% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 221 nm), t_R (major) = 17.07 min, t_R (minor) = 23.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.06 (d, J = 7.4 Hz, 1H), 7.88 – 7.72 (m, 4H), 7.66 (d, J = 8.2 Hz, 1H), 7.52 – 7.36 (m, 5H), 7.35 – 7.29 (m, 1H), 5.57 (dq, J = 2.1, 1.1 Hz, 1H), 5.48 – 5.40 (m, 1H), 2.54 (dq, J = 13.3, 7.2 Hz, 1H), 2.20 (dq, J = 13.3, 7.3 Hz, 1H), 2.14 – 2.08 (m, 3H), 1.08 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 139.9, 134.0, 132.2, 128.8, 128.6, 127.6, 126.6, 126.6, 126.2, 126.0, 125.9, 125.8, 125.3, 123.0, 119.9, 119.4, 91.4, 88.1, 55.4, 33.1, 23.6, 10.1.

HRMS (ESI) *m/z* calcd. for C₂₅H₂₄NO [M + H]⁺ 354.1852, found 354.1848. $[\alpha]_D^{27} = -4.3$ (*c* 1.00, CH₂Cl₂).

(S)-4-Cyclopropyl-2-ethyl-N-(naphthalen-1-yl)-2-phenylbut-3-ynamide (55)

According to the general procedure **B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **55** as a white solid (18.0 mg, 51% yield, 89% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 303 nm), t_R (major) = 21.41 min, t_R (minor) = 30.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.89 – 7.84 (m, 1H), 7.82 – 7.75 (m, 3H), 7.66 (d, J = 8.2 Hz, 1H), 7.55 – 7.43 (m, 3H), 7.42 – 7.35 (m, 2H), 7.34 – 7.28 (m, 1H), 2.47 (dq, J = 14.3, 7.2 Hz, 1H), 2.14 (dq, J = 14.3, 7.2 Hz, 1H), 1.60 – 1.53 (m, 1H), 1.04 (t, J = 7.3 Hz, 3H), 1.01 – 0.87 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 140.6, 134.3, 132.6, 129.1, 128. 7, 127.7, 126.9, 126.9, 126.4, 126.12, 126.11, 125.5, 120.3, 119.5, 94.2, 75.6, 55.3, 33.5, 10.4, 8.9, 8.8, 0.0.

HRMS (ESI) m/z calcd. for C₂₅H₂₄NO [M + H]⁺ 354.1852, found 354.1847. [α]_D²⁷ = -3.0 (*c* 1.00, CH₂Cl₂).

(S)-6-Cyano-2-ethyl-N-(naphthalen-1-yl)-2,6,6-triphenylhex-3-ynamide (56)

According to the general procedure B, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 56 as a white solid (32.6 mg, 63% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.71 min, t_R (minor) = 19.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.89 – 7.83 (m, 1H), 7.75 – 7.68 (m, 2H), 7.65 – 7.59 (m, 2H), 7.53 – 7.42 (m, 8H), 7.38 – 7.15 (m, 9H), 3.63 (d, *J* = 16.8 Hz, 1H), 3.61 (d, *J* = 16.8 Hz, 1H), 2.45 (dq, *J* = 14.3, 7.3 Hz, 1H), 2.13 (dq, *J* = 14.3, 7.3 Hz, 1H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 139.7, 138.5, 134.0, 132.1, 129.02, 128.99, 128.45, 128.40, 128.37, 127.9, 127.5, 126.9, 126.80, 126.6, 126.3, 126.1, 125.9, 125.4, 121.9, 121.6, 121.1, 85.0, 84.2, 54.6, 51.8, 32.9, 31.7, 9.9.

HRMS (ESI) *m/z* calcd. for C₃₇H₃₁N₂O [M + H]⁺ 519.2431, found 519.2425. $[\alpha]_D^{27} = +7.0$ (*c* 1.00, CH₂Cl₂).

(S)-5,5-Diethoxy-2-ethyl-N-(naphthalen-1-yl)-2-phenylpent-3-ynamide (57)

According to the general procedure B, substrate E2 (32.4 mg, 0.10 mmol) was employed to yield the product 57 as a colorless oil (22.9 mg, 55% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (hexane/*i*-PrOH = 95/5, flow rate 0.60 mL/min, λ = 220 nm), t_R (major) = 16.15 min, t_R (minor) = 35.61 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.88 – 7.76 (m, 4H), 7.66 (d, J = 8.2 Hz, 1H), 7.52 – 7.36 (m, 5H), 7.35 – 7.29 (m, 1H), 5.59 (s, 1H), 3.95 – 3.83 (m, 2H), 3.80 – 3.69 (m, 2H), 2.54 (dq, J = 14.3, 7.2 Hz, 1H), 2.22 (dq, J = 14.3, 7.2 Hz, 1H), 1.34 – 1.28 (m, 6H), 1.08 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 139.3, 134.0, 132.1, 128.7, 128.6, 127.7, 126.63, 126.60, 126.3, 125.9, 125.7, 125.4, 120.3, 119.3, 91.5, 86.1, 85.1, 61.3, 61.1, 54.9, 32.8, 15.18, 15.17, 10.1. **HRMS** (ESI) *m/z* calcd. for C₂₇H₂₉NNaO₃ [M + Na]⁺ 438.2040, found 438.2040. [α]_D²⁷ = -3.0 (*c* 1.00, CH₂Cl₂).

(S)-4-(Naphthalen-1-ylcarbamoyl)-4-phenylhex-2-yn-1-yl acetate (58)

According to the general procedure **B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **58** as a colorless oil (18.8 mg, 49% yield, 83% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.60 mL/min, λ = 254 nm), t_R (major) = 11.32 min, t_R (minor) = 13.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.80 – 7.71 (m, 3H), 7.68 (d, J = 8.2 Hz, 1H), 7.53 – 7.37 (m, 5H), 7.36 – 7.29 (m, 1H), 4.98 (s, 2H), 2.52 (dq, J = 13.3, 7.3 Hz, 1H), 2.24 – 2.15 (m, 1H), 2.14 (s, 3H), 1.06 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 169.0, 139.4, 134.0, 132.1, 128.7, 128.6, 127.8, 127.0, 126.6, 126.3, 125.9, 125.7, 120.3, 120.1, 86.8, 84.1, 54.9, 52.4, 32.8, 20.7, 10.0. **HRMS** (ESI) *m/z* calcd. for C₂₅H₂₄NO₃ [M + H]⁺ 386.1751, found 386.1743. [α]_D²⁷ = +3.0 (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-N-(naphthalen-1-yl)-5-phenoxy-2-phenylpent-3-ynamide (59)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **59** as a slightly yellow oil (26.4 mg, 63% yield, 87% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 21.29 min, t_R (minor) = 27.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.48 – 7.20 (m, 8H), 7.09 – 7.03 (m, 2H), 6.92 (tt, *J* = 7.4, 1.1 Hz, 1H), 5.02 (d, *J* = 15.6 Hz, 1H), 5.00 (d, *J* = 15.6 Hz, 1H), 2.48 (dq, *J* = 13.3, 7.3 Hz, 1H), 2.17 (dq, *J* = 13.3, 7.3 Hz, 1H), 1.02 (t, *J* = 7.3 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 168.9, 157.4, 139.4, 133.9, 132.0, 129.6, 128.63, 128.58, 127.7, 127.0, 126.6, 126.4, 125.9, 125.7, 125.6, 121.8, 120.3, 120.1, 115.1, 87.5, 85.0, 56.3, 54.9, 32.7, 10.0. **HRMS** (ESI) *m/z* calcd. for C₂₉H₂₆NO₂ [M + H]⁺ 420.1958, found 420.1949. [α]_D²⁷ = -4.0 (*c* 1.00, CH₂Cl₂).

(S)-5-(9H-Carbazol-9-yl)-2-ethyl-N-(naphthalen-1-yl)-2-phenylpent-3-ynamide (60)

According to the **general procedure B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **60** as a slightly yellow solid (31.0 mg, 63% yield, 90% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 0.60 mL/min, λ = 254 nm), t_R (major) = 21.62 min, t_R (minor) = 24.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.06 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.8 Hz, 2H), 7.65 – 7.60 (m, 2H), 7.59 – 7.52 (m, 3H), 7.41 (t, J = 7.7 Hz, 2H), 7.36 – 7.16 (m, 7H), 7.10 (d, J = 8.5 Hz, 1H), 6.91 (t, J = 7.3 Hz, 1H), 5.30 (s, 2H), 2.44 (dq, J = 14.3, 7.2 Hz, 1H), 2.12 (dq, J = 14.3, 7.2 Hz, 1H), 0.96 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 139.9, 139.4, 133.8, 131.8, 128.5, 128.5, 127.7, 126.8, 126.5, 126.2, 126.1, 125.7, 125.6, 125.4, 123.5, 120.6, 120.0, 119.8, 119.8, 108.6, 84.3, 84.2, 54.8, 33.0, 32.8, 10.0.

HRMS (ESI) *m/z* calcd. for C₃₅H₂₉N₂O [M + H]⁺ 493.2274, found 493.2270. $[\alpha]_D^{27} = +6.0$ (*c* 1.00, CH₂Cl₂).

(*S*)-5-((4-(*tert*-Butyl)phenyl)thio)-2-ethyl-*N*-(naphthalen-1-yl)-2-phenylpent-3-ynamide (61)

According to the general procedure **B**, substrate **E2** (32.4 mg, 0.10 mmol) was employed to yield the product **61** as a slightly yellow oil (25.0 mg, 51% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (major) = 31.77 min, t_R (minor) = 38.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.88 – 7.80 (m, 2H), 7.69 – 7.56 (m, 5H), 7.48 – 7.36 (m, 3H), 7.35 – 7.24 (m, 4H), 7.09 – 7.03 (m, 1H), 7.03 – 6.97 (m, 1H), 3.98 (s, 2H), 2.43 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.10 (dq, *J* = 14.6, 7.3 Hz, 1H), 1.48 (s, 9H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 150.3, 139.8, 134.0, 133.6, 132.6, 132.2, 128.6, 128.5, 127.5, 127.2, 127.0, 126.8, 126.60, 126.56, 126.3, 125.9, 125.8, 125.7, 125.6, 120.5, 120.4, 85.9, 83.1, 54.9, 36.5, 33.0, 30.6, 24.5, 10.0.

HRMS (ESI) *m/z* calcd. for C₃₃H₃₄NOS $[M + H]^+$ 492.2356, found 492.2350. $[\alpha]_D^{27} = -5.7$ (*c* 1.00, CH₂Cl₂).

(S)-2-Cyclohexyl-2-methyl-N-(naphthalen-1-yl)-4-phenylbut-3-ynamide (62)

According to the general procedure C, substrate E62 (35.9 mg, 0.10 mmol) was employed to yield the product 62 as a colorless oil (23.5 mg, 62% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (major) = 19.20 min, t_R (minor) = 22.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.38 (s, 1H), 8.22 (d, *J* = 7.5 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.52 – 7.37 (m, 6H), 2.04 – 1.96 (m, 2H), 1.87 – 1.72 (m, 3H), 1.67 (s, 3H), 1.51 – 1.16 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 134.0, 132.1, 131.7, 128.9, 128.7, 128.6, 126.3, 125.9, 125.9, 125.1, 122.3, 119.9, 118.8, 90.2, 88.6, 50.3, 45.4, 29.5, 27.6, 26.4, 26.2, 24.2.

HRMS (ESI) *m/z* calcd. for C₂₇H₂₈NO [M + H]⁺ 382.2165, found 382.2161. $[\alpha]_D^{27} = +12.2 \ (c \ 0.90, CH_2Cl_2).$

(S)-2-Cyclohexyl-2-methyl-N-(naphthalen-1-yl)-4-(o-tolyl)but-3-ynamide (63)

According to the general procedure C, substrate E62 (35.9 mg, 0.10 mmol) was employed to yield the product 63 as a colorless oil (20.5 mg, 52% yield, 92% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.59 min, t_R (minor) = 17.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.44 – 7.39 (m, 1H), 7.32 – 7.25 (m, 2H), 7.24 – 7.18 (m, 1H), 2.53 (s, 3H), 2.07 – 1.98 (m, 2H), 1.89 – 1.72 (m, 3H), 1.69 (s, 3H), 1.54 – 1.12 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 140.1, 134.0, 132.1, 132.1, 129.7, 128.9, 128.7, 126.5, 126.3, 125.90, 125.87, 125.80, 125.2, 122.2, 120.0, 119.1, 94.0, 87.5, 50.6, 45.4, 29.6, 27.6, 26.4, 26.3, 26.2, 24.5, 21.1.

HRMS (ESI) *m/z* calcd. for C₂₈H₃₀NO $[M + H]^+$ 396.2322, found 396.2328. $[\alpha]_D^{27} = +16.0 (c \ 1.00, CH_2Cl_2).$

(S)-2-Cyclohexyl-2-methyl-*N*-(naphthalen-1-yl)-4-(thiophen-3-yl)but-3-ynamide (64)

According to the general procedure C, substrate E62 (35.9 mg, 0.10 mmol) was employed to yield the product 64 as a colorless oil (22.0 mg, 57% yield, 89% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.38 min, t_R (minor) = 15.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.22 (d, *J* = 7.5 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.57 (dd, *J* = 3.0, 1.1 Hz, 1H), 7.52 – 7.42 (m, 3H), 7.35 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.23 (dd, *J* = 5.0, 1.1 Hz, 1H), 2.03 – 1.94 (m, 2H), 1.88 – 1.70 (m, 3H), 1.66 (s, 3H), 1.48 – 1.15 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 134.0, 132.1, 129.8, 129.0, 128.9, 126.3, 126.0, 125.9, 125.8, 125.1, 121.3, 119.8, 118.8, 89.8, 83.6, 50.4, 45.4, 29.5, 27.6, 26.3, 26.2, 24.2.

HRMS (ESI) *m/z* calcd. for C₂₅H₂₆NOS $[M + H]^+$ 388.1730, found 388.1726. $[\alpha]_D^{27} = +6.6$ (*c* 0.50, CH₂Cl₂). (S)-2-Cyclohexyl-2-methyl-*N*-(naphthalen-1-yl)-4-(pyridin-2-yl)but-3-ynamide (65)

According to the general procedure C, substrate E62 (35.9 mg, 0.10 mmol) was employed to yield the product 65 as a colorless oil (25.6 mg, 67% yield, 86% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 9.05 min, t_R (minor) = 14.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.67 (ddd, J = 4.9, 1.6, 0.9 Hz, 1H), 8.19 (d, J = 7.0 Hz, 1H), 8.09 – 8.04 (m, 1H), 7.89 – 7.83 (m, 1H), 7.74 – 7.67 (m, 2H), 7.55 (dt, J = 7.8, 1.0 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.30 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 2.08 – 1.97 (m, 2H), 1.89 – 1.80 (m, 2H), 1.78 – 1.72 (m, 1H), 1.70 (s, 3H), 1.53 – 1.17 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 150.3, 142.6, 136.3, 134.0, 132.2, 128.7, 127.1, 126.5, 126.4, 125.9, 125.8, 125.3, 123.3, 120.5, 119.1, 90.1, 88.1, 50.1, 45.4, 29.5, 27.6, 26.3, 26.2, 26.1, 24.0.

HRMS (ESI) m/z calcd. for C₂₆H₂₇N₂O [M + H]⁺ 383.2118, found 383.2121. [α]_D²⁷ = +8.0 (*c* 1.00, CH₂Cl₂).

(S)-4-(Cyclohex-1-en-1-yl)-2-cyclohexyl-2-methyl-*N*-(naphthalen-1-yl)but-3-ynamide (66)

According to the **general procedure C**, substrate **E62** (35.9 mg, 0.10 mmol) was employed to yield the product **66** as a colorless oil (8.8 mg, 23% yield, 88% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 5.23 min, t_R (minor) = 8.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.21 (dd, J = 7.5, 0.6 Hz, 1H), 7.94 – 7.85 (m, 2H), 7.67 (d, J = 8.3 Hz, 1H), 7.53 – 7.48 (m, 3H), 6.27 (tt, J = 3.9, 1.8 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.20 – 2.13 (m, 2H), 1.97 – 1.81 (m, 3H), 1.75 – 1.64 (m, 6H), 1.57 (s, 3H), 1.41 – 1.14 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.5, 134.0, 132.3, 128.9, 126.3, 126.2, 126.0, 125.8, 124.9, 120.0, 118.6, 90.4, 87.3, 50.2, 45.3, 29.6, 29.4, 27.5, 26.4, 26.3, 26.2, 25.7, 24.3, 22.3, 21.5.

HRMS (ESI) *m/z* calcd. for C₂₇H₃₂NO [M + H]⁺ 386.2478, found 386.2474. $[\alpha]_D^{27} = +20.5$ (*c* 1.00, CH₂Cl₂).

(S)-2-Cyclopentyl-2-methyl-N-(naphthalen-1-yl)-4-(o-tolyl)but-3-ynamide (67)

According to the **general procedure C**, substrate **E67** (34.6 mg, 0.10 mmol) was employed to yield the product **67** as a colorless oil (21.0 mg, 55% yield, 72% e.e.). **HPLC** analysis: Chiralcel IB (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$

nm), t_R (major) = 6.27 min, t_R (minor) = 14.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.14 (d, *J* = 7.5 Hz, 1H), 7.87 (dd, *J* = 7.9, 3.6 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.56 – 7.40 (m, 4H), 7.32 – 7.25 (m, 2H), 7.23 – 7.18 (m, 1H), 2.61 – 2.51 (m, 1H), 2.52 (s, 3H), 1.98 – 1.90 (m, 1H), 1.89 – 1.81 (m, 1H), 1.72 (s, 3H), 1.71 – 1.57 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 140.1, 134.0, 132.3, 132.1, 129.7, 128.9, 128.8, 126.6, 126.3, 125.9, 125.8, 125.3, 122.1, 120.1, 119.4, 93.8, 87.3, 49.8, 47.9, 29.4, 28.2, 25.9, 25.7, 25.5, 21.0.

HRMS (ESI) *m/z* calcd. for C₂₇H₂₈NO [M + H]⁺ 382.2165, found 382.2170. $[\alpha]_D^{27} = +6.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Isopropyl-2-methyl-N-(naphthalen-1-yl)-4-(o-tolyl)but-3-ynamide (68)

According to the general procedure C, substrate E68 (32.0 mg, 0.10 mmol) was employed to yield the product 68 as a colorless oil (18.0 mg, 51% yield, 62% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.23 min, t_R (minor) = 14.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 8.16 (d, *J* = 7.5 Hz, 1H), 7.89 – 7.85 (m, 2H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.52 – 7.39 (m, 3H), 7.31 – 7.27 (m, 2H), 7.23 – 7.18 (m, 1H), 2.53 (s, 3H), 2.44 – 2.32 (m, 1H), 1.70 (s, 3H), 1.19 (d, *J* = 6.6 Hz, 3H), 1.15 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 140.1, 134.0, 132.2, 132.1, 129.7, 128.9, 128.8, 126.6, 126.3, 125.9, 125.8, 125.3, 122.1, 120.0, 119.3, 93.2, 87.7, 51.1, 35.9, 25.1, 21.1, 19.6, 17.7.

HRMS (ESI) *m*/*z* calcd. for C₂₅H₂₆NO [M + H]⁺ 356.2009, found 356.2013. $[\alpha]_D^{27} = +11.0 (c \ 1.00, CH_2Cl_2).$

(S)-2-Methyl-N-(naphthalen-1-yl)-2-(o-tolylethynyl)hexanamide (69)

According to the **general procedure C**, substrate **E69** (33.4 mg, 0.10 mmol) was employed to yield the product **69** as a colorless oil (18.1 mg, 49% yield, 64% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.17 min, t_R (minor) = 12.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.16 (d, J = 7.2 Hz, 1H), 7.91 – 7.82 (m, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.56 – 7.39 (m, 4H), 7.32 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 2.51 (s, 3H), 2.19 – 2.11 (m, 1H), 1.85 – 1.77 (m, 1H), 1.72 (s, 3H), 1.71 – 1.66 (m, 1H), 1.55 – 1.36 (m, 3H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 140.2, 134.0, 132.2, 132.0, 129.7, 128.9, 128.8, 126.5, 126.3, 125.9, 125.8, 125.3, 122.0, 120.0, 119.3, 95.2, 86.4, 45.9, 40.4, 28.1, 27.0, 22.8, 20.9, 14.0.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₈NO $[M + H]^+$ 370.2165, found 370.2172. $[\alpha]_D^{27} = +1.0$ (*c* 1.00, CH₂Cl₂).

(S)-2-Ethyl-2-methyl-N-(naphthalen-1-yl)-4-(o-tolyl)but-3-ynamide (70)

According to the **general procedure C**, substrate **E70** (30.6 mg, 0.10 mmol) was employed to yield the product **70** as a colorless oil (14.6 mg, 43% yield, 32% e.e.).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.33 min, t_R (minor) = 12.98 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.52 – 7.39 (m, 3H), 7.32 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 2.52 (s, 3H), 2.19 (dq, J = 14.8, 7.4 Hz, 1H), 1.86 (dq, J = 14.8, 7.4 Hz, 1H), 1.72 (s, 3H), 1.19 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 140.1, 134.0, 132.2, 132.1, 129.7, 128.9, 128.8, 126.6, 126.3, 125.9, 125.9, 125.8, 125.4, 122.0, 120.0, 119.4, 94.9, 86.5, 46.6, 33.8, 26.6, 20.9, 10.3.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1857. $[\alpha]_D^{27} = +3.3$ (*c* 0.60, CH₂Cl₂).

(S)-4-((1-Benzyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (71)

According to the **general procedure D**, substrate **E71** (31.6 mg, 0.10 mmol) was employed to yield the product **71** as a yellowish solid (29.7 mg, 82% yield, 90% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 24.72 min, t_R (major) = 32.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.43 – 7.29 (m, 8H), 4.60 (d, J = 15.0 Hz, 1H), 4.50 (d, J = 15.0 Hz, 1H), 3.75 (d, J = 5.4 Hz, 1H), 3.53 (d, J = 5.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.2, 135.8, 134.7, 132.3, 131.9, 129.0, 128.9, 128.21, 128.16, 128.1, 127.4, 126.1, 118.3, 111.8, 90.2, 85.0, 56.7, 55.4, 46.5.

HRMS (ESI) *m/z* calcd. for C₂₅H₁₉N₂O [M + H]⁺ 363.1492, found 363.1488. $[\alpha]_D^{27} = -81.0 \ (c \ 1.00, \text{CH}_2\text{Cl}_2).$

(S)-1-Benzyl-3-((4-methoxyphenyl)ethynyl)-3-phenylazetidin-2-one (72)

According to the **general procedure E**, substrate **E71** (31.6 mg, 0.10 mmol) was employed to yield the product **72** as a yellowish solid (31.2 mg, 85% yield, 89% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 260 nm), t_R (minor) = 13.93 min, t_R (major) = 22.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.46 – 7.28 (m, 10H), 6.88 – 6.81 (m, 2H), 4.62 (d, J = 15.0 Hz, 1H), 4.49 (d, J = 15.0 Hz, 1H), 3.81 (s, 3H), 3.73 (d, J = 5.3 Hz, 1H), 3.49 (d, J = 5.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.2, 159.7, 136.6, 135.0, 133.3, 128.9, 128.8, 128.2, 128.0, 127.9, 126.2, 114.7, 113.8, 86.7, 84.0, 56.9, 56.0, 55.3, 46.4.

HRMS (ESI) m/z calcd. for C₂₅H₂₂NO₂ [M + H]⁺ 368.1645, found 368.1642. [α]_D²⁷ = -48.0 (*c* 1.00, CH₂Cl₂).

(S)-1-Benzyl-3-phenyl-3-(thiophen-2-ylethynyl)azetidin-2-one (73)

According to the general procedure E, substrate E71 (31.6 mg, 0.10 mmol) was employed to yield the product 73 as yellow oil (26.7 mg, 78% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 11.03 min, t_R (major) = 14.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.43 – 7.29 (m, 8H), 7.28 – 7.24 (m, 2H), 6.98 (dd, J = 5.1, 3.7 Hz, 1H), 4.62 (d, J = 15.0 Hz, 1H), 4.49 (d, J = 15.0 Hz, 1H), 3.74 (d, J = 5.3 Hz, 1H), 3.50 (d, J = 5.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.7, 136.2, 134.8, 132.4, 129.0, 128.9, 128.2, 128.0, 127.3, 126.9, 126.2, 122.5, 89.3, 80.1, 57.0, 55.7, 46.5.

HRMS (ESI) m/z calcd. for C₂₂H₁₈NOS [M + H]⁺ 344.1104, found 344.1102. $[\alpha]_D^{27} = -50.7$ (*c* 1.00, CH₂Cl₂).

(S)-1-Benzyl-3-(cyclohex-1-en-1-ylethynyl)-3-phenylazetidin-2-one (74)

According to the **general procedure E**, substrate **E71** (31.6 mg, 0.10 mmol) was employed to yield the product **74** as a colorless oil (16.0 mg, 47% yield, 87% e.e.). **HPLC** analysis: Nu-Analytical Solutions INA (hexane/*i*-PrOH = 85/15, flow rate 0.70 mL/min, $\lambda = 240$ nm), t_R (minor) = 10.62 min, t_R (major) = 14.30 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.41 – 7.26 (m, 8H), 6.17 (tt, *J* = 3.9, 1.8 Hz, 1H), 4.58 (d, *J* = 15.0 Hz, 1H), 4.46 (d, *J* = 15.0 Hz, 1H), 3.62 (d, *J* = 5.2 Hz, 1H), 3.43 (d, *J* = 5.2 Hz, 1H), 2.20 – 2.06 (m, 4H), 1.67 – 1.56 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 136.7, 135.5, 135.0, 128.9, 128.7, 128.2, 127.9, 127.8, 126.2, 120.2, 88.7, 82.6, 56.8, 56.2, 46.4, 29.2, 25.6, 22.2, 21.4. **HRMS** (ESI) *m/z* calcd. for C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1850. [α]²_D⁷ = -22.0 (*c* 1.00, CH₂Cl₂).

(S)-1-Benzyl-3-(3,3-diethoxyprop-1-yn-1-yl)-3-phenylazetidin-2-one (75)

According to the **general procedure E**, substrate **E71** (31.6 mg, 0.10 mmol) was employed to yield the product **75** as a colorless oil (26.0 mg, 72% yield, 84% e.e.). **HPLC** analysis: Nu-Analytical Solutions INA (hexane/*i*-PrOH = 85/15, flow rate 0.70 mL/min, $\lambda = 214$ nm), t_R (minor) = 9.11 min, t_R (major) = 11.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.40 – 7.27 (m, 8H), 5.37 (s, 1H), 4.56 (d, J = 15.0 Hz, 1H), 4.45 (d, J = 15.0 Hz, 1H), 3.80 – 3.70 (m, 2H), 3.68 (d, J = 5.4 Hz, 1H), 3.66 – 3.55 (m, 2H), 3.41 (d, J = 5.4 Hz, 1H), 1.24 (t, J = 7.2, 3H), 1.23 (t, J = 7.2, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 135.8, 134.8, 128.9, 128.8, 128.2, 128.0, 126.1, 91.4, 82.3, 81.7, 61.0, 56.1, 55.3, 46.4, 15.1.

HRMS (ESI) *m/z* calcd. for C₂₃H₂₅NNaO₃ [M + Na]⁺ 386.1727, found 386.1723. $[\alpha]_D^{27} = -8.0$ (*c* 0.50, CH₂Cl₂). (S)-4-((1-Ethyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (76)

According to the **general procedure D**, substrate **E76** (25.4 mg, 0.10 mmol) was employed to yield the product **76** as a colorless oil (27.0 mg, 90% yield, 85% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 14.34 min, t_R (major) = 17.96 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 6H), 7.43 – 7.37 (m, 2H), 7.36 – 7.30 (m, 1H), 3.83 (d, *J* = 5.2 Hz, 1H), 3.62 (d, *J* = 5.2 Hz, 1H), 3.54 – 3.32 (m, 2H), 1.27 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.8, 136.0, 132.3, 131.9, 129.0, 128.2, 127.5, 126.1, 118.3, 111.8, 90.4, 85.0, 56.2, 55.3, 37.0, 12.6.

HRMS (ESI) *m/z* calcd. for C₂₀H₁₇N₂O [M + H]⁺ 301.1335, found 301.1334. $[\alpha]_D^{27} = -19.0 \ (c \ 1.00, \ CH_2Cl_2).$

(S)-4-((1-Cyclopropyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (77)

According to the **general procedure D**, substrate **E77** (26.6 mg, 0.10 mmol) was employed to yield the product **77** as a colorless oil (27.5 mg, 88% yield, 84% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 16.20 min, t_R (major) = 27.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 4H), 7.52 – 7.48 (m, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.29 (m, 1H), 3.79 (d, *J* = 5.3 Hz, 1H), 3.56 (d, *J* = 5.3 Hz, 1H), 2.76 – 2.66 (m, 1H), 0.98 – 0.76 (m, 4H).

¹³C NMR (10MHz, CDCl₃) δ 165.5, 136.0, 132.3, 131.9, 129.0, 128.1, 127.5, 126.1, 118.3, 111.8, 90.3, 85.0, 56.4, 55.4, 24.7, 5.6, 5.4.

HRMS (ESI) *m/z* calcd. for C₂₁H₁₇N₂O [M + H]⁺ 313.1335, found 313.1334. $[\alpha]_D^{27} = -12.0$ (*c* 1.00, CH₂Cl₂).

(S)-4-((1-Cyclopentyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (78)

According to the **general procedure D**, substrate **E78** (29.4 mg, 0.10 mmol) was employed to yield the product **78** as a white solid (28.2 mg, 83% yield, 90% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, $\lambda = 270$

nm), t_R (minor) = 15.45 min, t_R (major) = 22.07 min. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 6H), 7.43 – 7.36 (m, 2H), 7.36 – 7.30 (m, 1H), 4.27 – 4.13 (m, 1H), 3.81 (d, J = 5.2 Hz, 1H), 3.57 (d, J = 5.2 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.85 – 1.58 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 136.2, 132.4, 131.9, 129.0, 128.1, 127.5, 126.1, 118.3, 111.7, 90.5, 84.9, 55.1, 54.0, 53.8, 30.4, 30.0, 23.98, 23.95.

HRMS (ESI) *m/z* calcd. for C₂₃H₂₁N₂O [M + H]⁺ 341.1648, found 341.1646. $[\alpha]_D^{27} = -29.0 \ (c \ 1.00, CH_2Cl_2).$

(S)-4-((1-Cyclohexyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (79)

According to the general procedure **D**, substrate **E79** (30.8 mg, 0.10 mmol) was employed to yield the product **79** as a white solid (30.0 mg, 85% yield, 91% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 17.31 min, t_R (major) = 23.56 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 6H), 7.43 – 7.36 (m, 2H), 7.35 – 7.29 (m, 1H), 3.81 (d, J = 5.2 Hz, 1H), 3.69 (tt, J = 11.3, 3.9 Hz, 1H), 3.57 (d, J = 5.2 Hz, 1H), 2.05 – 1.93 (m, 2H), 1.86 – 1.75 (m, 2H), 1.71 – 1.61 (m, 1H), 1.53 – 1.41 (m, 2H), 1.39 – 1.28 (m, 2H), 1.17 (qt, J = 12.4, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.3, 136.1, 132.4, 131.9, 128.9, 128.1, 127.6, 126.0, 118.3, 111.7, 90.5, 84.9, 55.1, 53.6, 51.7, 30.8, 30.4, 25.2, 24.73, 24.72.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₃N₂O [M + H]⁺ 355.1805, found 355.1802. $[\alpha]_D^{27} = -18.0 \ (c \ 1.00, \ CH_2Cl_2).$

(S)-4-((1-Cycloheptyl-2-oxo-3-phenylazetidin-3-yl)ethynyl)benzonitrile (80)

According to the general procedure **D**, substrate **E80** (32.2 mg, 0.10 mmol) was employed to yield the product **80** as a white solid (32.0 mg, 87% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 19.03 min, t_R (major) = 25.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 6H), 7.42 – 7.36 (m, 2H), 7.35 – 7.29 (m, 1H), 3.90 (tt, *J* = 9.4, 4.4 Hz, 1H), 3.82 (d, *J* = 5.2 Hz, 1H), 3.59 (d, *J* = 5.2 Hz, 1H), 2.10 – 1.97 (m, 2H), 1.78 – 1.43 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 136.1, 132.4, 131.9, 128.9, 128.1, 127.5, 126.0, 118.3, 111.7, 90.5, 84.9, 55.2, 53.8, 53.7, 32.9, 32.5, 27.9, 27.8, 24.17, 24.15. HRMS (ESI) *m/z* calcd. for C₂₅H₂₅N₂O [M + H]⁺ 369.1961, found 369.1959. $[\alpha]_D^{27} = -24.0 \ (c \ 1.00, \ CH_2Cl_2).$

(S)-4-((1-Benzyl-3-(4-bromophenyl)-2-oxoazetidin-3-yl)ethynyl)benzonitrile (81)

According to the general procedure **D**, substrate **E81** (39.5 mg, 0.10 mmol) was employed to yield the product **81** as a white solid (37.5 mg, 85% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 28.21 min, t_R (major) = 31.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.56 – 7.52 (m, 2H), 7.52 – 7.48 (m, 2H), 7.42 – 7.28 (m, 7H), 4.60 (d, *J* = 15.0 Hz, 1H), 4.47 (d, *J* = 15.0 Hz, 1H), 3.74 (d, *J* = 5.5 Hz, 1H), 3.48 (d, *J* = 5.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.6, 135.0, 134.5, 132.3, 132.1, 132.0, 129.0, 128.19, 128.16, 127.9, 127.1, 122.3, 118.2, 112.0, 89.5, 85.3, 56.2, 55.2, 46.6.

HRMS (ESI) m/z calcd. for C₂₅H₁₈BrN₂O [M + H]⁺ 441.0597, found 441.0593. [α]_D²⁷ = -48.0 (*c* 1.00, CH₂Cl₂).

According to the **general procedure E**, substrate **E82** (39.5 mg, 0.10 mmol) was employed to yield the product **82** as a white solid (37.0 mg, 84% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 17.38 min, t_R (major) = 21.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 3H), 7.58 – 7.53 (m, 2H), 7.49 – 7.29 (m, 7H), 7.28 – 7.23 (m, 1H), 4.60 (d, *J* = 14.9 Hz, 1H), 4.48 (d, *J* = 15.0 Hz, 1H), 3.74 (d, *J* = 5.5 Hz, 1H), 3.49 (d, *J* = 5.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.6, 138.0, 134.5, 132.4, 132.0, 131.4, 130.5, 129.3, 129.1, 128.3, 128.2, 127.1, 124.8, 123.0, 118.3, 112.0, 89.3, 85.5, 56.2, 55.2, 46.6. HRMS (ESI) *m/z* calcd. for C₂₅H₁₈BrN₂O [M + H]⁺ 441.0597, found 441.0593. [α]_D²⁷ = -56.0 (*c* 1.00, CH₂Cl₂).

(S)-4-((1-Benzyl-2-oxo-3-(p-tolyl)azetidin-3-yl)ethynyl)benzonitrile (83)

According to the **general procedure D**, substrate **E83** (33.0 mg, 0.10 mmol) was employed to yield the product **83** as a white solid (33.0 mg, 88% yield, 90% e.e.). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 270 nm), t_R (minor) = 30.53 min, t_R (major) = 42.69 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.42 – 7.29 (m, 7H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.60 (d, *J* = 15.0 Hz, 1H), 4.49 (d, *J* = 15.0 Hz, 1H), 3.73 (d, *J* = 5.4 Hz, 1H), 3.50 (d, *J* = 5.3 Hz, 1H), 2.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.4, 138.0, 134.3, 132.9, 132.3, 131.9, 129.6, 128.9, 128.2, 128.0, 127.5, 126.0, 118.3, 111.7, 90.5, 84.8, 56.4, 55.5, 46.5, 21.0. **HRMS** (ESI) *m/z* calcd. for C₂₆H₂₁N₂O [M + H]⁺ 377.1648, found 377.1645. [α]²_P⁷ = -72.0 (*c* 1.00, CH₂Cl₂).

(*S*)-4-((1-Benzyl-3-(4-(*tert*-butyl)phenyl)-2-oxoazetidin-3-yl)ethynyl)benzonitrile (84)

According to the **general procedure E**, substrate **E84** (37.2 mg, 0.10 mmol) was employed to yield the product **84** as a white solid (27.2 mg, 65% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 0.80 mL/min, λ = 254 nm), t_R (minor) = 14.81 min, t_R (major) = 17.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.58 – 7.53 (m, 2H), 7.46 – 7.30 (m, 9H), 4.60 (d, J = 15.0 Hz, 1H), 4.50 (d, J = 14.9 Hz, 1H), 3.73 (d, J = 5.4 Hz, 1H), 3.53 (d, J = 5.3 Hz, 1H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 165.5, 151.2, 134.8, 132.7, 132.3, 131.9, 129.0, 128.3, 128.1, 127.5, 125.9, 125.8, 118.4, 111.8, 90.5, 84.9, 56.4, 55.4, 46.5, 34.5, 31.2. HRMS (ESI) *m/z* calcd. for C₂₉H₂₇N₂O [M + H]⁺ 419.2118, found 419.2113. [α]_D²⁷ = -52.0 (*c* 1.00, CH₂Cl₂).

(S)-3-(3-(9H-Carbazol-9-yl)prop-1-yn-1-yl)-1-(4-bromophenyl)-3cyclopentylazetidin-2-one (85)

According to the general procedure F, substrate E85 (37.3 mg, 0.10 mmol) was employed to yield the product 85 as a white solid (41.2 mg, 83% yield, 86% e.e.).

HPLC analysis: Nu-Analytical Solutions INB (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, $\lambda = 230$ nm), t_R (major) = 26.52 min, t_R (minor) = 30.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.43 – 7.38 (m, 2H), 7.29 – 7.21 (m, 2H), 7.18 – 7.12 (m, 2H), 5.09 (s, 2H), 3.55 (d, J = 5.5 Hz, 1H), 3.41 (d, J = 5.5 Hz, 1H), 2.30 – 2.16 (m, 1H), 1.89 – 1.78 (m, 1H), 1.71 – 1.31 (m, 7H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 139.9, 136.9, 132.1, 125.8, 123.2, 120.4, 119.5, 118.0, 116.8, 108.8, 80.1, 80.0, 55.0, 50.7, 44.0, 32.8, 28.6, 28.5, 25.5, 25.1. HRMS (ESI) *m/z* calcd. for C₂₉H₂₆BrN₂O [M + H]⁺ 497.1223, found 497.1225. [α]_D²⁷ = -18.0 (*c* 1.00, CH₂Cl₂).

(S)-3-(3-(9H-Carbazol-9-yl)prop-1-yn-1-yl)-1-(4-bromophenyl)-3isopropylazetidin-2-one (86)

According to the general procedure F, substrate E86 (34.7 mg, 0.10 mmol) was employed to yield the product 86 as a white solid (42.0 mg, 89% yield, 86% e.e.).

HPLC analysis: Nu-Analytical Solutions INB (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, $\lambda = 230$ nm), t_R (major) = 26.09 min, t_R (minor) = 30.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.8 Hz, 2H), 7.54 – 7.47 (m, 4H), 7.47 – 7.41 (m, 2H), 7.33 – 7.24 (m, 2H), 7.22 – 7.16 (m, 2H), 5.13 (s, 2H), 3.54 (d, J = 5.6 Hz, 1H), 3.45 (d, J = 5.6 Hz, 1H), 2.14 – 2.02 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.8, 139.8, 136.9, 132.1, 125.8, 123.2, 120.4, 119.5, 117.9, 116.8, 108.8, 80.6, 79.2, 56.7, 50.1, 33.1, 32.8, 18.4, 18.1.

HRMS (ESI) m/z calcd. for C₂₇H₂₄BrN₂O [M + H]⁺ 471.1067, found 471.1068. [α]_D²⁷ = -18.0 (*c* 1.00, CH₂Cl₂).

(S)-3-(3-(9H-Carbazol-9-yl)prop-1-yn-1-yl)-1-(4-bromophenyl)-3-ethylazetidin-2one (87)

According to the **general procedure F**, substrate **E87** (33.3 mg, 0.10 mmol) was employed to yield the product **87** as a white solid (39.8 mg, 87% yield, 79% e.e.). **HPLC** analysis: Nu-Analytical Solutions INB (hexane/*i*-PrOH = 90/10, flow rate 0.80 mL/min, $\lambda = 230$ nm), t_R (major) = 30.47 min, t_R (minor) = 37.70 min. ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 2H), 7.52 – 7.45 (m, 4H), 7.45 – 7.39 (m, 2H), 7.31 – 7.23 (m, 2H), 7.19 – 7.12 (m, 2H), 5.10 (s, 2H), 3.57 (d, J = 5.5 Hz, 1H), 3.41 (d, J = 5.5 Hz, 1H), 1.99 – 1.76 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.0, 139.8, 136.9, 132.1, 125.8, 123.1, 120.4, 119.5, 118.0, 116.8, 108.7, 80.1, 52.3, 51.1, 32.7, 28.2, 9.5. **HRMS** (ESI) *m/z* calcd. for C₂₆H₂₂BrN₂O [M + H]⁺ 457.0910, found 457.0911.

 $[\alpha]_{D}^{27} = -27.0 \ (c \ 1.00, \ CH_2Cl_2).$

Procedure for synthetic applications (88–99)

The synthesis of 88

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in THF (2.0 mL) was added Pd/C (10% palladium on carbon, wet with ca. 50% water, 10.6 mg, 10 mol%). Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50/1-20/1) to give the product **88** as a white solid (32.8 mg, 96% yield, 91% e.e.).

(R)-2-Ethyl-N,2,4-triphenylbutanamide (88)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.36 min, t_R (major) = 11.87 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 6H), 7.34 – 7.30 (m, 1H), 7.30 – 7.23 (m, 4H), 7.20 – 7.12 (m, 3H), 7.09 – 7.04 (m, 1H), 6.83 (s, 1H), 2.54 – 2.28 (m, 4H), 2.27 – 2.11 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 142.6, 142.1, 137.9, 128.9, 128.8, 128.4, 128.3, 127.4, 127.3, 125.9, 124.2, 119.9, 55.4, 36.9, 30.5, 28.0, 8.5.

HRMS (ESI) m/z calcd. for C₂₄H₂₆NO [M + H]⁺ 344.2009, found 344.2004.

 $[\alpha]_{\rm D}^{27} = -13.0 \ (c \ 1.00, \ {\rm CH_2Cl_2}).$

The synthesis of 89

To a solution of **1** (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in anhydrous THF (2.0 mL) was added LiAlH₄ (19.0 mg, 0.50 mmol, 5.0 equiv.) in portions at 0 °C under argon

atmosphere. The resulting mixture was stirred at 50 °C for 24 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL \times 2). The combined organic layer was washed with water (10 mL) and brine (10 mL \times 2), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50/1–20/1) to give **89** as a white solid (26.5 mg, 78% yield, 91% e.e.).

(*R*, *E*)-2-Ethyl-*N*,2,4-triphenylbut-3-enamide (89)

(*R*, *E*)-2-Ethyl-*N*,2,4-triphenylbut-3-enamide (89)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 15.59 min, t_R (major) = 17.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 8H), 7.36 – 7.24 (m, 6H), 7.10 – 7.05 (m, 2H), 6.89 (d, J = 16.4 Hz, 1H), 6.41 (d, J = 16.4 Hz, 1H), 2.45 – 2.25 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 142.0, 137.8, 136.9, 132.3, 131.6, 128.93, 128.88, 128.6, 128.2, 127.8, 127.5, 126.5, 124.3, 119.8, 59.0, 31.2, 9.3.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1847. $[\alpha]_D^{27} = +1.2$ (*c* 1.00, CH₂Cl₂).

The synthesis of 90

To a solution of 1 (33.9 mg, 0.10 mmol, 91% e.e.) in EtOH (2.0 mL) was added nickel(II) acetate tetrahydrate (49.8 mg, 0.20 mmol, 2.0 equiv.) and ethylenediamine (27 μ L, 0.40 mmol, 4.0 equiv.) under argon atmosphere. The resulting mixture was cooled to 0 °C and NaBH₄ (7.6 mg, 0.20 mmol, 2.0 equiv.) was added in portions. Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at 50 °C for 12 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layer was washed with

water (10 mL) and brine (10 mL \times 2), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50/1–20/1) to give **90** as a colorless oil (29.7 mg, 87% yield, 91% e.e.).

(R, Z)-2-Ethyl-N,2,4-triphenylbut-3-enamide (90)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.42 min, t_R (minor) = 10.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.32 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 7.20 – 7.11 (m, 5H), 7.10 – 7.03 (m, 3H), 7.02 – 6.97 (m, 3H), 6.87 (d, J = 12.8 Hz, 1H), 6.46 (d, J = 12.8 Hz, 1H), 2.34 – 2.18 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 142.5, 137.7, 136.4, 133.0, 132.8, 128.60, 128.55, 128.5, 127.8, 127.7, 127.02, 127.00, 124.0, 119.8, 57.5, 32.3, 9.2. **HRMS** (ESI) *m/z* calcd. for C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1849. [α]₂₇²⁷ = +9.5 (*c* 1.00, CH₂Cl₂).

The synthesis of 91

To a solution of **1** (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in anhydrous CH₂Cl₂ (2.0 mL) was added diisobutylaluminium hydride (DIBAL-H, 1.0 M solution in *n*-hexane, 0.50 mL, 0.50 mmol, 5.0 equiv.) at -78 °C under argon atmosphere. The resulting mixture was stirred at -78 °C for 5 h. Upon completion (monitored by TLC), the reaction mixture was warmed up to room temperature and quenched by saturated NH4Cl (5.0 mL), filtered through a short pad of celite and rinsed with CH₂Cl₂ (5.0 mL), and the filtrate was extracted with CH₂Cl₂ (5.0 mL × 2). The combined organic layer was washed with water (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on neutral aluminium oxide (200–300 mesh, petroleum ether/ethyl acetate 200/1 as eluent) to give **91** as a slightly yellow oil (24.8 mg, 76% yield, 90% e.e.).

(S)-N-(2-Ethyl-2,4-diphenylbut-3-yn-1-yl)aniline (91)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 99/1, flow rate 0.50 mL/min, λ = 254 nm), t_R (minor) = 12.10 min, t_R (major) = 13.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.47 – 7.43 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.29 (m, 3H), 7.29 – 7.24 (m, 1H), 7.16 – 7.10 (m, 2H), 6.69 – 6.64 (m, 1H), 6.62 – 6.59 (m, 2H), 3.83 (s, 1H), 3.60 (d, *J* = 11.7 Hz, 1H), 3.51 (d, *J* = 11.7 Hz, 1H), 2.12 (dq, *J* = 14.6, 7.3 Hz, 1H), 1.99 (dq, *J* = 14.6, 7.3 Hz, 1H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.4, 131.8, 129.1, 128.5, 128.3, 128.1, 127.0, 126.9, 123.3, 117.3, 113.1, 91.6, 86.5, 54.5, 48.0, 33.0, 9.5.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₄N [M + H]⁺ 326.1903, found 326.1898. $[\alpha]_D^{27} = -1.6$ (*c* 1.00, CH₂Cl₂).

The synthesis of 92

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in anhydrous THF (1.0 mL) was added lithium bis(trimethylsilyl)amide (LiHMDS, 1.0 M solution in THF, 0.40 mL, 0.40 mmol, 4.0 equiv.) at room temperature under argon atmosphere. The reaction mixture was stirred for 15 min. Then the solution of propyl chloroformate (45 μ L, 0.40 mmol, 4.0 equiv.) in anhydrous THF (0.60 mL) was added into the mixture dropwise via syringe. The resulting mixture was stirred at 50 °C for 12 h. Upon completion (monitored by TLC), the mixture was quenched by saturated NH4Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layer was washed with brine (10 mL × 2). The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

The above residue was dissolved in THF (2.0 mL), and then LiAlH4 (19.0 mg, 0.50 mmol, 5.0 equiv.) was added in portions at 0 °C under argon atmosphere. The resulting mixture was stirred at 50 °C for 4 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layer was washed with water (10 mL) and brine (10 mL × 2), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 50/1–20/1) to give **92** as a colorless oil (18.1 mg, 72% yield over two steps, 91% e.e.).

(S)-2-Ethyl-2,4-diphenylbut-3-yn-1-ol (92)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.41 min, t_R (major) = 8.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.54 – 7.49 (m, 2H), 7.40 – 7.31 (m, 5H), 7.30 – 7.25 (m, 1H), 3.85 (d, *J* = 10.7 Hz, 1H), 3.82 (d, *J* = 10.7 Hz, 1H), 2.09 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.94 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.77 (br s, 1H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 131.8, 128.5, 128.3, 128.2, 127.1, 127.0, 123.2, 91.0, 86.6, 71.1, 49.9, 30.7, 9.4.

HRMS (ESI) *m/z* calcd. for C₁₈H₁₉O [M + H]⁺ 251.1430, found 251.1433. $[\alpha]_D^{27} = +1.6$ (*c* 0.50, CH₂Cl₂).

The synthesis of 93

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) and 4-dimethylamino pyridine (DMAP, 24.4 mg, 0.20 mmol, 2.0 equiv.) in anhydrous MeCN (2.0 mL) was added Boc₂O (115 μ L, 0.50 mmol, 5.0 equiv.) under argon atmosphere. The resulting mixture was stirred at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by HCl (0.5 M, 5.0 mL) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was extracted with DCM (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL). The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

The above residue was dissolved in anhydrous DCM (2.0 mL) and diisobutylaluminium hydride (DIBAL-H, 1.0 M solution in *n*-hexane, 0.20 mL, 0.20 mmol, 2.0 equiv.) was added at -78 °C under argon atmosphere. The resulting mixture was stirred at -78 °C for 5 h. Upon completion (monitored by TLC), the reaction mixture was warmed up to room temperature, quenched by saturated NH4Cl (5.0 mL), filtered through a short pad of celite, and rinsed with DCM (5.0 mL). The filtrate was extracted with DCM (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100/1) to give **93** as a white solid (16.3 mg, 66% yield over two steps, 91% e.e.).

(S)-2-Ethyl-2,4-diphenylbut-3-ynal (93)

Ph CHO

HPLC analysis: Chiralcel OJ-H (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (minor) = 13.49 min, t_R (major) = 16.27 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.56 – 7.49 (m, 4H), 7.44 – 7.39 (m, 2H), 7.37 – 7.31 (m, 4H), 2.26 (dq, J = 14.6, 7.4 Hz, 1H), 2.05 (dq, J = 14.6, 7.4 Hz, 1H), 0.98 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.4, 135.8, 131.9, 128.9, 128.6, 128.4, 128.0, 127.8, 122.6, 89.9, 85.8, 58.9, 29.0, 9.3.

HRMS (ESI) *m/z* calcd. for C₁₈H₁₇O₂ [M + H]⁺ 249.1274, found 249.1272 $[\alpha]_D^{27} = -21.2$ (*c* 1.00, CH₂Cl₂).

The synthesis of 94

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) and 4-dimethylamino pyridine (DMAP, 24.4 mg, 0.20 mmol, 2.0 equiv.) in anhydrous MeCN (2.0 mL) was added Boc₂O (115 μ L, 0.50 mmol, 5.0 equiv.) under argon atmosphere. The resulting mixture was stirred at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by HCl (0.5 M, 5.0 mL) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was extracted with DCM (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL). The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

The above residue was dissolved in anhydrous MeOH (2.0 mL) and LiOH (12.0 mg, 0.50 mmol, 5.0 equiv.) was added at room temperature under argon atmosphere. The resulting mixture was stirred at 50 °C for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short pad of celite, and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL × 2), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100/1) to give **94** as a white solid (16.1 mg, 58% yield over two steps, 91% e.e.).

Methyl (S)-2-ethyl-2,4-diphenylbut-3-ynoate (94)

HPLC analysis: Chiralcel OJ-H (hexane/*i*-PrOH = 98/2, flow rate 0.50 mL/min, λ = 254 nm), t_R (minor) = 30.92 min, t_R (major) = 34.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 2H), 7.56 – 7.52 (m, 2H), 7.39 – 7.27 (m, 6H), 3.73 (s, 3H), 2.40 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.12 (dq, *J* = 14.5, 7.3 Hz, 1H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 139.4, 131.8, 128.5, 128.3, 127.5, 126.6, 123.1, 87.9, 86.8, 53.7, 53.1, 33.4, 9.7.

HRMS (ESI) *m/z* calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380, found 279.1378 $[\alpha]_D^{27} = -7.4$ (*c* 1.00, CH₂Cl₂).

The synthesis of 95

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) and 4-dimethylamino pyridine (DMAP, 24.4 mg, 0.20 mmol, 2.0 equiv.) in anhydrous MeCN (2.0 mL) was added Boc₂O (115 μ L, 0.50 mmol, 5.0 equiv.) under argon atmosphere. The resulting mixture was stirred at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was quenched by HCl (0.5 M, 5.0 mL) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was extracted with DCM (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL). The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

To a solution of the above residue in THF (1.5 mL) and H₂O (0.50 mL) was added LiOH (4.8 mg, 0.20 mmol, 2.0 equiv.) and H₂O₂ (51 μ L, wt. 30% in water, 0.50 mmol, 5.0 equiv.) under argon atmosphere. The resulting mixture was stirred at room temperature for 5 h. Upon completion (monitored by TLC), the reaction mixture was quenched by aqueous solution of Na₂SO₃ (1.0 M, 0.50 mL, 0.50 mmol, 5.0 equiv.) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was diluted with HCl (1.0 M, 5.0 mL) and extracted with DCM (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL × 2), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 5/1–3/1) to give **95** as a white solid (20.8 mg, 79% yield

over two steps, 91% e.e. and the e.e. value was determined by analyzing the esterified product **94** as described below).

(S)-2-Ethyl-2,4-diphenylbut-3-ynoic Acid (95)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.59 (d, *J* = 7.7 Hz, 2H), 7.53 – 7.49 (m, 2H), 7.43 – 7.38 (m, 5H), 7.31 (t, *J* = 7.3 Hz, 1H), 2.28 (dq, *J* = 14.4, 7.3 Hz, 1H), 2.02 (dq, *J* = 14.4, 7.3 Hz, 1H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.8, 140.3, 131.9, 129.2, 129.0, 128.9, 127.8, 126.9, 123.0, 89.8, 86.1, 53.8, 32.9, 10.3.

HRMS (ESI) *m/z* calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223, found 265.1221 $[\alpha]_D^{27} = -15.0$ (*c* 1.00, CH₂Cl₂).

To a solution of **95** (13.2 mg, 0.05 mmol, 1.0 equiv.) in anhydrous MeOH (1.0 mL) was slowly added SOCl₂ (10.9 μ L, 0.15 mmol, 3.0 equiv.) at 0 °C under argon atmosphere. The resulting mixture was stirred at 50 °C for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layers were washed with water (10 mL) and brine (10 mL × 2), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100/1) to give **94** as a white solid (11.5 mg, 83% yield, 91% e.e.).

HPLC analysis: Chiralcel OJ-H (hexane/*i*-PrOH = 98/2, flow rate 0.40 mL/min, λ = 254 nm), t_R (minor) = 30.52 min, t_R (major) = 33.83 min.

The synthesis of 96

To compound 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in a reaction flask was

added concentrated hydrochloric acid (1.0 mL), and the mixture was stirred at 80 °C for 2 h. Upon completion (monitored by TLC), the reaction mixture was slowly quenched by water (5.0 mL) and extracted with CH_2Cl_2 (5.0 mL × 2). The combined organic layer was washed with water (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude quaternary carboxylic acid, which was directly used in the next step without further purification.

The crude carboxylic acid was dissolved in MeOH (1.0 mL), and 3 drops of concentrated sulfuric acid was added. The resulting mixture was stirred at 80 °C for 3 h. Upon completion (monitored by TLC), the reaction mixture was diluted with water (5.0 mL) and concentrated under reduced pressure to remove the organic solvent. The remaining aqueous phase was extracted with EtOAc (5.0 mL \times 2). The combined organic layer was washed with brine (10 mL \times 2), dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) to give **96** as a white solid (20.1 mg, 68% yield over two steps, 91% e.e.).

Methyl (R)-2-ethyl-4-oxo-2,4-diphenylbutanoate (96)

HPLC analysis: Chiralcel ADH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.14 min, t_R (major) = 9.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.96 (m, 2H), 7.60 – 7.54 (m, 1H), 7.49 – 7.44 (m, 2H), 7.40 – 7.32 (m, 4H), 7.28 – 7.22 (m, 1H), 3.82 (s, 2H), 3.66 (s, 3H), 2.38 (dq, J = 14.8, 7.5 Hz, 1H), 2.25 (dq, J = 14.8, 7.5 Hz, 1H), 0.67 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.2, 175.7, 141.4, 137.1, 133.2, 128.6, 128.5, 127.9, 127.0, 126.3, 52.2, 51.8, 42.2, 28.3, 8.7.

HRMS (ESI) *m/z* calcd. for C₁₉H₂₁O₃ [M + H]⁺ 297.1485, found 297.1482. $[\alpha]_D^{27} = -5.8$ (*c* 1.00, CH₂Cl₂).

The synthesis of 97

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in anhydrous CH₂Cl₂ (2.0 mL) was added trimethylsilyl trifluoromethanesulfonate (TMSOTf, 90 μ L, 0.50 mmol, 5.0 equiv.) at 0 °C under argon atmosphere. The resulting mixture was warmed up to room temperature and stirred for 8 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short

pad of celite and rinsed with CH_2Cl_2 (5.0 mL). The filtrate was extracted with CH_2Cl_2 (5.0 mL × 2). The combined organic layer was washed with water (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

The above residue was dissolved in THF (1.0 mL), and then HCl (1 M, 1.0 mL) was added. The resulting mixture was stirred at 50 °C for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched by saturated NH4Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc (5.0 mL × 2). The combined organic layer was washed with water (10 mL) and brine (10 mL × 2), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 100/1–50/1) to give **97** as a white solid (21.3 mg, 81% yield over two steps, 91% e.e.).

(*R*)-3-Ethyl-3,5-diphenylfuran-2(3*H*)-one (97)

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.98 min, t_R (major) = 13.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.67 (m, 2H), 7.53 – 7.49 (m, 2H), 7.46 – 7.39 (m, 3H), 7.39 – 7.34 (m, 2H), 7.31 – 7.26 (m, 1H), 6.12 (s, 1H), 2.28 – 2.10 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.8, 152.2, 139.0, 129.8, 128.8, 128.7, 128.2, 127.7, 126.5, 125.0, 105.7, 57.7, 32.6, 9.5.

HRMS (ESI) *m/z* calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223, found 265.1219. $[\alpha]_D^{27} = -52.0$ (*c* 1.00, CH₂Cl₂).

The synthesis of 98

To a solution of 1 (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in anhydrous DMF (2.0 mL) was added lithium hexamethyldisilazide (LiHMDS, 1.0 M solution in THF, 0.50 mL, 0.50 mmol, 5.0 equiv.) at room temperature under argon atmosphere. Then the reaction mixture was stirred at 80 °C for 48 h. After cooling down to room temperature, the mixture was quenched by saturated NH₄Cl (5.0 mL), filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was extracted with EtOAc (5.0 mL \times 2). The combined organic layers were washed with brine (10 mL \times 3). The organic

layer was separated, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1 as eluent) to give **98** as a white solid (28.0 mg, 83% yield, 91% e.e.).

(R)-3-Ethyl-1,3,5-triphenyl-1,3-dihydro-2H-pyrrol-2-one (98)

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 15.84 min, t_R (minor) = 19.22 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.38 – 7.33 (m, 2H), 7.29 – 7.23 (m, 6H), 7.21 – 7.16 (m, 3H), 7.06 – 7.02 (m, 2H), 5.87 (s, 1H), 2.30 – 2.11 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.9, 144.3, 140.2, 135.6, 131.2, 128.6, 128.5, 128.2, 127.6, 127.1, 126.9, 126.8, 126.7, 112.3, 58.3, 32.4, 9.4.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₂NO $[M + H]^+$ 340.1696, found 340.1691. $[\alpha]_D^{27} = +33.0 (c \ 1.00, CH_2Cl_2).$

The synthesis of 99

To a solution of **98** (33.9 mg, 0.10 mmol, 1.0 equiv., 91% e.e.) in MeOH (2.0 mL) was added Pd/C (10% palladium on carbon, wet with ca. 50% water, 10.6 mg, 10 mol%). Then the reaction flask was evacuated and refilled with hydrogen through a balloon, and the mixture was stirred under a hydrogen atmosphere at room temperature for 1 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short pad of celite and rinsed with EtOAc (5.0 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 30/1-20/1) to give the product **99** as two diastereoisomers (31.3 mg, d.r. = 3.4:1, 92% total yield).

The major isomer, as a white solid, 24.2 mg, 71% yield, 91% e.e.

The minor isomer, as a white solid, 7.1 mg, 21% yield, 91% e.e.

(3*R*,5*R*)-3-Ethyl-1,3,5-triphenylpyrrolidin-2-one (99-1)

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 22.42 min, t_R (minor) = 25.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.22 (m, 5H), 7.21 – 7.14 (m, 5H), 7.00 (t, *J* = 7.4 Hz, 1H), 5.03 (dd, *J* = 9.9, 6.1 Hz, 1H), 2.99 (dd, *J* = 13.2, 6.1 Hz, 1H), 2.19 (dd, *J* = 13.2, 9.9 Hz, 1H), 2.17 – 2.01 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.5, 140.72, 140.71, 137.8, 128.8, 128.7, 128.4, 127.7, 127.1, 126.7, 126.6, 125.0, 123.2, 60.4, 54.0, 42.0, 32.3, 9.2.

HRMS (ESI) m/z calcd. For C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1847. [α]_D²⁷ = +18.6 (*c* 0.50, CH₂Cl₂).

(3R,5S)-3-Ethyl-1,3,5-triphenylpyrrolidin-2-one (99-2)

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 23.46 min, t_R (major) = 26.18 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.43 – 7.39 (m, 2H), 7.32 – 7.27 (m, 2H), 7.26 – 7.20 (m, 3H), 7.18 – 7.08 (m, 5H), 7.07 – 7.02 (m, 1H), 5.27 (t, *J* = 7.3 Hz, 1H), 2.87 (dd, *J* = 13.2, 7.8 Hz, 1H), 2.52 (dd, *J* = 13.2, 6.9 Hz, 1H), 2.15 – 1.95 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.8, 142.3, 140.9, 138.1, 128.59, 128.55, 128.1, 127.5, 126.8, 126.6, 126.5, 125.1, 122.9, 60.5, 52.7, 41.2, 32.9, 9.2.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₄NO [M + H]⁺ 342.1852, found 342.1849. $[\alpha]_D^{27} = +30.0 \ (c \ 1.00, CH_2Cl_2).$

Mechanistic studies

1. Preparation and X-ray crystal structure of complex C1.

A CH₂Cl₂/MeOH solution (v/v = 6/1, 3.5 mL) of Cu(OTf)₂ (18.1 mg, 0.05 mmol, 1.0 equiv.) and L*7 (18.7 mg, 0.05 mmol, 1.0 equiv.) was stirred at room temperature for 0.5 h, to give a clear solution. Slow diffusion of Et₂O into the obtained solution to give blue crystals. The product was filtered and washed by a small amount of Et₂O (9.9 mg 32% yield).

2. The catalytic activity of complex C1.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with C1 (6.2 mg, 0.010 mmol, 10 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 2.0 mL). Then, E2 (0.10 mmol, 1.0 equiv.) and A1 (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to afford the desired product 11 as a colorless oil (29.2 mg, 75%, 89% e.e.).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*7 (3.7 mg, 0.010 mmol, 10 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 2.0 mL). Then, **E2** (0.10 mmol, 1.0 equiv.) and **A1** (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to afford the desired product **11** as a colorless oil (19.5 mg, 50%, 88% e.e.).

3. The effect of ligand and copper phenylacetylide on the reaction initiation.

Copper phenylacetylide **98** was synthesized according to literature³. Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with copper phenylacetylide **A1'** (16.5 mg, 0.10 mmol, 1.0 equiv.), **E2** (32.4 mg, 0.10 mmol, 1.0 equiv.), **L*11** (58.8 mg, 0.10 mmol, 1.0 equiv.), Cs_2CO_3 (98.0 mg, 0.30 mmol, 3.0 equiv.), and anhydrous CF₃Ph (2.0 mL). The resulting reaction mixture was stirred at room temperature for 48 h. Upon completion, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to afford **11** (7.8 mg, 20% yield, 88% e.e.).

The procedure for the reaction without L*11 was the same with that described above except that L*11 was not added. No desired product 11 was observed.

4. The non-linear effect of catalyst.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (1.8 mg, 0.005 mmol, 10 mol%), L*12 (4.7 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (49.0 mg, 0.15 mmol, 3.0 equiv.), and MTBE/cyclohexane (v/v = 2/3, 1.0 mL). Then, alkyl halide E2 (0.05 mmol, 1.0 equiv.) and alkyne A1 (0.075 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 10 °C for 80 h. Upon completion, the product was separated by preparative TLC. The e.e. values of products were then determined by HPLC, which indicated a linear relationship between e.e. values of products and corresponding catalysts. The catalyst L*12 with different e.e. values were prepared by mixing (*S*)-L*12 (99% e.e.) and (*R*)-L*12 (99% e.e.) in appropriate ratios.

5. The stereochemistry of alkyl halide and product during the reaction.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (1.8 mg, 0.005 mmol, 10 mol%), L*11 (4.4 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (49.0 mg, 0.15 mmol, 3.0 equiv.), and CF₃Ph (1.0 mL). Then, alkyl halide **E2** (0.05 mmol, 1.0 equiv.) and alkyne **A1** (0.075 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for appropriate time. Upon completion, the reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of **11** and recovered **E2** were determined by HPLC analysis.

6. Radical clock experiments.

Substrate **CE1** is a known compound and was prepared according to the literature procedure¹.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*11 (8.8 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, **CE1** (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 90 °C for 36 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **100** (7.5 mg, 30% yield). Characterization data is consistent with the reported one⁴.

3-Ethyl-1-methyl-3-phenylindolin-2-one (100)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 5H), 7.25 – 7.20 (m, 2H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.43 (dq, J = 13.3, 7.3 Hz, 1H), 2.24 (dq, J = 13.3, 7.4 Hz, 1H), 0.69 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.6, 144.1, 140.2, 132.0, 128.5, 128.1, 127.2, 126.9, 124.8, 122.5, 108.1, 57.3, 30.9, 26.3, 9.0.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*11 (8.8 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (98.0 mg, 0.30 mmol, 3.0 equiv.), and CF₃Ph (2.0 mL). Then, **CE2** (0.10 mmol, 1.0 equiv.) and alkyne (0.15 mmol, 1.5 equiv.) were sequentially added into the mixture and the reaction mixture was stirred at 50 °C for 36 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **101** (7.9 mg, 45% yield). Characterization data is consistent with the reported one⁵.

1,3,3-Trimethylindolin-2-one (101)

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.06 (t, *J* = 7.5, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 3.21 (s, 3H), 1.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 181.3, 142.6, 135.8, 127.6, 122.4, 122.2, 108.0, 44.1, 26.2, 24.3.

7. NMR experiments.

We initially failed to observe the disappearance of the NH peak in the ¹H NMR spectrum of the reaction mixture of **E1** and Cs_2CO_3 in benzene- d_6 after stirring for 2.0 h and filtration (Supplementary Fig. 7-1). In fact, only tiny new peaks belonging to trace amounts of unidentified compounds appeared in the ¹H NMR spectrum of the reaction mixture. We further took the ¹H NMR spectrum of a model cesium salt **E1'-Cs** in benzene- d_6 and observed only tiny peaks corresponding to the CH moieties in **E1'** (Supplementary Fig. 7-2). The NH peak of **E1'** was missing, likely due to relatively fast proton exchange processes that resulted in significant peak broadening. The **E1'** might be the residual starting material in the cesium salt or might be in situ generated through reprotonation of the cesium salt by adventitious water. All in all, these results indicate very low solubility of the cesium salt, which might have prevented us from observing corresponding peaks in the ¹H NMR spectrum.

Supplementary Fig. 7-1 ¹H-NMR studies (400 MHz) of E1 with Cs₂CO₃ in benzene- d_6 . a, ¹H-NMR spectrum of the reaction mixture of E1 (0.025 mmol) with Cs₂CO₃ (3.0 equiv.) in benzene- d_6 (0.50 mL) after stirring at room temperature for 2.0 h followed by filtration under argon. b, ¹H-NMR spectrum of E1 (50 mM) in benzene- d_6 .

Supplementary Fig. 7-2 ¹H-NMR studies of E1'-Cs in benzene-*d*₆. a, ¹H-NMR spectrum of E1'-Cs in benzene-*d*₆. b, ¹H-NMR spectrum of E1' in benzene-*d*₆.

In view of the low solubility issue above mentioned, we next changed the deuterated solvent to DMSO-d₆ given its commonly high capacity for dissolving salts. Besides, DMSO is also one of the most used solvent for determining and reporting pKa values⁶. However, α -halo amides are not stable in strongly polar solvents such like DMSO and can readily undergo side reactions, e.g., elimination in the presence of base. Accordingly, we employed the model compound E1' again for the following NMR studies to give a lower estimate of the acidity of E1⁷. We found that the cesium salt E1'-Cs readily dissolved in DMSO- d_6 . The subsequent ¹H NMR spectra (Supplementary Fig. 7-3) of a series of mixtures of E1' with increasing amounts (0.67 to 2.0 equiv.) of E1'-Cs revealed gradual upfield shifting of the peak corresponding to the *para*-CH on the aniline ring (7.01 to 6.64 ppm). The appearance of only one set of ¹H NMR peaks in the spectra of the mixtures indicated very fast exchange between E1' and E1'-Cs. The absence of the NH peak in the spectra of the mixtures was due to fast exchange of the proton with deuterium or Cs. We further confirmed that the chemical shift of this CH moiety was not concentration-dependent for either E1' or E1'-Cs alone (Supplementary Figs. 7-4 and 7-5). In summary, the chemical shift of the para-CH on the aniline ring proved to be a good indicator for the formation of E1'-Cs in the presence of **E1'**⁶.

Supplementary Fig. 7-3 ¹H-NMR studies of E1' with E1'-Cs (298K, 400 MHz, DMSO-*d*₆). a, E1' (25 mM). b, E1' (75 mM) with 0.67 equiv. of E1'-Cs (50 mM). c, E1' (50 mM) with 1.0 equiv. of E1'-Cs (50 mM). d, E1' (25 mM) with 2.0 equiv. of E1'-Cs (50 mM). e, E1'-Cs (50 mM).

Supplementary Fig. 7-4 ¹H-NMR studies of different concentrations of E1' (298K, 400 MHz, DMSO-*d*₆). a, 5.0 mM. b, 25 mM. c, 75 mM.

Supplementary Fig. 7-5 ¹H-NMR studies of different concentrations of E1'-Cs (298K, 400 MHz, DMSO-*d*₆). a, 50 mM. b, 10 mM.

In the following study, we observed gradual up-field shifting (7.01 to 6.93 ppm) of this CH peak in the ¹H NMR spectra of a series of mixtures containing **E1'** and increasing amounts (0.50 to 3.0 equiv.) of Cs₂CO₃ (Supplementary Fig. 7-6). The trend leveled off from 2.0 to 3.0 equiv. of Cs₂CO₃, possibly due to the saturation of this salt or CsHCO₃ in DMSO-*d*₆. By fitting the data shown in Supplementary Fig. 7-3 using an exponential decay model (Supplementary Table 7-1 and Fig. 7-7)⁶, we estimated that ca. 19% of the **E1'** was deprotonated to form **E1'-Cs** in the presence of 3.0 equiv. of Cs₂CO₃ (chemical shift: 6.93 ppm; ratio: 0.24). Due to the electron-withdrawing inductive effect of the chloro group in **E1**, its acidity is likely higher than that of **E1'**⁷. And thus, under the same conditions, a higher portion of **E1** should be deprotonated by 3.0 equiv. of Cs₂CO₃. To sum up, these ¹H NMR studies indicate that Cs₂CO₃ is indeed basic enough to at least partially deprotonate the substrate, leading to the corresponding cesium salt for subsequent reactions.

Supplementary Fig. 7-6 ¹H-NMR studies of E1' (25 mM, 298K, 400 MHz, DMSOd₆) with Cs₂CO₃. a, E1'. b, E1' with 0.50 equiv. of Cs₂CO₃. c, E1' with 1.0 equiv. of Cs₂CO₃. d, E1' with 2.0 equiv. of Cs₂CO₃. e, E1' with 3.0 equiv. of Cs₂CO₃.

Supplementary Table 7-1 The ratio-dependent chemical shifts of the *para*-CH on the aniline ring

Ratio (E1'-Cs/E1')	Chemical shifts/ppm
0	7.01
0.67	6.81
1.0	6.75
2.0	6.64
99 ^a	6.44

^aThe ratio for pure **E1'-Cs** was presumed to be 99 as a lower estimation for the ease of data fitting.

Supplementary Fig. 7-7 Data fitting using an exponential decay model.

The synthesis of E1'-Cs

A 100 mL round bottom flask equipped with a magnetic stir bar and Dean-Stark apparatus was charged with **E1'** (239 mg, 1.0 mmol), CsOH·H₂O (185 mg, 1.1 mmol), and toluene (40 mL). Then the resulting mixture was refluxed at 130 °C for 2 h to remove water. Upon completion, the reaction mixture was concentrated to afford the crude product. The residue was analyzed by ¹H NMR spectroscopy without further purification.

Cesium phenyl(2-phenylbutanoyl)amide (E1'-Cs)

$$\begin{array}{ccc} \mathsf{Et} & \mathsf{Cs}^{\textcircled{+}} \\ \mathsf{Ph} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.42 – 7.33 (m, 2H), 7.25 – 7.19 (m, 2H), 7.17 (t, J = 7.6 Hz, 2H), 7.09 – 7.02 (m, 1H), 6.93 – 6.84 (m, 2H), 6.44 (tt, J = 7.1, 1.3 Hz, 1H),

3.16 (dd, *J* = 8.5, 6.6 Hz, 1H), 2.03 – 1.88 (m, 1H), 1.57 – 1.44 (m, 1H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.5, 155.4, 146.3, 128.0, 127.2, 127.0, 124.7, 123.7, 116.2, 58.1, 27.9, 13.1.

X-ray crystallography

Supplementary Fig. 7 The X-ray structure of 44.

44, CCDC 2074298

Supplementary Fig. 7' The X-ray structure of **44** (CCDC 2074298, 50% probability ellipsoids).

Supplementary Fig. 8 The X-ray structure of 55.

55, CCDC 2074300

Supplementary Fig. 8' The X-ray structure of **55** (CCDC 2074300, 50% probability ellipsoids).

Supplementary Fig. 9 The X-ray structure of 79.

79, CCDC 2074301

Supplementary Fig. 9' The X-ray structure of **79** (CCDC 2074301, 50% probability ellipsoids).

Supplementary Fig. 10 The X-ray structure of C1.

C1, CCDC 2074302

Supplementary Fig. 10' The X-ray structure of **C1** (CCDC 2074302, 50% probability ellipsoids).

Computational studies

1. Computational details

All density functional theory (DFT) calculations were performed using Gaussian 16 program⁸ Geometry optimizations were conducted with B3LYP functional⁹, employing the D3 version of Grimme's dispersion corrections¹⁰ with Becke-Johnson damping¹¹. And LANL2DZ basis set¹² was used for copper and 6-31G* basis set was used for all other atoms. Frequency analysis was also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Mulliken spin distribution was acquired at the same level of theory as geometry optimization.

Single-point energies and solvent effects at cyclohexane were evaluated with B3LYP functional⁹ with D3 version of Grimme's dispersion corrections¹⁰ with Becke-Johnson damping¹¹. SDD basis set¹³ was used for copper and 6-311+G(d,p) basis set was used for all other atoms. The solvation energies were calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model¹⁴.

In addition, geometry optimization, frequency analysis and single point energy of open-shell local minimums were calculated with unrestricted DFT methods, while same computations for close-shell transition states and local minimum were performed with restricted DFT methods. Wavefunction stability test at the same level of theory as geometry optimizations was employed to ensure that the SCF converged wavefunction was stable.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT \ln(c_s/c_g)$ is added to energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.040876 mol/L), and R is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol was used.

The calculation and visualization of RMSD (root-mean-square deviation) analysis results are presented with VMD¹⁵ visualization software. The 3D diagrams of optimized structures shown in the main text and below here in supplementary information for computations were generated with CYLview software¹⁶.

2. Initial computational study on the C–C bond formation pathway with N,N,P-ligand

Supplementary Fig. 11 DFT-computed free energy profile of C–C bonding pathway with N,N,P-ligand.

Prior to the ligand design and screening, we performed DFT calculations on the C– C bond formation pathway of LCu(II)-alkynyl species **Int-S1** with deprotonated tertiary radical **Int-S2** (Supplementary Fig. 11). The calculations led to the radical substitutiontype C–C bond formation pathway (Path A) via **TS-S4**. The alternative mechanistic pathways, sequential SET and carbocation bonding as well as Cu(III)-mediated reductive elimination, cannot be located despite extensive efforts. We believe that the radical substitution-type C–C bond formation pathway is generally operative for the LCu(II)-alkynyl species and tertiary carbon radical.

3. Generation of the active Cu(I) catalyst from the LCu(II)OTf.

Supplementary Fig. 12 a, DFT-computed free energy changes for the generation of the active Cu(I) catalyst from the LCu(II)OTf. b, Transition state structures for TS-S8 and TS-S10. Trivial hydrogen atoms are omitted for clarity.

The generation of the Cu(I) active catalyst from pre-catalyst LCu(II)OTf species C1 is studied by DFT calculations, and the results are shown in Supplementary Fig. 12. A truncated model of the Cu(II)/N,N,N-ligand catalyst, C1-Model, is used in our DFT calculations. From C1-Model, an exergonic ligand exchange with cesium carbonate leads to Int-S6. From Int-S6, complexation with ethynylbenzene generates the weak hydrogen-bonding complex Int-S7, which undergoes subsequent concerted metalation-deprotonation via TS-S8 to give the alkynylCu(II) intermediate Int111. This alkynylation process (Int-S6 to Int111) is facile with a 9.2 kcal/mol barrier and thermoneutral, which suggests that the pre-catalyst LCu(II)OTf is efficiently *in situ* alkynylated.

From the alkynylCu(II) intermediate **Int111**, two equivalents of **Int111** can form a dinuclear complex **Int-S9**, which is able to undergo a dinuclear alkynyl–alkynyl bond formation via **TS-S10**. This process requires a barrier of 25.4 kcal/mol from **Int-S9** to **TS-S10** and irreversibly produces the diyne-coordinated Cu(I) complex **Int-S11**. This

dinuclear reductive elimination pathway was also identified by Lan and co-workers in a related mechanistic study on copper catalysis¹⁷. From **Int-S11**, the exergonic ligand exchange with cesium carbonate liberates the diyne and produces the catalytically active Cu(I) species **Int102**.

Supplementary Fig. 13 DFT-computed free energy changes of the Cu(II)-mediated radical generation.

The possibility that the alkynylCu(II) species **Int111** acts as active catalyst to cleave the C–Cl bond of alkyl halide, which may lead to an alternative mechanism for the generation of alkyl radical, is also considered. This process is thermodynamically unfavorable (Supplementary Fig. 13). DFT calculations suggested that the LCu^{III}(alkynyl)Cl **Int-S13** together with alkyl radical **Int-S14** is 31.0 kcal/mol higher than the LCu^{II}(alkynyl) **Int111** together with deprotonated alkyl halide **Int107** in terms of free energy. The highly endergonic nature of this transformation indicates that the Cu(II) species is not responsible for C–Cl bond cleavage.

Supplementary Fig. 14 DFT calculations on deprotometallation of alkyne A1 using various models of cesium carbonate. a, Cs₂CO₃-mediated deprotometallation with both cesium ions binding to carbonate (pathway 1). Free energies are compared to **Int102-S1**. **b**, Cs₂CO₃-mediated deprotometallation with one cesium ion binding to the ligand carbonyl group (pathway 2). Free energies are compared to **Int102-S1**. **c**, Original model of CsCO₃⁻-mediated deprotometallation (pathway 3). Free energies are compared to **Int102**.

For the neutral Cs_2CO_3 -mediated deprotometallation of alkyne, two models were considered. Pathway 1 has both cesium ions binding to carbonate, starting from the neutral complex Int102-S1 (Supplementary Fig. 14a). Int102-S1 first complexes with

alkyne A1 to form the hydrogen bonding complex Int103-S1. Subsequent deprotometallation occurs via TS104-S1 to generate the alkynylCu(I) species Int-S15-1. This process is facile with a 4.3 kcal/mol free energy barrier (Int103-S1 to TS104-S1) and irreversible (Int-S15-1 is 14.9 kcal/mol more stable than Int103-S1). This mechanistic picture of deprotometallation is consistent with our early model using anionic $CsCO_3^-$; the deprotometallation barrier and thermodynamics do not change significantly (*vide infra*).

Alternatively, one cesium ion can bind to the carbonyl group of the ligand, leading to pathway 2 (Supplementary Fig. 14b). In comparison to **Int102-S1**, **Int102-S2** with one cesium ion binding to the ligand carbonyl group is less favorable by 2.5 kcal/mol. From **Int102-S2**, a similar deprotometallation pathway can occur, but requiring a higher barrier. Pathway 2 is 16.3 kcal/mol kinetically less favorable compared with pathway 1 (**TS104-S2** vs. **TS104-S1**). Therefore, the neutral Cs₂CO₃-mediated deprotometallation prefers to occur via pathway 1 with both cesium ions binding to carbonate.

The anionic model of CsCO₃⁻-mediated deprotometallation is shown in Supplementary Fig. 14c. The free energy barrier and reaction free energy change of the deprotometallation process are very close to that of the neutral model (Supplementary Fig. 14c vs. Supplementary Fig. 14a). Therefore, having one additional cesium ion in simulation does not significantly affect the deprotometallation kinetics and thermodynamics. Both models give consistent mechanistic understandings that the deprotometallation process is facile and irreversibly leads to the alkynylCu(I) active catalyst.

5. Exploration of the activation mechanisms of alkyl halide

Supplementary Fig. 15 Four possible pathways of the ATRP (atom transfer radical polymerization)-like Cu(I)-mediated C–Cl bond cleavage of alkyl halide.

Based on former studies on the mechanism for Cu-mediated C–X bond cleavage^{18–20}, four possible C–Cl bond cleavage pathways (oxidative addition, inner-sphere electron transfer, stepwise outer-sphere electron transfer and dissociative electron transfer) were explored. The computational results are summarized in Supplementary Fig. 15. The inner-sphere electron transfer pathway and the dissociative electron transfer pathway are operative, while the oxidative addition and the stepwise out-sphere electron transfer pathways are unfeasible. Detailed explanations of each pathway are provided below.

Supplementary Fig. 16 Results of optimization of the post-oxidative addition Cu(III) intermediate.

For the oxidative addition pathway, the transition state of oxidative addition cannot be located despite extensive efforts. The post-intermediate of oxidative addition, the LCu^{III}(alkynyl)(alkyl)Cl species, is not a stable intermediate based on our computations.

All the attempts to locate the proposed Cu(III) species were eventually optimized to the open-shell singlet complex of Cu(II) and pendant alkyl radical (Supplementary Fig. 16), which is the post-intermediate of radical-type C–Cl bond cleavage. Therefore, we believe that the Cu(I)-Cu(III) oxidative addition pathway is unlikely for the studied transformation.

Supplementary Fig. 17 Located transition state for inner-sphere electron transfer mechanism.

For the inner-sphere electron transfer pathway, the transition state was successfully located as **TS108**, which requires a free energy barrier of 15.5 kcal/mol (Supplementary Fig. 17). Mulliken spin population of **TS108** confirms its open-shell singlet nature, which is consistent with previous computational study²⁰.

Supplementary Fig. 18 a, Reaction free energy of DET (dissociative electron transfer) mechanism for Int106 and Int107. b, C–Cl bond dissociation energy of radical

precursor Int107. c, Van der Waals radii for electron donor Int106 and electron acceptor Int107.

For the dissociative electron transfer (DET) and stepwise outer-sphere electron transfer (OSET-SW) pathways, modified Marcus theory²¹ was used to estimate the free energy barriers following the studies from by Coote, Matyjaszewski and Liu²⁰.

The DET barrier is estimated by the following equations:

$$\Delta G_{DET}^{\ddagger} = \Delta G_{0}^{\ddagger} (1 + \frac{\Delta_{r} G^{\circ} - D_{p}}{4\Delta G_{0}^{\ddagger}})^{2} (1)$$

$$\Delta G_{0}^{\ddagger} = \frac{(\sqrt{D_{Radical-Cl}} - \sqrt{D_{p}})^{2} + \lambda_{0}}{4} (2)$$

$$\lambda_{0} = A \times [(2r_{D})^{-1} + (2r_{A})^{-1} - (r_{D} + r_{A})^{-1}] = 10.0 \ kcal/mol \ (3)$$

where $\Delta_r G^{\Theta} = -0.3$ kcal/mol is the reaction energy of DET pathway (Supplementary Fig. 18a). ΔG_0^{\ddagger} is the intrinsic barrier, which is estimated using formula (2). λ_0 is the solvent reorganization energy that can be calculated with formula (3). D_p represents the interaction energy between the radical and Cl⁻ in the solvent cage. $D_p =$ 0 gives the upper boundary of the estimated barrier. $D_{Radical-Cl}$ represents the C–Cl BDE of radical precursor **Int107** (Supplementary Fig. 18b). A equals to 99 kcal/mol as suggested in the previous studies by Coote, Matyjaszewski and Liu^{18,20}. r_D represents the van der Waals radius updated by Bader²² for electron donor **Int106**. r_A represents the same van der Waals radius for electron acceptor **Int107** (Supplementary Fig. 18c). By including the above values into the formulas (1), (2) and (3), the upper boundary of free energy barrier for DET is given as 18.1 kcal/mol.

$$\Delta G_0^{\ddagger} \approx \frac{(\sqrt{D_{Radical-Cl}} - \sqrt{D_p})^2 + \lambda_0}{4} = \frac{(\sqrt{62.7} - \sqrt{0})^2 + 10.0}{4} = 18.2 \ kcal/mol \ (4)$$
$$\Delta G_{DET}^{\ddagger} \approx 18.2 \times (1 + \frac{-0.3 - 0}{4 \times 18.2})^2 = 18.1 \ kcal/mol \ (5)$$

Supplementary Fig. 19 Free energy change for OSET-SW (stepwise outer-sphere electron-transfer) mechanism.

The barrier of OSET-SW is estimated using the following equation (6) (Supplementary Fig. 19), where λ_0 is calculated by the above equation (3). By including the above values into the equation (6), the free energy barrier for OSET-SW is estimated as 91.2 kcal/mol.

$$\Delta G_{OSET-SW}^{\ddagger} = \Delta G_0^{\ddagger} \left(1 + \frac{\Delta_r G^{\theta}}{4\Delta G_0^{\ddagger}} \right)^2 = \frac{\lambda_0}{4} \left(1 + \frac{\Delta_r G^{\theta}}{\lambda_0} \right)^2$$
(6)

$$\Delta G_{OSET-SW}^{\ddagger} = 2.5 \times (1 + \frac{50.4}{4 \times 2.5})^2 = 91.2 \ kcal/mol \ (7)$$

Based on the above calculations and estimations, the inner-sphere electron transfer pathway (15.5 kcal/mol barrier via **TS108**) and dissociative electron transfer pathways (18.1 kcal/mol upper boundary barrier estimation) have surmountable barriers under the experimental conditions, which may both contribute to the generation of alkyl radical. These results support the generation of the proposed alkyl radical and the outer-sphere radical-type C–C bond formation.

6. Discussion on C-C bond formation mechanism

Supplementary Fig. 20 DFT calculations on C–C bond formation pathways. **a**, Exploration of C–C bond formation pathways with L*5Cu(II)(alkynyl) species Int111 and anionic tertiary radical Int112. Free energies in kcal/mol are shown in parentheses, which are compared to Int111 and Int112. **b**, Optimized structure and Mulliken spin distribution of located open-shell singlet C–C bond formation transition state TS115-Major. RS, radical substitution; SET, single electron transfer; CB, carbocation bonding; RE, reductive elimination.

The C–C bond formation pathways for Int111 and Int112 including outer-sphere radical-substitution-type C–C bond formation via TS115-Major (path A in Supplementary Fig. 20a), sequential SET and carbocation bonding via TS115-CB (path B in Supplementary Fig. 20a) and reductive elimination via TS115-RE (path C in Supplementary Fig. 20a) were explored.

For path A, the radical substitution path via **TS115-Major** is operative for the C– C bond formation and it is an open-shell diradical singlet C–C bond formation transition state, whose nature of radical substitution is confirmed by the computed spin distribution. Significant radical character is identified on the carbons of the forming C– C bond, the adjacent alkynyl carbon and the copper centre (Supplementary Fig. 20b).

Supplementary Fig. 21 Triplet and open-shell singlet C–C bond formation processes with L*5. Free energies in kcal/mol are compared to Int111 and Int112.

The radical-type C–C bond formation pathway can involve open-shell singlet or triplet transition state. The pre-intermediate for outer-sphere radical-substitution-type C–C bond formation via **TS115-Major**, **Int114**, has triplet and open-shell singlet states with comparable stabilities. The triplet state **Int114-***Triplet* is more stable than **Int114**-*OSS* by 0.7 kcal/mol. The triplet C–C bond formation transition state **TS115-***Triplet* is 3.5 kcal/mol less favorable than open-shell singlet **TS115-Major**. (Supplementary Fig. 21) Therefore, we believe that the radical-type C–C bond formation pathway proceeds via the open-shell singlet **TS115-Major**, instead of the triplet transition state **TS115-***Triplet*.

Supplementary Fig. 22 a, The proposed closed-shell singlet carbocation bonding transition state structure **TS115-CB** and the actually located Cu(III)-mediated reductive elimination transition state **TS115-RE**. **b**, The located closed-shell singlet pre-intermediate structure (with an RHF to UHF 'wavefunction' instability) in the proposed

carbocation bonding C–C bond formation pathway, the located open-shell singlet intermediate **Int114-OSS** (with a stable 'wavefunction') upon further optimization, and the Mulliken spin distribution of the open-shell singlet **Int114-OSS**.

Regarding path B, the transition state **TS115-CB** cannot be located after extensive efforts (Supplementary Fig. 22). All the optimizations led to the closed-shell singlet Cu(III)-mediated reductive elimination transition state **TS115-RE**. To further probe the possibility of the carbocation bonding pathway, we tried to optimize the structure of the pre-intermediate prior to the proposed carbocation bonding transition state. A structure with an RHF to UHF 'wavefunction' instability, **TS115-CB-Pre**, was located. This also indicated that such a closed-shell singlet intermediate does not exist and the unfeasibility of the proposed carbocation bonding pathway. Further open-shell singlet optimization of the **TS115-CB-Pre** led to the open-shell singlet intermediate **Int114-OSS**, which is the pre-intermediate for the radical substitution C–C bond formation pathway. Based on these results, we believe that the carbocation bonding pathway is not operative.

As for path C, the transition state **TS115-RE** was located, whose free energy is 6.3 kcal/mol higher than that of **TS115-Major** (Supplementary Fig. 20a).

Therefore, we believe that C–C bond formation undergoes an outer-sphere singlet radical-substitution-type C–C bond formation via **TS115-Major**.

7. Geometry overlay between TS115-Major and corresponding fragment of TS119-Major-C1

Supplementary Fig. 23 Geometry overlay between TS115-Major and the corresponding fragment of TS119-Major-C1. The red lines represent the fragment of TS115-Major with the hydrogen atom deleted at the corresponding position of the side arm in TS119-Major-C1 and the blue lines represent the corresponding fragment of TS119-Major-C1 without the side arm. Calculated RMSD (root-mean-square deviation) between the two fragments is 0.0182 Å.

8. Conformational search of stereo-determining C–C bond formation transition state.

Supplementary Fig. 24 Details of conformational search of C–C bond formation transition state.

Supplementary Table 4. Conformational search of C–C bond formation transition state with L*5 (no side arm). Free energies are compared to TS115-Major.

Configuration of Product	Copper Skeleton	Amide Configuration	No.	$\Delta\Delta G_{sol}^{\ddagger}$ (kcal/mol)
(S)	А	А	TS115-Major	0.0
(S)	А	A (Cu-O)	TS115-S1	6.6
(S)	А	В	/	optimized to TS115-Major
(S)	А	B (Cu-O)	TS115-S2	0.6
(R)	А	А	TS115-Minor	1.0
(R)	А	A (Cu-O)	TS115-S3	3.1
(R)	А	В	TS115-S4	1.3
(R)	А	B (Cu-O)	TS115-S5	2.9

Supplementary Table 5. Conformational search of C–C bond formation transition state with L*11 (with bulky side arm). Free energies are compared to TS119-Major-C1.

Configuration of Product	Copper Skeleton	Amide Configuration	Arm Conformation	No.	ΔΔG _{sol} [‡] (kcal/mol)
(S)	А	А	А	A TS119-Major-C1	
(S)	А	А	В	TS119-S1	0.7
(S)	А	А	С		optimized to TS119-S2
(S)	А	А	D	TS119-S2	3.4
(S)	А	A (Cu-O)	А	TS119-S3	5.3
(S)	А	A (Cu-O)	В	TS119-S4	4.0
(S)	А	A (Cu-O)	С		optimized to TS119-S3
(S)	А	A (Cu-O)	D	TS119-S5	5.1
(S)	А	В	А	TS119-S6	3.4
(S)	А	B (Cu-O)	А	TS119-S7	0.3
(S)	А	B (Cu-O)	В	TS119-S8	1.2
(S)	А	B (Cu-O)	С	TS119-S9	1.8
(S)	А	B (Cu-O)	D	TS119-Major-C2	2.7
(S)	В	А	А	TS119-S10	7.4
(S)	В	А	D	TS119-S11	8.7
(S)	В	A (Cu-O)	А	TS119-S12	9.0
(S)	В	A (Cu-O)	D	TS119-S13	8.9
(S)	В	В	А	TS119-S14	8.0
(S)	В	В	D	TS119-S15	7.5
(S)	В	B (Cu-O)	А	TS119-S16	5.2
(S)	В	B (Cu-O)	D	TS119-S17	5.0
(R)	А	А	А	TS119-Minor-C1	3.2
(R)	А	А	В	TS119-S18	3.0
(R)	А	А	С	TS119-S19	2.4
(R)	А	А	D	TS119-S20	3.8
(R)	А	A (Cu-O)	А	TS119-S21	4.7
(R)	А	A (Cu-O)	С	TS119-S22	4.6
(R)	А	В	А	TS119-S23	3.0
(R)	А	В	В	TS119-S24	3.7
(R)	А	В	С	TS119-S25	4.2
(R)	А	В	D	TS119-S26	3.7
(R)	А	B (Cu-O)	А	TS119-S27	2.4
(R)	А	B (Cu-O)	В	TS119-S28	2.5
(R)	А	B (Cu-O)	С	TS119-S29	2.6
(R)	А	B (Cu-O)	D	TS119-Minor-C2	2.1
(R)	В	А	А	TS119-S30	7.6
(R)	В	Α	D	TS119-S31	4.7

(R)	В	A (Cu-O)	А	TS119-S32	5.9
(R)	В	A (Cu-O)	D	TS119-S33	6.3
(R)	В	В	D	TS119-S34	7.0
(R)	В	B (Cu-O)	А	TS119-S35	6.9
(R)	В	B (Cu-O)	D	TS119-S36	5.8

9. Key conformers of C–C bond formation transition state with L*5 (no side arm)

Supplementary Fig. 25 Key conformers of C–C bond formation transition states with L*5 (no bulky side arm). Free energies are compared to TS115-Major. Trivial hydrogen atoms are omitted for clarity.

Supplementary Fig. 26 Considered conformers of C–C bond formation transition states with L*5 (no bulky side arm) without coordination between Cu and anionic amide substrate. Free energy is compared to TS115-Major. Trivial hydrogen atoms are omitted for clarity.

10. Key conformers of C–C bond formation transition state with L*11 (with bulky side arm)

Supplementary Fig. 27 Key conformers of C–C bond formation transition states with L*11 (with bulky side arm) and A-type of copper skeleton, leading to the major product. Free energies are compared to TS119-Major. Trivial hydrogen atoms are omitted for clarity.

Supplementary Fig. 28 Key conformers of C–C bond formation transition states with L*11 (with bulky side arm) and B-type of copper skeleton, leading to the major product. Free energies are compared to TS119-Major. Trivial hydrogen atoms are omitted for clarity.

Supplementary Fig. 29 Key conformers of C–C bond formation transition states with L*11 (with bulky side arm) and A-type of copper skeleton, leading to the minor product. Free energies are compared to TS119-Major. Trivial hydrogen atoms are omitted for clarity.

Supplementary Fig. 30 Key conformers of C–C bond formation transition states with L*11 (with bulky side arm) and B-type of copper skeleton, leading to the minor product. Free energies are compared to TS119-Major. Trivial hydrogen atoms are omitted for clarity.

Supplementary Fig. 31 Considered conformers of C–C bond formation transition states with L*11 (with bulky side arm) without coordination between Cu and anionic amide substrate. Free energies are compared to TS119-Major. Trivial hydrogen atoms are omitted for clarity.

11. Summary of Archived Files

The xyz structures for all computed local minimums, transition states and proposed structures are included in the "Computational Archive" file folder. The second row in each xyz structure indicates the charge and multiplicity of the corresponding species. Also, the tables of energies are included again in a single document for readers to read key energies and frequencies.
12. Table of energies

Supplementary Table 6. Energies in Figs. 3 and 4 and Supplementary Figs. 11 to 31. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cyclohexane)// B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	Ε	Н	G	Imaginary Frequency
Int-S1	0.781749	0.829927	0.694564	-2670.535622	-2669.705695	-2669.841058	
Int-S2	0.267686	0.284154	0.222441	-749.059077	-748.774923	-748.836636	
Int-S3-OSS	1.051665	1.116721	0.948553	-3419.634198	-3418.517477	-3418.685645	
Int-S3-	1.051720	1 11/747	0.040000	2410 (22007	2410 5171(0	2410 (05010	
Triplet	1.051/39	1.116/4/	0.948089	-3419.633907	-3418.51/160	-3418.685818	
TS-S4	1.051071	1.115539	0.948040	-3419.632541	-3418.517002	-3418.684501	198.2 <i>i</i>
Int-S5	1.054054	1.118627	0.952690	-3419.699969	-3418.581342	-3418.747279	
A1	0.109633	0.117058	0.079847	-308.509934	-308.392876	-308.430087	
C1-Model	0.362959	0.390111	0.305533	-1944.436944	-1944.046833	-1944.131411	
OTf-Anion	0.027345	0.035445	-0.005136	-961.782117	-961.746672	-961.787253	
Int-S6	0.514605	0.551086	0.444024	-1577.105119	-1576.554033	-1576.661095	
Int-S7	0.625027	0.670301	0.540297	-1885.627519	-1884.957218	-1885.087222	
TS-S8	0.621423	0.666083	0.536207	-1885.609786	-1884.943703	-1885.073579	755.8 <i>i</i>
Int-S9	0.870256	0.923037	0.781224	-2581.357962	-2580.434925	-2580.576738	
TS-S10	0.866886	0.919491	0.778553	-2581.314695	-2580.395204	-2580.536142	512.9 <i>i</i>
Int-S11	0.868363	0.921703	0.777196	-2581.379093	-2580.457390	-2580.601897	
Int-S12	0.202989	0.216857	0.161019	-615.8453746	-615.628518	-615.684356	
Int-S13	0.435965	0.463924	0.375602	-1750.882630	-1750.418706	-1750.507028	
Int-S14	0.432662	0.463727	0.362742	-1079.395703	-1078.931976	-1079.032961	
Int-S15	0.623344	0.669335	0.536235	-1885.726442	-1885.057107	-1885.190207	
Int-S15-1	0.789768	0.849642	0.685221	-2216.08735	-2215.237708	-2215.402129	
Int-S15-2	0.789288	0.849175	0.685771	-2216.067463	-2215.218288	-2215.381692	
Int-S16	0.433435	0.461856	0.370907	-1751.038181	-1750.576325	-1750.667274	
Int-S17	0.435168	0.467617	0.364514	-1539.687878	-1539.220261	-1539.323364	
Chloride	0.000000	0.002360	-0.015023	-460.246371	-460.263754	-460.359213	
Anion	0.000000	0.002500	0.015025	100.210371	1001200701		
Chlorine	0.000000	0.00236	-0.015677	-460.130428	-460.148465	-460.169234	
Radical							
Int102	0.512055	0.548719	0.442263	-1577.171877	-1576.623158	-1576.729614	
Int102-S1	0.676737	0.728197	0.583706	-1907.529394	-1906.801197	-1906.945688	
Int102-S2	0.675774	0.727631	0.582199	-1907.523878	-1906.796247	-1906.941679	
Int103	0.621678	0.66718	0.537426	-1885.698924	-1885.031744	-1885.161498	
Int103-S1	0.787745	0.847539	0.682327	-2216.060627	-2215.213088	-2215.378300	

Int103-S2	0.787218	0.846854	0.68077	-2216.036153	-2215.189299	-2215.355383	
TS104	0.617311	0.662732	0.532283	-1885.686767	-1885.024035	-1885.154484	1120.7 <i>i</i>
TS104-S1	0.783601	0.842690	0.682442	-2216.053923	-2215.211233	-2215.371481	982.0 <i>i</i>
TS104-S2	0.782548	0.842256	0.676698	-2216.022195	-2215.179939	-2215.345497	1093.4 <i>i</i>
Int105	0.191260	0.209858	0.138859	-594.941315	-594.731457	-594.802456	
Int106	0.429366	0.456774	0.367023	-1290.758575	-1290.301801	-1290.391552	
Int107	0.435514	0.468002	0.365381	-1539.666149	-1539.198147	-1539.300768	
TS108	0.866069	0.926023	0.761418	-2830.425949	-2829.499926	-2829.664531	297.0 <i>i</i>
Int109-OSS	0.868003	0.927888	0.763861	-2830.464752	-2829.536864	-2829.700891	
Int109-	0.02000	0.927888	0.762838	-2830.464746	-2829.536858	-2829.701908	
Triplet	0.868004						
Int110-OSS	0.867912	0.92818	0.761096	-2830.480312	-2829.552132	-2829.719216	
Int110-	0.867911	0.928179	0.760060	-2830.480311	-2829.552132	-2829.720251	
Triplet	0.40.4100	0.460201	0.055050	1000 ((0700	1000 000 500	1000 000 (50	
Intlll	0.434100	0.460201	0.375053	-1290.663723	-1290.203522	-1290.288670	
	0.433250	0.466342	0.361885	-1539.788093	-1539.321751	-1539.426208	
Intl13	0.164154	0.179561	0.119161	-790.6910555	-790.511495	-790.571895	
Int114-OSS	0.703930	0.746932	0.627895	-2039.756353	-2039.009421	-2039.128458	
Int114- Triplet	0.703926	0.746929	0.626843	-2039.756367	-2039.009438	-2039.129524	
TS115-	0.702955	0.745403	0.627768	-2039.747211	-2039.001808	-2039.119443	319.0 <i>i</i>
TS115							
Minor	0.702153	0.744806	0.626004	-2039.743792	-2038.998986	-2039.117788	322.7i
TS115-S1	0.702310	0.744772	0.626312	-2039.735159	-2038.990387	-2039.108847	373.4 <i>i</i>
TS115-S2	0.702613	0.745157	0.626279	-2039.744734	-2038.999577	-2039.118455	350.0 <i>i</i>
TS115-S3	0.702059	0.744865	0.624549	-2039.739063	-2038.994198	-2039.114514	358.3 <i>i</i>
TS115-S4	0.702461	0.745160	0.626187	-2039.743505	-2038.998345	-2039.117318	330.1 <i>i</i>
TS115-S5	0.702322	0.744796	0.625750	-2039.740613	-2038.995817	-2039.114863	348.2 <i>i</i>
TS115-S6	0.702109	0.745046	0.624079	-2039.726235	-2038.981189	-2039.102156	293.5 <i>i</i>
TS115- <i>Triplet</i>	0.702652	0.745000	0.626909	-2039.740757	-2038.995757	-2039.113848	399.4 <i>i</i>
TS115-RE	0.702820	0.745536	0.626593	-2039.735902	-2038.990366	-2039.109309	233.0 <i>i</i>
Int116	0.703945	0.747137	0.625864	-2039.809229	-2039.062092	-2039.183365	
Int117	0.178275	0.195482	0.131973	-594.371191	-594.175709	-594.239218	
Int118	0.371074	0.394698	0.314530	-1057.012475	-1056.617777	-1056.697945	
TS119- Major-C1	1.173394	1.240906	1.068602	-3047.831364	-3046.590458	-3046.762762	335.1 <i>i</i>
TS119- Major-C2	1.173196	1.240879	1.066842	-3047.825277	-3046.584398	-3046.758435	367.0 <i>i</i>
TS119- Minor-C1	1.172809	1.240428	1.067792	-3047.825443	-3046.585015	-3046.757651	311.1 <i>i</i>

TS119-	1 1 5 2 4 0 0	1.0.400.64	1.044740	20.45.02.02.5		2016 220 122	250.01
Minor-C2	1.173409	1.240864	1.066560	-3047.826035	-3046.585171	-3046.759475	350.8i
TS119-S1	1.173781	1.241205	1.069469	-3047.831160	-3046.589955	-3046.761691	308.6 <i>i</i>
TS119-S2	1.173372	1.240998	1.068003	-3047.825422	-3046.584424	-3046.757419	346.0 <i>i</i>
TS119-S3	1.172900	1.240357	1.068252	-3047.822602	-3046.582245	-3046.754350	377.7 <i>i</i>
TS119-S4	1.172765	1.240328	1.066843	-3047.823226	-3046.582898	-3046.756383	361.2 <i>i</i>
TS119-S5	1.172504	1.240404	1.064982	-3047.819664	-3046.579260	-3046.754682	343.0 <i>i</i>
TS119-S6	1.172367	1.240212	1.065765	-3047.823068	-3046.582856	-3046.757303	345.4 <i>i</i>
TS119-S7	1.173172	1.240783	1.066461	-3047.828785	-3046.588002	-3046.762324	359.7 <i>i</i>
TS119-S8	1.173423	1.240944	1.067852	-3047.828763	-3046.587819	-3046.760911	344.7 <i>i</i>
TS119-S9	1.173333	1.240974	1.066769	-3047.826647	-3046.585673	-3046.759878	356.1 <i>i</i>
TS119-S10	1.173547	1.240939	1.070486	-3047.821467	-3046.580528	-3046.750981	358.0 <i>i</i>
TS119-S11	1.172470	1.240145	1.067227	-3047.816155	-3046.576010	-3046.748928	340.2 <i>i</i>
TS119-S12	1.172704	1.240370	1.066251	-3047.814706	-3046.574336	-3046.748455	367.3 <i>i</i>
TS119-S13	1.172361	1.240198	1.063973	-3047.812591	-3046.572393	-3046.748618	361.0 <i>i</i>
TS119-S14	1.173018	1.240578	1.068564	-3047.818535	-3046.577957	-3046.749971	350.3 <i>i</i>
TS119-S15	1.172690	1.240480	1.065581	-3047.816333	-3046.575853	-3046.750752	324.7 <i>i</i>
TS119-S16	1.173066	1.240598	1.068642	-3047.823161	-3046.582563	-3046.754519	354.2 <i>i</i>
TS119-S17	1.172908	1.240467	1.067675	-3047.822482	-3046.582015	-3046.754807	352.4 <i>i</i>
TS119-S18	1.172735	1.240420	1.066227	-3047.824175	-3046.583755	-3046.757948	308.9 <i>i</i>
TS119-S19	1.172836	1.240517	1.065899	-3047.824887	-3046.584370	-3046.758988	354.7 <i>i</i>
TS119-S20	1.173663	1.240958	1.070871	-3047.827592	-3046.586634	-3046.756721	351.7 <i>i</i>
TS119-S21	1.172304	1.240240	1.065170	-3047.820398	-3046.580158	-3046.755228	364.0 <i>i</i>
TS119-S22	1.172828	1.240641	1.065781	-3047.821235	-3046.580594	-3046.755454	369.6 <i>i</i>
TS119-S23	1.172711	1.240526	1.065992	-3047.823902	-3046.583376	-3046.757910	343.7 <i>i</i>
TS119-S24	1.173675	1.241221	1.069288	-3047.826076	-3046.584855	-3046.756788	321.7 <i>i</i>
TS119-S25	1.173305	1.240982	1.067615	-3047.823674	-3046.582692	-3046.756059	354.3 <i>i</i>
TS119-S26	1.173075	1.240699	1.068707	-3047.825616	-3046.584917	-3046.756909	363.5 <i>i</i>
TS119-S27	1.172704	1.240314	1.065563	-3047.824433	-3046.584119	-3046.758870	358.9 <i>i</i>
TS119-S28	1.173128	1.240595	1.067280	-3047.826044	-3046.585449	-3046.758764	357.3 <i>i</i>
TS119-S29	1.172857	1.240433	1.066177	-3047.824823	-3046.584390	-3046.758646	366.1 <i>i</i>
TS119-S30	1.173218	1.240769	1.068078	-3047.818790	-3046.578021	-3046.750712	337.6 <i>i</i>
TS119-S31	1.173356	1.240803	1.067826	-3047.823163	-3046.582360	-3046.755337	332.9 <i>i</i>
TS119-S32	1.172622	1.240282	1.067246	-3047.820606	-3046.580324	-3046.753360	358.9 <i>i</i>
TS119-S33	1.172725	1.240313	1.068432	-3047.821173	-3046.580860	-3046.752741	375.1 <i>i</i>
TS119-S34	1.172204	1.240028	1.066949	-3047.818520	-3046.578492	-3046.751571	288.2 <i>i</i>
TS119-S35	1.173199	1.240643	1.067113	-3047.818903	-3046.578260	-3046.751790	347.0 <i>i</i>
TS119-S36	1.173232	1.240641	1.067145	-3047.820595	-3046.579954	-3046.753450	344.8 <i>i</i>
TS119-S37	1.172962	1.240790	1.066834	-3047.809982	-3046.569192	-3046.743148	300.7 <i>i</i>
TS119-S38	1.172648	1.240410	1.067137	-3047.813321	-3046.572911	-3046.746184	312.6 <i>i</i>

Supplementary Table 7. Energies in Fig. 4 and Supplementary Fig. 18. Gas-phase energies (*E*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Gas Phase)// B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory

Structure	Ε
Int107	-1539.643588
Int-S14	-1079.374828
Chlorine Radical	-460.166882
TS115-Major	-2039.691650
TS115-Minor	-2039.685943
TS119-Major-C1	-3047.760060
TS119-Major-C2	-3047.753616
TS119-Minor-C1	-3047.752012
TS119-Minor-C2	-3047.754165

S153

100 90 f1 (ppm)

80 70

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -25; f1 (ppm)

S179

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S181

S182

S184

S189

S191

8.952
 8.952
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805
 8.805

 $\begin{array}{c} 0.03\\ 0.031\\ 0.0$

S205

S206

S212

100 90 fl (ppm) ò -1 . 40

S232

S234

S257

HPLC spectra

1 from large scale preparation

Peak Table

DI	14	C1 1	054	
PI	10	(h l	7:54	nm

Peak#	Ret. Time	Area	Area%
1	18.759	5834820	49.937
2	21.374	5849467	50.063

mAU

PDA	Ch	1	254nm
-		-	-

Peak#	Ret. Time	Area	Area%
1	18.963	678458	4.296
2	21.592	15113256	95.704

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.426	BB	0.3650	2.18935e4	928.96722	50.2725
2	21.216	BB	0.4263	2.16562e4	779.02808	49.7275

4.35496e4 1707.99530

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % [min] [min] # 1 18.369 BB 0.3400 3431.55347 155.15408 95.2955 2 21.051 BB 0.3271 169.40799 6.65243 4.7045

Totals :

3600.96146 161.80652

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	32.972	1902966	50.159
2	35.109	1890876	49.841

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	33.370	3296065	95.530
2	36.148	154240	4.470

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 25.055 BV R 0.4569 1.44153e4 484.82382 95.9773 2 26.406 VB E 0.4055 604.18890 18.97512 4.0227

Totals : 1.50195e4 503.79894

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	21.010	2478014	49.685				
2	23.488	2509403	50.315				

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.368	84882	3.198
2	23.856	2569457	96.802

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|-----|
 -----|

 1
 24.529
 MF R
 0.4757
 2.12541e4
 744.69348
 49.3411

 2
 27.559
 FM R
 1.7331
 2.18217e4
 209.85619
 50.6589

Totalc	1 2075901	054 54067
IULAIS .	4.50/5024	354.54907

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.777	BB	0.6941	194.17046	3.32130	3.0384
2	27.196	BB	1.2956	6196.30029	57.94130	96.9616
Total	s:			6390.47075	61.26260	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 21.758 BB 0.4399 1798.43945 60.30443 4.3643 2 25.792 BB 1.2971 3.94092e4 431.68207 95.6357 Totals : 4.12077e4 491.98650

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.408	1054969	50.268
2	24.735	1043722	49.732

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.393	1616784	96.262
2	24.756	62779	3.738

PDA Ch	1 254nm		(
Peak#	Ret. Time	Area	Area%
1	19.276	4147675	50.106
2	26.287	4130195	49.894

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.152	9050130	93.079
2	26.205	672904	6.921

PDA Ch	1 214nm		
Peak#	Ret. Time	Area	Area%
1	24.629	954711	50.015
2	29.377	954145	49.985

mAU

Peak Table

PDA Ch	3 214nm		
Peak#	Ret. Time	Area	Area%
1	24.621	16343603	96.470
2	29.462	598021	3. 530

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.779	350990	50.391
2	34.387	345537	49.609

PDA Ch	n1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.819	5905965	96.587
2	34.386	208674	3.413

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.039	BV	0.1955	3431.75342	271.37070	49.6957
2	9.729	VB	0.2131	3473.77515	248.42046	50.3043

Totals : 6905.52856 519.79115

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 9.061
 BV
 0.1968
 6838.96484
 536.30304
 93.1197

 2
 9.759
 VB
 0.2117
 505.30582
 36.45385
 6.8803

Totals : 7344.27066 572.75689

Peak Table

Peak#	Ret. Time	Area	Area%
1	7.652	3207695	49.925
2	25.565	3217299	50.075

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.810	8888081	94.987
2	25.466	469096	5.013

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ---- ---- ----

 1
 18.757
 MM R
 0.4973
 4807.73047
 161.11740
 50.0266

 2
 22.162
 MM R
 0.5839
 4802.62158
 137.09305
 49.9734

Totals : 9610.35205 298.21045

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Тур	be	Width	Area	Height	Area
#	[mru]	1		[mru]			<i>/</i> 0
1	18 817	MM	R	0 4710	2 98635e4	1056 83252	95 0673
2	22.300	MM	R	0.5050	1549.52124	51.14184	4.9327

Totals : 3.14131e4 1107.97436

Poolett.	Rot Time	Amoo	Amage
I eak#	Net. IIme	Area	Alea/o
1	10.056	6168709	50.048
2	30.558	6156833	49.952

mAU

F	'DA Ch	1 254nm		
	Peak#	Ret. Time	Area	Area%
Γ	1	10.159	12026375	95.586
[2	31.587	555333	4.414

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.578	8517157	50.009
2	26.239	8513923	49.991

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.777	13427352	95.990
2	26.554	560939	4.010

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.638	7064647	50.359
2	19.038	6963913	49.641

mAU

Peak Table

F	PDA Ch	1 254nm		
[Peak#	Ret. Time	Area	Area%
Γ	1	14.739	8773293	96.892
Γ	2	19.273	281377	3.108

mAU

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	11.143	1492154	50.379
2	13.705	1469681	49.621

mV

检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.087	9740511	95.403		
2	13.686	469363	4.597		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|------|------|
 -----|------|------|------|
 1
 11.888
 BB
 0.2968
 4212.00049
 211.05446
 50.1243

 2
 13.373
 BB
 0.3381
 4191.11182
 186.55934
 49.8757

Totals : 8403.11230 397.61380

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.814	BB	0.3042	5081.12598	248.87680	91.0441
2	13.398	BV	0.3371	499.82486	21.66844	8.9559

Totals : 5580.95084 270.54524

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	32.572	12489416	50.022		
2	36.134	12478203	49.978		

mAU

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	32.389	13127999	97.159
2	35.960	383808	2.841

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16. 522	2680574	50.235
2	19.033	2655526	49.765

mAU

Peak Table

 PDA
 Ch1
 254nm

 Peak#
 Ret.
 Time
 Area
 Area%

 1
 16.590
 7134103
 94.388

 2
 19.171
 424164
 5.612

S283

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.087	6591248	50.065
2	25.909	6574239	49.935

mAU

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	20.985	5557583	89.820
2	25.531	629902	10.180

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.979	9015963	50.165
2	15.953	8956654	49.835

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.663	8775351	94.046
2	15.615	555515	5.954

mAU

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Totals : 6583.77759 358.65953

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Totals : 2.11058e4 1255.92181

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.357	2507178	49.818
2	14.170	2525495	50.182

mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	10.386	6098874	90.826
2	13.673	616004	9.174

mAU

Peak#	Ret. Time	Area	Area%
1	21.731	11950290	50.337
2	28.098	11790154	49.663

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	21.831	25405531	97.023	
2	28.343	779452	2.977	

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	23.845	2958912	50.359
2	29.914	2916719	49.641

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	23.727	54771764	95.739
2	29.806	2437974	4.261

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	32.726	5638940	50.152
2	38.325	5604737	49.848

<u>PDA Ch</u>	2 214nm		
Peak#	Ret. Time	Area	Area%
1	32.622	35102692	95.447
2	38, 236	1674517	4, 553

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.736	11924844	50.377
2	26.759	11746514	49.623

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	21.870	6138226	96.646	
2	27.078	213037	3.354	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.946	11367043	50.825
2	30.639	10997974	49.175

mAU

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	22.919	36655851	97.094		
2	30.794	1097166	2.906		

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.585	1735614	50.133
2	24.231	1726407	49.867

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.436	10665817	95.448
2	24.031	508678	4.552

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.534	MM R	1.0334	3.06337e4	494.05920	50.5327
2	37.984	MM R	1.3415	2.99879e4	372.56265	49.4673

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 1 29.362 BB 0.9092 2.35864e4 385.80484 96.2443 2 38.053 BB 0.8150 920.38971 13.37287 3.7557

2.45067e4 399.17771

Peakt	Ret Time	Area	Area%
1	18.478	6916597	50. 335
2	22.580	6824634	49.665

mAU

Peak Table

 PDA
 Ch1
 254nm

 Peak#
 Ret.
 Time
 Area
 Area%

 1
 18.380
 8509027
 97.689

 2
 22.537
 201274
 2.311

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	21.8	350	306140	49.985	
2	26.8	564	306326	50.015	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.449	4965194	94.951
2	26.028	264010	5.049

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.018	31789071	50.281
2	46.491	31433661	49.719

mAU

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	28.275	17231665	96.468		
2	48.378	630860	3.532		

mAU

PDA Ch2 276nm					
Peak#	Ret.	Time	Area	Area%	
1	13.	960	4619317	50.457	
2	18.	475	4535605	49.543	

mAU

Peak Table

PDA Ch2 276nm

Peak#	Ret. Ti	me Area	Area%
1	13.92	6 5092504	4 97.219
2	18.46	4 145674	2.781

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.425	2448735	49.804
2	12.171	2467983	50.196

mAU

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	9.357	9093329	96.595
2	12.090	320588	3.405

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.190	12575813	50.350
2	18.832	12400738	49.650

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.099	13983469	96.858
2	18.791	453646	3.142

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.094	643906	50.231
2	18.375	637985	49.769

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.110	8255876	95.982
2	18.413	345567	4.018

Т	0	t	a	1	S	•
	-	~	~	-	-	•

1.26612e4 263.05673

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.678	4788888	49.573
2	23.439	4871439	50. 427

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.662	6152543	94.789
2	23.072	338205	5.211

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.682	3378151	50.166
2	30.925	3355839	49.834

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.715	10069467	97.031
2	31.182	308101	2.969

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.669	16795452	50.134
2	35.055	16705942	49.866

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.880	8615628	97.121
2	35.712	255440	2.879

mAU

5.73578e4 1197.77649

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.733	11248089	50.341
2	33.408	11095499	49.659

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.877	5846778	95.950
2	33.660	246769	4.050

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] % # [min] 1 15.092 MF R 0.3968 1.39139e4 584.39966 96.2615 2 18.779 MF R 0.4700 540.37555 19.16306 3.7385 1.44543e4 603.56272

Totals :

Peak Table

PD	A Ch	1 254	1nm	~	~
Pe	eak#	Ret.	Time	Area	Area%
	1	53.	610	5928662	49.951
	2	59.	411	5940216	50.049

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	53.928	278646	2.776
2	59.410	9760147	97.224

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.727	BB	0.6195	2031.46228	46.88345	50.0988
2	38.787	BV R	0.6744	2023.45105	42.12154	49.9012

Totals :

4054.91333 89.00499

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.065	BB	0.6867	1.56808e4	346.02008	95.2485
2	39.293	BV R	0.5668	782.23718	16.44920	4.7515

Totals :

1.64631e4 362.46928

Т	0	t	a	1	S	•
	U	L	a	-	5	•

2.66610e4 764.00699

PDA Ch	2 221nm		
Peak#	Ret. Time	Area	Area%
1	18.713	5950205	50.048
2	22.255	5938796	49.952

mAU

Peak Table

PDA Ch2 221nm

Peak#	Ret.	Time	Area	Area%
1	18.	683	43021564	95.745
2	22.	120	1912148	4.255

Peak Table 01.0

00

_ _

PDA Ch3 221nm									
Peak#	Ret. Time	Area	Area%						
1	16.992	7324314	50.271						
2	23.242	7245424	49.729						

Peak Table

PDA Ch3 221nm									
Peak#	Ret. Time	Area	Area%						
1	17.072	79491256	95.747						
2	23.464	3530611	4.253						

mAU

PDA Ch2 303nm

Peak#	Ret. 1	lime	Area	Area%
1	21.4	19	199542	50.307
2	30.3	22	197104	49.693

mAU

Peak Table

PDA Ch2 303nm

Peak#	Ret.	Time	Area	Area%
1	21.	407	6241275	94.634
2	30.	167	353917	5.366

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 14.713 BB 0.3681 2542.18896 106.65381 95.1352 2 19.516 BB 0.3580 129.99744 4.38303 4.8648

Totals :

2672.18640 111.03684

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.148	VV R	0.4787	2.88451e4	852.55579	97.0140
2	35.612	MM R	1.1591	887.83380	12.76659	2.9860
Total	s:			2.97329e4	865.32238	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.683	MM	0.2286	3467.49341	252.84680	50.0278
2	14.174	MM	0.3166	3463.64355	182.31435	49.9722

Totals :

6931.13696 435.16115

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 11.321 BB 0.2112 2578.16577 186.57191 91.6303 2 13.845 BB 0.2921 235.49533 11.93786 8.3697

Totals :

2813.66110 198.50978

Peak RetTime Type Width Area Height Area [mAU*s] # [min] [min] [mAU] % 1 21.271 BV R 0.3958 1157.19617 44.44218 49.8997 2 27.540 BB 0.3832 1161.84668 45.00842 50.1003

2319.04285 89.45060

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 21.294 MM R 0.4479 3817.91309 142.07283 93.5938 2 27.932 MM R 0.5958 261.32422 7.30966 6.4062

Totals :

4079.23730 149.38249

Totals :

3163.00069 96.17697

PDA Ch	1 254nm		3
Peak#	Ret. Time	Area	Area%
1	31.856	1766478	50.599
2	38.360	1724675	49.401

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	31.768	7680158	94.825
2	38.367	419159	5.175

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 19.045
 MM R
 0.8787
 4031.96948
 76.47878
 51.4973

 2
 22.333
 MM R
 0.8529
 3797.50879
 74.20380
 48.5027

Totals : 7829.47827 150.68259

 Peak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|
 -----|
 -----|

 1
 19.196
 MM R
 0.6595
 7418.17578
 187.46294
 95.0129

 2
 22.513
 MM R
 0.6582
 389.37146
 9.85947
 4.9871

Totals : 7807.54724 197.32241

Peak Table

PDA Ch	1 254nm			
Peak#	Ret. Time	Area	Area%	
1	7.674	3113373	51.562	
2	17.390	2924737	48.438	

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.591	7166751	95.795		
2	17.269	314611	4.205		

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 9.434 MM R
 0.2926
 2705.23267
 154.08582
 50.5028

 2
 15.764 MM R
 0.5355
 2651.36938
 82.52261
 49.4972

Totals : 5356.60205 236.60842

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.376	MM R	0.2979	4930.86279	275.87363	94.3592
2	15.760	MM R	0.5080	294.76471	9.67038	5.6408

Totals : 5225.62750 285.54400

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 9.085 MM R
 0.3783
 3570.77393
 157.30754
 51.8172

 2
 14.226 MM R
 0.5547
 3320.32886
 99.76469
 48.1828

Totals : 6891.10278 257.07224

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.045	MM R	0.4234	6528.08252	256.95010	93.0012
2	14.073	MM R	0.4776	491.26944	17.14308	6.9988

Totals : 7019.35196 274.09318

S324

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 5.227 MM R
 0.1502
 1725.55029
 191.45863
 50.5740

 2
 8.580 MM R
 0.2633
 1686.37830
 106.73345
 49.4260

Totals : 3411.92859 298.19209

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-1				
1	5.227	MM	R	0.1514	1412.17310	155.44176	93.9168
2	8.608	MM	R	0.2450	91.46997	6.22205	6.0832

Totals : 1503.64307 161.66381

Peak Table

.....

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.243	1895446	51.375
2	14.403	1794013	48.625

Peak Table

Peak#	Ret. Time	Area	Area%
1	6.266	1947183	85.759
2	14.628	323334	14.241

Peak Table

Peak#	Ret. Time	Area	Area%
1	5.244	4639822	50.450
2	14.565	4557110	49.550

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.228	2139729	80.989
2	14.478	502262	19.011

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.204	5464073	50.632
2	12.794	5327630	49.368

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.169	4596326	82.049
2	12.762	1005603	17.951

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.387	348269	50.728
2	13.085	338267	49.272

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.332	2824028	65.828
2	12.982	1465983	34.172

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 0.3793 1226.32422 1 13.926 BV 48.45020 5.5746 0.6021 2.07722e4 2 22.077 VV 519.97595 94.4254 Totals : 2.19985e4 568.42615

S331

Totals :

1.01406e4 428.63901

Totals :

7.95797e4 1657.26266

Peak RetTime Type Width Area Height Area # [mAU*s] % [min] [min] [mAU] 1 28.212 MM R 0.8221 1575.09155 31.93051 5.0815 2 31.675 BB 0.8791 2.94217e4 503.93869 94.9185 Totals : 3.09968e4 535.86920

2.78528e4 844.03915

Signal 8: DAD1 H, Sig=270,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 17.384 BB 0.4564 513.89026 17.11072 5.2198 2 21.417 BB 0.5496 9331.10254 255.78978 94.7802

Totals :

9844.99280 272.90050

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 30.531 BB 0.7578 1240.84790 4.9096 23.58369 2 42.690 BB 1.0971 2.40332e4 329.44360 95.0904 Totals : 2.52740e4 353.02729

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.818	BB	0.3886	1293.64893	50.20746	49.8936
2	17.121	BV	0.4662	1299.16504	41.84780	50.1064

2592.81396 92.05526


```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 14.805 BB 0.4009 295.52316 11.01780 4.0662 2 17.041 BV 0.4623 6972.21973 227.04407 95.9338

Totals :

7267.74289 238.06187

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|-----|
 -----|-----|-----|
 -----|-----|
 1

 1
 10.365
 BB
 0.2514
 5408.89746
 336.79150
 49.9387

 2
 11.967
 BV
 0.2962
 5422.18066
 287.32394
 50.0613

Totals : 1.08311e4 624.11545

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.364	MM R	0.2443	383.12515	26.14209	4.6137
2	11.867	MM R	0.3055	7920.97070	432.15262	95.3863

Totals : 8304.09586 458.29471

PDA Ch	1 254	nm		
Peak#	Ret.	Time	Area	Area%
1	16.	004	5127352	49.914
2	17.	751	5144983	50.086

mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	15.592	406450	4.306
2	17.227	9033631	95.694

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|
 -----|------|------|
 -----|
 1
 9.448
 BB
 0.2003
 2885.86108
 227.07635
 50.0782

 2
 10.897
 BV
 0.2290
 2876.84546
 198.62880
 49.9218

Totals : 5762.70654 425.70515

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[MAU]	%
1	9.419	MM R	0.2038	4535.71045	370.94101	95.4220
2	10.858	MM R	0.2445	217.60536	14.83123	4.5780

Totals : 4753.31581 385.77224

Peak Table

检测器	A Ch1 254nn	1	
Peak#	Ret. Time	Area	Area%
1	12.089	3851771	50.650
2	13.348	3752853	49.350

Peak Table

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	12.103	245884	4.787
2	13.370	4890794	95.213

mV

Peak#	Ret. Time	Area	Area%
1	6.401	6792491	48.429
2	8.053	7233063	51.571

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.414	260244	4.568
2	8.069	5436357	95.432

S351

Peak Table

Peak#	Ret. Time	Area	Area%
1	13.483	5402594	50.302
2	16.264	5337625	49.698

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.494	328900	4.306
2	16.269	7309307	95.694

Peak Table

Peak#	Ret. Time	Area	Area%
1	30.629	10274345	49.980
2	34.287	10282630	50.020

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	30.921	1009908	4.486
2	34.312	21501961	95.514

The e.e. value of 95 was determined by analyzing the esterified product 94. mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	30.518	563188	4.320
2	33.826	12474830	95.680

Peak Table

检测器	A Ch1 254nr	n	
Peak#	Ret. Time	Area	Area%
1	8.134	3370173	49.678
2	9.923	3413907	50.322

mV

Peak Table

检测器	A Ch1 254nn	1	
Peak#	Ret. Time	Area	Area%
1	8.143	67747	4.480
2	9.936	1444559	95.520

mV

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.991	4430996	50.023	
2	13.987	4426887	49.977	

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.977	763339	4.270
2	13.986	17115408	95.730

mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	15.870	4820985	50.046
2	19.221	4812206	49.954

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.837	7666479	95.695	
2	19.221	344891	4.305	

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	22.241	8201143	50.014	
2	25.043	8196483	49.986	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.424	3949332	95.577
2	25.318	182769	4.423

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.196	9373498	49.888
2	26.037	9415418	50.112

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.459	405178	4.342	
2	26.175	8925358	95.658	
Supplementary references

- 1. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. *Science* **351**, 681–684 (2016).
- Torii, S., Okumoto, H. & Yabuki, H. A facile conversion of 2-substituted acrylamides to 1,3-disubstituted 3-bromo-2-azetidinones. *Syn. Commun.* 23, 517–523 (1993).
- Sagadevan, A., Ragupathi, A. & Hwang, K. C. Photoinduced copper-catalyzed regioselective synthesis of indoles: three-component coupling of arylamines, terminal alkynes, and quinones. *Angew. Chem. Int. Ed.* 54, 13896–13901 (2015).
- Arao, T., Sato, K., Kondo, K. & Aoyama, T. Function of an *N*-heterocyclic carbene ligand based on concept of chiral mimetic. *Chem. Pharm. Bull.* 54, 1576–1581 (2006).
- 5. Noda, Y. & Nishikata, T. A highly efficient Cu catalyst system for the radical reactions of α-bromocarbonyls. *Chem. Commun.* **53**, 5017–5019 (2017).
- 6. Bezençon, J. et al. pKa determination by ¹H NMR spectroscopy An old methodology revisited. *J. Pharm. Biomed. Anal.* **93**, 147–155 (2014).
- Derick, C. G. & Bornmann, J. H. Molecular rearrangements of carbon compounds. II. Aromatic (N) acylamines and the Beckmann rearrangement. *J. Am. Chem. Soc.* 35, 1269–1289 (1913).
- Gaussian 16, Revision A. 03, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J., Gaussian, Inc., Wallingford CT, 2016.
- (a) Lee, C., Yang, W. & Parr, R. G. Development of the colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B: Condens. Matter Mater. Phys.* 37, 785–789 (1988). (b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 98, 5648–5652 (1993).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 132, 154104 (2010).
- 11. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comp. Chem.* **32**, 1456–1465 (2011).

- 12. (a) Dunning Jr., T. H. & Hay, P. J. Modern Theoretical Chemistry, Ed. Schaefer III, H. F. Vol. 3 (Plenum, New York, 1977) 1–28. (b) Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985). (c) Wadt, W. R. & Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985). (d) Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).
- 13. (a) Dunning Jr., T. H. & Hay, P. J. Modern Theoretical Chemistry, Ed. Schaefer III, H. F. Vol. 3 (Plenum, New York, 1977) 1–28. (b) Stoll, H., Fuentealba, P., Schwerdtfeger, P., Flad, J., Szentpály, L. V. & Preuss, H. Cu and Ag as one-valenceelectron Atoms: CI results and quadrupole corrections for Cu₂, Ag₂, CuH, and AgH. J. Chem. Phys. 81, 2732–2736 (1984). (c) Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872, (1987). (d) Häussermann, U. et al. Accuracy of energyadjusted quasirelativistic ab initio pseudopotentials. Mole. Phys. 78, 1211–1224, (1993). (e) Igel-Mann, G., Stoll, H. & Preuss, H. Pseudopotentials for main group elements (IIIa through VIIa). Mole. Phys. 65, 1321–1328 (2006). (f) Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mole. Phys. 80, 1431–1441 (2006).
- Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* 113, 6378–6396 (2009).
- 15. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38 (1996).
- Legault, C. Y. *CYLView*, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; (<u>http://www.cylview.org</u>).
- Qi, X. et al. Mechanism of synergistic Cu(II)/Cu(I)-mediated alkyne coupling: dinuclear 1,2-reductive elimination after minimum energy crossing point. J. Org. Chem. 81, 1654–1660 (2016).
- Lin, C. Y., Coote, M. L., Gennaro, A. & Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. *J. Am. Chem. Soc.* 130, 12762–12774 (2008).
- Isse, A. A., Bortolamei, N., De Paoli, P., & Gennaro, A. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization. *Electrochim. Acta* 110, 655–662 (2013).

- 20. Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). *J. Am. Chem. Soc.* **141**, 7486–7497 (2019).
- 21. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).
- 22. Bader, R. F. W., Carroll, M. T., Cheeseman, J. R. & Chang, C. Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968–7979 (1987).