nature chemistry

Article

https://doi.org/10.1038/s41557-022-01102-z

Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling

In the format provided by the authors and unedited

Contents

Supplementary Tables 1–6	
General information	
Synthesis of substrates	
Synthesis of ligands	
Cu-catalyzed enantioselective radical S-O cross-coupling of 2,2-disubstitute	ed 1,3-diols, meso
1,2-diol, and 1,2,3-triols	
Cu-catalyzed enantioselective radical S-O cross-coupling of 2-amino 1,3-di-	ols 68
Synthetic transformations	
Desymmetrization of polyols from natural resources	
Mechanistic study	
A. Radical inhibition experiments	
B. Radical clock experiments	
C. Copper catalyzed enantioselective S–O cross-coupling using an alter	native method for
generating sulfonyl radical	
D. Control experiment with unstable benzyl sulfonyl radical	
E. Control experiments with monoalcohols	
F. Control experiments with catalytic/stoichiometric Cu(OTf) ₂	
G. High-resolution mass spectroscopic characterization of the catalyst	
H. Possible changes in the coordination mode of substrates to the copper	r catalyst 118
I. NMR experiments with L*11	
X-ray crystallography	
Computational study	
NMR spectra	
HPLC spectra	
References	

Supplementary Table 1 | Optimization of reaction conditions

	ОН	Pheo C	[Cu] (10 mol%) L* (10 mol%)		Ph	
	Ph OH A-1	S-1	Ag ₂ CO ₃ (0.60 eq additive solvent, r.t., 2	uiv.) Ph r OH		
		L*1 L*2 L*3 L*4 L*5 L*6	R = H R = 4-OMe R = 4-NO ₂ R = 2,3,4,5,6-Me ₅ R = 3,5-(CF ₃) ₂ R = 2,4,6-Pr ₃			
Entry	[Cu]	L*	Solvent	Additive	Yield	E.e.
1	$Cu(BH_4)(PPh_3)_2$	L*1	CH_2Cl_2	-	49%	47%
2	$Cu(BH_4)(PPh_3)_2$	L*2	CH_2Cl_2	-	34%	45%
3	$Cu(BH_4)(PPh_3)_2$	L*3	CH_2Cl_2	-	29%	31%
4	$Cu(BH_4)(PPh_3)_2$	L*4	CH_2Cl_2	-	83%	83%
5	$Cu(BH_4)(PPh_3)_2$	L*5	CH_2Cl_2	-	54%	26%
6	$Cu(BH_4)(PPh_3)_2$	L*6	CH_2Cl_2	-	84%	79%
7	$Cu(BH_4)(PPh_3)_2$	L*7	CH_2Cl_2	-	48%	43%
8	$Cu(BH_4)(PPh_3)_2$	L*4	Toluene	-	10%	51%
9	$Cu(BH_4)(PPh_3)_2$	L*4	THF	-	7%	22%
10	$Cu(BH_4)(PPh_3)_2$	L*4	1,4-Dioxane	-	trace	-
11	$Cu(BH_4)(PPh_3)_2$	L*4	DCE	-	58%	78%
12	$Cu(BH_4)(PPh_3)_2$	L*4	CHCl ₃	-	84%	89%
13	CuCl	L*4	CHCl ₃	-	96%	89%
14	CuI	L*4	CHCl ₃	-	98%	89%
15	CuOAc	L*4	CHCl ₃	-	90%	88%
16	CuCN	L*4	CHCl ₃	-	95%	88%
17	Cu ₂ O	L*4	CHCl ₃	-	36%	34%
18	Cu(MeCN) ₄ PF ₆	L*4	CHCl ₃	-	45%	80%
19	CuI	L*4	CHCl ₃	MgSO ₄ (20 mg)	98%	89%
20	CuI	L*4	CHCl ₃	Proton sponge	98%	90%
				(20 mol%)		
21 ^a	CuI	L*4	CHCl ₃	Proton sponge (20 mol%)	92%	93%

Reaction conditions: A-1 (0.050 mmol), S-1 (1.2 equiv.), [Cu] (10 mol%), L* (10 mol%), and Ag₂CO₃ (0.60 equiv.) in solvent (0.10 M) at r.t. for 2 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis. ^aThe reaction was performed at 0 °C.

+	PhSO ₂ CI S-1	Cul (10 mol%), L*4 (10 mol%) inorganic salt (x equiv.) proton sponge (y mol%) CHCl ₃ , Ar, 0 °C, 2 d		'n	N. L*4	
	Entry	Inorganic salt (x/equiv.)	Y/mol%	Yield	E.e.	
	1	Ag ₂ CO ₃ (0.60)	20	95%	93%	
	2	Li ₂ CO ₃ (0.60)	20	25%	84%	
	3	Na ₂ CO ₃ (0.60)	20	78%	93%	
	4	K ₂ CO ₃ (0.60)	20	88%	93%	
	5	Cs ₂ CO ₃ (0.60)	20	91%	82%	
	6	AgNO ₃ (1.2)	20	5%	24%	
	7	Ag ₂ O (0.60)	20	85%	92%	
	8	AgOTf (1.2)	20	33%	1%	
	9	Ag ₂ CO ₃ (0.60)	0	72%	88%	
	10	Ag ₂ CO ₃ (1.0)	0	92%	88%	
	11	Ag ₂ CO ₃ (2.0)	0	91%	87%	

Supplementary Table 2 | The effect of silver carbonate and proton sponge

Reaction conditions: A-1 (0.050 mmol), S-1 (1.2 equiv.), CuI (10 mol%), L*4 (10 mol%), inorganic salt (x equiv.), and proton sponge (y equiv.) in CHCl₃ (0.50 mL) under Ar at 0 °C for 2 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis.

	-IN	H = H; S-2 , F = 4-OMe = 4-NO ₂ = 2,3,4,5,6-4 = 3,5-(CF ₃) ₂ = 2,4,6-Pr ₃	SO ₂ CI [C Age 3' = OMe so Me ₅	Cuj (10 mol%) L* (10 mol%) OO3 (0.60 eq additive bivent, r.t., 1			N N
Entry	[Cu]	L*	Solvent	R'	Additive	Yield	E.e.
1	CuI	L*1	CHCl ₃	Н	-	29%	49%
2	CuI	L*2	CHCl ₃	Н	-	60%	50%
3	CuI	L*3	CHCl ₃	Н	-	39%	71%
4	CuI	L*4	CHCl ₃	Н	-	17%	37%
5	CuI	L*5	CHCl ₃	H	-	22%	59%
6	Cul	L*6	CHCl ₃	H	-	9%	-
7	Cul	L*7	CHCl ₃	H	-	26%	50%
8	Cul	L*8	CHCl ₃	H	-	55%	82%
9	Cul	L*8	THF	H	-	11%	37%
10	Cul	L*8	EtOAc	H	-	6%	42%
11	Cul	L*8	DCE	H	-	32%	63%
12	Cul	L*8	CH ₂ Cl ₂	H	-	43%	70%
13	CuCl	L*8	CHCl ₃	Н	-	50%	86%
14	Cu ₂ O	L*8	CHCl ₃	Н	-	11%	20%
15	CuOAc	L*8	CHCl ₃	Н	-	32%	79%
16	CuCN	L*8	CHCl ₃	Н	-	43%	85%
17	$Cu(BH_4)(PPh_3)_2$	L*8	CHCl ₃	Н	-	24%	65%
18	Cu(MeCN) ₄ PF ₆	L*8	CHCl ₃	Н	-	8%	64%
19	CuCl	L*8	CHCl ₃	Н	Proton sponge (20 mol%)	46%	90%
20	CuCl	L*8	CHCl ₃	Н	Proton sponge (5.0 mol%)	52%	92%
21	CuCl	L*8	CHCl ₃	OMe	Proton sponge (5.0 mol%)	72%	89%

Supplementary Table 3 | Optimization of reaction conditions for the serinol substrate

Reaction conditions: A-S23 (0.050 mmol), S-1 or S-2 (1.2 equiv.), [Cu] (10 mol%), L* (10 mol%), and Ag₂CO₃ (0.60 equiv.) in solvent (0.10 M) at r.t. for 1 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis.

	HQ PivO—⁄	A-3 + PhSC	[Cu کےCl <u>ل</u> Agy_Cd 1 ^{Sol}	u] (10 mol%) * (15 mol%) • (160 equiv.) vent, r.t., 3 d		∠Ph O OPiv	
2 N L ^{*4}	Z NH-S=0	Ph PPh ₂ P L*10	Ph O N H H h ₂ P	OMe N N L [*] 12	H PPh2	OMe N N L*13	NH PPh2
	Entry	[Cu]	L*	Solvent	Yield	E.e.	-
	1	Cu(BH ₄)(PPh ₃) ₂	L*4	CH ₂ Cl ₂	10%	65%	-
	2	Cu(BH ₄)(PPh ₃) ₂	L*12	CH_2Cl_2	8%	9%	
	3	$Cu(BH_4)(PPh_3)_2$	L*13	CH_2Cl_2	5%	42%	
	4	$Cu(BH_4)(PPh_3)_2$	L*10	CH_2Cl_2	44%	95%	
	5	$Cu(BH_4)(PPh_3)_2$	L*10	Toluene	26%	53%	
	6	Cu(BH ₄)(PPh ₃) ₂	L*10	THF	24%	48%	
	7	Cu(BH ₄)(PPh ₃) ₂	L*10	1,4-dioxane	10%	64%	
	8	Cu(BH ₄)(PPh ₃) ₂	L*10	DCE	38%	94%	
	9	Cu(BH ₄)(PPh ₃) ₂	L*10	CHCl ₃	53%	97%	
	10	Cu(BH ₄)(PPh ₃) ₂	L*10	MeOH	trace	-	
	11	CuBr	L*10	CHCl ₃	52%	96%	
	12	CuBr(PPh ₃) ₂	L*10	CHCl ₃	36%	96%	
	13	CuBr•SMe ₂	L*10	CHCl ₃	84%	96%	
	14	CuI	L*10	CHCl ₃	64%	97%	
	15	CuOAc	L*10	CHCl ₃	52%	96%	
	16	CuCN	L*10	CHCl ₃	64%	96%	
	17	Cu ₂ O	L*10	CHCl ₃	66%	97%	
	18	CuPF ₆ (MeCN) ₄	L*10	CHCl ₃	30%	96%	

Supplementary Table 4 | Optimization of reaction conditions for the protected erythritol

Reaction conditions: A-3 (0.050 mmol), S-1 (1.2 equiv.), [Cu] (10 mol%), L* (15 mol%), and Ag₂CO₃ (0.60 equiv.) in solvent (0.10 M) at r.t. for 3 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis.

Supplementary Table 5 | Optimization of reaction conditions for the protected xylitol

Reaction conditions: A-4 (0.050 mmol), S-1 (1.2 equiv.), [Cu] (10 mol%), L* (15 mol%), and Ag₂CO₃ (0.60 equiv.) in solvent (0.10 M) at r.t. for 3 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis.

		Ph OH OH A-5	PhSO ₂ Cl	[Cu] (10 mol L* (12 mol? AgcO3 (0.60 c solvent, r.t.,	%) (i) (i) (i) (i) (i) (i) (i) (i	69 69 69 0Me ₂ Ph 8u-Ph 0Me-Ph Naph	R N N *13 R = OMe	
L*4	Entry	[Cu]	 L*	Solvent	Additive	Yield	E.e.	-
	1	CuI	L*4	CH ₂ Cl ₂	-	9%	0%	-
	2	CuI	L*8	CH_2Cl_2	-	5%	0%	
	3	CuI	L*12	CH_2Cl_2	-	43%	11%	
	4	CuI	L*14	CH_2Cl_2	-	40%	18%	
	5	CuI	L*15	CH_2Cl_2	-	33%	8%	
	6	CuI	L*16	CH_2Cl_2	-	12%	5%	
	7	CuI	L*17	CH_2Cl_2	-	48%	11%	
	8	CuI	L*13	CH_2Cl_2	-	92%	76%	
	9	CuI	L*11	CH_2Cl_2	-	88%	78%	
	10	CuCl	L*11	CH_2Cl_2	-	85%	68%	
	11	CuCN	L*11	CH_2Cl_2	-	90%	50%	
	12	Cu(MeCN) ₄ PF ₆	L*11	CH_2Cl_2	-	83%	79%	
	13	$Cu(BH_4)(PPh_3)_2$	L*11	CH_2Cl_2	-	70%	87%	
	14	Cu(BH ₄)(PPh ₃) ₂	L*11	THF	-	31%	85%	
	15	Cu(BH ₄)(PPh ₃) ₂	L*11	EtOAc	-	trace	-	
	16	Cu(BH ₄)(PPh ₃) ₂	L*11	DCE	-	70%	88%	
	17	Cu(BH ₄)(PPh ₃) ₂	L*11	CHCl ₃	-	79%	93%	
	18	$Cu(BH_4)(PPh_3)_2$	L*11	CHCl ₃	4Å MS	94%	93%	
					(20 mg)			

Supplementary Table 6 | Optimization of reaction conditions for the protected *myo*-inositol

Reaction conditions: A-5 (0.050 mmol), S-1 (1.2 equiv.), [Cu] (10 mol%), L* (12 mol%), and Ag₂CO₃ (0.60 equiv.) in solvent (0.10 M) at r.t. for 2 d; Yield was based on ¹H NMR analysis of the crude products using CH₂Br₂ as an internal standard; E.e. values were based on chiral HPLC analysis.

General information

All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Extra dry solvents were purchased from J&K[®]. Chloroform (CHCl₃) was distilled from anhydrous calcium hydride (CaH₂) and stored under argon. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). ¹H, ¹³C, ¹⁹F, and ³¹P-NMR spectra were recorded on Bruker Avance-400 or -500 spectrometers. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hitachi detector or SHIMADZU LC-20AD with an SPD-20AV detector; column conditions are reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. X-ray diffraction was measured on a "Bruker APEX-II CCD" diffractometer with Cu-Kα radiation.

Synthesis of substrates

The synthesis of 2,2-disubstituted diol substrates A-1 and A-S1-A-S22

General procedure 1:

Method a: To a suspension of NaH (60% dispensed in mineral oil, 240.0 mg, 6.0 mmol, 1.2 equiv.) in dry THF (15 mL) at 0 °C was slowly added diethyl 2-phenylmalonate (196.0 mg, 5.0 mmol, 1.0 equiv.). After stirring for 30 min, the corresponding alkyl halide (1.2 equiv.) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. Then the reaction was quenched with saturated NH4Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was briefly purified by silica gel column chromatography to give the crude diester product.

Method b: To a suspension of NaH (60% dispensed in mineral oil, 400.0 mg, 10.0 mmol, 2.0 equiv.) in dry DMF (15 mL) at 0 °C was slowly added diethyl 2-phenylmalonate (196.0 mg, 5.0 mmol, 1.0 equiv.). After stirring for 30 min, the corresponding alkyl halide (4.0 equiv.) was added dropwise. The reaction mixture was heated to 80 °C for 1 d. After completion of the reaction, the mixture was cooled to r.t., quenched with saturated NH4Cl (aq.), and extracted with EtOAc (3x). The combined organic layers were washed with H₂O (4x), dried (Na₂SO₄), and concentrated *in vacuo*. The residue was briefly purified by silica gel column chromatography to give the crude diester product.

Method c: Under argon atmosphere, Na (1.2 g, 50 mmol, 10 equiv.) was added to dry ^{*i*}PrOH (10 mL) at r.t. After stirring for 12 h, diethyl 2-phenylmalonate (196.0 mg, 5.0 mmol, 1.0 equiv.) was added dropwise. After stirring for an additional 6 h, the corresponding alkyl halide (5.0 equiv.) was added dropwise and the reaction mixture was stirred at r.t. overnight. Then the reaction mixture was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was directly used in the next step without further purification.

To a suspension of LiAlH₄ (760.0 mg, 20 mmol, 4.0 equiv.) in Et₂O (15 mL) at 0 °C was slowly added a solution of the diester in Et₂O (5 mL). Then the reaction mixture was warmed to r.t. and stirred for 2 h. Next, it was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon completion, the mixture was warmed to r.t., stirred for an additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography to give the corresponding diol products.

2-Methyl-2-phenylpropane-1,3-diol (A-1)

According to **General procedure 1** with methyl iodide (0.85 g, 6.0 mmol, 1.2 equiv.) and *Method* a, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-1** as a white solid (590.7 mg, 71% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.21 (m, 1H), 3.97 (dd, *J* = 11.1, 4.8 Hz, 2H), 3.84 (dd, *J* = 11.1, 4.8 Hz, 2H), 2.19 – 2.06 (m, 2H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.9, 128.7, 126.7, 126.6, 70.1, 44.6, 20.7.

HRMS (ESI) m/z calcd. for C₁₀H₁₄NaO₂ [M + Na]⁺ 189.0886, found 189.0884.

2-Ethyl-2-phenylpropane-1,3-diol (A-S1)

According to **General procedure 1** with ethyl iodide (0.94 g, 6.0 mmol, 1.2 equiv.) and *Method* a, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S1** as a white solid (594.4 mg, 66% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 4H), 7.24 (t, *J* = 7.5 Hz, 1H), 4.07 (d, *J* = 11.0 Hz, 2H), 3.89 (d, *J* = 11.0 Hz, 2H), 2.65 (br s, 2H), 1.66 (q, *J* = 7.5 Hz, 2H), 0.66 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 128.6, 127.0, 126.4, 68.2, 47.3, 26.7, 7.8.

HRMS (ESI) m/z calcd. for C₁₁H₁₆NaO₂ [M + Na]⁺ 203.1043, found 203.1040.

2-Isopropyl-2-phenylpropane-1,3-diol (A-S2)

According to **General procedure 1** with isopropyl bromide (3.10 g, 25.0 mmol, 5.0 equiv.) and *Method c*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **A-S2** as a white solid (165.2 mg, 17% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.26 – 7.19 (m, 1H), 4.16 (d, *J* = 10.8 Hz, 2H), 4.05 (d, *J* = 10.8 Hz, 2H), 3.13 (br s, 2H), 1.88 (hept, *J* = 7.0 Hz, 1H), 0.73 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.2, 128.1, 127.9, 126.1, 66.8, 49.3, 33.0, 17.6.

HRMS (ESI) m/z calcd. for C₁₂H₁₈NaO₂ [M + Na]⁺ 217.1199, found 217.1195.

2-(Cyclopropylmethyl)-2-phenylpropane-1,3-diol (A-S3)

According to **General procedure 1** with cyclopropylmethyl chloride (1.81 g, 20.0 mmol, 4.0 equiv.), KI (830 mg, 5.0 mmol, 1.0 equiv.) and *Method b*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S3** as a white solid (577.1 mg, 56% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 4H), 7.27 – 7.21 (m, 1H), 4.16 (d, *J* = 10.6 Hz, 2H), 4.00 (d, *J* = 10.7 Hz, 2H), 2.60 (br s, 2H), 1.55 (d, *J* = 6.1 Hz, 2H), 0.42 – 0.28 (m, 3H), -0.01 – -0.06 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.8, 128.6, 127.1, 126.5, 68.6, 48.3, 39.9, 5.8, 4.6.

HRMS (ESI) *m*/*z* calcd. for C₁₃H₁₈NaO₂ [M + Na]⁺ 229.1199, found 229.1195.

2-(2-(Benzyloxy)ethyl)-2-phenylpropane-1,3-diol (A-S4)

According to **General procedure 1** with ((2-bromoethoxy)methyl)benzene (1.30 g, 6.0 mmol, 1.2 equiv.) and *Method a*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S4** as a white solid (100.4 mg, 7% yield over two steps). (Note: in *Method a*, the reaction mixture was refluxed for 2 d before workup).

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.14 (m, 10H), 4.43 (s, 2H), 4.02 – 3.87 (m, 4H), 3.49 (t, *J* = 5.6 Hz, 2H), 2.91 (t, *J* = 6.3 Hz, 2H), 2.17 (t, *J* = 5.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.5, 137.4, 128.7, 128.5, 127.9, 127.8, 126.8, 126.7, 73.4, 68.5, 66.8, 47.3, 33.0.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₂NaO₃ [M + Na]⁺ 309.1461, found 309.1456.

2-(3-Chloropropyl)-2-phenylpropane-1,3-diol (A-S5)

According to **General procedure 1** with 1-bromo-3-chloropropane (3.14 g, 20.0 mmol, 4.0 equiv.) and *Method b*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S5** as a white solid (240.1 mg, 21% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 4.00 (d, *J* = 12.5 Hz, 2H), 3.83 (d, *J* = 12.1 Hz, 2H), 3.41 (t, *J* = 6.5 Hz, 2H), 3.05 – 2.94 (m, 2H), 1.84 – 1.72 (m, 2H), 1.53 – 1.46 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 128.7, 126.7, 67.6, 46.6, 45.5, 30.9, 26.7.

HRMS (ESI) m/z calcd. for C₁₂H₁₇ClNaO₂ [M + Na]⁺ 251.0809, found 251.0806.

2-Benzyl-2-phenylpropane-1,3-diol (A-S6)

According to **General procedure 1** with benzyl bromide (1.81 g, 20.0 mmol, 4.0 equiv.) and *Method b*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S6** as a white solid (532.4 mg, 44% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 2H), 7.30 – 7.23 (m, 3H), 7.17 – 7.06 (m, 3H), 6.81 – 6.78 (m, 2H), 4.03 (d, *J* = 11.0 Hz, 2H), 3.96 (d, *J* = 11.0 Hz, 2H), 2.94 (s, 2H), 2.27 (br s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 136.7, 130.2, 128.6, 127.7, 127.2, 126.8, 126.2, 67.3, 48.3, 40.9.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂ [M + Na]⁺ 265.1199, found 265.1194.

2-((1,3-Dioxolan-2-yl)methyl)-2-phenylpropane-1,3-diol (A-S7)

According to **General procedure 1** with 2-(bromomethyl)-1,3-dioxolane (3.34 g, 20.0 mmol, 4.0 equiv.) and *Method b*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S7** as a white solid (238.4 mg, 20% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.27 – 7.20 (m, 1H), 4.74 – 4.72 (m, 1H), 4.01 – 3.89 (m, 6H), 3.81 – 3.74 (m, 2H), 2.89 – 2.78 (m, 2H), 2.25 (dd, *J* = 4.7, 1.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.1, 128.7, 126.8, 126.6, 102.2, 68.1, 64.8, 46.0, 37.1.

HRMS (ESI) m/z calcd. for C₁₃H₁₈NaO₄ [M + Na]⁺ 261.1097, found 261.1093.

2-Allyl-2-phenylpropane-1,3-diol (A-S8)

According to **General procedure 1** with allyl bromide (0.73 g, 6.0 mmol, 1.2 equiv.) and *Method* a, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S8** as a white solid (547.8 mg, 57% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 4H), 7.27 – 7.22 (m, 1H), 5.59 – 5.40 (m, 1H), 5.04 (dd, J = 17.0, 1.8 Hz, 1H), 5.00 – 4.93 (m, 1H), 4.00 (dd, J = 11.2, 3.9 Hz, 2H), 3.88 (dd, J = 11.2, 2.4 Hz, 2H), 2.68 (br s, 2H), 2.43 (d, J = 7.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.1, 133.6, 128.6, 126.9, 126.6, 117.9, 67.8, 47.0, 38.8.

HRMS (ESI) m/z calcd. for C₁₂H₁₅O [M + H – H₂O]⁺ 175.1117, found 175.1114.

2-(3-Methylbut-2-en-1-yl)-2-phenylpropane-1,3-diol (A-S9)

According to **General procedure 1** with 3,3-dimethylallyl bromide (0.89 g, 6.0 mmol, 1.2 equiv.) and *Method a*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S9** as a white solid (600.0 mg, 55% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 4H), 7.28 – 7.21 (m, 1H), 4.88 (t, *J* = 7.2 Hz, 1H), 4.06 (dd, *J* = 11.0, 3.3 Hz, 2H), 3.91 (dd, *J* = 11.0, 3.4 Hz, 2H), 2.36 (d, *J* = 7.3 Hz, 2H), 2.32 – 2.11 (m, 2H), 1.61 (s, 3H), 1.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 134.5, 128.6, 127.1, 126.5, 118.8, 68.5, 47.8, 32.9, 25.9, 17.9.

HRMS (ESI) m/z calcd. for C₁₄H₁₉O [M + H – H₂O]⁺ 203.1430, found 203.1427.

2-Phenyl-2-(prop-2-yn-1-yl)propane-1,3-diol (A-S10)

According to **General procedure 1** with 2-propynyl bromide (0.71 g, 6.0 mmol, 1.2 equiv.) and *Method a*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S10** as a white solid (408.0 mg, 43% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 4H), 7.32 – 7.25 (m, 1H), 4.10 (dd, *J* = 11.1, 5.7 Hz, 2H), 4.00 (dd, *J* = 11.1, 6.0 Hz, 2H), 2.76 (d, *J* = 2.6 Hz, 2H), 2.17 (t, *J* = 6.0 Hz, 2H), 1.99 (t, *J* = 2.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 128.8, 127.2, 126.7, 80.9, 71.3, 67.8, 47.4, 23.2.

HRMS (ESI) m/z calcd. for C₁₂H₁₅O₂ [M + H]⁺ 191.1067, found 191.1064.

2-(But-2-yn-1-yl)-2-phenylpropane-1,3-diol (A-S11)

According to **General procedure 1** with 1-bromo-2-butyne (0.80 g, 6.0 mmol, 1.2 equiv.) and *Method a*, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S11** as a white solid (458.8 mg, 45% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 4H), 7.26 – 7.19 (m, 1H), 3.96 (d, *J* = 11.0 Hz, 2H), 3.87 (d, *J* = 11.0 Hz, 2H), 3.09 (br s, 2H), 2.59 (d, *J* = 2.3 Hz, 2H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 128.3, 126.7, 126.6, 78.4, 75.2, 67.3, 47.2, 23.5, 3.4.

HRMS (ESI) m/z calcd. for C₁₃H₁₆NaO₂ [M + Na]⁺ 227.1043, found 227.1042.

General procedure 2:

To a suspension of NaH (60% dispensed in mineral oil, 480.0 mg, 12.0 mmol, 2.4 equiv.) in dry THF (15 mL) at 0 °C was slowly added the corresponding ester (5.0 mmol, 1.0 equiv.). After stirring for 30 min, ethyl carbonate (1.7 g, 15 mmol, 3.0 equiv.) was added dropwise. The mixture was warmed to r.t. and then heated to reflux under inert atmosphere for 24 h. After cooling to r.t., saturated NH₄Cl (aq.) was carefully added to the above reaction solution to quench the reaction and the mixture was extracted with EtOAc (3x). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The crude malonate diester product was used directly in the next step without further purification.

The crude malonate diester was dissolved in dry THF (15 mL) and the solution was cooled to 0 °C. Then NaH (60% dispensed in mineral oil, 240.0 mg, 6.0 mmol, 1.2 equiv.) was added in four portions under inert atmosphere. After stirring for 30 min, methyl iodide (852.0 mg, 6.0 mmol, 1.2 equiv.) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. Then the reaction was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to give the α , α -disubstituted malonate diester product.

To a suspension of LiAlH₄ (4.0 equiv.) in Et₂O (15 mL) at 0 °C was slowly added a solution of the α,α -disubstituted malonate diester in Et₂O (5 mL). Then the reaction mixture was warmed to r.t. and stirred for 2 h. Next, it was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon completion, the mixture was warmed to r.t., stirred for an additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography to give the corresponding diol products.

2-(3-Fluorophenyl)-2-methylpropane-1,3-diol (A-S12)

According to **General procedure 2** with ethyl 2-(3-fluorophenyl)acetate (0.91 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S12** as a white solid (331.2 mg, 36% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 1H), 7.18 (d, *J* = 7.9 Hz, 1H), 7.13 (dt, *J* = 11.1, 2.1 Hz, 1H), 6.94 (td, *J* = 8.3, 2.2 Hz, 1H), 3.90 (d, *J* = 11.0 Hz, 2H), 3.77 (d, *J* = 10.9 Hz, 2H), 2.66 (br s, 2H), 1.25 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 163.0 (d, J = 245.2 Hz), 146.0 (d, J = 6.7 Hz), 129.9 (d, J = 8.3 Hz), 122.2 (d, J = 2.8 Hz), 114.0 (d, J = 21.9 Hz), 113.5 (d, J = 20.9 Hz). 69.6, 44.5 (d, J = 1.5 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.5 (ddd, *J* = 11.3, 8.5, 6.0 Hz).

HRMS (ESI) m/z calcd. for C₁₀H₁₃FNaO₂ [M + Na]⁺ 207.0792, found 207.0789.

2-(2-Bromophenyl)-2-methylpropane-1,3-diol (A-S13)

According to **General procedure 2** with ethyl 2-(2-bromophenyl)acetate (1.22 g, 5.0 mmol, 1.0 equiv.), except that DIBAL-H (4.0 equiv.) was used instead of LiAlH₄, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S13** as a white solid (269.8 mg, 22% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (ddd, J = 15.0, 8.0, 1.5 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.10 (td, J = 7.8, 1.7 Hz, 1H), 4.43 (dd, J = 11.0, 5.4 Hz, 2H), 4.01 (dd, J = 11.2, 4.5 Hz, 2H), 2.39 (t, J = 5.1 Hz, 2H), 1.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 135.9, 131.3, 128.5, 127.6, 122.3, 69.2, 46.5, 19.5.

HRMS (ESI) *m*/*z* calcd. for C₁₀H₁₃BrNaO₂ [M + Na]⁺ 266.9991, found 266.9987.

2-(3-Chlorophenyl)-2-methylpropane-1,3-diol (A-S14)

According to **General procedure 2** with ethyl 2-(3-chlorophenyl)acetate (0.99 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S14** as a white solid (350.5 mg, 35% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.42 (m, 1H), 7.35 – 7.27 (m, 2H), 7.24 (dt, *J* = 7.1, 1.9 Hz, 1H), 3.95 (d, *J* = 10.9 Hz, 2H), 3.83 (d, *J* = 11.0 Hz, 2H), 2.18 (br s, 2H), 1.27 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.4, 134.6, 129.8, 127.1, 126.9, 124.9, 69.9, 44.6, 20.8.

HRMS (ESI) m/z calcd. for C₁₀H₁₃ClNaO₂ [M + Na]⁺ 223.0496, found 223.0493.

2-Methyl-2-(3-(trifluoromethyl)phenyl)propane-1,3-diol (A-S15)

According to **General procedure 2** with ethyl 2-(3-(trifluoromethyl)phenyl)acetate (1.16 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S15** as a white solid (468.4 mg, 40% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.51 – 7.43 (m, 2H), 3.91 (d, J = 11.0 Hz, 2H), 3.77 (d, J = 11.0 Hz, 2H), 2.97 (br s, 2H), 1.25 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.5, 130.7 (q, *J* = 31.7 Hz), 130.22, 130.21, 128.9, 124.2 (q, *J* = 270.7 Hz), 123.4 (q, *J* = 3.9 Hz), 69.4, 44.4, 20.7.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –62.5.

HRMS (ESI) m/z calcd. for C₁₁H₁₃F₃NaO₂ [M + Na]⁺ 257.0760, found 257.0756.

2-(4-(tert-Butyl)phenyl)-2-methylpropane-1,3-diol (A-S16)

According to **General procedure 2** with ethyl 2-(4-(*tert*-butyl)phenyl)acetate (1.10 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S16** as a white solid (488.2 mg, 44% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 4H), 3.97 (dd, *J* = 11.0, 6.0 Hz, 2H), 3.84 (dd, *J* = 11.0, 5.9 Hz, 2H), 1.96 (t, *J* = 6.0 Hz, 2H), 1.32 (s, 9H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 152.4, 145.0, 130.1, 128.6, 71.7, 48.0, 37.6, 34.3, 23.1.

HRMS (ESI) m/z calcd. for C₁₄H₂₂NaO₂ [M + Na]⁺ 245.1512, found 245.1508.

2-(4-(Benzyloxy)phenyl)-2-methylpropane-1,3-diol (A-S17)

According to **General procedure 2** with ethyl 2-(4-(benzyloxy)phenyl)acetate (1.35 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S17** as a white solid (340.0 mg, 25% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.29 (m, 7H), 7.01 – 6.94 (m, 2H), 5.05 (s, 2H), 3.91 (dd, *J* = 10.9, 5.7 Hz, 2H), 3.79 (dd, *J* = 11.0, 5.6 Hz, 2H), 2.14 (t, *J* = 5.8 Hz, 2H), 1.27 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 157.4, 136.9, 135.0, 128.6, 128.0, 127.8, 127.4, 114.9, 70.2, 44.0, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NaO₃ [M + Na]⁺ 295.1305, found 295.1300.

2-(3,5-Dimethylphenyl)-2-methylpropane-1,3-diol (A-S18)

According to **General procedure 2** with ethyl 2-(3,5-dimethylphenyl)acetate (0.96 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S18** as a white solid (475.8 mg, 49% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 6.96 (s, 2H), 6.85 (s, 1H), 3.83 (d, *J* = 10.9 Hz, 2H), 3.67 (d, *J* = 11.0 Hz, 2H), 3.21 (br s, 2H), 2.29 (s, 6H), 1.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.0, 137.7, 128.1, 124.2, 69.3, 44.0, 21.4, 20.5.

HRMS (ESI) m/z calcd. for C₁₂H₁₈NaO₂ [M + Na]⁺ 217.1199, found 217.1200.

2-Methyl-2-(thiophen-3-yl)propane-1,3-diol (A-S19)

According to **General procedure 2** with ethyl 2-(thiophen-3-yl)acetate (0.85 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **A-S19** as a white solid (154.6 mg, 18% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 5.0, 3.0 Hz, 1H), 7.21 (dd, J = 2.9, 1.4 Hz, 1H), 7.13 (dd, J = 5.0, 1.4 Hz, 1H), 3.89 (dd, J = 10.9, 5.9 Hz, 2H), 3.80 (dd, J = 10.9, 6.0 Hz, 2H), 2.02 – 1.94 (m, 2H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.4, 126.1, 126.0, 121.0, 69.9, 43.5, 20.6.

HRMS (ESI) *m*/*z* calcd. for C₈H₁₂NaO₂S [M + Na]⁺ 195.0450, found 195.0449.

A-S20 was synthesized according to the reported literature¹.

Methyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate (A-S20)

¹**H NMR** (400 MHz, CDCl₃) δ 3.90 (d, J = 11.3 Hz, 2H), 3.80 – 3.64 (m, 5H), 3.08 (br s, 2H), 1.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 67.9, 52.2, 49.1, 17.1.

HRMS (ESI) m/z calcd. for C₆H₁₃O₄ [M + H]⁺ 149.0808, found 149.0809.

A-S21 was synthesized according to the reported literature².

3,3-Bis(hydroxymethyl)-1-methylindolin-2-one (A-S21)

¹**H** NMR (400 MHz, CD₃OD) δ 7.45 (d, J = 7.3 Hz, 1H), 7.34 (td, J = 7.8, 1.2 Hz, 1H), 7.17 – 7.09 (m, 1H), 7.01 (d, J = 7.8 Hz, 1H), 3.93 (d, J = 10.8 Hz, 2H), 3.83 (d, J = 10.8 Hz, 2H), 3.23 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 178.2, 144.6, 129.5, 128.0, 123.6, 122.3, 107.9, 63.3, 57.8, 25.1.

HRMS (ESI) m/z calcd. for C₁₁H₁₄NO₃ [M + H]⁺ 208.0968, found 208.0967.

A-S22 (meso cyclohexane-1,2-diol) was bought from commercial sources and employed directly.

The synthesis of 2-amino-1,3-diol substrates A-S23-A-S33

General procedure 3:

To a solution of unprotected 2-amino propanediol (3.0 mmol) in THF/H₂O (v/v = 1/1) (5.0 mL) were successively added K₂CO₃ (0.83 g, 6.0 mmol, 2.0 equiv.) and benzyl chloroformate (0.50 mL, 3.6 mmol, 1.2 equiv.) at 0 °C. The resulting reaction mixture was stirred at r.t. for 3 h. Upon completion, aqueous 3N HCl was added dropwise until the pH reached ~3 and the reaction mixture was extracted with EtOAc (2 × 10 mL). The combined organic layers were washed with water (1 × 10 mL) and brine (1 × 10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 100/1 ~ 20/1) to afford the corresponding product.

Note: The corresponding unprotected 2-amino propanediols for the synthesis of substrates **A-S23**, **A-S24**, and **A-S33** were commercially available, and the corresponding unprotected 2-amino propanediols for the synthesis of substrates **A-S25**, **A-S26**, **A-S27**, and **A-S29** were synthesized according to reported literature³.

Benzyl (1,3-dihydroxypropan-2-yl)carbamate (A-S23)

According to General procedure 3, product A-S23 was obtained as a white solid (423.1 mg, 62%).

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.41 – 7.27 (m, 5H), 6.09 (s, 1H), 5.06 (s, 2H), 3.94 (t, *J* = 5.2 Hz, 2H), 3.66 (m, 5H).

¹³C NMR (100 MHz, Acetone-*d*₆) δ 156.3, 137.5, 128.3, 127.8, 127.7, 65.7, 61.4, 54.7.

HRMS (ESI) m/z calcd. for C₁₁H₁₆NO₄ [M + H]⁺ 226.1074, found 226.1068.

Benzyl (1,3-dihydroxy-2-methylpropan-2-yl)carbamate (A-S24)

According to General procedure 3, product A-S24 was obtained as a white solid (650.6 mg, 91%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 5.38 (s, 1H), 5.06 (s, 2H), 3.77 – 3.73 (m, 2H), 3.65 – 3.61 (m, 2H), 3.56 (s, 2H), 1.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.5, 136.1, 128.6, 128.3, 128.1, 67.7, 66.9, 57.2, 20.0.

HRMS (ESI) m/z calcd. for C₁₂H₁₈NO₄ [M + H]⁺ 240.1230, found 240.1225.

Benzyl (1-hydroxy-2-(hydroxymethyl)butan-2-yl)carbamate (A-S25)

According to **General procedure 3**, product **A-S25** was obtained as a colorless oil (709.2 mg, 93% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (m, 5H), 5.46 (s, 1H), 5.07 (s, 2H), 3.88 (s, 2H), 3.80 (d, J = 11.4 Hz, 2H), 3.60 (d, J = 11.5 Hz, 2H), 1.63 (q, J = 7.5 Hz, 2H), 0.86 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.6, 136.2, 128.6, 128.2, 128.1, 66.8, 65.7, 59.6, 25.2, 7.6.

HRMS (ESI) m/z calcd. for C₁₃H₂₀NO₄ [M + H]⁺ 254.1387, found 254.1381.

Benzyl (1-hydroxy-2-(hydroxymethyl)pentan-2-yl)carbamate (A-S26)

According to **General procedure 3**, product **A-S26** was obtained as a colorless oil (662.9 mg, 83% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 5H), 5.49 (s, 1H), 5.04 (s, 2H), 4.01 (s, 2H), 3.76 (d, *J* = 11.5 Hz, 2H), 3.57 (d, *J* = 11.4 Hz, 2H), 1.60 – 1.43 (m, 2H), 1.24 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.7, 136.2, 128.6, 128.2, 128.1, 66.8, 65.9, 59.5, 34.9, 16.3, 14.5.

HRMS (ESI) m/z calcd. for C₁₄H₂₂NO₄ [M + H]⁺ 268.1543, found 268.1537.

Benzyl (1-hydroxy-2-(hydroxymethyl)-4-methylpentan-2-yl)carbamate (A-S27)

According to **General procedure 3**, product **A-S27** was obtained as a white solid (512.2 mg, 61% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (m, 5H), 5.24 (s, 1H), 5.07 (s, 2H), 3.90 (d, *J* = 11.5 Hz, 2H), 3.61 (d, *J* = 11.5 Hz, 2H), 1.71 (m, 1H), 1.48 (d, *J* = 6.1 Hz, 2H), 0.92 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.5, 136.2, 128.6, 128.3, 128.1, 66.9, 59.9, 41.8, 24.7 (2C), 23.4.

HRMS (ESI) *m*/*z* calcd. for C₁₅H₂₄NO₄ [M + H]⁺ 282.1700, found 282.1694.

Benzyl (1-hydroxy-2-(hydroxymethyl)pent-4-en-2-yl)carbamate (A-S29)

According to **General procedure 3**, product **A-S29** was obtained as a yellow oil (769.4 mg, 97% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 5H), 5.74 (ddt, *J* = 15.7, 10.6, 7.5 Hz, 1H), 5.46 (s, 1H), 5.12 (s, 1H), 5.10 – 5.08 (m, 1H), 5.04 (s, 2H), 3.84 (s, 2H), 3.76 (d, *J* = 11.6 Hz, 2H), 3.58 (d, *J* = 11.6 Hz, 2H), 2.35 (d, *J* = 7.4 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 156.6, 136.1, 132.3, 128.6, 128.3, 128.1, 119.7, 66.9, 65.4, 59.1, 37.0.

HRMS (ESI) m/z calcd. for C₁₄H₂₀NO₄ [M + H]⁺ 266.1387, found 266.1380.

Benzyl (1-hydroxy-2-(hydroxymethyl)-4-(4-octylphenyl)butan-2-yl)carbamate (A-S33)

According to General procedure 3, product A-S33 was obtained as a white solid (1.018 g, 77%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 5H), 7.09 – 7.04 (m, 5H), 5.32 (s, 1H), 5.08 (s, 2H), 3.90 (dd, J = 11.5, 4.0 Hz, 2H), 3.66 (dd, J = 11.7, 4.5 Hz, 2H), 3.31 (s, 2H), 2.59 – 2.53 (m, 4H), 1.91 – 1.85 (m, 2H), 1.61 – 1.53 (m, 2H), 1.30 – 1.25 (m, 10 H), 0.91 – 0.84 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 156.5, 140.7, 138.6, 136.2, 128.6, 128.5, 128.3, 128.2 – 128.0 (m, 2C), 67.0, 66.5, 59.6, 35.6, 35.1, 31.9, 31.6, 29.5, 29.4, 29.3, 29.1, 22.7, 14.2.

HRMS (ESI) m/z calcd. for C₂₇H₄₀NO₄ [M + H]⁺ 442.2952, found 442.2943.

To a solution of oxalyl chloride (1.05 mL, 12.4 mmol, 1.24 equiv.) in CH₂Cl₂ (25 mL) was added DMSO (1.85 mL, 25.8 mmol, 2.58 equiv.) at -78 °C. After the mixture was stirred for 30 min at -78 °C, a solution of *N*-Boc protected acetonide alcohol (2.613 g, 10 mmol) in CH₂Cl₂ (25 mL) was added, and stirring was continued at -78 °C for 30 min. The reaction mixture was treated with triethylamine (3.65 mL, 26.3 mmol, 2.63 equiv.), allowed to warm to r.t., and stirred for 30 min. The reaction mixture was diluted with 1M HCl (5 mL), washed with saturated NaHCO₃ and brine, dried, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 10/1 ~ 3/1) to give the *N*-Boc protected acetonide aldehyde (1.591 g, 62% yield) as a white solid.

Synthesis of A-S28:

To a solution of Ph₃PCH₃Br (3.215 g, 9.0 mmol, 3.0 equiv.) in THF (18 ml) was added NaHMDS (2.0 M in THF, 4.5 ml, 9.0 mmol, 3.0 equiv.) at 0 °C. The mixture was stirred for 1 h and then treated with a solution of the aldehyde (777.9 mg, 3.0 mmol) in THF (15 ml). The reaction mixture was stirred at r.t. for 30 min and then quenched with a saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (2×20 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (petroleum ether/EtOAc = 24/1 ~ 11/1) afforded **A-S28-1** (701.3 mg, 91%) as a white solid.

A-S28-1 (701.3 mg, 2.7 mmol) was demasked using concentrated HCl (3 mL) in MeOH (9 mL) at r.t. overnight. After evaporation of all the volatile materials *in vacuo*, the residue was dissolved in a mixture of THF/H₂O (1/1 (v/v), 6 mL). Then, K₂CO₃ (753.4 mg, 5.5 mmol, 2.0 equiv.) and benzyl chloroformate (0.46 mL, 3.3 mmol, 1.2 equiv.) were added at 0 °C under stirring. The reaction mixture was stirred at r.t. for 3 h. Aqueous 3N HCl was added dropwise until the pH reached ~3. The reaction mixture was extracted with EtOAc (2 × 10 mL). The organic layers were combined, washed with water (1 × 10 mL) and brine (1 × 10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resulting crude compound was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 100/1 ~ 20/1) to afford product **A-S28** as a colorless oil (514.6 mg, 73% over two steps).

Benzyl (1-hydroxy-2-(hydroxymethyl)but-3-en-2-yl) carbamate (A-S28)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 5.82 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.68 (s, 1H), 5.26 (d, *J* = 10.8 Hz, 1H), 5.20 (d, *J* = 17.5 Hz, 1H), 5.07 (s, 2H), 3.83 (s, 2H), 3.70 (q, *J* = 11.5 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 156.7, 136.5, 136.1, 128.6, 128.3, 128.1, 116.3, 67.1, 65.9, 62.1.

HRMS (ESI) m/z calcd. for C₁₃H₁₈NO₄ [M + H]⁺ 252.1230, found 252.1224.

Synthesis of A-S30:

To a solution of the aldehyde (777.9 mg, 3.0 mmol) in MeOH (24 mL) were sequentially added (1-diazo-2-oxo-propyl)-phosphonic acid dimethyl ester (0.68 mL, 4.5 mmol, 1.5 equiv.) and K₂CO₃ (828.5 mg, 6.0 mmol, 2.0 equiv.) at 0 °C. The mixture was reacted at 0 °C for 1 h and then at r.t. for another 1 h. After the removal of MeOH *in vacuo*, H₂O (25 mL) was added and the reaction mixture was extracted with EtOAc (3 × 25 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (petroleum ether/EtOAc = 24/1 ~ 5/1) produced **A-S30-1** (697.9 mg, 92% yield).

A-S30-1 (1.5 mmol) was demasked using concentrated HCl (2 mL) in MeOH (5 mL) at r.t. overnight. After evaporation of all the volatile materials *in vacuo*, the residue was dissolved in a mixture of THF/H₂O (1/1 (v/v), 3.0 mL). Then, K₂CO₃ (0.415 g, 3.0 mmol, 2.0 equiv.) and benzyl chloroformate (0.25 mL, 1.8 mmol, 1.2 equiv.) were successively added at 0 °C under stirring. The reaction mixture was stirred at r.t. for 3 h. Aqueous 3N HCl was added dropwise until the pH reached ~3. The reaction mixture was extracted with EtOAc (2 × 5 mL). The combined organic layers were washed with water (1 × 5 mL) and brine (1 × 5 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 100/1 ~ 20/1) to afford product **A-S30** as a white solid (340.3 mg, 91% over two steps).

Benzyl (1-hydroxy-2-(hydroxymethyl)but-3-yn-2-yl) carbamate (A-S30)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 5.62 (s, 1H), 5.14 (s, 2H), 3.96 (dd, *J* = 11.5, 6.4 Hz, 2H), 3.87 (dd, *J* = 11.5, 6.9 Hz, 2H), 3.01 (s, 2H), 2.50 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.8, 135.8, 128.6, 128.3, 128.2, 90.0, 74.1, 67.2, 65.8, 56.6.

HRMS (ESI) m/z calcd. for C₁₃H₁₆NO₄ [M + H]⁺ 250.1074, found 250.1068.

Synthesis of A-S32:

To a solution of BnN₃ (777.9 mg, 3.0 mmol) in CH₂Cl₂/H₂O (1/1 (v/v), 5 mL) were sequentially added **A-S30-1** (254.3 mg, 1.0 mmol), *L*-sodium ascorbate (89.0 mg, 0.45 mmol, 0.45 equiv.), and CuSO₄·5H₂O (37.5 mg, 0.15 mmol, 0.15 equiv.) at r.t. and the mixture was reacted at r.t. for 1 d. Upon completion, the reaction mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (petroleum ether/EtOAc = $10/1 \sim 1/1$) produced **A-S32-1** (369.0 mg, 95% yield).

A-S32-1 (0.75 mmol) was demasked using concentrated HCl (1 mL) in MeOH (2.5 mL) at r.t. overnight. After evaporation of all the volatile materials *in vacuo*, the residue was dissolved in a mixture of THF/H₂O (1/1 (v/v), 2 mL). Then, K₂CO₃ (0.208 g, 1.5 mmol, 2.0 equiv.) and benzyl chloroformate (0.13 mL, 0.9 mmol, 1.2 equiv.) were successively added at 0 °C under stirring. The reaction mixture was stirred at r.t. for 3 h. Aqueous 3N HCl was added dropwise until the pH reached ~3. The reaction mixture was extracted with EtOAc (2 × 2.5 mL). The combined organic layers were washed with water (1 × 2.5 mL) and brine (1 × 2.5 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 100/1 ~ 20/1) to afford product **A-S32** as a white solid (200.8 mg, 70% over two steps).

Benzyl (2-(1-benzyl-1H-1,2,3-triazol-5-yl)-1,3-dihydroxypropan-2-yl)carbamate (A-S32)

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.34 – 7.25 (m, 10H), 6.26 (s, 1H), 5.46 (s, 2H), 5.02 (s, 2H), 4.12 – 4.01 (m, 4H), 3.87 (d, *J* = 11.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.6, 148.0, 136.0, 134.3, 129.2, 128.8, 128.6, 128.2, 128.1, 128.0, 122.6, 67.0, 66.0, 58.6, 54.3.

HRMS (ESI) m/z calcd. for C₂₀H₂₃N₄O₄ [M + H]⁺ 383.1714, found 383.1704.

Synthesis of A-S31:

To a solution of phenylnitromethane (4.658 g, 34.0 mmol) in EtOH (46 mL) and 1,4-dioxane (19 mL) were added aqueous NaOH (1.0 M, 0.19 mL, 0.6 mol%) and formalin (37%, 5.6 mL, 68.0 mmol, 2.0 equiv.) at r.t. and the mixture was stirred at r.t. for 5 h. After evaporation of all the volatile materials *in vacuo*, H₂O (45 mL) was added. The resulting mixture was extracted with EtOAc (3×45 mL), dried, and concentrated. The residue was purified by flash chromatography (petroleum ether/EtOAc = $10/1 \sim 2/1$) to afford **A-S31-1** (4.738 g, 71% yield).

To a solution of **A-S31-1** (3.434 g, 17.4 mmol) in acetone (40 mL) were added *p*-TsOH·H₂O (330.9 mg, 1.74 mmol, 0.1 equiv.) and 2,2-dimethoxypropane (2.4 mL, 19 mmol, 1.1 equiv.) at r.t. and the reaction mixture was stirred at r.t. for 2 h. Upon completion, the reaction was quenched with Et₃N (0.34 mL, 2.38 mmol, 0.14 equiv.) at r.t. and the stirring was continued for an additional 30 min. The resulting mixture was concentrated *in vacuo* and the residue was purified by column chromatography (petroleum ether/EtOAc = $12/1 \sim 5/1$) to provide the acetonide **A-S31-2** (3.709 g, 90% yield).

To a solution of the acetonide **A-S31-2** (1.427 g, 6.0 mmol) in CH₃COOH (36 mL) were added zinc powders (1.56 g, 72.0 mmol, 12.0 equiv.) portionwise in 15-min intervals at r.t. and upon completion, the reaction mixture was stirred for additional 3 h. After filtration, the filtrate was concentrated *in vacuo*. The residue was diluted with CH₂Cl₂ (30 mL), washed with saturated NaHCO₃ (30 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to provide the crude amine **A-S31-3** (1.192 g, 96% yield).

To a solution of **A-S31-3** (1.192 g, 5.75 mmol) in THF/H₂O (1/1 (v/v), 10 mL) were successively added K₂CO₃ (1.589 g, 11.5 mmol, 2.0 equiv.) and benzyl chloroformate (0.96 mL, 6.9 mmol, 1.2 equiv.) at 0 °C under stirring. The reaction mixture was stirred at r.t. for 3 h. Aqueous 3N HCl was added dropwise until the pH reached ~3. The reaction mixture was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with water (1 × 15 mL) and brine (1 × 15 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = $50/1 \sim 4/1$) to afford the benzyl carbamate acetonide **A-S31-4**. The acetonide **A-S31-4** was demasked by stirring in acetic acid and H₂O (4/1 (v/v), 35 mL) at 60 °C for 1 h. Upon completion, all the volatile materials were removed *in vacuo* and the residue was purified by column chromatography (petroleum ether/EtOAc = $50/1 \sim 1/3$) to offer product **A-S31** as a white solid (1.482 g, 86% over two steps).

Benzyl (1,3-dihydroxy-2-phenylpropan-2-yl) carbamate (A-S31)

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 10H), 5.91 (s, 1H), 5.11 (s, 2H), 4.00 (dd, *J* = 11.8, 5.0 Hz, 2H), 3.92 (dd, *J* = 11.8, 5.4 Hz, 2H), 3.31 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.8, 139.5, 136.1, 128.8, 128.6, 128.3, 128.2, 127.8, 126.0, 67.8, 67.2, 63.9.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NO₄ [M + H]⁺ 302.1387, found 302.1380.

The synthesis of 1,2,3-triol substrates A-S34–A-S42

General procedure 4:

To a suspension of cerium(III) chloride (1.85 g, 7.5 mmol, 1.5 equiv.) in anhydrous THF (10 mL) was added the corresponding Grignard reagent (7.5 mmol, 1.5 equiv.). After stirring for 1.5 h at 0 °C, a solution of 2,2-dimethyl-1,3-dioxan-5-one (0.6 mL, 5 mmol, 1.0 equiv.) in THF (5 mL) was added dropwise at 0 °C by cannula. The resulting mixture was stirred at 0 °C for 1.5 h. After being neutralized with saturated NH4Cl (aq.), the mixture was vigorously stirred for 15 min. The resulting gummy residue was removed by decantation and filtration through celite. The filtrate was concentrated under reduced pressure, and the residual solids were washed and extracted with CH₂Cl₂ (3x). The combined organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to provide the tertiary alcohol.

To a solution of the tertiary alcohol obtained above in a 2/1 mixture of MeOH (6 mL) and H₂O (3 mL) was added two drops of conc. HCl at r.t. and the mixture was stirred at r.t. for 6 h. Evaporation of the volatile materials *in vacuo* followed by chromatographic purification (MeOH/CH₂Cl₂ = 1/20) of the residue gave the corresponding product.

2-Methylpropane-1,2,3-triol (A-S34)

According to **General procedure 4** with methyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S34** as a colorless oil (181 mg, 34% yield over two steps).

¹**H** NMR (400 MHz, CD₃OD) δ 3.36 (d, *J* = 1.9 Hz, 4H), 1.03 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 72.6, 66.3, 20.0.

HRMS (ESI) m/z calcd. for C₄H₁₀NaO₃ [M + Na]⁺ 129.0522, found 129.0522.

2-Isopropylpropane-1,2,3-triol (A-S35)

According to **General procedure 4** with isopropyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S35** as a colorless oil (308 mg, 46% yield over two steps).

¹**H NMR** (400 MHz, CD₃OD) δ 3.73 (d, *J* = 11.2 Hz, 2H), 3.64 (d, *J* = 11.3 Hz, 2H), 3.43 (s, 3H), 1.93 - 1.74 (m, 1H), 0.92 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (100 MHz, CD₃OD) δ 75.3, 65.7, 32.3, 16.8.

HRMS (ESI) m/z calcd. for C₆H₁₄NaO₃ [M + Na]⁺ 157.0835, found 157.0835.

2-Vinylpropane-1,2,3-triol (A-S36)

According to **General procedure 4** with vinyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S36** as a colorless oil (266 mg, 45% yield over two steps).

¹**H** NMR (400 MHz, Acetone- d_6) δ 5.99 (dd, J = 17.4, 10.9 Hz, 1H), 5.39 (dd, J = 17.4, 1.9 Hz, 1H), 5.13 (dd, J = 10.9, 2.0 Hz, 1H), 3.87 (d, J = 36.9 Hz, 3H), 3.55 (q, J = 10.8 Hz, 4H).

¹³C NMR (100 MHz, Acetone-*d*₆) δ 205.9, 140.0, 114.0, 75.4, 65.9.

HRMS (ESI) *m*/*z* calcd. for C₅H₁₀NaO₃ [M + Na]⁺ 141.0522, found 141.0521.

2-Allylpropane-1,2,3-triol (A-S37)

According to **General procedure 4** with allyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S37** as a colorless oil (397 mg, 60% yield over two steps).

¹**H NMR** (400 MHz, CD₃OD) δ 5.89 (m, 1H), 5.16 – 4.99 (m, 2H), 4.85 (s, 4H), 2.26 (d, *J* = 7.4 Hz, 2H).

¹³C NMR (100 MHz, CD₃OD) δ 133.4, 116.9, 73.9, 64.5, 38.2.

HRMS (ESI) m/z calcd. for C₆H₁₂NaO₃ [M + Na]⁺ 155.0679, found 155.0677.

2-Ethynylpropane-1,2,3-triol (A-S38)

According to **General procedure 4** with ethynyl magnesium bromide (15 mL, 0.50 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S38** as a white solid (400 mg, 69% yield over two steps).

¹**H NMR** (400 MHz, CD₃OD) δ 3.61 (d, *J* = 2.4 Hz, 4H), 2.81 (s, 1H).

¹³C NMR (100 MHz, CD₃OD) δ 83.8, 73.4, 71.0, 65.2.

HRMS (ESI) *m*/*z* calcd. for C₅H₈NaO₃ [M + Na]⁺ 139.0366, found 139.0365.

2-Benzylpropane-1,2,3-triol (A-S39)

According to **General procedure 4** with benzyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.). The reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S39** as a white solid (292 mg, 32% yield over two steps).

¹**H NMR** (400 MHz, CD₃OD) δ 7.35 – 7.21 (m, 4H), 7.20 – 7.14 (m, 1H), 3.42 (s, 4H), 2.80 (s, 2H).

¹³C NMR (100 MHz, CD₃OD) δ 137.0, 130.3, 127.4, 125.8, 74.4, 64.2, 39.4.

HRMS (ESI) m/z calcd. for C₁₀H₁₄NaO₃ [M + Na]⁺ 205.0835, found 205.0834.

2-Phenylpropane-1,2,3-triol (A-S40)

According to **General procedure 4** with phenyl magnesium bromide (7.5 mL, 1.0 M in THF, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S40** as a white solid (463 mg, 55% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.27 – 7.21 (m, 2H), 7.21 – 7.16 (m, 1H), 4.54 (s, 1H), 4.03 (s, 2H), 3.73 (d, *J* = 11.7 Hz, 2H), 3.57 (d, *J* = 11.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 128.3, 127.4, 125.3, 76.7, 67.7.

HRMS (ESI) *m*/*z* calcd. for C₉H₁₂NaO₃ [M + Na]⁺ 191.0679, found 191.0676.

2-(2,4-Difluorophenyl)propane-1,2,3-triol (A-S42)

According to **General procedure 4** with 2,4-difluorophenyl magnesium bromide (1.5 equiv.) prepared using 1-bromo-2,4-difluorobenzene and Mg, the reaction mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20) to yield product **A-S42** as a white solid (530 mg, 52% yield over two steps).

¹**H** NMR (400 MHz, CD₃OD) δ 7.74 (td, *J* = 8.9, 6.8 Hz, 1H), 6.99 – 6.93 (m, 1H), 6.92 – 6.86 (m, 1H), 3.95 – 3.79 (m, 4H).

¹³**C** NMR (100 MHz, CD₃OD) δ 162.4 (dd, J = 244.8, 12.4 Hz), 159.7 (dd, J = 245.6, 11.8 Hz), 130.7 (dd, J = 9.5, 6.6 Hz), 125.3 (dd, J = 13.4, 3.7 Hz), 110.4 (dd, J = 20.7, 3.4 Hz), 103.3 (dd, J = 28.6, 25.7 Hz), 76.7 (d, J = 5.6 Hz), 65.4 (d, J = 5.3 Hz).

¹⁹**F NMR** (376 MHz, CD₃OD) δ –110.1 (m), –114.8 (m).

HRMS (ESI) m/z calcd. for C₉H₁₀F₂NaO₃ [M + Na]⁺ 227.0490, found 227.0488.

Synthesis of A-S41:

To a solution of phenylacetylene (2.2 mL, 20 mmol) in THF (20 mL) was dropwise added *n*-BuLi (2.4 M in THF, 8.3 mL, 20 mmol) at -78 °C. After stirring for 1 h, the ketone (2.4 mL, 20 mmol, 1.0 equiv.) in THF (20 mL) was slowly added via syringe and the mixture was stirred at -78 °C for 2 h. The reaction mixture was quenched with saturated NH₄Cl (aq.) and extracted with EtOAc (3x). The combined organic layers were washed with H₂O (1x), dried (Na₂SO₄), and concentrated *in vacuo*. The residue was dissolved in acetic acid (90%, 30 mL) and the solution was stirred at 90 °C for 15 min. The reaction mixture was concentrated *in vacuo* and the resulting residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **A-S41** as a white solid (2.5 g, 65% yield over two steps).

2-(Phenylethynyl)propane-1,2,3-triol (A-S41)

¹**H NMR** (400 MHz, CD₃OD) δ 7.51 – 7.41 (m, 2H), 7.36 – 7.26 (m, 3H), 3.79 – 3.64 (m, 4H).

¹³C NMR (100 MHz, CD₃OD) δ 131.4, 128.04, 127.97, 122.8, 89.1, 84.7, 71.6, 65.3.

HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₃ [M + Na]⁺ 215.0679, found 215.0678.

Synthesis of ligands

General procedures 5:

To a solution of amine S-L* or S'-L* (1.47 g, 5.0 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) were successively added the corresponding sulfonyl chloride (6.0 mmol, 1.2 equiv.) and Et₃N (1.67 mL, 12.0 mmol, 2.0 equiv.) under argon at 0 °C. The reaction mixture was stirred for 12 h at r.t. and quenched by H₂O. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3x). The combined organic phase was washed with brine, dried (Na₂SO₄), concentrated, and purified by silica gel flash column chromatography (eluent: CH₂Cl₂/MeOH = $20/1 \sim 10/1$) to afford the product.

According to **General procedure 5** with amine **S-L*** (1.47 g, 5.0 mmol, 1.0 equiv.) and pentamethylbenzenesulfonyl chloride (1.48 g, 6.0 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = $20/1 \sim 10/1$) to yield product **L*4** as a white solid (1.81 g, 72% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 4.3 Hz, 1H × 0.4), 8.55 (d, *J* = 4.6 Hz, 1H), 8.21 (d, *J* = 8.5 Hz, 1H × 0.4), 8.08 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H × 0.4), 7.65 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.51 (m, 1H + 1H × 0.4), 7.39 (t, *J* = 7.5 Hz, 1H × 0.4), 7.18 – 7.16 (m, 1H + 1H × 0.4), 5.72 – 5.63 (m, 1H), 5.61 – 5.54 (m, 1H × 0.4), 5.08 (d, *J* = 10.6 Hz, 1H), 5.01 – 4.89 (m, 2H + 1H × 0.4), 4.84 (d, *J* = 10.3 Hz, 1H × 0.4), 4.44 (d, *J* = 10.9 Hz, 1H × 0.4), 3.37 (q, *J* = 9.6 Hz, 1H × 0.4), 3.28 – 3.22 (m, 1H + 1H × 0.4), 3.20 – 3.10 (m, 1H), 3.10 – 3.00 (m, 1H × 0.4), 2.86 (q, *J* = 9.8 Hz, 1H), 2.77 – 2.71 (m, 2H + 2H × 0.4), 2.35 (s, 6H × 0.4), 2.27 (s, 6H), 1.98 (s, 3H), 1.86 (s, 3H × 0.4), 1.81 (s, 6H), 1.77 (s, 6H × 0.4), 1.67 – 1.65 (m, 2H × 0.4), 1.60 – 1.50 (m, 4H), 1.27 – 1.21 (m, 1H + 2H × 0.4), 0.87 (dd, *J* = 13.0, 7.5 Hz, 1H × 0.4), 0.72 (dd, *J* = 13.5, 7.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 149.0, 148.6, 148.3, 147.6, 144.2, 141.4, 141.2, 141.1, 139.2, 139.0, 134.6, 134.4, 134.1, 133.9, 133.7, 129.8, 128.8, 128.3, 127.3, 126.2, 125.6, 125.0, 124.7, 123.2, 122.5, 119.1, 114.5, 62.9, 60.6, 56.5, 55.8, 55.6, 52.6, 40.1, 39.7, 39.6, 39.4, 27.6, 27.4, 27.3, 26.1, 25.1, 18.5, 18.4, 17.3, 16.5, 16.4.

HRMS (ESI) m/z calcd. for C₃₀H₃₈N₃O₂S [M + H]⁺ 504.2679, found 504.2680.

The structure of L*4 was further confirmed by X-ray diffraction analysis (Supplementary Fig. 18).

According to **General procedure 5** with amine **S'-L*** (1.47 g, 5.0 mmol, 1.0 equiv.) and pentamethylbenzenesulfonyl chloride (1.48 g, 6.0 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = $20/1 \sim 10/1$) to yield product **L*4'** as a white solid (1.50 g, 60% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.63 (d, *J* = 4.3 Hz, 1H × 0.4), 8.58 (d, *J* = 4.6 Hz, 1H), 8.25 (d, *J* = 8.5 Hz, 1H × 0.4), 7.99 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.6 Hz, 1H × 0.4), 7.65 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H × 0.4), 7.51 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H × 0.4), 7.24 (d, *J* = 4.6 Hz, 1H), 7.11 (d, *J* = 4.3 Hz, 1H × 0.4), 5.85 – 5.78 (m, 1H + 1H × 0.4), 5.15 – 5.10 (m, 1H + 1H × 0.4), 5.04 – 5.00 (m, 1H + 1H × 0.4), 4.97 (d, *J* = 10.4 Hz, 1H), 4.38 (d, *J* = 10.8 Hz, 1H × 0.4), 3.29 (q, *J* = 9.4 Hz, 1H × 0.4), 2.96 – 2.87 (m, 3H + 3H × 1H) × 0.4)

0.4), 2.82 - 2.75 (m, 2H), 2.73 - 2.68 (m, $1H \times 0.4$), 2.37 (s, $6H \times 0.4$), 2.28 (s, 6H), 2.05 (s, 3H), 1.91 (s, $3H \times 0.4$), 1.89 (s, 6H), 1.83 (s, $6H \times 0.4$), 1.64 (s, $1H \times 0.4$), 1.58 - 1.42 (m, $3H + 2H \times 0.4$), 1.19 - 1.14 (m, $1H \times 0.4$), 1.09 - 1.04 (m, 1H), 0.82 - 0.76 (m, $1H + 1H \times 0.4$).

¹³C NMR (125 MHz, CDCl₃) δ 149.1, 148.8, 148.4, 147.7, 144.7, 141.9, 140.2, 139.9, 139.3, 139.1, 134.7, 134.5, 134.2, 134.1, 133.9, 129.8, 128.8, 128.4, 127.4, 126.2, 125.1, 124.9, 123.0, 122.4, 119.3, 114.8, 114.5, 62.3, 60.8, 56.6, 52.0, 49.13, 49.06, 45.9, 45.7, 39.0, 38.8, 27.4, 27.3, 26.5, 26.4, 25.3, 24.2, 18.48, 18.46, 17.4, 16.7, 16.6.

HRMS (ESI) *m/z* calcd. for C₃₀H₃₈N₃O₂S [M + H]⁺ 504.2679, found 504.2680.

According to **General procedure 5** with amine **S-L*** (1.47 g, 5.0 mmol, 1.0 equiv.) and quinoline-8-sulfonyl chloride (1.37 g, 6.0 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = $20/1 \sim 10/1$) to yield product **L*8** as a white solid (1.70 g, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 9.08 (d, J = 4.0 Hz, 1H), 8.75 (d, J = 4.5 Hz, 1H), 8.58 (s, 2H × 0.1), 8.23 – 8.22 (m, 1H + 1H × 0.1), 8.11 – 8.05 (m, 2H + 2H × 0.1), 7.94 (dd, J = 20.0, 7.3 Hz, 2H), 7.67 – 7.63 (m, 1H + 1H × 0.1), 7.56 – 7.53 (m, 3H), 7.46 – 7.42 (m, 1H + 2H × 0.1), 7.31 (s, 2H × 0.1), 7.09 (s, 2H × 0.1), 5.62 – 5.58 (m, 1H + 1H × 0.1), 4.90 – 4.86 (m, 3H), 4.09 (s, 3H × 0.1), 3.35 (s, 2H × 0.1), 3.10 – 2.77 (m, 2H), 2.65 – 2.62 (m, 1H + 1H × 0.1), 2.10 (s, 1H + 1H × 0.1), 1.91 (s, 1H + 1H × 0.1), 1.76 – 1.69 (m, 1H + 1H × 0.1), 1.45 (s, 1H + 1H × 0.1), 1.26 – 1.20 (m, 2H + 2H × 0.1), 1.10 – 1.06 (m, 1H + 1H × 0.1), 0.81 – 0.51 (m, 1H + 1H × 0.1).

¹³**C** NMR (125 MHz, CDCl₃) δ 150.8, 149.8, 149.1, 148.0, 146.1, 143.2, 142.9, 141.1, 136.5, 135.7, 133.2, 131.0, 130.2, 128.8, 128.4, 127.2, 126.5, 125.7, 125.1, 122.8, 122.1, 122.0, 119.6, 114.4, 63.0, 61.2, 57.0, 55.4, 52.8, 39.5, 39.3, 39.0, 27.4, 27.0, 25.9, 24.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₉N₄O₂S [M + H]⁺ 485.2006, found 485.2007.

According to **General procedure 5** with amine **S-L*** (1.47 g, 5.0 mmol, 1.0 equiv.) and cyclopropanesulfonyl chloride (0.61 mL, 6.0 mmol, 1.2 equiv.). The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = $50/1 \sim 30/1$) to yield product **L***9 as a yellow solid (1.57 g, 79% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 4.5 Hz, 1H), 8.86 (d, J = 4.1 Hz, 1H × 0.55), 8.71 (d, J = 8.5 Hz, 1H × 0.55), 8.31 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H + 1H × 0.55), 7.81 – 7.70 (m, 2H + 1H × 0.55), 7.66 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H × 0.55), 7.38 (d, J = 4.1 Hz, 1H × 0.55), 5.75 – 5.56 (m, 1H + 1H × 0.55), 5.29 (d, J = 10.5 Hz, 1H), 4.95 – 4.92 (m, 2H + 1H × 0.55), 4.87 (d, J = 10.3 Hz, 1H × 0.55), 4.52 (d, J = 10.8 Hz, 1H × 0.55), 3.38 (q, J = 9.6 Hz, 1H × 0.55), 3.29 – 3.16 (m, 2H + 1H × 0.55), 3.11 – 3.03 (m, 1H × 0.55), 2.98 – 2.66 (m, 3H + 2H × 0.55), 2.30 (s, 1H + 1H × 0.55), 1.95 – 1.88 (m, 1H), 1.71 – 1.61 (m, 3H + 4H × 0.55), 1.39 – 1.22 (m, 1H + 1H × 0.55), 1.08 – 0.80 (m, 2H + 2H × 0.55), 0.72 – 0.65 (m, 1H), 0.51 – 0.27 (m, 1H + 2H × 0.55), 0.18 – 0.10 (m, 1H), -0.04 – -0.25 (m, 1H × 0.55).

¹³**C** NMR (100 MHz, CDCl₃) δ 149.9, 149.5, 149.0, 148.2, 146.4, 142.7, 141.1, 141.0, 130.5, 130.2, 129.3, 129.1, 127.5, 127.1, 126.2, 126.2, 124.9, 123.5, 122.4, 120.0, 114.5, 62.5, 61.3, 56.6, 55.6, 55.4, 52.5, 40.2, 39.8, 39.5, 39.3, 30.9, 30.8, 27.6, 27.4, 27.2, 26.2, 25.0, 5.6, 5.5, 4.9, 4.8.

HRMS (ESI) m/z calcd. for C₂₂H₂₈N₃O₂S [M + H]⁺ 398.1897, found 398.1895.

A solution of amine **S-L**^{*} or **S'-L**^{*} (1.47 g, 5.0 mmol, 1.0 equiv.) and 2-(diphenylphosphanyl)benzaldehyde (1.45 g, 5.0 mmol, 1.0 equiv.) in anhydrous ethanol (150 mL) was heated under reflux for 10 h. The reaction was then cooled to r.t. Sodium borohydride (1.90 g, 50 mmol, 10 equiv.) was added at r.t. After stirring for 6 h, the reaction was quenched by adding acetone (50 mL) and the solvents were removed under reduced pressure. The residue was dissolved in a mixture of saturated ammonium hydrochloride solution (100 mL) and dichloromethane (100 mL) with vigorous stirring. The aqueous phase was extracted with dichloromethane (3x). The combined organic phase was washed with brine, dried (Na₂SO₄), concentrated, and purified by silica gel flash column chromatography (eluent: petroleum ether/EtOAc = 1/1, then EtOAc) to afford the product.

L*11 was obtained as a white solid (1.79 g, 63% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H × 0.3), 9.00 – 8.84 (m, 1H), 8.76 (s, 1H × 0.3), 8.17 – 8.15 (m, 2H + 1H × 0.3), 7.91 – 7.78 (m, 1H), 7.73 – 7.69 (m, 1H + 1H × 0.3), 7.58 – 7.49 (m, 1H + 1H × 0.3), 7.35 – 7.05 (m, 13H + 14H × 0.3), 6.89 – 6.80 (m, 1H + 1H × 0.3), 5.77 – 5.54 (m, 1H + 1H × 0.3), 4.98 – 4.76 (m, 2H + 2H × 0.3), 4.60 (d, *J* = 9.5 Hz, 1H), 3.98 – 3.84 (m, 2H × 0.3), 3.79 (d, *J* = 12.8 Hz, 1H), 3.51 (d, *J* = 13.1 Hz, 1H + 1H × 0.3), 3.40 (s, 1H × 0.3), 3.23 –

3.04 (m, 1H + 2H × 0.3), 3.04 - 2.76 (m, 4H), 2.76 - 2.41 (m, 3H), 2.19 (s, 1H + 1H × 0.3), 1.51 (s, 4H + 2H × 0.3), 1.20 - 1.02 (m, 1H + 2H × 0.3), 0.91 - 0.63 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.6, 148.6, 148.2, 144.7, 144.4, 141.8, 136.9, 136.8, 136.6, 135.7, 135.5, 133.8, 133.7, 133.6, 133.5, 130.4, 129.44, 129.38, 129.0, 128.8, 128.7, 128.5, 128.44, 128.41, 128.34, 128.28, 127.2, 126.2, 122.7, 120.1, 114.1, 69.2, 62.4, 58.3, 57.0, 56.0, 50.0, 49.8, 40.9, 39.9, 29.2, 28.1, 27.5, 26.8, 25.2.

³¹**P** NMR (162 MHz, CDCl₃) δ –16.3.

HRMS (ESI) m/z calcd. for C₃₈H₃₉N₃P [M + H]⁺ 568.2876, found 568.2873.

L*11' was obtained as a yellow solid (1.48 g, 52% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H × 0.3), 8.92 – 8.91 (m, 1H), 8.76 (s, 1H × 0.3), 8.17 – 8.11 (m, 2H + 1H × 0.3), 7.87 – 7.80 (m, 1H), 7.73 – 7.69 (m, 1H + 1H × 0.3), 7.57 – 7.50 (m, 1H + 1H × 0.3), 7.33 – 7.10 (m, 13H + 14H × 0.3), 6.88 – 6.83 (m, 1H + 1H × 0.3), 5.87 – 5.78 (m, 1H + 1H × 0.3), 5.08 (d, *J* = 10.5 Hz, 1H + 1H × 0.3), 4.99 (d, *J* = 17.3 Hz, 1H + 1H × 0.3), 4.61 (d, *J* = 9.5 Hz, 1H), 3.96 – 3.83 (m, 2H × 0.3), 3.76 (d, *J* = 13.3 Hz, 1H), 3.53 (d, *J* = 13.3 Hz, 1H + 1H × 0.3), 3.32 (s, 1H × 0.3), 2.97 – 2.70 (m, 5H + 5H × 0.3), 2.21 – 2.15 (m, 1H + 2H × 0.3), 1.51 – 1.43 (m, 3H + 3H × 0.3), 1.15 – 1.09 (m, 1H + 1H × 0.3), 0.73 – 0.68 (m, 1H + 1H × 0.3).

¹³**C** NMR (100 MHz, CDCl₃) δ 150.6, 148.8, 148.2, 144.8, 144.5, 140.8, 136.9, 136.8, 136.7, 135.8, 135.7, 133.9, 133.8, 133.7, 133.6, 130.4, 129.42, 129.38, 129.1, 128.8, 128.6, 128.5, 128.42, 128.35, 127.3, 126.1, 122.9, 120.1, 114.3, 62.5, 56.3, 50.1, 49.9, 49.3, 47.3, 39.6, 27.7, 26.7, 24.5.

³¹**P** NMR (162 MHz, CDCl₃) δ –16.3.

HRMS (ESI) m/z calcd. for C₃₈H₃₉N₃P [M + H]⁺ 568.2876, found 568.2871.

Cu-catalyzed enantioselective radical S–O cross-coupling of 2,2-disubstituted 1,3-diols, *meso* 1,2-diol, and 1,2,3-triols

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.030 mmol, 10 mol%), L*4 (15.1 mg, 0.030 mmol, 10 mol%), Ag₂CO₃ (49.6 mg, 0.18 mmol, 0.60 equiv.), proton sponge (12.8 mg, 0.060 mmol, 0.20 equiv.), alcohol (0.30 mmol, 1.0 equiv.), and anhydrous CHCl₃ (3.0 mL). Then the corresponding sulfonyl chloride (0.36 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at 0 °C. Upon completion (monitored by TLC), the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products (\pm) -1–32:

To a solution of diol (0.10 mmol, 1.0 equiv.) and Et₃N (27.7 μ L, 0.20 mmol, 2.0 equiv.) in dry DCM (1.0 mL) was added the corresponding sulfonyl chloride (0.11 mmol, 1.1 equiv.). After stirring for 24 h, saturated NH₄Cl (aq.) was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with DCM (3x) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemate.

The preparation of racemic products (\pm) -47–55:

The racemates of products (\pm) -47–55 were prepared by following **General procedure A** described above using L_{rac} (10 mol%) as ligand. After stirring at r.t. for 24 h, the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel to afford the desired racemates.

(*R*)-3-Hydroxy-2-methyl-2-phenylpropyl benzenesulfonate (1)

According to **General procedure A** with A-1 (49.9 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product 1 as a colorless oil (79.0 mg, 86% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 26.64 min, t_R (minor) = 29.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.77 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.24 (m, 5H), 4.27 (d, *J* = 9.6 Hz, 1H), 4.23 (d, *J* = 9.6 Hz, 1H), 3.80 (d, *J* = 11.3 Hz, 1H), 3.76 (d, *J* = 11.3 Hz, 1H), 1.63 (br s, 1H), 1.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 135.6, 133.8, 129.2, 128.7, 127.9, 127.1, 126.3, 74.2, 67.4, 43.8, 20.1.

HRMS (ESI) calcd for $C_{16}H_{18}NaO_4S [M + Na]^+ 329.0818$, found: 329.0814.

(*R*)-3-Hydroxy-2-methyl-2-phenylpropyl 4-methylbenzenesulfonate (2)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 4methylbenzenesulfonyl chloride (68.4 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **2** as a white solid (82.5 mg, 86% yield, 93% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 23.40 min, t_R (minor) = 25.24 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.20 (m, 7H), 4.23 (d, *J* = 9.6 Hz, 1H), 4.19 (d, *J* = 9.6 Hz, 1H), 3.77 (d, *J* = 11.4 Hz, 1H), 3.73 (d, *J* = 11.4 Hz, 1H), 2.44 (s, 3H), 1.84 (br s, 1H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.3, 132.5, 129.8, 128.6, 127.8, 127.0, 126.3, 74.0, 67.3, 43.7, 21.6, 20.1.

HRMS (ESI) calcd for $C_{17}H_{20}NaO_4S [M + Na]^+ 343.0975$, found: 343.0975.

(*R*)-3-Hydroxy-2-methyl-2-phenylpropyl 4-methoxybenzenesulfonate (3)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 4methoxybenzenesulfonyl chloride (74.4 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **3** as a colorless oil (57.5 mg, 57% yield, 92% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 19.66 min, t_R (minor) = 22.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.72 (m, 2H), 7.37 – 7.21 (m, 5H), 7.02 – 6.95 (m, 2H), 4.23 (d, *J* = 9.6 Hz, 1H), 4.18 (d, *J* = 9.6 Hz, 1H), 3.88 (s, 3H), 3.79 (d, *J* = 11.4 Hz, 1H), 3.75 (d, *J* = 11.4 Hz, 1H), 1.74 (br s, 1H), 1.32 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 163.8, 141.4, 130.1, 128.6, 127.1, 126.9, 126.4, 114.4, 73.8, 67.4, 55.7, 43.8, 20.2.

HRMS (ESI) calcd for $C_{17}H_{20}NaO_5S [M + Na]^+ 359.0924$, found: 359.0918.

(R)-3-Hydroxy-2-methyl-2-phenylpropyl 2-bromobenzenesulfonate (4)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 2bromobenzenesulfonyl chloride (92.0 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **4** as a slightly yellow solid (77.1 mg, 67% yield, 93% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 40.56 min, t_R (minor) = 44.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 – 8.04 (m, 1H), 7.80 – 7.72 (m, 1H), 7.53 – 7.43 (m, 2H), 7.36 – 7.28 (m, 4H), 7.28 – 7.21 (m, 1H), 4.33 (d, *J* = 9.6 Hz, 1H), 4.27 (d, *J* = 9.6 Hz, 1H), 3.84 (d, *J* = 11.6 Hz, 1H), 3.81 (d, *J* = 11.6 Hz, 1H), 1.82 (br s, 1H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 135.6, 135.4, 134.7, 132.1, 128.7, 127.6, 127.2, 126.4, 120.8, 74.9, 67.4, 43.8, 20.3.

HRMS (ESI) calcd for C₁₆H₁₇BrNaO₄S [M + Na]⁺ 406.9923, found: 406.9918.

(R)-3-Hydroxy-2-methyl-2-phenylpropyl 2-chlorobenzenesulfonate (5)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 2chlorobenzenesulfonyl chloride (76.0 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **5** as a colorless oil (56.9 mg, 56% yield, 91% e.e.). **HPLC** analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.4 mL/min, λ = 214 nm), t_R (major) = 29.06 min, t_R (minor) = 31.01 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 8.03 (m, 1H), 7.59 – 7.53 (m, 2H), 7.45 – 7.41 (m, 1H), 7.32 – 7.31 (m, 4H), 7.26 – 7.23 (m, 1H), 4.35 (d, *J* = 9.6 Hz, 1H), 4.29 (d, *J* = 9.6 Hz, 1H), 3.84 (d, *J* = 11.2 Hz, 1H), 3.81 (d, *J* = 11.2 Hz, 1H), 1.70 (br s, 1H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 134.8, 133.7, 132.9, 132.1, 131.9, 128.7, 127.2, 127.1, 126.3, 74.9, 67.4, 43.8, 20.3.

HRMS (ESI) calcd for C₁₆H₁₇ClNaO₄S [M + Na]⁺ 363.0428, found: 363.0423.

Methyl (R)-3-((3-hydroxy-2-methyl-2-phenylpropoxy)sulfonyl)benzoate (6)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and methyl 3-(chlorosulfonyl)benzoate (59.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **6** as a white solid (95.1 mg, 87% yield, 91% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.6 mL/min, λ = 214 nm), t_R (major) = 16.41 min, t_R (minor) = 19.34 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (t, *J* = 1.6 Hz, 1H), 8.30 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.99 (dt, *J* = 7.9, 1.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.32 – 7.19 (m, 5H), 4.28 (s, 2H), 3.96 (s, 3H), 3.79 (d, *J* = 11.2 Hz, 1H), 3.75 (d, *J* = 11.2 Hz, 1H), 1.81 (br s, 1H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 141.1, 136.3, 134.6, 131.7, 131.4, 129.5, 128.9, 128.6, 127.1, 126.2, 74.6, 67.2, 52.7, 43.8, 20.1.

HRMS (ESI) calcd for $C_{18}H_{20}NaO_6S [M + Na]^+$ 387.0873, found: 387.0867.

(*R*)-3-Hydroxy-2-methyl-2-phenylpropyl 3-cyanobenzenesulfonate (7)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 3cyanobenzenesulfonyl chloride (72.6 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **7** as a white solid (97.1 mg, 98% yield, 95% e.e.).

HPLC analysis: Chiralcel AZ3 (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.7 mL/min, $\lambda = 214$ nm), *t*_R (major) = 21.05 min, *t*_R (minor) = 24.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.98 (m, 2H), 7.89 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.68 – 7.59 (m, 1H), 7.32 – 7.20 (m, 5H), 4.33 (d, *J* = 9.5 Hz, 1H), 4.29 (d, *J* = 9.5 Hz, 1H), 3.79 (d, *J* = 11.1 Hz, 1H), 3.73 (d, *J* = 11.1 Hz, 1H), 1.93 (br s, 1H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 137.3, 136.7, 131.6, 131.2, 130.2, 128.6, 127.2, 126.1, 116.7, 113.8, 75.2, 67.0, 43.7, 19.9.

HRMS (ESI) calcd for C₁₇H₁₇NNaO₄S [M + Na]⁺ 354.0770, found: 354.0765.

(R)-3-Hydroxy-2-methyl-2-phenylpropyl 4-cyanobenzenesulfonate (8)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 4cyanobenzenesulfonyl chloride (72.6 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **8** as a white solid (96.2 mg, 97% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 28.18 min, t_R (minor) = 33.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.81 – 7.75 (m, 2H), 7.34 – 7.20 (m, 5H), 4.32 (d, *J* = 9.5 Hz, 1H), 4.29 (d, *J* = 9.5 Hz, 1H), 3.78 (d, *J* = 11.2 Hz, 1H), 3.73 (d, *J* = 11.2 Hz, 1H), 1.89 (br s, 1H), 1.34 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.9, 139.8, 132.9, 128.7, 128.4, 127.2, 126.2, 117.4, 116.9, 75.1, 67.1, 43.7, 20.0.

HRMS (ESI) calcd for $C_{17}H_{18}NO_4S [M + Na]^+ 332.0951$, found: 332.0943.

(*R*)-3-Hydroxy-2-methyl-2-phenylpropyl 4-nitrobenzenesulfonate (9)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and 4nitrobenzenesulfonyl chloride (79.8 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **9** as a slightly yellow solid (85.2 mg, 81% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 18.52 min, t_R (minor) = 22.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 2H), 7.96 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.20 (m, 5H), 4.35 (d, *J* = 9.5 Hz, 1H), 4.32 (d, *J* = 9.5 Hz, 1H), 3.80 (d, *J* = 11.2 Hz, 1H), 3.75 (d, *J* = 11.1 Hz, 1H), 1.73 (br s, 1H), 1.36 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.6, 141.3, 140.9, 129.1, 128.7, 127.3, 126.2, 124.3, 75.3, 67.1, 43.8, 20.0.

HRMS (ESI) calcd for C₁₀H₁₃O [M-*p*NO₂PhSO₃]⁺ 149.0961, found: 149.0963.

Note: The product was unstable in neat state at r.t. after purification and should be stored in refrigerator at -20 °C.

(R)-3-Hydroxy-2-methyl-2-phenylpropyl naphthalene-2-sulfonate (10)

According to **General procedure A** with **A-1** (49.9 mg, 0.30 mmol, 1.0 equiv.) and naphthalene-2-sulfonyl chloride (81.6 mg, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **10** as a white solid (77.2 mg, 72% yield, 91% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 17.95 min, t_R (minor) = 20.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.48 – 8.36 (m, 1H), 7.96 – 7.91 (m, 3H), 7.76 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.72 – 7.60 (m, 2H), 7.33 – 7.13 (m, 5H), 4.29 (d, *J* = 9.6 Hz, 1H), 4.25 (d, *J* = 9.6 Hz, 1H), 3.78 (d, *J* = 11.3 Hz, 1H), 3.74 (d, *J* = 11.3 Hz, 1H), 1.79 (br s, 1H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 135.2, 132.3, 131.8, 129.8, 129.6, 129.4, 129.3, 128.6, 127.9, 127.8, 127.0, 126.3, 122.4, 74.3, 67.3, 43.8, 20.1.

HRMS (ESI) calcd for C₂₀H₂₀NaO₄S [M + Na]⁺ 379.0975, found: 379.0970.

(*R*)-2-(Hydroxymethyl)-2-phenylbutyl benzenesulfonate (11)

According to **General procedure A** with **A-S1** (54.1 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **11** as a colorless oil (88.2 mg, 92% yield, 93% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 88/12, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 19.67 min, t_R (minor) = 21.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.83 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.18 – 7.12 (m, 2H), 4.38 (d, *J* = 9.5 Hz, 1H), 4.33 (d, *J* = 9.5 Hz, 1H), 3.88 (d, *J* = 11.3 Hz, 1H), 3.82 (d, *J* = 11.3 Hz, 1H), 1.77 – 1.66 (m, *J* = 7.2 Hz, 3H), 0.61 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.8, 135.5, 133.8, 129.2, 128.6, 127.8, 126.8, 126.4, 71.6, 64.8, 47.0, 25.7, 7.4.

HRMS (ESI) calcd for C₁₇H₂₀NaO₄S [M + Na]⁺ 343.0975, found: 343.0971.

(*R*)-2-(Hydroxymethyl)-3-methyl-2-phenylbutyl benzenesulfonate (12)

According to **General procedure A** with **A-S2** (58.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **12** as a colorless oil (88.5 mg, 88% yield, 94% e.e.).

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 22.85 min, t_R (minor) = 25.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.83 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.15 – 7.13 (m, 2H), 4.57 (d, *J* = 9.6 Hz, 1H), 4.48 (d, *J* = 9.6 Hz, 1H), 4.06 (d, *J* = 11.5 Hz, 1H), 3.99 (d, *J* = 11.5 Hz, 1H), 2.07 – 2.00 (m, 2H), 0.76 (d, *J* = 7.0 Hz, 3H), 0.74 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 138.3, 135.5, 133.8, 129.2, 128.2, 127.9, 127.1, 126.7, 70.7, 63.1, 49.4, 31.4, 17.8, 17.6.

HRMS (ESI) calcd for $C_{18}H_{22}NaO_4S [M + Na]^+ 357.1131$, found: 357.1123.

(*R*)-3-Cyclopropyl-2-(hydroxymethyl)-2-phenylpropyl benzenesulfonate (13)

According to **General procedure A** with **A-S3** (61.9 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **13** as a white solid (92.5 mg, 89% yield, 96% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 21.19 min, t_R (minor) = 23.90 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.7 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.36 – 7.28 (m, 2H), 7.26 – 7.20 (m, 3H), 4.47 (s, 2H), 4.03 – 3.84 (m, 2H), 1.72 – 1.55 (m, 3H), 0.39 – 0.23 (m, 3H), -0.01 – -0.10 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 135.6, 133.8, 129.3, 128.6, 127.9, 126.9, 126.5, 71.8, 65.1, 47.9, 38.6, 5.4, 4.6, 4.4.

HRMS (ESI) calcd for C₁₉H₂₂NaO₄S [M + Na]⁺ 369.1131, found: 369.1127.

(R)-4-(Benzyloxy)-2-(hydroxymethyl)-2-phenylbutyl benzenesulfonate (14)

According to **General procedure A** with **A-S4** (85.9 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **14** as a white solid (102.5 mg, 80% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 44.97 min, *t*_R (minor) = 40.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 2H), 7.61 (tt, *J* = 7.1, 1.2 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.35 – 7.19 (m, 8H), 7.16 – 7.14 (m, 2H), 4.40 – 4.33 (m, 2H), 4.32 (d, *J* = 9.6 Hz, 1H), 4.28 (d, *J* = 9.6 Hz, 1H), 3.91 (d, *J* = 11.8 Hz, 1H), 3.84 (d, *J* = 11.8 Hz, 1H), 3.47 – 3.39 (m, 1H), 3.39 – 3.31 (m, 1H), 2.51 (br s, 1H), 2.18 – 2.09 (m, 1H), 2.08 – 2.01 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.9, 137.4, 135.5, 133.7, 129.1, 128.6, 128.4, 127.8, 127.7, 126.9, 126.5, 73.5, 73.2, 66.2, 64.9, 46.4, 33.4.

HRMS (ESI) calcd for $C_{24}H_{26}NaO_5S [M + Na]^+ 449.1393$, found: 449.1386.

(R)-5-Chloro-2-(hydroxymethyl)-2-phenylpentyl benzenesulfonate (15)

According to **General procedure A** with A-S5 (68.6 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by

column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **15** as a colorless oil (74.2 mg, 67% yield, 89% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 20.23 min, t_R (minor) = 25.96 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.7 Hz, 1H), 7.16 (d, *J* = 7.7 Hz, 2H), 4.38 (d, *J* = 9.6 Hz, 1H), 4.31 (d, *J* = 9.6 Hz, 1H), 3.91 (d, *J* = 11.3 Hz, 1H), 3.83 (d, *J* = 11.3 Hz, 1H), 3.39 (t, *J* = 6.4 Hz, 2H), 1.93 – 1.76 (m, 2H), 1.71 (br s, 1H), 1.52 – 1.39 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.4, 135.5, 133.9, 129.3, 128.9, 127.9, 127.2, 126.3, 71.7, 64.9, 46.5, 45.1, 30.5, 26.4.

HRMS (ESI) calcd for $C_{18}H_{21}CINaO_4S [M + Na]^+ 391.0741$, found: 391.0736.

(*R*)-2-Benzyl-3-hydroxy-2-phenylpropyl benzenesulfonate (16)

According to **General procedure A** with **A-S6** (72.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **16** as a white solid (111.2 mg, 97% yield, 98% e.e.).

HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 214$ nm), *t*_R (major) = 17.96 min, *t*_R (minor) = 22.41 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.29 – 7.21 (m, 3H), 7.13 – 7.04 (m, 5H), 6.71 (d, J = 7.0 Hz, 2H), 4.35 (d, J = 9.5 Hz, 1H), 4.30 (d, J = 9.5 Hz, 1H), 3.88 (s, 2H), 2.96 (s, 2H), 1.71 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.4, 135.6, 135.5, 133.9, 130.2, 129.3, 128.5, 127.9, 127.8, 127.0, 126.6, 126.5, 70.8, 63.9, 47.8, 39.9.

HRMS (ESI) calcd for $C_{22}H_{22}NaO_4S [M + Na]^+ 405.1131$, found: 405.1126.

The structure of 16 was further confirmed by X-ray diffraction analysis (Supplementary Fig. 19).

(*R*)-2-((1,3-Dioxolan-2-yl)methyl)-3-hydroxy-2-phenylpropyl benzenesulfonate (17)

According to **General procedure A** with **A-S7** (71.5 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **17** as a white solid (93.2 mg, 82% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (major) = 12.90 min, t_R (minor) = 15.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.74 (m, 2H), 7.65 – 7.58 (m, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.33 – 7.18 (m, 5H), 4.65 – 4.58 (m, 1H), 4.31 (s, 2H), 4.01 – 3.86 (m, 4H), 3.78 – 3.65 (m, 2H), 2.73 (t, *J* = 7.0 Hz, 1H), 2.25 (dd, *J* = 14.8, 3.7 Hz, 1H), 2.05 (dd, *J* = 14.8, 5.8 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.5, 135.5, 133.6, 129.1, 128.6, 127.8, 127.0, 126.4, 101.7, 73.4, 64.8, 64.6, 64.5, 45.2, 37.4.

HRMS (ESI) calcd for C₁₉H₂₂NaO₆S [M + Na]⁺ 401.1029, found: 401.1024.

(*R*)-2-(Hydroxymethyl)-2-phenylpent-4-en-1-yl benzenesulfonate (18)

According to **General procedure A** with **A-S8** (57.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **18** as a colorless oil (87.6 mg, 88% yield, 95% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (major) = 16.21 min, t_R (minor) = 13.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.79 (m, 2H), 7.69 – 7.61 (m, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.26 – 7.16 (m, 3H), 5.45 – 5.34 (m, 1H), 5.00 (dd, *J* = 17.1, 1.9 Hz, 1H),

4.96 – 4.87 (m, 1H), 4.37 (d, *J* = 9.5 Hz, 1H), 4.32 (d, *J* = 9.5 Hz, 1H), 3.88 (d, *J* = 11.4 Hz, 1H), 3.84 (d, *J* = 11.4 Hz, 1H), 2.48 (d, *J* = 7.5 Hz, 2H), 1.70 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.6, 135.5, 133.8, 132.3, 129.2, 128.7, 127.9, 127.0, 126.5, 118.8, 71.7, 65.0, 46.6, 37.9.

HRMS (ESI) calcd for $C_{18}H_{20}NaO_4S [M + Na]^+$ 355.0975, found: 355.0970.

(*R*)-2-(Hydroxymethyl)-5-methyl-2-phenylhex-4-en-1-yl benzenesulfonate (19)

According to **General procedure A** with **A-S9** (66.1 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **19** as a white solid (87.4 mg, 81% yield, 97% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 214 nm), *t*_R (major) = 31.62 min, *t*_R (minor) = 29.62 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.4 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.21 – 7.17 (m, 2H), 4.73 (t, *J* = 7.3 Hz, 1H), 4.36 (d, *J* = 9.4 Hz, 1H), 4.31 (d, *J* = 9.4 Hz, 1H), 3.88 – 3.80 (m, 2H), 2.41 (d, *J* = 7.3 Hz, 2H), 1.62 (br s, 1H), 1.56 (s, 3H), 1.52 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.0, 135.6, 135.3, 133.8, 129.2, 128.6, 127.9, 126.9, 126.6, 117.7, 71.9, 65.3, 47.2, 31.9, 25.9, 17.9.

HRMS (ESI) calcd for C₂₀H₂₄NaO₄S [M + Na]⁺ 383.1288, found: 383.1281.

(R)-2-(Hydroxymethyl)-2-phenylpent-4-yn-1-yl benzenesulfonate (20)

According to **General procedure A** with **A-S10** (57.1 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **20** as a colorless oil (93.4 mg, 94% yield, 95% e.e.).

HPLC analysis: Chiralcel AZ3 (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 214 nm), *t*_R (major) = 21.55 min, *t*_R (minor) = 23.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.68 – 7.62 (m, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.25 (m, 5H), 4.44 (d, *J* = 9.6 Hz, 1H), 4.38 (d, *J* = 9.6 Hz, 1H), 3.89 (s, 2H), 2.70 (t, *J* = 2.3 Hz, 2H), 1.84 (t, *J* = 2.7 Hz, 1H), 1.79 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 138.6, 135.3, 133.8, 129.2, 128.7, 128.0, 127.5, 126.5, 79.4, 71.8, 71.7, 65.6, 46.6, 23.2.

HRMS (ESI) calcd for $C_{18}H_{18}NaO_4S [M + Na]^+ 353.0818$, found: 353.0813.

(*R*)-2-(Hydroxymethyl)-2-phenylhex-4-yn-1-yl benzenesulfonate (21)

According to **General procedure A** with **A-S11** (61.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **21** as a white solid (89.9 mg, 87% yield, 95% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 210 nm), t_R (major) = 32.38 min, t_R (minor) = 36.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 – 7.79 (m, 2H), 7.67 – 7.60 (m, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.33 – 7.20 (m, 5H), 4.41 (d, *J* = 9.5 Hz, 1H), 4.37 (d, *J* = 9.5 Hz, 1H), 3.87 (d, *J* = 11.4 Hz, 1H), 3.84 (d, *J* = 11.4 Hz, 1H), 2.63 – 2.60 (m, 2H), 1.89 (br s, 1H), 1.60 (t, *J* = 2.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.2, 135.4, 133.7, 129.1, 128.5, 127.9, 127.2, 126.6, 79.1, 74.0, 72.2, 65.8, 46.7, 23.5, 3.4.

HRMS (ESI) calcd for $C_{19}H_{21}O_4S [M + H]^+ 345.1155$, found: 345.1153.

(*R*)-2-(3-Fluorophenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (22)

According to **General procedure A** with **A-S12** (55.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **22** as a colorless oil (75.6 mg, 78% yield, 84% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 21.12 min, *t*_R (minor) = 18.00 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (m, 2H), 7.69 – 7.63 (m, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.30 – 7.23 (m, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.98 – 6.90 (m, 2H), 4.22 (d, *J* = 9.6 Hz, 1H), 4.21 (d, *J* = 10.0 Hz, 1H), 3.79 – 3.72 (m, 2H), 1.77 (br s, 1H), 1.32 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 244.2 Hz), 144.1 (d, J = 6.7 Hz), 135.5, 133.9, 130.0 (d, J = 8.3 Hz), 129.3, 127.8, 122.0 (d, J = 2.9 Hz), 114.0 (d, J = 20.8 Hz), 113.7 (d, J = 22.3 Hz), 73.8, 67.1, 43.9 (d, J = 1.7 Hz), 20.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.2.

HRMS (ESI) calcd for C₁₆H₁₇FNaO₄S [M + Na]⁺ 347.0724, found: 347.0720.

(*R*)-2-(2-Bromophenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (23)

According to **General procedure A** with **A-S13** (73.5 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **23** as a colorless oil (86.6 mg, 75% yield, 88% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 17.15 min, t_R (minor) = 13.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.81 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.57 – 7.46 (m, 3H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.08 (td, *J* = 7.8, 1.7 Hz, 1H), 4.65 (d, *J* = 9.7 Hz, 1H), 4.54 (d, *J* = 9.7 Hz, 1H), 4.09 (d, *J* = 11.4 Hz, 1H), 4.05 (d, *J* = 11.4 Hz, 1H), 1.84 (br s, 1H), 1.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 138.9, 136.0, 135.6, 133.8, 130.4, 129.2, 128.8, 127.9, 127.7, 122.0, 72.1, 65.3, 45.7, 19.3.

HRMS (ESI) calcd for C₁₆H₁₇BrNaO₄S [M + Na]⁺ 406.9923, found: 406.9919.

(*R*)-2-(3-Chlorophenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (24)

According to **General procedure A** with **A-S14** (60.2 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **24** as a white solid (81.6 mg, 80% yield, 85% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 20.61 min, t_R (minor) = 16.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.69 – 7.63 (m, 1H), 7.564 – 7.52 (m, 2H), 7.25 – 7.19 (m, 3H), 7.18 – 7.15 (m, 1H), 4.22 (d, *J* = 9.6 Hz, 1H), 4.20 (d, *J* = 9.6 Hz, 1H), 3.80 – 3.72 (m, 2H), 1.78 (br s, 1H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.6, 135.5, 134.5, 133.9, 129.8, 129.3, 127.8, 127.3, 126.8, 124.6, 73.8, 67.1, 43.9, 20.1.

HRMS (ESI) calcd for $C_{16}H_{17}CINaO_4S [M + Na]^+$ 363.0428, found: 363.0424.

(*R*)-3-Hydroxy-2-methyl-2-(3-(trifluoromethyl)phenyl)propyl benzenesulfonate (25)

According to **General procedure A** with **A-S15** (70.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **25** as a white solid (61.7 mg, 55% yield, 84% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 37.21 min, t_R (minor) = 40.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.4 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.56 – 7.45 (m, 5H), 7.41 (t, J = 7.9 Hz, 1H), 4.26 (d, J = 9.6 Hz, 1H), 4.23 (d, J = 9.6 Hz, 1H), 3.80 (d, J = 11.3 Hz, 1H), 3.76 (d, J = 11.3 Hz, 1H), 2.07 (br s, 1H), 1.35 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 142.6, 135.3, 133.9, 130.8 (q, *J* = 31.9 Hz), 130.0 (q, *J* = 1.0 Hz), 129.3, 129.0, 127.7, 124.0 (q, *J* = 270.7 Hz), 123.9 (q, *J* = 3.7 Hz), 123.1 (q, *J* = 3.8 Hz), 73.7, 66.9, 43.9, 20.1.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –62.5.

HRMS (ESI) calcd for C₁₇H₁₇F₃NaO₄S [M + Na]⁺ 397.0692, found: 397.0688.

(R)-2-(4-(tert-Butyl)phenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (26)

According to **General procedure A** with **A-S16** (66.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **26** as a white solid (80.2 mg, 74% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min, λ = 214 nm), t_R (major) = 41.91 min, t_R (minor) = 29.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.6 Hz, 2H), 4.26 (d, *J* = 9.6 Hz, 1H), 4.20 (d, *J* = 9.6 Hz, 1H), 3.78 (d, *J* = 11.2 Hz, 1H), 3.74 (d, *J* = 11.2 Hz, 1H), 1.65 (br s, 2H), 1.32 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 149.9, 138.0, 135.6, 133.8, 129.2, 127.9, 126.0, 125.6, 74.3, 67.4, 43.4, 34.3, 31.2, 20.1.

HRMS (ESI) calcd for $C_{20}H_{26}NaO_4S [M + Na]^+ 385.1444$, found: 385.1440.

(*R*)-2-(4-(Benzyloxy)phenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (27)

According to **General procedure A** with **A-S17** (81.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **27** as a white solid (95.2 mg, 77% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 60.00 min, t_R (minor) = 46.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.4 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.42 – 7.30 (m, 5H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.03 (s, 2H), 4.21 (d, *J* = 9.6 Hz, 1H), 4.16 (d, *J* = 9.6 Hz, 1H), 3.73 (d, *J* = 11.2 Hz, 1H), 3.70 (d, *J* = 11.2 Hz, 1H), 1.98 (br s, 1H), 1.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.6, 136.8, 135.6, 133.8, 133.3, 129.2, 128.6, 128.0, 127.8, 127.5, 127.4, 114.8, 74.4, 69.9, 67.4, 43.2, 20.1.

HRMS (ESI) calcd for $C_{23}H_{24}NaO_5S [M + Na]^+ 435.1237$, found: 435.1232.

(*R*)-2-(3,5-Dimethylphenyl)-3-hydroxy-2-methylpropyl benzenesulfonate (28)

According to **General procedure A** with **A-S18** (58.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **28** as a colorless oil (86.5 mg, 86% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, λ = 214 nm), t_R (major) = 23.05 min, t_R (minor) = 24.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 2H), 7.67 – 7.60 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.86 (s, 1H), 6.83 (s, 2H), 4.26 (d, *J* = 9.5 Hz, 1H), 4.19 (d, *J* = 9.5 Hz, 1H), 3.74 (d, *J* = 11.2 Hz, 1H), 3.71 (d, *J* = 11.2 Hz, 1H), 2.26 (s, 6H), 1.83 (br s, 1H), 1.30 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.1, 138.0, 135.6, 133.7, 129.1, 128.7, 127.8, 124.0, 74.4, 67.4, 43.6, 21.4, 20.1.

HRMS (ESI) calcd for C₁₈H₂₂NaO₄S [M + Na]⁺ 357.1131, found: 357.1129.

(*R*)-3-Hydroxy-2-methyl-2-(thiophen-3-yl)propyl benzenesulfonate (29)

According to **General procedure A** with **A-S19** (51.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **29** as a colorless oil (67.5 mg, 72% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 29.07 min, *t*_R (minor) = 22.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.69 – 7.62 (m, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.28 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.08 (dd, *J* = 2.9, 1.4 Hz, 1H), 7.01 (dd, *J* = 5.1, 1.4 Hz, 1H), 4.21

(d, *J* = 9.6 Hz, 1H), 4.14 (d, *J* = 9.6 Hz, 1H), 3.73 (d, *J* = 11.2 Hz, 1H), 3.68 (d, *J* = 11.2 Hz, 1H), 1.86 (br s, 1H), 1.31 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 142.6, 135.6, 133.8, 129.3, 127.8, 126.0, 125.9, 121.3, 73.9, 67.1, 42.6, 20.2.

HRMS (ESI) calcd for $C_{14}H_{16}NaO_4S_2 [M + Na]^+ 335.0382$, found: 335.0378.

Methyl (R)-3-hydroxy-2-methyl-2-(((phenylsulfonyl)oxy)methyl)propanoate (30)

According to **General procedure A** with **A-S20** (44.4 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **30** as a colorless oil (36.5 mg, 42% yield, 79% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 216$ nm), t_R (major) = 17.95 min, t_R (minor) = 20.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.4 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 4.29 (d, *J* = 9.8 Hz, 1H), 4.13 (d, *J* = 9.8 Hz, 1H), 3.71 (s, 2H), 3.67 (s, 3H), 2.24 (br s, 1H), 1.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 135.5, 134.0, 129.3, 127.9, 70.9, 64.3, 52.4, 48.3, 17.2.

HRMS (ESI) calcd for $C_{12}H_{17}O_6S [M + H]^+ 289.0740$, found: 289.0741.

(S)-(3-(Hydroxymethyl)-1-methyl-2-oxoindolin-3-yl)methyl benzenesulfonate (31)

According to **General procedure A** with A-S21 (62.2 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by

column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **31** as a colorless oil (88.5 mg, 85% yield, 85% e.e.).

 $[\alpha]_{D^{20}} = +43.8 \ (c \ 0.5, \ CHCl_3).$

HPLC analysis: Chiralcel ID (*n*-Hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, $\lambda = 210$ nm), *t*_R (major) = 24.49 min, *t*_R (minor) = 28.34 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.73 (m, 2H), 7.64 (tt, *J* = 7.0, 1.2 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.34 (td, *J* = 7.8, 1.2 Hz, 1H), 7.25 – 7.18 (m, 1H), 7.05 (td, *J* = 7.6, 0.9 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 4.51 (d, *J* = 9.6 Hz, 1H), 4.33 (d, *J* = 9.6 Hz, 1H), 3.88 – 3.83 (m, 1H), 3.73 (d, *J* = 11.3 Hz, 1H), 3.18 (s, 3H), 2.67 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 143.8, 135.2, 133.9, 129.2, 129.2, 127.9, 126.4, 124.0, 123.1, 108.6, 69.8, 63.8, 53.3, 26.3.

HRMS (ESI) calcd for C₁₇H₁₈NO₅S [M + H]⁺ 348.0900, found: 348.0898.

(1*R*,2*S*)-2-Hydroxycyclohexyl benzenesulfonate (32)

According to **General procedure A** with A-S22 (34.8 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product 32 as a colorless oil (74.5 mg, 97% yield, 95% e.e.).

 $[\alpha]_{D}^{20} = +13.5 \ (c \ 1.0, \ CHCl_3).$

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 34.66 min, *t*_R (minor) = 20.08 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.87 (m, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 2H), 4.68 – 4.65 (m, 1H), 3.85 – 3.82 (m, 1H), 2.06 (br s, 1H), 1.96 – 1.88 (m, 1H), 1.82 – 1.70 (m, 1H), 1.68 – 1.46 (m, 4H), 1.36 – 1.24 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 137.1, 133.7, 129.2, 127.6, 83.4, 68.9, 30.2, 27.7, 21.7, 20.7.

HRMS (ESI) calcd for $C_{12}H_{16}NO_4S [M + Na]^+ 279.0662$, found: 279.0662.

(*R*)-2,3-Dihydroxy-2-methylpropyl benzenesulfonate (47)

According to **General procedure A** with **A-S34** (31.8 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 24 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **47** as light yellow oil (51 mg, 69% yield, 97% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 216 nm), *t*_R (major) = 43.63 min, *t*_R (minor) = 48.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 4.00 (d, *J* = 9.9 Hz, 1H), 3.93 (d, *J* = 9.9 Hz, 1H), 3.58 (d, *J* = 11.4 Hz, 1H), 3.46 (d, *J* = 11.4 Hz, 1H), 1.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 134.1, 129.4, 127.9, 73.2, 71.6, 66.3, 20.9.

HRMS (ESI) m/z calcd. for C₁₀H₁₄NaO₅S [M + Na]⁺ 247.0635, found 247.0632.

(R)-2-Hydroxy-2-(hydroxymethyl)-3-methylbutyl benzenesulfonate (48)

According to **General procedure A** with **A-S35** (40.3 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 10 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **48** as a colorless oil (54.3 mg, 66% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 45.13 min, t_R (major) = 55.98 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.73 – 7.66 (m, 1H), 7.63 – 7.50 (m, 2H), 4.20 – 3.96 (m, 2H), 3.68 – 3.54 (m, 2H), 1.96 – 1.82 (m, 1H), 0.90 (d, J = 7.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 134.1, 129.4, 127.9, 74.7, 70.8, 63.3, 31.4, 16.55, 16.48.

HRMS (ESI) *m*/*z* calcd. for C₁₂H₁₈NaO₅S [M + Na]⁺ 297.0767, found 297.0765.

(R)-2-Hydroxy-2-(hydroxymethyl)but-3-en-1-yl benzenesulfonate (49)

According to **General procedure A** with **A-S36** (35.4 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 14 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **49** as a white solid (51.1 mg, 66% yield, 97% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 19.70 min, t_R (major) = 26.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 5.80 (dd, J = 17.4, 10.9 Hz, 1H), 5.45 (d, J = 17.3 Hz, 1H), 5.30 (d, J = 10.9 Hz, 1H), 4.06 (s, 2H), 3.71 – 3.59 (m, 1H), 3.53 (d, J = 11.4 Hz, 1H), 2.79 (s, 1H), 2.25 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 136.1, 135.4, 134.1, 129.4, 128.0, 117.7, 74.3, 72.2, 65.6.

HRMS (ESI) m/z calcd. for C₁₁H₁₄NaO₅S [M + Na]⁺ 281.0454, found 281.0451.

(R)-2-Hydroxy-2-(hydroxymethyl)pent-4-en-1-yl benzenesulfonate (50)

According to **General procedure A** with **A-S37** (39.6 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 14 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **50** as a yellow oil (60.5 mg, 74% yield, 94% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 16.90 min, t_R (major) = 23.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 5.88 – 5.62 (m, 1H), 5.21 – 4.97 (m, 2H), 4.12 – 3.83 (m, 2H), 3.58 (d, *J* = 11.5 Hz, 1H), 3.49 (d, *J* = 11.5 Hz, 1H), 2.98 – 2.34 (m, 2H), 2.27 (d, *J* = 7.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 134.1, 131.4, 129.4, 128.0, 120.0, 72.9, 71.3, 64.9, 38.4.

HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO₅S [M + Na]⁺ 295.0611, found 295.0607.

(*R*)-2-Hydroxy-2-(hydroxymethyl)but-3-yn-1-yl benzenesulfonate (51)

According to **General procedure A** with **A-S38** (34.8 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 14 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **51** as a white solid (55.4 mg, 72% yield, 99% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.6 mL/min, λ = 214 nm), t_R (minor) = 71.90 min, t_R (major) = 74.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 – 7.84 (m, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 4.22 – 4.05 (m, 2H), 3.71 (d, *J* = 5.5 Hz, 2H), 3.21 (s, 1H), 2.51 (s, 1H), 2.43 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 134.2, 129.4, 128.1, 80.8, 75.5, 71.7, 69.6, 65.9.

HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₅ [M + Na]⁺ 279.0298, found 279.0294.

(R)-2-benzyl-2,3-dihydroxypropyl benzenesulfonate (52)

According to **General procedure A** with A-S39 (54.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 7 h, the reaction mixture was

purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **52** as a light yellow solid (66.7 mg, 69% yield, 95% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 39.84 min, t_R (major) = 41.20 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.07 (m, 5H), 3.94 (d, *J* = 9.8 Hz, 1H), 3.83 (d, *J* = 9.8 Hz, 1H), 3.56 (dd, *J* = 11.5, 4.5 Hz, 1H), 3.46 (dd, *J* = 11.6, 4.3 Hz, 1H), 2.80 (s, 2H), 2.63 (s, 1H), 2.44 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 135.4, 135.0, 134.2, 130.5, 129.4, 128.5, 128.0, 127.0, 73.4, 70.6, 64.6, 39.7.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₅S [M + Na]⁺ 345.0767, found 345.0765.

(*R*)-2,3-Dihydroxy-2-phenylpropyl benzenesulfonate (53)

According to **General procedure A** with **A-S40** (50.5 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 8 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **53** as a light yellow solid (50 mg, 54% yield, 94% e.e.) along with an epoxide side product.

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), *t*_R (minor) = 33.31 min, *t*_R (major) = 49.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.39 – 7.24 (m, 6H), 4.36 – 4.25 (m, 2H), 3.91 – 3.80 (m, 1H), 3.73 (d, *J* = 11.7 Hz, 1H), 3.35 (s, 1H), 2.48 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.6, 135.3, 134.1, 129.4, 128.6, 128.1, 127.9, 125.5, 75.4, 73.4, 66.8.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₅S [M + Na]⁺ 331.0611, found 331.0604.

(*R*)-2-Hydroxy-2-(hydroxymethyl)-4-phenylbut-3-yn-1-yl benzenesulfonate (54)

According to **General procedure A** with **A-S41** (57.7 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 7 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **54** as a white solid (79.8 mg, 80% yield, 99% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 25.12 min, *t*_R (major) = 33.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 2H), 7.69 – 7.60 (m, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.43 – 7.28 (m, 5H), 4.24 (d, *J* = 2.2 Hz, 2H), 3.90 – 3.70 (m, 2H), 3.04 (s, 1H), 2.33 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 135.5, 134.1, 132.0, 129.4, 129.1, 128.4, 128.0, 121.4, 87.3, 85.5, 72.0, 70.2, 66.1.

HRMS (ESI) m/z calcd. for C₁₇H₁₆NaO₅S [M + Na]⁺ 355.0611, found 355.0611.

(*R*)-2-(2,4-Difluorophenyl)-2,3-dihydroxypropyl benzenesulfonate (55)

According to **General procedure A** with **A-S42** (61.2 mg, 0.30 mmol, 1.0 equiv.) and benzenesulfonyl chloride (46.1 μ L, 0.36 mmol, 1.2 equiv.) for 24 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **55** as a white solid (65.0 mg, 63% yield, 95% e.e.) along with an epoxide side product.

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 17.95 min, t_R (major) = 16.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 2H), 7.68 – 7.57 (m, 2H), 7.54 – 7.50 (m, 2H), 6.91 – 6.86 (m, 1H), 6.71 – 6.65 (m, 1H), 4.48 (d, *J* = 11.6 Hz, 1H), 4.39 (d, *J* = 10.9 Hz, 1H), 3.96 (d, *J* = 9.9 Hz, 1H), 3.74 – 3.72 (m, 2H), 2.53 (br s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.8 (dd, J = 249.9, 12.3 Hz), 159.1 (dd, J = 247.7, 11.8 Hz), 130.1 (dd, J = 9.5, 5.9 Hz), 122.2 (dd, J = 13.0, 3.9 Hz), 111.6 (dd, J = 20.7, 3.4 Hz), 104.2 (dd, J = 27.6, 25.4 Hz), 75.0 (d, J = 5.0 Hz), 73.0 (d, J = 5.7 Hz), 65.6 (d, J = 5.2 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ –109.3 (d, *J* = 8.1 Hz), –110.3 (d, *J* = 8.1 Hz).

HRMS (ESI) m/z calcd. for C₁₅H₁₄ClF₂O₅S [M + Cl]⁻ 379.0224, found 379.0218.

Cu-catalyzed enantioselective radical S–O cross-coupling of 2-amino 1,3-diols

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuCl (2.0 mg, 0.020 mmol, 10 mol%), L*8 (9.7 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.0 mg, 0.12 mmol, 0.60 equiv.), diol (0.20 mmol, 1.0 equiv.), and anhydrous CHCl₃ (2.0 mL). Then 4-methoxybenzenesulfonyl chloride (49.5 mg, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t. Upon completion (monitored by TLC), the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on basic aluminum oxide to afford the desired product.

Note: Most of the products were unstable in neat state at r.t. after purification and should be stored in refrigerator at -20 °C.

To a solution of diol (0.10 mmol, 1.0 equiv.) and Et₃N (27.7 μ L, 0.20 mmol, 2.0 equiv.) in dry DCM (1.0 mL) was added 4-methoxybenzenesulfonyl chloride (22.7 mg, 0.11 mmol, 1.1 equiv.). After stirring for 24 h at r.t., saturated NH₄Cl (aq.) was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with DCM (3x) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by column chromatography on basic aluminum oxide to afford the desired racemate.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxypropyl 4-methoxybenzene-sulfonate (33)

According to **General procedure B** with **A-S23** (67.6 mg, 0.30 mmol, 1.0 equiv.) and additional proton sponge (5 mol%), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 80/1$) to yield product **33** as a colorless oil (41.0 mg, 67% yield, 87% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 43.69 min, *t*_R (major) = 49.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.6 Hz, 2H), 7.37 – 7.29 (m, 5H), 6.99 (d, *J* = 8.6 Hz, 2H), 5.30 (s, 1H), 5.05 (s, 2H), 4.16 – 4.08 (m, 2H), 3.94 – 3.87 (m, 1H), 3.86 (s, 3H), 3.79 – 3.75 (m, 1H), 3.64 (dd, *J* = 11.5, 5.3 Hz, 1H), 2.24 – 2.20 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.0, 136.1, 130.2, 128.6, 128.3, 128.1, 126.6, 114.6, 67.9, 67.1, 60.9, 55.8, 51.3.

HRMS (ESI) *m*/*z* calcd. for C₁₈H₂₂NO₇S [M + H]⁺ 396.1111, found 396.1103.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxy-2-methylpropyl 4-methoxybenzenesulfonate (34)

According to **General procedure B** with **A-S24** (71.8 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 100/1$) to yield product **34** as a colorless oil (66.0 mg, 81% yield, 95% e.e.).

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 214$ nm), t_R (minor) = 32.56 min, t_R (major) = 35.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 2H), 7.38 – 7.30 (m, 5H), 6.99 (d, *J* = 8.9 Hz, 2H), 5.16 (s, 1H), 5.04 – 4.97 (m, 2H), 4.23 (d, *J* = 10.0 Hz, 1H), 4.08 (d, *J* = 10.0 Hz, 1H), 3.87 (s, 3H), 3.69 – 3.61 (m, 2H), 2.74 (s, 1H), 1.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.7, 136.0, 130.2, 128.6, 128.3, 128.0, 126.8, 114.6, 71.0, 66.8, 66.6, 56.3, 55.7, 19.8.

HRMS (ESI) m/z calcd. for C₁₉H₂₄NO₇S [M + H]⁺ 410.1268, found 410.1257.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)butyl 4-methoxybenzene-sulfonate (35)

According to **General procedure B** with **A-S25** (76.0 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 100/1$) to yield product **35** as a colorless oil (50.5 mg, 60% yield, 94% e.e.).

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 31.03 min, *t*_R (major) = 35.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.39 – 7.31 (m, 5H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.05 – 4.98 (m, 3H), 4.20 (d, *J* = 10.1 Hz, 1H), 4.12 (d, *J* = 10.1 Hz, 1H), 3.87 (s, 3H), 3.74 – 3.64 (m, 2H), 3.45 (s, 1H), 1.78 (dq, *J* = 15.0, 7.6 Hz, 1H), 1.56 (dq, *J* = 14.8, 7.5 Hz, 1H), 0.83 (t, *J* = 7.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 163.9, 155.9, 136.0, 130.2, 128.6, 128.3, 128.0, 126.7, 114.6, 70.1, 66.9, 64.6, 58.9, 55.7, 25.6, 7.3.

HRMS (ESI) m/z calcd. for C₂₀H₂₆NO₇S [M + H]⁺ 424.1424, found 424.1415.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)pentyl 4-methoxy-benzenesulfonate (36)

According to **General procedure B** with **A-S26** (80.2 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 120/1$) to yield product **36** as a colorless oil (70.1 mg, 80% yield, 95% e.e.).

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 27.82 min, *t*_R (major) = 30.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 2H), 7.39 – 7.32 (m, 5H), 6.99 (d, *J* = 8.9 Hz, 2H), 5.04 – 4.98 (m, 3H), 4.20 (d, *J* = 10.1 Hz, 1H), 4.10 (d, *J* = 10.1 Hz, 1H), 3.87 (s, 3H), 3.74 (dd, *J* = 11.8, 4.6 Hz, 1H), 3.66 (dd, *J* = 12.2, 6.8 Hz, 1H), 3.49 (s, 1H), 1.72 – 1.64 (m, 1H), 1.48 (ddd, *J* = 13.9, 11.5, 5.4 Hz, 1H), 1.27 – 1.19 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.9, 136.0, 130.2, 128.6, 128.3, 128.0, 126.7, 114.6, 70.4, 66.9, 64.9, 58.8, 55.7, 35.2, 16.2, 14.3.

HRMS (ESI) m/z calcd. for C₂₁H₂₈NO₇S [M + H]⁺ 438.1581, found 438.1574.

4-

According to **General procedure B** with **A-S27** (84.4 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 160/1$) to yield product **37** as a colorless oil (48.8 mg, 54% yield, 97% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), t_R (minor) = 45.54 min, t_R (major) = 48.93 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 9.0 Hz, 2H), 7.39 – 7.30 (m, 5H), 6.99 (d, *J* = 9.0 Hz, 2H), 5.03 (s, 1H), 5.01 (s, 2H), 4.19 (d, *J* = 9.9 Hz, 1H), 4.12 (d, *J* = 9.9 Hz, 1H), 3.87 (s, 3H), 3.80 (dd, *J* = 12.5, 4.9 Hz, 1H), 3.67 (dd, *J* = 12.0, 6.8 Hz, 1H), 3.43 (s, 1H), 1.72 – 1.64 (m, 3H), 0.90 (dd, *J* = 6.3, 3.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.7, 136.1, 130.2, 128.6, 128.2, 128.0, 126.7, 114.6, 70.8, 66.85, 64.7, 59.1, 55.7, 40.9, 24.8, 24.2, 23.3.

HRMS (ESI) *m*/*z* calcd. for C₂₂H₃₀NO₇S [M + H]⁺ 452.1737, found 452.1728.
(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)but-3-en-1-yl 4-methoxybenzenesulfonate (38)

According to **General procedure B** with **A-S29** (75.4 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 120/1$) to yield product **38** as a colorless oil (43.8 mg, 52% yield, 95% e.e.).

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 35.74 min, *t*_R (major) = 37.84 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.8 Hz, 2H), 7.39 – 7.31 (m, 5H), 6.98 (d, *J* = 9.0 Hz, 2H), 5.78 (dd, *J* = 17.4, 10.9 Hz, 1H), 5.35 (s, 1H), 5.30 – 5.22 (m, 2H), 5.02 (s, 2H), 4.30 (d, *J* = 10.1 Hz, 1H), 4.20 (d, *J* = 10.0 Hz, 1H), 3.87 (s, 3H), 3.75 – 3.67 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.7, 135.9, 135.2, 130.2, 128.6, 128.3, 128.0, 126.6, 117.4, 114.6, 70.2, 67.0, 65.4, 60.5, 55.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₇S [M + H]⁺ 422.1268, found 422.1259.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)pent-4-en-1-yl 4-methoxybenzenesulfonate (39)

According to **General procedure B** with **A-S29** (79.6 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 120/1$) to yield product **39** as a colorless oil (56.6 mg, 65% yield, 95% e.e.).

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 29.85 min, *t*_R (major) = 32.45 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.39 – 7.32 (m, 5H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.69 (ddt, *J* = 17.3, 10.3, 7.5 Hz, 1H), 5.15 – 5.08 (m, 3H), 5.01 (s, 2H), 4.16 (q, *J* = 10.1 Hz, 2H), 5.15 – 5.08 (m, 3H), 5.01 (s, 2H), 4.16 (q, *J* = 10.1 Hz), 5.15 – 5.08 (m, 3H), 5.01 (s, 2H), 4.16 (q, *J* = 10.1 Hz), 5.15 – 5.08 (m, 3H), 5.01 (s, 2H), 4.16 (q, *J* = 10.1 Hz), 5.15 – 5.08 (m, 3H), 5.01 (s, 2H), 5.01 (s, 2

2H), 3.88 (s, 3H), 3.70 (d, *J* = 6.1 Hz, 2H), 3.43 (s, 1H), 2.54 (dd, *J* = 14.1, 6.9 Hz, 1H), 2.27 (dd, *J* = 14.1, 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.8, 135.9, 131.2, 130.2, 128.6, 128.3, 128.0, 126.7, 120.6, 114.6, 69.7, 67.0, 64.9, 58.2, 55.7, 37.1.

HRMS (ESI) m/z calcd. for C₂₁H₂₆NO₇S [M + H]⁺ 436.1424, found 436.1414.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)but-3-yn-1-yl 4-methoxybenzenesulfonate (40)

According to **General procedure B** with **A-S30** (74.8 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 120/1$) to yield product **40** as a colorless oil (39.4 mg, 47% yield, 95% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 39.44 min, *t*_R (major) = 43.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 9.0 Hz, 2H), 7.38 – 7.30 (m, 5H), 6.99 (d, J = 9.0 Hz, 2H), 5.46 (s, 1H), 5.04 (s, 2H), 4.32 (d, J = 1.8 Hz, 2H), 3.92 – 3.87 (m, 1H), 3.86 (s, 3H), 3.82 (dd, J = 11.7, 6.8 Hz, 1H), 2.94 (s, 1H), 2.43 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.1, 154.9, 135.8, 130.3, 128.6, 128.3, 128.1, 126.5, 114.6, 79.2, 74.6, 69.0, 67.1, 65.2, 55.7, 55.0.

HRMS (ESI) m/z calcd. for C₂₀H₂₂NO₇S [M + H]⁺ 420.1111, found 420.1103.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxy-2-phenylpropyl 4-methoxybenzenesulfonate (41)

According to **General procedure B** with **A-S31** (90.4 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 100/1$) to yield product **41** as a colorless oil (80.8 mg, 86% yield, 95% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 48.63 min, *t*_R (major) = 51.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.9 Hz, 2H), 7.41 – 7.33 (m, 5H), 7.30 – 7.28 (m, 2H), 7.26 – 7.24 (m, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.69 (s, 1H), 5.03 (s, 2H), 4.59 (d, *J* = 10.2 Hz, 1H), 4.50 (d, *J* = 10.3 Hz, 1H), 3.97 (d, *J* = 12.4 Hz, 1H), 3.87 – 3.84 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.8, 138.3, 136.0, 130.3, 128.8, 128.6, 128.3, 128.1, 128.0, 126.4, 125.8, 114.6, 70.7, 67.3, 67.0, 62.4, 55.7.

HRMS (ESI) m/z calcd. for C₂₄H₂₆NO₇S [M + H]⁺ 472.1424, found 472.1417.

(*R*)-2-(1-Benzyl-1H-1,2,3-triazol-5-yl)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-propyl 4-methoxybenzenesulfonate (42)

According to **General procedure B** with **A-S32** (114.7 mg, 0.30 mmol, 1.0 equiv.) and **L*9** (10 mol%) instead of **L*8** (10 mol%), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 100/1$) to yield product **42** as a colorless oil (79.8 mg, 72% yield, 86% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (minor) = 24.07 min, *t*_R (major) = 28.90 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 9.0 Hz, 2H), 7.54 (s, 1H), 7.39 – 7.35 (m, 3H), 7.34 – 7.31 (m, 3H), 7.29 – 7.27 (m, 2H), 7.25 – 7.22 (m, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 5.94 (s, 1H), 5.51 – 5.42 (m, 2H), 5.00 – 4.93 (m, 2H), 4.53 (d, *J* = 10.0 Hz, 1H), 4.47 (d, *J* = 10.0 Hz, 1H), 4.10 – 4.07 (m, 1H), 3.99 (dd, *J* = 11.7, 7.6 Hz, 1H), 3.85 (s, 3H), 3.72 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 155.3, 146.4, 135.9, 134.2, 130.2, 129.2, 128.9, 128.6, 128.2, 128.0, 127.9, 126.6, 122.7, 114.5, 69.3, 66.9, 65.7, 57.2, 55.7, 54.3.

HRMS (ESI) m/z calcd. for C₂₇H₂₉N₄O₇S [M + H]⁺ 553.1751, found 553.1739.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)-4-(4-octylphenyl)butyl methoxybenzenesulfonate (43)

According to **General procedure B** with **A-S33** (132.5 mg, 0.30 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 100/1$) to yield product **43** as a colorless oil (70.9 mg, 58% yield, 95% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (major) = 48.42 min, *t*_R (minor) = 54.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.39 – 7.31 (m, 5H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.99 (dd, *J* = 10.5, 7.7 Hz, 4H), 5.08 (s, 1H), 5.02 (s, 2H), 4.22 – 4.15 (m, 2H), 3.87 (s, 3H), 3.76 (q, *J* = 12.0 Hz, 2H), 2.56 – 2.46 (m, 4H), 2.07 – 2.02 (m, 1H), 1.81 (ddd, *J* = 14.1, 11.5, 5.7 Hz, 1H), 1.57 (t, *J* = 7.5 Hz, 2H), 1.30 – 1.25 (m, 10H), 0.88 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 155.7, 140.8, 138.1, 136.0, 130.2, 128.6, 128.5, 128.3, 128.1, 128.0, 126.6, 114.6, 70.2, 66.9, 64.5, 58.7, 55.7, 35.5, 34.5, 31.9, 31.6, 29.5, 29.4, 29.3, 28.8, 22.7, 14.1.

HRMS (ESI) *m*/*z* calcd. for C₃₄H₄₆NO₇S [M + H]⁺ 612.2989, found 612.2976.

Synthetic transformations

a) Diversification of 1,2-aminoalcohols

A 10 mL resealable Schlenk tube equipped with a magnetic stir bar was charged with naphthalene-2-thiol (64.0 mg, 0.40 mmol, 2.0 equiv.), NaOH (16.0 mg, 0.40 mmol, 2.0 equiv.), and EtOH (4.0 mL). The Schlenk tube was sealed and heated to 45 °C for 0.5 h under stirring before **34** (81.9 mg, 0.20 mmol, 1.0 equiv.) was added into the mixture. The reaction was stirred at the same temperature for another 16 h. The tube was allowed to cool to r.t. The solvent was then removed *in vacuo* and the residue was purified with flash column chromatography (CH₂Cl₂/MeOH = 120/1 ~ 50/1) to give product **44** as a white solid (29.5 mg, 54% yield, 95% e.e.).

(R)-4-Methyl-4-((naphthalen-2-ylthio)methyl)oxazolidin-2-one (44)

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 27.54 min, t_R (minor) = 30.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 1.8 Hz, 1H), 7.79 – 7.73 (m, 3H), 7.50 – 7.43 (m, 3H), 6.17 (s, 1H), 4.28 (d, J = 8.7 Hz, 1H), 4.04 (d, J = 8.7 Hz, 1H), 3.25 – 3.17 (m, 2H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.7, 133.7, 132.8, 132.1, 129.0, 128.6, 127.8, 127.7, 127.3, 126.8, 126.2, 74.8, 58.8, 44.7, 25.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NO₂S [M + H]⁺ 274.0896, found 274.0890.

To a solution of Ph₂PK (0.5 M in THF, 0.48 mL, 0.24 mmol, 1.2 equiv.) was slowly added a solution of **34** (81.9 mg, 0.20 mmol, 1.0 equiv.) and 18-crown-6 (64.0 mg, 0.24 mmol, 1.2 equiv.) in THF (2.0 mL) at -78 °C under argon. Then, the reaction was allowed to warm to r.t. slowly and was further stirred overnight. Upon completion, the solvent was removed *in vacuo* and the residue was purified with flash column chromatography (CH₂Cl₂/MeOH = 200/1 ~ 100/1) to give product **45** as a white solid (37.0 mg, 62% yield, 95% e.e.).

(R)-4-((Diphenylphosphanyl)methyl)-4-methyloxazolidin-2-one (45)

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 254$ nm), t_R (major) = 32.60 min, t_R (minor) = 37.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 4H), 7.36 – 7.33 (m, 6H), 5.63 (s, 1H), 4.23 (d, *J* = 8.5 Hz, 1H), 4.05 (dd, *J* = 8.5, 1.5 Hz, 1H), 2.49 (t, *J* = 2.6 Hz, 2H), 1.37 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 158.4, 137.6 (dd, J = 10.4, 7.9 Hz), 132.8 (dd, J = 19.7, 11.9 Hz), 129.1 (d, J = 6.6 Hz), 128.8 (dd, J = 7.3, 2.0 Hz), 76.5 (d, J = 8.8 Hz), 57.9 (d, J = 16.5 Hz), 41.1 (d, J = 17.7 Hz), 27.4 (d, J = 8.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ –26.2.

HRMS (ESI) m/z calcd. for C₁₇H₁₉NO₂P [M + H]⁺ 300.1148, found 300.1142.

The structure of 45 was further confirmed by X-ray diffraction analysis (Supplementary Fig. 20).

Step1: A 10 mL resealable Schlenk tube equipped with a magnetic stir bar was charged with **34** (81.9 mg, 0.20 mmol, 1.0 equiv.), NaOPh (66.4 mg, 0.40 mmol, 2.0 equiv.), and DMF (2.0 mL). The Schlenk tube was sealed and heated to 105 °C for 13 h. Upon completion, the tube was allowed to cool to r.t. Brine (10.0 mL) was added and the reaction mixture was extracted with Et₂O (2 × 10 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo* and the residue was purified with flash column chromatography (CH₂Cl₂/MeOH = 200/1 ~ 100/1) to give product **S46-1** as a white solid (25.2 mg, 61% yield, 94% e.e.).

Step2: A solution of **S46-1** (25.2 mg, 0.12 mmol) in 12 M HCl (1 mL) was heated in a pressure vessel at 125 °C for 16 h. The solution was then concentrated *in vacuo* and the residue was further purified with flash column chromatography (CH₂Cl₂/MeOH = $100/1 \sim 10/1$) to give product **S46-2** as a white solid (10.0 mg, 46% yield, 95% e.e.).

Step3: Sodium dichromate (6.0 mg, 0.020 mmol, 10 mol%), sodium periodate (231.0 mg, 1.08 mmol, 5.4 equiv.), and sulfuric acid (75 μ L, 0.40 mmol, 2.0 equiv.) were dissolved in water (2.0 mL) and **S46-2** (36.2 mg, 0.20 mmol) was added at r.t. After stirring for 20 h at r.t., Dowex 50WX8 in water was added to the reaction mixture and the suspension was stirred for an additional 60 min at r.t. Thereafter, the ion exchange resin was washed with water and the product was eluted using aqueous ammonia (3 M) as an eluent. The solution was then concentrated *in vacuo* and the residue was acidified by HCl (4 M in 1,4-dioxane). After evaporation, product **46** (29.0 mg, 0.125 mmol, 63%, 94% e.e.) was obtained as a light-yellow powder. (The enantiomeric excess was determined after conversion to the corresponding methyl ester).

Step4: To a suspension of **46** (11.6 mg, 0.050 mmol, 1.0 equiv.) in anhydrous benzene/MeOH (1.00 mL, 0.05 M, 4/1) was added (diazomethyl)trimethylsilane (0.10 mL, 0.20 mmol, 2.0 M in hexanes, 4.0 equiv.). The reaction mixture was stirred at r.t. for 18 h. The reaction was quenched with acetic acid (0.1 mL) and the resulting mixture was concentrated *in vacuo*, yielding a white powder containing the methyl ester **46-1** (94% e.e.).

(S)-4-Methyl-4-(phenoxymethyl)oxazolidin-2-one (S46-1)

OPh S46-1

HPLC analysis: Chiralcel IB (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 220 nm), *t*_R (minor) = 11.01 min, *t*_R (major) = 13.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.01 – 6.97 (m, 1H), 6.91 – 6.87 (m, 2H), 6.16 (s, 1H), 4.38 (d, *J* = 8.7 Hz, 1H), 4.11 (d, *J* = 8.7 Hz, 1H), 3.91 – 3.85 (m, 2H), 1.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.1, 158.2, 129.6, 121.6, 114.6, 73.2, 72.6, 57.6, 23.1.

HRMS (ESI) m/z calcd. for C₁₁H₁₄NO₃ [M + H]⁺ 208.0968, found 208.0965.

(R)-2-Amino-2-methyl-3-phenoxypropan-1-ol (S46-2)

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 9.68 min, t_R (minor) = 12.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 8.6, 7.3 Hz, 1H)., 6.95 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 2H), 3.87 (d, *J* = 9.0 Hz, 1H), 3.78 (d, *J* = 9.0 Hz, 1H), 3.60 (d, *J* = 11.0 Hz, 1H), 3.48 (d, *J* = 11.0 Hz, 1H), 3.43 (s, 3H), 1.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.6, 129.5, 121.1, 114.6, 73.0, 67.3, 54.1, 21.8.

HRMS (ESI) m/z calcd. for C₁₀H₁₅NO₂ [M + H]⁺ 182.1176, found 182.1175.

(S)-2-Amino-2-methyl-3-phenoxypropanoic acid hydrochloride (46)

¹**H NMR** (400 MHz, D₂O) δ 7.37 (t, *J* = 7.8 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 2H), 4.49 (d, *J* = 10.3 Hz, 1H), 4.22 (d, *J* = 10.3 Hz, 1H), 1.66 (s, 3H).

¹³C NMR (100 MHz, D₂O) δ 172.5, 157.3, 129.9, 122.2, 114.8, 70.1, 60.0, 18.3.

HRMS (ESI) m/z calcd. for C₁₀H₁₅NO₂ [M + H]⁺ 196.0968, found 196.0968.

Methyl (S)-2-amino-2-methyl-3-phenoxypropanoate (46-1)

HPLC analysis: Chiralcel OJH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 220 nm), t_R (minor) = 18.50 min, t_R (major) = 20.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.8 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 4.22 (d, *J* = 8.5 Hz, 1H), 3.88 (d, *J* = 8.5 Hz, 1H), 3.73 (s, 3H), 1.97 (s, 2H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.5, 158.5, 129.4, 121.2, 114.7, 74.4, 58.2, 52.5, 23.2.

HRMS (ESI) m/z calcd. for C₁₁H₁₅NO₃ [M + H]⁺ 210.1125, found 210.1120.

b) One-pot synthesis of quaternary epoxides

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.030 mmol, 10 mol%), L*4 (15.1 mg, 0.030 mmol, 10 mol%), Ag₂CO₃ (49.6 mg, 0.18 mmol, 0.60 equiv.), proton sponge (12.8 mg, 0.060 mmol, 0.20 equiv.), the corresponding triol (0.30 mmol, 1.0 equiv.), and anhydrous CHCl₃ (3.0 mL). Then, benzenesulfonyl chloride (4to, 0.36 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C. After 8 h, the reaction mixture was filtered through a plug of celite (rinsed with 2.0 mL CHCl₃). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (53.6 μ L, 0.36 mmol, 1.2 equiv.) was added to the filtrate and the reaction mixture was stirred at r.t. for 6 h. Solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to give the product.

(*R*)-(2-Benzyloxiran-2-yl)methanol (56)

Product 56 was obtained as a yellow oil (36.0 mg, 73% yield, 95% e.e.).

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 6.83 min, t_R (major) = 7.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.13 (m, 5H), 3.74 (dd, J = 12.3, 4.4 Hz, 1H), 3.59 (dd, J = 12.3, 7.9 Hz, 1H), 3.08 (d, J = 14.3 Hz, 1H), 2.92 – 2.82 (m, 2H), 2.66 (d, J = 4.7 Hz, 1H), 1.96 – 1.82 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 136.1, 129.6, 128.5, 126.9, 62.8, 60.0, 49.7, 38.3.

HRMS (ESI) m/z calcd. for C₁₀H₁₂NaO₂ [M + Na]⁺ 187.0730 found 187.0728.

(*R*)-(2-Phenyloxiran-2-yl)methanol (57)

Product 57 was obtained as a colorless oil (27.2 mg, 60% yield, 94% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 214$ nm), t_R (minor) = 14.22 min, t_R (major) = 17.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 5H), 4.11 (dd, *J* = 12.6, 2.5 Hz, 1H), 4.02 (dd, *J* = 12.9, 7.7 Hz, 1H), 3.28 (d, *J* = 5.3 Hz, 1H), 2.83 (d, *J* = 5.3 Hz, 1H), 1.95 – 1.77 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 137.4, 128.6, 128.2, 126.0, 63.1, 60.4, 52.5.

HRMS (ESI) *m*/*z* calcd. for C₉H₁₀NaO₂ [M + Na]⁺ 173.0573, found 173.0574.

(R)-(2-(Phenylethynyl)oxiran-2-yl)methanol (58)

Product 58 was obtained as a yellow solid (45.0 mg, 86% yield, 96% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.6 mL/min, λ = 214 nm), *t*_R (minor) = 9.56 min, *t*_R (major) = 14.18 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.36 – 7.28 (m, 3H), 4.09 – 3.97 (m, 1H), 3.96 – 3.81 (m, 1H), 3.20 (d, *J* = 5.6 Hz, 1H), 3.14 (d, *J* = 5.5 Hz, 1H), 1.97 – 1.86 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 132.0, 129.0, 128.4, 121.6, 84.9, 84.8, 63.0, 51.6, 51.4.

HRMS (ESI) m/z calcd. for C₁₁H₁₁O₂ [M + H]⁺ 175.0754, found 175.0754.

c) Synthesis of a key intermediate for antifungal agents

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.030 mmol, 10 mol%), L*4 (15.1 mg, 0.030 mmol, 10 mol%), Ag₂CO₃ (49.6 mg, 0.18 mmol, 0.60 equiv.), proton sponge (12.8 mg, 0.060 mmol, 0.20 equiv.), A-S42 (61.3 mg, 0.30 mmol, 1.0 equiv.), and anhydrous CHCl₃ (3.0 mL). Then, benzenesulfonyl chloride (46 to0.36 mmol, 1.2 equiv.) was added into the mixture and the reaction mixture was stirred at 0 °C. After stirring for 1 d, the reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was dissolved in MeCN (3.0 mL), then K₂CO₃ (82.8 mg, 0.60 mmol, 2.0 equiv.) and 1,2,4-triazole (41.4 mg, 0.60 mmol, 2.0 equiv.) were added. The reaction mixture was heated to 60 °C for 1 d while stirring. After cooled to r.t., the reaction mixture was diluted with EtOAc (80 mL), washed with H₂O and brine, dried (Na₂SO₄), and concentrated *in vacuo*. The residue was briefly purified by silica gel column chromatography (petroleum ether/EtOAc = $1/1 \sim 1/3$) to give product **59** as a white solid (56.5 mg, 74% yield).

(S)-2-(2,4-Difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propane-1,2-diol (59)

 $[\alpha]_{D}^{27} = 57 (c \ 1.0, \text{MeOH}).$

HPLC analysis: Chiralcel OZ3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.4 mL/min, λ = 214 nm), *t*_R (major) = 42.35 min, *t*_R (minor) = 35.05 min, 93% e.e.

¹**H** NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.84 (s, 1H), 7.51 (td, J = 8.9, 6.6 Hz, 1H), 6.94 – 6.66 (m, 2H), 4.78 (d, J = 14.3 Hz, 1H), 4.71 (d, J = 14.3 Hz, 1H), 3.98 (dd, J = 11.7, 1.6 Hz, 1H), 3.77 (d, J = 11.7 Hz, 1H), 2.17 (br s, 2H).

¹³**C** NMR (125 MHz, CDCl₃) δ 162.8 (dd, J = 250.9, 12.8 Hz), 158.7 (dd, J = 246.4, 12.0 Hz), 151.9, 144.4, 130.0 (dd, J = 9.6, 6.0 Hz), 122.9 (dd, J = 13.3, 3.9 Hz), 111.8 (dd, J = 20.7, 3.4 Hz), 104.2 (dd, J = 27.6, 25.6 Hz), 76.2 (d, J = 5.2 Hz), 66.6 (d, J = 4.3 Hz), 54.3 (d, J = 6.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –109.8 (d, *J* = 8.1 Hz), –109.9 (d, *J* = 7.9 Hz).

HRMS (ESI) m/z calcd. for C₁₁H₁₂F₂N₃O₂ [M + H]⁺ 256.0892, found 256.0889.

Note: The absolute configuration of **59** was determined by X-ray diffraction analysis (Supplementary Fig. 21).

Desymmetrization of polyols from natural resources

(A) Desymmetrization of glycerol and subsequent transformations

Gram-scale desymmetrization of glycerol for the synthesis of 60

According to **General procedure A** with glycerol **A-2** (1.0 g, 11 mmol, 1.0 equiv.) and tosyl chloride **S-3** (2.5 g, 13 mmol, 1.2 equiv.) at r.t. for 1 d, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **60** as a white solid (2.0 g, 75% yield, 93% e.e.).

HPLC analysis: Chiralcel ADH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 17.73 min, t_R (minor) = 18.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.15 – 4.02 (m, 2H), 4.01 – 3.91 (m, 1H), 3.75 – 3.52 (m, 2H), 3.21 (s, 1H), 2.65 (s, 1H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 132.4, 130.0, 128.0, 70.7, 69.7, 62.7, 21.7.

HRMS (ESI) m/z calcd. for C₁₀H₁₄NaO₅S [M + Na]⁺ 269.0454, found 269.0453.

Desymmetrization of crude glycerol (71%) for the synthesis of 60

According to General procedure A with crude glycerol A-2 (129.6 mg, 1.0 mmol, 1.0 equiv.) and tosyl chloride S-3 (228.7 mg, 1.2 mmol, 1.2 equiv.) at r.t. for 1 d, the reaction mixture was purified

by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **60** as a white solid (93.5 mg, 38% yield, 82% e.e.).

Desymmetrization of glycerol for the synthesis of 60'

According to **General procedure A** with glycerol **A-2** (92.0 mg, 1.0 mmol, 1.0 equiv.) and tosyl chloride **S-3** (228.7 mg, 1.2 mmol, 1.2 equiv.) at r.t. for 1 d ($\mathbf{L*4'}$ (50.4 mg, 0.10 mmol, 0.10 equiv.) was used instead of $\mathbf{L*4}$), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **60'** as a white solid (165.0 mg, 67% yield, -86% e.e.)

HPLC analysis: Chiralcel ADH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 17.65 min, t_R (major) = 18.89 min.

The synthesis of 61

To a solution of compound **60** (1.58 g, 6.42 mmol, 1.0 equiv.) in CHCl₃ (60.0 mL) was added cesium carbonate (2.30 g, 7.07 mmol, 1.1 equiv.). The reaction mixture was stirred at r.t. for 4 h and then filtered over a short plug of celite. The filtrate was concentrated *in vacuo* at 25 °C and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **61** as a colorless oil (425 mg, 89% yield).

One-pot procedure for the synthesis of 61.

$$\begin{array}{c} \mbox{Cul (10 mol\%)} & & \mbox{L*4 (10 mol\%)} \\ \mbox{HO} \mbox{-}OH \\ \mbox{OH} \mbox{-}OH \\ \mbox{Glycerol A-2} \end{array} \xrightarrow{\begin{subarray}{c} Cul (1.2 equiv.) \\ \mbox{Ag}_2CO_3 (0.60 equiv.) \\ \mbox{proton sponge (20 mol\%)} \\ \mbox{CHCl}_3, r.t., 1 d \end{subarray} \xrightarrow{\begin{subarray}{c} Cs_2CO_3 (1.1 equiv.) \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} Cs_2CO_3 (1.1 equiv.) \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} OH \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} Cs_2CO_3 (1.1 equiv.) \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} OH \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} Cs_2CO_3 (1.1 equiv.) \\ \mbox{CHCl}_3 \end{subarray}} \xrightarrow{\begin{subarray}{c} OH \\ \mbox{CHCl}_3 \end{su$$

Step 1 was performed in a 1.0-mmol scale according to **General procedure A** with glycerol A-2 (92.0 mg, 1.0 mmol, 1.0 equiv.) and tosyl chloride S-3 (228.7 mg, 1.2 mmol, 1.2 equiv.) at r.t. for 1 d. Then the reaction mixture was filtered over a plug of celite and the filter-cake was washed with chloroform (2×1.0 mL). Cesium carbonate (0.36 g, 1.1 mmol, 1.1 equiv.) was added to the filtrate and the mixture was stirred at r.t. Upon completion, the reaction mixture was filtered over a short plug of celite and the solvent was evaporated *in vacuo* at 25 °C. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **61** (49.5 mg, 67% yield in two steps) as a colorless oil.

(R)-Oxiran-2-ylmethanol (61)

¹**H NMR** (400 MHz, CDCl₃) δ 3.96 (d, *J* = 12.3 Hz, 1H), 3.62 – 3.54 (m, 1H), 3.20 – 3.15 (m, 1H), 2.82 (t, *J* = 4.4 Hz, 1H), 2.78 – 2.74 (m, 1H), 2.71 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 61.9, 52.3, 44.2.

Determination of the e.e. and absolute configuration of 61

To a suspension of NaH (60% dispensed in mineral oil, 44 mg, 1.1 mmol, 1.1 equiv.) in DMF (2.0 mL) was added 4-methoxybenzyl chloride (150.0 μ L, 1.1 mmol, 1.1 equiv.) at 0 °C under argon. After stirring for 20 min, **61** (65.0 μ L, 1.0 mmol, 1.0 equiv.) was added dropwise and the reaction mixture was allowed to warm to r.t. After 1 d, the reaction mixture was diluted with EtOAc (80 mL) and washed with saturated NH₄Cl (aq.) (20 mL) and H₂O (3 × 20 mL). The organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 1/1) to yield product **61-1** (174.5 mg, 90% yield, 90% e.e.) as a colorless oil.

Note: The absolute configuration of **61-1** was determined by comparing its HPLC traces with those in literature⁴.

(S)-2-(((4-Methoxybenzyl)oxy)methyl)oxirane (61-1)

HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 11.57 min, t_R (minor) = 12.33 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.21 (m, 3H), 6.91 – 6.86 (m, 2H), 4.52 (q, *J* = 11.5 Hz, 2H), 3.80 (s, 3H), 3.73 (dd, *J* = 11.4, 3.1 Hz, 1H), 3.41 (dd, *J* = 11.4, 5.8 Hz, 1H), 3.23 – 3.12 (m, 1H), 2.80 (t, *J* = 4.6 Hz, 1H), 2.66 – 2.58 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.3, 130.0, 129.5, 113.8, 73.0, 70.5, 55.3, 50.9, 44.4.

HRMS (ESI) m/z calcd. for C₁₁H₁₄NaO₃ [M + Na]⁺ 217.0835, found 217.0836.

The synthesis of 62

To a solution of **61** (65.0 μ L, 1.0 mmol, 1.0 equiv.) in CH₂Cl₂ (2.0 mL) was added 1-chloro-*N*,*N*,2-trimethylprop-1-en-1-amine (160.0 μ L, 1.2 mmol, 1.2 equiv.) at 0 °C under argon. After stirring for 4 h at 0 °C, the internal standard CH₂Br₂ (70.0 μ L, 1.0 mmol, 1.0 equiv.) was added into the reaction mixture and 20 μ L of the solution was transferred into the NMR tube followed by the addition of CDCl₃. The subsequent ¹H NMR analysis indicated 81% yield for **62**.

Then, to the reaction mixture were added aniline (81 μ L, 0.89 mmol, 1.1 equiv.) and Zn(ClO₄)₂·6H₂O (29.8 mg, 0.080 mmol, 0.10 equiv.). The mixture was warmed to r.t. and stirred for 3 d. After removing the solvent, the residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 4/1) to give **62-1** (132.0 mg, 71% yield in two steps, 91% e.e.) as a colorless oil.

HPLC analysis: Chiralcel OD3 (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 17.62 min, t_R (minor) = 18.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.69 – 6.64 (m, 2H), 4.08 – 4.03 (m, 1H), 3.68 – 3.59 (m, 2H), 3.36 (dd, *J* = 13.3, 4.4 Hz, 1H), 3.21 (dd, *J* = 13.3, 7.2 Hz, 1H), 3.04 (br s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 129.3, 118.2, 113.3, 69.8, 47.6, 47.1.

HRMS (ESI) m/z calcd. for C₉H₁₃ClNO [M + H]⁺ 186.0680, found 186.0680.

The synthesis of 63

To a solution of compound **60** (49.3 mg, 0.20 mmol, 1.0 equiv.) and diphenyl carbonate (47.2 mg, 0.22 mmol, 1.1 equiv.) in 2-Me-THF (2.0 mL) was added 1,5,7-triazabicylo[4.4.0]dec-5-ene (1.4 mg, 0.010 mmol, 5.0 mol%). The reaction mixture was stirred at r.t. Upon completion, solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **63** as a light yellow solid (40.0 mg, 74% yield, 93% e.e.).

(R)-(2-Oxo-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate (63)

HPLC analysis: Chiralcel ADH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 27.76 min, t_R (minor) = 28.79 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 4.97 – 4.82 (m, 1H), 4.54 (t, *J* = 8.7 Hz, 1H), 4.36 (dd, *J* = 8.9, 5.9 Hz, 1H), 4.29 – 4.17 (m, 2H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 153.8, 145.9, 131.8, 130.2, 128.0, 72.9, 67.2, 65.5, 21.7.

HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₆S [M + Na]⁺ 295.0247, found 295.0248.

The synthesis of 64

To a solution of **60** (49.3 mg, 0.20 mmol, 1.0 equiv.) in acetone (3.0 mL)were added 2,2dimethoxypropane (31.2 mg, 0.30 mmol, 1.5 equiv.) and trifluoromethanesulfonic acid (0.21 mg, 0.0020 mmol, 1.0 mol%) at r.t. After stirring at r.t. for 1 h, triethylamine was added and the reaction mixture was concentrated to a minimum volume. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **64** as a light yellow solid (42 mg, 77% yield, 92% e.e.).

(R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate (64)

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 17.20 min, t_R (minor) = 20.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.32 – 4.23 (m, 1H), 4.10 – 3.94 (m, 3H), 3.77 (dd, *J* = 8.8, 5.1 Hz, 1H), 2.45 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 132.7, 129.9, 128.0, 110.1, 72.9, 69.5, 66.2, 26.6, 25.2, 21.7.

HRMS (ESI) m/z calcd. for C₁₃H₁₉O₅S [M + H]⁺ 287.0948, found 287.0947.

The synthesis of 65

To a solution of **60** (49.3 mg, 0.20 mmol, 1.0 equiv.) in acetone (1.8 mL) and H_2O (0.6 mL) was added NaN₃ (65 mg, 1.0 mmol, 5.0 equiv.). The mixture was stirred at 60 °C overnight before

removing the solvent *in vacuo*. The residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1) to yield product **65** as a colorless oil (22.8 mg, 97% yield, 92% e.e.).

(S)-3-Azidopropane-1,2-diol (65)

HPLC analysis: Chiralcel ID (*n*-Hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 57.01 min, t_R (minor) = 61.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.94 – 3.85 (m, 1H), 3.71 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.60 (dd, *J* = 11.4, 6.3 Hz, 1H), 3.46 – 3.35 (m, 2H), 3.06 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 70.9, 64.0, 53.5.

HRMS (ESI) m/z calcd. for C₃H₇N₃NaO₂ [M + Na]⁺ 140.0430, found 140.0431.

The synthesis of 66

To a solution of compound **60** (49.3 mg, 0.20 mmol, 1.0 equiv.) and 1-phenylpiperazine (38.9 mg, 0.24 mmol, 1.2 equiv.) in toluene (2.0 mL) was added triethylamine (40.5 mg, 0.40 mmol, 2.0 equiv.). The mixture was heated to reflux while stirring. Upon completion, the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH = 20/1) to yield product **66** as a white solid (35.0 mg, 72% yield, 93% e.e.).

One-pot procedure for the synthesis of 66.

Step 1 was performed in a 0.2-mmol scale according to **General procedure A**. Upon completion, the reaction mixture was filtered over a plug of celite and the filter-cake was washed with chloroform several times. The filtrate was concentrated *in vacuo* and the residue was redissolved in toluene (2.0 mL). Then, 1-phenylpiperazine (38.9 mg, 0.24 mmol, 1.2 equiv.) was added and the mixture was heated to reflux. Upon completion, the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH = 20/1) to yield product **66** as a white solid (22.0 mg, 47% yield in two steps, 93% e.e.).

(S)-3-(4-Phenylpiperazin-1-yl)propane-1,2-diol (66)

HPLC analysis: Chiralcel OJH (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 15.85 min, t_R (minor) = 19.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 2H), 6.97 – 6.90 (m, 2H), 6.90 – 6.83 (m, 1H), 3.94 – 3.84 (m, 1H), 3.77 (dd, J = 11.4, 3.7 Hz, 1H), 3.53 (dd, J = 11.4, 4.4 Hz, 1H), 3.28 – 3.14 (m, 4H), 2.90 – 2.79 (m, 2H), 2.71 – 2.57 (m, 3H), 2.43 (dd, J = 12.5, 3.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.1, 129.2, 120.0, 116.2, 66.9, 64.8, 60.3, 53.4, 49.2.

HRMS (ESI) m/z calcd. for C₁₃H₂₁N₂O₂ [M + H]⁺ 237.1598, found 237.1596.

(B) Desymmetrization of protected erythritol and xylitol

The synthesis of 67

To a solution of erythritol (5.0 g, 41 mmol, 1.0 equiv.) in pyridine (100 mL) at 0 °C was slowly added pivaloyl chloride (10.1 mL, 82 mmol, 2.0 equiv.). The reaction mixture was stirred at r.t. overnight. Then the resulting mixture was diluted with EtOAc (200 mL) and washed with 1N HCl (5×50 mL) to remove pyridine. The organic layer was dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was dissolved in a minimum amount of CH₂Cl₂ (10 mL). Then pentane (300 mL) was added (in the beginning it should be added slowly) while swirling by hand, during which time the product started precipitating out. The resulting solution was swirled by hand for a few min. This was then filtered with a Büchner funnel to give product **A-3** as a white solid (6.78 g, 57% yield).

2,3-Dihydroxybutane-1,4-diyl bis(2,2-dimethylpropanoate) (A-3)

¹**H NMR** (400 MHz, CDCl₃) δ 4.4 – 4.2 (m, 4H), 3.9 – 3.7 (m, 2H), 2.8 (br s, 2H), 1.2 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 179.4, 70.7, 65.6, 38.9, 27.2.

HRMS (ESI) m/z calcd. for C₁₄H₂₇O₆ [M + H]⁺ 291.1802, found 291.1801.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBr·SMe₂ (4.1 mg, 0.020 mmol, 10 mol%), L*10 (23.7 mg, 0.030 mmol, 15 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), A-3 (58.0 mg, 0.20 mmol, 1.0 equiv.), and anhydrous CHCl₃ (2.0 mL). Then benzenesulfonyl chloride (30.8 μ L, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t. for 3 d. Upon completion, the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to afford the desired product **67** as a white solid (64.2 mg, 75% yield, 97% e.e.).

2-Hydroxy-3-((phenylsulfonyl)oxy)butane-1,4-diyl bis(2,2-dimethylpropanoate) (67)

HPLC analysis: Chiralcel OD (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min, $\lambda = 210$ nm), t_R (major) = 29.16 min, t_R (minor) = 24.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.88 (m, 2H), 7.71 – 7.64 (m, 1H), 7.57 (t, *J* = 7.7 Hz, 2H), 4.88 – 4.81 (m, 1H), 4.40 – 4.28 (m, 2H), 4.24 (dd, *J* = 11.9, 3.8 Hz, 1H), 4.08 (dd, *J* = 11.9, 5.4 Hz, 1H), 4.03 – 3.96 (m, 1H), 2.61 (br s, 1H), 1.22 (s, 9H), 1.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 178.8, 178.3, 136.6, 134.0, 129.3, 127.6, 78.9, 68.6, 64.2, 61.8, 38.85, 38.79, 27.1, 27.0.

HRMS (ESI) m/z calcd. for C₂₀H₃₁O₈S [M + H]⁺ 431.1734, found 431.1733.

The synthesis of 68

To a solution of xylitol (3.0 g, 20 mmol, 1.0 equiv.) in pyridine (50 mL) at 0 °C was slowly added pivaloyl chloride (5.0 mL, 40 mmol, 2.0 equiv.). The reaction mixture was stirred at r.t. overnight. Then the resulting mixture was diluted with EtOAc (150 mL) and washed with 1N HCl (5×40 mL) to remove pyridine. The organic layer was dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was dissolved in a minimum amount of CH₂Cl₂ (8 mL). Then pentane (300 mL) was added (in the beginning it should be added slowly) while swirling by hand, during which time the product started precipitating out. The resulting solution was swirled by hand for a few min. This was then filtered with a Büchner funnel to give product **A-4** as a white solid (3.50 g, 55% yield).

2,3,4-Trihydroxypentane-1,5-diyl bis(2,2-dimethylpropanoate) (A-4)

¹**H** NMR (400 MHz, CDCl₃) δ 4.22 (d, *J* = 6.1 Hz, 4H), 4.00 (s, 2H), 3.61 – 3.52 (m, 1H), 3.28 (br s, 2H), 3.11 (br s, 1H), 1.21 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 179.0, 71.6, 69.9, 65.4, 38.8, 27.1.

HRMS (ESI) *m/z* calcd. for C₁₅H₂₈NaO₇ [M + Na]⁺ 343.1727, found 343.1725.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.020 mmol, 10 mol%), **L***4 (15.1 mg, 0.030 mmol, 15 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), **A-4** (64.0 mg, 0.20 mmol, 1.0 equiv.), and anhydrous CH₂Cl₂ (2.0 mL). Then benzenesulfonyl chloride (30.8 μ L, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t. for 3 d. Upon completion, the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to afford the desired product **68** as a white solid (78.3 mg, 85% yield, 93% e.e.).

2,3-Dihydroxy-4-((phenylsulfonyl)oxy)pentane-1,5-diyl bis(2,2-dimethylpropanoate) (68)

HPLC analysis: Chiralcel IG (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 21.73 min, t_R (minor) = 25.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.90 (m, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 2H), 5.01 – 4.92 (m, 1H), 4.40 (dd, *J* = 12.6, 3.8 Hz, 1H), 4.23 – 4.11 (m, 3H), 3.95 (td, *J* = 6.0, 2.3 Hz, 1H), 3.83 (dd, *J* = 5.6, 2.3 Hz, 1H), 2.74 (br s, 2H), 1.20 (s, 9H), 1.15 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 178.8, 178.0, 136.5, 134.1, 129.3, 127.7, 80.6, 69.5, 68.6, 65.1, 62.2, 38.8, 38.7, 27.1, 27.0.

HRMS (ESI) m/z calcd. for C₂₁H₃₃O₉S [M + H]⁺ 461.1840, found 461.1838.

(C)4,6-Desymmetrization of protected inositol and subsequent transformations to D-myoinositol-4-phosphate

A-5 was synthesized according to the reported literature⁵.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.62 (m, 2H), 7.41 – 7.30 (m, 3H), 4.55 (s, 2H), 4.30 – 4.16 (m, 4H), 3.79 – 3.51 (m, 2H), 0.96 (s, 9H), 0.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 137.0, 129.5, 128.1, 125.3, 107.0, 76.0, 69.4, 68.3, 59.6, 25.8, 18.3, -4.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₉O₆Si [M + H]⁺ 381.1728, found 381.1724.

The synthesis of 69

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (157.8 mg, 0.26 mmol, 10 mol%), **L*11** (179.3 mg, 0.32 mmol, 12 mol%), Ag₂CO₃ (435.5 mg, 1.6 mmol, 0.60 equiv.), **A-5** (1.0 g, 2.6 mmol, 1.0 equiv.), 4 Å MS (0.40 g), and anhydrous CHCl₃ (50.0 mL). Then benzenesulfonyl chloride (0.40 mL, 3.2 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t. for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to afford the desired product **69** as a white solid (1.07 g, 78% yield, 91% e.e.). Recrystallization from *n*-Hexane/i-PrOH (20/1) produced **69** in 71% yield with 98% e.e.

(1*R*,3*S*,5*S*,6*R*,7*R*,8*R*,9*R*)-8-((*tert*-Butyldimethylsilyl)oxy)-9-hydroxy-3-phenyl-2,4,10-trioxaadamantan-6-yl benzenesulfonate (69)

HPLC analysis: Chiralcel OD (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 20.81 min, t_R (minor) = 14.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 – 7.92 (m, 2H), 7.77 – 7.69 (m, 1H), 7.66 – 7.56 (m, 4H), 7.37 – 7.30 (m, 3H), 5.25 (td, *J* = 4.0, 1.7 Hz, 1H), 4.68 – 4.64 (m, 1H), 4.44 – 4.39 (m, 1H), 4.30 – 4.27 (m, 1H), 4.25 (t, *J* = 1.8 Hz, 1H), 4.19 – 4.16 (m, 1H), 2.43 (d, *J* = 6.6 Hz, 1H), 0.92 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 136.5, 135.3, 134.7, 129.7, 129.6, 128.03, 127.95, 125.3, 107.4, 75.4, 74.6, 73.4, 69.5, 67.5, 59.3, 25.8, 18.2, -4.65, -4.71.

HRMS (ESI) *m/z* calcd. for C₂₅H₃₃O₈SSi [M + H]⁺ 521.1660, found 521.1660.

The structure of 69 was further confirmed by X-ray diffraction analysis (Supplementary Fig. 22).

The synthesis of 69'

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol%), L*11 (6.8 mg, 0.012 mmol, 12 mol%), Ag₂CO₃ (16.6 mg, 0.060 mmol, 0.60 equiv.), A-5 (38.1 mg, 0.10 mmol, 1.0 equiv.), 4 Å MS (40 mg), and anhydrous CHCl₃ (2.0 mL). Then, benzenesulfonyl chloride (15.4 μ L, to mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at r.t. for 2 d. Upon completion, the reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to afford the desired product **69'** as a white solid (36.3 mg, 70% yield, -85% e.e.).

HPLC analysis: Chiralcel OD (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 214$ nm), t_R (major) = 14.23 min, t_R (minor) = 20.85 min.

The synthesis of 69-2

Step1: A mixture of **69** (230 mg, 0.44 mmol, 1.0 equiv.) and 1*H*-tetrazole (92.4 mg, 1.32 mmol, 3.0 equiv.) was dissolved in DCM (10.0 mL) and stirred for 10 min at r.t. Dibenzyl *N*,*N*-

diisopropylphosphoramidite (0.22 mL, 0.66 mmol, 1.5 equiv.) was then added and the reaction mixture was stirred at r.t. for 1 h. The reaction flask was then cooled to -40 °C and *m*-CPBA (201mg (85% purity, 0.990 mmol, 2.25 equiv.) was added in one portion. The reaction mixture was gradually warmed to r.t. over a period of 2 h. DCM (40 mL) was then added to the mixture. The organic layer was washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was directly used in the next step without further purification.

Note: **69-1** has a very similar Rf value with that of **69** during TLC analysis.

Step2: To a solution of the thus-obtained residue in THF (5.0 mL) was dropwise added TBAF (0.44 mL, 1.0 M in THF) at 0 °C with stirring under argon. After stirring at 0 °C for 1 h and at r.t. for an additional 24 h, the reaction mixture was then diluted with EtOAc (80 mL), washed with water (50 mL) and brine (50 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to afford the desired product **69-2** as a colorless oil (246.1 mg, 84% yield over two steps, 99% e.e.).

Note: If **69-1** was purified after *Step 1*, the corresponding *Step 2* went to completion in 1 h at 0 °C.

(1*S*,3*R*,5*R*,6*S*,7*S*,8*R*,9*R*)-8-((Bis(benzyloxy)phosphoryl)oxy)-9-hydroxy-3-phenyl-2,4,10-trioxaadamantan-6-yl benzenesulfonate (69-2)

$$\begin{array}{c} \mathsf{Ph} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{PhSO}_2 \mathsf{O} & \mathsf{P} \\ \mathsf{BnO} & \mathsf{OBn} \\ \mathbf{69-2} \end{array}$$

HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 60/40, flow rate 0.7 mL/min, $\lambda = 214$ nm), t_R (major) = 25.25 min, t_R (minor) = 31.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.87 (m, 2H), 7.67 – 7.59 (m, 1H), 7.58 – 7.45 (m, 4H), 7.44 – 7.27 (m, 13H), 5.21 (t, *J* = 3.8 Hz, 1H), 5.18 – 5.04 (m, 5H), 4.43 – 4.41 (m, 1H), 4.33 – 4.31 (m, 2H), 4.01 (s, 1H), 3.20 (d, *J* = 8.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 135.5, 135.34, 135.31, 135.27, 135.24, 134.4, 129.9, 129.5, 128.7 (d, *J* = 2.3 Hz), 128.6 (d, *J* = 1.2 Hz), 128.06, 128.03, 128.00, 127.9, 125.1, 107.6, 73.2 (d, *J* = 5.3 Hz), 72.9, 72.5, 70.03 (d, *J* = 2.7 Hz), 69.97 (d, *J* = 2.5 Hz), 69.84 (d, *J* = 5.2 Hz), 68.0 (d, *J* = 4.8 Hz), 58.9.

³¹**P NMR** (162 MHz, CDCl₃) δ –2.03.

HRMS (ESI) m/z calcd. for C₃₃H₃₂O₁₁PS [M + H]⁺ 667.1397, found 667.1396.

The synthesis of 69-3

To a solution of **69-2** (66.6 mg, 0.10 mmol, 1.0 equiv.) in DCM/MeOH (2.0 mL/1.0 mL) was added magnesium strips (24.0 mg, 1.0 mmol, 10.0 equiv.). After stirring for 4 h at r.t., the reaction mixture was diluted with EtOAc (40 mL) and quenched with saturated NH₄Cl (aq.) (20 mL). The organic layer was separated and washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to afford the desired product **69-3** as a colorless oil (35.8 mg, 68% yield, 99% e.e.).

Dibenzyl ((1*S*,3*R*,5*R*,6*S*,7*S*,8*S*,9*S*)-8,9-dihydroxy-3-phenyl-2,4,10-trioxaadamantan-6-yl) phosphate (69-3)

HPLC analysis: Chiralcel ID (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 17.79 min, t_R (minor) = 21.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.45 – 7.29 (m, 13H), 5.12 – 5.00 (m, 5H), 4.63 (s, 1H), 4.44 (s, 1H), 4.39 – 4.32 (m, 1H), 4.30 – 4.21 (m, 1H), 4.06 (s, 1H), 3.15 (br s, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 136.2, 135.0 (d, J = 2.7 Hz), 134.9 (d, J = 2.1 Hz), 129.7, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 128.0, 125.2, 107.4, 75.3, 73.6 (d, J = 7.9 Hz), 71.7 (d, J = 5.7 Hz), 70.3 (d, J = 5.8 Hz), 70.2 (d, J = 5.8 Hz), 69.4 (d, J = 3.3 Hz), 66.9, 59.3.

³¹**P NMR** (162 MHz, CDCl₃) δ –2.16.

HRMS (ESI) m/z calcd. for C₂₇H₂₈O₉P [M + H]⁺ 527.1465, found 527.1469.

The synthesis of 70

To a solution of **69-3** (35.8 mg, 0.070 mmol) in MeOH (4.0 mL) was added Pd/C (10% wt, 100 mg, 0.094 mmol, 1.3 equiv.) under argon. The reaction flask was evacuated and refilled with hydrogen gas. The suspension was then allowed to stir under hydrogen atmosphere for 24 h. The reaction mixture was filtered through a plug of celite (rinsed with MeOH) and concentrated *in vacuo*. The residue was dissolved in deionized water and passed through Dowex 50WX8 ion-exchange resin (Na⁺ form) using deionized water as the eluent. The fractions containing the product were concentrated *in vacuo* at 60 °C and further dried with an oil pump to afford **70** (20.9 mg, 99%) as a white fluffy solid.

Sodium (1*S*,2*R*,3*S*,4*S*,5*S*,6*S*)-2,3,4,5,6-pentahydroxycyclohexyl phosphate (70)

 $[\alpha]_{D}^{27} = -0.6 \ (c \ 1.0, \ H_2O).$

¹**H** NMR (400 MHz, D₂O) δ 4.07 (q, J = 9.1 Hz, 1H), 3.99 (t, J = 2.5 Hz, 1H), 3.65 – 3.56 (m, 2H), 3.47 (dd, J = 10.0, 2.7 Hz, 1H), 3.36 (t, J = 9.2 Hz, 1H).

¹³**C NMR** (100 MHz, D₂O) δ 77.9 (d, *J* = 6.0 Hz), 73.6 (d, *J* = 3.0 Hz), 72.1, 71.9, 70.9. 70.8 (d, *J* = 2.9 Hz).

³¹**P NMR** (162 MHz, D₂O) δ 1.46.

HRMS (ESI) m/z calcd. for C₆H₁₂O₉P [M - 2Na + H]⁻ 259.0224, found 259.0224.

Mechanistic study

A. Radical inhibition experiments

Supplementary Fig. 1 | Radical inhibition experiments.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **A-1** (33.2 mg, 0.20 mmol, 1.0 equiv.), CuI (3.8 mg, 0.020 mmol, 10 mol%), **L*4** (10.1 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), proton sponge (8.6 mg, 0.040 mmol, 0.20 equiv.), the corresponding trapping reagent (3.0 equiv.), and anhydrous CHCl₃ (2.0 mL). Then, benzenesulfonyl chloride **S-1** (30.7 μ L, 0.24 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product **1**.

Note: When **BHT** was used as the trapping reagent, the residue was purified with column chromatography to afford **71** (21.5 mg, 25% yield) and **72** (7.0 mg, 8% yield) (both yields are based on benzenesulfonyl chloride).

2,6-Di-*tert*-butyl-4-((phenylsulfonyl)methyl)phenol (71)

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 3H), 7.43 (t, *J* = 7.8 Hz, 2H), 6.75 (s, 2H), 5.25 (s, 1H), 4.22 (s, 2H), 1.32 (s, 18H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.2, 137.8, 136.0, 133.3, 128.8, 128.6, 127.6, 118.7, 63.1, 34.1, 30.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₈NaO₃S [M + Na]⁺ 383.1651, found 383.1651.

The NMR spectroscopic data match with those in literature⁶.

2,6-Di-*tert*-butyl-4-methyl-4-(phenylsulfonyl)cyclohexa-2,5-dien-1-one (72)

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 2H), 6.65 (s, 2H), 1.83 (s, 3H), 1.10 (s, 18H).

¹³**C NMR** (100 MHz, CDCl₃) δ 183.6, 151.3, 135.5, 134.1, 133.4, 130.3, 128.2, 65.8, 35.2, 29.0, 18.4.

HRMS (ESI) m/z calcd. for C₂₁H₂₈NaO₃S [M + Na]⁺ 383.1651, found 383.1653.

The NMR spectroscopic data match with those in literature⁷ and the structure was further confirmed by X-ray diffraction analysis (Supplementary Fig. 23).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate A-5 (114.2 mg, 0.30 mmol, 1.0 equiv.), CuBH₄(PPh₃)₂ (18.0 mg, 0.030

mmol, 10 mol%), **L*11** (20.4 mg, 0.036 mmol, 12 mol%), Ag₂CO₃ (49.6 mg, 0.18 mmol, 0.60 equiv.), 4 Å MS (60.0 mg), the corresponding trapping reagent (3.0 equiv.), and anhydrous CHCl₃ (3.0 mL). Then, benzenesulfonyl chloride **S-1** (46.1 μ L, 0.36 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at r.t. for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product **69**.

Note: When **BHT** was used as the trapping reagent, the residue was purified with column chromatography to afford **71** (70.0 mg, 54% yield) and **72** (31.2 mg, 24% yield) (both yields are based on benzenesulfonyl chloride).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **A-S23** (45.1 mg, 0.20 mmol, 1.0 equiv.), CuCl (2.0 mg, 0.020 mmol, 10 mol%), **L*8** (9.7 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.0 mg, 0.12 mmol, 0.60 equiv.), proton sponge (2.2 mg, 0.010 mmol, 5.0 mol%), the corresponding trapping reagent (3.0 equiv.), and anhydrous CHCl₃ (2.0 mL). Then, 4-methoxybenzenesulfonyl chloride **S-2** (49.5 mg, 0.24 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at r.t. for 1 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified by column chromatography on basic aluminum oxide (CH₂Cl₂/MeOH = $200/1 \sim 80/1$) to give product **33**.

Note: When **BHT** was used as the trapping reagent, the residue was purified with column chromatography to afford **71-1** (27.2 mg, 29% yield) and **72-1** (18.5 mg, 20% yield) (both yields are based on 4-methoxybenzenesulfonyl chloride).

2,6-Di-*tert*-butyl-4-(((4-methoxyphenyl)sulfonyl)methyl)phenol (71-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.77 (s, 2H), 5.27 (s, 1H), 4.21 (s, 2H), 3.86 (s, 3H), 1.35 (s, 18H).

¹³**C NMR** (100 MHz, CDCl₃) δ 163.6, 154.2, 136.0, 131.0, 129.4, 127.7, 119.1, 113.8, 63.4, 55.6, 34.1, 30.1.

HRMS (ESI) *m*/*z* calcd. for C₁₀H₁₅NO₂ [M – H]⁺ 389.1792, found 389.1787.

2,6-Di-*tert*-butyl-4-((4-methoxyphenyl)sulfonyl)-4-methylcyclohexa-2,5-dien-1-one (72-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.66 (s, 2H), 3.82 (s, 3H), 1.83 (s, 3H), 1.13 (s, 18H).

¹³**C NMR** (100 MHz, CDCl₃) δ 183.8, 164.1, 151.2, 135.8, 132.4, 124.9, 113.4, 65.9, 55.7, 35.2, 29.0, 18.6.

HRMS (ESI) m/z calcd. for C₁₀H₁₅NO₂ [M + Na]⁺ 413.1757, found 413.1758.

B. Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with alkene **AE-1** (68.4 mg, 0.60 mmol, 3.0 equiv.), CuI (3.8 mg, 0.020 mmol, 10 mol%), **L*4** (10.1 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), proton sponge (8.6 mg, 0.040 mmol, 0.20 equiv.), and anhydrous CHCl₃ (2.0 mL). Then, benzenesulfonyl chloride **S-1** (25.6 μ L, 0.20 mmol, 1.0 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C or r.t. for 3 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 10/1) to give products **73** and **74**.

4-((Phenylsulfonyl)methyl)-1,2-dihydronaphthalene (73)

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.13 – 7.05 (m, 4H), 5.91 (t, *J* = 4.6 Hz, 1H), 4.22 (s, 2H), 2.71 – 2.65 (m, 2H), 2.27 – 2.17 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 138.3, 135.8, 134.9, 133.6, 132.5, 128.7, 128.6, 127.6, 127.4, 126.3, 125.7, 123.1, 59.9, 27.6, 23.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₇O₂S [M + H]⁺ 285.0944, found 285.0943.

The NMR spectroscopic data match with those in literature⁸.

((2-Phenylpent-2-en-1-yl)sulfonyl)benzene (74)

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H + 2H × 0.7), 7.56 (t, *J* = 7.6 Hz, 1 H × 0.7), 7.50 (t, *J* = 7.4 Hz, 2H × 0.7), 7.44 (t, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.31 – 7.13 (m, 3H + 4H × 0.7), 7.04 (d, *J* = 6.6 Hz, 1H), 5.96 (t, *J* = 7.4 Hz, 1H), 5.60 (t, *J* = 7.5 Hz, 1H × 0.7), 4.36 (s, 2H), 4.12 (s, 2H × 0.7), 2.08 (p, *J* = 7.5 Hz, 2H), 1.99 (p, *J* = 7.5 Hz, 2H × 0.7), 0.96 (t, *J* = 7.5 Hz, 3H), 0.86 (t, *J* = 7.5 Hz, 3H × 0.7).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.8, 140.39, 140.38, 139.0, 138.8, 138.3, 133.5, 133.4, 128.9, 128.8, 128.53, 128.50, 128.49, 128.3, 128.1, 127.5, 127.23, 127.20, 127.1, 126.4, 65.0, 57.6, 22.8, 22.7, 13.9, 13.6.

HRMS (ESI) m/z calcd. for C₁₇H₁₉O₂S [M + H]⁺ 287.1100, found 287.1099.

C. Copper catalyzed enantioselective S–O cross-coupling using an alternative method for generating sulfonyl radical

Supplementary Fig. 2 | Copper-catalyzed enantioselective S–O cross-coupling using alternative methods for generating sulfonyl radical. Possible reaction pathways are drawn by referring to literature $(\mathbf{a}^{9-11}; \mathbf{b}^{9,12-14}; \mathbf{c}^{15}; \mathbf{d}^{16})$.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **A-1** (33.2 mg, 0.20 mmol, 1.0 equiv.), CuI (3.8 mg, 0.020 mmol, 10 mol%), **L*4** (10.1 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), proton sponge (8.6 mg, 0.040 mmol, 0.20 equiv.), and anhydrous CHCl₃ (2.0 mL). Then, (*E*)-(2-(phenylsulfonyl)vinyl)benzene **S-4** (97.7 mg, 0.40 mmol, 2.0 equiv.) and the corresponding oxidant **[O]** (2.0 equiv.) were added into the mixture and the reaction mixture was stirred at 60 °C for 4 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product **1**.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **A-1** (33.2 mg, 0.20 mmol, 1.0 equiv.), CuI (3.8 mg, 0.020 mmol, 10 mol%), **L*4** (10.1 mg, 0.020 mmol, 10 mol%), Ag₂CO₃ (33.1 mg, 0.12 mmol, 0.60 equiv.), proton sponge (8.6 mg, 0.040 mmol, 0.20 equiv.), and anhydrous CHCl₃ (2.0 mL). Then, (allylsulfonyl)benzene **S-4-1** (62.0 μ L, 0.40 mmol, 2.0 equiv.) and the corresponding oxidant **[O]** (2.0 equiv.) were added into the mixture and the reaction mixture was stirred at 60 °C for 4 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in*

vacuo. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product **1**.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate A-1 (8.3 mg, 0.050 mmol, 1.0 equiv.), S-4-2 (20.2 mg, 0.10 mmol, 2.0 equiv.), CuI (0.95 mg, 0.0050 mmol, 10 mol%), L*4 (2.5 mg, 0.0050 mmol, 10 mol%), and anhydrous CHCl₃ (0.50 mL). Then, O-3 (25.3 mg, 0.125 mmol, 2.5 equiv.) was added to the mixture and the reaction mixture was stirred at 60 °C for 3 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 2/1) to give product 2.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate A-1 (8.3 mg, 0.050 mmol, 1.0 equiv.), S-4-3 (8.6 mg, 0.050 mmol, 1.0 equiv.), CuI (14.2 mg, 0.075 mmol, 1.5 equiv.), L*4 (37.8 mg, 0.075 mmol, 1.5 equiv.), and anhydrous CHCl₃ (1.0 mL). Then, O-4 (30 μ L, 5.0–6.0 mol/L in decane, 0.15 mmol, 3.0 equiv.) was added into the mixture and the reaction mixture was stirred at r.t. for 1 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1.

D. Control experiment with unstable benzyl sulfonyl radical

Supplementary Fig. 3 | Control experiment with unstable benzyl sulfonyl radical. Possible pathways for the formation of $75/76^{17}$ and 77^{18-20} were drawn by referring to literature.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate A-1 (166.0 mg, 1.0 mmol, 1.0 equiv.), CuI (19.0 mg, 0.10 mmol, 10 mol%), L*4 (50.4 mg, 0.10 mmol, 10 mol%), Ag₂CO₃ (165.6 mg, 0.60 mmol, 0.60 equiv.), proton sponge (42.8 mg, 0.20 mmol, 0.20 equiv.), and anhydrous CHCl₃ (10.0 mL). Then, phenylmethanesulfonyl chloride S-5 (228.8 mg, 1.2 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography on silica gel to give 75 (121.9 mg, 38% yield, 1% e.e.), 76 (61.2 mg, 13% yield), and 77 (7.2 mg, 4% yield).

3-Hydroxy-2-methyl-2-phenylpropyl phenylmethanesulfonate (75)

HPLC analysis: Chiralcel ASH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 43.17 min, t_R (minor) = 51.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.23 (m, 10H), 4.31 – 4.29 (m, 4H), 3.73 – 3.66 (m, 2H), 1.79 (br s, 1H), 1.30 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.5, 130.7, 129.1, 128.9, 128.7, 127.6, 127.1, 126.4, 73.7, 67.0, 56.6, 43.9, 20.2.

HRMS (ESI) *m*/*z* calcd. for C₂₁H₂₈NaO₃S [M + Na]⁺ 343.0975, found 343.0976.

2-Methyl-2-phenylpropane-1,3-diyl bis(phenylmethanesulfonate) (76)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 13H), 7.22 – 7.17 (m, 2H), 4.23 (s, 4H), 4.19 (s, 4H), 1.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.5, 130.6, 129.0, 128.8, 128.7, 127.6, 127.4, 126.0, 72.6, 56.6, 42.4, 20.2.

HRMS (ESI) m/z calcd. for C₂₁H₂₈NaO₃S [M + Na]⁺ 497.1063, found 497.1060.

1,2-Diphenylethane (77)

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 7.21 – 7.18 (m, 6H), 2.92 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 141.8, 128.4, 128.3, 125.9, 37.9.

The NMR spectroscopic data match with those in the literature²¹.

E. Control experiments with monoalcohols

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.030 mmol, 10 mol%), L*4 (15.1 mg, 0.030 mmol, 10 mol%), Ag₂CO₃ (49.6 mg, 0.18 mmol, 0.60 equiv.), proton sponge (12.8 mg, 0.060 mmol, 0.20 equiv.), the corresponding racemic monoalcohol (0.30 mmol, 1.0 equiv.), and anhydrous CHCl₃ (3.0 mL). Then, benzenesulfonyl chloride S-1 (46.1 µL, 0.36 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C for 2 d. Then, the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel.

The synthesis of A-6

To a solution of diol **A-1** (332.0 mg, 2.0 mmol) in dry THF (10.0 mL) was added NaH (60% dispensed in mineral oil, 88.0 mg, 2.2 mmol, 1.1 equiv.) in four portions at 0 °C under inert atmosphere. After stirring for 30 min, methyl iodide (312.0 mg, 2.2 mmol, 1.1 equiv.) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. Then the reaction was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = $10/1 \sim 5/1$) to give product A-6 (241.5mg, 67% yield) as a colorless oil.

3-Methoxy-2-methyl-2-phenylpropan-1-ol (A-6)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 2H), 7.36 – 7.28 (m, 2H), 7.25 – 7.18 (m, 1H), 3.87 (d, *J* = 11.0 Hz, 1H), 3.77 – 3.69 (m, 2H), 3.55 (d, *J* = 9.1 Hz, 1H), 3.35 (s, 3H), 2.48 (br s, 1H), 1.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.3, 126.4, 126.3, 80.1, 70.2, 59.3, 43.7, 21.0.

HRMS (ESI) m/z calcd. for C₁₁H₁₆NaO₂ [M + Na]⁺ 203.1043, found 203.1042.

The synthesis of A-7

Step 1: To a solution of methyl 2-phenylacetate (1.5 g, 10.0 mmol) in dry THF (50.0 mL) was added NaH (60% dispensed in mineral oil, 440.0 mg, 11.0 mmol, 1.1 equiv.) in four portions at 0 °C under inert atmosphere. After stirring for 30 min, methyl iodide (1.56 g, 11.0 mmol, 1.1 equiv.) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. Then the reaction was quenched with saturated NH4Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = $80/1 \sim 40/1$) to give product A-7-1 (1.02 g, 62% yield) as a colorless oil.

Step 2: To a solution of methyl 2-phenylpropanoate **A-7-1** (1.02 g, 6.2 mmol) in dry THF (30.0 mL) was added NaH (60% dispensed in mineral oil, 273.3 mg, 6.8 mmol, 1.1 equiv.) in four portions at 0 °C under inert atmosphere. After stirring for 30 min, ethyl iodide (1.06 g, 6.8 mmol, 1.1 equiv.) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. Then the reaction was quenched with saturated NH4Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 100/1) to give product **A-7-2** (0.75 g, 63% yield) as a colorless oil.

Step 3: To a suspension of LiAlH4 (444.6 mg, 11.7 mmol, 3.0 equiv.) in Et₂O (15.0 mL) at 0 °C was slowly added a solution of **A-7-2** (0.75 g, 3.9 mmol) in Et₂O (5.0 mL). Then the reaction mixture was warmed to r.t. and stirred for 2 h. Next, the reaction was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. Upon completion, the mixture was warmed to r.t., stirred for an additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = $10/1 \sim 5/1$) to give product **A-7** (0.47 g, 73% yield) as a colorless oil.

Methyl 2-phenylpropanoate (A-7-1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 4H), 7.26 – 7.20 (m, 1H), 3.71 (q, *J* = 7.2 Hz, 1H), 3.63 (s, 3H), 1.49 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.9, 140.5, 128.5, 127.4, 127.0, 51.9, 45.3, 18.5.

Methyl 2-methyl-2-phenylbutanoate (A-7-2)

A-7-2

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 4H), 7.23 – 7.20 (m, 1H), 3.63 (s, 3H), 2.10 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.95 (dq, *J* = 14.6, 7.4 Hz, 1H), 1.52 (s, 3H), 0.82 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.6, 143.8, 128.2, 126.5, 125.9, 51.9, 50.6, 31.8, 22.1, 9.0.

2-Methyl-2-phenylbutan-1-ol (A-7)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 4H), 7.22 – 7.15 (m, 1H), 3.64 (d, *J* = 10.9 Hz, 1H), 3.47 (d, *J* = 10.9 Hz, 1H), 1.84 – 1.73 (m, 1H), 1.63 (s, 1H), 1.59 – 1.48 (m, 1H), 1.30 (s, 3H), 0.70 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 128.2, 126.7, 125.9, 72.2, 43.5, 30.7, 20.8, 8.1.

HRMS (ESI) m/z calcd. for C₁₁H₁₅ [M + H – H₂O]⁺ 147.1168, found 147.1169.

$Cu(OTf)_2$ (x mol%) L*4 (y mol%) PhSO₂Cl Ag₂CO₃ (0.60 equiv.) Ph proton sponge (20 mol%) OH S-1 A-1 CHCl₃, 0 °C, 2 d 1 Х Υ Yield of 1 E.e. of 1 L*4 10 10 92% 91% 100 100 6% 16%

F. Control experiments with catalytic/stoichiometric Cu(OTf)₂

Control experiment with catalytic Cu(OTf)₂:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate A-1 (16.6 mg, 0.10 mmol, 1.0 equiv.), Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%), L*4 (5.0 mg, 0.010 mmol, 10 mol%), Ag₂CO₃ (16.6 mg, 0.060 mmol, 0.60 equiv.), proton sponge (4.3 mg, 0.020 mmol, 0.20 equiv.), and anhydrous CHCl₃ (1.0 mL). Then, benzenesulfonyl chloride S-1 (15.4 μ L, 0.12 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at 0 °C for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product 1 (28.1 mg, 92% yield, 91% e.e.).

Control experiment with stoichiometric Cu(OTf)₂:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with substrate **A-1** (16.6 mg, 0.10 mmol, 1.0 equiv.), Cu(OTf)₂ (36.2 mg, 0.10 mmol, 100 mol%), **L*4** (50.4 mg, 0.10 mmol, 100 mol%), Ag₂CO₃ (16.6 mg, 0.060 mmol, 0.60 equiv.), proton sponge (4.3 mg, 0.020 mmol, 0.20 equiv.), and anhydrous CHCl₃ (1.0 mL). The mixture was stirred at r.t. for 1 h before benzenesulfonyl chloride **S-1** (15.4 μ L, 0.12 mmol, 1.2 equiv.) was added at 0 °C and the reaction mixture was stirred at 0 °C for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 4/1) to give product **1** (1.8 mg, 6% yield, 16% e.e.).

G. High-resolution mass spectroscopic characterization of the catalyst

Supplementary Fig. 4 | Electrospray ionization (ESI) mass spectroscopy (MS) analysis. A solution of CuBH₄(PPh₃)₂ (0.10 mmol), L*4 (0.10 mmol), Ag₂CO₃ (0.60 equiv.), and proton sponge (20 mol%) in DCM (0.10 M) was stirred for 10 h at room temperature. Then the reaction mixture was analyzed by ESI MS, showing a peak at m/z 566.1887 ascribed to the Cu(I)-L*4 complex. The observed isotopic distribution (**a**) well matches the calculated one (**b**).

H. Possible changes in the coordination mode of substrates to the copper catalyst

Supplementary Fig. 5 | Possible changes in the coordination mode of substrates to the copper catalyst.

I. NMR experiments with L*11

General procedure of the NMR experiments:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (4.8 mg, 0.025 mmol, 1.0 equiv.), L*11 (14.2 mg, 0.025 mmol, 1.0 equiv.), Ag₂CO₃ (6.9 or 0 mg, 0.025 or 0 mmol, 1.0 or 0 equiv.), proton sponge (5.4 or 0 mg, 0.025 or 0 mmol, 1.0 or 0 equiv.), and DMSO- d_6 (0.50 mL). The reaction mixture was stirred at r.t. for 0.5 h before being transferred to an NMR tube under argon for NMR experiments.

Supplementary Fig. 6 | ¹H-NMR spectra of the coordination complex from CuI and L*11 either in the absence (bottom) or in the presence of a base (middle and top) in DMSO- d_6 .

Supplementary Fig. 7 | ¹H,¹H-COSY 2D-NMR spectrum of the coordination complex from CuI and L*11 in the presence of Ag₂CO₃ in DMSO-*d*₆.

Supplementary Fig. 8 | ¹H,¹H-COSY 2D-NMR spectrum of the coordination complex from CuI and L*11 in the presence of proton sponge (PS) in DMSO-*d*₆.

f2 (ppm)

Supplementary Fig. 9 | ¹H, ¹H-COSY 2D-NMR spectrum of the coordination complex from CuI and L*11 in DMSO-*d*₆ (Part I).

Supplementary Fig. 10 | ¹H,¹H-COSY 2D-NMR spectrum of the coordination complex from CuI and L*11 in DMSO-*d*₆ (Part II).

Supplementary Fig. 11 | HSQC 2D-NMR spectrum of the coordination complex from CuI and L*11 in DMSO-*d*₆.

Supplementary Fig. 12 | HMBC 2D-NMR spectrum of the coordination complex from CuI and L*11 in DMSO-*d*₆.

Supplementary Fig. 13 | NOESY 2D-NMR spectrum of the coordination complex from CuI and L*11 in DMSO-d₆.

Supplementary Fig. 15 | HSQC 2D-NMR spectrum of L*11 in DMSO-d₆.

Supplementary Fig. 16 | HMBC 2D-NMR spectrum of L*11 in DMSO-d₆.

Supplementary Fig. 17 | NOESY 2D-NMR spectrum of L*11 in DMSO-d₆.

X-ray crystallography

Supplementary Fig. 18 | X-ray structure of compound L*4 (CCDC 2102449, 50% probability ellipsoids).

ellipsoids).

ellipsoids).

Supplementary Fig. 21 | X-ray structure of compound 59 (CCDC 2102448, 50% probability ellipsoids).

ellipsoids).

Supplementary Fig. 23 | X-ray structure of compound 72 (CCDC 2102452, 50% probability ellipsoids).

Computational study

1. Computational details

All density functional theory (DFT) calculations were performed using Gaussian 16 program²². Geometry optimizations were conducted with B3LYP functional^{23,24}, employing the D3 version of Grimme's dispersion corrections²⁵ with Becke-Johnson damping²⁶. LANL2DZ basis set^{27–29} was used for copper and 6-31G(d) basis set was used for all other atoms. Also, the (5d,7f) keyword in Gaussian 16 software was used. Single-point energies and solvent effects at chloroform were evaluated with M06-L functional³⁰. SDD basis set^{31–35} was used for copper the and 6-311+G(d,p) basis set was used for all other atoms. The solvation energies were calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model³⁶ in chloroform or DMSO. For the specified structures containing the "-Sol" suffix, geometry optimizations were conducted using the SMD model in chloroform with the same functional, dispersion correction, and basis sets as gas-phase geometry optimization. Frequency analysis was also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Mulliken spin distribution was acquired at the same level of theory as geometry optimization.

MECP (minimum energy crossing point)³⁷ was acquired using ORCA 5.0 software^{38,39} at B3LYP/G-D3(BJ)/Def2-SVP⁴⁰ level of theory (optimization was conducted with Gaussian version of B3LYP functional with the D3 version of Grimme's dispersion corrections and Becke-Johnson damping; the Def2-SVP basis set was used for all atoms). After MECP was located, single-point energy at M06-L/6-311+G(d,p)-SDD was calculated to evaluate electronic energy with higher accuracy in Gaussian 16. The corresponding structures connecting to MECP were optimized at B3LYP-D3(BJ)/Def2-SVP level of theory in Gaussian 16, and single-point energies were calculated at M06-L/6-311+G(d,p)-SDD level of theory also in Gaussian 16.

In addition, geometry optimization, frequency analysis, and single point energy of open-shell local minimums were calculated with unrestricted DFT methods, while the same computations for close-shell transition states and local minimums were performed with restricted DFT methods. Wavefunction stability test at the same level of theory as geometry optimizations was employed to ensure that the SCF converged wavefunction was stable.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT\ln(c_s/c_g)$ was added to the energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.040876 mol/L), and R is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol was used. For solvent chloroform with a density of 1480 g/L at 298.15 K and molecular weight of 119.38 g/mol, the correction value equaling to 3.38 kcal/mol was used.

The 3D diagrams of optimized structures shown in the main text and below in the Supplementary Information for computations were generated with CYLview software⁴¹.

2. Cu(I)-mediated generation of benzenesulfonyl radical Int82

Supplementary Fig. 24 | Calculated mechanisms for the generation of benzenesulfonyl radical Int82. Ar, 2,3,4,5,6-pentamethylphenyl.

Based on previous mechanistic studies on the mechanism of Cu-mediated carbon–halide bond cleavage^{42,43}, four possible S–Cl bond cleavage pathways (oxidative addition, inner-sphere electron transfer, stepwise outer-sphere electron transfer, and dissociative electron transfer) were explored. The computational results are summarized in Supplementary Fig. 24. The inner-sphere electron transfer pathway is the most favorable, while the oxidative addition, dissociative electron transfer, and stepwise out-sphere electron transfer pathways are unlikely. Detailed explanations of each pathway are provided below.

Supplementary Fig. 25 | Results of optimization of the post-oxidative addition Cu(III) intermediate. Ar, 2,3,4,5,6-pentamethylphenyl.

For the double electron oxidative addition (OA) pathway, the transition state cannot be located despite extensive efforts. The post-intermediate of this oxidative addition, the optimized L*4Cu(III)(benzenesulfonyl)Cl-diol species, is not a stable intermediate based on our computations. All the attempts to locate the proposed Cu(III) species were eventually optimized

to the open-shell singlet vdW complex of L*4Cu(II)Cl and benzenesulfonyl radical Int-S7 (Supplementary Fig. 25). This open-shell singlet complex Int-S7 is actually the post-intermediate of radical-type S–Cl bond cleavage, and the open-shell singlet nature of Int-S7 is confirmed by Mulliken spin distribution. Therefore, we believe that the double electron Cu(I)-Cu(III) oxidative addition pathway is unlikely for the S–Cl bond cleavage.

Supplementary Fig. 26 | Computed pathways for the ISET mechanism. Free energies in kcal/mol compared to Int-S1, S-1, and chloroform are shown in parentheses. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 27 | Geometry optimization results concerning a possible form of "Int-S8" with one Cl of chloroform coordinating to Cu. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 28 | Located favorable ISET transition state TS-S2-1. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 29 | IRC pathway of the favored ISET transition state TS-S2-1.

For the inner-sphere electron transfer (ISET) pathway, the transition state was successfully located as TS-S2-1. The L*4Cu(I)-diol complex Int-S1 forms a complex Int-S9 with chloroform, which is exergonic by 3.0 kcal/mol. The Cu - Cl distance in Int-S9 is 6.03Å, implying that the coordination of Cu and Cl in Int-S9 is unfavorable (Supplementary Figs. 26 and 27). Int-S9 then forms a complex Int-S10 with sulforyl chloride, which requires a free energy barrier of -7.0kcal/mol to cleave the S-Cl bond via ISET transition state TS-S2-1. IRC calculation elucidates the direct connection between **TS-S2-1** and its pre-intermediate **Int-S10** (Supplementary Fig. 29). This negative free energy barrier is due to the subtle shift of saddle points mainly arising from a change of functionals and basis sets during geometry optimization (B3LYP-D3(BJ)/6-31G(d)-LANL2DZ) and single-point energy calculation (M06-L/6-311+G(d,p)-SDD-SMD(Chloroform)). The gas phase optimization results at the B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory indicate a positive barrier of 4.6 kcal/mol (Int-S10 to TS-S2-1, Supplementary Table 13). Mulliken spin population of TS-S2-1 confirms its open-shell singlet nature (Supplementary Fig. 28). Compared to the ISET pathway without explicit solvent, adding chloroform lowers the overall barrier by 2.2 kcal/mol (TS-S2 vs. TS-S2-1, Supplementary Fig. 26). Thus, the favorable TS of ISET is TS-S2-1.

Supplementary Fig. 30 | (A) Reaction free energy of DET (dissociative electron transfer) mechanism for Int-S1 and S-1. (B) C–Cl bond dissociation energy of radical precursor S-1. (C) Van der Waals radii for electron donor Int-S1 and electron acceptor S-1. Ar, 2,3,4,5,6-pentamethylphenyl.

For the dissociative electron transfer (DET) and stepwise outer-sphere electron transfer (OSET-SW) pathways, modified Marcus theory⁴⁴ was used to estimate the free energy barriers following the studies by Coote, Matyjaszewski, and Liu^{42,43}.

The DET barrier is estimated by the following equations:

$$\begin{split} \Delta G_{DET}^{\ddagger} &= \Delta G_{0}^{\ddagger} (1 + \frac{\Delta_{r} G^{\theta} - D_{p}}{4\Delta G_{0}^{\ddagger}})^{2} \ (1) \\ \Delta G_{0}^{\ddagger} &= \frac{\left(\sqrt{D_{Radical-Cl}} - \sqrt{D_{p}}\right)^{2} + \lambda_{0}}{4} \ (2) \\ \lambda_{0} &= A \times \left[(2r_{D})^{-1} + (2r_{A})^{-1} - (r_{D} + r_{A})^{-1} \right] \approx 12.0 \ kcal/mol \ (3) \end{split}$$

where $\Delta_r G^{\Theta} = 13.8 \text{ kcal/mol}$ is the reaction energy of DET pathway (Supplementary Fig. 30A). ΔG_0^{\ddagger} is the intrinsic barrier, which is estimated using formula (2). λ_0 is the solvent reorganization energy that can be calculated with formula (3). D_p represents the interaction energy between the radical and Cl⁻ in the solvent cage. $D_p = 0$ gives the upper boundary of the estimated barrier. $D_{\text{Radical-Cl}}$ represents the S–Cl BDE of radical precursor S-1 (Supplementary Fig. 30B). A equals to 99 kcal/mol as suggested in the previous studies by Coote, Matyjaszewski, and Liu^{42,43}. r_D represents the van der Waals radius updated by Bader⁴⁵ for electron donor Int-S1. r_A represents the same van der Waals radius for electron acceptor S-1 (Supplementary Fig. 30C). By including the above values into the formulas (1), (2), and (3), the upper boundary of the free energy barrier for DET is given as 25.0 kcal/mol.

Supplementary Fig. 31 | Free energy change for OSET-SW (stepwise outer-sphere electron-transfer) mechanism. Ar, 2,3,4,5,6-pentamethylphenyl.

The barrier of OSET-SW is estimated using the following equation (6) (Supplementary Fig. 31), where λ_0 is calculated by the above equation (3). By including the above values into the equation (6), the free energy barrier for OSET-SW is estimated as 11.6 kcal/mol.

$$\Delta G_{OSET-SW}^{\dagger} = \Delta G_0^{\dagger} \left(1 + \frac{\Delta_r G^{\theta}}{4\Delta G_0^{\dagger}} \right)^2 = \frac{\lambda_0}{4} \left(1 + \frac{\Delta_r G^{\theta}}{\lambda_0} \right)^2 (6)$$

$$\Delta G_{OSET-SW}^{\dagger} = 3.0 \times \left(1 + \frac{11.6}{4 \times 3.0} \right)^2 \approx 11.6 \ kcal/mol \ (7)$$

Based on the above calculations and estimations, the inner-sphere electron transfer pathway via **TS-S2-1** is the most favorable pathway, which leads to the generation of benzenesulfonyl radical **Int82** and a **L*4Cu**(II)Cl species **Int-S3**.

3. Mechanistic details of transformation from L*4Cu(II)Cl to L*4Cu(II)alkoxide

Supplementary Fig. 32 | DFT-Computed free energy changes of the generation of anionic LCu(II) alkoxide species Int81. Ar, 2,3,4,5,6-pentamethylphenyl; Q, quinolin-4-yl.

After the sulfonyl radical generation, the L*4Cu(II)Cl-diol Int-S3 will be irreversibly dehalogenated by silver(I) salt (Supplementary Fig. 32), and the generated cationic L*4Cu(II) species will be complexed by the neutral diol substrate to form the intermediate Int-S11. From Int-S11, the hydroxyl group (labeled with red color) at the *trans*-position of sulfonamide is firstly deprotonated by carbonate anion via TS-S13, reversibly forming neutral copper(II) species Int-S14. In comparison, deprotonation of the hydroxyl group (labeled as blue color) at the *cis*-position of sulfonamide via TS-S13-1 is 5.7 kcal/mol less favorable than TS-S13 (Supplementary Fig. 32), suggesting that the alternative sequence of deprotonation is unlikely. Int-S14 then undergoes another facile deprotonation via TS-S15, irreversibly generating the anionic L*4Cu(II)alkoxide species Int81.

4. Discussion on the S–O bonding mechanism

Supplementary Fig. 33 | DFT calculations on S–O bond formation pathways with Int81 and benzenesulfonyl radical Int82. Free energies in kcal/mol are shown in parentheses, which are compared to Int81 and Int82. Ar, 2,3,4,5,6-pentamethylphenyl.

The S–O bond formation pathways between L*4Cu(II)alkoxide intermediate Int81 and sulfonyl radical Int82 include three major mechanistic possibilities: sequential SET and ion-type S–O bonding (path A in Supplementary Fig. 33), outer-sphere radical-substitution-type S–O bond formation via TS84-Major (path B in Supplementary Fig. 33), and reductive elimination (path C in Supplementary Fig. 33).

Supplementary Fig. 34 | The proposed closed-shell singlet pre-intermediate structure of the proposed TS for ion-type S–O bond formation pathway has an RHF to UHF 'wavefunction' instability. Further optimization on this proposed structure leads to the open-shell singlet intermediate Int83-OSS with a stable 'wavefunction'. And the Mulliken spin distribution Int83-OSS indicates its open-shell singlet nature. Ar, 2,3,4,5,6-pentamethylphenyl.

Regarding path A, the ion-type S–O bonding, the transition state cannot be located after extensive efforts. The structure of the pre-intermediate prior to the proposed ion-type S–O bonding

transition state, **Int83**-*CSS*, has an RHF to UHF 'wavefunction' instability, indicating that such a closed-shell singlet intermediate does not exist at the computed potential energy surface. Further open-shell singlet optimization of the proposed **Int83**-*CSS* led to the open-shell singlet intermediate **Int83**-*OSS*, which is the pre-intermediate for the radical substitution S–O bond formation. Based on these results, the ion-type S–O bonding pathway is not operative (Supplementary Fig. 34).

Supplementary Fig. 35 | Detailed free energy diagram for radical-substitution-type S–O bond formation pathway. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 36 | Located structure and Mulliken spin distribution of located openshell singlet S–O bond formation transition state TS84-Major. Ar, 2,3,4,5,6pentamethylphenyl.

For path B, doublet radicals **Int81** and **Int82** can form both triplet diradical species **Int83**-*Triplet* and open-shell singlet diradical species **Int83**-*OSS*. **Int83**-*Triplet* can transform into **Int83**-*OSS* via a facile MECP with a 0.1 kcal/mol free energy barrier. **Int83**-*OSS* undergoes S–O bond formation via open-shell singlet diradical transition state **TS84-Major**, leading to closed-shell singlet species **Int85** (Supplementary Fig. 35).

We should point out that MECP is acquired using ORCA 5.0 software at the B3LYP/G-D3(BJ)/Def2-SVP level of theory. And the change of basis set from 6-31G*-LANL2DZ to Def2-SVP gives a consistent free energy diagram of S–O bond formation (Supplementary Table 8).

As for the radical substitution transition state **TS84-Major**, it is an open-shell diradical singlet S–O bond formation transition state, whose nature of radical substitution is confirmed by the computed Mulliken spin distribution. Significant radical characters are identified on the carbons of the forming S–O bond, the coordinating nitrogen and oxygen atoms, and the copper centre (Supplementary Fig. 36)

Supplementary Fig. 37 | The optimized TS structure for S–O bond reductive elimination has an RHF to UHF 'wavefunction' instability. Further geometry optimization on this structure leads to the open-shell singlet TS **TS84-Major** with a stable 'wavefunction'. Ar, 2,3,4,5,6-pentamethylphenyl.

Regarding path C, the reductive elimination, the located transition state **TS84-RE-S2** with RHF has an RHF to UHF 'wavefunction' instability, indicating that such a closed-shell singlet state is not the actual intrinsic electron state of the proposed reductive elimination transition state. Further open-shell singlet optimization of this **TS84-RE-S2** led to the open-shell singlet transition state **TS84-Major**. Based on these results, the reductive elimination pathway is not operative. (Supplementary Fig. 37)

Therefore, S–O bond formation undergoes an outer-sphere singlet radical-substitution-type S– O bond formation via **TS84-Major**.

5. Computations for relative dissociation constants of L*4 and L*11

$$HA + \bigvee_{(J. Org. Chem. 56, 4218-4223 (1991))}^{PH} \Delta G_{calc-DMSO}$$
(a)

$$pK_{a(HA)} = \Delta pK_{a} + pK_{a(pyrrolidin-2-one)} = \frac{\Delta G_{calc-DMSO}}{2.303RT} + 24.2$$
(b)

Free energy change ($\Delta G_{calc-DMSO}$) of acid-base reaction equation (a) in DMSO was calculated based on DFT calculations at M06-L/6-311+G(d,p)-SDD-SMD(DMSO)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory at 298.15K. The N–H p K_a values were then calculated with equation (b), using the experimentally measured N–H p K_a of pyrrolidin-2-one in DMSO as reference (N–H p K_a in DMSO = 24.2)⁴⁶. Computed $\Delta G_{calc-DMSO}$ and N–H p K_a values of L*4 and L*11 are listed in Supplementary Table 7.

Supplementary Table 7 | Calculated free energy change of proton exchange reaction between L*4 or L*11 with the deprotonated anion of reference acid (N–H of pyrrolidin-2-one) and calculated $\Delta p K_a$

6. Verification of computed S–O bond formation mechanism in various levels of theory for geometry optimization

Supplementary Table 8 | Verification of computed S–O bond formation mechanism in various levels of theory for geometry optimization

Method A: M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)//B3LYP-D3(BJ)/6-31G(d)-LANL2-DZ

Method B: M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)//B3LYP-D3(BJ)/6-31G(d)-LANL2-DZ-SMD(Chloroform)

Method C: M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)//B3LYP-D3(BJ)/Def2-SVP⁴⁰
7. Driving force for the formation of Int83-Triplet

Supplementary Fig. 38 | Overall analysis on the driving forces for generating Int83-*Triplet* with copper(II) species Int81 and sulfonyl radical Int82.

Doublet anionic copper(II) species **Int81** and sulfonyl radical **Int82** can form anionic species **Int83**-*Triplet*. The formation of several non-covalent interactions leads to an exergonic generation of **Int83**-*Triplet* by 6.8 kcal/mol. Further analysis using Multiwfn⁴⁷ with IGM⁴⁸ model and visualization with VMD software⁴⁹ support the existence of multiple hydrogen bonds between the ligand fragment and sulfonyl radical as well as the π - π stacking interaction between the phenyl fragment on the substrate and the phenylsulfonyl radical (green isosurfaces in Supplementary Figs. 38, 39b, and 40b).

Supplementary Fig. 39 | a) Multiple hydrogen bonds of ligand fragment and sulfonyl radical. b) IGM visualization of these hydrogen bonds.

Calculations of interacting energy of multiple bonds between the ligand fragment and sulfonyl radical were performed at M06-L/6-311+G(d,p) level of theory in gas-phase. The interacting energy with BSSE correction of intermolecular hydrogen bonds ($\Delta E_{\text{H-Bonds}}$) was calculated using Gaussian 16 according to the following equation:

$$\Delta E_{\text{H-Bonds}} = E_{\text{complex-fragment}} - E_{\text{separate}} = E_{\text{complex-fragment}} - (E_{\text{fragment-1}} + E_{\text{fragment-2}})$$

where $E_{\text{complex-fragment}}$ refers to the gas-phase single point energy of the interacting ligand fragment and sulfonyl radical. The geometry of the interacting fragment (named as Int83-*Triplet_*H-Bond-Frag-All) is taken from the optimized geometry of Int83-*Triplet*. E_{separate} ($E_{\text{fragment-1}} + E_{\text{fragment-2}}$) refers to the gas-phase single point energies of ligand fragment (named as

Int83-*Triplet*_**H-Bond-Frag-H-Donor**) and sulfonyl radical (named as **Int83**-*Triplet*_**H-Bond-Frag-Sulf**) also taken from the optimized geometry of **Int83**-*Triplet*. The calculated interacting energy of these multiple bonds with BSSE correction is 12.6 kcal/mol (Supplementary Fig. 39).

 $\Delta E_{\text{Interaction}} = -5.2 \text{ kcal/mol}$

Supplementary Fig. 40 | a) π - π stacking between phenyl group of diol substrate fragment and sulfonyl radical. b) IGM visualization of π - π stacking.

Calculations of interacting energy of π - π stacking between the substrate fragment from **Int83**-*Triplet* and sulfonyl radical were performed at M06-L/6-311+G(d,p) level of theory in gas-phase. The interacting energy with BSSE correction of π - π stacking ($\Delta E_{\pi-\pi \text{ stacking}}$) was calculated using Gaussian 16 according to the following equation:

$$\Delta E_{\pi-\pi \text{ stacking}} = E_{\text{complex-fragment}} - E_{\text{separate}} = E_{\text{complex-fragment}} - (E_{\text{fragment-1}} + E_{\text{fragment-2}})$$

where $E_{complex-fragment}$ refers to the gas-phase single point energy of the interacting ligand fragment and sulfonyl radical. The geometry of the interacting fragment (named as Int83-*Triplet_pi-pi-Frag*) is taken from the optimized geometry of Int83-*Triplet* with appended C - H bonds (1.096 Å for C(*sp*³)–H bond on toluene fragment). $E_{separate}$ ($E_{fragment-1} + E_{fragment-2}$) refers to the gas-phase single point energies of ligand fragment (named as Int83-*Triplet_pi-pi-Frag-Tol*) and sulfonyl radical (named as Int83-*Triplet_pi-pi-Frag-Sulf*) also taken from the optimized geometry of Int83-*Triplet*. The calculated interacting energy of these multiple bonds with BSSE correction is 5.2 kcal/mol (Supplementary Fig. 40).

8. Conformational search of stereo-determining S–O bond formation transition state TS84

Supplementary Fig. 41 \mid (A) Considered conformational factors on the ligand in the conformational search of S–O bond formation transition state TS84. (B) Considered conformational factors on attack type of benzenesulfonyl radical Int82 in the conformational search of S–O bond formation state TS84. Ar, 2,3,4,5,6-pentamethylphenyl.

Configuration of Product	Catalyst Configuration	Attack-Type No.		$\Delta\Delta G_{sol}^{\ddagger}$ (kcal/mol)
(<i>R</i>)	А	Major-A	TS84-S1	4.9
(<i>R</i>)	А	Major-B	TS84-S2	1.4
(<i>R</i>)	А	Major-C	TS84-S3	3.0
(<i>R</i>)	В	Major-A	TS84-S4	12.6
(<i>R</i>)	В	Major-B	TS84-S5	11.4
(<i>R</i>)	В	Major-C	TS84-S6	10.5
(<i>R</i>)	С	Major-A	TS84-S7	4.5
(<i>R</i>)	С	Major-B	TS84-S8	2.5
(<i>R</i>)	С	Major-C	TS84-S9	5.4
(R)	D	Major-A	TS84-S10	1.4
(<i>R</i>)	D	Major-B	TS84-Major	0.0
(<i>R</i>)	D	Major-C	TS84-S11	2.9
(<i>R</i>)	Е	Major-A	TS84-S12	2.3
(<i>R</i>)	Е	Major-B	TS84-S13	4.3
(<i>R</i>)	Е	Major-C	TS84-S14	7.5
(R)	F	Major-A	/	Optimized to TS84-S12
(R)	F	Major-B	TS84-S15	1.4
(R)	F	Major-C	TS84-S16	3.6

Supplementary Table 9 | Conformational search of S–O bond formation transition state leading to major product. Free energies are compared to TS84-Major.

Configuration of Product	Catalyst Configuration	Attack-Type	No.	$\Delta\Delta G_{\rm sol}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
<i>(S)</i>	А	Minor-A	TS84-S17	3.6
(S)	А	Minor-B	TS84-S18	4.5
<i>(S)</i>	А	Minor-C	TS84-S19	3.3
<i>(S)</i>	В	Minor-A	TS84-S20	5.9
<i>(S)</i>	В	Minor-B	TS84-S21	6.5
<i>(S)</i>	В	Minor-C	TS84-S22	8.2
<i>(S)</i>	С	Minor-A	TS84-S23	6.7
<i>(S)</i>	С	Minor-B	TS84-S24	6.5
<i>(S)</i>	С	Minor-C	TS84-S25	7.8
<i>(S)</i>	D	Minor-A	TS84-S26	3.1
<i>(S)</i>	D	Minor-B	TS84-S27	4.2
<i>(S)</i>	D	Minor-C	TS84-Minor	2.7
<i>(S)</i>	E	Minor-A	TS84-S28	7.9
<i>(S)</i>	E	Minor-B	TS84-S29	7.4
(S)	Е	Minor-C	TS84-S30	7.4
(S)	F	Minor-A	TS84-S31	7.6
(S)	F	Minor-B	TS84-S32	6.8
(S)	F	Minor-C	TS84-S33	7.8

Supplementary Table 10 | Conformational search of S–O bond formation transition state leading to the minor product. Free energies are compared to TS84-Major.

Supplementary Fig. 42 | Key conformers of S–O bond formation transition states leading to the major product with A, B, and C ligand conformation. Free energies are compared to TS84-Major. Trivial hydrogen atoms are omitted for clarity. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 43 | Key conformers of S–O bond formation transition states leading to the major product with D, E, and F ligand conformation. Free energies are compared to TS84-Major. Trivial hydrogen atoms are omitted for clarity. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 44 | Key conformers of S–O bond formation transition states leading to the minor product with A, B, and C ligand conformation. Free energies are compared to TS84-Major. Trivial hydrogen atoms are omitted for clarity. Ar, 2,3,4,5,6-pentamethylphenyl.

Supplementary Fig. 45 | Key conformers of S–O bond formation transition states leading to the minor product with D, E, and F ligand conformation. Free energies are compared to TS84-Major. Trivial hydrogen atoms are omitted for clarity. Ar, 2,3,4,5,6-pentamethylphenyl.

9. Verification of computed stereoselectivity by various levels of theory

Supplementary Table 11 | Verification of computed stereoselectivity by various levels of theory.

Computational Method for Single Point Energy Calculation	$\Delta\Delta G^{\ddagger}(TS84-Minor) - \Delta\Delta G^{\ddagger}(TS84-Major)$ /kcal/mol
B3LYP-D3(BJ)/6-311+G(d, p)-SDD ⁻ SMD(Chloroform)	2.1
B3LYP-D3(BJ)/Def2-TZVP ^{40,50} -SMD(Chloroform)	2.4
M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)	2.7
M06 ⁵¹ /6-311+G(d, p)-SDD-SMD(Chloroform)	5.0
PBE0 ^{52–54} -D3(BJ)/6-311+G(d, p)-SDD-SMD(Chloroform)	2.9
ω B97X-D ⁵⁵ /6-311+G(d, p)-SDD-SMD(Chloroform)	1.2

10. Verification of the steric effects of quinuclidine moiety in enantioselectivity determination of S–O bond formation

Supplementary Fig. 46 | (A) Enantioisomeric S–O bond formation transition states with ligand L*4. (B) Enantioisomeric S–O bond formation transition states with the truncated ligand. Ar, 2,3,4,5,6-pentamethylphenyl.

To verify that the steric effects of quinuclidine moiety are the leading factor that controls the enantioselectivity of S–O bond formation, we also computed the enantioisomeric S–O bond formation transition states using the truncated ligand model. In the full ligand model (Ligand = L*4), TS84-Minor is 2.7 kcal/mol higher in free energy as compared to TS84-Major, which we believe is due to the steric repulsions between the attacking sulfonyl radical and the quinuclidine moiety in TS84-Minor (Supplementary Fig. 46A). By removing one of the carbon bridges of the quinuclidine moiety, such steric repulsions should be moved. We indeed found that the truncated model has a much lower and opposite enantioselectivity between the competing transition states (TS84-Major-Truncated vs. TS84-Minor-Truncated, Supplementary Fig. 46B), which verified our mechanistic rational of the enantioselectivity.

11. Table of energies

							Imaginar
Structure	ZPE	ТСН	TCG	${oldsymbol E}$	Н	G	y Frequenc
							y
A-1	0.22500 9	0.23754 9	0.188009	-540.016082	-539.778533	-539.828073	
S-1	0.10204	0.11187 1	0.066658	-1240.507226	-1240.395355	-1240.440568	
1	0.31675 7	0.33715 8	0.266703	-1319.712180	-1319.375022	-1319.445477	
Int81	0.81542 3	0.86284 2	0.735681	-2614.278397	-2613.415555	-2613.542716	
Int82	0.09893 4	0.10748 4	0.065227	-780.274236	-780.166752	-780.209009	
Int83-OSS	0.91590 5	0.97263 2	0.824188	-3394.583715	-3393.611083	-3393.759527	
Int83-Triplet	0.91603 5	0.97265 9	0.824025	-3394.583528	-3393.610869	-3393.759503	
TS84-Major	0.91588 6	0.97203 8	0.826205	-3394.574038	-3393.602000	-3393.747833	277.0 <i>i</i>
TS84-Minor	0.91642 2	0.97239 2	0.827898	-3394.571358	-3393.598966	-3393.743460	249.8 <i>i</i>
Int85	0.91826 3	0.97458 5	0.827171	-3394.590997	-3393.616412	-3393.763826	
Int86	0.82707 0	0.87530 5	0.745943	-2614.897468	-2614.022163	-2614.151525	
Chloroform	0.01999 1	0.02539 5	-0.008185	-1419.312417	-1419.287022	-1419.320602	
Chlorine Radical	0.00000 0	0.00236 0	-0.01567 7	-460.138976	-460.136616	-460.154653	
Chlorine Anion	0.00000 0	0.00236 0	-0.01502 3	-460.359698	-460.357338	-460.374721	
Int-S1	0.84129	0.88974	0.761114	-2615.393446	-2614.503703	-2614.632332	
TS-S2	0.94426	1.00318 5	0.849387	-3855.919458	-3854.916273	-3855.070071	164.7 <i>i</i>
TS-S2-1	0.96555 9	1.03091 2	0.860891	-5275.249721	-5274.218809	-5274.388830	168.1 <i>i</i>
Int-S3	0.84503 3	0.89478 5	0.763117	-3075.643068	-3074.748283	-3074.879951	
Int-S3-2	0.96594 9	1.03194	0.860080	-5275.261833	-5274.229893	-5274.401753	
Int-S5	0.84339 2	0.89132 6	0.763926	-2615.234096	-2614.342770	-2614.470170	
Int-S6	0.09906 8	0.10990 5	0.059515	-1240.643806	-1240.533901	-1240.584291	
Int-S8	0.94496 5	1.00418 6	0.849362	-3855.908719	-3854.904533	-3855.059357	
Int-S8-1	0.94477 5	1.00412 5	0.848713	-3855.907353	-3854.903228	-3855.058640	
Int-S9	0.86253	0.91751 0	0.770320	-4034.722674	-4033.805164	-4033.952354	
Int-S10	0.96626 3	1.03213 3	0.859209	-5275.236748	-5274.204615	-5274.377539	
Bicarbonate	0.02626 9	0.03073	0.000493	-264.584283	-264.553553	-264.583790	
Carbonate	0.01399	0.01813	-0.01158	-264.010242	-263.992108	-264.021823	
		· · · ·	-				

Supplementary Table 12 | Energies in Fig. 5, Supplementary Figs. 24–38 and 42–46, and Supplementary Tables 8–11

	0.84339	0.89132					
Int-S11	2	6	0.763926	-2615.234096	-2614.342770	-2614.470170	
Int-S12	0.85504 2	0.90844 4	0.767822	-2879.350013	-2878.441569	-2878.582191	
Int-S12-1	0.85567 0	0.90926 0	0.765121	-2879.349635	-2878.440375	-2878.584514	
TS-S13	0.85096 0	0.90343 3	0.763813	-2879.360931	-2878.457498	-2878.597118	1193.4 <i>i</i>
TS-S13-1	0.85082 7	0.90388 3	0.760885	-2879.348944	-2878.445061	-2878.588059	477.3 <i>i</i>
Int-S14	0.83053 2	0.87777 9	0.751699	-2614.784577	-2613.906798	-2614.032878	
Int-S14-1	0.85482 5	0.90805 3	0.765152	-2879.360514	-2878.452461	-2878.595362	
TS-S15	0.83587 2	0.88850 6	0.747375	-2878.820832	-2877.932326	-2878.073457	1262.5 <i>i</i>
TS84-S1	0.91575 9	0.97219 2	0.824791	-3394.564851	-3393.592659	-3393.740060	294.9 <i>i</i>
TS84-S2	0.91586 2	0.97204 9	0.826597	-3394.572204	-3393.600155	-3393.745607	284.1 <i>i</i>
TS84-S3	0.91621 6	0.97221 0	0.828326	-3394.571434	-3393.599224	-3393.743108	351.0 <i>i</i>
TS84-S4	0.91569 0	0.97190 9	0.825185	-3394.552943	-3393.581034	-3393.727758	200.5 <i>i</i>
TS84-S5	0.91566 2	0.97188 2	0.825360	-3394.554964	-3393.583082	-3393.729604	213.8 <i>i</i>
TS84-S6	0.91584 7	0.97211 0	0.826523	-3394.557581	-3393.585471	-3393.731058	233.4 <i>i</i>
TS84-S7	0.91579 0	0.97230 1	0.825141	-3394.565733	-3393.593432	-3393.740592	323.1 <i>i</i>
TS84-S8	0.91566 7	0.97215 6	0.824532	-3394.568393	-3393.596237	-3393.743861	235.6 <i>i</i>
TS84-S9	0.91663 2	0.97271 9	0.828463	-3394.567688	-3393.594969	-3393.739225	288.9 <i>i</i>
TS84-S10	0.91512 9	0.97161 5	0.823191	-3394.568722	-3393.597107	-3393.745531	282.4 <i>i</i>
TS84-S11	0.91625 1	0.97237 5	0.827232	-3394.570435	-3393.598060	-3393.743203	367.6i
TS84-S12	0.91541 9	0.97203 2	0.823745	-3394.567836	-3393.595804	-3393.744091	278.5 <i>i</i>
TS84-S13	0.91476 2	0.97139 8	0.822372	-3394.563298	-3393.591900	-3393.740926	195.6 <i>i</i>
TS84-S14	0.91511 9	0.97172 3	0.823253	-3394.559125	-3393.587402	-3393.735872	323.7 <i>i</i>
TS84-S15	0.91538 9	0.97210 1	0.823016	-3394.568688	-3393.596587	-3393.745672	220.4 <i>i</i>
TS84-S16	0.91610 6	0.97253 8	0.825695	-3394.567715	-3393.595177	-3393.742020	349.6 <i>i</i>
TS84-S17	0.91636 2	0.97244 9	0.826675	-3394.568693	-3393.596244	-3393.742018	328.5 <i>i</i>
TS84-S18	0.91644 2	0.97240 0	0.827365	-3394.567983	-3393.595583	-3393.740618	295.8 <i>i</i>
TS84-S19	0.91617 5	0.97226 9	0.827604	-3394.570164	-3393.597895	-3393.742560	232.3 <i>i</i>
TS84-S20	0.91568 3	0.97218 1	0.823936	-3394.562291	-3393.590110	-3393.738355	325.4 <i>i</i>
TS84-S21	0.91677 7	0.97261 5	0.828974	-3394.566480	-3393.593865	-3393.737506	305.4 <i>i</i>
TS84-S22	0.91583 9	0.97206 7	0.826999	-3394.561694	-3393.589627	-3393.734695	371.1 <i>i</i>
TS84-S23	0.91629 5	0.97253 0	0.826623	-3394.563788	-3393.591258	-3393.737165	388.6 <i>i</i>
TS84-S24	0.91677 4	0.97261 3	0.828963	-3394.566488	-3393.593875	-3393.737525	305.1 <i>i</i>
TS84-S25	0.91605 0	0.97251 2	0.825776	-3394.561200	-3393.588688	-3393.735424	323.1 <i>i</i>
TS84-S26	0.91618 0	0.97229 5	0.826346	-3394.569263	-3393.596968	-3393.742917	262.7 <i>i</i>

TS84-S27	0.91612 0	0.97214 4	0.826671	-3394.567740	-3393.595596	-3393.741069	221.7 <i>i</i>
TS84-S28	0.91530 7	0.97204 8	0.822098	-3394.557372	-3393.585324	-3393.735274	318.2 <i>i</i>
TS84-S29	0.91540 3	0.97188 8	0.823661	-3394.559647	-3393.587759	-3393.735986	291.7 <i>i</i>
TS84-S30	0.91509 0	0.97172 3	0.824042	-3394.560040	-3393.588317	-3393.735998	318.9 <i>i</i>
TS84-S31	0.91579 4	0.97232 4	0.824560	-3394.560323	-3393.587999	-3393.735763	372.9 <i>i</i>
TS84-S32	0.91620 9	0.97230 3	0.826888	-3394.563874	-3393.591571	-3393.736986	284.0 <i>i</i>
TS84-S33	0.91621 7	0.97241 9	0.827709	-3394.563169	-3393.590750	-3393.735460	319.5 <i>i</i>
TS84-Major- Truncated	0.90748 2	0.96431 0	0.817343	-3356.466391	-3355.502081	-3355.649048	260.6 <i>i</i>
TS84-Minor- Truncated	0.90851 1	0.96501 2	0.819036	-3356.469264	-3355.504252	-3355.650228	227.9 <i>i</i>

Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-SMD(Chloroform)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Supplementary Table 13 \mid Energies for vdW complex Int-S10 and ISET transition state TS-S2-1

Structure	ZPE	ТСН	TCG	Ε	Н	G	Imaginary Frequency
Int-S10	0.966253	1.032125	0.859243	-5273.832429	-5272.800304	-5272.973186	
TS-S2-1	0.965559	1.030912	0.860891	-5273.826775	-5272.795863	-5272.965884	168.1 <i>i</i>

Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Supplementary Table 14 Energies in Supplementary Table 7	Supplementary Table	e 14 Energies	s in Supplementa	ry Table 7
--	---------------------	-----------------	------------------	------------

Structure	ZPE	ТСН	TCG	E	Н	G	Imaginary Frequency
Pyrrolidin-2-One	0.096644	0.102675	0.068168	-286.175174	-286.072499	-286.107006	
Pyrrolidin-2-One- Anion	0.111686	0.118022	0.082872	-286.687026	-286.569004	-286.604154	
L*11-Anion	0.658926	0.695247	0.588819	-1976.171867	-1975.476620	-1975.583048	
L*11	0.677210	0.713257	0.607901	-1976.724192	-1976.010935	-1976.116291	
L*4-Anion	0.610739	0.644804	0.547338	-1878.032365	-1877.387561	-1877.485027	
L*4	0.625782	0.659910	0.561983	-1878.528038	-1877.868128	-1877.966055	

Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-(DMSO)//B3LYP-D3(BJ)/ 6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	E	Н	G	Imaginary Frequency
1-Sol	0.225153	0.237682	0.188141	-540.016098	-539.778416	-539.827957	
A-1-Sol	0.316901	0.337331	0.266563	-1319.712432	-1319.375101	-1319.445869	
Int81-Sol	0.815954	0.863398	0.735864	-2614.278545	-2613.415147	-2613.542681	
Int82-Sol	0.099005	0.107555	0.065296	-780.274265	-780.166710	-780.208969	
Int83-OSS-Sol	0.916684	0.97334	0.825439	-3394.584133	-3393.610793	-3393.758694	
Int83-Triplet-Sol	0.916699	0.973312	0.824521	-3394.583882	-3393.610570	-3393.759361	
TS84-Major-Sol	0.916675	0.972733	0.827632	-3394.574922	-3393.602189	-3393.747290	275.2 <i>i</i>
Int85-Sol	0.919146	0.975403	0.828132	-3394.591692	-3393.616289	-3393.763560	
Int86-Sol	0.827530	0.875829	0.745563	-2614.897886	-2614.022057	-2614.152323	

Supplementary Table 15 | Energies in Supplementary Table 8

Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-SMD(Chloroform)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ-SMD(Chloroform) level of theory.

Structure	ZPE	ТСН	TCG	E	H	G	Imaginary Frequency
1-S1	0.315396	0.335719	0.265586	-1319.711104	-1319.375385	-1319.445518	
A-1-S1	0.223965	0.236490	0.186892	-540.015547	-539.779057	-539.828655	
Int81-S1	0.809520	0.856932	0.729838	-2614.276498	-2613.419566	-2613.546660	
Int82-S1	0.098694	0.107218	0.065054	-780.273940	-780.166722	-780.208886	
Int83-055-S1	0.910062	0.966568	0.818299	-3394.580639	-3393.614071	-3393.762340	
Int83-Triplet-S1	0.910087	0.966619	0.819264	-3394.580794	-3393.614175	-3393.761530	
TS84-S34	0.910348	0.966255	0.821334	-3394.571105	-3393.604850	-3393.749771	305.1 <i>i</i>
Int85-S1	0.912423	0.968578	0.821623	-3394.588981	-3393.620403	-3393.767358	
Int86-S1	0.821071	0.869273	0.739829	-2614.89494	-2614.025667	-2614.155111	

Supplementary Table 16 | Energies in Supplementary Table 8

Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-(Chloroform)//B3LYP-D3(BJ)/Def2-SVP level of theory.

Structure	Ε
S-1	-1240.493976
Int82	-780.262100
Chlorine Radical	-460.136082
Int81	-2614.201946
Int83-Triplet	-3394.501427
Int83-Triplet_H-Bond-Frag-All	-2658.220216
Int83-Triplet_H-Bond-Frag-H-Donor	-1877.939996
Int83-Triplet_H-Bond-Frag-Sulf	-780.256869
Int83-Triplet_pi-pi-Frag	-1051.857699
Int83-Triplet_pi-pi-Frag-Sulf	-780.256869
Int83-Triplet_pi-pi-Frag-Tol	-271.590107

Supplementary Table 17 | Energies in Supplementary Figs. 30 and 38–40

Energies (E) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-(Gas Phase) level of theory.

Supplementary Table 18 | Energies for MECP and intermediates connecting to MECP

Structure	Ε
Int83-OSS-S1	-3394.499497
MECP	-3394.499174
Int83-Triplet-S1	-3394.499341

Energies (*E*) (in Hartree) of the structures calculated at M06-L/6-311+G(d,p)-SDD-(Gas Phase). MECP structure is optimized with ORCA 5.0 at B3LYP/G-D3(BJ)/Def2-SVP level of theory.

Level of Theory	E
B3LYP-D3(BJ)/6-311+G(d, p)-SDD ⁻ SMD(Chloroform)	-3395.175851
B3LYP-D3(BJ)/Def2-TZVP-SMD(Chloroform)	-4838.735790
M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)	-3394.574038
M06/6-311+G(d, p)-SDD-SMD(Chloroform)	-3393.134957
PBE0-D3(BJ)/6-311+G(d, p)-SDD-SMD(Chloroform)	-3391.854350
ωB97X-D/6-311+G(d, p)-SDD-SMD(Chloroform)	-3394.072393

Supplementary Table 19 | Energies in Supplementary Table 11 for TS84-Major

Energies (E) (in Hartree) of the structures. The level of theory for computation is labeled in this table.

Level of Theory	Ε
B3LYP-D3(BJ)/6-311+G(d, p)-SDD ⁻ SMD(Chloroform)	-3395.174246
B3LYP-D3(BJ)/Def2-TZVP-SMD(Chloroform)	-4838.733679
M06-L/6-311+G(d, p)-SDD-SMD(Chloroform)	-3394.571358
M06/6-311+G(d, p)-SDD-SMD(Chloroform)	-3393.128678
PBE0-D3(BJ)/6-311+G(d, p)-SDD-SMD(Chloroform)	-3391.851395
ωB97X-D/6-311+G(d, p)-SDD-SMD(Chloroform)	-3394.072122

Supplementary Table 20 | Energies in Supplementary Table 11 for TS84-Minor

Energies (*E*) (in Hartree) of the structures. The level of theory for computation is labelled in this table.

NMR spectra

f1 (ppm)

90 8 f1 (ppm)

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

ό f1 (ppm)

f1 (ppm)

f1 (ppm)

f1 (ppm)

90 a f1 (ppm) b

f1 (ppm)

90 a f1 (ppm) ò

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5.045 5.012 5.012 5.012 5.012 5.012 5.012 5.012 5.012 5.012 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3771 3.3772 3.3673 3.3771 3.3672 1.17248 1.17748 1.17748 1.17568 1.17568 1.17748 1.17568 1.17748 1.17568 1.17748 1.175688 1.17568 1.175688 1.175688 1.175688 1.175688 1.175688 1.1756

- 0.000

 $\begin{array}{c} 7,828\\ 7,370\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,375\\ 7,17\\ 7,355\\ 7,17\\ 7,255\\ 7,255\\ 7,$

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

ό f1 (ppm)

f1 (ppm) ο

ό f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (ppm)

3.756 3.7125 3.7125 3.562 3.5625 3.5625 3.5625 3.5659 2.877 2.887 2.877 1.897 1.897 1.897 1.897

0 180 170 160 150 130 120 110 100 90 70 60 40 30 20 10 140 80 50 f1 (ppm)

- 0.000

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 f1 (ppm)

f1 (ppm) ò

ò -10 -20 -30 -50 -70 -80 -9 f1 (ppm) -90 -100 -140 -150 -1 -40 -60 -110 -120 -130 -160

ό f1 (ppm)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 f1 (ppm)

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

f1 (ppm)

ό f1 (ppm)

0 -10 -20 f1 (ppm) 100 -90 -100 -1 90 80 70 40 30 20 10 -30 -40 -50 -60 -70 -80 60 50

HPLC spectra

Peak RetTime Type Width Area Height Area [min] % # [min] [mAU*s] [mAU] 0.4436 1.23510e4 1 23.397 BB 416.88589 96.6532 2 25.239 BB 0.5131 427.68002 12.19695 3.3468

Totals :

1.27787e4 429.08284

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	40.557	BB	1.0312	3.49591e4	496.64200	96.4715
2	44.228	BB	0.8974	1278.63330	19.80105	3.5285
Total	ls :			3.62377e4	516.44305	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.092	BV	0.4894	1.30439e4	411.93097	49.9016
2	30.932	VB	0.5126	1.30953e4	391.18246	50.0984

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.056	BV	0.4913	2.25506e4	704.79889	95.4932
2	31.013	VB	0.5132	1064.28271	31.25978	4.5068
Total	ls :			2.36149e4	736.05867	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.406	VB	0.3213	1.54474e4	740.68158	95.5041
2	19.338	BB	0.4242	727.19312	26.33344	4.4959
Total	ls :			1.61746e4	767.01502	

2.57445e4 753.08382

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.176	BB	0.5618	3568.46948	97.76511	97.1027
2	32.998	BB	0.4994	106.47512	2.55890	2.8973

Totals :

3674.94460 100.32402

			1			
1	18.518	BB	0.4073	6512.91992	247.26157	97.1952
2	22.554	BB	0.4841	187.94423	5.95738	2.8048

Totals :

6700.86415 253.21895

2.39872e4 1095.78743

Signal 2: DAD1 B, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 19.673 BB 0.3518 5284.06445 231.88922 96.3103 21.855 BB 0.3739 202.43370 6.90801 2 3.6897 Totals : 5486.49815 238.79723

325

	п	[min]			Luntul	[III/O]]	[mao]	70
-				-				
	1	22.845	VB	R	0.4042	2.68053e4	801.42841	96.8794
	2	25.680	MM	R	0.7481	863.42938	19.23664	3.1206

Totals :

2.76687e4 820.66504

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.190	BB	0.4082	2.52645e4	956.27551	97.8889
2	23.900	BB	0.4575	544.86035	18.29020	2.1111

Totals :

2.58093e4 974.56571

Totals :

6.00033e4 602.30036

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 20.230 BB 0.4582 1.74597e4 578.41498 94.2752 2 25.957 BB 0.5397 1060.22070 30.48491 5.7248 Totals : 1.85199e4 608.89989

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % [min] [min] [mAU] # 0.3596 2.01939e4 17.957 BB 873.74371 98.9850 1 22.411 BB 2 0.4158 207.06618 7.84785 1.0150 Totals : 2.04010e4 881.59157

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.897	BB	0.4878	6058.05176	185.09772	50.0626
2	15.721	BB	0.5898	6042.91260	151.36731	49.9374

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.899	BB	0.4847	9648.34375	297.27383	96.4599
2	15.757	BB	0.4924	354.09372	8.89554	3.5401

Totals :

1.00024e4 306.16937

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.836	BB	0.4227	1519.28662	52.95740	2.5934
2	16.205	BB	0.4971	5.70629e4	1746.67407	97.4066

Totals :

5.85821e4 1799.63147

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] % # [mAU] 1 29.615 BB 0.4645 161.02058 4.20716 1.6608 31.621 BB 0.6682 9534.49609 223.29117 2 98.3392

Totals :

9695.51668 227.49833

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.673	BB	0.4325	6663.60986	233.82124	50.1063
2	23.491	BB	0.4715	6635.34180	214.12151	49.8937

1.32990e4 447.94275

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.554	BB	0.4431	2.96180e4	1013.07269	97.6624
2	23.417	BB	0.4535	708.90771	23.66096	2.3376

Totals :

3.03269e4 1036.73365

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.384	VB	0.6700	3.55325e4	791.15167	97.5661
2	36.347	BB	0.5735	886.38678	20.45714	2.4339

Totals :

3.64188e4 811.60882

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.464	BB	0.4175	4041.71436	143.11044	5.9220
2	17.146	BB	0.5609	6.42076e4	1746.52466	94.0780

Totals :

6.82493e4 1889.63510

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU] % [min] [mAU*s] # [min] 16.364 BB 0.5167 2231.01001 63.68486 7.5066 1 2 20.607 BB 0.6386 2.74896e4 648.39532 92.4934 Totals : 2.97206e4 712.08019

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.369	BV	0.9164	2.60903e4	421.33765	49.9609
2	40.450	VB	1.0544	2.61312e4	367.12762	50.0391

Totals :

5.22215e4 788.46527

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 37.210 BB 0.8851 1.25468e4 210.58719 92.0208 2 40.285 BB 1.0576 1087.94312 14.17150 7.9792

Totals :

1.36348e4 224.75869

3.93293e4 330.17958

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.274	BV	0.3998	4392.04834	167.58720	49.9583
2	24.817	VB	0.4238	4399.38037	158.51543	50.0417

Signal 4: DAD1 D, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] % [min] # 451.41046 1 23.049 BB 0.4028 1.19484e4 96.7776 24.654 BB 2 0.3897 397.85120 15.28601 3.2224

Totals :

1.23463e4 466.69647

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] % [mAU] 1 22.612 BB 0.6586 7538.25537 170.22421 50.1406 29.279 BB 0.8446 7495.96533 131.19647 2 49.8594

1.50342e4

301.42068

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 22.638 BB 0.6518 2808.64746 62.80257 4.5239 2 29.065 BB 0.9275 5.92758e4 953.26880 95.4761

Totals :

6.20844e4 1016.07137

PDA Ch	2 216nm		
Peak#	Ret. Time	Area	Area%
1	17.948	18703727	89.359
2	20.691	2227374	10.641

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.676	BB	0.6711	4358.09082	93.27851	50.6129
2	28.238	BB	0.9044	4252.54053	55.72058	49.3871

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.496	BB	0.6814	7145.81738	154.56819	92.5157
2	28.337	BB	0.9032	578.07666	7.56759	7.4843

Totals :

7723.89404 162.13578

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	20.156	4817879	50.226
2	35. 585	4774471	49.774

mAU

PDA Ch1 214nm

Peak#	Ret.	Time	Area	Area%
1	20.	075	1508858	2.650
2	34.	663	55419143	97.350

Peak#	Ret. Time	Area	Area%
1	32.599	7974609	50.027
2	36.482	7965842	49.973

mV

Peak#	Ret. Iim	e Area	Area%
1	32.563	799560	2.267
2	35.697	34465827	97.733

cann	Ret. Time	Area	Area%
1	27.823	126589	2.372
2	30.496	5209174	97.628

98.522

Peak#	Ret.	Time	Area	Area%
1	29.	330	2687842	49.065
2	32.	072	2790274	50.935

mV

Area%

PDA Ch3	3 230r	nm	
T		Hight	Area
38.4	90	254394	15535634

38. 490	254394	15535634	49.951
42.652	206255	15566355	50.049

mAU

T	Hight	Area	Area%
39.444	5180	307519	2.420
43.326	163374	12400571	97.580

mAU

PDA Ch2 214nm

Т	Hight	Area	Area%
24.065	8291	392913	6.947
28.897	82324	5262570	93.053

min

27.535

30.830

1818170

45769

97.544

2.456

1

2

T	Hight	Area	Area%
9.684	198870	3031553	97.493
12,683	3519	77949	2,507

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 71.896 MM R 1.6864 36.91464 3.64819e-1 0.1953 2 74.888 BB R 1.7048 1.88659e4 150.87593 99.8047

Totals :

1.89028e4 151.24075

5.14034e4 690.62545

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
33.310	MM R	1.1787	903.11511	12.76951	2.8688
49.657	MM R	1.3411	3.05780e4	380.00366	97.1312
	RetTime [min] 33.310 49.657	RetTime Type [min] 33.310 MM R 49.657 MM R	RetTime Type Width [min] [min] 33.310 MM R 1.1787 49.657 MM R 1.3411	RetTime Type Width Area [min] [min] [mAU*s] 33.310 MM R 1.1787 903.11511 49.657 MM R 1.3411 3.05780e4	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 33.310 MM R 1.1787 903.11511 12.76951 49.657 MM R 1.3411 3.05780e4 380.00366

3.14811e4 392.77317

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.043	BB	0.4042	6933.35449	259.12103	49.8665
2	17.974	BB	0.4415	6970.48145	235.35799	50.1335

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.095	VV	0.3044	201.24348	8.08368	2.6139
2	17.952	BB	0.4581	7497.80273	249.85152	97.3861

7699.04622 257.93520

mAU

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 14.223 BB 0.3046 175.96741 9.05875 3.2035 2 17.580 BB 0.3187 5317.02051 257.68738 96.7965

Totals :

5492.98792 266.74612

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.052	BB	0.5761	152.75999	3.22813	3.4050
2	42.354	BB	0.8174	4333.64697	79.82232	96.5950
Total	ls :			4486.40697	83.05045	

Peak#	Ret. Time	Area	Area%
1	17.732	15825448	96.517
2	18.997	571060	3.483

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	11. 571	9836666	95.202
2	12.334	495774	4.798

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	39.057	BB	0.8159	1.13314e4	212.56741	49.9013
2	41.682	BB	0.8492	1.13762e4	198.90997	50.0987

Totals :

2.27076e4 411.47739

6636.97104 128.60460

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % # [min] [min] 0.7683 6347.69092 122.96014 95.6414 1 36.562 BB 2 39.138 BB 0.6199 289.28012 5.64447 4.3586

Peak#	Ret. Time	Area	Area%
1	17.329	7818800	50.859
2	20.698	7554659	49.141

mAU

1	17.203	24403595	95.953
2	20.638	1029377	4.047

Peak#	Ret. 1	lime	Area	Area%
1	57.9	55	156721	8 49.776
2	61.2	99	158133	8 50.224

mAU

Peak#	Ret.	Time	Area	Area%
1	57.	008	3500135	95.790
2	61.	214	153849	4.210

1			1	1	1	
1	24.610	VBA	0.4859	284.42828	6.88627	1.4559
2	29.157	BB	0.7737	1.92518e4	342.54050	98.5441

1.95362e4 349.42676

----|-----|-----|------|------|------| 1 21.731 MF R 0.6522 4.60241e4 1176.15613 96.5065 2 25.875 MM R 0.7466 1666.04968 37.19242 3.4935

Totals :

4.76901e4 1213.34855

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	14.247	BB	0.3478	1.11356e4	485.09732	50.2792	
2	21.208	BB	0.7362	1.10119e4	230.99066	49.7208	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.326	VB	0.3219	431.55362	20.64451	4.2794
2	20.813	MM R	0.5120	9652.83691	314.24161	95.7206

Totals :

1.00844e4 334.88612

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.231	FM R	0.3634	1.06069e4	486.45728	92.3635
2	20.847	BB	0.4886	876.96826	27.60643	7.6365

1.14838e4

514.06371

Totals :

1.71626e4 341.24591

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							1
1	17.795	BB	0.5492	2627.13843	66.17142	50.4671	
2	21.077	BB	0.6600	2578.50488	47.00665	49.5329	
1	17.795 21.077	BB BB	0.5492 0.6600	2627.13843 2578.50488	66.17142 47.00665	50.4671 49.5329	

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.609	BB	0.6034	1.52800e4	373.41321	100.0000

Totals :

1.52800e4 373.41321

PDA Ch2 214nm

T	Hight	Area	Area%
43.168	323381	37814858	50.432
51.037	257676	37167756	49.568

References

- 1. Kłossowski, S. et al. Studies toward novel peptidomimetic inhibitors of thioredoxinthioredoxin reductase system. J. Med. Chem. 55, 55–67 (2012).
- 2. Akai, S. et al. Enantiodivergent preparation of optically active oxindoles having a stereogenic quaternary carbon center at the C3 position via the lipase-catalyzed desymmetrization protocol: effective use of 2-furoates for either enzymatic esterification or hydrolysis. *J. Org. Chem.* **69**, 2478–2486 (2004).
- 3. Hong, M. S., Kim, T. W., Jung, B. & Kang, S. H. Enantioselective formation of *tert*alkylamines by desymmetrization of 2-substituted serinols. *Chem. Eur. J.* **14**, 3290–3296 (2008).
- 4. Boer, R. E. et al. Total synthesis and biological activity of the arachidonic acid metabolite hemiketal E₂. *Org. Lett.* **20**, 4020–4022 (2018).
- 5. Godage, H. Y. et al. Regioselective opening of *myo*-inositol orthoesters: mechanism and synthetic utility. *J. Org. Chem.* **78**, 2275–2288 (2013).
- 6. Karmakar, U. & Samanta, R. Pd(II)-catalyzed direct sulfonylation of benzylamines using sodium sulfinates. *J. Org. Chem.* **84**, 2850–2861 (2019).
- 7. Qi, Z., Jiang, Y., Wang, Y. & Yan, R. *tert*-Butyl nitrite promoted oxidative intermolecular sulfonamination of alkynes to synthesize substituted sulfonyl pyrroles from the alkynylamines and sulfinic acids. *J. Org. Chem.* **83**, 8636–8644 (2018).
- 8. Yang, Y., Xu, C.-H., Teng, F. & Li, J.-H. Dearomatization-enabled visible-light-induced 1,2-alkylsulfonylation of alkenes using sodium sulfinates and pyridinium salts. *Adv. Synth. Catal.* **362**, 3369–3373 (2020).
- 9. Timokhin, V. I., Gastaldi, S., Bertrand, M. P. & Chatgilialoglu, C. Rate constants for the β elimination of tosyl radical from a variety of substituted carbon-centered radicals. *J. Org. Chem.* **68**, 3532–3537 (2003).
- 10. Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and *N*-aryl amines. *J. Am. Chem. Soc.* **136**, 11602–11605 (2014).
- 11. Heitz, D. R., Rizwan, K. & Molander, G. A. Visible-light-mediated alkenylation, allylation, and cyanation of potassium alkyltrifluoroborates with organic photoredox catalysts. *J. Org. Chem.* **81**, 7308–7313 (2016).
- 12. Zhang, J., Li, Y., Xu, R. & Chen, Y. Donor–acceptor complex enables alkoxyl radical generation for metal-free C(sp³)–C(sp³) cleavage and allylation/alkenylation. *Angew. Chem. Int. Ed.* **56**, 12619–12623 (2017).
- 13. Han, J.-B., Guo, A. & Tang, X.-Y. Alkylation of allyl/alkenyl sulfones by deoxygenation of alkoxyl radicals. *Chem. Eur. J.* **25**, 2989–2994 (2019).
- 14. Uno, M. et al. Synthesis of 4,4-difluoroalkenes by coupling of α -substituted α, α -difluoromethyl halides with allyl sulfones under photoredox catalyzed conditions. *J. Org. Chem.* **84**, 9330–9338 (2019).
- Liang, Q., Walsh, P. J. & Jia, T. Copper-catalyzed intermolecular difunctionalization of styrenes with thiosulfonates and arylboronic acids via a radical relay pathway. *ACS Catal.* 10, 2633–2639 (2020).
- 16. Zhang, G.-Y., Lv, S.-S., Shoberu, A. & Zou, J.-P. Copper-catalyzed TBHP-mediated radical cross-coupling reaction of sulfonylhydrazides with thiols leading to thiosulfonates. *J. Org. Chem.* **82**, 9801–9807 (2017).

- 17. King, J. F., Lam, J. Y. L. & Skonieczny, S. Mechanisms of hydrolysis and related nucleophilic displacement reactions of alkanesulfonyl chlorides: pH dependence and the mechanism of hydration of sulfenes. *J. Am. Chem. Soc.* **114**, 1743–1749 (1992).
- 18. Truce, W. E. & Heuring, D. L. Preparation and photodecomposition of α -toluenesulfonyl iodide. *J. Org. Chem.* **39**, 245–246 (1974).
- 19. Chatgilialoglu, C., Lunazzi, L. & Ingold, K. U. Kinetic studies on the formation and decay of some sulfonyl radicals. *J. Org. Chem.* **48**, 3588–3589 (1983).
- 20. Givens, R. S., Hrinczenko, B., Liu, J. H.-S., Matuszewski, B. & Tholen-Collison, J. Photoextrusion of SO₂ from aryl methyl sulfones: exploration of the mechanism by chemical trapping, chiral and CIDNP probes. *J. Am. Chem. Soc.* **106**, 1779–1789 (1984).
- 21. Baek, H., Sato, T., Uozumi, Y. & Yamada, Y. M. A. Highly reusable and active nanometal-silicon-nanowire array hybrid catalysts for hydrogenation. *Eur. J. Inorg. Chem.* **2021**, 708–712 (2021).
- 22. Frisch, M. J. et al. *Gaussian 16* Revision A.03 (Gausian, Inc., Wallingford CT, 2016).
- 23. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **37**, 785–789 (1988).
- 24. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).
- 25. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).
- 26. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456–1465 (2011).
- 27. Hay, P. J. & Wadt, W. R. *Ab initio* effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. *J. Chem. Phys.* **82**, 270–283 (1985).
- 28. Wadt, W. R. & Hay, P. J. *Ab initio* effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. *J. Chem. Phys.* **82**, 284–298 (1985).
- 29. Hay, P. J. & Wadt, W. R. *Ab initio* effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* **82**, 299–310 (1985).
- 30. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *J. Chem. Phys.* **125**, 194101 (2006).
- 31. Dunning, T. H., Jr. & Hay, P. J. Gaussian basis sets for molecular calculations. In *Methods* of *Electronic Structure Theory* (ed. Schaefer III, H. F.) 1–27 (Plenum Press, 1977).
- 32. Stoll, H. et al. Cu and Ag as one-valence-electron atoms: CI results and quadrupole corrections for Cu₂, Ag₂, CuH, and AgH. *J. Chem. Phys.* **81**, 2732–2736 (1984).
- 33. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted *ab initio* pseudopotentials for the first row transition elements. *J. Chem. Phys.* **86**, 866–872 (1987).
- 34. Häussermann, U. et al. Accuracy of energy-adjusted quasirelativistic *ab initio* pseudopotentials: all-electron and pseudopotential benchmark calculations for Hg, HgH and their cations. *Mol. Phys.* **78**, 1211–1224 (1993).
- 35. Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. *Ab initio* energy-adjusted pseudopotentials for elements of groups 13–17. *Mol. Phys.* **80**, 1431–1441 (1993).

- 36. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378–6396 (2009).
- 37. Harvey, J. N., Aschi, M., Schwarz, H. & Koch, W. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. *Theor. Chem. Acc.* **99**, 95–99 (1998).
- 38. Neese, F. The ORCA program system. *WIREs Comput. Mol. Sci.* **2**, 73–78 (2012).
- 39. Neese, F. Software update: the ORCA program system, version 4.0. *WIREs Comput. Mol. Sci.* 8, e1327 (2018).
- 40. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297–3305 (2005).
- 41. Legault, C. Y. CYLView, 1.0b (Universitéde Sherbrooke, Canada, 2009).
- 42. Lin, C. Y., Coote, M. L., Gennaro, A. & Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. *J. Am. Chem. Soc.* **130**, 12762–12774 (2008).
- 43. Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). *J. Am. Chem. Soc.* **141**, 7486–7497 (2019).
- 44. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. *J. Chem. Phys.* **24**, 966–978 (1956).
- 45. Bader, R. F. W., Carroll, M. T., Cheeseman, J. R. & Chang, C. Properties of atoms in molecules: atomic volumes. *J. Am. Chem. Soc.* **109**, 7968–7979 (1987).
- 46. Bordwell, F. G. & Fried, H. E. Heterocyclic aromatic anions with $4n + 2\pi$ -electrons. J. *Org. Chem.* 56, 4218–4223 (1991).
- 47. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
- 48. Lefebvre, C. et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. *Phys. Chem. Chem. Phys.* **19**, 17928–17936 (2017).
- 49. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38 (1996).
- 50. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **8**, 1057–1065 (2006).
- 51. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215–241 (2008).
- 52. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. *J. Chem. Phys.* **110**, 6158–6170 (1999).
- 53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- 54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. *Phys. Rev. Lett.* **78**, 1396 (1997).

55. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **10**, 6615–6620 (2008).