Supporting Information ©Wiley-VCH 2022 69451 Weinheim, Germany

Enantioselective Hydroxylation of Dihydrosilanes to Si-Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species

W. Yang⁺, L. Liu⁺, J. Guo⁺, S.-G. Wang, J.-Y. Zhang, L.-W. Fan, Y. Tian, L.-L. Wang, C. Luan, Z.-L. Li, C. He, X. Wang,^{*} Q.-S. Gu,^{*} and X.-Y. Liu^{*}

Table of Contents

Figure S1–S5					
Table S1–S2S7					
Scheme S1–S5					
1.	General Information				
2.	Synthesis of Ligands				
3.	Synthesis of Substrate and Characterization				
4.	Construction of Silicon-Stereogenic Silanols				
5.	Assignment of Absolute Stereochemistry				
6.	Derivatizations of Silicon-Stereogenic Silanols				
7.	Mechanistic Studies				
8.	DFT Calculations				
9.	References				
10.	NMR Spectra S111				
11.	HPLC Spectra				

Figure S1. The X-ray structure of (*R*)-*tert*-butyl(dibenzo[*b*,*d*]furan-2-yl)silanol **36** (CCDC 2143892).

Investigation of nonlinear effect:

Figure S2. The linear relationship between the ligand ee values and the product ee values.

Figure S3. Free energy profile for the complete pathway of ²CAT-mediated asymmetric formation of the silanol **1**.

Figure S2. The X-ray structure of L7·H₂O (CCDC 2143891).

34 Y

(290122)

ī

PLATON-ay, 21 March 2022

Z -80

cxy3375_0m

RES= 0-127 X

Figure S3. The X-ray structure of *tert*-butyl(naphthalen-2-yl)silane *S32* (CCDC 2143890).

R = 0.03

C11

P 21 21 21

1.0 e S1 0.10 m	′Bu SiH₂ + H₂O equiv. 5.0 equiv. I Imol	EC bas tBu O solvent (0	u] (10 mol%) 6 (10 mol%) e (2.0 equiv.) Br (SX4 , 2.0 eq 1.1 M), Ar, temp, 1	uiv.)	^{/Bu} Si ^H OH	-NH -PPh ₂ = Bn L6
entry	[Cu]	base	solvent	temp/ºC	1 NMR yield/%	1 ee/%
1	Cul	Cs_2CO_3	THF	0	68	95
2	CuBr ₂	Cs_2CO_3	THF	0	70	95
3	Cu(OTf) ₂	Cs_2CO_3	THF	0	72	95
4	Cu(hfa)₂	Cs_2CO_3	THF	0	71	95
5	CuTc	Cs_2CO_3	THF	0	67	95
6	Cu(PPh ₃) ₂ BH ₄	Cs_2CO_3	THF	0	11	86
7	Cul	K ₂ CO ₃	THF	0	47	91
8	Cul	Na ₂ CO ₃	THF	0	<5	
9	Cul	Cs_2CO_3	CH₃CN	0	26	89
10	Cul	Cs_2CO_3	DCE	0	13	90
11	Cul	Cs_2CO_3	THF	RT	63	91
12	Cul	Cs_2CO_3	THF (in air)	0	31	59

Table S1: Reaction conditions optimization.[a]

[a] Reaction conditions: **S1** (0.10 mmol), H₂O (0.50 mmol), [Cu] (0.01 mmol), **L6** (0.01 mmol), base (0.20 mmol), **SX4** (0.20 mmol), and solvent (1.0 mL) under Ar for 1 d. Yields were based on ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The ee values were based on chiral HPLC analysis. OTf, trifluoromethanesulfonate; Hfa, hexafluoroacetylacetonate; Tc, thiophene-2-carboxylate.

.

Table S2: Control experiments.[a]

⁷ Bu SiH ₂ 1.0 equiv. S1 0.20 mmol	+ H ₂ O 5.0 equiv. $t_{Bu} \xrightarrow{O}_{O} Br$ (SX4 , 2.0) THF (0.1 M), Ar, 0 °C, 1	^t Bu Si,H O equiv.) 1 I d 70%, 95% ее	NH PPh ₂ Bn L6
entry	variations	1 NMR yield/%	1 ee/%
1 ^a	none	70	95
2	without Cul	<5	
3	without L6	<5	
4	without SX4	<5	
5	without H ₂ O	<5	
6	without Cs ₂ CO ₃	<5	

[a] Standard reaction conditions: **S1** (0.20 mmol), H₂O (1.0 mmol), Cul (0.02 mmol), **L6** (0.02 mmol), Cs₂CO₃ (0.40 mmol), **SX4** (0.40 mmol), and THF (2.0 mL) under Ar at 0 °C for 1 d. Yields were isolated yields. The ee values were based on chiral HPLC analysis.

S8

Scheme S1. Results of the enantioselective hydroxylation reaction with BnBr.

SUPPORTING INFORMATION

Scheme S2. Results of the enantioselective hydroxylation reaction with S1, S41, S42, and S43.

Scheme S3. Water loading effects on the enantioselective hydroxylation reaction.

SUPPORTING INFORMATION

Scheme S4. Products of the enantioselective hydroxylation reaction with **SX5** and deuterium-labeling experiments.

Scheme S5. Products of the enantioselective hydroxylation reaction with SX2.

1. General Information

Reactions were carried out under an atmosphere of Ar using Schlenk techniques unless otherwise stated. Reactions were monitored by analytical thin-layer chromatography (TLC) on pre-coated silica gel 60 F254 plates. Visualization on TLC was achieved by use of UV light (254 nm), iodine or a basic KMnO₄ indicator. Column chromatography was performed using GENERAL-REAGENT silica gel (200-300 mesh) or Tsingdao silica gel (200–300 mesh). As the eluent, petroleum ether (PE), hexane, ethyl acetate (EtOAc), dichloromethane (CH₂Cl₂), and methanol were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Unless otherwise specified, all reagents were purchased from commercial suppliers and directly used without further purification. PhSiCl₃ was purchased from Meryer Co. Ltd. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. CH₂Cl₂ and THF were purified and dried using a solvent-purification system that contained activated alumina under argon. Anhydrous diethyl ether (Et₂O) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was treated by 4 Å Molecular sieve and distilled after refluxing with sodium and benzophenone.

NMR spectra were recorded on Bruker DRX-400 at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR, and 162 MHz for ³¹P NMR respectively, in CDCl₃ with tetramethylsilane (TMS) as an internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz.

High-resolution mass spectrometry (HRMS) was performed on an Agilent Technologies 6230 TOF LC/MS under the conditions of electrospray ionization (ESI)/ atmospheric pressure chemical ionization (APCI) in a positive/negative mode using CH_2CI_2 as the solvent.

Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector.

2. Synthesis of Ligands

The ligands L1 and L2 were synthesized according to the literature reports.^[1] General Procedures for the Synthesis of Chiral Ligand (L3-L6)^[1a]

Step A: Under argon atmosphere, a dry 100mL Schlenk flask equipped with a magnetic stir bar was charged with 2-aminobenzonitrile, *L*-amino alcohols (**SSL**), dry ZnCl₂ (1.0 equiv.), and 30 mL of chlorobenzene. The reaction mixture was refluxed (ca. 130 °C) for 1–3 d. Upon completion of the reaction monitored by TLC, water and 2 mL ethylenediamine were added. The mixture was extracted with EtOAc three times. The combined organic layer was evaporated under vacuum. The residue was purified by flash chromatography on silica gel to give 2-substituted aniline (**SL**) as a white solid.

Step B: Under argon atmosphere, to a solution of 2-substituted aniline (SL, 1 equiv.) in anhydrous CH_2CI_2 mL) added 2-(30 was (diphenylphosphino)benzoic acid (2 equiv.), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI, 2 equiv.), and 4dimethylaminopyridine (DMAP, 2 equiv.). The reaction mixture was stirred at ambient temperature for 24 h, concentrated, and purified by flash chromatography (PE/EtOAc = 5/1) to provide the chiral ligand as a white solid.

(S)-2-(diphenylphosphaneyl)-*N*-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)benzamide (L3)

According to the **General Procedures** starting from 2-aminobenzonitrile (2363 mg, 20 mmol) and (*S*)-2-amino-2-phenylethan-1-ol (**SLL3**, 4115 mg, 30 mmol) via **Step A**, 2-substituted aniline was obtained as a white solid (**SL3**, 3372 mg, 14.1 mmol, 71% yield). Through **Step B** with **SL3** (2383 mg, 10 mmol), 2-(diphenylphosphino)benzoic acid (6120 mg, 20 mmol), EDCI (3840 mg, 20 mmol), and DMAP (2440 mg, 20 mmol), the product **L3** was obtained as a white solid (4897 mg, 9.3 mmol, 93% yield).

¹H NMR (400 MHz, CDCI₃) δ 12.82 (s, 1H), 8.78 (dd, J = 8.4, 1.1 Hz, 1H), 7.90 (dd, J = 7.9, 1.6 Hz, 1H), 7.65 (ddd, J = 7.9, 3.8, 1.2 Hz, 1H), 7.51 – 7.40 (m, 1H), 7.39 – 7.17 (m, 16H), 7.09 (td, J = 7.7, 1.2 Hz, 1H), 7.02 – 6.88 (m,

2H), 5.43 (dd, *J* = 10.1, 8.6 Hz, 1H), 4.77 (dd, *J* = 10.1, 8.5 Hz, 1H), 4.26 (t, *J* = 8.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.22, 164.74, 141.68, 141.02, 140.21, 138.91, 138.67, 138.58, 138.26, 134.78, 134.12, 133.91, 133.86, 133.66, 132.88, 130.32, 129.17, 128.87, 128.39, 128.32, 128.27, 127.85, 127.59, 127.55, 126.63, 122.47, 120.26, 113.19, 73.21, 69.91.

³¹P NMR (162 MHz, CDCI₃) δ -7.85.

HRMS (ESI) *m*/*z* calcd. for C₃₄H₂₈N₂O₂P [M+H]⁺ 527.1883, found 527.1881.

(S)-2-(diphenylphosphaneyl)-*N*-(2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)benzamide (L4)

According to the **General Procedures** starting from 2-aminobenzonitrile (2363 mg, 20 mmol) and (*S*)-2-amino-3-methylbutan-1-ol (**SLL4**, 3095 mg, 30 mmol) via **Step A**, 2-substituted aniline was obtained as a white solid (**SL4**, 3983 mg, 19.5 mmol, 65% yield). Through **Step B** with **SL4** (2043 mg, 10 mmol), 2-(diphenylphosphino)benzoic acid (6120 mg, 20 mmol), EDCI (3840 mg, 20 mmol), and DMAP (2440 mg, 20 mmol), the product **L4** was obtained as a white solid (4433 mg, 9.0 mmol, 90% yield).

¹H NMR (400 MHz, CDCI₃) δ 12.86 (s, 1H), 8.76 (d, *J* = 7.9 Hz, 1H), 7.88 (ddd, *J* = 7.5, 3.8, 1.4 Hz, 1H), 7.83 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.46 – 7.25 (m, 13H), 7.11 – 6.97 (m, 2H), 4.38 (dd, *J* = 8.8, 7.4 Hz, 1H), 4.17 – 3.91 (m, 2H), 1.71 (dq, *J* = 13.3, 6.7 Hz, 1H), 0.88 (dd, *J* = 6.7, 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 167.30, 163.51, 141.50, 141.27, 140.01, 138.54, 138.36, 138.31, 138.29, 138.24, 138.18, 134.68, 133.96, 133.88, 133.76, 133.68, 132.42, 130.23, 128.89, 128.38, 128.32, 128.30, 128.26, 128.19, 127.41, 127.37, 122.27, 119.95, 113.28, 72.74, 69.41, 33.12, 18.93, 18.65. ³¹P NMR (162 MHz, CDCI₃) δ -8.26.

HRMS (ESI) *m*/*z* calcd. for C₃₁H₃₀N₂O₂P [M+H]⁺ 493.2039, found 493.2038.

(S)-N-(2-(4-(tert-butyl)-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphaneyl)benzamide (L5)

According to the **General Procedures** starting from 2-aminobenzonitrile (3544 mg, 30 mmol) and (*S*)-2-amino-3,3-dimethylbutan-1-ol (**SLL5**, 5273 mg, 45 mmol) via **Step A**, 2-substituted aniline was obtained as a white solid (**SL5**, 4960 mg, 22.7 mmol, 76% yield). Through **Step B** with **SL5** (1091 mg, 5 mmol), 2-(diphenylphosphino)benzoic acid (3060 mg, 10 mmol), EDCI (1917 mg, 10 mmol), and DMAP (1222 mg, 10 mmol), the product **L5** was obtained as a white solid (2388 mg, 4.7 mmol, 94% yield).

¹H NMR (400 MHz, CDCl₃) δ 12.83 (s, 1H), 8.82 – 8.62 (m, 1H), 7.96 – 7.67 (m, 2H), 7.50 – 7.26 (m, 13H), 7.14 – 7.01 (m, 2H), 4.30 (dd, *J* = 9.6, 8.1 Hz, 1H), 4.21 – 3.97 (m, 2H), 0.83 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 167.44, 163.52, 141.70, 141.47, 140.09, 138.37, 138.24, 138.20, 138.14, 138.09, 134.63, 134.02, 133.93, 133.82, 133.73, 132.45, 130.21, 128.92, 128.45, 128.36, 128.30, 128.23, 127.49, 127.45, 122.30, 120.02, 113.31, 76.18, 67.36, 33.71, 25.85.

³¹P NMR (162 MHz, CDCI₃) δ -8.42.

HRMS (ESI) *m*/*z* calcd. for C₃₂H₃₂N₂O₂P [M+H]⁺ 507.2196, found 507.2194.

(*S*)-*N*-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L6)

According to the **General Procedures** starting from 2-aminobenzonitrile (3544 mg, 30 mmol) and (S)-2-amino-3-phenylpropan-1-ol (**SSL6**, 6804 mg, 45 mmol) via **Step A**, 2-substituted aniline was obtained as a white solid (**SL6**, 5797 mg, 23.0 mmol, 77% yield). Through **Step B** with **SL6** (2523 mg, 10 mmol), 2-(diphenylphosphino)benzoic acid (6120 mg, 20 mmol), EDCI (3840 mg, 20 mmol), and DMAP (2440 mg, 20 mmol), the product **L6** was obtained as a white solid (5260 mg, 9.7 mmol, 97% yield).

¹H NMR (400 MHz, CDCl₃) δ 12.70 (s, 1H), 8.77 (d, *J* = 8.4 Hz, 1H), 7.83 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.80 – 7.73 (m, 1H), 7.38 – 7.45 (m, 1H), 7.37 – 7.26 (m, 12H), 7.24 – 7.12 (m, 5H), 7.10 – 7.02 (m, 2H), 4.63 (dq, *J* = 9.4, 7.3 Hz, 1H),

4.36 (dd, *J* = 9.3, 8.5 Hz, 1H), 4.09 (dd, *J* = 8.5, 7.5 Hz, 1H), 3.07 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.80 (dd, *J* = 13.9, 7.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.22, 163.97, 141.23, 141.01, 140.00, 138.76, 138.53, 138.44, 138.32, 137.49, 134.81, 133.93, 133.83, 133.72, 133.63, 132.56, 130.31, 128.94, 128.49, 128.28, 128.25, 128.21, 128.19, 127.31, 127.27, 126.53, 122.30, 120.02, 113.18, 70.67, 67.60, 42.01.

³¹P NMR (162 MHz, CDCl₃) δ -8.09.

HRMS (ESI) *m*/*z* calcd. for C₃₅H₃₀N₂O₂P [M+H]⁺ 541.2039, found 541.2038.

(S)-benzyl(2-((2-(4-benzyl-4,5-dihydrooxazol-2yl)phenyl)carbamoyl)phenyl)diphenylphosphonium bromide (L7)

The reaction of L6 (108.1 mg, 0.2 mmol) with BnBr (41.0 mg, 0.24 mmol, 1.2 eq) in PhMe (1 mL) at 110 °C for 6 h gave L7 as a white solid (65.0 mg, 0.09 mmol, 46% yield).

¹H NMR (400 MHz, CDCI₃) δ 13.24 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.08 (dd, *J* = 14.4, 7.6 Hz, 1H), 7.93 – 7.74 (m, 3H), 7.67 – 7.55 (m, 7H), 7.55 – 7.44 (m, 4H), 7.35 (ddd, *J* = 8.7, 7.4, 1.6 Hz, 1H), 7.26 – 7.06 (m, 9H), 7.06 – 6.99 (m, 2H), 5.37 – 5.09 (m, 2H), 4.82 (p, *J* = 7.4 Hz, 1H), 4.49 (t, *J* = 8.9 Hz, 1H), 4.20 (dd, *J* = 8.5, 6.9 Hz, 1H), 3.12 – 2.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 164.64, 164.62, 164.10, 139.81, 139.75, 138.36, 138.31, 138.20, 137.45, 135.37, 135.34, 133.68, 133.65, 133.03, 132.93, 132.83, 132.49, 132.35, 131.12, 131.06, 129.53, 129.50, 129.40, 129.38, 129.23, 128.92, 128.72, 128.62, 128.59, 128.49, 128.15, 128.11, 128.05, 127.97, 126.62, 123.65, 121.27, 121.18, 120.38, 120.30, 119.38, 118.80, 117.94, 113.73, 71.34, 67.31, 42.30, 33.34, 32.84.

HRMS (ESI) *m*/*z* calcd. for C₄₂H₃₆N₂O₂P [M–Br]⁺ 631.2509, found 631.2504.

(*R*)-*N*-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (*ent*-L6)

According to the **General Procedures** starting from 2-aminobenzonitrile (3544 mg, 30 mmol) and (*R*)-2-amino-3-phenylpropan-1-ol (*ent*-**SSL6**, 6804 mg, 45 mmol) via **Step A**, 2-substituted aniline was obtained as a white solid (*ent*-**SL6**, 6037 mg, 23.9 mmol, 80% yield). Through **Step B** with *ent*-**SL6** (1262 mg, 5 mmol), 2-(diphenylphosphino)benzoic acid (3063 mg, 10 mmol), EDCI (1917 mg, 10 mmol), and DMAP (1222 mg, 10 mmol), the product *ent*-**L6** was obtained as a white solid (2226 mg, 4.12 mmol, 82% yield).

¹H NMR (400 MHz, CDCl₃) 12.72 (s, 1H), 8.77 (d, J = 8.2 Hz, 1H), 7.82 (dd, J = 7.9, 1.6 Hz, 1H), 7.80 – 7.73 (m, 1H), 7.45 – 7.38 (m, 1H), 7.36 – 7.23 (m, 12H), 7.23 – 7.12 (m, 5H), 7.10 – 7.01 (m, 2H), 4.61 (dq, J = 9.5, 7.2 Hz, 1H), 4.34 (t, J = 8.9 Hz, 1H), 4.07 (t, J = 8.0 Hz, 1H), 3.05 (dd, J = 13.8, 6.6 Hz, 1H), 2.78 (dd, J = 13.8, 7.4 Hz, 1H).

¹³C NMR (101 MHz, CDCI₃) δ 167.25, 163.99, 141.26, 141.03, 140.01, 138.78, 138.55, 138.45, 138.33, 137.51, 134.83, 133.95, 133.85, 133.75, 133.65, 132.58, 130.32, 128.96, 128.51, 128.30, 128.27, 128.23, 128.20, 127.33, 127.29, 126.55, 122.32, 120.05, 113.20, 70.68, 67.63, 42.04. ³¹P NMR (162 MHz, CDCI₃) δ -8.12.

3. Synthesis of Substrate and Characterization

General Procedures A:

The synthesis was adapted from the reported literature.^[2] To a stirred solution of SiCl₄ (100 mmol) in pentane (30 mL) at RT was added ^{*t*}BuLi (77 mL, 1.3 M in pentane) dropwise. The mixture was stirred at RT for 24 h. After the reaction, the mixture was filtered through a pad of Celite eluting with hexane. The filtrate was concentrated under vacuum to give a light yellow oil. It was purified by distillation to give ^{*t*}BuSiCl₃ as a waxy solid in ca. 60% yield.

To a stirred solution of ArBr (2.5 mmol) in THF (10 mL) was added a solution of ^{*t*}BuLi in pentane (1.3 M, 2.5–5.0 mmol) dropwise at -78 °C. After the addition, the mixture was stirred at -78 °C for 1 h to give ArLi. A solution of ^{*t*}BuSiCl₃ (575 mg, 3 mmol, 1.2 eq) in THF was added dropwise into the solution of ArLi at -78 °C. The mixture was stirred at -78 °C for 1 h, then warmed to RT overnight to give Ar(^{*t*}Bu)SiCl₂. A solution of LiAlH₄ in THF (2.5 M, 1 mL, 2.5 mmol, 1 eq) was directly added dropwise into the solution of Ar(^{*t*}Bu)SiCl₂ at 0 °C. The mixture was stirred at 0 °C for about 1 h, then warmed to RT for 3 h. The reaction was quenched with the careful addition of Na₂SO₄·10H₂O at 0 °C. The mixture was filtered through a pad of silica eluting with EtOAc/hexane. The filtrate was concentrated under vacuum and further purified by column chromatography on silica gel eluting with PE to afford the desired product of Ar(^{*t*}Bu)SiH₂.^[3]

General Procedures B:

To a stirred solution of SiCl₄ (3.44 mL, 5.09 g, 30 mmol) in hexane (30 mL) under Ar at RT was added a solution of ArMgBr in THF (prepared by the reaction of 15 mmol ArBr with Mg), and the mixture was stirred at RT for 1 d. After the reaction, the mixture was quickly filtered through a pad of Celite eluting with hexane/CH₂Cl₂. The filtrate was concentrated under vacuum to give ArSiCl₃ and used in the next step without further purification.^[4]

To the above-prepared ArSiCl₃ in hexane (20 mL) under Ar at 0 °C was added a solution of ^{*t*}BuLi in pentane (1.3 M, 9.23 mL, 12 mmol) dropwise, and the mixture was stirred at 0 °C for about 1 h, then warmed to RT overnight to give Ar(^{*t*}Bu)SiCl₂. A solution of LiAlH₄ in THF (2.5 M, 6 mL, 15 mmol, 1 eq) was directly added dropwise into the solution of Ar(^{*t*}Bu)SiCl₂ at 0 °C. The mixture was stirred at 0 °C for about 1 h, then warmed to RT for 3 h. The reaction was quenched with the careful addition of Na₂SO₄·10H₂O at 0 °C. The mixture was filtered through a pad of silica eluting with EtOAc/hexane. The filtrate was concentrated under vacuum and further purified by column chromatography on silica gel eluting with PE to afford the desired product of Ar(^{*t*}Bu)SiH₂.^[5]

tert-butyl(phenyl)silane (S1)^[3]

According to the **General Procedures B** starting from PhSiCl₃ (10 mmol) with ^{*t*}BuLi in pentane (1.3 M, 7.69 mL, 10 mmol), the product **S1** was obtained as a colorless oil^[3] (1154 mg, 7.0 mmol, 70% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.59-7.55 (m, 2H), 7.42-7.33 (m, 3H), 4.15 (s, 2H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 135.88, 132.21, 129.52, 127.81, 27.42, 16.41.

tert-butyl(o-tolyl)silane (S2)

According to the **General Procedures B** with 2-bromotoluene (2565 mg, 15 mmol), the product **S2** was obtained as a colorless oil (1357 mg, 7.6 mmol, 51% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.30 (td, *J* = 7.5, 7.5, 1.6 Hz, 1H), 7.22 – 7.11 (m, 2H), 4.22 (s, 2H), 2.47 (s, 3H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ . 144.14, 137.51, 131.50, 129.93, 129.60, 124.80, 27.89, 23.37, 17.17.

HRMS (APCI) *m*/*z* calcd. for C₁₁H₁₉Si [M+H]⁺ 179.1251, found 179.1251.

tert-butyl(3-fluorophenyl)silane (S3)

According to the **General Procedures B** using 1-bromo-3-fluorobenzene (2625 mg, 15 mmol), the product **S3** was obtained as a colorless oil (633 mg, 3.5 mmol, 23% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 2H), 7.30 – 7.22 (m, 1H), 7.15 – 7.04 (m, 1H), 4.15 (s, 2H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 162.35 (d, *J* = 248.5 Hz), 135.03 (d, *J* = 4.6 Hz), 131.46 (d, *J* = 3.2 Hz), 129.62 (d, *J* = 6.7 Hz), 122.08 (d, *J* = 18.9 Hz), 116.56 (d, *J* = 21.1 Hz), 27.35, 16.40.

¹⁹F NMR (376 MHz, CDCI₃) δ -113.49.

HRMS (APCI) *m*/*z* calcd. for C₁₀H₁₆FSi [M+H]⁺ 183.1000, found 183.0999.

tert-butyl(3-methoxyphenyl)silane (S4)

According to the **General Procedures B** using 1-bromo-3-methoxybenzene (2805 mg, 15 mmol), the product **S4** was obtained as a colorless oil (484 mg, 2.5 mmol, 17% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.30 (t, *J* = 7.7 Hz, 1H), 7.14 (d, *J* = 7.1 Hz, 1H), 7.10 (d, *J* = 2.5 Hz, 1H), 6.94 (dd, *J* = 8.2, 2.2 Hz, 1H), 4.14 (s, 2H), 3.81 (s, 3H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.86, 133.64, 129.02, 128.18, 121.08, 115.04, 55.10, 27.45, 16.42.

HRMS (ESI) *m*/*z* calcd. for C₁₁H₁₉OSi [M+H]⁺ 195.1200, found 195.1199.

[1,1'-biphenyl]-3-yl(*tert*-butyl)silane (S5)

According to the **General Procedures B** using 3-bromo-1,1'-biphenyl (3496 mg, 15 mmol), the product **S5** was obtained as a colorless oil (1230 mg, 5.1 mmol, 34% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.79 (s, 1H), 7.66 – 7.53 (m, 4H), 7.49 – 7.41 (m, 3H), 7.39 – 7.31 (m, 1H), 4.21 (s, 2H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.22, 140.62, 134.75, 134.63, 132.76, 128.77, 128.45, 128.21, 127.30, 127.24, 27.47, 16.46.

HRMS (APCI) *m*/*z* calcd. for C₁₆H₂₁Si [M+H]⁺ 241.1407, found 241.1407.

tert-butyl(4-(tert-butyl)phenyl)silane (S6)

According to the **General Procedures B** using 1-bromo-4-(*tert*-butyl)benzene (3196 mg, 15 mmol), the product **S6** was obtained as a colorless oil (1900 mg, 8.6 mmol, 57% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.56 – 7.47 (m, 2H), 7.42 – 7.34 (m, 2H), 4.14 (s, 2H), 1.32 (s, 9H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 152.53, 135.84, 128.59, 124.82, 34.70, 31.24, 27.51, 16.49.

HRMS (APCI) *m*/*z* calcd. for C₁₄H₂₅Si [M+H]⁺ 221.1720, found 221.1720.

(4-(*tert*-butylsilyl)phenyl)trimethylsilane (S7)

According to the **General Procedures B** using (4bromophenyl)trimethylsilane (3438 mg, 15 mmol), the product **S7** was obtained as a colorless oil (2103 mg, 8.9 mmol, 59% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 2H), 7.54 (d, *J* = 7.9 Hz, 2H), 4.17 (s, 2H), 1.05 (s, 9H), 0.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.92, 135.10, 132.62, 27.47, 16.48, -1.23. HRMS (APCI) *m*/*z* calcd. for $C_{13}H_{25}Si_2$ [M+H]⁺ 237.1489, found 237.1489.

[1,1'-biphenyl]-4-yl(*tert*-butyl)silane (S8)

According to the **General Procedures B** using 4-bromo-1,1'-biphenyl (3496 mg, 15 mmol), the product **S8** was obtained as a colorless oil (1281 mg, 5.3 mmol, 35% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.50 (m, 6H), 7.42 (t, *J* = 7.6, 7.6 Hz, 2H), 7.37 – 7.29 (m, 1H), 4.20 (s, 2H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.26, 140.87, 136.39, 130.90, 128.79, 127.50, 127.13, 126.52, 27.48, 16.49.

HRMS (APCI) *m*/*z* calcd. for C₁₆H₂₁Si [M+H]⁺ 241.1407, found 241.1407.

tert-butyl(4-fluorophenyl)silane (S9)

S9

According to the **General Procedures B** using 1-bromo-4-fluorobenzene (2625 mg, 15 mmol), the product **S9** was obtained as a colorless oil (603 mg, 3.3 mmol, 22% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.63 – 7.45 (m, 2H), 7.18 – 6.94 (m, 2H), 4.15 (s, 2H), 1.00 (s, 9H).

¹³**C NMR (101 MHz, CDCI₃)** δ 164.13 (d, *J* = 249.0 Hz), 137.81 (d, *J* = 7.8 Hz), 127.64 (d, *J* = 4.3 Hz), 115.11 (d, *J* = 19.8 Hz), 27.31, 16.35.

¹⁹F NMR (376 MHz, CDCI₃) δ -110.97.

HRMS (ESI) *m*/*z* calcd. for C₁₀H₁₆FSi [M+H]⁺ 183.1000, found 183.0999.

tert-butyl(4-chlorophenyl)silane (S10)

According to the **General Procedures B** using 1-bromo-4-chlorobenzene (2870 mg, 15 mmol), the product **S10** was obtained as a colorless oil (964 mg, 4.85 mmol, 32% yield).

¹**H NMR (400 MHz, CDCI**₃) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 4.13 (s, 2H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 137.15, 136.07, 130.47, 128.12, 27.31, 16.35. HRMS (APCI) *m/z* calcd. for C₁₀H₁₆ClSi [M+H]⁺ 199.0704, found 199.0704.

4-(*tert*-butylsilyl)phenol (S11)

The reaction of *tert*-butyl(4-(*tert*-butylsilyl)phenoxy)dimethylsilane (**S15**, 2946 mg, 10 mmol) with aq. HCl (1 M, 30 mmol) in THF (50 mL) at RT for 5 d gave the product **S11** as a white solid (1620 mg, 9.0 mmol, 90% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.52 – 7.42 (m, 2H), 6.92 – 6.73 (m, 2H), 4.91 (s, 1H), 4.11 (s, 2H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 156.87, 137.58, 123.21, 115.05, 27.34, 16.42. HRMS (APCI) *m*/*z* calcd. for C₁₀H₁₇OSi [M+H]⁺ 181.1043, found 181.1043.

tert-butyl(4-methoxyphenyl)silane (S12)

According to the **General Procedures B** using 1-bromo-4-methoxybenzene (2805 mg, 15 mmol), the product **S12** was obtained as a colorless oil (466 mg, 2.4 mmol, 16% yield).

¹**H NMR (400 MHz, CDCI**₃) δ 7.49 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 4.12 (s, 2H), 3.82 (s, 3H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 160.85, 137.35, 122.91, 113.63, 54.99, 27.36, 16.44.

The obtained NMR spectral data are in good agreement with those reported in literature.^[3]

(4-(benzyloxy)phenyl)(tert-butyl)silane (S13)

According to the **General Procedures B** using 1-(benzyloxy)-4bromobenzene (3946 mg, 15 mmol), the product **S13** was obtained as a colorless oil (436 mg, 1.6 mmol, 11% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.25 (m, 7H), 6.98 (d, *J* = 7.9 Hz, 2H), 5.07 (s, 2H), 4.12 (s, 2H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 160.10, 137.38, 136.85, 128.59, 128.00, 127.49, 123.29, 114.50, 69.73, 27.37, 16.44.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₂NaOSi [M+Na]⁺ 293.1332, found 293.1333.

tert-butyl(4-phenoxyphenyl)silane (S14)

According to the **General Procedures B** using 1-bromo-4-phenoxybenzene (3438 mg, 15 mmol), the product **S14** was obtained as a colorless oil (511 mg, 2.0 mmol, 13% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.5 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 4.14 (s, 2H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.95, 156.51, 137.52, 129.80, 125.94, 123.66, 119.46, 117.88, 27.37, 16.43.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₂₁OSi [M+H]⁺ 257.1356, found 257.1354.

tert-butyl(4-(tert-butylsilyl)phenoxy)dimethylsilane (S15)

S15

According to the **General Procedures B** using (4-bromophenoxy)(*tert*-butyl)dimethylsilane (4309 mg, 15 mmol), the product **S15** was obtained as a colorless oil in 38% yield (1665 mg, 5.65 mmol).

¹**H NMR (400 MHz, CDCI**₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 7.9 Hz, 2H), 4.17 (s, 2H), 1.04 (s, 9H), 1.03 (s, 9H), 0.25 (s, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 157.15, 137.35, 123.71, 119.80, 27.41, 25.68, 18.21, 16.44, −4.36.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₃₁OSi₂ [M+H]⁺ 295.1908, found 295.1908.

4-(tert-butylsilyl)phenyl 4-methylbenzenesulfonate (S16)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and TsCl (190.6 mg, 1.0 mmol) in the presence of Cs_2CO_3 (325.8 mg, 1.0 mmol) in CH₃CN (5 mL) at RT for 1 d gave the product **S16** as a colorless oil (284.9 mg, 0.85 mmol, 85% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.75 – 7.64 (m, 2H), 7.53 – 7.43 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.03 – 6.94 (m, 2H), 4.11 (s, 2H), 2.45 (s, 3H), 0.98 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 150.90, 145.37, 137.21, 132.40, 131.41, 129.72, 128.47, 121.77, 27.28, 21.69, 16.32.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₃O₃SSi [M+H]⁺ 335.1132, found 335.1130.

4-(tert-butylsilyl)phenyl 3-methoxybenzoate (S17)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 3methoxybenzoic acid (180.2 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S17** as a white solid (261.0 mg, 0.83 mmol, 83% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.81 (dt, J = 7.7, 1.3 Hz, 1H), 7.70 (dd, J = 2.7, 1.5 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.42 (t, J = 8.0 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.18 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 4.18 (s, 2H), 3.88 (s, 3H), 1.04 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 164.85, 159.67, 152.29, 137.18, 130.73, 129.60, 122.58, 121.21, 120.20, 114.49, 55.49, 27.36, 16.42.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₃O₃Si [M+H]⁺ 315.1411, found 315.1407.

4-(tert-butylsilyl)phenyl phenyl carbonate (S18)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and phenyl carbonochloridate (0.15 mL, 1.2 mmol) in the presence of NEt₃ (0.28 mL, 2 mmol) in DCM (5 mL) at RT for 4 h gave the product **S18** as a white solid (266.3 mg, 0.89 mmol, 89% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.70 – 7.43 (m, 2H), 7.34 (dd, J = 8.7, 7.2 Hz, 2H), 7.25 – 7.16 (m, 5H), 4.09 (s, 2H), 0.94 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 152.24, 151.85, 150.93, 137.24, 130.37, 129.56, 126.32, 120.87, 120.36, 27.32, 16.39.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₀NaO₃Si [M+Na]⁺ 323.1074, found 323.1072.

4-(tert-butylsilyl)phenyl 2-iodobenzoate (S19)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 2iodobenzoic acid (297.8 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S19** as a colorless oil (348.1 mg, 0.85 mmol, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (ddd, *J* = 11.7, 7.9, 1.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.39 (td, *J* = 7.6, 1.2 Hz, 1H), 7.29 – 6.76 (m, 3H), 4.09 (s, 2H), 0.94 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.66, 152.00, 141.69, 137.19, 133.98, 133.27, 131.55, 130.08, 128.07, 121.09, 94.68, 27.34, 16.42.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₀IO₂Si [M+H]⁺ 411.0272, found 411.0269.

4-(*tert*-butylsilyl)phenyl 2-(benzofuran-3-yl)acetate (S20)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 2-(benzofuran-3-yl)acetic acid (211.4 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S20** as a white solid (273.8 mg, 0.81 mmol, 81% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.72 (d, J = 1.2 Hz, 1H), 7.65 (dd, J = 7.4, 1.6 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.54 – 7.48 (m, 1H), 7.31 (ddd, J = 12.5, 7.7, 1.4 Hz, 2H), 7.14 – 7.04 (m, 2H), 4.14 (s, 2H), 3.97 (d, J = 1.1 Hz, 2H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 168.97, 155.24, 151.91, 143.06, 137.14, 129.98, 127.42, 124.62, 122.78, 120.91, 119.61, 112.52, 111.62, 30.01, 27.32, 16.39. HRMS (ESI) *m*/*z* calcd. for C₂₀H₂₂NaO₃Si [M+H]⁺ 361.1230, found 361.1226.

4-(*tert*-butylsilyl)phenyl 1-methyl-1*H*-indole-3-carboxylate (S21)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 1methyl-1*H*-indole-3-carboxylic acid (210.2 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S21** as a colorless oil (278.5 mg, 0.83 mmol, 83% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.27 – 8.20 (m, 1H), 7.96 (s, 1H), 7.69 – 7.58 (m, 2H), 7.46 – 7.38 (m, 1H), 7.37 – 7.29 (m, 2H), 7.29 – 7.19 (m, 2H), 4.18 (s, 2H), 3.89 (s, 3H), 1.04 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 162.88, 152.34, 137.32, 137.09, 136.15, 129.05, 126.77, 123.11, 122.30, 121.70, 121.58, 109.93, 106.04, 33.59, 27.37, 16.44. HRMS (ESI) *m/z* calcd. for C₂₀H₂₄NO₂Si [M+H]⁺ 338.1571, found 338.1566.

4-(*tert*-butylsilyl)phenyl isopropylcarbamate (S22)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 2isocyanatopropane (0.12 mL, 1.2 mmol) in the presence of NEt₃ (0.028 mL, 0.2 mmol) in DCM (5 mL) at RT for 4 h gave the product **S22** as a colorless oil (197.8 mg, 0.75 mmol, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.44 (m, 2H), 7.17 – 6.89 (m, 2H), 5.03 – 4.72 (m, 1H), 4.14 (s, 2H), 3.98 – 3.68 (m, 1H), 1.23 (d, *J* = 6.6 Hz, 6H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 153.41, 152.38, 136.98, 128.67, 121.06, 43.43, 27.32, 22.86, 16.40.

HRMS (ESI) *m*/z calcd. for C₁₄H₂₄NO₂Si [M+H]⁺ 266.1571, found 266.1568.

4-(tert-butylsilyl)phenyl (4-chlorophenyl)carbamate (S23)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 1-chloro-4-isocyanatobenzene (184.3 mg, 1.2 mmol) in the presence of NEt₃ (0.028 mL, 0.2 mmol) in DCM (5 mL) at RT for 4 h gave the product **S23** as a white solid (210.2 mg, 0.63 mmol, 63% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.63 – 7.57 (m, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.22 – 7.16 (m, 2H), 6.94 (br, 1H), 4.16 (s, 2H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.72, 151.29, 137.16, 135.87, 129.73, 129.18, 129.02, 121.03, 119.96, 27.33, 16.40.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₁CINO₂Si [M+H]⁺ 334.1025, found 334.1020.

2-(4-(*tert*-butylsilyl)phenoxy)-1-phenylethan-1-one (S24)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 2bromo-1-phenylethan-1-one (239.0 mg, 1.2 mmol) in the presence of K_2CO_3 (193.2 mg, 1.4 mmol) in acetone (5 mL) at RT for 4 h gave the product **S24** as a white solid (194.7 mg, 0.65 mmol, 65% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.04 – 7.98 (m, 2H), 7.67 – 7.55 (m, 1H), 7.55 – 7.33 (m, 4H), 6.95 (d, J = 8.6 Hz, 2H), 5.30 (s, 2H), 4.11 (s, 2H), 1.00 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 194.28, 159.28, 137.43, 134.51, 133.92, 128.85, 128.13, 124.22, 114.40, 70.46, 27.34, 16.43.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₃O₂Si [M+H]⁺ 299.1462, found 299.1459.

tert-butyl(4-((3-methylbut-2-en-1-yl)oxy)phenyl)silane (S25)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 1-bromo-3-methylbut-2-ene (0.14 mL, 1.2 mmol) in the presence of K_2CO_3

(193.2 mg, 1.4 mmol) in acetone (5 mL) at RT for 4 h gave the product **S25** as a colorless oil (153.3 mg, 0.62 mmol, 62% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.49 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.51 (dddd, *J* = 8.2, 5.4, 2.9, 1.4 Hz, 1H), 4.65 – 4.43 (m, 2H), 4.12 (s, 2H), 1.80 (d, *J* = 1.3 Hz, 3H), 1.75 (s, 3H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 160.16, 138.35, 137.32, 122.77, 119.50, 114.29, 64.45, 27.36, 25.84, 18.18, 16.45.

HRMS (ESI) *m/z* calcd. for C₁₅H₂₅OSi [M+H]⁺ 249.1669, found 249.1669.

2-(4-(tert-butylsilyl)phenoxy)acetonitrile (S26)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and 2bromoacetonitrile (0.07 mL, 1.2 mmol) in the presence of K_2CO_3 (193.2 mg, 1.4 mmol) in acetone (5 mL) at RT for 1 d gave the product **S26** as a colorless oil (111.6 mg, 0.51 mmol, 51% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.57 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 4.78 (s, 2H), 4.16 (s, 2H), 1.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.71, 137.61, 126.10, 114.99, 114.33, 53.13, 27.28, 16.36.

HRMS (ESI) *m*/*z* calcd. for C₁₂H₁₈NOSi [M+H]⁺ 220.1152, found 220.1155.

4-(*tert*-butylsilyl)phenyl-2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetate (S27)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and Isoxepac (322.0 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S27** as a white solid (266.6 mg, 0.62 mmol, 62% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.23 (d, J = 2.4 Hz, 1H), 7.90 (dd, J = 7.7, 1.4 Hz, 1H), 7.62 – 7.55 (m, 3H), 7.53 (dd, J = 8.5, 2.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.38 (dd, J = 7.4, 1.3 Hz, 1H), 7.17 – 7.03 (m, 3H), 5.21 (s, 2H), 4.14 (s, 2H), 3.89 (s, 2H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 190.81, 169.67, 160.63, 151.97, 140.41, 137.09, 136.27, 135.47, 132.82, 132.60, 129.80, 129.49, 129.29, 127.83, 127.12, 125.21, 121.25, 120.94, 73.63, 40.30, 27.32, 16.38.

HRMS (ESI) *m*/*z* calcd. for C₂₆H₂₇O₄Si [M+H]⁺ 431.1673, found 431.1670.

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 100 mg, 0.55 mmol) and Fmoc-*D*-phenylalanine (236.3 mg, 0.61 mmol) in the presence of EDCI (160.0 mg, 0.83 mmol) and DMAP (13.6 mg, 0.11 mmol) in DCM (3 mL) at RT for 1 d gave the product **S28** as a white solid (216.9 mg, 0.39 mmol, 71% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.67 (d, *J* = 7.6 Hz, 2H), 7.48 (dt, *J* = 8.3, 1.7 Hz, 4H), 7.29 (q, *J* = 8.7 Hz, 2H), 7.28 – 7.16 (m, 5H), 7.15 – 7.09 (m, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.29 (d, *J* = 8.3 Hz, 1H), 4.82 (dt, *J* = 8.2, 6.0 Hz, 1H), 4.38 (dd, *J* = 10.7, 7.2 Hz, 1H), 4.30 (dd, *J* = 10.8, 6.7 Hz, 1H), 4.13 (t, *J* = 6.9 Hz, 1H), 4.05 (s, 2H), 3.17 (d, *J* = 6.1 Hz, 2H), 0.92 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.01, 155.58, 151.52, 143.73, 143.63, 141.28, 137.15, 135.37, 130.23, 129.46, 128.74, 127.71, 127.37, 127.04, 125.05, 125.00, 120.73, 119.97, 67.03, 54.92, 47.11, 38.24, 27.31, 25.62, 25.59, 16.37.

HRMS (ESI) *m*/*z* calcd. for C₃₄H₃₆NO₄Si [M+H]⁺ 550.2408, found 550.2406.

4-(*tert*-butylsilyl)phenyl-5-((3*aS*,4*S*,6*aR*)-2-oxohexahydro-1*H*-thieno[3,4*d*]imidazol-4-yl)pentanoate (S29)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and biotin (294.0 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S29** as a white solid (315.5 mg, 0.78 mmol, 78% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.05 (s, 1H), 5.43 (s, 1H), 4.49 (dd, J = 7.8, 4.9 Hz, 1H), 4.31 (ddd, J = 7.9, 4.6, 1.5 Hz, 1H), 4.14 (s, 2H), 3.17 (ddd, J = 8.4, 6.4, 4.5 Hz, 1H), 2.90 (dd, J = 12.8, 4.9 Hz, 1H), 2.73 (d, J = 12.8 Hz, 1H), 2.59 (t, J = 7.5 Hz, 2H), 1.88 – 1.62 (m, 4H), 1.61 – 1.46 (m, 2H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.99, 163.70, 151.98, 137.10, 134.40, 129.61, 121.08, 61.96, 60.09, 55.45, 40.53, 34.00, 28.34, 28.27, 27.33, 25.60, 24.72, 16.38.

HRMS (ESI) *m*/*z* calcd. for C₂₀H₃₁N₂O₃SSi [M+H]⁺ 407.1819, found 407.1815.

4-(*tert*-butylsilyl)phenyl-(4*R*)-4-((8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[a]phenanthren-17yl)pentanoate (S30)

The reaction of 4-(*tert*-butylsilyl)phenol (**S11**, 180.3 mg, 1.0 mmol) and dehydrocholic acid (483.0 mg, 1.2 mmol) in the presence of EDCI (249.2 mg, 1.3 mmol) and DMAP (24.4 mg, 0.2 mmol) in DCM (5 mL) at RT for 1 d gave the product **S30** as a white solid (412.0 mg, 0.73 mmol, 73% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 4.14 (s, 2H), 2.96 – 2.80 (m, 3H), 2.65 (ddd, *J* = 15.9, 9.1, 5.3 Hz, 1H), 2.52 (ddd, *J* = 16.0, 8.7, 7.3 Hz, 1H), 2.43 – 2.28 (m, 3H), 2.25 (q, *J* = 4.8 Hz, 1H), 2.20 (dd, *J* = 5.1, 1.7 Hz, 1H), 2.19 – 2.14 (m, 1H), 2.12 (d, *J* = 2.1 Hz, 1H), 2.06 (ddt, *J* = 12.5, 6.3, 3.4 Hz, 2H), 2.02 – 1.92 (m, 2H), 1.86 (td, *J* = 11.5, 7.1 Hz, 1H), 1.73 – 1.59 (m, 2H), 1.68 – 1.42 (m, 1H), 1.40 (s, 3H), 1.41 – 1.19 (m, 3H), 1.09 (s, 3H), 1.01 (s, 9H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.87 (d, *J* = 3.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 211.92, 209.03, 208.66, 172.33, 152.03, 137.08, 129.52, 121.05, 56.88, 51.73, 48.95, 46.81, 45.63, 45.51, 44.94, 42.76, 38.61, 36.46, 35.98, 35.44, 35.24, 31.57, 30.33, 27.62, 27.32, 25.59, 25.10, 21.87, 18.64, 16.38, 11.84.

HRMS (ESI) *m*/*z* calcd. for C₃₄H₄₉O₅Si [M+H]⁺ 565.3344, found 565.3340.

tert-butyl(naphthalen-1-yl)silane (S31)

^tBu . SiH₂

S31

According to the **General Procedures A** using 1-bromonaphthalene (518 mg, 2.5 mmol), the product **S31** was obtained as a colorless oil (109.6 mg, 0.51 mmol, 20% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.14 (d, J = 7.0 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.87 – 7.82 (m, 1H), 7.79 (dd, J = 6.7, 1.3 Hz, 1H), 7.57 – 7.40 (m, 3H), 4.52 (s, 2H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 137.45, 137.01, 133.18, 131.13, 130.45, 128.74, 128.70, 125.97, 125.64, 125.00, 28.11, 17.34.

The obtained NMR spectral data are in good agreement with those reported in literature.^[3]

tert-butyl(naphthalen-2-yl)silane (S32)

S32

According to the **General Procedures B** using 2-bromonaphthalene (3106 mg, 15 mmol), the product **S32** was obtained as a semi-solid (712 mg, 3.3 mmol, 22% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.87 – 7.78 (m, 3H), 7.62 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.54 – 7.43 (m, 2H), 4.28 (s, 2H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 136.99, 133.83, 132.86, 131.66, 129.74, 128.05, 127.73, 126.97, 126.60, 126.01, 27.50, 16.65.

HRMS (APCI) *m*/*z* calcd. for C₁₄H₁₉Si [M+H]⁺ 215.1251, found 215.1251.

tert-butyl(pyren-1-yl)silane (S33)^[3]

S33

According to the **General Procedures A** using 1-bromopyrene (596.0 mg, 2.1 mmol), the product **S33** was prepared as a pale yellow solid (105.9 mg, 0.37 mmol, 18% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.41 (d, *J* = 9.2 Hz, 1H), 8.24 (d, *J* = 7.5 Hz, 1H), 8.22 – 7.98 (m, 7H), 4.73 (s, 2H), 1.09 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 136.45, 135.32, 132.65, 131.23, 130.75, 128.34, 128.23, 128.15, 127.46, 125.90, 125.29, 125.26, 124.63, 124.48, 123.97, 28.06, 17.70.

tert-butyl(dibenzo[*b,d*]thiophen-2-yl)silane (S34)

According to the **General Procedures A** using 2-bromodibenzo[b,d]thiophene (657.9 mg, 2.5 mmol), the product **S34** was obtained as a white solid (202.8 mg, 0.75 mmol, 30% yield).

¹H NMR (400 MHz, CDCI₃) δ 8.46 – 8.39 (m, 1H), 8.24 (dtd, J = 7.5, 3.6, 2.4 Hz, 1H), 7.93 – 7.84 (m, 2H), 7.67 (dd, J = 7.9, 1.1 Hz, 1H), 7.54 – 7.44 (m, 2H), 4.36 (s, 2H), 1.12 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.11, 139.13, 135.24, 135.11, 133.47, 129.13, 127.44, 126.80, 124.44, 122.78, 122.30, 121.56, 27.45, 16.54.

HRMS (APCI) *m*/z calcd. for C₁₆H₁₉SSi [M+H]⁺ 271.0971, found 271.0971.

3-(*tert*-butylsilyl)-9-phenyl-9*H*-carbazole (S35)

According to the **General Procedures A** using 3-bromo-9-phenyl-9*H*-carbazole (805.5 mg, 2.5 mmol), the product **S35** was obtained as a white solid (230.6 mg, 0.7 mmol, 28% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.41 (t, *J* = 1.0 Hz, 1H), 8.21 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.67 – 7.55 (m, 5H), 7.53 – 7.46 (m, 1H), 7.48 – 7.38 (m, 3H), 7.33 (ddd, *J* = 8.0, 4.6, 3.5 Hz, 1H), 4.36 (s, 2H), 1.10 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.83, 140.83, 137.46, 133.14, 129.88, 128.33, 127.56, 127.09, 126.07, 123.25, 123.09, 121.84, 120.30, 120.18, 109.81, 109.48, 27.49, 16.65.

HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₄NSi [M+H]⁺ 330.1673, found 330.1669.

tert-butyl(dibenzo[*b*,*d*]furan-2-yl)silane (S36)

S36

According to the **General Procedures B** using 2-bromodibenzo[b,d]furan (3706 mg, 15 mmol), the product **S36** was obtained as a white solid (1020 mg, 4.0 mmol, 27% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.63 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.48 – 7.39 (m, 1H), 7.38 – 7.27 (m, 1H), 4.29 (s, 2H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.33, 156.05, 134.52, 128.42, 127.25, 125.66, 124.18, 123.79, 122.83, 120.65, 111.66, 111.40, 27.43, 16.52.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₁₉OS [M+H]⁺ 255.1200, found 255.1193.
tert-butyl(1,2,2-triphenylvinyl)silane (S37)

According to the **General Procedures A** using (2-bromoethene-1,1,2-triyl)tribenzene (838 mg, 2.5 mmol), the product **S37** was obtained as a colorless oil (343 mg, 0.45 mmol, 18% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 7.18 – 7.08 (m, 4H), 7.07 – 6.97 (m, 4H), 6.95 – 6.87 (m, 2H), 3.84 (s, 2H), 0.80 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 156.29, 144.47, 143.90, 142.50, 137.52, 130.28, 129.67, 129.63, 127.97, 127.79, 127.36, 127.32, 126.44, 125.59, 28.58, 17.15. HRMS (ESI) *m/z* calcd. for C₂₄H₂₇Si [M+H]⁺ 343.1877, found 343.1879.

tert-butyl(phenethyl)silane (S38)

According to the **General Procedures B** starting from trichloro(phenethyl)silane (360 mg, 1.5 mmol) with 1 equiv. ^{*t*}BuLi, the product **S38** was obtained as a colorless oil in 60% yield (174 mg, 0.90 mmol). ¹H NMR (400 MHz, CDCI₃) δ 7.32 – 7.25 (m, 2H), 7.23 – 7.13 (m, 3H), 3.57 (t, J = 4.0 Hz, 2H), 2.78 – 2.69 (m, 2H), 1.11 – 1.02 (m, 2H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 144.45, 128.34, 127.81, 125.72, 31.68, 27.89, 15.72, 9.86.

HRMS (APCI) *m*/*z* calcd. for C₁₂H₂₁Si [M+H]⁺ 193.1407, found 193.1407.

phenyl(2-phenylpropan-2-yl)silane (S39)

S39

According to the literature report^[6] using prop-1-en-2-ylbenzene (591 mg, 5 mmol) and PhSiH₃ (263 mg, 2.5 mmol), the product **S39** was obtained as a colorless oil in 12% yield (65.3 mg, 0.29 mmol).

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 1H), 7.32 – 7.24 (m, 6H), 7.24 – 7.19 (m, 2H), 7.17 – 7.10 (m, 1H), 4.28 (s, 2H), 1.46 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.57, 135.97, 131.39, 129.73, 128.12, 127.66, 126.07, 124.84, 26.04, 25.19.

HRMS (APCI) *m*/*z* calcd. for C₁₅H₁₉Si [M+H]⁺ 227.1251, found 227.1251.

cyclohexyl(phenyl)silane (S40)

SiH₂

S40

According to the **General Procedures B** starting from trichloro(phenyl)silane (2115 mg, 10 mmol) with cyclohexylmagnesium bromide (2 M in THF, 10 mmol, 1 equiv.), the product **S40** was obtained as a colorless oil^[3] in 27% yield (517 mg, 2.7 mmol).

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.48 (m, 2H), 7.44 – 7.27 (m, 3H), 4.16 (d, *J* = 2.9 Hz, 2H), 1.87 – 1.58 (m, 6H), 1.38 – 1.16 (m, 5H).

¹³C NMR (101 MHz, CDCI₃) δ 135.60, 132.10, 129.43, 127.86, 30.17, 28.82, 27.63, 26.89, 26.59, 22.12.

methyl(phenyl)silane (S41)

According to the **General Procedures B** starting from dichloro(methyl)(phenyl)silane (1911 mg, 10 mmol) by the reduction with LiAlH₄, the product **S41** was obtained as a colorless oil^[7] in 30% yield (364 mg, 3.0 mmol).

(4-methoxyphenyl)(phenyl)silane (S42)

S42

S42 was prepared according to the literature report.^[8]

mesityl(phenyl)silane (S43)

S43 was prepared according to the literature report.^[9]

4. Construction of Silicon-Stereogenic Silanols General Procedures:

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Cul (3.8 mg, 0.020 mmol, 10 mol%), **L6** (10.8 mg, 0.010 mmol, 10 mol%), silane substrate (0.20 mmol, 1.0 equiv., if solid), and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, silane substrate (0.20 mmol, 1.0 equiv., if liquid), anhydrous THF (2.0 mL), H₂O (18.0 mg, 1.0 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (**SX4**, 89.2 mg, 0.40 mmol, 2.0 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C for 10–72 h and monitored by TLC. After the reaction, the mixture was then filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemic samples were synthesized by using the racemic ligand of **L6** or with the following procedures:

A vial equipped with a stirrer was charged with Cul (1.9 mg, 0.010 mmol, 10 mol%), silane substrate (0.10 mmol, 1.0 equiv.), CH₃CN (0.50 mL), and TBHP (*tert*-butyl hydroperoxide, 70% in H₂O, 0.10 mmol, 1.0 equiv.). The mixture was stirred at RT under air for 0.5–12 h. Upon completion, the mixture was then filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by preparative TLC or column chromatography on silica gel to afford the desired racemic product.

(R)-tert-butyl(phenyl)silanol (1)

According to the general procedures with *tert*-butyl(phenyl)silane (**S1**, 32.9 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **1** as a colorless oil (25.2 mg, 0.14 mmol, 70% yield, 95% ee) and the byproduct **1'** in 6% yield.

¹H NMR (400 MHz, CDCI₃) δ 7.62–7.59 (m, 2H), 7.45–7.36 (m, 3H), 4.80 (s, 1H), 1.93 (s, 1H), 0.98 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 134.66, 134.12, 130.11, 127.83, 25.39, 17.98. HRMS (APCI) *m/z* calcd. for C₁₀H₁₇OSi [M+H]⁺ 181.1043, found 181.1043. HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 230 nm, t(major) = 12.1 min, t(minor) = 13.7 min, 95% ee.

1,3-di-*tert*-butyl-1,3-diphenyldisiloxane (1')

¹H NMR (400 MHz, CDCI₃) δ 7.61 – 7.50 (m, 4H), 7.43 – 7.30 (m, 6H), 4.86 (s, 1H), 4.86 (s, 1H), 0.94 (s, 9H), 0.93 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 134.71, 134.64, 134.15, 134.13, 129.79, 127.60, 127.57, 25.41, 25.38, 18.61, 18.56.

HRMS (APCI) *m*/*z* calcd. for C₂₀H₃₁OSi₂ [M+H]⁺ 343.1908, found 343.1901.

tert-butyl(phenyl)silanediol (1")

The authentic sample of **1**" was prepared as a white solid according to the procedures for synthesizing the racemic samples with 2.0 equiv. TBHP (*tert*-butyl hydroperoxide).

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.59 (m, 2H), 7.47 – 7.39 (m, 1H), 7.39 – 7.30 (m, 2H), 2.88 (br, 2H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 134.62, 133.62, 130.16, 127.74, 25.69, 18.12. HRMS (ESI) *m/z* calcd. for C₁₀H₁₆O₂SiNa [M+Na]⁺ 219.0812, found 219.0812.

(R)-tert-butyl(o-tolyl)silanol (2)

According to the general procedures with *tert*-butyl(*o*-tolyl)silane (**S2**, 35.7 mg, 0.20 mmol), Cul (7.6 mg, 0.04 mmol) and **L6** (21.6 mg, 0.04 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **2** as a colorless oil (22.2 mg, 0.114 mmol, 57% yield, 94% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.3, 1.5 Hz, 1H), 7.32 (td, *J* = 7.5, 1.6 Hz, 1H), 7.24 – 7.13 (m, 2H), 4.98 (s, 1H), 2.49 (s, 3H), 1.91 (s, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 143.91, 134.93, 133.39, 129.96, 129.86, 124.71, 25.81, 22.71, 18.71.

HRMS (APCI) *m*/*z* calcd. for C₁₁H₁₉OSi [M+H]⁺ 195.1200, found 195.1199. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, *t*_R (major) = 11.0 min, *t*_R (minor) = 12.3 min, 94% ee.

(*R*)-*tert*-butyl(3-fluorophenyl)silanol (3)

According to the general procedures with *tert*-butyl(3-fluorophenyl)silane (**S3**, 36.4 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **3** as a colorless oil (21.2 mg, 0.108 mmol, 54% yield, 87% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.42 − 7.32 (m, 2H), 7.29 (ddt, *J* = 8.7, 2.7, 0.7 Hz, 1H), 7.10 (ddt, *J* = 9.2, 4.3, 2.7 Hz, 1H), 4.79 (s, 1H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 162.50 (d, *J* = 248.6 Hz), 137.60 (d, *J* = 4.1 Hz), 129.66 (d, *J* = 4.8 Hz), 129.61, 120.39 (d, *J* = 19.0 Hz), 117.05 (d, *J* = 21.0 Hz), 25.28, 17.93.

¹⁹F NMR (376 MHz, CDCI₃) δ -113.39.

HRMS (ESI) *m/z* calcd. for C₁₀H₁₆FOSi [M+H]⁺ 199.0949, found 199.0945. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, *t*_R (major) = 18.4 min, *t*_R (minor) = 19.8 min, 87% ee.

(*R*)-*tert*-butyl(3-methoxyphenyl)silanol (4)

According to the general procedures with *tert*-butyl(3-methoxyphenyl)silane (**S4**, 38.9 mg, 0.20 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **4** as a colorless oil (26.5 mg, 0.126 mmol, 63% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 2.7 Hz, 1H), 6.97 (ddd, *J* = 8.2, 2.8, 1.0 Hz, 1H), 4.78 (s, 1H), 3.82 (s, 3H), 2.02 (s, 1H), 0.98 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 158.94, 136.19, 129.05, 126.35, 119.20, 115.64, 55.14, 25.39, 17.96.

HRMS (ESI) *m/z* calcd. for C₁₁H₁₉O₂Si [M+H]⁺ 211.1149, found 211.1149. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 220 nm, *t*_R (major) = 8.8 min, *t*_R (minor) = 9.8 min, 93% ee.

(R)-[1,1'-biphenyl]-3-yl(tert-butyl)silanol (5)

According to the general procedures with [1,1'-biphenyl]-3-yl(*tert*-butyl)silane (**S5**, 48.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product**5**as a colorless oil (33.2 mg, 0.13 mmol, 65% yield, 89% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.82 (dd, *J* = 2.0, 1.0 Hz, 1H), 7.65 (ddd, *J* = 7.7, 2.1, 1.3 Hz, 1H), 7.62 – 7.55 (m, 3H), 7.46 (q, *J* = 7.7 Hz, 3H), 7.39 – 7.30 (m, 1H), 4.85 (s, 1H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.20, 140.58, 135.22, 133.01, 132.83, 128.96, 128.77, 128.20, 127.31, 127.23, 25.41, 18.00.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₂₀NaOSi [M+Na]⁺ 279.1176, found 279.1184. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, *t*_R (major) = 14.5 min, *t*_R (minor) = 16.3 min, 89% ee.

(R)-tert-butyl(4-(tert-butyl)phenyl)silanol (6)

According to the general procedures with *tert*-butyl(4-(*tert*-butyl)phenyl)silane (**S6**, 44.1 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **6** as a colorless oil (34.1 mg, 0.144 mmol, 72% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.63 – 7.50 (m, 2H), 7.48 – 7.33 (m, 2H), 4.78 (s, 1H), 1.93 (s, 1H), 1.33 (s, 9H), 0.99 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 153.14, 134.05, 131.16, 124.79, 34.75, 31.19, 25.41, 18.01.

HRMS (ESI) *m*/*z* calcd. for C₁₄H₂₄NaOSi [M+Na]⁺ 259.1489, found 259.1486. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, *t*_R (major) = 10.5 min, *t*_R (minor) = 12.7 min, 94% ee.

(R)-tert-butyl(4-(trimethylsilyl)phenyl)silanol (7)

According to the general procedures with *tert*-butyl(4-(trimethylsilyl)phenyl)silane (**S7**, 47.3 mg, 0.20 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **7** as a colorless oil (30.4 mg, 0.12 mmol, 60% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.9 Hz, 2H), 7.56 – 7.48 (m, 2H), 4.79 (s, 1H), 0.99 (s, 9H), 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 142.68, 135.04, 133.32, 132.60, 25.39, 18.01, −1.25.

HRMS (APCI) *m*/*z* calcd. for C₁₃H₂₅OSi₂ [M+H]⁺ 253.1438, found 253.1438. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 270 nm, t(major) = 8.3 min, t(minor) = 9.0 min, 93% ee.

(R)-[1,1'-biphenyl]-4-yl(tert-butyl)silanol (8)

According to the general procedures with [1,1'-biphenyl]-4-yl(*tert*-butyl)silane (**S8**, 48.1 mg, 0.20 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **8** as a colorless oil (35.0 mg, 0.136 mmol, 68% yield, 92% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.72 – 7.65 (m, 2H), 7.65 – 7.56 (m, 4H), 7.45 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.41 – 7.32 (m, 1H), 4.84 (s, 1H), 2.01 (br, 1H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.76, 140.86, 134.61, 133.33, 128.79, 127.54, 127.15, 126.51, 25.40, 18.04.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₁₉OSi [Ṁ−H]⁻ 255.1211, found 255.1205.

HPLC conditions: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 270 nm, t_R (major) = 14.7 min, t_R (minor) = 16.7 min, 92% ee.

(R)-tert-butyl(4-fluorophenyl)silanol (9)

According to the general procedures with *tert*-butyl(4-fluorophenyl)silane (**S9**, 36.5 mg, 0.20 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **9** as a colorless oil (23.8 mg, 0.120 mmol, 60% yield, 90% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.69 – 7.47 (m, 2H), 7.21 – 6.92 (m, 2H), 4.79 (s, 1H), 2.04 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 164.34 (d, *J* = 249.2 Hz), 136.11 (d, *J* = 7.4 Hz), 130.15 (d, *J* = 3.8 Hz), 115.07 (d, *J* = 19.7 Hz), 25.28, 17.92.

¹⁹F NMR (376 MHz, CDCI₃) δ -110.14.

HRMS (ESI) *m/z* calcd. for C₁₀H₁₆FOSi [M+H]⁺ 199.0949, found 199.0949. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, *t*_R (major) = 10.1 min, *t*_R (minor) = 11.3 min, 90% ee.

(R)-tert-butyl(4-chlorophenyl)silanol (10)

According to the general procedures with *tert*-butyl(4-chlorophenyl)silane (**S10**, 39.8 mg, 0.20 mmol) at 0 °C for 10 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **10** as a colorless oil (17.3 mg, 0.080 mmol, 40% yield, 85% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.57 – 7.49 (m, 2H), 7.40 – 7.34 (m, 2H), 4.78 (s, 1H), 2.05 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 136.46, 135.43, 132.89, 128.10, 25.26, 17.91. HRMS (ESI) *m/z* calcd. for C₁₀H₁₄ClOSi [M–H]⁻ 213.0508, found 213.0500. HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, *t*_R (major) = 12.5 min, *t*_R (minor) = 14.0 min, 85% ee.

(R)-tert-butyl(4-hydroxyphenyl)silanol (11)

According to the general procedures with *tert*-butyl(4-hydroxyphenyl)silane (**S11**, 36.1 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 2/1) to yield the product **11** as a white solid (23.6 mg, 0.12 mmol, 60% yield, 86% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.57 – 7.43 (m, 2H), 6.95 – 6.75 (m, 2H), 4.91 (s, 1H), 4.76 (s, 1H), 1.87 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.31, 135.90, 125.80, 115.03, 25.36, 17.98. HRMS (ESI) *m*/*z* calcd. for C₁₀H₁₅O₂Si [M−H]⁻ 195.0847, found 195.0838 **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 230 nm, t_R (major) = 27.2 min, t_R (minor) = 34.2 min, 86% ee.

(R)-tert-butyl(4-methoxyphenyl)silanol (12)

According to the general procedures with *tert*-butyl(4-methoxyphenyl)silane (**S12**, 38.9 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **12** as a colorless oil (25.7 mg, 0.122 mmol, 61% yield, 91% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.70 − 7.39 (m, 2H), 7.05 − 6.77 (m, 2H), 4.77 (s, 1H), 3.82 (s, 3H), 2.01 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 161.17, 135.65, 125.60, 113.57, 55.01, 25.36, 17.99.

HRMS (ESI) *m/z* calcd. for C₁₁H₁₈NaO₂Si [M+Na]⁺ 233.0968, found 233.0967. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 240 nm, *t*_R (major) = 17.8 min, *t*_R (minor) = 22.2 min, 91% ee.

(R)-(4-(benzyloxy)phenyl)(tert-butyl)silanol (13)

According to the general procedures using (4-(benzyloxy)phenyl)(tert-butyl)silane (S13, 54.1 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product 13 as a colorless oil (40.1 mg, 0.14 mmol, 70% yield, 91% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.58 – 7.51 (m, 2H), 7.47 – 7.30 (m, 5H), 7.01 (d, *J* = 8.5 Hz, 2H), 5.08 (s, 2H), 4.77 (s, 1H), 1.85 (s, 1H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 160.45, 136.80, 135.69, 128.60, 128.01, 127.50, 125.94, 114.44, 69.74, 25.38, 18.01.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₂NaO₂Si [M+Na]⁺ 309.1281, found 309.1280. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 220 nm, *t*_R (major) = 37.0 min, *t*_R (minor) = 44.6 min, 91% ee.

(R)-tert-butyl(4-phenoxyphenyl)silanol (14)

According to the general procedures with *tert*-butyl(4-phenoxyphenyl)silane (**S14**, 51.3 mg, 0.20 mmol) at 0 °C for 48 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **14** as a colorless oil (34.7 mg, 0.127 mmol, 64% yield, 90% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.61 – 7.53 (m, 2H), 7.41 – 7.31 (m, 2H), 7.18 – 7.10 (m, 1H), 7.07 – 6.93 (m, 4H), 4.79 (s, 1H), 1.97 (s, 1H), 0.98 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 159.31, 156.44, 135.81, 129.81, 128.47, 123.71, 119.50, 117.80, 25.36, 18.00.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₂₁O₂Si [M+H]⁺ 273.1305, found 273.1303. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, *t*_R (major) = 10.3 min, *t*_R (minor) = 11.1 min, 90% ee.

(R)-tert-butyl(4-((tert-butyldimethylsilyl)oxy)phenyl)silanol (15)

According to the general procedures with *tert*-butyl(4-(*tert*-butylsilyl)phenoxy)dimethylsilane (**S15**, 58.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **15** as a colorless oil (31.4 mg, 0.102 mmol, 51% yield, 90% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.55 – 7.42 (m, 2H), 6.94 – 6.78 (m, 2H), 4.76 (s, 1H), 1.91 (s, 1H), 0.98 (s, 9H), 0.96 (s, 9H), 0.21 (s, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 157.46, 135.60, 126.36, 119.72, 25.63, 25.37, 18.18, 17.97, -4.40.

HRMS (ESI) *m/z* calcd. for C₁₆H₃₀NaO₂Si₂ [M+Na]⁺ 333.1677, found 333.1674. **HPLC conditions:** Chiralcel AS-3, *n*-hexane/*i*-PrOH = 99.8/0.2, flow rate 0.45 mL/min. λ = 254 nm, t(major) = 77.6 min, t(minor) = 89.1 min, 90% ee.

(R)-4-(tert-butyl(hydroxy)silyl)phenyl 4-methylbenzenesulfonate (16)

According to the general procedures with the 4-(*tert*-butylsilyl)phenyl 4methylbenzenesulfonate (**S16**, 66.8 mg, 0.20 mmol) at 0 °C for 16 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 4/1) to yield the product **16** as a white solid (37.8 mg, 0.108 mmol, 54% yield, 91% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 4.77 (s, 1H), 2.45 (s, 3H), 2.02 (s, 1H), 0.94 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.19, 145.38, 135.51, 133.78, 132.44, 129.74, 128.48, 121.76, 25.25, 21.70, 17.89.

HRMS (ESI) m/z calcd. for C₁₇H₂₃O₄SSi [M+H]⁺ 351.1081, found 351.1078.

HPLC conditions: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, t(minor) = 7.8 min, t(major) = 9.5 min, 91% ee.

(R)-4-(*tert*-butyl(hydroxy)silyl)phenyl 3-methoxybenzoate (17)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl 3methoxybenzoate (**S17**, 62.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **17** as a colorless oil (39.6 mg, 0.12 mmol, 60% yield, 94% ee). ¹H **NMR (400 MHz, CDCI**₃) δ 7.81 (d, *J* = 7.7 Hz, 1H), 7.73 – 7.62 (m, 3H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.19 (dd, *J* = 8.3, 2.7 Hz, 1H), 4.83 (s, 1H), 3.89 (s, 3H), 2.11 (s, 1H), 1.00 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 164.89, 159.68, 152.59, 135.48, 132.29, 130.71, 129.62, 122.61, 121.21, 120.24, 114.50, 55.51, 25.32, 17.97.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₃O₄Si [M+H]⁺ 331.1360, found 331.1357.

HPLC conditions: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 230 nm, t(major) = 16.4 min, t(minor) = 26.9 min, 94% ee.

(R)-4-(tert-butyl(hydroxy)silyl)phenyl phenyl carbonate (18)

According to the general procedures with 4-(tert-butylsilyl)phenyl phenyl carbonate (60.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **18** as a colorless oil (26.7 mg, 0.084 mmol, 42% yield, 85% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 2H), 7.47 – 7.39 (m, 2H), 7.35 – 7.22 (m, 5H), 4.81 (s, 1H), 2.07 (s, 1H), 0.98 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.52, 151.88, 150.92, 135.55, 132.86, 129.58, 126.35, 120.88, 120.35, 25.28, 17.94.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₁O₄Si [M+H]⁺ 317.1204, found 317.1203. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 210 nm, t(major) = 7.7 min, t(minor) = 8.4 min, 85% ee.

(R)-4-(tert-butyl(hydroxy)silyl)phenyl 2-iodobenzoate (19)

According to the general procedures with 4-(tert-butylsilyl)phenyl 2iodobenzoate (**S19**, 82.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **19** as a colorless oil (52.2 mg, 0.122 mmol, 61% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.08 (dd, J = 8.0, 1.2 Hz, 1H), 8.05 (dd, J = 7.8, 1.7 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.49 (td, J = 7.6, 1.2 Hz, 1H), 7.35 – 7.26 (m, 2H), 7.23 (td, J = 7.7, 1.7 Hz, 1H), 4.83 (s, 1H), 2.09 (br, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.70, 152.32, 141.70, 135.50, 134.00, 133.29, 132.60, 131.56, 128.08, 121.09, 94.67, 25.31, 17.96.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₀IO₃Si [M+H]⁺ 427.0221, found 427.0217. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 21.8 min, t(minor) = 31.9 min, 94% ee.

(R)-4-(tert-butyl(hydroxy)silyl)phenyl 2-(benzofuran-3-yl)acetate (20)

According to the general procedures with 4-(tert-butylsilyl)phenyl 2-(benzofuran-3-yl)acetate (**S20**, 82.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **20** as a colorless oil (38.2 mg, 0.108 mmol, 54% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.65 (d, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.37 – 7.26 (m, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 4.78 (s, 1H), 3.97 (s, 2H), 2.05 (s, 1H), 0.96 (s, 9H).

SUPPORTING INFORMATION

¹³C NMR (101 MHz, CDCI₃) δ 168.99, 155.23, 152.21, 143.07, 135.43, 132.47, 127.41, 124.63, 122.78, 120.90, 119.60, 112.50, 111.63, 30.00, 25.28, 17.93. HRMS (ESI) *m/z* calcd. for C₂₀H₂₃O₄Si [M+H]⁺ 355.1360, found 355.1357. HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 13.6 min, t(minor) = 16.9 min, 93% ee.

(R)-4-(*tert*-butyl(hydroxy)silyl)phenyl 1-methyl-1*H*-indole-3-carboxylate (21)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl 1-methyl-1*H*indole-3-carboxylate (**S21**, 67.5 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **21** as a white solid (51.6 mg, 0.146 mmol, 73% yield, 93% ee). ¹H **NMR (400 MHz, CDCI₃)** δ 8.28 – 8.17 (m, 1H), 7.96 (s, 1H), 7.75 – 7.59 (m, 2H), 7.43 – 7.27 (m, 5H), 4.82 (s, 1H), 3.89 (s, 3H), 2.17 (s, 1H), 1.00 (s, 9H). ¹³C **NMR (101 MHz, CDCI₃)** δ 162.92, 152.64, 137.32, 136.21, 135.37, 131.62, 126.75, 123.12, 122.31, 121.70, 121.57, 109.94, 106.00, 33.60, 25.34, 17.98. **HRMS** (ESI) *m/z* calcd. for C₂₀H₂₄NO₃Si [M+H]⁺ 354.1520, found 354.1515. **HPLC conditions:** Chiralcel OJ-H, n-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min, λ = 220 nm, *t*_R (major) = 24.0 min, *t*_R (minor) = 32.5 min, 93% ee.

(R)-4-(*tert*-butyl(hydroxy)silyl)phenyl isopropylcarbamate (22)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl isopropylcarbamate (**S22**, 53.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 4/1) to yield the product **22** as a colorless oil (40.2 mg, 0.142 mmol, 71% yield, 92% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.88 (d, *J* = 7.7 Hz, 1H), 4.78 (s, 1H), 4.03 – 3.81 (m, 1H), 2.11 (s, 1H), 1.24 (d, *J* = 6.6 Hz, 6H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 153.43, 152.68, 135.28, 131.29, 121.05, 43.47, 25.31, 22.88, 17.95.

HRMS (ESI) *m*/*z* calcd. for C₁₄H₂₄NO₃Si [M+H]⁺ 282.1520, found 282.1517. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 230 nm, t(major) = 5.5 min, t(minor) = 6.3 min, 92% ee.

According to the general procedures with 4-(*tert*-butylsilyl)phenyl (4-chlorophenyl)carbamate (**S23**, 66.6 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 4/1) to yield the product **23** as a colorless oil (43.3 mg, 0.124 mmol, 62% yield, 80% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.36 – 7.28 (m, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.98 (s, 1H), 4.81 (s, 1H), 2.05 (s, 1H), 0.98 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.24, 152.03, 151.24, 135.85, 135.46, 132.21, 129.20, 121.02, 119.95, 25.30, 17.96.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₁CINO₃Si [M+H]⁺ 350.0974, found 350.0971. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min. λ = 260 nm, t(minor) = 8.0 min, t(major) = 9.5 min, 80% ee.

(R)-2-(4-(*tert*-butyl(hydroxy)silyl)phenoxy)-1-phenylethan-1-one (24)

According to the general procedures with 2-(4-(*tert*-butylsilyl)phenoxy)-1-phenylethan-1-one (**S24**, 59.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **24** as a colorless oil (36.7 mg, 0.116 mmol, 58% yield, 95% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.95 (m, 2H), 7.69 – 7.59 (m, 1H), 7.57 – 7.44 (m, 4H), 7.02 – 6.90 (m, 2H), 5.30 (s, 2H), 4.76 (s, 1H), 1.95 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 194.28, 159.63, 135.76, 134.51, 133.94, 128.86, 128.13, 126.88, 114.37, 70.46, 25.35, 17.99.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₃O₃Si [M+H]⁺ 315.1411, found 315.1407.

HPLC conditions: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min. λ = 254 nm, t(major) = 7.7 min, t(minor) = 8.8 min, 95% ee.

(*R*)-*tert*-butyl(4-((3-methylbut-2-en-1-yl)oxy)phenyl)silanol (25)

According to the general procedures with *tert*-butyl(4-((3-methylbut-2-en-1-yl)oxy)phenyl)silane (**S25**, 49.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **25** as a colorless oil (46.2 mg, 0.172 mmol, 86% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.46 (m, 2H), 7.01 – 6.89 (m, 2H), 5.64 –

5.38 (m, 1H), 4.76 (s, 1H), 4.53 (d, J = 6.8 Hz, 2H), 1.92 (s, 1H), 1.80 (s, 3H), 1.75 (s, 3H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 160.53, 138.38, 135.63, 125.45, 119.47, 114.26, 64.49, 25.83, 25.38, 18.19, 18.01.

HRMS (ESI) *m*/*z* calcd. for C₁₅H₂₄NaO₂Si [M+Na]⁺ 287.1438, found 287.1436. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min. λ = 240 nm, t(major) = 5.4 min, t(minor) = 6.4 min, 91% ee.

(R)-2-(4-(tert-butyl(hydroxy)silyl)phenoxy)acetonitrile (26)

According to the general procedures with 2-(4-(*tert*-butylsilyl)phenoxy)acetonitrile (**S26**, 43.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 10/1) to yield the product **26** as a colorless oil (29.9 mg, 0.128 mmol, 64% yield, 92% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.60 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 4.79 (s, 2H), 4.79 (s, 1H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 158.05, 135.98, 128.76, 114.95, 114.33, 53.18, 25.31, 17.97.

HRMS (ESI) *m*/*z* calcd. for C₁₂H₁₈NO₂Si [M+H]⁺ 236.1101, found 236.1106. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 80/20, flow rate 0.7 mL/min. λ = 214 nm, t(major) = 8.8 min, t(minor) = 10.1 min, 92% ee.

(*R*)-4-(*tert*-butyl(hydroxy)silyl)phenyl-2-(11-oxo-6,11dihydrodibenzo[*b*,*e*]oxepin-2-yl)acetate (27)

According to the general procedures with 4-(tert-butylsilyl)phenyl-2-(11-oxo-6,11-dihydrodibenzo[*b*,*e*]oxepin-2-yl)acetate (**S27**, 86.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 4/1) to yield the product **27** as a colorless oil (78.4 mg, 0.176 mmol, 88% yield, 92% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.22 (d, *J* = 2.3 Hz, 1H), 7.90 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.63 – 7.42 (m, 5H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 1H), 5.20 (s, 2H), 4.78 (s, 1H), 3.89 (s, 2H), 2.20 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 190.87, 169.69, 160.64, 152.26, 140.38, 136.29, 135.47, 135.37, 132.83, 132.60, 132.35, 129.49, 129.29, 127.83, 127.10, 125.20, 121.25, 120.92, 73.62, 40.29, 25.28, 17.92.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₇O₅Si [M+H]⁺ 447.1622, found 447.1620. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min. λ = 254 nm, *t*_R (major) = 19.2 min, *t*_R (minor) = 25.1 min, 92% ee.

4-(*(R)-tert*-butyl(hydroxy)silyl)phenyl-(((9*H*-fluoren-9yl)methoxy)carbonyl)-*D*-phenylalaninate (28)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl-(((9*H*-fluoren-9-yl)methoxy)carbonyl)-*D*-phenylalaninate (**S28**, 81.2 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 1/1) to yield the product **28** as a colorless oil (53.0 mg, 0.092 mmol, 47% yield, >20:1 dr).

¹H NMR (400 MHz, CDCI₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.66 – 7.52 (m, 4H), 7.39 (td, J = 7.5, 1.0 Hz, 2H), 7.36 – 7.25 (m, 5H), 7.23 – 7.17 (m, 2H), 7.01 (d, J = 7.9 Hz, 2H), 5.38 (d, J = 8.3 Hz, 1H), 4.97 – 4.86 (m, 1H), 4.79 (s, 1H), 4.46 (dd, J = 10.7, 7.1 Hz, 1H), 4.38 (dd, J = 10.7, 6.8 Hz, 1H), 4.21 (t, J = 6.8 Hz, 1H), 3.26 (d, J = 6.1 Hz, 2H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.02, 155.63, 151.78, 143.73, 143.63, 141.29, 135.45, 135.36, 132.84, 129.45, 128.74, 127.72, 127.38, 127.05, 125.00, 120.68, 119.98, 67.06, 54.92, 47.11, 38.23, 25.28, 17.92. HRMS (ESI) *m/z* calcd. for $C_{34}H_{36}NO_5Si$ [M+H]⁺ 566.2357, found 566.2355.

4-(*(R)-tert*-butyl(hydroxy)silyl)phenyl-5-((3*aS*,4*S*,6*aR*)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4-yl)pentanoate (29)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl 5-((3*aS*,4*S*,6*aR*)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4-yl)pentanoate

(**S29**, 81.2 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 1/4) to yield the product **29** as a colorless oil (42.3 mg, 0.1 mmol, 50% yield, >20:1 dr).

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.53 – 6.40 (m, 2H), 6.38 (s, 1H), 4.67 (d, *J* = 1.7 Hz, 1H), 4.32 (dd, *J* = 7.7, 5.0 Hz, 1H), 4.16 (ddd, *J* = 7.8, 4.4, 1.8 Hz, 1H), 3.14 (ddd, *J* = 8.5, 6.2, 4.3 Hz, 1H), 2.83 (dd, *J* = 12.4, 5.1 Hz, 1H), 2.63 – 2.55 (m, 3H), 1.78 – 1.59 (m, 3H), 1.58 – 1.34 (m, 3H), 0.89 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.11, 163.24, 152.28, 135.63, 133.43, 121.66, 61.51, 59.68, 55.80, 33.80, 28.46, 28.40, 25.90, 24.85, 18.22.

HRMS (ESI) *m*/*z* calcd. for C₂₀H₃₁N₂O₄SSi [M+H]⁺ 423.1768, found 423.1766.

4-(*(R)-tert*-butyl(hydroxy)silyl)phenyl-(4*R*)-4-((8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*cyclopenta[*a*]phenanthren-17-yl)pentanoate (30)

According to the general procedures with 4-(*tert*-butylsilyl)phenyl (4*R*)-4-((8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentanoate (**S30**, 112.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 2/1) to yield the product **30** as a white solid (70.2 mg, 0.122 mmol, 61% yield, >20:1 dr).

¹H NMR (400 MHz, CDCI₃) δ 7.77 – 7.42 (m, 2H), 7.24 – 6.89 (m, 2H), 4.77 (s, 1H), 3.15-2.95 (m, 1H), 2.95 – 2.78 (m, 3H), 2.72 – 2.59 (m, 1H), 2.53 (ddd, J = 15.9, 8.7, 7.2 Hz, 1H), 2.41 – 1.73 (m, 14H), 1.67 – 1.46 (m, 2H), 1.46-1.32 (m, 1H), 1.39 (s, 3H), 1.34 – 1.17 (m, 2H), 1.08 (s, 3H), 0.96 (s, 9H), 0.91 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 212.20, 209.37, 208.84, 172.34, 152.19, 135.32, 132.29, 120.92, 56.82, 51.67, 48.86, 46.71, 45.54, 45.44, 44.85, 42.65, 38.50, 36.35, 35.90, 35.38, 35.12, 31.50, 30.25, 27.56, 25.26, 25.03, 21.76, 18.58, 17.87, 11.76.

HRMS (ESI) *m*/*z* calcd. for C₃₄H₄₈NaO₆Si [M+Na]⁺ 603.3112, found 603.3107.

(R)-tert-butyl(naphthalen-1-yl)silanol (31)

According to the general procedures with *tert*-butyl(naphthalen-1-yl)silane (**S31**, 42.8 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **31** as a colorless oil (24.2 mg, 0.106 mmol, 53% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.21 (m, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.81 (dd, J = 6.8, 1.3 Hz, 1H), 7.55 – 7.39 (m, 3H), 5.23 (s, 1H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 137.23, 134.63, 133.26, 132.90, 130.60, 128.74, 128.40, 125.96, 125.63, 124.87, 26.07, 18.84.

HRMS (ESI) *m*/*z* calcd. for C₁₄H₁₉OSi [M+H]⁺ 231.1200, found 231.1198.

HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t_{R} (major) = 13.5 min, t_{R} (minor) = 15.1 min, 93% ee.

(R)-tert-butyl(naphthalen-2-yl)silanol (32)

According to the general procedures with *tert*-butyl(naphthalen-2-yl)silane (**S32**, 42.9 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **32** as a colorless oil (28.9 mg, 0.126 mmol, 63% yield, 87% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.13 (s, 1H), 7.90 – 7.80 (m, 3H), 7.65 (dd, J = 8.1, 1.2 Hz, 1H), 7.55 – 7.45 (m, 2H), 4.93 (s, 1H), 2.09 (s, 1H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 135.33, 134.23, 132.73, 132.18, 129.81, 128.23, 127.75, 127.00, 126.70, 126.01, 25.45, 18.15. **HRMS** (APCI) *m*/*z* calcd. for C₁₄H₁₉OSi [M+H]⁺ 231.1200, found 231.1199. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, *t*_R (major) = 18.5 min, *t*_R (minor) = 22.6 min, 87% ee.

(R)-tert-butyl(pyren-1-yl)silanol (33)

According to the general procedures with *tert*-butyl(pyren-1-yl)silane (**S33**, 28.8 mg, 0.10 mmol) at 0 °C for 72 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **33** as a light yellow solid (22.4 mg, 0.074 mmol, 74% yield, 84% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.55 (d, *J* = 9.2 Hz, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 8.24 - 8.14 (m, 3H), 8.15 - 7.95 (m, 4H), 5.46 (s, 1H), 2.32 (s, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 136.37, 132.75, 132.62, 131.23, 130.69, 129.98, 128.34, 127.75, 127.45, 127.44, 125.90, 125.31, 125.27, 124.65, 124.49, 123.96, 26.04, 19.15.

HRMS (ESI) *m/z* calcd. for C₂₀H₁₉OSi [M–H]⁻ 303.1211, found 303.1207. **HPLC conditions:** Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min. λ = 270 nm, *t*_R (major) = 25.2 min, *t*_R (minor) = 29.2 min, 84% ee.

(R)-tert-butyl(dibenzo[b,d]thiophen-2-yl)silanol (34)

34

According to the general procedures with *tert*-butyl(dibenzo[*b*,*d*]thiophen-2-yl)silane (**S34**, 27.0 mg, 0.10 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **34** as a white solid (14.3 mg, 0.05 mmol, 50% yield, 89% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.41 (t, J = 0.9 Hz, 1H), 8.27 – 8.18 (m, 1H), 7.92 – 7.82 (m, 2H), 7.67 (dd, J = 7.9, 1.1 Hz, 1H), 7.52 – 7.43 (m, 2H), 4.95 (s, 1H), 1.03 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 139.14, 135.29, 135.03, 131.74, 129.99, 127.42, 126.85, 124.49, 122.81, 122.33, 121.63, 25.43, 18.09.

HRMS (APCI) *m*/*z* calcd. for C₁₆H₁₉OSSi [M+H]⁺ 287.0920, found 287.0920.

HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 254 nm, t(major) = 17.0 min, t(minor) = 19.4 min, 89% ee.

According to the general procedures with 3-(tert-butylsilyl)-9-phenyl-9H-carbazole (S35, 32.9 mg, 0.10 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product**35**as a colorless oil (20.1 mg, 0.058 mmol, 58% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.41 (d, J = 1.0 Hz, 1H), 8.18 (dd, J = 7.7, 1.0 Hz, 1H), 7.68 – 7.52 (m, 5H), 7.48 (ddt, J = 8.7, 6.6, 1.5 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.31 (ddd, J = 8.0, 5.1, 2.9 Hz, 1H), 4.96 (s, 1H), 1.03 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 142.19, 140.88, 137.43, 131.38, 129.89, 127.60, 127.10, 126.66, 126.09, 124.51, 123.13, 120.33, 120.21, 109.82, 109.46, 25.52, 18.18.

HRMS (ESI) *m/z* calcd. for C₂₂H₂₃NNaOSi [M+Na]⁺ 368.1441, found 368.1439. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min. λ = 254 nm, t(major) = 15.3 min, t(minor) = 29.8 min, 94% ee.

(R)-tert-butyl(dibenzo[b,d]furan-2-yl)silanol (36)

According to the general procedures with *tert*-butyl(dibenzo[*b*,*d*]furan-2yl)silane (**S36**, 50.9 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **36** as a white solid (31.2 mg, 0.115 mmol, 58% yield, 84% ee).

¹H NMR (400 MHz, CDCI₃) δ 8.21 (s, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.68 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.62 - 7.53 (m, 2H), 7.46 (td, *J* = 7.8, 1.4 Hz, 1H), 7.35 (td, *J* = 7.5, 1.0 Hz, 1H), 4.93 (s, 1H), 2.28 (br, 1H), 1.01 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.59, 156.05, 132.79, 128.26, 127.28, 126.76, 124.07, 123.82, 122.87, 120.70, 111.67, 111.37, 25.42, 18.07.

HRMS (ESI) *m*/*z* calcd. for C₁₆H₁₇O₂Si [M–H]⁻ 269.1003, found 269.0998.

HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, t_{R} (major) = 15.3 min, t_{R} (minor) = 16.8 min, 84% ee.

(R)-tert-butyl(1,2,2-triphenylvinyl)silanol (37)

According to the general procedures with *tert*- butyl(1,2,2-triphenylvinyl)silane (**S37**, 34.2 mg, 0.10 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **37** as a colorless oil (7.2 mg, 0.02 mmol, 20% yield, 59% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.30 (m, 5H), 7.18 – 7.11 (m, 4H), 7.09 – 6.98 (m, 4H), 6.91 (dd, *J* = 7.5, 2.1 Hz, 2H), 4.50 (s, 1H), 2.01 (br, 1H), 0.74 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.86, 143.35, 142.68, 142.50, 139.47, 130.60, 130.08, 129.98, 129.56, 129.47, 128.76, 128.07, 127.97, 127.79, 127.74, 127.39, 127.19, 126.53, 125.84, 125.77, 26.55, 19.05.

HRMS (ESI) *m/z* calcd. for C₂₄H₂₆NaOSi [M+Na]⁺ 381.1645, found 381.1645. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 97/3, flow rate 0.5 mL/min. λ = 230 nm, t(minor) = 13.3 min, t(major) = 17.0 min, 59% ee.

(S)-tert-butyl(phenethyl)silanol (38)

According to the general procedures with *tert*-butyl(phenethyl)silane (**S38**, 38.4 mg, 0.20 mmol) at 0 °C for 36 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **38** as a colorless oil (12.5 mg, 0.06 mmol, 30% yield, 53% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 6.67 (m, 5H), 4.36 (dd, *J* = 3.6, 1.8 Hz, 1H), 3.28 – 2.54 (m, 2H), 1.11 – 1.00 (m, 2H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 144.45, 128.44, 127.83, 125.77, 29.67, 25.61, 17.75, 14.46.

HRMS (ESI) *m/z* calcd. for C₁₂H₂₀NaOSi [M+Na]⁺ 231.1176, found 231.1174. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.35 mL/min. λ = 230 nm, t(minor) = 25.3 min, t(major) = 26.9 min, 53% ee.

(S)-phenyl(2-phenylpropan-2-yl)silanol (39)

According to the general procedures with phenyl(2-phenylpropan-2-yl)silane (**S39**, 22.6 mg, 0.10 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 20/1) to yield the product **39** as a colorless oil (8.5 mg, 0.035 mmol, 35% yield, 81% ee).

H NMR (400 MHz, CDCI₃) δ 7.43 – 7.28 (m, 7H), 7.26 – 7.22 (m, 2H), 7.19 – 7.12 (m, 1H), 4.86 (s, 1H), 1.96 (s, 1H), 1.42 (s, 3H), 1.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.55, 134.26, 133.47, 130.20, 128.20, 127.64, 126.40, 124.95, 28.16, 23.26, 22.88.

HRMS (APCI) *m*/*z* calcd. for C₁₅H₁₉OSi [M+H]⁺ 243.1200, found 243.1200.

HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, t(major) = 12.9 min, t(minor) = 14.7 min, 81% ee.

(R)-cyclohexyl(phenyl)silanol (40)

According to the general procedures with cyclohexyl(phenyl)silane (**S40**, 38.0 mg, 0.20 mmol) at 0 °C for 24 h, the reaction mixture was purified by column chromatography (PE/EtOAc = 30/1) to yield the product **40** as a colorless oil (10.2 mg, 0.05 mmol, 25% yield, 67% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.82 – 7.53 (m, 2H), 7.47 – 7.33 (m, 3H), 4.87 (d, J = 2.0 Hz, 1H), 1.83 – 1.79 (m, 1H), 1.75 – 1.67 (m, 3H), 1.31 – 1.16 (m, 8H). ¹³C NMR (101 MHz, CDCI₃) δ 135.28, 133.90, 130.06, 127.91, 27.48, 26.70, 26.46, 26.40, 25.56.

HRMS (APCI) *m*/z calcd. for C₁₂H₁₉OSi [M+H]⁺ 207.1200, found 207.1199. **HPLC conditions:** Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 214 nm, t(major) = 12.0 min, t(minor) = 13.4 min, 67% ee.

(R)-methyl(phenyl)silanol (41)^[10]

According to the general procedures with methyl(phenyl)silane (**S41**, 27.5 mg, 0.20 mmol) at 0 °C for 24 h, the reaction gave **41** in <10% yield.

(S)-(4-methoxyphenyl)(phenyl)silanol (42)

According to the general procedures with (4-methoxyphenyl)(phenyl)silane (**S42**, 21.4 mg, 0.10 mmol) at 0 °C for 24 h, the reaction gave **42** in <10% yield.

¹H NMR (400 MHz, CDCI₃) δ 7.69 – 7.61 (m, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.47 – 7.34 (m, 3H), 6.95 (d, J = 8.2 Hz, 2H), 5.50 (s, 1H), 3.82 (s, 3H), 2.36 (s, 1H).

¹³C NMR (101 MHz, CDCI₃) δ 161.45, 135.98, 135.25, 134.25, 130.31, 128.02, 125.87, 113.83, 55.07.

HRMS (APCI) *m*/*z* calcd. for C₁₃H₁₅O₂Si [M+H]⁺ 231.0836, found 231.0830. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min. λ = 240 nm, t(major) = 17.8 min, t(minor) = 21.3 min, 2% ee.

1,3-bis(4-methoxyphenyl)-1,3-diphenyldisiloxane (42')

¹H NMR (400 MHz, CDCI₃) δ 7.54 (d, *J* = 6.9 Hz, 4H), 7.47 (d, *J* = 8.3 Hz, 4H), 7.44 – 7.37 (m, 2H), 7.37 – 7.29 (m, 4H), 6.88 (d, *J* = 8.4 Hz, 4H), 5.55 (s, 2H), 3.81 (s, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 161.24, 135.98, 135.40, 134.27, 130.05, 127.87, 126.08, 113.66, 55.04.

HRMS (APCI) *m*/z calcd. for C₂₆H₂₇O₃Si₂ [M+H]⁺ 443.1493, found 443.1481.

1,3-bis(4-methoxyphenyl)-1,3-diphenyldisiloxan-1-ol (42")

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.46 (m, 8H), 7.44 – 7.29 (m, 6H), 6.88 (t, *J* = 8.1 Hz, 4H), 5.61 (s, 1H), 3.81 (s, 3H), 3.81 (s, 3H), 2.70 (s, 1H).

¹³C NMR (101 MHz, CDCI₃) δ 161.28, 135.99, 135.98, 135.42, 134.93, 134.27, 130.16, 130.11, 127.93, 127.79, 126.10, 125.61, 113.72, 113.55, 55.04, 55.03. HRMS (ESI) *m*/*z* calcd. for C₂₆H₂₆O₄Si₂Na [M+Na]⁺ 481.1262, found 481.1255.

(S)-mesityl(phenyl)silanol (43)

According to the general procedures with mesityl(phenyl)silane (**S43**, 22.6 mg, 0.10 mmol) at 0 °C for 24 h, the reaction gave **43** in 10% yield with <5% ee. 88% **S43** was recovered.

¹H NMR (400 MHz, CDCI₃) δ 7.64 – 7.53 (m, 2H), 7.44 – 7.29 (m, 3H), 6.85 (s, 2H), 5.85 (s, 1H), 2.42 (s, 6H), 2.29 (s, 3H), 2.24 (br, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.96, 140.42, 136.03, 133.94, 129.97, 128.75, 128.12, 128.03, 23.27, 21.20.

HRMS (APCI) *m*/*z* calcd. for C₁₅H₁₈OSiNa [M+Na]⁺ 265.1019, found 265.1013. **HPLC conditions:** Chiralcel AD, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.6 mL/min. λ = 220 nm, t(major) = 23.5 min, t(minor) = 25.3 min, 3% ee.

Procedures for large-scale synthesis:

A 250 mL Schlenk flask equipped with a magnetic stir bar was charged with Cul (61.9 mg, 0.325 mmol, 5 mol%), L6 (175.7 mg, 0.325 mmol, 5 mol%), Cs₂CO₃ (4235 mg, 13 mmol, 2 equiv.), The flask was evacuated and backfilled with argon three times. Under the flow of Ar, *tert*-butyl(phenyl)silane (S1, 1068 mg, .6.5 mmol, 1.0 equiv.), anhydrous THF (65 mL), H₂O (586 mg, 32.5 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (SX4, 2900 mg, 13 mmol, 2.0 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C for 2 d. After the reaction, the mixture was filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel eluting with 30/1 PE/EtOAc to afford the desired product of *tert*-butyl(phenyl)silanol (1, 910 mg, 5.1 mmol) in 78% isolated yield with 94% ee.

Procedures for the enantiomer of 1 (ent-1) synthesis:

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Cul (3.8 mg, 0.020 mmol, 10 mol%), *ent-L6* (10.8 mg, 0.010 mmol, 10 mol%), and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, **S1** (32.9 mg, 0.20 mmol, 1.0 equiv.), anhydrous THF (2.0 mL), H₂O (18.0 mg, 1.0 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (**SX4**, 89.2 mg, 0.40 mmol, 2.0 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C for 1 d and then was filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford *ent-***1** (24.9 mg, 0.138 mmol) in 69% yield with 94% ee.

HPLC conditions: Chiralcel AD, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min. λ = 220 nm, t(minor) = 10.6 min, t(major) = 11.8 min, 94% ee.

5. Assignment of Absolute Stereochemistry

1) The absolute configuration of Si-chiral silanols was determined to be R

through the X-ray structure of 36.

90% ee for crystal (R)

mV Detector A Ch1 220nm 408 1500-^tBu i۱H ΌН 1000-36-crystal 500-16.912 0 10 15 20 25 min 5 ò Peak# Ret Time Area% Area Р

Deals Table	1 Can n	Ret. Time	Area	Arean
Peak lable	1	15.408	66055399	95.258
Detector A Ch1 220nm	2	16.912	3288420	4.742

2) The absolute configuration of the tertiary Si-chiral silanol **44** was assigned to be *R* by comparing its chiral HPLC spectrum with that of the reported highly enantiopure silanol (>98% ee)^[11] under the same HPLC conditions: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min. λ = 214 nm, t(minor) = 14.6 min, t(major) = 21.2 min, 94% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	14.862	MM	0.4523	2.03406e4	749.55762	50.7562
2	20.520	MM	0.5283	1.97346e4	622.59058	49.2438

4.00752e4 1372.14819

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.637	MM	0.2879	143.13380	8.28679	3.0902
2	21.248	MM	0.5173	4488.68994	144.60741	96.9098
Total	ls:			4631.82375	152.89420	

6. Derivatizations of Silicon-Stereogenic Silanols

(R)-tert-butyl(methyl)(phenyl)silanol (44)

44

To a 10 mL Schlenk tube was added $Cu(OTf)_2$ (3.6 mg, 0.01 mmol) and 1,10phenanthroline (Phen, 2.2 mg, 0.012 mmol). The tube was evaculated and refilled with Ar three times. Under Ar, CH₂Cl₂ (1 mL) was added to the tube. The mixture was stirred at RT for 15 min. To the resulting mixture was further added the silanol 1 (18.0)mq. 0.10 mmol) and 1 equiv. (diazomethyl)trimethylsilane (2 M in hexane, 0.05 mL, 0.10 mmol). After stirring at RT for 0.5 h, another 1 equiv. (diazomethyl)trimethylsilane (0.05 mL, 0.10 mmol) was added. The resulting mixture was reacted overnight and filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography (PE/EtOAc = 10/1) on silica gel to yield **44** as a colorless oil^[11] (9.7 mg, 0.050 mmol, 50% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.62 – 7.56 (m, 2H), 7.44 – 7.33 (m, 3H), 1.79 (s, 1H), 0.94 (s, 9H), 0.39 (s, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 136.77, 133.98, 129.42, 127.59, 25.80, 18.28, -4.71.

HPLC conditions: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm, t_{R} (minor) = 14.6 min, t_{R} (major) = 21.2 min, 94% ee.

ethyl (R)-2-(tert-butyl(hydroxy)(phenyl)silyl)acetate (45)

To a 10 mL Schlenk tube was added $Cu(OTf)_2$ (3.6 mg, 0.01 mmol) and Phen (2.2 mg, 0.012 mmol). The tube was evaculated and refilled with Ar three times. Under Ar, CH_2Cl_2 (1 mL) was added to the tube. The mixture was stirred at RT for 15 min. To the resulting mixture was further added the silanol **1** (18.0 mg, 0.10 mmol) and 1 equiv. ethyl 2-diazoacetate (11.4 mg, 0.10 mmol). After stirring at RT for 0.5 h, another 1 equiv. ethyl 2-diazoacetate (11.4 mg, 0.10 mmol) was added. The resulting mixture was reacted overnight and filtered through a pad of celite eluting with CH_2Cl_2 . The filtrate was evaporated and the residue was purified by column chromatography (PE/EtOAc = 5/1) on silica gel to yield **45** as a colorless oil (16.0 mg, 0.060 mmol, 60% yield, 93% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.66 – 7.55 (m, 2H), 7.47 – 7.29 (m, 3H), 3.98 (q, J = 7.1 Hz, 2H), 3.07 (br, 1H), 2.29 (s, 2H), 1.06 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H).

¹³C NMR (101 MHz, CDCI₃) δ 172.86, 134.18, 133.74, 129.87, 127.59, 60.45, 25.61, 22.75, 18.67, 14.04.

HRMS (ESI) *m/z* calcd. for C₁₄H₂₂NaO₃Si [M+Na]⁺ 289.1230, found 289.1227. **HPLC conditions:** Chiralcel AS-3, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 220 nm, *t*_R (minor) = 35.0 min, *t*_R (major) = 37.5 min, 93% ee.

(R)-tert-butyl(methoxy)(methyl)(phenyl)silane (46)

To a 10 mL Schlenk tube was added NaH (60 wt% dispersion, 68.8 mg, 1.72 mmol). The tube was evaculated and refilled with Ar three times. The THF (2.0 mL) was added to the tube, followed by the silanol **44** (33.5 mg, 0.17 mmol). At last, MeI (244.1 mg, 1.72 mmol) was added. The resulting mixture was stirred at RT overnight and filtered through a pad of celite eluting with CH_2Cl_2 . The filtrate was evaporated and the residue was purified by column chromatography (PE) on silica gel to yield **46** as a colorless oil^[11] (25.7 mg, 0.123 mmol, 72% yield, 93% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.59 – 7.48 (m, 2H), 7.43 – 7.29 (m, 3H), 3.49 (s, 3H), 0.91 (s, 9H), 0.37 (s, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 135.52, 134.45, 129.34, 127.57, 51.30, 25.88, 18.24, −7.88.

HPLC conditions: Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 100/0, flow rate 0.5 mL/min, λ = 220 nm, t_R (major) = 8.1 min, t_R (minor) = 9.3 min, 93% ee.

(S)-tert-butyl(methyl)(phenyl)silane (47)

To a 10 mL Schlenk tube was added LiAlH₄ (11.4 mg, 0.30 mmol). The tube was evaculated and refilled with Ar three times. Then Et₂O (1.0 mL) was added to the tube, followed by silyl ether **46** (20.8 mg, 0.10 mmol). The resulting mixture was reacted at 40 °C for 24 h and filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated to dryness to yield **47** as a colorless oil^[11] (14.8 mg, 0.083 mmol, 83% yield, 91% ee). Enantiomeric excess was established as 91% ee by chiral HPLC analysis of the oxidation product of *tert*-butyl(methyl)(phenyl)silanol through methyltrioxorhenium catalyzed oxidation of **47** with H₂O₂.^[3]

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dt, J = 7.6, 1.7 Hz, 2H), 7.42 - 7.32 (m, 3H), 4.16 (dd, J = 3.9, 1.7 Hz, 1H), 0.96 (s, 9H), 0.35 (d, J = 3.8 Hz, 3H).

¹H NMR (400 MHz, CDCl₃) δ 135.49, 135.05, 129.19, 127.61, 26.82, 16.60, -8.47.

HPLC conditions: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm, t_{R} (minor) = 14.7 min, t_{R} (major) = 21.2 min, 91% ee.

(R)-3-(tert-butyl)-1-methyl-1,1,3-triphenyldisiloxane (48)

To the CH₂Cl₂ (10 mL) solution of **1** (180 mg, 1.0 mmol) was added imidazole (102.1 mg, 1.5 mmol), DMAP (12.2 mg, 0.1 mmol), and Ph₂MeSiCl (315 μ L, 1.5 mmol). The mixture was reacted at room temperature overnight. The mixture was poured into H₂O and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄, and evaporated to dryness in vacuo. The residue was purified by column chromatography on silica gel (PE) to give **48** as a colorless oil (340.1 mg, 0.9 mmol, 90% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.59 – 7.47 (m, 6H), 7.42 – 7.26 (m, 9H), 4.86 (s, 1H), 0.91 (s, 9H), 0.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.42, 137.37, 134.94, 134.16, 133.97, 129.73, 129.60, 127.72, 127.56, 25.41, 18.30, −0.89.

HRMS (ESI) *m*/*z* calcd. for C₂₃H₂₈NaOSi₂ [M+Na]⁺ 399.1571, found 399.1570. **HPLC conditions:** Chiralcel OD-3, *n*-hexane/*i*-PrOH = 100/0, flow rate 0.3 mL/min, λ = 220 nm, *t*_R (minor) = 50.2 min, *t*_R (major) = 52.1 min, 94% ee.

(R)-1-(tert-butyl)-1-ethoxy-3-methyl-1,3,3-triphenyldisiloxane (49)

Inside an argon-filled glovebox, an oven-dried 10 mL tube was charged with [Rh(cod)Cl]₂ (1.3 mg, 0.0027 mmol), *rac*-BINAP (3.4 mg, 0.0054 mmol), and anhydrous toluene (2 mL). The mixture was stirred at room temperature for 5 min, followed by the addition of **48** (102.2 mg, 0.27 mmol) and ethyl vinyl ether (260 µL, 2.7 mmol). The tube was capped and taken outside of the glovebox. The resulting mixture was heated to 60 °C and stirred for 12 h. Then the reaction mixture was concentrated and purified by preparative TLC (PE) to afford **49** as a colorless oil (103 mg, 0.243 mmol, 90% yield, 94% ee). ¹H NMR (**400 MHz, CDCl**₃) δ 7.83 – 7.47 (m, 6H), 7.40-7.29 (m, 9H), 3.65 – 3.61 (m, 2H), 1.09 (t, *J* = 6.9 Hz, 3H), 0.89 (s, 9H), 0.70 (s, 3H). ¹³C NMR (**101 MHz, CDCl**₃) δ 137.59, 137.52, 135.06, 134.05, 134.03, 133.54, 129.63, 129.60, 127.75, 127.74, 127.47, 58.73, 25.93, 18.43, 18.22, -0.48. HRMS (ESI) *m/z* calcd. for C₂₅H₃₂NaO₂Si₂ [M+Na]⁺ 443.1833, found 443.1845. **HPLC conditions:** Chiralcel OD-3, *n*-hexane/*i*-PrOH = 100/0, flow rate 0.25 mL/min. λ = 214 nm, t(minor) = 18.2 min, t(major) = 19.6 min, 94% ee.

(*R*)-1-(*tert*-butyl)-1-(4-methoxyphenyl)-3-methyl-1,3,3-triphenyldisiloxane (50)

4-Bromoanisole (41.3 μ L, 0.33 mmol) was dissolved in anhydrous Et₂O (1 mL) and cooled to 0 °C under Ar. *n*-Butyllithium (125 μ L, 2.4 M in hexanes, 0.3 mmol) was added dropwise and the reaction was stirred for 30 min. **49** (42.0 mg, 0.1 mmol) was dissolved in anhydrous Et₂O (0.5 mL) and added dropwise to the reaction. The reaction mixture was then warmed to room temperature and stirred overnight. The reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by preparative TLC (PE) to afford **50** as a colorless oil (37.1 mg, 0.077 mmol, 77% yield, 93% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.63 – 7.55 (m, 2H), 7.51 (dt, *J* = 6.7, 1.6 Hz, 6H), 7.41 – 7.32 (m, 3H), 7.32 – 7.21 (m, 6H), 6.87 – 6.78 (m, 2H), 3.80 (s, 3H), 1.00 (s, 9H), 0.56 (s, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 160.59, 137.69, 136.77, 135.70, 135.19, 134.15, 129.47, 129.27, 127.64, 127.40, 126.28, 113.20, 54.93, 26.85, 19.37, -0.57. HRMS (ESI) *m/z* calcd. for C₃₀H₃₄NaO₂Si₂ [M+Na]⁺ 505.1990, found 505.1988. HPLC conditions: Chiralcel OD-H, *n*-hexane/*i*-PrOH = 100/0, flow rate 0.3 mL/min. λ = 230 nm, t(major) = 82.4 min, t(minor) = 91.3 min, 93% ee.

(R)-1-(tert-butyl)-1-butyl-3-methyl-1,3,3-triphenyldisiloxane (51)

49 (42.0 mg, 0.1 mmol) was dissolved in anhydrous Et₂O (1 mL) under Ar. *n*-Butyllithium (125 μ L, 2.4 M in hexanes, 0.3 mmol) was added dropwise and the reaction was stirred at room temperature overnight. The reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by preparative TLC (PE) to afford **51** as a colorless oil (38.0 mg, 0.088 mmol, 88% yield, 94% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.59 (dd, J = 7.9, 1.6 Hz, 4H), 7.55 – 7.43 (m, 2H), 7.41 – 7.27 (m, 9H), 1.23 – 1.07 (m, 4H), 0.85 (s, 9H), 0.92 – 0.78 (m, 2H), 0.75 – 0.69 (m, 3H), 0.69 (s, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 137.95, 137.92, 136.13, 134.41, 134.09, 129.52, 128.99, 127.69, 127.35, 26.63, 26.28, 25.43, 18.88, 13.51, 11.83, -0.39. HRMS (ESI) *m/z* calcd. for C₂₇H₃₆NaOSi₂ [M+Na]⁺ 455.2197, found 455.2196. HPLC conditions: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 100/0, flow rate 0.25 mL/min. λ = 254 nm, t(minor) = 16.6 min, t(major) = 17.4 min, 94% ee.

(S)-tert-butyl(ethoxy)(phenyl)silanol (52)

49 (42.0 mg, 0.1 mmol) was dissolved in anhydrous THF (1 mL) under Ar. *n*-Butyllithium (125 μ L, 2.4 M in hexanes, 0.3 mmol) was added dropwise and the reaction was stirred at room temperature overnight. The reaction was quenched with H₂O and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by preparative TLC (PE/EtOAc = 10/1) to afford **52** as a colorless oil (15.6 mg, 0.07 mmol, 70% yield, 95% ee).

¹H NMR (400 MHz, CDCI₃) δ 7.94 – 7.56 (m, 2H), 7.55 – 7.31 (m, 3H), 3.82 (qd, J = 7.0, 1.2 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H), 0.96 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 134.91, 133.06, 129.93, 127.68, 58.72, 25.82, 18.48, 18.20.

HRMS (ESI) *m*/*z* calcd. for C₁₂H₂₁O₂Si [M+H]⁺ 225.1305, found 225.1304.

HPLC conditions: Chiralcel AD, n-hexane/i-PrOH = 98/2, flow rate 0.7

mL/min. λ = 214 nm, t(major) = 13.1 min, t(minor) = 15.7 min, 95% ee.

7. Mechanistic Studies

Radical-trapping experiment:

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Cul (3.8 mg, 0.020 mmol, 10 mol%), **L6** (10.8 mg, 0.010 mmol, 10 mol%), TEMPO (62.5 mg, 0.20 mmol, 2.0 equiv.), and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, **S1** (32 mg, 0.20 mmol, 1.0 equiv.), anhydrous THF (2.0 mL), H₂O (18.0 mg, 1.0 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (**SX4**, 89.2 mg, 0.40 mmol, 2 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C for 1 d and then was filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **1** (24.4 mg, 0.136 mmol, 68% yield, 93% ee) and **53** (37.0 mg, 0.124 mmol, 62% yield).

tert-butyl 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propanoate (53)

¹H NMR (400 MHz, CDCI₃) δ 1.54 (d, J = 13.0 Hz, 1H), 1.45 (s, 9H), 1.50 – 1.42 (m, 3H), 1.40 (s, 6H), 1.43 – 1.35 (m, 1H), 1.30 – 1.23 (m, 1H), 1.13 (s, 6H), 1.02 (s, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 175.27, 81.28, 80.25, 59.44, 40.56, 33.45, 27.88, 24.45, 20.35, 17.01.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₃₄NO₃ [M+H]⁺ 300.2533, found 300.2530.

A stoichiometric catalyst reaction:

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with CuBr₂ (44.7 mg, 0.20 mmol, 1.0 equiv.), **L6** (108 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, **S1** (32 mg, 0.20 mmol, 1.0 equiv.), anhydrous THF (2.0 mL), and H₂O (18.0 mg, 1.0 mmol, 5.0 equiv.) were added to the mixture. The reaction mixture was stirred at 0 °C for 2 d. The mixture was then filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **1** (13.0 mg, 0.072 mmol, 36% yield, 94% ee).
KIE experiments: Synthesis of S1-D *tert*-butyl(phenyl)silane (S1-D)

S1-D

According to the **General Procedures B** for the synthesis of substrates using PhSiCl₃ (5.0 mmol), ^{*t*}BuLi in pentane (1.3 M, 3.27 mL, 4.25 mmol), and LiAlD₄ (209.9 mg, 5.0 mmol), the product **S1-D** was obtained as a colorless oil^[3] (218.3 mg, 1.3 mmol, 26% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.42-7.33 (m, 3H), 1.02 (s, 9H).

²H NMR (61 MHz, CHCl₃) δ 4.20 (s, 2D).

¹³C NMR (101 MHz, CDCI₃) δ 135.87, 132.16, 129.52, 127.80, 27.39, 16.25.

KIE determined from an intermolecular competition

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Cul (1.9 mg, 0.010 mmol, 5 mol%), **L6** (5.4 mg, 0.010 mmol, 5 mol%), and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, **S1** (16.4 mg, 0.10 mmol), **S1-D** (16.6 mg, 0.10 mmol), anhydrous THF (2.0 mL), H₂O (18.0 mg, 1.0 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (**SX4**, 89.2 mg, 0.40 mmol, 2.0 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C for 8 h and then was filtered through a pad of celite eluting with CH₂Cl₂. The filtrate was evaporated and taken for ¹H NMR analysis with 1,1,2,2-tetrachloroethane as the internal standard. **1** and **1-D** were obtained in 32% total NMR yield with 95% ee.

The molar ratio of 1/1-D = 0.41/(6.19/9 - 0.41) = 0.41/0.28 = 1.46.

^tBu

S1

0.10 mmol

$KIE = k_{\rm H}/k_{\rm D} = 1.84$

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Cul (1.9 mg, 0.010 mmol, 10 mol%), **L6** (5.4 mg, 0.010 mmol, 10 mol%), and Cs_2CO_3 (65.2 mg, 0.20 mmol, 2.0 equiv.). The tube was evacuated and backfilled with argon three times. Under the flow of Ar, **S1** (16.4 mg, 0.10 mmol) or **S1-D** (16.6 mg, 0.10 mmol), anhydrous THF (1.0 mL), H₂O (9.0 mg, 0.50 mmol, 5.0 equiv.), and *tert*-butyl 2-bromo-2-methylpropanoate (**SX4**, 44.6 mg, 0.20 mmol, 2.0 equiv.) were added into the mixture. The reaction mixture was stirred at 0 °C. The yield of **1** or **1-D** was determined by ¹H NMR analysis of the crude reaction mixture with 1,1,2,2-tetrachloroethane as the internal standard at the indicated time intervals to obtain the individual reaction rate and the KIE value.

	0.5 h	1 h	1.5 h	2.0 h	2.5 h
1 yield/%	1.58	5.25	9.87	13.86	18.80
1-D yield/%	0.94	2.62	5.04	7.56	10.18

Figure S6. The linear model fitted plot of the yield of product vs time

Both the intermolecular competition and two parallel reactions revealed small but significant isotope effects, which indicates Si–H bond cleavage might not be the only rate-determining step.

(R)-tert-butyl(phenyl)silan-d-ol (1-D)

1-D

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 2H), 7.47 – 7.34 (m, 3H), 1.97

(br, 1H), 0.98 (s, 9H).

²H NMR (61 MHz, CHCI₃) δ 4.86 (s, 1D).
¹³C NMR (101 MHz, CDCI₃) δ 134.58, 134.10, 130.08, 127.79, 25.35, 17.87.

Deuterium-Labeling studies

Scheme S4. Products of the enantioselective hydroxylation reaction with **SX5** and deuterium-labeling experiments.

A mixture of 2-methyl-2-phenylpropan-1-ol (0.75 g, 5 mmol) and trimethylamine (1.4 mL, 10 mmol) in DCM (20 mL) was treated slowly with 2bromo-2-methylpropanoyl bromide (0.60 mL, 5 mmol) at 0 °C. After completion of the addition, the reaction mixture was stirred for another 2 h at rt. After completion of the reaction, the reaction mixture was poured into water and extracted with DCM. The extract was washed with water and brine solution, dried over MgSO₄, and concentrated. The crude compound was subjected to column chromatography on silica gel to obtain **SX5** (1.36 g, 4.55 mmol, 91% yield).

2-methyl-2-phenylpropyl 2-bromo-2-methylpropanoate (SX5)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.26 (m, 2H), 7.24 – 7.13 (m, 1H), 4.19 (s, 2H), 1.82 (s, 6H), 1.40 (s, 6H).

¹³C NMR (101 MHz, CDCI₃) δ 171.25, 145.60, 128.11, 126.20, 125.82, 74.12, 55.71, 38.42, 30.59, 25.56.

HRMS (ESI) *m*/*z* calcd. for C₁₄H₁₉BrNaO₂ [M+Na]⁺ 321.0461, found 321.0459.

2-methyl-2-phenylpropyl isobutyrate (CR-1)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.26 (m, 2H), 7.22 – 7.16 (m, 1H), 4.12 (s, 2H), 2.48 (m, 1H), 1.36 (s, 6H), 1.08 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.87, 146.13, 128.09, 126.09, 125.86, 72.59, 38.27, 34.00, 25.75, 18.83.

HRMS (ESI) *m*/z calcd. for C₁₄H₂₀NaO₂ [M+Na]⁺ 243.1356, found 243.1354.

A mixture of 2-methyl-2-phenylpropan-1-ol (30.1 mg, 0.2 mmol) and trimethylamine (40.5 mg, 0.4 mmol) in DCM (1.0 mL) was treated slowly with methacryloyl chloride (41.8 mg, 0.4 mmol) at 0 °C. After completion of the

addition, the reaction mixture was stirred for another 1 h at rt. After completion of the reaction, the reaction mixture was passed through a pad of silica eluting with EtOAc. The eluent was concentrated and purified by preparative TLC to obtain **CR-2** (27.1 mg, 0.124 mmol, 62% yield).

2-methyl-2-phenylpropyl methacrylate (CR-2)

¹H NMR (400 MHz, CDCI₃) δ 7.39 (dd, J = 8.3, 1.4 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.25 – 7.17 (m, 1H), 6.02 (s, 1H), 5.51 (q, J = 1.7 Hz, 1H), 4.18 (s, 2H), 1.89 (s, 3H), 1.40 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.33, 146.20, 136.29, 128.20, 126.20, 125.91, 125.41, 73.24, 38.33, 25.82, 18.25.

HRMS (ESI) *m*/z calcd. for C₁₄H₁₈O₂Na [M+Na]⁺ 241.1199, found 241.1194.

A mixture of 2-methyl-2-phenylpropan-1-ol (75.0 mg, 0.5 mmol), 2oxopropanoic acid (52.8 mg, 0.6 mmol, 1.2 equiv.), and pyridine (py, 98.9 mg, 1.25 mmol, 2.5 equiv.) in THF (1.0 mL) was treated with ethanesulfonyl chloride (EsCl, 77.1 mg, 0.6 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was stirred at rt overnight and passed through a pad of silica eluting with EtOAc. The eluent was concentrated and purified by preparative TLC to obtain **MCO** (21.6 mg, 0.1 mmol, 20% yield).

To a solution of **MCO** (0.1 mmol) in THF (2 mL) at 0 °C was added MeMgCl solution (3 M in THF, 35 μ L, 1 equiv). The mixture was stirred at 0 °C for 1 h and quenched with drops of NH₄Cl (sat. aq). The mixture was passed through a pad of silica eluting with EtOAc. The eluent was concentrated and purified by preparative TLC to obtain **CR-3** (8.1 mg, 0.034 mmol, 34% yield) mixed with the impurity of 2-methyl-2-phenylpropan-1-ol (**SMOH**) with the same R_f value.

2-methyl-2-phenylpropyl 2-hydroxy-2-methylpropanoate (CR-3)

¹H NMR (400 MHz, CDCI₃) δ 7.40 – 7.29 (m, 4H), 7.25 – 7.19 (m, 1H), 4.22 (s, 2H), 3.03 (s, 1H), 1.39 (s, 6H), 1.30 (s, 6H).

 $^{13}\mathbf{C}$ NMR (101 MHz, CDCI₃) δ 177.37, 145.59, 128.30, 126.41, 125.88, 74.13, 71.99, 38.43, 27.08, 25.72.

HRMS (ESI) *m*/*z* calcd. for C₁₄H₂₀O₃Na [M+Na]⁺ 259.1305, found 259.1300.

8. DFT Calculations

Computational methods

All calculations were performed with Gaussian $09^{[12]}$ with the ultrafine integration grid and the keywords acc2e=11 and 5D 7F. The hybrid functional B3LYP^[13] was combined with the dispersion correction D3^[14] to improve computational accuracy. Structures were optimized and characterized by frequency calculations to be energy minima (zero imaginary frequencies) or transition states (only one imaginary frequency) at the B3LYP-D3/BS1 level in the gas phase, BS1 designating a mixed basis set of SDD^[15] for copper, bromine, cesium and 6-31G(d,p) for other atoms. The energies were then refined by B3LYP-D3/BS2// B3LYP-D3/BS1 single-point energy calculations with the solvent (tetrahydrofuran) effects included using the SMD solvation model,^[16] BS2 denoting a mixed basis set of SDD for copper, bromine, cesium and 6-311++G(d,p) for other atoms. The refined energies were converted to zero-point energy-corrected Gibbs free energies at 298.15 K and 1 atm, using the B3LYP-D3/BS1 harmonic frequencies.

Figure S3. Free energy profile for the complete pathway of ²CAT-catalyzed asymmetric chiral silanol formation.

Figure S7. Located conformers of σ -metathesis transition state leading to major product *R*-silanol. Free energies are compared to ²**CAT**. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

Figure S8. Located conformers of σ -metathesis transition state leading to major product S-silanol. Free energies are compared to ²CAT. Trivial hydrogen atoms in the 3D diagram are omitted for clarity.

Cartesian Coordinates (Å), SCF Energies, and Free Energies at 298.15 K and 1 atm for the Optimized Structures

² C/	AT .				С
E_{ga}	Egas optimization: -2162.84246415a.u. H				
Eso	E _{sol} single-point: -2163.30475325a.u.				
Gso	hermo-cor	rected: -216	2.83395025a.u.		Н
					С
С	2.732684	0.713531	1.917004		С
С	2.738057	-0.591021	1.375415		С
С	3.639423	-1.554522	1.862458		С
С	4.537613	-1.252002	2.879165		Н
Н	5.229745	-2.008346	3.237312		С
С	4.529637	0.029272	3.432755		Н
н	5.219397	0.285435	4.231798		С
С	3.637991	0.985853	2.961079		Н
С	1.897374	1.934163	1.517499		Н
0	1.822097	2.843826	2.350189		Н
Ν	1.368613	2.042711	0.250433		Cu
С	1.048373	3.381204	-0.102910		Br
С	2.096330	4.319379	-0.167210		С
н	3.097067	3.980132	0.076587		Н
С	1.872095	5.642538	-0.518548		Н
н	2.710489	6.332072	-0.562254		С
С	0.578851	6.090922	-0.818501		С
н	0.402223	7.125065	-1.096015		С
С	-0.473004	5.191723	-0.764018		С
н	-1.483705	5.508077	-0.997517		Н
С	-0.254441	3.843611	-0.417029		С
С	-1.392501	2.938295	-0.413568		Н
0	-2.634241	3.456232	-0.323207		С
С	-3.570393	2.347107	-0.462986		Н
н	-4.134172	2.501750	-1.386299		Н
н	-4.253825	2.372146	0.389197		Н
С	-2.676212	1.083747	-0.495178		
н	-2.823265	0.505700	-1.410351		² IN
Ν	-1.325461	1.656106	-0.533002		Ega
н	3.635249	-2.551811	1.434891		Esc
н	3.616317	1.980465	3.389165		Gs
Р	1.526788	-1.115619	0.119851		
С	2.397883	-2.245072	-1.012868		С
С	2.504100	-3.622485	-0.771709		С
С	2.994760	-1.689740	-2.154047		С
С	3.215434	-4.432298	-1.657888		С
Н	2.021197	-4.062364	0.095586		Н
С	3.710635	-2.502057	-3.031787		С
Н	2.873702	-0.631739	-2.364696		н

С	3.821752	-3.872678	-2.784545
Н	3.292420	-5.499136	-1.469486
Н	4.166275	-2.067852	-3.916424
Н	4.371732	-4.505571	-3.474938
С	0.279014	-2.109010	1.016394
С	0.103776	-1.978165	2.401819
С	-0.634170	-2.876047	0.269456
С	-0.973746	-2.604995	3.031212
Н	0.798703	-1.382614	2.985199
С	-1.699801	-3.506540	0.908532
Н	-0.523591	-2.947929	-0.808016
С	-1.876973	-3.366081	2.288007
Н	-1.106850	-2.493145	4.103238
Н	-2.408580	-4.086413	0.325974
Н	-2.722248	-3.840417	2.777212
Cu	0.367100	0.636712	-0.742625
Br	-0.421193	-0.580693	-2.728664
Br C	-0.421193 -2.826980	-0.580693 0.150605	-2.728664 0.720391
Br C H	-0.421193 -2.826980 -1.989405	-0.580693 0.150605 -0.553663	-2.728664 0.720391 0.696607
Br C H H	-0.421193 -2.826980 -1.989405 -2.723707	-0.580693 0.150605 -0.553663 0.741927	-2.728664 0.720391 0.696607 1.637642
Br C H H C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908	-0.580693 0.150605 -0.553663 0.741927 -0.606790	-2.728664 0.720391 0.696607 1.637642 0.706134
Br C H C C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797
Br C H C C C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032
Br C H C C C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175
Br H C C C C H	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163
Br C H C C C C H C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081
Br C H H C C C C H C H	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078 -4.993124	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928 0.434726	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081 2.382490
Br C H C C C C C H C H C C C C H C C C C	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078 -4.993124 -6.566271	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928 0.434726 -2.015145	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081 2.382490 0.619924
Вr С H H C C C C H C H C H	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078 -4.993124 -6.566271 -5.708303	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928 0.434726 -2.015145 -3.067253	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081 2.382490 0.619924 -1.057888
вг	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078 -4.993124 -6.566271 -5.708303 -7.139908	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928 0.434726 -2.015145 -3.067253 -0.801401	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081 2.382490 0.619924 -1.057888 2.306921
всннсссснснснн	-0.421193 -2.826980 -1.989405 -2.723707 -4.132908 -4.350603 -5.151698 -5.556089 -3.562926 -6.361078 -4.993124 -6.566271 -5.708303 -7.139908 -7.505260	-0.580693 0.150605 -0.553663 0.741927 -0.606790 -1.601077 -0.328412 -2.299602 -1.827605 -1.027928 0.434726 -2.015145 -3.067253 -0.801401 -2.560222	-2.728664 0.720391 0.696607 1.637642 0.706134 -0.260797 1.624032 -0.304175 -0.975163 1.584081 2.382490 0.619924 -1.057888 2.306921 0.587377

/1

as optimization: -2467.14610069a.u. ₀ single-point: -2467.74527644a.u. ol thermo-corrected: -2467.27140244a.u.

С	-1.916824	3.514244	1.488483
С	-0.667373	3.618640	0.830959
С	-0.100993	4.884411	0.592996
С	-0.747015	6.053954	0.974161
Н	-0.292146	7.019633	0.773562
С	-1.980181	5.963188	1.620781
н	-2.504986	6.862388	1.931026

С	-2.540558	4.717372	1.876855
С	-2.743557	2.275978	1.876937
0	-3.604795	2.450666	2.750318
Ν	-2.569339	1.076152	1.243282
С	-3.597824	0.136393	1.415967
С	-4.944274	0.516484	1.191392
Н	-5.142252	1.554568	0.954804
С	-5.993761	-0.385631	1.279336
Н	-7.009205	-0.040820	1.100312
С	-5.756692	-1.729511	1.616349
Н	-6.579371	-2.431064	1.720017
С	-4.449887	-2.136596	1.848275
Н	-4.233860	-3.163628	2.123970
С	-3.368455	-1.234954	1.739875
С	-2.018657	-1.773615	1.916061
0	-1.889820	-2.999270	2.489429
С	-0.487483	-3.375736	2.339554
Н	-0.438846	-4.208310	1.630740
Н	-0.115723	-3.706745	3.311194
С	0.201728	-2.087653	1.824081
Н	0.762097	-2.261984	0.901718
N	-0.936887	-1.221316	1.502328
Н	0.862904	4.945687	0.096796
Н	-3.485182	4.636899	2.400090
Р	0.307883	2.164631	0.301608
С	0.956129	2.602977	-1.361685
С	2.255476	3.071110	-1.604665
С	0.083396	2.396851	-2.446929
С	2.678670	3.325920	-2.912955
Н	2.947387	3.214884	-0.781719
С	0.502935	2.672663	-3.748758
Н	-0.909719	1.989790	-2.269948
С	1.804327	3.132525	-3.985324
Н	3.691976	3.674777	-3.088496
Н	-0.181830	2.517503	-4.578265
Н	2.133717	3.340280	-4.999917
С	1.737417	2.082526	1.433422
С	1.680126	2.664594	2.709981
С	2.847402	1.293238	1.084257
С	2.721897	2.458498	3.615941
Н	0.826398	3.270487	2.996951
С	3.893760	1.107497	1.986461
н	2.926069	0.809110	0.115687
С	3.828087	1.684546	3.256864
н	2.667114	2.907668	4.603692
н	4.735663	0.496583	1.676185

Н	4.635001	1.526805	3.966485
Cu	-1.070998	0.357000	0.139658
Br	5.058720	-0.869113	-1.015953
С	1.128180	-1.420252	2.857986
Н	1.370908	-0.419030	2.492361
Н	0.574880	-1.296866	3.796936
С	2.392476	-2.220483	3.069286
С	3.373152	-2.242361	2.066686
С	2.600797	-2.972974	4.231600
С	4.539416	-2.989510	2.222296
Н	3.253779	-1.656625	1.159921
С	3.766283	-3.728589	4.390446
Н	1.854289	-2.955535	5.023334
С	4.737118	-3.737958	3.386887
Н	5.283161	-2.959622	1.431027
Н	3.916558	-4.303035	5.300897
Н	5.646283	-4.319279	3.514592
0	-0.018559	-0.672167	-1.204016
0	-2.129293	-0.173413	-1.568196
С	-1.070936	-0.830053	-1.987446
0	-1.059386	-1.556969	-3.008440
Cs	-4.137745	-2.125959	-1.997268
Cs	2.215618	-0.904388	-3.118919

Cs_2CO_3

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -304.167543546a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -304.362312853a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -304.384349853a.u.} \end{split}$$

0	1.126125	1.829459	0.001993
0	-1.125775	1.829448	-0.001547
С	0.000159	1.201660	-0.000507
0	0.000176	-0.136441	-0.002050
Cs	-2.828217	-0.321699	0.000247
Cs	2.828123	-0.321750	0.000042

²TS1

E_{gas} optimization: -2543.57044219a.u. E_{sol} single-point: -2544.19944859a.u. G_{sol} thermo-corrected: -2543.70357859a.u.

С	0.315789	-2.031968	3.648750
С	-0.621394	-0.982541	3.512926
С	-1.218806	-0.435466	4.658805
С	-0.880423	-0.899316	5.928990
н	-1.349687	-0.460560	6.804732

С	0.052522	-1.927719	6.066733
Н	0.321378	-2.295132	7.052768
С	0.627866	-2.496716	4.933465
С	0.926494	-2.814794	2.502509
0	1.237029	-3.989806	2.719373
Ν	1.101227	-2.189784	1.288580
С	1.377019	-3.014075	0.194360
С	0.621167	-4.192311	-0.021230
Н	-0.160037	-4.434213	0.686827
С	0.863255	-5.028447	-1.099701
Н	0.260993	-5.924691	-1.222576
С	1.882888	-4.733659	-2.020660
Н	2.097008	-5.405304	-2.846656
С	2.618854	-3.569938	-1.853062
Н	3.401896	-3.308680	-2.556015
С	2.369128	-2.693208	-0.772967
С	3.119731	-1.441692	-0.727471
0	4.092468	-1.286443	-1.645375
С	4.476542	0.118330	-1.618687
Н	4.053072	0.589960	-2.505836
Н	5.566991	0.170084	-1.622504
С	3.825788	0.653206	-0.329650
Н	3.223597	1.529984	-0.570990
Ν	2.906552	-0.431066	0.049349
Н	-1.948406	0.360066	4.556488
Н	1.319948	-3.327334	5.014223
Ρ	-0.953145	-0.269608	1.861435
С	-1.988962	-1.446516	0.929842
С	-2.416600	-2.665867	1.475083
С	-2.380297	-1.085577	-0.368546
С	-3.231609	-3.514539	0.725268
Н	-2.119115	-2.950414	2.479289
С	-3.239671	-1.915883	-1.091930
Н	-2.031282	-0.157184	-0.812030
С	-3.654527	-3.135466	-0.552089
Н	-3.560798	-4.457489	1.152327
Н	-3.635080	-1.568431	-2.041379
Н	-4.334933	-3.772010	-1.110359
С	-1.999373	1.199999	2.148949
С	-1.382449	2.385484	2.594276
С	-3.386006	1.175930	1.928539
С	-2.155986	3.520834	2.835112
Н	-0.305062	2.416947	2.720151
С	-4.152208	2.322875	2.160948
Н	-3.879452	0.295765	1.532533
С	-3.541223	3.490652	2.622153

Н	-1.677771	4.431513	3.186144
Н	-5.214454	2.292565	1.941559
Н	-4.138793	4.379340	2.807902
Cu	1.149232	-0.191065	0.962039
Br	-5.382393	0.985771	-1.225694
С	4.818363	0.947400	0.813102
Н	4.244564	1.136817	1.729074
Н	5.408868	0.044744	1.005971
С	5.719674	2.117840	0.492992
С	5.209096	3.424222	0.477293
С	7.065389	1.924425	0.156993
С	6.019303	4.506496	0.136831
Н	4.166422	3.599224	0.735419
С	7.881577	3.005256	-0.184858
Н	7.478798	0.918815	0.171197
С	7.360433	4.299417	-0.196706
Н	5.605912	5.511017	0.133964
Н	8.923942	2.834860	-0.438747
Н	7.993412	5.141495	-0.460628
0	0.181987	1.431065	-0.531830
0	-0.659906	1.079605	-2.568137
С	0.379855	1.070231	-1.822075
0	1.524763	0.676722	-2.202994
Cs	-0.129744	-1.664502	-3.395650
Cs	-2.464158	3.058307	-1.308735
Н	2.433172	2.139998	1.337107
Н	1.044324	1.896250	0.432214
0	1.509503	1.878897	1.411010
² IM	2		

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -2543.61995869a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -2544.23673456a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2543.73761756a.u.} \end{split}$$

С	0.839085	-3.330169	2.431918
С	0.139361	-2.227126	2.975265
С	0.104447	-2.043236	4.364358
С	0.767369	-2.927699	5.214576
н	0.738560	-2.766578	6.288422
С	1.453474	-4.020563	4.682663
н	1.965636	-4.717407	5.339779
С	1.468534	-4.226104	3.304858
С	0.861931	-3.707861	0.957811
0	0.855023	-4.911275	0.677237
Ν	0.897216	-2.686633	0.048590
С	0.730245	-2.988365	-1.304153

С	-0.304401	-3.852769	-1.730321
Н	-0.925064	-4.316829	-0.975672
С	-0.533157	-4.103114	-3.076181
Н	-1.340725	-4.771830	-3.363049
С	0.270685	-3.508709	-4.062254
Н	0.106447	-3.721718	-5.114355
С	1.296102	-2.657959	-3.671498
Н	1.930903	-2.189565	-4.415036
С	1.536669	-2.380154	-2.308995
С	2.591608	-1.422058	-1.978881
0	3.267855	-0.887108	-3.024232
С	4.225890	0.055697	-2.475379
Н	4.130964	0.993669	-3.023900
Н	5.230654	-0.355566	-2.624392
С	3.836229	0.153742	-0.985637
Н	3.258345	1.063241	-0.791695
Ν	2.907259	-0.969753	-0.809831
Н	-0.438945	-1.202451	4.782581
Н	1.957548	-5.092209	2.872430
Р	-0.620462	-1.012516	1.830725
С	-2.099801	-1.837711	1.125449
С	-2.340957	-3.212749	1.273884
С	-2.999097	-1.071814	0.365085
С	-3.447124	-3.803866	0.660260
Н	-1.671472	-3.832108	1.859025
С	-4.117213	-1.659445	-0.229350
Н	-2.869040	0.000051	0.243452
С	-4.336723	-3.032394	-0.090529
Н	-3.615075	-4.870186	0.782254
Н	-4.801516	-1.021160	-0.781737
Н	-5.204900	-3.494906	-0.551896
С	-1.272404	0.356535	2.870849
С	-0.354981	1.336780	3.298434
С	-2.628526	0.483335	3.217582
С	-0.796937	2.418202	4.064983
Н	0.687608	1.246906	2.996260
С	-3.064267	1.578375	3.968515
Н	-3.347990	-0.261713	2.896434
С	-2.150574	2.546026	4.397380
Н	-0.080252	3.163356	4.400900
Н	-4.115886	1.666231	4.226185
Н	-2.490343	3.387923	4.995145
Cu	1.339351	-0.786245	0.509518
Br	-4.473475	1.828949	-1.403601
С	5.022821	0.095064	-0.014620
н	4.630123	-0.141397	0.980664

Н	5.677543	-0.739677	-0.289466
С	5.786247	1.400564	0.014569
С	5.168674	2.555999	0.519438
С	7.088916	1.497869	-0.486398
С	5.841887	3.776412	0.523405
Н	4.151888	2.495163	0.901244
С	7.766079	2.720204	-0.482479
Н	7.578982	0.609452	-0.877773
С	7.144119	3.862453	0.022275
Н	5.350303	4.661446	0.917527
Н	8.778281	2.777780	-0.872940
Н	7.668832	4.813500	0.026112
0	0.990888	2.498187	0.039271
0	-0.249730	2.527058	-1.814301
С	0.417880	1.838579	-1.014378
0	0.562751	0.566995	-1.072721
Cs	-1.659726	-0.077870	-3.015473
Cs	-1.979157	3.673830	0.470824
Н	2.971386	0.608641	1.754317
Н	1.477544	1.835615	0.632717
0	2.033437	0.705270	1.557868

²IM3

E_{gas} optimization: -2225.23095005a.u. E_{sol} single-point: -2225.72352678a.u. G_{sol} thermo-corrected: -2225.23824878a.u.

С	3.022955	-0.321528	1.338004
С	2.502982	-1.517740	0.797609
С	3.169052	-2.737850	1.009998
С	4.343221	-2.797006	1.752565
н	4.848005	-3.747284	1.900098
С	4.855223	-1.622779	2.307426
н	5.767982	-1.647709	2.895918
С	4.198491	-0.413331	2.108290
С	2.514930	1.117924	1.196807
0	2.831582	1.894415	2.102997
Ν	1.860901	1.532585	0.051334
С	2.021973	2.916531	-0.195954
С	3.333711	3.433283	-0.287347
н	4.160289	2.747749	-0.137644
С	3.583570	4.769388	-0.552141
н	4.611270	5.115369	-0.620948
С	2.525561	5.672289	-0.735013
н	2.719568	6.719523	-0.943181
С	1.227613	5.202407	-0.653068

н	0.387914	5.873850	-0.795669
С	0.960929	3.840303	-0.395588
С	-0.425681	3.414852	-0.359537
0	-1.387412	4.344210	-0.162646
С	-2.669549	3.662384	-0.257208
Н	-3.214880	4.090554	-1.102230
Н	-3.222237	3.856954	0.665625
С	-2.305691	2.167600	-0.451409
Н	-2.696490	1.791846	-1.400241
Ν	-0.842284	2.207987	-0.543385
Н	2.759414	-3.647813	0.582981
Н	4.580541	0.499833	2.548135
Р	0.926487	-1.512921	-0.108991
С	1.085638	-2.757903	-1.433678
С	0.780119	-4.111803	-1.234578
С	1.541812	-2.326616	-2.687362
С	0.951343	-5.027087	-2.274113
н	0.398264	-4.446394	-0.274510
С	1.716973	-3.245144	-3.721116
н	1.731338	-1.270789	-2.852740
С	1.424026	-4.595721	-3.515339
н	0.712213	-6.074687	-2.115059
н	2.067975	-2.905069	-4.690996
н	1.553926	-5.308979	-4.324313
С	-0.335675	-2.179555	1.036382
С	-0.061780	-2.564791	2.355393
С	-1.656801	-2.223541	0.555163
С	-1.102696	-2.994536	3.182779
н	0.953529	-2.526978	2.736733
С	-2.688737	-2.653733	1.386412
н	-1.857190	-1.889947	-0.459131
С	-2.412515	-3.039530	2.701914
н	-0.887003	-3.290549	4.205482
н	-3.707628	-2.662681	1.011427
Н	-3.218532	-3.366822	3.352509
Cu	0.310631	0.588432	-0.805728
С	-2.761709	1.212953	0.672177
Н	-2.029715	0.400775	0.718432
н	-2.720485	1.732074	1.636567
С	-4.125717	0.612229	0.426053
С	-4.302069	-0.246492	-0.672286
С	-5.213640	0.866372	1.266225
С	-5.540221	-0.838513	-0.916229
н	-3.451003	-0.452476	-1.319085
С	-6.455957	0.273290	1.022842
н	-5.086388	1.523990	2.122978

С	-6.622096	-0.581090	-0.067530
Н	-5.661052	-1.505492	-1.765469
Н	-7.291208	0.477999	1.686865
Н	-7.586369	-1.044336	-0.256151
0	-0.915663	-0.264733	-1.978482
Н	-1.363584	0.418551	-2.495259

CsHCO₃-CsBr

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -318.300889598a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -318.457171575a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -318.472234575a.u.} \end{split}$$

Br	0.031219	2.465218	0.352253
0	1.068412	-2.864026	0.787070
0	-1.186670	-2.671092	0.809830
С	-0.131337	-2.384793	0.206672
0	0.051053	-1.684279	-0.819478
Cs	-2.518688	-0.090589	-0.193189
Cs	2.508892	-0.106589	-0.194859
Н	0.771797	-3.373933	1.554348

²TS2R

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -2905.51158980a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -2906.11820430a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2905.4107983a.u.} \end{split}$$

С	0.789044	-0.346180	-2.807091
С	1.557956	-1.171309	-1.955219
С	1.921699	-2.458720	-2.371788
С	1.509827	-2.948403	-3.610971
Н	1.785741	-3.954693	-3.911732
С	0.741016	-2.143552	-4.450470
Н	0.405450	-2.518899	-5.412466
С	0.404067	-0.851034	-4.055101
С	0.407338	1.102524	-2.548560
0	0.203584	1.816006	-3.533425
Ν	0.293035	1.552148	-1.247504
С	0.280684	2.939735	-1.056633
С	1.195072	3.762271	-1.752440
Н	1.893533	3.291342	-2.431670
С	1.203879	5.138640	-1.595404
Н	1.928861	5.730946	-2.146784
С	0.289514	5.768191	-0.738906
Н	0.289491	6.847327	-0.623877
С	-0.608788	4.989310	-0.029773
Н	-1.315411	5.448355	0.652660

WILEY-VCH

SUPPORTING INFORMATION

С	-0.612285	3.584047	-0.156223
С	-1.509355	2.840467	0.717037
0	-2.582651	3.484650	1.216417
С	-3.346772	2.490307	1.963891
н	-4.183262	2.171978	1.338576
Н	-3.707194	2.967579	2.877451
С	-2.327756	1.364574	2.200941
н	-2.764756	0.378035	2.046285
Ν	-1.333522	1.630061	1.145729
Н	2.510426	-3.091965	-1.717275
Н	-0.166771	-0.199717	-4.706620
Р	1.934106	-0.591695	-0.265083
С	2.615845	-2.014942	0.651645
С	3.927428	-2.031359	1.146788
С	1.753064	-3.087997	0.937174
С	4.371967	-3.109954	1.915014
н	4.600588	-1.206569	0.936822
С	2.207666	-4.166344	1.692588
н	0.728058	-3.059477	0.587982
С	3.515773	-4.179163	2.186370
н	5.389321	-3.115016	2.295589
н	1.534980	-4.992576	1.902973
Н	3.865397	-5.018335	2.780895
С	3.275581	0.637369	-0.420594
С	4.329803	0.470043	-1.330343
С	3.221638	1.792551	0.371882
С	5.323628	1.443924	-1.433350
н	4.362299	-0.411328	-1.964363
С	4.216166	2.764407	0.266872
н	2.382715	1.939021	1.044933
С	5.268727	2.589076	-0.634091
Н	6.135931	1.312674	-2.142176
н	4.159050	3.663176	0.873402
н	6.039705	3.348950	-0.722479
Cu	-0.092825	0.329629	0.276824
С	-1.665702	1.460443	3.599524
н	-1.343618	2.498759	3.747350
н	-2.439253	1.251613	4.348089
С	-0.494930	0.525473	3.774178
С	0.792694	0.918964	3.382348
С	-0.678576	-0.780505	4.249314
С	1.862131	0.024089	3.434866
н	0.945973	1.930353	3.015948
С	0.391748	-1.678367	4.304240
н	-1.668542	-1.099711	4.567245
С	1.663247	-1.281472	3.888021

Н	2.847454	0.339701	3.104689
н	0.227922	-2.691117	4.660460
Н	2.488392	-1.985663	3.897769
Si	-2.232217	-2.035130	-0.117263
Н	-1.208915	-1.511707	-1.128609
С	-2.662888	-3.578125	-1.249252
С	-3.954674	-4.265716	-0.785713
С	-2.800580	-3.140896	-2.715870
С	-1.478811	-4.556967	-1.121141
н	-3.892471	-4.575878	0.264309
Н	-4.818866	-3.596785	-0.881874
Н	-4.167250	-5.164969	-1.383921
н	-1.898059	-2.629079	-3.068850
н	-2.969535	-4.006008	-3.375444
н	-3.644856	-2.454193	-2.851069
н	-1.636960	-5.459992	-1.730907
н	-0.541359	-4.096915	-1.461046
н	-1.337926	-4.890443	-0.083323
0	-0.886695	-1.288367	1.043435
Н	-1.021154	-1.380051	1.998443
С	-3.583177	-0.707704	-0.317188
С	-3.395327	0.377401	-1.194732
С	-4.806668	-0.771639	0.373849
С	-4.383030	1.347077	-1.386212
Н	-2.455799	0.465318	-1.734770
С	-5.805320	0.189323	0.186994
Н	-4.981742	-1.592507	1.066408
С	-5.596272	1.251832	-0.698165
Н	-4.206660	2.173001	-2.070612
Н	-6.746488	0.108673	0.725836
Н	-6.370533	1.999935	-0.847620
Н	-2.650782	-2.739066	1.184553

²IM4R

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -2905.51464627a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -2906.11601861a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2905.40987461a.u.} \end{split}$$

С	-1.267713	0.336620	2.822203
С	-2.185964	-0.286838	1.940999
С	-3.122619	-1.192324	2.462488
С	-3.137497	-1.512807	3.819897
Н	-3.867182	-2.223891	4.196548
С	-2.212212	-0.924808	4.680842
Н	-2.205051	-1.178458	5.736737
С	-1.301999	0.003277	4.182094

WI	LEY	-VCH	
----	-----	------	--

С	-0.313424	1.456613	2.446395
0	0.124421	2.174626	3.345596
Ν	-0.033343	1.635519	1.107083
С	0.238631	2.922536	0.652626
С	-0.448189	4.025254	1.221453
Н	-1.140416	3.836904	2.031336
С	-0.263421	5.319099	0.771439
Н	-0.826103	6.125181	1.234440
С	0.630145	5.594849	-0.274086
Н	0.780360	6.610203	-0.626425
С	1.316583	4.542925	-0.851695
Н	2.011007	4.725783	-1.663864
С	1.125968	3.209981	-0.422223
С	1.858643	2.183003	-1.154774
0	2.999668	2.583873	-1.762696
С	3.612006	1.397228	-2.327933
Н	4.465273	1.126670	-1.701656
Н	3.946278	1.640479	-3.339534
С	2.487845	0.344454	-2.276964
н	2.855470	-0.596886	-1.865344
Ν	1.517828	0.947661	-1.342490
н	-3.834683	-1.670549	1.799374
н	-0.598678	0.505349	4.836690
Р	-2.025973	-0.065347	0.116671
С	-3.084954	-1.383734	-0.584062
С	-4.299073	-1.141098	-1.240901
С	-2.592058	-2.698330	-0.505458
С	-5.012611	-2.199830	-1.809120
Н	-4.685891	-0.129370	-1.311346
С	-3.320074	-3.752726	-1.051683
н	-1.631434	-2.882949	-0.033930
С	-4.528715	-3.506021	-1.710430
н	-5.950652	-2.003384	-2.320644
Н	-2.935102	-4.765922	-0.979395
Н	-5.089136	-4.327979	-2.146638
С	-2.822536	1.523935	-0.301758
С	-3.949102	2.008842	0.377340
С	-2.242017	2.296554	-1.318257
С	-4.492770	3.247425	0.033222
н	-4.387476	1.425342	1.182102
С	-2.785704	3.534548	-1.658302
Н	-1.338393	1.942499	-1.806142
С	-3.912753	4.009353	-0.984437
Н	-5.362798	3.621471	0.565283
Н	-2.314601	4.137557	-2.428568
н	-4.330889	4.978292	-1.241506

Cu	0.324113	-0.033565	0.060436
С	1.843509	0.089057	-3.656210
Н	1.394634	1.025314	-4.007764
Н	2.651930	-0.162950	-4.354184
С	0.825046	-1.023729	-3.650106
С	-0.549188	-0.763079	-3.586577
С	1.254438	-2.360195	-3.673467
С	-1.473709	-1.808573	-3.561830
Н	-0.895506	0.266036	-3.554299
С	0.332017	-3.409926	-3.643323
Н	2.318757	-2.578646	-3.721258
С	-1.035692	-3.133732	-3.591271
Н	-2.535169	-1.593125	-3.497912
Н	0.683426	-4.437445	-3.663018
Н	-1.758612	-3.941779	-3.559367
Si	2.067083	-2.140119	0.711927
Н	1.216567	-0.749287	1.307429
С	1.631340	-2.974074	2.402830
С	2.478098	-4.249408	2.574027
С	1.909686	-2.017528	3.577539
С	0.134772	-3.339959	2.390831
Н	2.289884	-4.973642	1.774444
Н	3.551648	-4.025549	2.570528
Н	2.246993	-4.737922	3.531358
Н	1.319376	-1.099955	3.499330
Н	1.650056	-2.498758	4.530969
Н	2.966624	-1.732445	3.626242
Н	-0.153167	-3.812582	3.340491
Н	-0.491997	-2.452326	2.265000
Н	-0.107754	-4.045689	1.586557
0	0.748430	-1.940203	-0.464322
Н	0.871615	-2.296086	-1.358178
С	3.629421	-1.040198	0.647167
С	3.664211	0.264873	1.176068
С	4.805455	-1.526882	0.048380
С	4.820379	1.045067	1.119741
Н	2.765597	0.677599	1.627045
С	5.967298	-0.751538	-0.018579
Н	4.809057	-2.529237	-0.374513
С	5.977419	0.537610	0.520558
Н	4.815608	2.049347	1.534734
н	6.863015	-1.152528	-0.486565
н	6.878101	1.143885	0.470764
Н	2.635508	-3.326566	-0.063996

²TS3R

Egas optimization: -2905.51260965a.u.						
E _{sol} single-point: -2906.11404722a.u.						
G _{sol} thermo-corrected: -2905.40935322a.u.						
С	-1.463523	0.070207	2.799701			
С	-2.175649	-0.703321	1.846009			
С	-2.939341	-1.791185	2.299116			
С	-2.971122	-2.147844	3.647197			
н	-3.566289	-2.999953	3.963638			
С	-2.237592	-1.411755	4.575791			
н	-2.243232	-1.687220	5.626424			
С	-1.510333	-0.304170	4.149111			
С	-0.734653	1.372672	2.514415			
0	-0.483583	2.122196	3.458412			
Ν	-0.436696	1.649717	1.194418			
С	-0.423819	2.969623	0.776413			
С	-1.319693	3.905492	1.361219			
н	-1.952034	3.571716	2.172651			
С	-1.418006	5.209432	0.917859			
н	-2.136910	5.874161	1.389537			
С	-0.611289	5.676890	-0.131621			
н	-0.683964	6.702748	-0.478031			
С	0.280512	4.799584	-0.716731			
н	0.915450	5.133261	-1.529478			
С	0.381121	3.450996	-0.299218			
С	1.324613	2.620997	-1.036654			
0	2.334078	3.284329	-1.658208			
С	3.219377	2.282995	-2.209884			
Н	4.111119	2.230981	-1.579403			
Н	3.493165	2.592240	-3.221771			
С	2.387616	0.987036	-2.154134			
Н	2.973537	0.164243	-1.740503			
Ν	1.301466	1.336372	-1.218376			
Н	-3.504702	-2.382743	1.588444			
Н	-0.968339	0.314889	4.855224			
Ρ	-1.945454	-0.425431	0.028709			
С	-2.796214	-1.866033	-0.736184			
С	-3.977215	-1.771981	-1.485651			
С	-2.140471	-3.107826	-0.651740			
С	-4.491784	-2.896715	-2.137496			
Н	-4.493902	-0.820816	-1.564786			
С	-2.669849	-4.232644	-1.279638			
Н	-1.205426	-3.181161	-0.104083			
С	-3.843988	-4.129031	-2.032559			

H-5.404619-2.809527-2.720309H-2.157232-5.187109-1.197193

Н	-4.249331	-5.002799	-2.534774
С	-2.987102	1.020946	-0.394686
С	-4.190930	1.315095	0.260606
С	-2.520746	1.886078	-1.395504
С	-4.919211	2.453966	-0.087682
н	-4.547251	0.661331	1.051762
С	-3.247999	3.024550	-1.740697
н	-1.561121	1.687690	-1.864147
С	-4.449331	3.308342	-1.088318
н	-5.848393	2.678993	0.428374
н	-2.862878	3.702908	-2.496092
н	-5.011085	4.201059	-1.347917
Cu	0.446675	0.102766	0.217155
С	1.830236	0.582165	-3.536336
н	1.155775	1.373739	-3.882336
н	2.676466	0.552003	-4.234645
С	1.133561	-0.755895	-3.546801
С	-0.262416	-0.861097	-3.537932
С	1.895393	-1.936354	-3.535903
С	-0.884888	-2.110738	-3.532197
н	-0.865731	0.041967	-3.529784
С	1.275745	-3.189928	-3.521888
н	2.981128	-1.871299	-3.543787
С	-0.118243	-3.277096	-3.522408
Н	-1.967396	-2.176474	-3.511155
Н	1.881874	-4.091124	-3.511476
Н	-0.608442	-4.244729	-3.501565
Si	2.571219	-2.003843	0.667635
Н	1.117011	-0.436444	1.524216
С	2.073932	-2.811221	2.335107
С	3.014957	-4.020260	2.546738
С	2.221966	-1.855793	3.536554
С	0.615451	-3.303148	2.252748
Н	2.922004	-4.759860	1.744214
Н	4.067699	-3.716642	2.599683
Н	2.772303	-4.521983	3.492947
Н	1.529971	-1.012736	3.464631
Н	2.000539	-2.394640	4.467639
Н	3.238582	-1.455289	3.617701
Н	0.332911	-3.801834	3.189502
Н	-0.074546	-2.470340	2.098696
Н	0.471214	-4.025469	1.440000
0	1.254085	-1.733372	-0.407066
н	1.390748	-1.970071	-1.338938
С	3.838178	-0.598633	0.682272
С	3.654602	0.648552	1.312969

С	5.042013	-0.799703	-0.021107
С	4.626009	1.647403	1.240202
Н	2.728982	0.841967	1.845104
С	6.016624	0.199201	-0.102983
Н	5.220733	-1.750529	-0.517954
С	5.809872	1.426637	0.529628
Н	4.454519	2.600352	1.732984
Н	6.935045	0.017544	-0.655003
Н	6.564908	2.206016	0.470402
н	3.300032	-3.070759	-0.097264

²TSR_1

E_{gas} optimization: -2905.49841688a.u. E_{sol} single-point: -2906.10421680a.u. G_{sol} thermo-corrected: -2905.3975878a.u.

С	1.885120	0.443094	2.678311
С	1.478341	1.616481	2.000604
С	1.125841	2.757230	2.734171
С	1.144176	2.740500	4.128627
Н	0.856645	3.629672	4.682109
С	1.529375	1.581477	4.801295
Н	1.539315	1.555970	5.886925
С	1.913980	0.454799	4.077844
С	2.424000	-0.820086	2.025385
0	3.238950	-1.484368	2.668865
Ν	1.982341	-1.158795	0.762993
С	2.733107	-2.093246	0.042619
С	4.145807	-2.037285	0.055196
Н	4.622788	-1.258212	0.634775
С	4.919051	-2.952521	-0.639619
Н	6.001515	-2.865223	-0.605586
С	4.321441	-3.982631	-1.379950
Н	4.928166	-4.705568	-1.915638
С	2.940167	-4.056460	-1.427246
Н	2.451229	-4.832077	-2.006235
С	2.136251	-3.115542	-0.748961
С	0.698046	-3.203168	-0.953007
0	0.183286	-4.392925	-1.344209
С	-1.263179	-4.223462	-1.340375
Н	-1.647685	-4.639245	-0.403508
Н	-1.668293	-4.772997	-2.192037
С	-1.438458	-2.699950	-1.424054
Н	-2.254576	-2.329723	-0.804111
Ν	-0.150774	-2.227187	-0.883953
Н	0.817954	3.658157	2.214613

Н	2.254274	-0.442714	4.581578
Ρ	1.280942	1.561392	0.183483
С	0.431455	3.097161	-0.320182
С	1.020358	4.025405	-1.190922
С	-0.900210	3.284518	0.091924
С	0.288938	5.127064	-1.640644
Н	2.045751	3.889373	-1.519450
С	-1.620472	4.390484	-0.353248
Н	-1.369687	2.559523	0.745930
С	-1.030453	5.312785	-1.222705
Н	0.753727	5.841361	-2.314206
Н	-2.648815	4.523498	-0.029939
Н	-1.596810	6.170658	-1.573688
С	2.959371	1.621579	-0.531193
С	3.990910	2.371636	0.051681
С	3.218954	0.863032	-1.681465
С	5.264281	2.367560	-0.518830
Н	3.799962	2.942036	0.956068
С	4.491809	0.862842	-2.250905
Н	2.428294	0.252842	-2.107268
С	5.514473	1.616217	-1.670380
Н	6.062146	2.945090	-0.061182
H H	6.062146 4.688701	2.945090 0.261652	-0.061182 -3.133389
н н н	6.062146 4.688701 6.508694	2.945090 0.261652 1.609557	-0.061182 -3.133389 -2.107611
H H H Cu	6.062146 4.688701 6.508694 0.241841	2.945090 0.261652 1.609557 -0.497422	-0.061182 -3.133389 -2.107611 0.075222
H H Cu C	6.062146 4.688701 6.508694 0.241841 -1.631895	2.945090 0.261652 1.609557 -0.497422 -2.225879	-0.061182 -3.133389 -2.107611 0.075222 -2.888234
H H Cu C H	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973
H H Cu C H H	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470
H H Cu C H H C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853
H H Cu C H H C C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696
H H C H H C H H C C C C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118
H H C H H C C C C C C C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881
H H C H H C C H C C C C H	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861
H H C H H C C H H C C C H C C H C C H C C C H C C C H C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317
н н с с н с с с н с н с н с н с н с	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.303881 -2.996317 -2.776273
H H C C H H C C C H C H C	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527
н н н ^а с н н с с с с н с н с н	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125
н н с с н н с с с с н с н н н с с с с н с н н н с п н с н н н с н с	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221
н н н ^а с н н с с с с н с н с н н н	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134
н н с с н н с с с с н с н н н si	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000
н н н с с с с с н с н н н ю н н ю н н ю ю н ю ю ю ю	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321 -0.803672	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049 -0.564861	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000 1.806768
н н с с н н с с с с н с н с н н ю н с	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321 -0.803672 -2.748733	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049 -0.564861 -1.664928	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000 1.806768 2.844089
ннносннсссинснины жисс	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321 -0.803672 -2.748733 -4.214091	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049 -0.564861 -1.664928 -1.699211	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000 1.806768 2.844089 3.313139
ннноснноссинснины ынссс	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321 -0.803672 -2.748733 -4.214091 -2.376689	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049 -0.564861 -1.664928 -1.699211 -3.006526	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000 1.806768 2.844089 3.313139 2.177718
ннносннсссинснены поссс	6.062146 4.688701 6.508694 0.241841 -1.631895 -0.855530 -2.598516 -1.576243 -0.347671 -2.735153 -0.271028 0.554918 -2.660758 -3.696082 -1.426735 0.692599 -3.566945 -1.359910 -2.341321 -0.803672 -2.748733 -4.214091 -2.376689 -1.842968	2.945090 0.261652 1.609557 -0.497422 -2.225879 -2.704793 -2.613267 -0.728165 -0.082610 0.053387 1.309911 -0.681145 1.449102 -0.423460 2.081346 1.794806 2.033124 3.164061 -0.184049 -0.564861 -1.664928 -1.699211 -3.006526 -1.477559	-0.061182 -3.133389 -2.107611 0.075222 -2.888234 -3.497973 -3.231470 -3.060853 -3.255696 -2.947118 -3.303881 -3.345861 -2.996317 -2.776273 -3.165527 -3.429125 -2.870221 -3.168134 1.613000 1.806768 2.844089 3.313139 2.177718 4.078332

Н	-4.912639	-1.885196	2.493138
Н	-4.363582	-2.491260	4.062228
Н	-1.346737	-2.988898	1.798190
Н	-2.448397	-3.837601	2.894991
Н	-3.043400	-3.253062	1.341258
Н	-1.963356	-2.317779	4.777855
Н	-0.783907	-1.425111	3.802791
Н	-2.089739	-0.558150	4.622194
0	-1.584653	0.208618	-0.032552
Н	-2.104561	0.442126	-0.814847
С	-4.031179	0.003020	0.626518
С	-4.697994	-1.045554	-0.035426
С	-4.523060	1.300466	0.389835
С	-5.781244	-0.819266	-0.889791
Н	-4.373439	-2.072527	0.117607
С	-5.602252	1.545595	-0.464081
Н	-4.044396	2.146008	0.882518
С	-6.234133	0.483195	-1.114842
Н	-6.273353	-1.657477	-1.378183
Н	-5.952621	2.563506	-0.620516
Н	-7.073741	0.666134	-1.779994
н	-2.354296	1.099135	2.388952

²TSR_2

$$\begin{split} &\mathsf{E}_{\mathsf{gas}} \text{ optimization: -2905.49371656a.u.} \\ &\mathsf{E}_{\mathsf{sol}} \text{ single-point: -2906.09831946a.u.} \\ &\mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2905.39417046a.u.} \end{split}$$

С	-1.030691	2.180947	2.025382
С	-1.980560	1.159976	1.845634
С	-2.773951	0.741503	2.922164
С	-2.609020	1.313668	4.182941
Н	-3.216707	0.971089	5.015121
С	-1.664325	2.324264	4.367300
Н	-1.529108	2.774088	5.346424
С	-0.900678	2.769096	3.289727
С	-0.188207	2.809059	0.925796
0	-0.345492	4.017310	0.754929
Ν	0.750054	2.022194	0.276781
С	1.921607	2.654357	-0.159826
С	2.395190	3.817667	0.509273
Н	1.801927	4.237560	1.307273
С	3.582911	4.440080	0.176844
Н	3.887088	5.321635	0.734815
С	4.393785	3.942959	-0.852679
Н	5.323486	4.433197	-1.122167

С	3.988313	2.796866	-1.503578
н	4.609186	2.369481	-2.280475
С	2.777186	2.135418	-1.179215
С	2.532992	0.886642	-1.882053
0	3.514263	0.479525	-2.719701
С	3.207113	-0.870363	-3.130741
н	3.957829	-1.531161	-2.690121
н	3.266199	-0.909549	-4.222181
С	1.787035	-1.127212	-2.579601
н	1.772075	-1.981430	-1.901032
N	1.524702	0.079658	-1.768517
н	-3.510744	-0.041606	2.779600
н	-0.194358	3.582977	3.416518
Р	-2.030939	0.400018	0.185006
С	-3.231828	-0.970565	0.353384
С	-4.522826	-0.938562	-0.190423
С	-2.821704	-2.106214	1.073544
С	-5.387424	-2.020564	-0.015840
н	-4.852989	-0.075185	-0.757132
С	-3.686192	-3.186690	1.242026
н	-1.833463	-2.142615	1.519722
С	-4.971783	-3.147055	0.696414
н	-6.386385	-1.982325	-0.440872
н	-3.354026	-4.056036	1.801620
н	-5.646052	-3.988167	0.828560
С	-2.767366	1.685759	-0.884408
С	-3.940537	2.376224	-0.541889
С	-2.071608	2.038490	-2.049592
С	-4.430741	3.377907	-1.378088
Н	-4.456384	2.141268	0.384818
С	-2.561956	3.045925	-2.881189
Н	-1.135055	1.540770	-2.282092
С	-3.744382	3.709482	-2.550023
Н	-5.338612	3.909948	-1.109425
Н	-2.013334	3.321711	-3.776883
Н	-4.123253	4.497487	-3.194367
Cu	0.321625	0.097721	-0.134915
С	0.750974	-1.332734	-3.701747
Н	0.618814	-0.383685	-4.234425
Н	1.193921	-2.036401	-4.419806
С	-0.583657	-1.885800	-3.259588
С	-1.767232	-1.162118	-3.434115
С	-0.662154	-3.170508	-2.700063
С	-2.999433	-1.702053	-3.057248
Н	-1.728223	-0.169740	-3.872969
С	-1.889255	-3.710647	-2.316706

Н	0.247507	-3.748267	-2.559336
С	-3.064706	-2.977095	-2.497654
Н	-3.905234	-1.118631	-3.191459
Н	-1.930048	-4.704714	-1.880356
Н	-4.018195	-3.387839	-2.184176
Si	1.243826	-1.966185	1.622084
Н	0.652092	-3.360657	1.714141
Н	0.838800	-0.437845	1.560621
С	1.441412	-1.744747	3.561443
С	2.186401	-2.961027	4.134044
С	2.194024	-0.452379	3.911883
С	0.019939	-1.678277	4.150191
Н	1.679633	-3.901140	3.882878
Н	3.211173	-3.022134	3.748382
Н	2.249150	-2.907696	5.231352
Н	1.693318	0.429463	3.493024
Н	2.250204	-0.310379	5.001325
Н	3.221052	-0.467123	3.529340
Н	0.046654	-1.582929	5.246059
Н	-0.536584	-0.814427	3.766239
Н	-0.557991	-2.584116	3.920592
С	2.971215	-1.990453	0.853419
С	3.565624	-3.173510	0.382398
С	3.682649	-0.789368	0.672726
С	4.816877	-3.160557	-0.241156
Н	3.041928	-4.119817	0.498556
С	4.929750	-0.764435	0.045228
Н	3.243651	0.147380	1.005655
С	5.502013	-1.954213	-0.413048
Н	5.257404	-4.090162	-0.593201
Н	5.442097	0.182999	-0.097222
Н	6.472921	-1.941687	-0.901358
0	0.351534	-1.878984	-0.087666
Н	-0.442470	-2.401809	-0.259405

²TSR_3/1

E_{gas} optimization: -2905.49398290a.u. E_{sol} single-point: -2906.09851890a.u. G_{sol} thermo-corrected: -2905.3913679a.u. C 0.737918 1.741433 2.447748

С	-0.518192	1.876038	1.825252
С	-1.660979	2.075717	2.612369
С	-1.567774	2.119625	4.003052
н	-2.465301	2.263733	4.597664
С	-0.324161	1.988263	4.621239

Н	-0.242066	2.025328	5.703502
С	0.820120	1.825934	3.843176
С	2.074436	1.635870	1.732373
0	2.882564	2.533479	1.971597
Ν	2.318758	0.523975	0.946239
С	3.653026	0.147895	0.749722
С	4.633333	0.437656	1.737491
н	4.337938	0.993644	2.613967
С	5.952053	0.043089	1.615336
н	6.649996	0.291367	2.410447
С	6.389637	-0.673830	0.492968
н	7.426877	-0.974944	0.389049
С	5.461911	-1.007220	-0.471047
н	5.766167	-1.586558	-1.333330
С	4.100300	-0.625929	-0.365493
С	3.221476	-1.115872	-1.413029
0	3.802348	-1.912728	-2.345682
С	2.790611	-2.264003	-3.306578
н	2.833523	-3.342459	-3.473549
н	3.017282	-1.743197	-4.244829
С	1.469441	-1.780348	-2.672893
н	0.901689	-2.605236	-2.231333
Ν	1.941924	-0.939653	-1.553191
н	-2.630560	2.189365	2.142150
н	1.797846	1.766524	4.310023
Ρ	-0.573278	1.622753	0.007555
С	-2.288318	2.076449	-0.469831
С	-2.581666	3.228225	-1.215512
С	-3.337489	1.220218	-0.096721
С	-3.900876	3.523364	-1.566401
н	-1.785179	3.897444	-1.521658
С	-4.654778	1.528980	-0.432643
н	-3.132833	0.311963	0.457170
С	-4.941187	2.679607	-1.170412
н	-4.113884	4.418379	-2.144137
Н	-5.447348	0.855530	-0.123927
Н	-5.966905	2.915489	-1.439167
С	0.485580	2.954297	-0.672174
С	0.512990	4.250175	-0.135833
С	1.324077	2.634803	-1.749915
С	1.353220	5.216935	-0.686014
Н	-0.110073	4.493072	0.719796
С	2.161947	3.604972	-2.300275
Н	1.345213	1.615622	-2.123612
С	2.174955	4.896403	-1.769989
Н	1.376813	6.216263	-0.261571

Н	2.815251	3.348810	-3.129431
Н	2.835473	5.649336	-2.190237
Cu	0.817852	-0.467214	0.079560
С	0.590776	-1.045939	-3.701946
Н	1.000768	-0.041774	-3.856273
Н	0.711798	-1.574527	-4.658262
С	-0.889422	-0.979870	-3.403466
С	-1.566516	0.242711	-3.370961
С	-1.628428	-2.160369	-3.225683
С	-2.948478	0.290271	-3.172497
Н	-1.009445	1.167653	-3.497287
С	-3.005042	-2.116075	-3.011424
Н	-1.121952	-3.121528	-3.248711
С	-3.670233	-0.886966	-2.985557
Н	-3.452820	1.249179	-3.135945
Н	-3.557822	-3.040061	-2.866593
Н	-4.740312	-0.846136	-2.807745
Si	-0.621858	-2.271599	1.756051
Н	-0.533989	-2.266427	3.280284
Н	0.348214	-1.064655	1.722697
С	0.159834	-3.995284	1.363894
С	-0.622293	-4.761219	0.278528
С	1.613819	-3.786781	0.885249
С	0.175864	-4.841407	2.653260
Н	-1.653262	-4.965217	0.590488
Н	-0.654887	-4.196137	-0.656365
Н	-0.144282	-5.731330	0.079843
Н	2.214249	-3.234187	1.617811
Н	2.106702	-4.755804	0.720600
Н	1.645317	-3.231888	-0.056720
Н	0.614321	-5.829706	2.454525
Н	0.763551	-4.366806	3.445340
Н	-0.834759	-5.001542	3.046663
С	-2.493081	-1.956303	1.655166
С	-3.107622	-1.238139	2.697624
С	-3.312471	-2.391662	0.596224
С	-4.472877	-0.943331	2.673694
Н	-2.503762	-0.893121	3.532653
С	-4.682748	-2.124875	0.577909
Н	-2.875260	-2.942415	-0.230399
С	-5.266477	-1.393903	1.615960
н	-4.918255	-0.368741	3.481577
н	-5.292352	-2.479112	-0.249331
н	-6.331823	-1.178786	1.601685
0	-0.491050	-1.843297	-0.293194
н	-1.275347	-1.483678	-0.727523

²TSR_3/2

E_{gas} optimization: -2905.49236215a.u. E_{sol} single-point: -2906.09793804a.u. G_{sol} thermo-corrected: -2905.39208304a.u.

С	2.083703	1.799542	2.119614
С	0.966124	2.412287	1.512544
С	0.221371	3.364963	2.222917
С	0.551960	3.693376	3.536438
н	-0.042758	4.424021	4.077135
С	1.652651	3.087680	4.143144
н	1.922614	3.338583	5.164793
С	2.421185	2.171905	3.428533
С	3.087096	0.857653	1.459269
0	4.270487	1.193314	1.559148
Ν	2.642377	-0.299555	0.859409
С	3.578558	-1.311472	0.601654
С	4.660630	-1.530309	1.490932
н	4.758033	-0.885343	2.351804
С	5.599203	-2.526200	1.284130
Н	6.404087	-2.648797	2.003819
С	5.518452	-3.373233	0.170323
Н	6.259319	-4.148220	0.002951
С	4.459746	-3.214634	-0.702077
Н	4.353690	-3.875929	-1.553629
С	3.479149	-2.214309	-0.503781
С	2.358035	-2.217222	-1.427386
0	2.395231	-3.100353	-2.459787
С	1.202752	-2.872784	-3.248432
н	0.783425	-3.843732	-3.519270
н	1.495345	-2.334847	-4.158700
С	0.301061	-2.024069	-2.331909
н	-0.397913	-2.654994	-1.773151
Ν	1.270577	-1.520731	-1.344285
н	-0.627955	3.846096	1.749475
н	3.309015	1.735333	3.873018
Ρ	0.510671	1.852449	-0.171443
С	-1.095461	2.639134	-0.559335
С	-1.303451	3.444754	-1.689461
С	-2.203798	2.270164	0.225174
С	-2.593308	3.866576	-2.023721
Н	-0.463438	3.737158	-2.311010
С	-3.488067	2.695598	-0.106906
Н	-2.070466	1.648721	1.103475
С	-3.685964	3.493314	-1.237885

Н	-2.741907	4.488188	-2.902156
Н	-4.324733	2.382985	0.509857
Н	-4.686183	3.821688	-1.505632
С	1.755549	2.626979	-1.264989
С	2.059585	3.996522	-1.209195
С	2.453390	1.798522	-2.155360
С	3.034005	4.531164	-2.049751
Н	1.540107	4.636191	-0.501161
С	3.432594	2.336990	-2.992497
Н	2.243885	0.733391	-2.166817
С	3.719704	3.701552	-2.942913
Н	3.267071	5.590986	-2.002690
Н	3.977814	1.689257	-3.672883
Н	4.485198	4.119362	-3.590491
Cu	0.730168	-0.546863	0.337410
С	-0.494995	-0.895199	-3.028395
н	-0.181669	0.056119	-2.590057
н	-0.209925	-0.846194	-4.088169
С	-2.002305	-1.020893	-2.923591
С	-2.787253	0.105271	-2.643169
С	-2.646976	-2.251943	-3.113912
С	-4.177248	0.004762	-2.549729
н	-2.312842	1.069289	-2.492345
С	-4.034808	-2.356570	-3.017489
н	-2.062396	-3.141076	-3.337795
С	-4.806223	-1.225882	-2.736448
н	-4.756989	0.890435	-2.311422
н	-4.513503	-3.320898	-3.161818
н	-5.886476	-1.307656	-2.658715
Si	-1.399159	-1.322871	1.981118
н	-1.188408	-0.880863	3.424032
н	0.165435	-0.685829	1.888026
С	-1.204122	-3.236014	2.029470
С	-2.182131	-3.902533	1.040754
С	0.236977	-3.635389	1.645277
С	-1.507082	-3.733229	3.456608
н	-3.225968	-3.697824	1.301668
н	-2.019250	-3.548543	0.017749
н	-2.046788	-4.993370	1.049643
н	0.983716	-3.169098	2.297069
н	0.364487	-4.725075	1.715337
н	0.471810	-3.341933	0.615957
H	-1.433186	-4.828830	3.505516
Н	-0.805553	-3.318131	4.187847
H	-2.519197	-3.456991	3.775083
С	-3.209029	-0.685672	1.901787

С	-5.011878	0.614009	2.931607
Н	-3.062175	0.333438	3.794612
С	-5.388890	-0.469910	0.807747
Н	-3.743309	-1.560362	-0.009524
С	-5.857834	0.322553	1.859224
Н	-5.366724	1.231216	3.753005
Н	-6.035698	-0.701861	-0.033750
Н	-6.873842	0.708385	1.843092
0	-1.190130	-1.144655	0.145218
Н	-1.794934	-0.532744	-0.299106
2 T S	SR_4		
Ega	_{as} optimizatio	n: -2905.47	849928a.u.
Eso	single-poin	t: -2906.086	43990a.u.
Gso	hermo-cor	rected: -290	5.3823199a.u.
С	1.015087	0.024546	2.591385
С	-0.208835	-0.652258	2.424346
С	-0.442709	-1.834522	3.142907
С	0.526181	-2.354258	4.001177
н	0.327688	-3.275573	4.541160
С	1.733941	-1.678571	4.174732
Н	2.492234	-2.069728	4.846494
С	1.961437	-0.489039	3.488495
С	1.395674	1.360889	1.979092
0	1.729481	2.240774	2.773646
Ν	1.438411	1.479775	0.602617
С	2.284460	2.475312	0.092412
С	3.512694	2.759058	0.744127
Н	3.757361	2.216270	1.645660
С	4.403478	3.702045	0.268100
Н	5.332661	3.868414	0.806240
С	4.125377	4.429727	-0.898431
Н	4.818738	5.177501	-1.269273
С	2.958493	4.156499	-1.580813
Н	2.735698	4.680247	-2.501821
С	2.036132	3.183508	-1.119661
С	0.896968	2.917408	-1.978918
0	0.824826	3.657662	-3.114036
С	-0.377040	3.265992	-3.802401
н	-0.145207	3.146911	-4.862608
н	-1.117893	4.066472	-3.679777
С	-0.809343	1.964456	-3.102808
н	-0.462162	1.077068	-3.641116

C -3.709318 0.106319 2.950368 C -4.082167 -0.958068 0.828139

WILEY-VCH

SUPPORTING INFORMATION

Ν	-0.029941	2.015444	-1.845366
Н	-1.389457	-2.351983	3.043379
Н	2.882626	0.062948	3.638224
Р	-1.398831	0.046977	1.204349
С	-2.923583	-0.951471	1.457095
С	-4.102161	-0.418693	1.998590
С	-2.912663	-2.297234	1.054444
С	-5.237456	-1.219928	2.144967
н	-4.137745	0.619438	2.309864
С	-4.040686	-3.099292	1.215825
н	-2.016278	-2.721355	0.618098
С	-5.209651	-2.562026	1.760825
н	-6.142918	-0.792798	2.566624
н	-4.008198	-4.139582	0.905400
н	-6.092309	-3.183215	1.881498
С	-1.797774	1.692437	1.911279
С	-1.965111	1.899274	3.289322
С	-1.901964	2.780530	1.033933
С	-2.253652	3.172957	3.776201
н	-1.854683	1.066202	3.977207
С	-2.191923	4.054641	1.523747
н	-1.711108	2.630382	-0.023223
С	-2.370528	4.250799	2.893943
н	-2.374863	3.327848	4.844264
н	-2.261456	4.894604	0.838446
н	-2.585717	5.244010	3.277367
Cu	0.311577	0.408410	-0.654084
С	-2.336338	1.905453	-2.936600
н	-2.631541	2.601486	-2.143800
н	-2.767837	2.305863	-3.865691
С	-2.947599	0.542145	-2.700720
С	-3.835457	0.328832	-1.642180
С	-2.694697	-0.518021	-3.585591
С	-4.459168	-0.908741	-1.468012
н	-4.038228	1.135250	-0.941854
С	-3.295844	-1.762721	-3.401310
Н	-2.010334	-0.375635	-4.416589
С	-4.184554	-1.960514	-2.340109
н	-5.135867	-1.055507	-0.633997
н	-3 071762	-2 575097	-4 086626
н	-4.654167	-2.928169	-2.191309
Si	1.706414	-1.848194	-1.389996
Ъ,	2.349136	-1.024785	-2.447998
н	1 096657	-1 161320	-0 139770
C	0 936888	-3 541021	-1 956040
c	1 050202	-0.041021	-1 7510049
U	1.300032	-+.00/191	-1./0190/

С	-0.326985	-3.863238	-1.133914
С	0.566811	-3.479212	-3.453697
Н	2.886910	-4.507417	-2.290204
Н	2.207913	-4.826679	-0.698313
Н	1.526331	-5.629820	-2.125783
Н	-1.127456	-3.136901	-1.308350
Н	-0.725797	-4.848553	-1.413929
Н	-0.115334	-3.889807	-0.057829
Н	0.122370	-4.433165	-3.772139
Н	-0.147940	-2.680979	-3.667101
Н	1.451245	-3.305763	-4.077000
С	3.262397	-2.305871	-0.354823
С	4.551033	-2.308429	-0.914759
С	3.146809	-2.650782	1.003759
С	5.675261	-2.653834	-0.159742
Н	4.682495	-2.028571	-1.959054
С	4.262010	-2.998274	1.767743
Н	2.170255	-2.633657	1.483588
С	5.531954	-3.002766	1.185118
Н	6.661950	-2.645449	-0.616649
Н	4.140656	-3.253733	2.817608
Н	6.404571	-3.267305	1.776711
0	-0.015669	-0.810574	-2.128088
Н	-0.879224	-1.233235	-2.022054

²TSR_5

$$\begin{split} & E_{gas} \text{ optimization: -2905.48154549a.u.} \\ & E_{sol} \text{ single-point: -2906.08781460a.u.} \\ & G_{sol} \text{ thermo-corrected: -2905.3816086a.u.} \end{split}$$

С	0.568670	-0.467429	2.809489
С	-0.630537	-1.040973	2.341336
С	-1.078999	-2.255822	2.883280
С	-0.344163	-2.916202	3.865846
Н	-0.699920	-3.862779	4.262352
С	0.838046	-2.347465	4.340528
Н	1.417259	-2.847496	5.111354
С	1.272184	-1.127317	3.830216
С	1.225471	0.831656	2.362620
0	1.685733	1.550099	3.252006
Ν	1.391136	1.071323	1.015492
С	2.527025	1.799173	0.642522
С	3.747870	1.601704	1.333030
Н	3.766937	0.905263	2.158877
С	4.914759	2.239091	0.958745
н	5.829099	2.027103	1.505594

WILEY-VCH

SUPPORTING INFORMATION

С	4.932419	3.129467	-0.125991
Н	5.847585	3.635021	-0.416696
С	3.766247	3.330722	-0.835999
н	3.759973	3.988906	-1.696192
С	2.564089	2.669812	-0.483605
С	1.426033	2.860331	-1.362908
0	1.578397	3.770773	-2.356603
С	0.340466	3.805592	-3.093576
н	0.573577	3.811895	-4.160022
н	-0.188736	4.730443	-2.830356
С	-0.415831	2.550090	-2.620760
н	-0.255651	1.709683	-3.303627
Ν	0.300216	2.209158	-1.374215
н	-2.006979	-2.692082	2.530302
н	2.172856	-0.659485	4.210876
Р	-1.563024	-0.166082	1.023548
С	-2.864212	-1.371690	0.572479
С	-4.185976	-1.343101	1.032863
С	-2.459915	-2.414727	-0.276033
С	-5.082216	-2.345536	0.655385
н	-4.521100	-0.536900	1.675985
С	-3.353688	-3.414870	-0.652144
н	-1.433143	-2.450664	-0.624239
С	-4.670323	-3.381663	-0.185030
н	-6.105751	-2.314047	1.018109
Н	-3.020706	-4.214984	-1.306794
Н	-5.371149	-4.159255	-0.474673
С	-2.341898	1.226562	1.917356
С	-3.030605	1.065612	3.129967
С	-2.167326	2.513464	1.388964
С	-3.578108	2.173022	3.776421
Н	-3.119106	0.078867	3.575545
С	-2.709387	3.621277	2.042603
Н	-1.582081	2.638825	0.483816
С	-3.423368	3.450448	3.229913
Н	-4.112053	2.042638	4.713205
н	-2.562817	4.616200	1.632175
Н	-3.842987	4.312394	3.740535
Cu	0.233508	0.398363	-0.469332
С	-1.916003	2.824168	-2.464873
Н	-2.060801	3.495647	-1.610946
н	-2.223030	3.399173	-3.351508
С	-2.842566	1.629996	-2.356283
С	-3.925684	1.665305	-1.469315
С	-2.719070	0.526523	-3.213712
С	-4.865910	0.633834	-1.444391

Н	-4.035196	2.507914	-0.792518
С	-3.648005	-0.513797	-3.176958
Н	-1.886372	0.468497	-3.906067
С	-4.731273	-0.459840	-2.298211
Н	-5.694951	0.679099	-0.744859
Н	-3.527395	-1.365201	-3.841098
Н	-5.447275	-1.273851	-2.260849
Si	1.696443	-1.466807	-1.634462
Н	2.275407	-0.547997	-2.658678
Н	0.920152	-1.223557	-0.282470
С	1.308451	-3.246953	-2.279129
С	2.548076	-3.708570	-3.080090
С	1.106780	-4.201741	-1.083440
С	0.079063	-3.320655	-3.204172
Н	2.712061	-3.084674	-3.966215
Н	3.458203	-3.676429	-2.473261
Н	2.412479	-4.743391	-3.424672
Н	0.238806	-3.925368	-0.473271
Н	0.944709	-5.229236	-1.438666
Н	1.980578	-4.212045	-0.424956
Н	-0.013807	-4.330794	-3.627090
Н	-0.857442	-3.115866	-2.672833
Н	0.148457	-2.612071	-4.035422
С	3.294881	-1.634300	-0.556727
С	4.560398	-1.306600	-1.070722
С	3.226555	-1.991396	0.802245
С	5.708450	-1.345714	-0.274407
Н	4.650051	-0.994229	-2.109990
С	4.364687	-2.036310	1.608676
Н	2.260321	-2.211319	1.251307
С	5.612864	-1.712043	1.069586
Н	6.673851	-1.079226	-0.697691
Н	4.275293	-2.309082	2.657621
Н	6.501620	-1.733942	1.694991
0	-0.015916	-0.517291	-2.231159
Н	-0.843080	-1.018422	-2.193564

Si(Ph)(^tBu)H₂

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -680.240330010a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -680.366384861a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -680.175490861a.u.} \end{split}$$

Si	-0.868982	-0.000003	-1.180380
Н	-1.097790	-1.216144	-2.010969
С	0.906186	-0.000102	-0.564080
С	1.580322	1.204992	-0.292708

С	1.580403	-1.205075	-0.292490
С	2.873101	1.208209	0.233914
Н	1.091901	2.155130	-0.497389
С	2.873211	-1.208100	0.234136
Н	1.092064	-2.155316	-0.496879
С	3.521479	0.000096	0.499064
Н	3.375184	2.150812	0.434240
Н	3.375338	-2.150649	0.434601
Н	4.528360	0.000204	0.907285
С	-2.103219	0.000099	0.281855
С	-1.875587	-1.258413	1.143987
С	-1.876589	1.258915	1.143714
С	-3.544300	-0.000563	-0.265938
Н	-2.047402	-2.179048	0.573836
Н	-0.856770	-1.296002	1.545334
Н	-2.568438	-1.266532	1.996606
Н	-2.049056	2.179256	0.573313
Н	-2.569390	1.266671	1.996376
Н	-0.857809	1.297391	1.545165
Н	-4.266620	-0.000421	0.562194
Н	-3.748744	0.885420	-0.878229
Н	-3.748157	-0.887139	-0.877536
н	-1.096962	1.216054	-2.011344

²TS2S

E_{gas} optimization: -2905.49994023a.u. E_{sol} single-point: -2906.10739396a.u. G_{sol} thermo-corrected: -2905.40095196a.u.

С	-1.603501	-1.586029	2.322386
С	-1.033619	-2.308973	1.249606
С	-0.357486	-3.510987	1.497730
С	-0.212886	-3.988130	2.800055
Н	0.329779	-4.911609	2.978561
С	-0.762431	-3.272750	3.863664
Н	-0.647547	-3.631949	4.881885
С	-1.468635	-2.097188	3.618780
С	-2.459397	-0.334209	2.201342
0	-3.348391	-0.178896	3.040679
Ν	-2.184034	0.565485	1.191514
С	-3.124112	1.573131	0.945131
С	-4.507107	1.284165	0.942453
Н	-4.818988	0.267010	1.137010
С	-5.456136	2.267379	0.711267
Н	-6.508731	1.998014	0.711804
С	-5.073091	3.596152	0.481402

Н	-5.817949	4.366933	0.311715
С	-3.724791	3.910247	0.462009
н	-3.400161	4.926737	0.269156
С	-2.743658	2.917389	0.665925
С	-1.351881	3.315724	0.512201
0	-1.044711	4.626073	0.645798
С	0.408907	4.707132	0.568569
н	0.795658	4.762862	1.591236
н	0.665200	5.614628	0.018964
С	0.798574	3.401424	-0.139824
н	1.701407	2.948171	0.270326
Ν	-0.365752	2.549717	0.166359
н	0.076473	-4.066786	0.673795
н	-1.935184	-1.548044	4.428585
Р	-1.061450	-1.562174	-0.416515
С	-0.009690	-2.581772	-1.503125
С	-0.517844	-3.230475	-2.637594
С	1.371383	-2.622793	-1.242075
С	0.344787	-3.912726	-3.498478
н	-1.581217	-3.201542	-2.851946
С	2.224090	-3.313630	-2.099369
н	1.767386	-2.090802	-0.386165
С	1.714676	-3.957005	-3.231316
н	-0.056473	-4.412396	-4.375475
н	3.289163	-3.340153	-1.888186
н	2.382737	-4.489275	-3.902238
С	-2.772067	-1.702099	-1.036150
С	-3.562805	-2.831969	-0.781780
С	-3.310436	-0.626635	-1.757119
С	-4.874211	-2.885866	-1.255079
Н	-3.157614	-3.656671	-0.202585
С	-4.620981	-0.684082	-2.230039
Н	-2.709195	0.262958	-1.918405
С	-5.402432	-1.814449	-1.980500
Н	-5.485548	-3.760076	-1.051494
н	-5.035717	0.158375	-2.775144
Н	-6.426143	-1.856642	-2.340859
Cu	-0.457584	0.557310	0.213658
С	0.940741	3.601281	-1.672023
н	0.076231	4.184482	-2.013581
Н	1.833603	4.214416	-1.840622
С	1.031774	2.313314	-2.453737
С	-0.135334	1.654895	-2.869787
С	2.270921	1.708541	-2.708543
С	-0.069373	0.411867	-3.501273
Н	-1.100653	2.115521	-2.676150

С	2.337064	0.465796	-3.346474
Н	3.188732	2.187720	-2.377599
С	1.168708	-0.190032	-3.736195
Н	-0.984023	-0.094489	-3.796091
Н	3.305912	0.004545	-3.504976
Н	1.218438	-1.170591	-4.197989
Si	2.489030	0.326989	1.675105
Н	1.160833	-0.291859	2.124151
С	3.481301	-0.767299	2.975450
С	2.724745	-0.719424	4.315248
С	3.479353	-2.224231	2.465317
С	4.931834	-0.306651	3.197238
Н	2.718677	0.292163	4.739431
Н	1.682916	-1.040906	4.203980
Н	3.198014	-1.382416	5.055562
Н	4.049819	-2.332633	1.534196
Н	3.939726	-2.901566	3.201150
Н	2.458609	-2.586547	2.286434
Н	5.431489	-0.934928	3.950506
Н	5.523945	-0.359668	2.278441
Н	4.974758	0.729289	3.555438
0	1.455412	0.267283	0.020994
Н	1.883149	0.573190	-0.792961
С	3.944362	0.672281	0.399646
С	4.510315	1.958206	0.338538
С	4.426182	-0.268947	-0.530629
С	5.489387	2.297197	-0.601438
Н	4.177731	2.717082	1.045232
С	5.410599	0.050695	-1.468732
Н	4.015739	-1.276069	-0.539878
С	5.942376	1.342388	-1.514563
Н	5.900969	3.303945	-0.619665
Н	5.760151	-0.705280	-2.168750
Н	6.703200	1.598201	-2.247025
Н	2.360915	1.722184	2.226842

²IM4S

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -2905.50454704a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -2906.10780969a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2905.40286769a.u.} \end{split}$$

С	-1.864930	-1.599488	2.248761
С	-1.535537	-2.282566	1.052000
С	-1.273198	-3.660133	1.100219
С	-1.288327	-4.351895	2.311299
Н	-1.069790	-5.415781	2.325704

С	-1.577870	-3.672829	3.494180
Н	-1.579137	-4.199988	4.443618
С	-1.884614	-2.314919	3.452125
С	-2.358324	-0.163233	2.326743
0	-3.117426	0.129666	3.251595
Ν	-1.959231	0.702971	1.334514
С	-2.768273	1.800988	1.037099
С	-4.177756	1.678629	1.110853
Н	-4.595370	0.731527	1.424358
С	-5.024872	2.725543	0.794281
Н	-6.098921	2.573232	0.856634
С	-4.512714	3.966789	0.391581
Н	-5.175059	4.792100	0.150884
С	-3.140691	4.118805	0.300039
Н	-2.716320	5.064827	-0.017395
С	-2.259605	3.054821	0.592887
С	-0.839618	3.312321	0.373949
0	-0.429502	4.603858	0.479329
С	1.017333	4.575327	0.382938
н	1.425569	4.654567	1.396126
н	1.336193	5.431865	-0.214995
С	1.306442	3.210017	-0.263341
Н	2.159664	2.713301	0.201132
Ν	0.066960	2.460218	0.023953
Н	-1.032851	-4.194717	0.188119
Н	-2.163544	-1.775943	4.350656
Ρ	-1.283423	-1.328962	-0.504597
С	-0.508497	-2.516656	-1.663548
С	-1.143993	-2.975326	-2.825485
С	0.815174	-2.912762	-1.400013
С	-0.468921	-3.823802	-3.706836
Н	-2.163406	-2.672074	-3.042526
С	1.475507	-3.776157	-2.270909
Н	1.322998	-2.530322	-0.521848
С	0.837149	-4.231781	-3.428759
Н	-0.969232	-4.172935	-4.605667
Н	2.494737	-4.082684	-2.053172
Н	1.356178	-4.898590	-4.111344
С	-2.941408	-0.957416	-1.171156
С	-4.041117	-1.804033	-0.971823
С	-3.110723	0.242746	-1.876235
С	-5.292517	-1.454037	-1.480883
н	-3.919623	-2.724114	-0.407489
С	-4.361456	0.588296	-2.386193
Н	-2.266820	0.915745	-1.990964
С	-5.452694	-0.260382	-2.189598

Н	-6.143237	-2.109603	-1.318659
Н	-4.488118	1.528395	-2.914495
Н	-6.429958	0.013203	-2.576713
Cu	-0.149673	0.433825	0.547437
С	1.544146	3.323928	-1.786461
Н	0.732603	3.926599	-2.212361
Н	2.476078	3.883039	-1.933695
С	1.618095	1.989467	-2.485027
С	0.470119	1.426089	-3.056950
С	2.817229	1.262552	-2.526211
С	0.511198	0.166967	-3.654888
Н	-0.461928	1.983294	-3.026263
С	2.860415	-0.000300	-3.127195
Н	3.717779	1.672224	-2.075263
С	1.708115	-0.551523	-3.691509
Н	-0.391586	-0.262775	-4.077688
Н	3.795523	-0.551389	-3.133480
Н	1.732865	-1.539628	-4.137672
Si	2.452545	0.275871	1.658621
Н	0.757439	0.337364	2.015989
С	2.654075	-1.179426	2.913959
С	1.782708	-0.920872	4.160207
С	2.186716	-2.488788	2.248682
С	4.125231	-1.321732	3.356430
Н	2.057772	0.014295	4.661368
Н	0.720352	-0.867134	3.906159
Н	1.912358	-1.735557	4.886390
Н	2.800321	-2.750224	1.377996
Н	2.257211	-3.324599	2.958848
Н	1.144182	-2.423425	1.924590
Н	4.218714	-2.125399	4.100324
Н	4.787130	-1.561895	2.519576
Н	4.501935	-0.401537	3.818110
0	1.699343	-0.184520	0.103313
Н	2.156692	0.054006	-0.719947
С	4.160128	0.488895	0.742583
С	4.841323	1.715548	0.793141
С	4.705365	-0.504273	-0.096773
С	5.992816	1.957118	0.035406
Н	4.456730	2.507329	1.435021
С	5.859752	-0.283907	-0.849392
н	4.207405	-1.468936	-0.177476
С	6.503848	0.956397	-0.792602
н	6.490217	2.922501	0.091168
н	6.256403	-1.072709	-1.484493
н	7.397013	1.137062	-1.384548

H 2.484292 1.644408 2.289341

²TS3S

E_{gas} optimization: -2905.50435220a.u. E_{sol} single-point: -2906.10763945a.u. G_{sol} thermo-corrected: -2905.40310645a.u.

С	1.816371	-1.723633	-2.208188
С	1.492052	-2.338523	-0.972551
С	1.207635	-3.712839	-0.951537
С	1.194933	-4.464594	-2.126402
н	0.961760	-5.524706	-2.083573
С	1.475902	-3.850519	-3.346184
Н	1.454849	-4.424170	-4.268117
С	1.803646	-2.497473	-3.375041
С	2.331303	-0.301844	-2.365002
0	3.030927	-0.047326	-3.346006
Ν	2.019936	0.589621	-1.363888
С	2.901232	1.633073	-1.091232
С	4.296966	1.434468	-1.250311
н	4.640258	0.482476	-1.631416
С	5.222826	2.408614	-0.926463
Н	6.280529	2.194045	-1.053308
С	4.812193	3.655180	-0.432878
н	5.536523	4.424047	-0.184043
С	3.458763	3.885433	-0.268324
Н	3.111398	4.839383	0.112629
С	2.496361	2.895139	-0.567879
С	1.106996	3.246897	-0.287812
0	0.798772	4.570582	-0.356878
С	-0.636784	4.664854	-0.203708
н	-1.072092	4.847226	-1.191921
н	-0.856164	5.507485	0.456421
С	-1.033641	3.292655	0.375402
н	-1.913559	2.883574	-0.126663
Ν	0.145535	2.460675	0.069615
н	0.972014	-4.199350	-0.011883
н	2.075656	-2.006210	-4.302604
Ρ	1.251918	-1.310476	0.543893
С	0.462511	-2.457414	1.736548
С	1.099128	-2.927931	2.893105
С	-0.876630	-2.813063	1.494990
С	0.408780	-3.744975	3.792402
Н	2.131215	-2.657013	3.092270
С	-1.552353	-3.647707	2.381843
н	-1.383999	-2.422564	0.618739

С	-0.913763	-4.111858	3.536199
Н	0.909601	-4.102397	4.687757
Н	-2.583924	-3.923307	2.181189
Н	-1.445123	-4.754477	4.232403
С	2.910898	-0.939057	1.209117
С	3.997003	-1.814238	1.069078
С	3.095624	0.296093	1.847252
С	5.249649	-1.458578	1.571509
н	3.864379	-2.761863	0.554779
С	4.347942	0.648738	2.348089
Н	2.264910	0.992552	1.908874
С	5.425095	-0.229266	2.212154
н	6.089921	-2.137115	1.455388
н	4.487847	1.617294	2.818313
н	6.403907	0.049359	2.591737
Cu	0.166326	0.444299	-0.597959
С	-1.292438	3.352836	1.896177
н	-0.405170	3.784785	2.374496
н	-2.121166	4.052631	2.061527
С	-1.622388	2.017071	2.515059
С	-0.635539	1.255169	3.154071
С	-2.923846	1.498464	2.432927
С	-0.939801	0.013383	3.712413
н	0.377380	1.642512	3.215189
С	-3.231930	0.253889	2.992263
н	-3.701961	2.061835	1.923930
С	-2.240808	-0.488629	3.636867
н	-0.162117	-0.572330	4.191549
н	-4.243132	-0.129540	2.906030
н	-2.470322	-1.459248	4.062415
Si	-2.495216	0.409319	-1.652124
н	-0.669132	0.496212	-2.015942
С	-2.572979	-1.009350	-2.959399
С	-1.660206	-0.700786	-4.164070
С	-2.096565	-2.317864	-2.297269
С	-4.019438	-1.186831	-3.470515
н	-1.936360	0.240279	-4.653530
н	-0.610110	-0.630973	-3.869272
н	-1.747126	-1.500466	-4.912421
н	-2.741045	-2.616153	-1.461570
н	-2.107606	-3.138516	-3.027352
н	-1.073892	-2.226863	-1.922637
н	-4.050075	-1.974305	-4.235987
н	-4.710167	-1.470079	-2.671603
н	-4.406448	-0.269081	-3.928685
0	-1.741198	-0.061287	-0.134333

н	-2.187465	0.197472	0.689390
С	-4.240384	0.563949	-0.838353
С	-4.957048	1.768963	-0.919335
С	-4.810575	-0.467576	-0.065948
С	-6.176825	1.948733	-0.258308
Н	-4.549783	2.590305	-1.507146
С	-6.032181	-0.306799	0.589331
Н	-4.284005	-1.414688	0.035935
С	-6.717340	0.909034	0.499972
Н	-6.704498	2.896173	-0.335543
Н	-6.449733	-1.123727	1.173197
Н	-7.664889	1.041802	1.014987
Н	-2.428683	1.804156	-2.194496

²TSS_1/1

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -2905.49530326a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -2906.09775732a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -2905.39189632a.u.} \end{split}$$

С	0.110627	1.223247	2.895092
С	1.116755	1.624386	1.995285
С	1.772365	2.851594	2.170537
С	1.423677	3.699436	3.218773
Н	1.929234	4.653636	3.334642
С	0.428872	3.309644	4.117240
Н	0.151280	3.958783	4.942642
С	-0.202037	2.077332	3.964956
С	-0.692689	-0.072307	2.880272
0	-0.912206	-0.594584	3.975327
Ν	-1.238195	-0.508382	1.691006
С	-2.439543	-1.235535	1.787421
С	-3.423976	-0.803574	2.708944
Н	-3.187166	0.025463	3.362495
С	-4.671432	-1.394821	2.793156
Н	-5.393139	-1.011009	3.508849
С	-5.010564	-2.463505	1.953022
Н	-5.989040	-2.928990	2.009814
С	-4.077663	-2.906743	1.036137
Н	-4.324519	-3.720634	0.366432
С	-2.795193	-2.315811	0.930727
С	-1.920321	-2.842239	-0.112180
0	-2.441996	-3.851278	-0.860455
С	-1.427896	-4.249565	-1.802602
Н	-1.886406	-4.322625	-2.790848
Н	-1.051546	-5.235499	-1.502772
С	-0.349802	-3.148800	-1.687575

WILEY-VCH

SUPPORTING INFORMATION

Н	-0.434186	-2.434791	-2.513405
Ν	-0.743389	-2.429713	-0.460887
н	2.549082	3.150741	1.475141
н	-0.948167	1.747070	4.678743
Р	1.557083	0.481552	0.641645
С	2.559575	1.481626	-0.511108
С	3.910073	1.242491	-0.789591
С	1.893211	2.530253	-1.173450
С	4.586773	2.046499	-1.709970
н	4.428591	0.417942	-0.316117
С	2.572250	3.324092	-2.094989
н	0.852189	2.739468	-0.955820
С	3.922969	3.084079	-2.365251
Н	5.634379	1.850917	-1.920132
н	2.039144	4.128449	-2.592352
н	4.453866	3.702792	-3.082994
С	2.616393	-0.764558	1.455717
С	3.812692	-0.418911	2.105016
С	2.157396	-2.087634	1.502822
С	4.560066	-1.397325	2.757311
н	4.151789	0.612887	2.109791
С	2.900893	-3.059643	2.174752
н	1.217806	-2.346543	1.025531
С	4.105013	-2.719411	2.790999
н	5.488251	-1.127382	3.252483
н	2.535283	-4.081560	2.216981
Н	4.683980	-3.477818	3.310149
Cu	-0.475811	-0.321747	-0.133713
С	1.059458	-3.750546	-1.642298
Н	1.179846	-4.260828	-0.678748
Н	1.089918	-4.544209	-2.404247
С	2.247977	-2.844709	-1.900359
С	3.492199	-3.194701	-1.357501
С	2.183284	-1.738800	-2.759152
С	4.647272	-2.484742	-1.683676
Н	3.556428	-4.035060	-0.671734
С	3.337770	-1.025709	-3.086401
Н	1.230317	-1.414460	-3.160562
С	4.574940	-1.403266	-2.562788
Н	5.599772	-2.776889	-1.250547
н	3.267760	-0.162075	-3.741326
Н	5.469804	-0.844780	-2.821248
Si	-2.196441	0.886621	-2.047160
Н	-2.052020	0.854217	-3.546089
Н	-2.170776	-0.060200	-0.797942
С	-4.153087	0.770576	-2.006742

С	-4.697168	1.015713	-0.590802
С	-4.735334	1.806080	-2.982156
С	-4.538352	-0.649796	-2.461215
н	-4.288056	0.300960	0.132108
н	-4.457336	2.024772	-0.235729
н	-5.791686	0.909405	-0.566483
н	-4.355249	1.662815	-4.001152
н	-5.832029	1.731306	-3.029351
Н	-4.489396	2.829859	-2.675020
Н	-5.631139	-0.773638	-2.488255
Н	-4.162145	-0.870966	-3.468848
Н	-4.145864	-1.413093	-1.776751
С	-1.722898	2.593695	-1.381490
С	-1.633530	2.822201	0.006052
С	-1.373058	3.652989	-2.237667
С	-1.189053	4.042800	0.518650
н	-1.885254	2.022805	0.698174
С	-0.934973	4.881244	-1.732832
н	-1.429850	3.513178	-3.314932
С	-0.832812	5.075115	-0.352547
н	-1.100267	4.175556	1.592982
н	-0.667991	5.684316	-2.415492
н	-0.476432	6.023346	0.040625
0	-0.354469	0.139049	-2.038153
Н	0.347122	0.743594	-2.321278

²TSS_1/2

$$\begin{split} & E_{gas} \text{ optimization: -2905.50177680a.u.} \\ & E_{sol} \text{ single-point: -2906.10427372a.u.} \\ & G_{sol} \text{ thermo-corrected: -2905.39837772a.u.} \end{split}$$

С	-0.892029	0.958407	3.033744
С	0.309336	1.428839	2.461041
С	0.927831	2.576741	2.986184
С	0.340985	3.310033	4.011739
Н	0.828247	4.205783	4.385941
С	-0.868620	2.875355	4.554921
Н	-1.344155	3.434256	5.355902
С	-1.453716	1.704000	4.087002
С	-1.676869	-0.317866	2.719948
0	-2.316296	-0.802751	3.664472
Ν	-1.685009	-0.830588	1.457098
С	-2.738777	-1.708467	1.143934
С	-4.064016	-1.395417	1.516212
Н	-4.233147	-0.497829	2.097518
С	-5.132437	-2.207340	1.170565

WILEY-VCH

SUPPORTING INFORMATION

Н	-6.137618	-1.921396	1.468205
С	-4.923552	-3.386814	0.443716
Н	-5.756841	-4.028179	0.174664
С	-3.633932	-3.721790	0.067085
Н	-3.449874	-4.626447	-0.501052
С	-2.538597	-2.891763	0.389506
С	-1.230688	-3.303760	-0.123507
0	-1.083206	-4.649514	-0.305619
С	0.290511	-4.852175	-0.685001
н	0.332464	-5.615850	-1.463910
н	0.845291	-5.198815	0.197687
С	0.750883	-3.458227	-1.142799
н	0.606384	-3.368030	-2.227703
Ν	-0.237203	-2.563075	-0.492906
н	1.873405	2.911370	2.573233
н	-2.360442	1.320379	4.539246
Р	1.115199	0.521699	1.081123
С	2.077981	1.778893	0.158485
С	3.271445	1.441986	-0.500723
С	1.501479	3.041008	-0.084947
С	3.900993	2.367330	-1.336391
Н	3.705951	0.455695	-0.383634
С	2.129493	3.953491	-0.930238
Н	0.557368	3.310528	0.374173
С	3.337759	3.625378	-1.550445
Н	4.824686	2.086890	-1.831388
Н	1.659781	4.915888	-1.107258
Н	3.827706	4.339370	-2.206066
С	2.276581	-0.585348	1.967651
С	3.597697	-0.258777	2.301982
С	1.737777	-1.811542	2.394328
С	4.378974	-1.160485	3.026539
Н	4.018467	0.694385	1.998884
С	2.517102	-2.699623	3.136182
Н	0.712825	-2.062099	2.134821
С	3.841759	-2.380411	3.444146
Н	5.405403	-0.904450	3.273633
Н	2.090271	-3.642048	3.467011
Н	4.451295	-3.076219	4.013473
Cu	-0.622811	-0.365335	-0.207781
С	2.216563	-3.189655	-0.798037
н	2.280848	-2.932941	0.263573
Н	2.759341	-4.139411	-0.907419
С	2.954058	-2.157086	-1.628130
С	4.335632	-2.003057	-1.429383
С	2.336383	-1.387715	-2.620054

С	5.084272	-1.133490	-2.221850
Н	4.827263	-2.583094	-0.651591
С	3.082675	-0.508856	-3.410906
н	1.266113	-1.446284	-2.772078
С	4.459510	-0.389509	-3.227313
н	6.154630	-1.041211	-2.059404
н	2.579550	0.079446	-4.173550
н	5.039832	0.283040	-3.852220
Si	-1.248524	1.485423	-2.585262
Н	-0.588278	2.290109	-3.665310
н	-1.942294	-0.069440	-0.966129
С	-2.606265	0.455076	-3.467935
С	-2.839631	1.103032	-4.852853
С	-2.115398	-0.995333	-3.661809
С	-3.941012	0.450251	-2.694837
Н	-3.179904	2.142214	-4.767530
Н	-1.932273	1.100590	-5.466488
Н	-3.614400	0.549648	-5.400049
н	-1.934838	-1.481686	-2.698489
н	-2.873761	-1.575333	-4.205350
н	-1.186302	-1.038553	-4.242989
н	-4.701758	-0.096020	-3.268692
н	-3.837968	-0.036700	-1.721041
н	-4.317634	1.465970	-2.527997
С	-1.692057	2.820960	-1.324638
С	-1.367861	4.149021	-1.665764
С	-2.186559	2.587258	-0.025935
С	-1.501518	5.192966	-0.747425
н	-0.978297	4.368762	-2.656623
С	-2.303030	3.622837	0.902722
н	-2.444347	1.577459	0.274063
С	-1.954496	4.927913	0.546765
н	-1.238054	6.207131	-1.036580
н	-2.641455	3.402782	1.910798
Н	-2.034431	5.731649	1.273653
0	0.078176	0.512924	-2.070063
Н	0.940226	0.954766	-2.074029

S-silanol

$$\begin{split} & \mathsf{E}_{\mathsf{gas}} \text{ optimization: -755.514560454a.u.} \\ & \mathsf{E}_{\mathsf{sol}} \text{ single-point: -755.672266995a.u.} \\ & \mathsf{G}_{\mathsf{sol}} \text{ thermo-corrected: -755.476586995a.u.} \end{split}$$

Si-0.8104800.4456210.844482H-0.984832-0.0582382.240087C-1.997749-0.473666-0.313601

С	-3.449847	-0.209290	0.134564
С	-1.800908	0.027504	-1.758808
С	-1.696079	-1.984609	-0.242464
Н	-3.628084	-0.558544	1.158576
Н	-3.694484	0.857116	0.094840
Н	-4.153141	-0.740739	-0.521393
Н	-0.777375	-0.145392	-2.110100
Н	-2.479533	-0.502668	-2.440877
Н	-2.011531	1.098819	-1.842798
Н	-2.374764	-2.538582	-0.904901
Н	-0.670507	-2.209655	-0.556544
Н	-1.833078	-2.381534	0.770736
С	0.986677	0.184022	0.374290
С	1.766183	-0.800438	1.007273
С	1.581557	0.934733	-0.657294
С	3.086354	-1.036917	0.619196
Н	1.338548	-1.388483	1.816809
С	2.902146	0.706113	-1.046586
Н	1.004391	1.708640	-1.158119
С	3.655528	-0.283113	-0.409557
Н	3.671760	-1.803006	1.120348
Н	3.344026	1.296774	-1.844531
Н	4.683537	-0.463364	-0.711694
0	-1.208981	2.065098	0.708871
Н	-0.619531	2.683344	1.153771

R-silanol

E_{gas} optimization: -755.514560454a.u. E_{sol} single-point: -755.672266995a.u.

G_{sol} thermo-corrected: -755.476586995a.u.

Si	-0.810480	0.445621	-0.844482
Н	-0.984832	-0.058238	-2.240087
С	-1.997749	-0.473666	0.313601
С	-3.449847	-0.209290	-0.134564
С	-1.800908	0.027504	1.758808
С	-1.696079	-1.984609	0.242464
Н	-3.628084	-0.558544	-1.158576
Н	-3.694484	0.857116	-0.094840
Н	-4.153141	-0.740739	0.521393
Н	-0.777375	-0.145392	2.110100
Н	-2.479533	-0.502668	2.440877
Н	-2.011531	1.098819	1.842798
Н	-2.374764	-2.538582	0.904901
Н	-0.670507	-2.209655	0.556544
Н	-1.833078	-2.381534	-0.770736

С	0.986677	0.184022	-0.374290
С	1.766183	-0.800438	-1.007273
С	1.581557	0.934733	0.657294
С	3.086354	-1.036917	-0.619196
Н	1.338548	-1.388483	-1.816809
С	2.902146	0.706113	1.046586
Н	1.004391	1.708640	1.158119
С	3.655528	-0.283113	0.409557
Н	3.671760	-1.803006	-1.120348
Н	3.344026	1.296774	1.844531
Н	4.683537	-0.463364	0.711694
0	-1.208981	2.065098	-0.708871
Н	-0.619531	2.683344	-1.153771

²IM5

 E_{gas} optimization: -2468.34478811a.u. E_{sol} single-point: -2468.93559919a.u. G_{sol} thermo-corrected: -2468.44299119a.u.

С	-0.686808	3.518672	2.340757
С	-0.022841	2.409960	2.915702
С	0.064963	2.297174	4.310323
С	-0.513684	3.258661	5.137847
Н	-0.445313	3.153263	6.216807
С	-1.165845	4.356846	4.574901
Н	-1.612720	5.113492	5.213295
С	-1.230200	4.490747	3.189835
С	-0.753334	3.821807	0.849269
0	-0.705236	5.010841	0.512202
Ν	-0.874793	2.759047	0.000319
С	-0.757184	2.986561	-1.369938
С	0.289530	3.786895	-1.886393
Н	0.961586	4.261408	-1.183711
С	0.463628	3.965767	-3.251544
Н	1.281348	4.587832	-3.607079
С	-0.410902	3.362047	-4.170089
н	-0.290846	3.521305	-5.237644
С	-1.450080	2.575139	-3.691625
Н	-2.139359	2.102367	-4.382025
С	-1.634431	2.366311	-2.307860
С	-2.700391	1.455726	-1.891238
0	-3.489387	0.953818	-2.878228
С	-4.474473	0.108106	-2.225478
Н	-4.604120	-0.792667	-2.825437
Н	-5.421455	0.660104	-2.176100
С	-3.865370	-0.130955	-0.836748

WILEY-VCH

Н	-3.244558	-1.035542	-0.846204
Ν	-2.929806	0.995219	-0.705294
н	0.584659	1.453074	4.751659
н	-1.691949	5.358136	2.730972
Р	0.630702	1.105560	1.807230
С	2.138498	1.811216	1.034610
С	2.442548	3.180800	1.101299
С	2.981753	0.967653	0.291827
С	3.557321	3.688485	0.431768
н	1.814968	3.860056	1.665847
С	4.110558	1.472462	-0.356545
н	2.795257	-0.100335	0.221039
С	4.394393	2.839257	-0.295169
н	3.773599	4.751381	0.491497
Н	4.750779	0.777002	-0.892405
н	5.270524	3.237074	-0.799787
С	1.218831	-0.258849	2.891399
С	0.249281	-1.141797	3.404390
С	2.573134	-0.487800	3.189852
С	0.628069	-2.225911	4.198291
Н	-0.796650	-0.973619	3.165558
С	2.949617	-1.583516	3.972029
Н	3.336136	0.181587	2.808404
С	1.980127	-2.454126	4.479846
Н	-0.133294	-2.890626	4.597516
Н	4.000679	-1.746155	4.193561
Н	2.274671	-3.295370	5.101747
Cu	-1.353141	0.862788	0.586559
Br	4.285342	-2.046351	-1.441275
С	-4.859349	-0.231371	0.320441
Н	-4.271897	-0.181927	1.243911
Н	-5.524508	0.639676	0.308209
С	-5.650039	-1.520206	0.260867
С	-4.993803	-2.752260	0.416917
С	-7.028573	-1.521246	0.019044
С	-5.702482	-3.950107	0.334127
Н	-3.920384	-2.770512	0.593388
С	-7.741208	-2.720432	-0.061463
Н	-7.549294	-0.574264	-0.102384
С	-7.079772	-3.938749	0.095467
Н	-5.179422	-4.894733	0.456090
Н	-8.811622	-2.700828	-0.246920
Н	-7.631343	-4.872457	0.032373
0	-1.058991	-2.350720	0.269338
0	0.077090	-2.628138	-1.636150
С	-0.497359	-1.818471	-0.887119

0	-0.583475	-0.557918	-1.035092
Cs	1.545517	-0.024555	-3.060820
Cs	1.861083	-3.731073	0.632629
Н	-1.434778	-1.589302	0.776347
Н	-1.942688	-0.271801	1.508635

²IM6

E_{gas} optimization: -2239.27698542a.u. E_{sol} single-point: -2239.77317231a.u. G_{sol} thermo-corrected: -2239.27814931a.u.

С	3.297794	0.466450	1.489492
С	3.012038	-0.858154	1.096228
С	3.904100	-1.899448	1.406849
С	5.084213	-1.646120	2.098038
Н	5.767708	-2.458805	2.324493
С	5.368314	-0.341301	2.506127
Н	6.280611	-0.126708	3.054881
С	4.482078	0.690948	2.215416
С	2.500900	1.743621	1.226470
0	2.603580	2.642007	2.060874
Ν	1.835063	1.903633	0.019563
С	1.678745	3.251093	-0.394658
С	2.822242	4.078486	-0.415094
Н	3.761221	3.666351	-0.065088
С	2.772183	5.388472	-0.863607
Н	3.681614	5.982650	-0.867583
С	1.567444	5.944974	-1.314245
Н	1.527372	6.970160	-1.667206
С	0.428044	5.161066	-1.306289
Н	-0.519476	5.560872	-1.649562
С	0.464845	3.822761	-0.860345
С	-0.780299	3.072259	-0.878774
0	-1.939196	3.758275	-0.889385
С	-2.999841	2.769185	-1.075265
Н	-3.309759	2.805903	-2.124177
Н	-3.833653	3.040534	-0.426664
С	-2.324275	1.442628	-0.696883
Н	-2.601964	0.621108	-1.360925
Ν	-0.896238	1.783872	-0.884859
Н	3.663955	-2.913541	1.102578
Н	4.686759	1.701955	2.546831
Ρ	1.435031	-1.266429	0.298143
С	1.777050	-2.643020	-0.853096
С	0.987325	-3.796824	-0.914570
С	2.792162	-2.442338	-1.809120

WILEY-VCH

SUPPORTING INFORMATION

С	1.216985	-4.744209	-1.914712
Н	0.185649	-3.953566	-0.203252
С	3.015621	-3.393188	-2.803082
Н	3.411003	-1.549131	-1.765378
С	2.224663	-4.545784	-2.857818
н	0.591033	-5.629427	-1.961926
н	3.802445	-3.233706	-3.534293
н	2.390949	-5.281168	-3.639037
С	0.307857	-1.839928	1.614979
С	0.712882	-1.891937	2.957952
С	-1.022184	-2.143076	1.271755
С	-0.206285	-2.251869	3.944278
Н	1.732697	-1.647946	3.235288
С	-1.930339	-2.505957	2.265862
Н	-1.356936	-2.094057	0.236525
С	-1.525524	-2.557148	3.601736
Н	0.110355	-2.288059	4.982458
Н	-2.957966	-2.720416	1.990163
		0 000747	1 275172
Н	-2.238374	-2.826/4/	4.575472
H Cu	-2.238374 0.660824	-2.826747 0.575434	-0.813048
H Cu Br	-2.238374 0.660824 -2.249857	-2.826747 0.575434 -2.061568	-0.813048 -2.231406
H Cu Br C	-2.238374 0.660824 -2.249857 -2.544565	-2.826747 0.575434 -2.061568 1.035850	-0.813048 -2.231406 0.775066
H Cu Br C H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979	-2.826747 0.575434 -2.061568 1.035850 0.207275	-0.813048 -2.231406 0.775066 0.992285
H Cu Br C H H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722
H Cu Br C H H C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651
H Cu Br C H H C C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201
H Cu Br C H C C C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966
H Cu Br C H C C C C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340
H Cu Br C H C C C C H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191
H Cu Br C H H C C C C H C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094
H Cu Br C H H C C C H C H C H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657
H Cu Br C H H C C C H C H C	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909
H Cu Br C H H C C C H C H C H C H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425 -6.236455	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056 -1.801368	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909 0.341711
H Cu Br C H H C C C C H C H C H H	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425 -6.236455 -6.697276	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056 -1.801368 1.662522	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909 0.341711 2.853437
н с вс н н с с с с н с н н н	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425 -6.621425 -6.697276 -7.646071	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056 -1.801368 1.662522 -0.405743	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909 0.341711 2.853437 1.848127
н ^с вс н н с с с с н с н с н н н о	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425 -6.621425 -6.697276 -7.646071 0.289556	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056 -1.801368 1.662522 -0.405743 -0.321587	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909 0.341711 2.853437 1.848127 -2.604877
н ^с в с н н с с с с н с н с н н о н	-2.238374 0.660824 -2.249857 -2.544565 -1.863979 -2.236435 -3.968644 -4.513126 -4.771474 -5.829333 -3.910635 -6.089662 -4.358125 -6.621425 -6.621425 -6.697276 -7.646071 0.289556 -0.612959	-2.826747 0.575434 -2.061568 1.035850 0.207275 1.872739 0.633848 -0.529945 1.416421 -0.899505 -1.136911 1.045568 2.317573 -0.115056 -1.801368 1.662522 -0.405743 -0.321587 -0.778820	-0.8130472 -0.813048 -2.231406 0.775066 0.992285 1.413722 1.079651 0.513201 1.918966 0.790340 -0.158191 2.197094 2.366657 1.633909 0.341711 2.853437 1.848127 -2.604877 -2.590636

²TS4

E_{gas} optimization: -2239.22439729a.u. E_{sol} single-point: -2239.72111519a.u. G_{sol} thermo-corrected: -2239.23223919a.u. C 2.838217 -2.082936 1.155275

С	1.595085	-2.671020	0.835944

С	1.383543	-4.045253	1.046854
С	2.381656	-4.850605	1.584667
н	2.204578	-5.911312	1.736350
С	3.605459	-4.274207	1.929924
н	4.396040	-4.884197	2.357554
С	3.821046	-2.915694	1.723844
С	3.324883	-0.644005	0.940302
0	4.228522	-0.261693	1.689072
Ν	2.863814	0.103682	-0.126495
С	3.800431	1.066497	-0.573686
С	5.095379	0.622703	-0.923038
н	5.323108	-0.429563	-0.795133
С	6.063380	1.482788	-1.413731
н	7.041774	1.089578	-1.675973
С	5.786859	2.847504	-1.580029
н	6.542242	3.523768	-1.967051
С	4.529379	3.317719	-1.248337
н	4.285054	4.366812	-1.371425
С	3.531720	2.450648	-0.751967
С	2.229229	3.018486	-0.449213
0	2.100434	4.365972	-0.429969
С	0.716087	4.655803	-0.089231
н	0.330801	5.364857	-0.824423
н	0.707227	5.119744	0.902933
С	0.012558	3.277174	-0.114231
н	-0.588143	3.152642	-1.017759
Ν	1.145724	2.352668	-0.240753
н	0.425529	-4.482485	0.782168
н	4.764313	-2.459183	1.998178
Р	0.229971	-1.647778	0.215820
С	-0.675258	-2.671474	-0.998442
С	-1.756435	-3.488114	-0.639481
С	-0.267492	-2.611381	-2.340603
С	-2.412644	-4.244817	-1.610491
н	-2.095429	-3.517057	0.391503
С	-0.928406	-3.366775	-3.308329
н	0.558656	-1.963867	-2.623708
С	-2.001178	-4.184580	-2.943605
н	-3.252079	-4.872784	-1.326885
н	-0.612262	-3.310725	-4.345631
Н	-2.519456	-4.768445	-3.698628
С	-0.942139	-1.401500	1.601234
С	-0.890431	-2.110836	2.808636
С	-1.929105	-0.418199	1.413555
С	-1.826192	-1.841226	3.810710
Н	-0.124331	-2.862297	2.970436
SUPPORTING INFORMATION

С	-2.859334	-0.153304	2.416107
Н	-1.928697	0.146813	0.486061
С	-2.809040	-0.867982	3.616638
Н	-1.782336	-2.391051	4.746475
Н	-3.604268	0.622142	2.262827
н	-3.528595	-0.660366	4.403441
Cu	0.926013	0.387504	-0.562684
Br	-4.050384	-0.757231	-1.827983
С	-0.843885	2.931578	1.119640
Н	-0.690495	1.865162	1.313643
Н	-0.459109	3.456642	2.001703
С	-2.330990	3.170267	0.969388
С	-3.019771	2.695592	-0.161527
С	-3.062630	3.803355	1.980080
С	-4.402611	2.856305	-0.269521
Н	-2.454995	2.187831	-0.941564
С	-4.448515	3.954823	1.877467
Н	-2.544673	4.175188	2.860953
С	-5.123865	3.481534	0.752181
Н	-4.919981	2.493809	-1.154047
Н	-4.997337	4.446746	2.675769
Н	-6.199844	3.602473	0.667303
0	-0.739692	0.728414	-1.421233
н	-3.611352	0.353330	-1.040506
н	-1.097273	-0.061295	-1.848736

²TS5

E_{gas} optimization: -2843.05246685a.u. E_{sol} single-point: -2843.63204615a.u. G_{sol} thermo-corrected: -2842.94608215a.u.

С	-0.457048	2.407360	2.985517
С	-0.282841	3.019116	1.721159
С	-0.393193	4.417654	1.600356
С	-0.692452	5.222949	2.691951
Н	-0.779405	6.298586	2.568621
С	-0.878580	4.627216	3.940167
Н	-1.116909	5.234349	4.808972
С	-0.750443	3.250579	4.076280
С	-0.339586	0.934278	3.403951
0	-0.097596	0.727395	4.602869
Ν	-0.527803	-0.070751	2.507287
С	-0.677999	-1.364482	3.040727
С	-1.692655	-1.616642	3.985258
Н	-2.290883	-0.777318	4.319939
С	-1.924358	-2.888990	4.485338

Н	-2.723897	-3.044271	5.204660
С	-1.137121	-3.970360	4.066642
н	-1.318365	-4.968561	4.452659
С	-0.123373	-3.750671	3.148649
н	0.494159	-4.573443	2.807569
С	0.119789	-2.463956	2.623382
С	1.176265	-2.334581	1.620595
0	2.091501	-3.339411	1.573389
С	2.869982	-3.136613	0.366718
н	2.573164	-3.899819	-0.359575
н	3.926476	-3.259368	0.613641
С	2.497539	-1.704052	-0.076602
н	2.223008	-1.672371	-1.134765
Ν	1.301247	-1.410499	0.725649
н	-0.251847	4.877811	0.627729
н	-0.859111	2.780207	5.045814
Р	0.103346	2.088907	0.186436
С	-0.959013	2.864400	-1.094561
С	-0.563537	3.937138	-1.906587
С	-2.247105	2.329843	-1.242563
С	-1.448022	4.463459	-2.849974
н	0.434523	4.353864	-1.813098
С	-3.132754	2.862636	-2.177825
н	-2.551261	1.483839	-0.635207
С	-2.731659	3.929345	-2.985788
н	-1.132800	5.291553	-3.478593
н	-4.122297	2.429278	-2.280619
н	-3.414945	4.340530	-3.723527
С	1.816083	2.559997	-0.254018
С	2.719997	3.028062	0.709702
С	2.278221	2.290745	-1.555806
С	4.064096	3.216751	0.378935
Н	2.377027	3.235579	1.718385
С	3.616627	2.497872	-1.883596
н	1.588455	1.916381	-2.307299
С	4.515440	2.952489	-0.914417
н	4,757589	3.570004	1.136499
н	3.964463	2,285589	-2.889821
н	5 562131	3 091074	-1 167114
Сц	-0 414832	-0 131687	0 509547
Br	-0 405563	-0 741514	-2 422057
C.	3 604768	-0 666647	0 195681
н	3 189159	0 325473	0 009451
н	3 866608	-0 71021/	1 258080
С	4 825987	-0.894635	-0 664074
c	4.020301	-0 710267	-2 05/076
0	T.100012	0.1 10201	2.00-310

SUPPORTING INFORMATION

С	6.041435	-1.311192	-0.108136
С	5.865319	-0.949042	-2.864301
Н	3.819665	-0.388412	-2.500371
С	7.159139	-1.540937	-0.915080
Н	6.114734	-1.448710	0.968065
С	7.074350	-1.360854	-2.295858
Н	5.790091	-0.805563	-3.938796
Н	8.094290	-1.859923	-0.463235
Н	7.941526	-1.539034	-2.925229
Si	-2.338132	-2.033578	-2.139289
Н	-2.527527	-2.414650	-3.563662
Н	-1.576963	-1.094184	0.320486
С	-2.053822	-3.656669	-1.150166
С	-0.553582	-3.990792	-1.061553
С	-2.662542	-3.628283	0.266589
С	-2.777948	-4.749593	-1.975861
Н	-0.090573	-4.077091	-2.051338
Н	-0.019040	-3.220831	-0.504453
Н	-0.416655	-4.948421	-0.542416
Н	-3.732989	-3.398501	0.245593

Н	-2.542146	-4.614371	0.733599
н	-2.166481	-2.895124	0.905798
Н	-2.682465	-5.715000	-1.462335
Н	-3.850164	-4.544893	-2.083250
Н	-2.353391	-4.861342	-2.978871
С	-3.831093	-0.979132	-1.724600
С	-4.668307	-0.614329	-2.796819
С	-4.195761	-0.563631	-0.428969
С	-5.823764	0.141979	-2.587652
Н	-4.415853	-0.922022	-3.808226
С	-5.347344	0.194529	-0.218725
Н	-3.554335	-0.808784	0.410779
С	-6.163767	0.549650	-1.296615
Н	-6.453552	0.413028	-3.430363
н	-5.605600	0.511435	0.787693
н	-7.059952	1.140760	-1.129568

9. References

- [1] a) L. Liu, K.-X. Guo, Y. Tian, C.-J. Yang, Q.-S. Gu, Z.-L. Li, L. Ye, X.-Y. Liu, *Angew. Chem. Int. Ed.* 2021, 60, 26710–26717; *Angew. Chem.* 2021, 133, 26914–26921; b) F. Sladojevich, A. Trabocchi, A. Guarna, D. J. Dixon, *J. Am. Chem. Soc.* 2011, 133, 1710–1713.
- [2] a) L. J. Tyler, L. H. Sommer, F. C. Whitmore, J. Am. Chem. Soc. 1948, 70, 2876–2878; b) M. P. Doyle,
 C. T. West, J. Am. Chem. Soc. 1975, 97, 3777–3782.
- [3] J. Zhu, S. Chen, C. He, J. Am. Chem. Soc. 2021, 143, 5301–5307.
- [4] D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2004, 126, 7788–7789.
- [5] K. Igawa, D. Yoshihiro, N. Ichikawa, N. Kokan, K. Tomooka, Angew. Chem. Int. Ed. 2012, 51, 12745– 12748; Angew. Chem. 2012, 124, 12917–12920.
- [6] M. Zaranek, S. Witomska, V. Patroniak, P. Pawluć, Chem. Commun. 2017, 53, 5404–5407.
- [7] K. Aoyagi, Y. Ohmori, K. Inomata, K. Matsumoto, S. Shimada, K. Sato, Y. Nakajima, Chem. Commun. 2019, 55, 5859–5862.
- [8] K. Wang, J. Zhou, Y. Jiang, M. Zhang, C. Wang, D. Xue, W. Tang, H. Sun, J. Xiao, C. Li, Angew. Chem. Int. Ed. 2019, 58, 6380–6384; Angew. Chem. 2019, 131, 6446–6450.
- [9] N. Hirone, H. Sanjiki, R. Tanaka, T. Hata, H. Urabe, Angew. Chem. Int. Ed. 2010, 49, 7762–7764;
 Angew. Chem. 2010, 122, 7928–7930.
- [10] T. C. Bedard, J. Y. Corey, J. Organomet. Chem. 1992, 428, 315–333.
- [11] K. Igawa, J. Takada, T. Shimono, K. Tomooka, J. Am. Chem. Soc. 2008, 130, 16132-16133.
- [12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox. Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford, CT, **2013**.
- [13] a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785–789; b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648–5652; c) A. D. Becke, *J. Chem. Phys.* 1993, 98, 1372–1377; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.* 1994, 98, 11623–11627.
- [14] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104–154119.
- [15] a) D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta* **1990**, 77, 123–141; b)
 M. Dolg, U. Wedig, H. Stoll, H. Preuss, *J. Chem. Phys.* **1987**, *86*, 866–872.
- [16] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.

10. NMR Spectra

$\begin{array}{c} - & 167.30 \\ - & 167.30 \\ 141.57 \\ 141.57 \\ 138.56 \\ 138.56 \\ 138.56 \\ 138.56 \\ 138.56 \\ 138.56 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 133.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 138.58 \\ 122.74 \\ 119.95 \\ 112.27 \\ 122.74 \\ 122.27 \\ 113.95 \\ 122.74 \\ 122.27 \\ 122.2$

— -8.42

^{13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5} fl (ppm)

167 25 163 26 160 26 160 26 160 26 16

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

SUPPORTING INFORMATION

SUPPORTING INFORMATION

S127

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

30 20 10 Ь -10

60 50 40

210 200 190 180 170 160 150 140 130 120 90 80 70

155.24 151.91 143.06 137.14 129.98 129.98 127.42 127.42 127.42 122.78 122.78 120.91 119.61 168.97 - 16.39 ~ 30.01 ~ 27.32

$\begin{array}{c} 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 7.56\\ 7.75\\ 7.39\\ 7.73\\ 7.39\\ 7.73\\ 7.39\\ 7.73\\$

7.687.687.7497.7447.7447.7447.7447.7327.7327.7327.7327.722

$\begin{array}{c} 7.5.5\\ 7.5.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 1.0.2\\ 1.$

7.587.7.567.7.567.7.097.7.007.0

8 3 8 8 3 8 8 3 8 8 2 8 8 2 8 8 2 8 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3

$\begin{array}{c} 8.84\\ -8.41\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.82\\ -8.22\\ -8.22\\ -8.22\\ -7.66\\ -7.$

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

0.80

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

-0.97J, r Г ^tBu ∠<mark>Si</mark> ∖H F ЪΗ 3 dit e 5.0 4.5 f1 (ppm) H02.6 2.03 $0.96^{\frac{1}{4}}$ $1.00^{\frac{1}{4}}$ 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.0 3.0 2.5 2.0 1.5 0.5 0, 0 -0. 6.0 3.5 5.5 _ 163.74 < 161.27</pre> 137.63 137.58 137.58 129.68 129.64 129.61 120.49 120.30 117.15 116.94 -25.28 - 17.93 ^tBu ∕Si∖H ́OH 3 210 200 190 180 170 160 150 140 130 20

110 100 f1 (ppm)

90 80 50 40 30

70 60 10

6

10

120

80

70 60

50

40 30

20 10

0 -10

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

- 1.95 — 0.96 $\begin{array}{c} -8.802\\ -8.802\\ -8.802\\ -8.802\\ -7.55$ ſ / ſ _ر_ ر [/]Bu ⊣∖H ∕^{Si}•OH Ph || 0 24 2.00H 1.04 2.054 2.20 40.1 1.11-9.05_H 5.0 4.5 f1 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 — 194.28 $\overbrace{128.13}^{135.76}$ — 159.63 - 114.37 — 70.46 — 25.35 — 17.99 ^tBu ⊣∖H ∕Si, OH Ph) O 24

80

70

60 50

40 30 20

0 -10

10

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

$\begin{array}{c} 7.77\\ 7.75\\$

100 f1 (ppm)

S194

200

190 180

170

160 150

140 130 120

WILEY-VCH

 $\begin{array}{c} 8.84\\ -8.84\\ -8.84\\ -8.82\\ -8.82\\ -8.19\\ -8.82\\ -8.19\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -8.10\\ -7.63\\ -7.63\\ -7.55\\ -7.75\\ -7.$

100 90 f1 (ppm)

110

80 70 60 50 40 30 20

lo

0

-1(

- (661

 $\begin{array}{c} 7.61\\ 7.759\\ 7.759\\ 7.758\\ 7.758\\ 7.742\\ 7.741\\ 7.741\\ 7.742\\ 7.737\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 7.739\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.72\\ 1.7$

100 9 f1 (ppm)

SUPPORTING INFORMATION

SUPPORTING INFORMATION

WILEY-VCH

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl(ppm)

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

WILEY-VCH

11. HPLC Spectra

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.155	VB	0.3958	3957.72656	159.30977	49.9158
2	13.713	BB	0.4028	3971.07813	156.08057	50.0842

Totals :

7928.80469 315.39034

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.138 BB	0.4191	3111.39331	118.98605	97.3946
2	13.699 BB	0.3970	83.23408	3.26942	2.6054
Total	ls :		3194,62739	122,25546	

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.453	BB	0.4164	2.61426e4	1015.13513	49.9548
2	12.918	BB	0.4237	2.61899e4	993.09174	50.0452

Totals :

5.23325e4 2008.22687

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.003	BB	0.3898	3.18133e4	1308.03271	97.0551
2	12.336	BB	0.4022	965.29504	38.54086	2.9449

Totals :

3.27786e4 1346.57358

Peak Table

Detect	or A Ch1 2	20nm	
Peak#	Ret. Time	Area	Area%
1	19.093	2438942	49.966
2	20.753	2442291	50.034

Peak#	Ret. Ti	me Area	Area%
1	18.36	8 1004205	59 93. 579
2	19.76	9 689076	6. 421

Signal 4: DAD1 D, Sig=220,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.804	VB R	0.2306	5867.77637	401.17209	49.8672
2	9.842	BB	0.2903	5890.37012	320.63400	50.0593
3	29.936	W	0.1027	8.64928	1.11281	0.0735

Totals :

1.17668e4 722.91890

Signal 4: DAD1 D, Sig=220,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.800	VV R	0.2575	1.86447e4	1159.91406	96.2724
2	9.853	VB	0.2496	721.90790	42.61866	3.7276

Totals : 1.93666e4 1202.53273

Peak#	Ret.	Time	Area	Area%
1	15.	866	22554847	50.128
2	18.	133	22439887	49.872

Peak#	Ret.	Time	Area	Area%
1	14.	534	118510343	94.660
2	16.	376	6684872	5.340

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.497	VB	0.4382	2.01522e4	738.83752	50.3487
2	12.661	BB	0.4283	1.98730e4	742.39508	49.6513

```
Totals :
```

4.00253e4 1481.23260

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 10.509 VB 0.4493 3.96788e4 1440.58594 97.1406 12.669 BB 2 0.4355 1167.98865 42.91240 2.8594 Totals : 4.08467e4 1483.49834

Signal 8: DAD1 H, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.303	BV	0.3153	442.85382	19.62187	50.0853
2	9.017	VV R	0.2721	441.34464	20.10712	49.9147

Totals :

884.19846 39.72899

Signal 8: DAD1 H, Sig=270,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 8.295 MF 0.3693 959.24170 43.28731 96.5751 2 9.044 FM 0.3135 34.01783 1.80852 3.4249 Totals : 993.25953 45.09583

Signal 8: DAD1 H, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.862	BB	0.3175	7068.21143	365.69183	49.9818
2	16.564	BV R	0.5613	7073.35791	187.86169	50.0182

```
Totals :
```

1.41416e4 553.55353

Signal 8: DAD1 H, Sig=270,4 Ref=360,100

Totals : 4.22951e4 1375.70688

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	e Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.156	VB I	0.2422	239.22018	12.22811	49.3798
2	11.284	BV I	0.2849	245.22902	11.40441	50.6202

484.44920 23.63252

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.138	BB	0.2852	720.23761	36.35097	94.8063
2	11.301	VV R	0.2329	39.45634	2.08400	5.1937
Tota]	ls :			759.69395	38.43497	

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.494	BV	0.4645	2.16267e4	749.78351	50.3527
2	14.009	VV	0.4716	2.13237e4	728.25806	49.6473

Totals :

4.29505e4 1478.04156

Signal 8: DAD1 H, Sig=220,4 Ref=off

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 0.4696 2.60590e4 1 12.496 BV 900.47961 92.4360 2 14.026 VB 0.4700 2132.41357 71.90397 7,5640 Totals : 2.81915e4 972.38358

Peak Table

Detect	or A Ch2 2	230nm	
Peak#	Ret. Time	Area	Area%
1	27.257	6837842	50.480
2	34.212	6707707	49.520

		-		
			6 I	-
гни	ĸ			-
1 000				. ~

De	tect	or A	Ch2 2	30nm	
Pe	eak#	Ret.	Time	Area	Area%
	1	27.	174	8868619	93.043
	2	34.	208	663173	6.957

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.766	BB	0.5035	1.68970e4	530.60211	49.9195
2	22.184	BBA	0.5602	1.69515e4	470.65051	50.0805
2	22.184	DDA	0.3002	1.0951564	4/0.00001	20.0002

```
Totals :
```

3.38485e4 1001.25262

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 17.773 BB 0.4843 4156.77100 133.85883 95.3223 1 22.185 BB 0.5222 203.98459 2 5.88711 4.6777 Totals : 4360.75558 139.74593

Peak Table

PDA Ch2 220nm										
Peak#	Ret. Time	Area	Area%							
1	36.789	12031288	50.406							
2	44.005	11837508	49.594							

Peak Table

PDA Ch2 220nm										
Peak#	Ret. Tir	ne Area	Area%							
1	36. 990	13361514	95.591							
2	44. 596	616220	4.409							

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.361	BV	0.2753	2156.39453	122.55605	49.6630
2	11.089	VB	0.2979	2185.65942	114.91826	50.3370

Totals :

4342.05396 237.47430

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 10.314 BV R 0.2913 1.04854e4 562.94366 94.8183 2 11.138 VB E 0.3098 573.00952 29.09576 5.1817 Totals : 1.10584e4 592.03942

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	71.152	MF	3.5356	3236.98169	15.25890	48.4283
2	77.972	FM	0.6446	3447.09033	89.12873	51.5717

```
Totals :
```

6684.07202 104.38763

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	77.639	MF	4.0916	1.02415e4	41.71748	94.8463
2	89.140	FM	0.9525	556.49188	9.73747	5.1537
Tota]	ls :			1.07980e4	51.45495	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.795	BB	0.2263	71.61598	4.90689	50.2924
2	9.436	BB	0.2796	70.78314	3.83089	49.7076

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.801	BB	0.2343	184.72519	12.08609	95.5187
2	9.479	MM	0.2939	8.66655	4.91515e-1	4.4813

Totals :

193.39174 12.57761

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.470	BB	0.5836	6079.16943	142.52798	50.1065
2	27.248	VV R	0.7377	6053.31543	96.77784	49.8935

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] % # [min] 1 16.442 VV R 0.5798 2.99935e4 729.31799 96.9656 2 26.932 VV R 0.7188 938.59338 15.44885 3.0344 Totals : 3.09321e4 744.76684

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	7.689	BV	0.2219	5185.41504	360.40762	49.9942	
2	8.422	VV	0.2389	5186.62256	334.48621	50.0058	

Totals :

1.03720e4 694.89383

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.682	VV R	0.2283	1.06188e4	736.14056	92.2630
2	8.420	VB	0.2341	890.46210	58.34136	7.7370

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.486	BB	0.7044	3792.69727	66.59971	49.2784
2	30.548	BV R	0.8999	3903.78027	51.41168	50.7216

```
Totals :
```

7696.47754 118.01139

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] % # [min] 1 21.786 VB R 0.7980 6961.46777 116.36109 96.9172 2 31.879 MM 1.1036 221.43103 3.34411 3.0828

Totals : 7182.89880 119.70520

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.651	BB	0.3800	2663.31616	108.63986	49.7850
2	16.872	BB	0.4775	2686.32349	87.17942	50.2150

```
Totals :
```

5349.63965 195.81928

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 13.640 BB 0.3863 8558.94629 341.62067 96.3982 0.4802 319.79294 16.904 BB 2 10.30107 3.6018 Totals : 8878.73923 351.92174

Peak Table

PDA Ch2 220nm								
Peak#	Ret. Time	Area	Area%					
1	24.029	11691945	50.074					
2	32.003	11657381	49.926					

Peak Table

PDA Ch2 220nm									
Peak#	Ret. Time	Area	Area%						
1	24.046	9787199	96.631						
2	32.481	341247	3.369						

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.541	BV	0.1803	3826.93384	327.57690	49.7789
2	6.293	VB	0.1921	3860.92798	308.34769	50.2211

Totals :

7687.86182 635.92459

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.524	BV	0.1836	1.17916e4	985.54431	96.0385
2	6.280	VB	0.1984	486.38962	37.23679	3.9615

Totals : 1.22780e4 1022.78111

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.080	BB	0.2669	1056.84619	60.76555	50.6322
2	9.645	BB	0.3095	1030.45483	51.49400	49.3678

Totals :

2087.30103 112.25955

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.062	BB	0.2620	1374.94080	81.01470	9.7781
2	9.494	BB	0.3455	1.26864e4	565.99469	90.2219

Totals :

1.40614e4 647.00939

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.708	BB	0.2205	2997.83057	210.11287	50.0290
2	8.802	BB	0.2575	2994.35571	180.56339	49.9710

5992.18628 390.67625

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.697	BV	0.2248	8299.66699	566.87201	97.2618
2	8.803	VB	0.2572	233.66165	13.96835	2.7382

Totals :

8533.32864 580.84036

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.382	VV	0.1573	8187.52979	800.97247	50.0288
2	6.446	VB	0.1808	8178.10547	697.49506	49.9712

1.63656e4 1498.46753

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.376	BV	0.1558	7280.82617	721.01025	95.6639
2	6.434	VB	0.1767	330.01443	28.57535	4.3361

```
Totals :
```

7610.84061 749.58560

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.800	MM	0.2438	7503.50977	512.90289	50.0742	
2	10.143	BV R	0.2601	7481.27832	444.80173	49.9258	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % # [min] [min] 1 8.726 VV R 0.2485 1.56579e4 990.07709 95.7652 10.074 VV R 0.2310 692.40930 2 43.18921 4.2348

Totals :

1.63503e4 1033.26630

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	19.481	BB	0.5923	3002.62256	79.19407	50.5418	
2	25.427	BB	0.7673	2938.25122	58.36754	49.4582	

```
Totals :
```

5940.87378 137.56161

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.162	BB	0.5981	1945.62134	51.11383	95.8188
2	25.092	MM	0.8939	84.89960	1.58303	4.1812
Tota]	ls:			2030.52094	52,69686	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.287	VV R	0.3197	853.03021	38.62123	50.2855
2	16.194	VB R	0.3014	843.34314	34.47982	49.7145

Totals :

1696.37335 73.10105

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 13.493 VV R 0.3052 719.55383 35.38477 96.4685 1 2 15.091 MM 0.3337 26.34145 1.31556 3.5315 Totals : 745.89528 36.70032

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.603	BB	0.5179	2664.50879	80.56169	50.1919
2	22.680	BB	0.5703	2644.13232	71.69299	49.8081

```
Totals :
```

5308.64111 152.25468

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.517	BB	0.4866	1048.37610	33.54225	93.4389
2	22.588	BB	0.4578	73.61546	2.08580	6.5611
Tota]	ls:			1121.99155	35.62805	

PDA Ch2 270nm							
Peak#	Ret.	Time	Area	Area%			
1	25.	290	5499466	50.107			
2	29.	157	5476040	49.893			

mAU

PDA Ch2 270nm							
Peak#	Ret. Time	Area	Area%				
1	25.205	25249043	91.983				
2	29.162	2200538	8.017				

Г	eak	rabre

<u>Detect</u>	or A Ch2	230nm	
Peak#	Ret. Tin	ne Area	Area%
1	17.022	10089100	49.927
2	19.442	10118423	50.073

Detector A Ch2 230nm					
Peak#	Ret. Time	Area	Area%		
1	16.996	15259452	94. 551		
2	19.425	879457	5.449		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.310	BV R	0.7695	2.02188e4	385.74930	50.2725
2	29.670	BV R	2.0905	1.99996e4	112.39199	49.7275

Totals : 4.02184e4 498.14129

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Area Peak RetTime Type Width Height Area # [min] [min] [mAU*s] [mAU] % 1 15.257 BB 0.8350 3.46937e4 577.44342 96.8141 29.768 MM 2.4289 1141.68665 2 7.83421 3.1859 Totals : 3.58354e4 585.27763

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	14.084	MM	1.4169	3400.07983	39.99426	51.9881	
2	18.329	MM	2.7775	3140.03149	18.84240	48.0119	

Totals :

6540.11133 58.83666

Signal 5: DAD1 E, Sig=240,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 0.8918 497.86670 1 13.348 BB 6.67780 20.4821 17.035 BB 1.8271 1932.86829 2 12.39635 79.5179 Totals : 2430.73499 19.07416

1	PDA Ch2 214nm							
	Peak#	Ret.	Time	Area	Area%			
	1	24.	865	5963418	49.615			
	2	26.	358	6055992	50.385			

PDA Ch2 214nm							
Peak#	Ret. Time	Area	Area%				
1	25.274	327503	23.358				
2	26.860	1074593	76.642				

PDA Ch2 220nm						
Peak#	Ret. Time	Area	Area%			
1	12.909	9040376	49.995			
2	14.779	9042323	50.005			

PDA Ch2 220nm						
Peak#	Ret. Time	Area	Area%			
1	12.896	4242208	90.549			
2	14.735	442779	9.451			

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.012	VB	0.2869	4855.69336	258.76569	49.3849
2	13.413	BB	0.3264	4976.64307	233.70210	50.6151

Totals :

9832.33643 492.46779

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak RetTime Type Width Height Area Area % # [min] [min] [mAU*s] [mAU] 0.3138 4005.60498 198.17380 83.4967 1 11.970 BB 2 13.394 BB 0.3676 791.71826 33.50994 16.5033

Totals : 4797.32324 231.68373

Signal 6: DAD1 F, Sig=240,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|-------|
 -----|------|-------|
 -----|
 1

 1
 19.220
 VV R
 0.4928
 3727.48242
 110.15948
 50.0627

 2
 22.890
 BV R
 0.5372
 3718.14185
 94.06375
 49.9373

7445.62427 204.22323

Signal 6: DAD1 F, Sig=240,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|------|
 -----|------|------|
 -----|
 1
 17.843 BV R
 0.6299 2383.03320
 45.43306
 51.0503
 2
 21.284 VV R
 0.6238 2284.97241
 43.71924
 48.9497

 Totals :
 4668.00562
 89.15230

PDA Ch2 220nm							
Peak#	Ret. Time	Area	Area%				
1	23. 410	45749429	50.096				
2	25. 191	45574871	49.904				

PDA Ch2 220nm							
Peak#	Ret. Time	Area	Area%				
1	23.482	3789588	51.587				
2	25, 269	3556393	48.413				

PDA Ch2 220nm							
Peak#	Ret. Time	Area	Area%				
1	10.628	7462966	50.408				
2	11.827	7342025	49.592				

Peak Table

PDA Ch2 220nm

Peak#	Ret.	Time	Area	Area%		
1	10.	616	118657	3.176		
2	11.	810	3617174	96.824		

#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.862 MM	0.4523	2.03406e4	749.55762	50.7562
2	20.520 MM	0.5283	1.97346e4	622.59058	49.2438

4.00752e4 1372.14819

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.637	MM	0.2879	143.13380	8.28679	3.0902
2	21.248	MM	0.5173	4488.68994	144.60741	96.9098
Tota]	ls :			4631.82375	152.89420	

Detect	or A Ch1 2	220nm	
Peak#	Ret. Time	Area	Area%
1	35. 585	3565850	49.074
2	38.057	3700396	50.926

Detector A Ch1 220nm						
Peak#	Ret. Time	Area	Area%			
1	34. 981	373886	3.614			
2	37.539	9971935	96.386			

F	PDA Ch2 220nm							
	Peak#	Ret.	Time	Area	Area%			
ſ	1	8.	091	13369164	49.445			
	2	9.	125	13669432	50.555			

mAU

PDA Ch2 220nm							
Peak#	Ret. Time	Area	Area%				
1	8.147	14095749	96.490				
2	9.269	512721	3.510				

#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.862 MM	0.4523	2.03406e4	749.55762	50.7562
2	20.520 MM	0.5283	1.97346e4	622.59058	49.2438

Totals :

4.00752e4 1372.14819

Peak Table

Detect	or A Ch1 2	220nm	
Peak#	Ret. Time	Area	Area%
1	50.157	10709897	49.034
2	52.137	11131772	50.966

Peak Table

Detector A Chl	1 220nm
----------------	---------

Peak#	Ret.	Time	Area	Area%
1	50.	162	1143117	3.181
2	52.	060	34794685	96.819

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	17.922	BV R	0.3041	1.10293e4	544.53638	50.2963	
2	19.342	VV R	0.3385	1.08993e4	480.14175	49.7037	

2.19286e4 1024.67813

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Height Area Area % # [min] [min] [mAU*s] [mAU] 1 18.175 MM 0.3125 858.43420 45.78785 3.1136 2 19.553 MM 0.4182 2.67120e4 1064.52698 96.8864

Totals : 2.75704e4 1110.31483

Signal 4: DAD1 D, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	80.426	MF	2.5399	5318.22852	34.89820	49.2038
2	86.524	FM	3.1339	5490.34375	29.19869	50.7962

Signal 4: DAD1 D, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	82.411	MM	2.8362	4156.30078	24.42392	96.7264
2	91.292	MM	1.3466	140.66612	1.74106	3.2736

Totals :

4296.96690 26.16498

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
				-		
1	15.498	BV	0.2724	229.23476	13.08289	48.7636
2	16.021	VB	0.3021	240.85896	12.42871	51.2364

Totals :

470.09372 25.51160

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.632	BB	0.2468	37.59529	2.10066	2.8526
2	17.437	BB	0.3126	1280.32446	63.68105	97.1474
Tota]	ls :			1317.91975	65.78171	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.236	MF	0.6541	6730.13965	171.49753	50.4810
2	14.655	MM	0.6756	6601.87598	162.86983	49.5190

1.33320e4 334.36736

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.100	MM	0.7447	2.62750e4	588.01056	97.2934
2	15.675	MM	0.7118	730.95349	17.11424	2.7066

Totals :

2.70060e4 605.12480