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ABSTRACT: The enantioconvergent radical C(sp3)−C(sp2)
cross-coupling of alkyl halides with alkenylboronate esters is an
appealing tool in the assembly of synthetically valuable
enantioenriched alkenes owing to the ready availability, low
toxicity, and air/moisture stability of alkenylboronate esters.
Here, we report a copper/chiral N,N,N-ligand catalytic system
for the enantioconvergent cross-coupling of benzyl/propargyl
halides with alkenylboronate esters (>80 examples) with good
functional group tolerance. The key to the success is the rational
design of hemilabile N,N,N-ligands by mounting steric hindrance at
the ortho position of one coordinating quinoline ring. Thus, the
newly designed ligand could not only promote the radical cross-coupling process in the tridentate form but also deliver
enantiocontrol over highly reactive alkyl radicals in the bidentate form. Facile follow-up transformations highlight its potential utility
in the synthesis of various enantioenriched building blocks as well as in the late-stage functionalization for drug discovery.

■ INTRODUCTION

The enantioconvergent C(sp3)−C cross-coupling of racemic
alkyl (pseudo)halides with organometallic reagents represents
a powerful tool in the synthesis of enantioenriched
molecules.1−3 Recent progress has led to the development of
earth-abundant first-row transition-metal catalysis, which could
easily convert racemic alkyl halides to prochiral alkyl radicals
and provide a ready mechanism for achieving enantioconver-
gence, a strategy pioneered by Fu and others.1 On the other
hand, chiral alkenes are valuable synthetic intermediates to
allow straightforward access to useful chiral building blocks.2,4

For example, they easily undergo smooth reduction to alkanes,
oxidation to alcohols, aldehydes, and carboxylic acids as well as
cross-metathesis and pericyclic reactions to provide complex
molecular frameworks.4a For the expedient assembly of chiral
alkenes, the enantioconvergent radical C(sp3)−C(sp2) cross-
coupling of alkyl halides with alkenylmetallic reagents
represents an appealing strategy. As such, Fu and Zhong
have utilized chiral nickel and cobalt catalysis, respectively, to
realize the enantioconvergent coupling with alkenyl zinc,
silicon, zirconium, and magnesium reagents (Scheme 1A).5,6

Notably, most of these alkenylation reagents are air- and/or
moisture-sensitive and need cautious storage in solution under
an inert atmosphere, which may restrict their practical
application.5 Therefore, the development of more practical
enantioconvergent C(sp3)−C coupling with bench-stable
alkenyl nucleophiles is highly desirable.

Given that alkenylboronate esters are air/moisture stable,
readily accessible, and compatible with many functional
groups,7 the enantioconvergent radical cross-coupling of alkyl
halides with alkenylboronate esters would provide a practical
approach toward chiral alkenes but remains unexplored.8 As
part of our continuous interest in designing anionic chiral
ligands for copper-catalyzed enantioconvergent radical cross-
coupling reactions,9 we wondered whether copper catalysis is
applicable to such a transformation. However, several daunting
challenges existed (Scheme 1B). First, the transmetalation rate
of alkenylboronates is slower compared with other more
nucleophilic alkenylmetallic reagents.5,10 Second, the proto-
deboronation and oxidative coupling of alkenylboronates are
easily occurring side reactions.10a In addition, the reducing
capability of copper is slightly weaker than those of nickel and
cobalt,5,11 which may retard the initiation of the radical
process. Finally, the design of chiral ligands for enantiocontrol
over the highly reactive prochiral alkyl radicals is necessar-
y.9c−f,12 To address these challenges, we surmised that an
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electron-rich chiral multidentate ligand would not only
enhance the reducing capability of copper catalysts to initiate
the radical process while suppressing the homocoupling of
alkenylboronate esters but also provide a rigid chiral
environment for enantiocontrol. Herein, we disclose a
copper-catalyzed enantioconvergent radical C(sp3)−C(sp2)
cross-coupling of alkyl halides with alkenylboronate esters
(Scheme 1C). The key to the success is the rational design of a
new class of hemilabile chiral N,N,N-ligands to enhance the
reaction efficiency in the tridentate form and enantioselectivity
in the bidentate form. The reaction tolerates a number of
(hetero)benzyl and propargyl bromides and chlorides, as well
as vinyl- and mono-/disubstituted alkenyl boronate esters with
broad functional group diversity even at 1 mol % catalyst
loading. The strategy, when allied with additional one-step
manipulation, affords diverse synthetically valuable building
blocks (Scheme 1C). Besides, it also provides an alternative
approach to formal C(sp3)−C coupling of purely aliphatic alkyl
halides. It further serves as a useful tool in the late-stage
functionalization of bioactive molecules.

■ RESULTS AND DISCUSSION

Reaction Development. At the outset, we investigated
the reaction of (1-bromopropyl)benzene 1a with methyl-
pentanediol (mp)-derived boronate ester 2a.13 To promote the
transmetalation with the less nucleophilic alkenylboronate
ester, we utilized the metal alkoxide LiOtBu as the base, which
would result in a rapid Cu/B exchange driven by the formation
of a strong B−O bond.10,14 Water is also helpful to the
transmetalation step by increasing the solubility of the base.10a

Afterward, we screened a number of chiral ligands with CuI as
the catalyst. Chiral bisoxazoline (L1) and diamine (L2) ligands
utilized in nickel and cobalt catalysis5 afforded trace amounts
of the coupling product 3 (Table 1, entries 1 and 2). We then
switched to N,N,P-ligands9c−f,15 and discovered that the
reaction with ligand L3 afforded the desired product 3 in
13% yield with 32% ee, albeit with the formation of 3′ (62%)
(Table 1, entry 3). A systematic screening of N,N,P-ligands
showed that the ee of 3 could not be significantly enhanced,
indicating that the enantiocontrol for the alkenylcopper

Scheme 1. Copper-Catalyzed Enantioconvergent Radical C(sp3)−C Cross-Coupling with Alkenylboronate Esters
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complex is likely different from that of alkynyl- or (hetero)-
arylcopper complexes9 (Table 1, entries 4 and 5; for more
N,N,P-ligand screening, see Table S1 in the Supporting
Information (SI)).
We then resorted to the cinchona-alkaloid-derived N,N-

bidentate ligand,16 which performed well in our previously
disclosed copper-catalyzed asymmetric radical C−O forma-
tion.17 Fortunately, the reactions with L6 and L7 generally
afforded 3 with higher enantioselectivity than those with
N,N,P-ligands, but the yield was very low owing to the
formation of a large amount of the homocoupling product 3′
(Table 1, entries 6 and 7). These results implied that the
bidentate ligand is beneficial to the enantioselectivity but is
ineffective for the desired pathway. We then designed a
tridentate N,N,N-ligand L8 by incorporating additional
nitrogen-coordinating site on the basis of L6.18 Using L8 as
the ligand, the yield of the desired product 3 increased
significantly to 57%, and the homocoupling product could be
greatly inhibited. But the enantioselectivity decreased sharply
to 16% (Table 1, entry 8). A direct comparison of L6 and L8

revealed that the bidentate N,N-ligand provided good
enantiocontrol, while the tridentate N,N,N-ligand promoted
the radical cross-coupling. This result prompted us to design a
hemilabile N,N,N-ligand by installing a methyl group at the
vicinal position of the additional nitrogen-coordinating site
(L9), hoping that the added steric hindrance might elongate
and weaken the coordinating Cu−N bond.19 As such, the
designed ligand would not only promote the desired radical
cross-coupling pathway in the tridentate form but also achieve
good enantiocontrol in the bidentate form.19 To our delight,
the enantioselectivity of 3 was enhanced to 91% ee with L9 as
the ligand without affecting the yield (Table 1, entry 9).
Notably, the moderate yield might arise from the proto-
deboronation side reaction of the alkenylboronate ester. A
control reaction with naphthyl alkenylboronate ester supported
this assumption (Scheme S1 in the SI). After further
optimization of reaction parameters, such as the boron sources
and bases (Scheme S1 and Table S2 in SI), we found that the
yield and ee of 3 could be enhanced to 77 and 95%,
respectively, at −20 °C (Table 1, entry 10). Meanwhile, both
the homocoupling and protodeboronation side products were
greatly suppressed.
The concept of ligand design was also supported by

changing the chiral skeleton from quinine to 1,2-diphenyl-
ethane-1,2-diamine: the reaction with L10 and L11 afforded
the enantiomer of 3 (ent-3) in similar yields but with totally
different enantioselectivities (Table 1, entries 11 and 12). The
absolute configuration of 3 was determined to be S by
comparing its HPLC spectrum and optical rotation with those
reported in the literature9c and those of other products were
assigned in reference to 3. Reducing the catalyst loading to 1
mol % with an elongated reaction time did not affect the
reaction efficiency and enantioselectivity (Table 1, entry 13).
Notably, such a low catalyst loading has not been
demonstrated in our previously copper/NNP-ligand cataly-
sis,9c−f showcasing the potential practicability of the current
catalytic system.

Scope of Alkenylboronate Esters and (Hetero)benzyl
Halides. With the optimal reaction conditions established, we
examined the scope of alkenylboronate esters (Table 2). A
series of aryl-/naphthylated alkenylboronate esters with
electron-donating or -withdrawing substituents reacted
smoothly to form the desired products 4−8 in good yields
with 89−95% ee. Furthermore, a range of heteroarenes, such as
thiophene as well as the coordinating pyridine and quinoline,
in alkenylboronate esters were tolerated to afford 9−13 in 71−
87% yields with 86−95% ee. With respect to alkyl-substituted
alkenylboronate esters, barely functionalized aliphatic chains
were well tolerated to afford 14−16 with excellent ee. A gamut
of functional groups, such as conjugating alkene (17 and 18)
and ester (19), ether (20 and 21), acetate (22), silyl ether
(23), and coordinating thioether (24), remained untouched.
Besides, the vinylboronate ester worked well under the
standard conditions to provide 25 with 92% ee, of which the
facile transformation of the olefin moiety would give rise to
many chiral building blocks. The 1,1-disubstituted alkenylbor-
onate ester was also a viable substrate to afford 26, albeit with
moderate enantioselectivity.
We next evaluated the scope of (hetero)benzyl halides. As

for the aryl ring of alkyl bromides, a gamut of electron-
donating and -withdrawing substituents at different positions
(ortho, meta, or para) of the phenyl rings as well as the
naphthyl rings were compatible with the reaction to provide

Table 1. Effect of Ligands in the Model Reactiona

entry L conv. of 2a (%) y. of 3 (%) y. of 3′ (%) Ee (%)

1 L1 >95 trace 29
2 L2 >95 trace 81
3 L3 >95 13 62 32
4 L4 90 29 35 43
5 L5 >95 28 32 46
6 L6 >95 4 80 50
7 L7 >95 3 77 31
8 L8 >95 57 15 16
9 L9 >95 57 26 91
10b L9 >95 77(80) 8 95
11b L10 >95 55 10 −14
12b L11 >95 51 34 −96
13b,c L9 >95 77 17 95

aReaction conditions: (±)-1a (0.30 mmol), 2a (0.20 mmol), CuI (5
mol %), L (7.5 mol %), LiOtBu (2.0 equiv), and H2O (1.0 equiv) in
DMF (2.0 mL) at room temperature for 2 days under argon. Yield
(y.) was based on 1H NMR analysis of the crude product using
CH2Br2 as an internal standard; ee values were based on chiral high-
performance liquid chromatography (HPLC) analysis. bConducted at
−20 °C for 4 days. The negative ee value represents the opposite
configuration (ent-3) of 3 as the major enantiomer. cCuI (1 mol %)
and L (1.5 mol %) for 8 days. Isolated yield was shown in parenthesis.
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27−37 in 61−93% yields with 88−99% ee (Table 3). Alkyl
bromides possessing medicinally relevant heterocycles, such as
thiophene (38), benzo[b]thiophene (39), and quinoline (40),
were also accommodated in the process. With respect to the
alkyl side chain of benzyl bromides, simple unfunctionalized
aliphatic groups and (hetero)aryl groups were suitable for this
reaction to afford chiral alkenes 41−46 in good yields with
90−98% ee. A variety of potentially reactive functional groups,
such as terminal alkene (47), primary chloride (48) and
bromide (49), silyl ether (50), ether (51), sulfone (52) ketone
(53), ester (54), and cyano (55), on the side chains of benzyl
bromides were tolerated. Notably, a good chemoselectivity was
observed for secondary benzyl bromides over primary chloride
(48) and bromide (49). In addition, the cyclic benzyl
bromides also reacted well, delivering 56−59 with up to
93% ee.
Scope of Propargyl Halides. Chiral 1,4-enynes are

another important class of versatile synthons since both the
alkenyl and alkynyl groups near the chiral center are readily
converted to many functional groups.20 To further demon-
strate the generality of the methods, we studied the coupling of
propargyl halides with alkenylboronate esters.21 Again, we
investigated the ligand effect on the reaction of propargyl
bromides 1b and 2a. The reaction followed the same trend

with that of benzyl bromide: while the reaction with the
bidentate ligand L6 afforded the coupling product 60 with a
low yield and high ee, the reaction with the tridentate ligand
L8 provided 60 with a higher yield and lower ee; the
hemilabile ligand L9 performed best in both the efficiency and
enantioselectivity (Table 4, entries 1−3). These results further
supported the concept of ligand design in the cross-coupling.
Further lowering the temperature and adding water provided
the optimal conditions for the enantioconvergent coupling
with propargyl bromides: the reaction of 1b and 2a in a molar
ratio of 1.25:1.0 in the presence of 5 mol % CuI, 5 mol % L9,
1.5 equiv of LiOtBu, and 3.0 equiv of H2O in DMF afforded 60
in 86% yield with 97% ee at −30 °C (Table 4, entries 4 and 5).
With regard to the scope, both (hetero)arylated and

alkylated alkenylboronate esters are suitable for the reaction
to afford 60−63 in good yields with excellent ee (Table 5). As
for the substituents at the aliphatic chain of propargyl halides,
simple unfunctionalized linear and steric hindered propargyl
bromides worked well to give 64−67 with 96−98% ee. A
variety of functional groups, such as phenyl ring (68 and 69),
furan (70), terminal alkene (71), internal alkene (72), ester
(73 and 77), nitrile (74), acetal (75), ether (76) as well as
primary chloride (78), at different distances away from the
reactive site were well tolerated, affording the products with

Table 2. Substrate Scope of Alkenylboronate Estersa,b,c,d

aReaction conditions: (±)-1 (0.30 mmol), 2 (0.20 mmol), CuI (5 mol %), L9 (7.5 mol %), LiOtBu (2.0 equiv) and H2O (1.0 equiv) in DMF (2.0
mL) at −20 °C for 4−6 days under argon. b(±)-(1-bromoethyl)benzene was used. cThe ee value was obtained by conversion to alcohol. dCuI (10
mol %) and L9 (15 mol %).
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good yields and 97−99% ee. More importantly, the propargyl
chloride was also a suitable substrate for the cross-coupling to
provide 69 in 90% ee, albeit with a moderate yield. Most
significantly, the substituents on the alkynyl moiety were
diverse, ranging from sterically crowded TIPS (60), TES (79),
TBDMS (80), and t-butyl (81) groups to less sterically
hindered cyclohexyl (82) and linear n-butyl (83) groups. In
addition, the phenyl-substituted propargyl bromide reacted as
well to give 84 with excellent ee. These results demonstrate the
broad substrate scope of the current Cu/hemilabile N,N,N-
ligand-catalyzed reactions.
Synthetic Utility. To evaluate the practicability of the

strategy, we carried out a gram-scale reaction at a low catalyst
loading, and the coupling product 3 was obtained without an

apparent loss of yield or enantioselectivity (Scheme 2A). To
demonstrate the synthetic utility of enantioenriched alkenes,
facile transformations were performed to convert them to
other enantioenriched building blocks, such as alcohol 85,
carboxylic acid 86, and ester 87 (Scheme 2B). A sequential
cross-coupling and hydrogenation process afforded 88 with a
chiral C(sp3)−C(sp3) bond, thus providing a complementary
strategy to the direct enantioconvergent C(sp3)−C(sp3) cross-
coupling. To get structurally diverse enantioenriched alkenes,
product 69 was hydrated to alkenyl aldehyde 89 and further
converted to alcohol 90. Thus, the strategy affords an
alternative approach for the C(sp3)−C coupling of unfunction-
alized alkyl halides. No obvious loss of enantiopurity was
observed during all of these transformations. The expedient

Table 3. Substrate Scope of (Hetero)benzyl Halidesa,b,c,d,e

aReaction conditions: (±)-1 (0.30 mmol), 2a (0.20 mmol), CuI (5 mol %), L9 (7.5 mol %), LiOtBu (2.0 equiv), and H2O (1.0 equiv) in DMF
(2.0 mL) at −20 °C for 4 days under argon. bL11 was used. cReaction was performed on a 1.0 mmol scale using vinylboronate ester as the coupling
partner. dCuI (10 mol %) and L9 (15 mol %). eEe was obtained by conversion to the alcohol analogues.
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Table 4. Effect of Ligands in the Reaction of Propargyl Halidesa

entry L conv. of 2a (%) y. of 60 (%) Ee (%)

1 L6 >95 22 65
2 L8 >95 55 4
3 L9 >95 68 87
4b L9 60 33 92
5b,c L9 >95 86(86) 97

aReaction conditions: (±)-1b (0.25 mmol), 2a (0.20 mmol), CuI (5 mol %), L (5 mol %), and LiOtBu (1.5 equiv) in DMF (1.0 mL) at room
temperature for 5 days under argon. Yield (y.) was based on 1H NMR analysis of the crude product using CH2Br2 as an internal standard. Ee values
were based on chiral (HPLC) analysis. bConducted at −30 °C. cH2O (3.0 equiv) was added. Isolated yield was shown in parenthesis.

Table 5. Substrate Scope of Propargyl Halidesa,b

aReaction conditions: (±)-1 (0.25 mmol), 2 (0.20 mmol), CuI (5 mol %), L9 (5 mol %), LiOtBu (1.5 equiv), and H2O (3.0 equiv) in DMF (1.0
mL) at −30 °C for 5 days under argon. bThe corresponding propargyl chloride (0.25 mmol) was used at 0 °C.
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access to analogues of drug lead is an important goal in drug
discovery. As such, a sequential benzylic C−H bromination
and enantioconvergent cross-coupling protocol was imple-
mented to showcase the significance of the current method in
the late-stage functionalization of bioactive compounds. For
example, the substrate containing an L-menthol moiety
underwent the sequence smoothly to generate 91 in high
stereoselectivity (Scheme 2C). A retinoic acid receptor agonist
analogue22 reacted well and delivered 92 with 87% ee. Notably,
the combination of the late-stage functionalization and facile
transformations of the vinyl moiety would provide more
analogues for drug discovery.
Mechanistic Studies. To gain insights into the reaction

mechanism, a series of control experiments were conducted. A
radical trap experiment with TEMPO (2,2,6,6-tetramethyl-1-
piperidinyloxy) revealed that the coupling was completely
inhibited and the TEMPO-trapped product 93 was isolated
instead, indicating the involvement of a benzyl radical (Scheme
3A). The reaction of an alkene-tethered substrate 94 gave rise
to 5-exo-trig radical cyclization/cross-coupling product 95,
further supporting the generation of the radical intermediate
(Scheme 3B). Although we failed to synthesize the
alkenylcopper complex, a control experiment without 2a

showed that no conversion of 1a was observed (Scheme
3C). Thus, it is the transmetalation of CuI with the
alkenylboronate ester that possibly occurs first rather than
the single-electron transfer23 between CuI and benzyl bromide.
The reaction of (±)-1d or (S)-1d with p-methoxyphenyl
(PMP)-derived alkenylboronate ester 2b provided the
coupling product 4 in a similar yield, and no enantioenrich-
ment or enantioerosion of 1d was observed (Scheme 3D).
This result excluded kinetic resolution or dynamic kinetic
resolution via fast racemization of alkyl bromides.
Based on the above-mentioned control experiments and

previous reports,9 we proposed a possible mechanism (Scheme
4A). First, the reaction of CuI, chiral ligand, and LiOtBu
afforded a catalytically active copper complex I, where the
ligand behaved as a tridentate form.14 Complex I underwent
transmetallation with alkenylboronate esters 2 to generate the
alkenyl CuI complex II, along with the formation of borate III.
The protodeboration of 2 can be greatly inhibited by lowering
the reaction temperature. Intermediate II then reacted with
alkyl halides 1 through either an inner- or an outer-sphere
single-electron-transfer process,23 giving rise to π-system-
stabilized prochiral alkyl radical IV and the alkenyl CuII

complex V. The easily occuring homocoupling of complex V

Scheme 2. Synthetic Utility
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was significantly suppressed via the utilization of the designed

hemilabile N,N,N-ligand. Next, radical IV reacted efficiently

with complex V to provide the cross-coupling product and

regenerate L*CuI for the next catalytic cycle.

With regard to the key bond formation step between IV and
V, we tentatively assume that a CuIII complex is first generated
(Scheme 4B).12b,24 The subsequent reductive elimination
would afford the coupling products. As such, the ligand
would coordinate with copper in the bidentate form at this

Scheme 3. Mechanistic Investigations

Scheme 4. Mechanistic Proposal
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bond formation step, and two enantiodiscrimination transition
states of distorted square planar CuIII complexes were deduced.
The steric collision between the alkyl group in the substrate
and the sulfonyl group in the ligand makes the si-TS
unfavorable. The favorable re-TS delivers the desired coupling
products of an S configuration, which is consistent with the
experimental results. However, we do not have enough
evidence to support the proposed enantiodiscrimination
process and are currently performing more experimental and
theoretical studies to disclose the detailed mechanism.

■ CONCLUSIONS
In summary, we have described a copper/chiral N,N,N-ligand
catalytic system for enantioconvergent radical C(sp3)−C cross-
coupling of benzyl/propargyl halides with alkenylboronate
esters for expedient synthesis of synthetically valuable
enantioenriched alkenes. The installation of steric hindrance
at the vicinal position of one coordinating quinoline nitrogen
atom led us to strategically design a new class of hemilabile
N,N,N-ligands to enhance the reaction efficiency as well as the
enantioselectivity. We envision that the concept of ligand
design will open up new vistas for enantioconvergent radical
cross-coupling reactions. Further efforts to disclose the detailed
role of the bulky N,N,N-ligands played on the reaction are
currently undergoing in this lab.
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