Supporting Information for

Copper-Catalyzed Chemo- and Enantioselective Radical 1,2-Carbophosphonylation of Styrenes

Huan Zhou,^{[a],+} Li-Wen Fan,^{[a],+} Yang-Qing Ren,^[a] Li-Lei Wang,^[a] Chang-Jiang Yang,^[a,c] Qiang-Shuai Gu,^[b] Zhong-Liang Li,^{[b],*} and Xin-Yuan Liu^{[a],*}

^[a]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

*E-mail: liuxy3@sustech.edu.cn

^[b]Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

*E-mail: lizl@sustech.edu.cn

^[c]School of Science and Institute of Scientific Research, Great Bay University, Dongguan 523000, China

^[+]These authors contributed equally to this work.

Table of Contents

Supplementary tables for experiments	S1
Scheme S1. Unsuccessful alkenes	S5
Figure S1. The X-ray structure of 4	S6
Figure S2. The X-ray structure of 16	S7
Figure S3. The X-ray structure of complex D in Scheme 3	S8
General information	S9
The synthesis of substrates	S10
General procedure	S11
The transformation of product	S39
Mechanistic investigation	S39
References	S44
NMR spectra	S45
HPLC spectra	S128

Supplementary tables for experiments

Table S1. Screening of reaction conditions.^[a]

Entry	2	L	[Cu] salt	Base	yield of	yield of	yield of	Ee of
					4 (%)	A (%)	B (%)	4 (%)
1	2a	L1	CuI	Cs ₂ CO ₃	<5	38	<5	N.D
2	2a	L2	CuI	Cs_2CO_3	0	0	0	N.D
3	2a	L3	CuI	Cs ₂ CO ₃	32	14	<5	80
4	2a	L4	CuI	Cs ₂ CO ₃	46	12	<5	71
5	2a	L5	CuI	Cs_2CO_3	48	12	<5	82
6	2a	L6	CuI	Cs_2CO_3	54	14	<5	92
7	2a	L7	CuI	Cs ₂ CO ₃	7	27	0	98
8	2a	L6	CuCl	Cs ₂ CO ₃	50	18	7	92
9	2a	L6	$CuBr \cdot SMe_2$	Cs_2CO_3	48	20	9	91
10	2a	L6	Cu(OTf) ₂	Cs ₂ CO ₃	38	12	14	92
11	2a	L6	CuI	Na ₂ CO ₃	0	<5	78	N.D
12	2a	L6	CuI	K ₂ CO ₃	12	14	4	82
13	2a	L6	CuI	DIPEA	<5	6	62	N.D
14	2a	L6	CuI	DABCO	0	<5	44	N.D
15 ^[b]	2a	L6	CuI	Cs ₂ CO ₃	70	6	<5	93
16 ^[c]	2a	L6	CuI	Cs_2CO_3	21	19	13	86
17 ^[d]	2a	L6	CuI	Cs ₂ CO ₃	63	8	5	92

18	2b	L6	CuI	Cs_2CO_3	0	34	20	N.D
19 ^[e]	2c	L6	CuI	Cs ₂ CO ₃	0	0	<5	N.D
20	-	L6	CuI	Cs ₂ CO ₃	0	0	13	N.D

[a] Reaction conditions: **1a** (0.10 mmol), **2** (0.20 mmol), **3a** (0.25 mmol), CuI (10 mol%), **L** (12 mol%), and Cs₂CO₃ (3.0 equiv) in 1,4-dioxane (1.0 mL) at room temperature. Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; ee values were determined by HPLC analysis. [b] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane and CPME (v/v = 1:1) for 5 d. [c] Conducted at 60 $^{\circ}$ C in 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane for 1 d. [d] Conducted at $-5 \,^{\circ}$ C in a mixed solvent of 1,4-dioxane and CPME (v/v = 1:1) for 0.5 d, then 5 $^{\circ}$ C for 1 d, and then rt for another day. [e] Hydrophosphinoylation product C was obtained owing to the easy oxidation of hydrophosphinylation product. CPME, cyclopentyl methyl ether. N.D, no detected.

^r Bu	+ (1 equiv)	0 + H−P(OEt) ₂ + 2a (x equiv)	Br C 3a (y equ	LG (LG (D ⁴ Bu Cs ₂ CO 1,4-dioxane -5	12 mol%) 12 mol%) 13 (z equiv) /CPME (v/v = 1:1) 5 °C, 5 d	EtO_P=0 rBu 4	CO2 ^t Bu
	[#] Bu	CMe CMe	2CO₂′Bu 2CO₂′Bu 2CO₂′Bu	Bu B	\sim		
entry	Х	У	Z	yield of 4	yield of A	Yield of B	Ee of 4
				(%)	(%)	(%)	(%)
1	1.2	1.5	3	52	8	5	92
2	1.5	2.0	3	59	8	<5	92
3	2	2.5	3	70	6	<5	93
4	2	2.5	2	31	<5	8	92
5	2	2.5	1	19	<5	26	93
			(0.1.0	<i>•</i>	• • •	• • • • • • • •	10.()

0 1/10

10/1

Table S2. The investigatin of substrate/base ratio.^[a]

[a] Reaction conditions: **1a** (0.10 mmol), **2a** (x equiv), **3a** (y equiv), CuI (10 mol%), **L6** (12 mol%), and Cs₂CO₃ (z equiv) conducted at -5 °C in a mixed solvent of 1,4-dioxane and CPME (1 mL, v/v = 1:1) for 5 d. Yield was based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard; ee values were determined by HPLC analysis.

Di-tert-butyl 4,5-bis(4-(tert-butyl)phenyl)-2,2,7,7-tetramethyloctanedioate (A)

(A diastereomeric mixture ca. 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.21 (d, J = 8.3 Hz, 3.2H), 7.03 (d, J = 8.2 Hz, 0.8H), 6.97 (d, J = 8.2 Hz, 3.2H), 6.77 (d, J = 8.3 Hz, 0.8H), 2.68 – 2.58 (m, 2H), 2.02 – 1.94 (m, 0.4H), 1.88 – 1.79 (m, 1.6H), 1.52 – 1.47 (m, 2H), 1.28 (s, 14.4H), 1.24 (s, 3.6H), 1.20 (s, 3.6H), 1.17 (s, 14.4H), 0.98 (s, 1.2H), 0.81 (s, 6H), 0.70 (s, 4.8H).

¹³**C NMR** (150 MHz, CDCl₃) δ 177.1, 177.0, 149.0, 148.4, 141.0, 140.4, 129.2, 129.0, 124.9, 124.2, 79.6, 79.3, 49.7, 49.5, 43.2, 43.1, 42.4, 42.3, 34.4, 34.3, 31.6, 31.5, 27.9, 27.8, 26.8, 26.3, 26.2, 25.3.

HRMS (ESI) m/z calcd. for $[C_{40}H_{63}O_4]^+$ ($[M + H]^+$) 607.4721, found 607.4724.

5-(4-(tert-butyl)phenyl)-3,3-dimethyldihydrofuran-2(3H)-one (B)^[1]

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 9.9 Hz, 2H), 5.46 (dd, *J* = 10.1, 6.2 Hz, 1H), 2.48 (dd, *J* = 12.9, 6.2 Hz, 1H), 2.12 (dd, *J* = 12.9, 10.1 Hz, 1H), 1.39 (s, 3H), 1.33 (m, 12H).

¹³**C NMR** (150 MHz, CDCl₃) δ 181.9, 151.6, 136.5, 125.8, 125.4, 77.8, 46.1, 41.0, 34.8, 31.4, 25.1, 24.4.

(4-(tert-butyl)phenethyl)diphenylphosphine oxide (C)^[2]

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.55 – 7.43 (m, 6H), 7.30 – 7.25 (m, 2H), 7.12 – 7.07 (m, 2H), 2.96 – 2.86 (m, 2H), 2.64 – 2.53 (m, 2H), 1.29 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 149.3, 138.2 (d, J = 15.3 Hz), 132.9 (d, J = 98.3 Hz), 131.9 (d, J = 2.7 Hz), 130.9 (d, J = 9.4 Hz), 128.8 (d, J = 11.6 Hz), 127.9, 125.6, 34.5, 31.9 (d, J = 69.9 Hz), 31.5, 27.1 (d, J = 3.2 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 32.02. Scheme S1. Unsuccessful alkenes

−5 °C: P (0%), A (12% nmr yield)
rt: P (0%), A (13% nmr yield)
60 °C: P (0%), A (15% nmr yield)

Tert-butyl 2,2-dimethyl-4-(o-tolyl)butanoate

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 – 7.06 (m, 4H), 2.59 – 2.49 (m, 2H), 2.31 (s, 3H), 1.75 – 1.67 (m, 2H), 1.48 (s, 9H), 1.21 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.2, 140.8, 135.9, 130.3, 129.0, 126.2, 126.1, 80.0, 42.9, 41.8, 29.1, 28.2, 25.4, 19.3.

HRMS (ESI) m/z calcd. for $[C_{17}H_{26}O_2Na]^+$ ($[M + Na]^+$) 285.1825, found 285.1820.

Figure S1. The X-ray structure of 4.

Figure S2. The X-ray structure of 16.

Figure S3. The X-ray structure of complex D in Scheme 3.

General information

Reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Cuprous iodide (99.999%) was purchased from Sigma-Aldrich. Cesium carbonate (Cs₂CO₃) was purchased from Bide Pharmatech Ltd., which was directly used without further treatment. Anhydrous 1,4-dioxane and cyclopentyl methyl ether were purchased from J&K. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), hexane, ethyl acetate (EtOAc), dichloromethane (CH₂Cl₂) and methanol were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR and 162 MHz or 243 MHz for ³¹P NMR, respectively, in CDCl₃ and DMSO- d_6 with tetramethylsilane (TMS) as internal standard. The chemical shifts were expressed in ppm and coupling constants were given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; dd = doublet of doublets; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm), multiplicity (d, doublet), coupling constant (Hz), integration. High-resolution mass spectroscopy (HRMS) was obtained on Thermo Scientific Q Exactive mass spectrometer using ESI ion source. Enantiomeric excess (e.e.) was determined using SHIMADZU LC-20AD with SPD-20AV detector or Agilent high-performance liquid chromatography (HPLC) with Hatachi detector (at appropriate wavelength). Column conditions were reported in the experimental section below.

The synthesis of substrates

Most of alkenes, dialkyl phosphites, and radical precursors were purchased from commercial sources. The alkenes for the product $10^{[3]}$, $18-24^{[3]}$, $25^{[4]}$, $26^{[3]}$, $29-31^{[3]}$ were synthesized according to the reported literature. The radical precursors for the product $46^{[5]}$ were synthesized according to the reported literature. All the characterization data are consistent with those in the reported literature.

Copper-Catalyzed Chemo- and Enantioselective Radical 1,2-Carbophosphonylation of Styrenes

General procedure A

4

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L6** (7.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane/CPME (2.0 mL, (v/v = 1:1) was added by syringe under argon atmosphere. Finally, alkene (0.20 mmol, 1.0 equiv), radical precursor (0.50 mmol, 2.5 equiv) and dialkyl phosphite (0.40 mmol, 2.0 equiv) were sequentially added into the mixture and the reaction mixture was stirred at -5 °C for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **4** as a colorless oil (60.7 mg, 69% yield, 93% ee). The reaction was performed on 5 mmol scale for 4-tert-butylstyrene to yield the product **4** as a colorless oil (1.76 g, 80% yield, 93% ee), which was crystallized when it was placed in the refrigerator.

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 214$ nm), t_R (minor) = 16.11 min, t_R (major) = 17.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 4H), 4.14 – 3.97 (m, 2H), 3.87 – 3.75 (m, 1H), 3.61 – 3.50 (m, 1H), 3.10 (ddd, *J* = 25.0, 10.6, 2.0 Hz, 1H), 2.40 – 2.20 (m, 2H), 1.32 – 1.26 (m, 12H), 1.24 (s, 9H), 1.10 (s, 3H), 1.00 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 150.1 (d, *J* = 3.8 Hz), 133.2 (d, *J* = 8.0 Hz), 129.5 (d, *J* = 7.0 Hz), 125.4 (d, *J* = 3.0 Hz), 80.0, 62.9 (d, *J* = 7.0 Hz), 61.8 (d, *J* = 7.5 Hz), 43.1 (d, *J* = 16.3 Hz), 41.3 (d, *J* = 136.5 Hz), 39.5 (d, *J* = 2.4 Hz), 34.5, 31.4, 27.8, 26.6, 25.3, 16.5 (d, *J* = 6.0 Hz), 16.2 (d, *J* = 5.9 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 29.31. HRMS (ESI) *m/z* calcd. for [C₂₄H₄₂O₅P]⁺ ([M + H]⁺) 441.2764, found 441.2760.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-phenylbutanoate (5)

According to the **general procedure A**, styrene (20.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **5** as a colorless oil (46.9 mg, 61% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 96/4, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 19.21 min, t_R (minor) = 21.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.31 – 7.26 (m, 2H), 7.26 – 7.20 (m, 1H), 4.16 – 3.98 (m, 2H), 3.89 – 3.77 (m, 1H), 3.63 – 3.49 (m, 1H), 3.20 – 3.07 (m, 1H), 2.40 – 2.26 (m, 2H), 1.33 – 1.29 (m, 12H), 1.10 (s, 3H), 1.04 (t, *J* = 7.0 Hz, 3H), 0.91 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.3, 136.8 (d, *J* = 8.0 Hz), 129.9 (d, *J* = 7.0 Hz), 128.5 (d, *J* = 2.9 Hz), 127.2 (d, *J* = 3.6 Hz), 80.2, 62.9 (d, *J* = 7.0 Hz), 61.9 (d, *J* = 7.4 Hz), 43.3 (d, *J* = 16.1 Hz), 41.9 (d, *J* = 136.2 Hz), 39.6 (d, *J* = 2.7 Hz), 27.9, 26.0, 25.9, 16.5 (d, *J* = 5.9 Hz), 16.3 (d, *J* = 5.8 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 28.90.

HRMS (ESI) m/z calcd. for $[C_{20}H_{34}O_5P]^+$ ($[M + H]^+$) 385.2138, found 385.2138.

Tert-butyl(S)-4-(diethoxyphosphoryl)-4-(4-methoxyphenyl)-2,2-dimethylbutanoate (6)

According to the **general procedure A**, 1-methoxy-4-vinylbenzene (26.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **6** as a colorless oil (49.7 mg, 60% yield, 88% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 37.46 min, t_R (minor) = 40.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 6.86 – 6.77 (m, 2H), 4.13 – 3.97 (m, 2H), 3.87 – 3.78 (m, 1H), 3.77 (s, 3H), 3.61 – 3.50 (m, 1H), 3.06 (ddd, *J* = 25.0, 10.0, 2.9 Hz, 1H), 2.33 – 2.18 (m, 2H), 1.32 – 1.26 (m, 12H), 1.09 – 1.02 (m, 6H), 0.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 158.9 (d, J = 3.4 Hz), 130.8 (d, J = 7.0 Hz), 128.5 (d, J = 8.2 Hz), 114.0 (d, J = 2.9 Hz), 80.1, 62.9 (d, J = 7.2 Hz), 61.8 (d, J = 7.5 Hz), 55.5, 43.3 (d, J = 16.4 Hz), 41.0 (d, J = 137.0 Hz), 39.6 (d, J = 2.1 Hz), 27.9, 26.0, 25.9, 16.6 (d, J = 5.9 Hz), 16.4 (d, J = 5.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.16. HRMS (ESI) m/z calcd. for [C₂₁H₃₆O₆P]⁺ ([M + H]⁺) 415.2244, found 415.2248.

Tert-butyl(S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(4-phenoxyphenyl)butanoate (7)

According to the **general procedure A**, 1-phenoxy-4-vinylbenzene (39.3 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **7** as a colorless oil (63.8 mg, 67% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.19 min, t_R (minor) = 14.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.11 – 7.05 (m, 1H), 6.99 – 6.90 (m, 4H), 4.15 – 3.98 (m, 2H), 3.92 – 3.79 (m, 1H), 3.70 – 3.58 (m, 1H), 3.11 (ddd, *J* = 25.1, 9.5, 3.2 Hz, 1H), 2.36 – 2.21 (m, 2H), 1.34 – 1.27 (m, 12H), 1.11 – 1.05 (m, 6H), 0.92 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 157.1, 156.4 (d, J = 3.7 Hz), 131.4 (d, J = 8.1 Hz), 131.1 (d, J = 7.0 Hz), 129.7, 123.3, 118.8, 118.7, 80.1, 62.8 (d, J = 7.2 Hz), 61.8 (d, J = 7.6 Hz), 43.2 (d, J = 16.1 Hz), 41.1 (d, J = 137.1 Hz), 39.5 (d, J = 2.5 Hz), 27.8, 26.0, 25.8, 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.82.

HRMS (ESI) m/z calcd. for $[C_{26}H_{38}O_6P]^+$ ($[M + H]^+$) 477.2401, found 477.2409.

Tert-butyl (methylthio)phenyl)butanoate (8)

(S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(4-

According to the **general procedure A**, methyl(4-vinylphenyl)sulfane (30.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **8** as a colorless oil (59.3 mg, 69% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 43.09 min, t_R (minor) = 45.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.18 (d, J = 8.2 Hz, 2H), 4.15 – 3.99 (m, 2H), 3.91 – 3.79 (m, 1H), 3.68 – 3.55 (m, 1H), 3.09 (ddd, J = 25.1, 9.5, 3.2 Hz, 1H), 2.46 (s, 3H), 2.35 – 2.21 (m, 2H), 1.34 – 1.27 (m, 12H), 1.13 – 1.04 (m, 6H), 0.90 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.3, 137.2 (d, *J* = 4.0 Hz), 133.5 (d, *J* = 8.3 Hz), 130.3 (d, *J* = 7.0 Hz), 126.7 (d, *J* = 2.9 Hz), 80.2, 62.9 (d, *J* = 7.1 Hz), 61.9 (d, *J* = 7.3 Hz), 43.3 (d, *J* = 16.1 Hz), 41.4 (d, *J* = 136.6 Hz), 39.5 (d, *J* = 2.5 Hz), 27.9, 26.1, 25.9, 16.5 (d, *J* = 5.9 Hz), 16.4 (d, *J* = 5.8 Hz), 16.0.

³¹**P NMR** (162 MHz, CDCl₃) δ 28.65.

HRMS (ESI) m/z calcd. for $[C_{21}H_{36}O_5PS]^+$ ($[M + H]^+$) 431.2016, found 431.2022.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(p-tolyl)butanoate (9)

According to the **general procedure A**, 1-methyl-4-vinylbenzene (23.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **9** as a colorless oil (54.2 mg, 68% yield, 89% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 10.96 min, t_R (minor) = 11.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.23 – 7.15 (m, 2H), 7.06 (d, J = 7.8 Hz, 2H), 4.11 – 3.95 (m, 2H), 3.86 – 3.74 (m, 1H), 3.61 – 3.49 (m, 1H), 3.06 (ddd, J = 25.0, 9.3, 3.4 Hz, 1H), 2.33 – 2.19 (m, 5H), 1.32 – 1.24 (m, 12H), 1.08 – 1.00 (m, 6H), 0.87 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 176.3, 136.8 (d, J = 3.8 Hz), 133.4 (d, J = 8.1 Hz), 129.6 (d, J = 7.0 Hz), 129.2 (d, J = 2.9 Hz), 80.1, 62.8 (d, J = 7.1 Hz), 61.9 (d, J = 7.4 Hz), 43.3 (d, J = 16.4 Hz), 41.4 (d, J = 136.4 Hz), 39.5 (d, J = 2.5 Hz), 27.8, 26.0, 25.9, 21.2 (d, J = 1.3 Hz), 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 29.13.

HRMS (ESI) m/z calcd. for $[C_{21}H_{36}O_5P]^+$ ($[M + H]^+$) 399.2295, found 399.2299.

Tert-butyl(S)-4-(4-cyclopropylphenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (10)

According to the **general procedure A**, 1-cyclopropyl-4-vinylbenzene (28.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **10** as a colorless oil (60.2 mg, 71% yield, 93% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 96/4, flow rate 0.6 mL/min, λ = 230 nm), t_R (minor) = 25.11 min, t_R (major) = 26.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 2H), 6.95 (d, J = 7.9 Hz, 2H), 4.12 – 3.93 (m, 2H), 3.87 – 3.73 (m, 1H), 3.61 – 3.47 (m, 1H), 3.05 (ddd, J = 25.0, 8.0, 4.8 Hz, 1H), 2.31 – 2.21 (m, 2H), 1.88 – 1.76 (m, 1H), 1.31 – 1.23 (m, 12H), 1.07 – 0.98 (m, 6H), 0.94 – 0.85 (m, 5H), 0.66 – 0.57 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 176.3, 143.0 (d, J = 3.7 Hz), 133.4 (d, J = 8.2 Hz), 129.7 (d, J = 7.1 Hz), 125.7 (d, J = 3.1 Hz), 80.1, 62.9 (d, J = 7.1 Hz), 61.9 (d, J = 7.4 Hz), 43.2 (d, J = 16.3 Hz), 41.4 (d, J = 136.4 Hz), 39.5 (d, J = 2.4 Hz), 27.9, 26.1, 25.8, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz), 15.2 (d, J = 1.4 Hz), 9.3 (d, J = 3.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.12.

HRMS (ESI) m/z calcd. for $[C_{23}H_{38}O_5P]^+([M + H]^+)$ 425.2451, found 425.2455.

Tert-butyl(S)-4-([1,1'-biphenyl]-4-yl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (11)

According to the **general procedure A**, 1-phenyl-4-vinylbenzene (59.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **11** as a colorless oil (59.8 mg, 65% yield, 93% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.76 min, t_R (minor) = 14.81 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.49 (m, 4H), 7.46 – 7.37 (m, 4H), 7.35 – 7.30 (m, 1H), 4.16 – 3.99 (m, 2H), 3.93 – 3.80 (m, 1H), 3.70 – 3.56 (m, 1H), 3.17 (ddd, J = 25.0, 9.2, 3.4 Hz, 1H), 2.43 – 2.26 (m, 2H), 1.34 – 1.26 (m, 12H), 1.11 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H), 0.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.3, 140.9 (d, J = 1.5 Hz), 140.0 (d, J = 3.8 Hz), 135.8 (d, J = 8.1 Hz), 130.3 (d, J = 7.0 Hz), 128.9, 127.4, 127.2 (d, J = 3.0 Hz), 127.1, 80.2, 62.9 (d, J = 7.0 Hz), 62.0 (d, J = 7.4 Hz), 43.3 (d, J = 16.1 Hz), 41.6 (d, J = 136.3 Hz), 39.6 (d, J = 2.6 Hz), 27.9, 26.3, 25.7, 16.6 (d, J = 5.9 Hz), 16.3 (d, J = 5.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.78.

HRMS (ESI) m/z calcd. for $[C_{26}H_{38}O_5P]^+$ ($[M + H]^+$) 461.2451, found 461.2455.

Tert-butyl (S)-4-(diethoxyphosphoryl)-4-(4-fluorophenyl)-2,2-dimethylbutanoate (12)

According to the **general procedure A**, 1-fluoro-4-vinylbenzene (24.4 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **12** as a colorless oil (54.7 mg, 68% yield, 89% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 11.15 min, t_R (minor) = 11.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 6.99 (t, J = 8.5 Hz, 2H), 4.16 – 3.99 (m, 2H), 3.91 – 3.78 (m, 1H), 3.68 – 3.54 (m, 1H), 3.12 (ddd, J = 25.1, 10.0, 2.7 Hz, 1H), 2.36 – 2.20 (m, 2H), 1.36 – 1.26 (m, 12H), 1.12 – 1.03 (m, 6H), 0.90 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 162.1 (dd, J = 245.6, 3.9 Hz), 132.5 (dd, J = 7.9, 3.2 Hz), 131.3 (t, J = 7.5 Hz), 115.4 (dd, J = 21.3, 2.9 Hz), 80.2, 62.9 (d, J = 7.1 Hz), 62.0 (d, J = 7.4 Hz), 43.2 (d, J = 16.1 Hz), 41.1 (d, J = 137.3 Hz), 39.7 (d, J = 2.5 Hz), 27.9, 26.1, 25.8, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.65 (d, J = 5.7 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 28.54 (d, J = 5.2 Hz).

HRMS (ESI) m/z calcd. for $[C_{20}H_{33}FO_5P]^+$ ($[M + H]^+$) 403.2044, found 403.2047.

Tert-butyl (S)-4-(4-chlorophenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (13)

According to the **general procedure A**, 1-chloro-4-vinylbenzene (27.7 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **13** as a colorless oil (59.4 mg, 71% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 10.26 min, t_R (minor) = 12.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 4.16 – 3.99 (m, 2H), 3.92 – 3.80 (m, 1H), 3.71 – 3.57 (m, 1H), 3.23 – 3.01 (m, 1H), 2.38 – 2.18 (m, 2H), 1.35 – 1.27 (m, 12H), 1.12 – 1.03 (m, 6H), 0.90 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.1, 135.4 (d, J = 8.1 Hz), 133.1 (d, J = 4.3 Hz), 131.1 (d, J = 7.0 Hz), 128.6 (d, J = 3.1 Hz), 80.3, 62.9 (d, J = 7.1 Hz), 62.1 (d, J = 7.4 Hz), 43.2 (d, J = 16.0 Hz), 41.3 (d, J = 136.9 Hz), 39.5 (d, J = 2.6 Hz), 27.8, 26.1, 25.8, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 28.17.

HRMS (ESI) m/z calcd. for $[C_{20}H_{33}ClO_5P]^+$ ($[M + H]^+$) 419.1749, found 419.1751.

Tert-butyl (S)-4-(4-bromophenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (14)

According to the **general procedure A**, 1-bromo-4-vinylbenzene (36.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **14** as a colorless oil (61.9 mg, 67% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 6.62 min, t_R (minor) = 7.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 8.1 Hz, 2H), 7.24 – 7.17 (m, 2H), 4.16 – 3.96 (m, 2H), 3.92 – 3.79 (m, 1H), 3.70 – 3.56 (m, 1H), 3.09 (ddd, J = 25.0, 10.2, 2.5 Hz, 1H), 2.37 – 2.16 (m, 2H), 1.33 – 1.26 (m, 12H), 1.12 – 1.03 (m, 6H), 0.89 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 136.0 (d, J = 8.0 Hz), 131.6 (d, J = 2.9 Hz), 131.5 (d, J = 7.0 Hz), 121.2 (d, J = 4.4 Hz), 80.4, 63.0 (d, J = 7.1 Hz), 62.1 (d, J = 7.4 Hz), 43.3 (d, J = 16.0 Hz), 41.4 (d, J = 136.8 Hz), 39.5 (d, J = 2.7 Hz), 27.9, 26.2, 25.9, 16.6 (d, J = 5.9 Hz), 16.4 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.01.

HRMS (ESI) m/z calcd. for $[C_{20}H_{33}BrO_5P]^+$ ($[M + H]^+$) 463.1244, found 463.1249.

Tert-butyl (S)-4-(3-bromophenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (15)

According to the **general procedure A**, 1-bromo-3-vinylbenzene (36.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **15** as a colorless oil (62.8 mg, 68% yield, 90% ee).

HPLC analysis: Chiralcel INA (hexane/*i*-PrOH = 96/4, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 7.84 min, t_R (major) = 10.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.40 – 7.34 (m, 1H), 7.32 – 7.26 (m, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 4.16 – 3.99 (m, 2H), 3.94 – 3.83 (m, 1H), 3.74 – 3.61 (m, 1H), 3.10 (ddd, *J* = 25.1, 9.0, 3.5 Hz, 1H), 2.37 – 2.19 (m, 2H), 1.33 – 1.28 (m, 12H), 1.13 – 1.06 (m, 6H), 0.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.1, 139.4 (d, *J* = 7.9 Hz), 132.7 (d, *J* = 7.1 Hz), 130.4 (d, *J* = 3.6 Hz), 130.0 (d, *J* = 3.0 Hz), 128.6 (d, *J* = 6.8 Hz), 122.4 (d, *J* = 3.4 Hz), 80.3, 62.9 (d, *J* = 7.1 Hz), 62.2 (d, *J* = 7.3 Hz), 43.2 (d, *J* = 15.6 Hz), 41.6 (d, *J* = 136.5 Hz), 39.5 (d, *J* = 2.9 Hz), 27.9, 26.3, 25.7, 16.5 (d, *J* = 6.0 Hz), 16.3 (d, *J* = 5.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.95.

HRMS (ESI) m/z calcd. for $[C_{20}H_{33}BrO_5P]^+$ ($[M + H]^+$) 463.1244, found 463.1251.

(S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(4-

Tert-butyl (S)-4 (trifluoromethyl)phenyl)butanoate (16)

According to the **general procedure A**, 1-(trifluoromethyl)-4-vinylbenzene (34.4 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tertbutyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **16** as a white solid (m.p.: 97.2-99.5 °C) (56.1 mg, 62% yield, 91% ee).

HPLC analysis: Chiralcel INA (hexane/*i*-PrOH = 96/4, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 8.61 min, t_R (minor) = 9.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 8.3 Hz, 2H), 7.41 – 7.35 (m, 2H), 4.04 – 3.90 (m, 2H), 3.83 – 3.70 (m, 1H), 3.65 – 3.51 (m, 1H), 3.18 – 3.04 (m, 1H), 2.30 – 2.16 (m, 2H), 1.22 – 1.15 (m, 12H), 1.00 (s, 3H), 0.96 (t, J = 7.1 Hz, 3H), 0.80 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.8, 141.2 (d, J = 8.7 Hz), 130.0 (d, J = 6.9 Hz), 129.3 (qd, J = 32.5, 3.8 Hz), 125.1 (p, J = 3.7 Hz), 124.0 (q, J = 270.1 Hz), 80.0, 62.6 (d, J = 7.0 Hz), 62.0 (d, J = 7.3 Hz), 43.0 (d, J = 15.7 Hz), 41.7 (d, J = 136.3 Hz), 39.3 (d, J = 3.1 Hz), 27.5, 26.1, 25.4, 16.2 (d, J = 6.0 Hz), 16.0 (d, J = 5.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.70.

³¹**P NMR** (162 MHz, CDCl₃) δ 27.57.

HRMS (ESI) m/z calcd. for $[C_{21}H_{33}F_{3}O_{5}P]^{+}$ ($[M + H]^{+}$) 453.2012, found 453.2018.

Tert-butyl(S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(3-(trifluoromethyl)phenyl)butanoate (17)

According to the **general procedure A**, 1-(trifluoromethyl)-3-vinylbenzene (34.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tertbutyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **17** as a colorless oil (58.8 mg, 65% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 6.75 min, t_R (major) = 7.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 4.13 – 3.96 (m, 2H), 3.89 – 3.78 (m, 1H), 3.73 – 3.59 (m, 1H), 3.18 (ddd, *J* = 25.2, 8.4, 4.3 Hz, 1H), 2.36 – 2.23 (m, 2H), 1.28 – 1.21 (m, 12H), 1.09 – 1.01 (m, 6H), 0.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.0, 138.2 (d, J = 8.0 Hz), 133.2 (d, J = 6.5 Hz), 130.6 (td, J = 32.3, 3.1 Hz), 128.9 (d, J = 2.9 Hz), 127.4 – 126.3 (m), 124.1 (q, J = 32.3)

272.4 Hz), 124.2 – 123.9 (m), 80.3, 62.9 (d, J = 7.1 Hz), 62.2 (d, J = 7.4 Hz), 43.2 (d, J = 15.4 Hz), 41.7 (d, J = 136.7 Hz), 39.5 (d, J = 2.9 Hz), 27.7, 26.3, 25.6, 16.4 (d, J = 5.9 Hz), 16.2 (d, J = 5.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.67. ³¹P NMR (162 MHz, CDCl₃) δ 27.68. HRMS (ESI) m/z calcd. for [C₂₁H₃₃F₃O₅P]⁺ ([M + H]⁺) 453.2012, found 453.2019.

Methyl (S)-3-(4-(tert-butoxy)-1-(diethoxyphosphoryl)-3,3-dimethyl-4oxobutyl)benzoate (18)

According to the **general procedure A**, methyl 3-vinylbenzoate (32.4 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **18** as a colorless oil (58.3 mg, 66% yield, 87% ee).

HPLC analysis: Chiralcel IH (hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 5.44 min, t_R (major) = 10.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.02 – 7.95 (m, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 4.13 – 3.97 (m, 2H), 3.89 (s, 3H), 3.86 – 3.78 (m, 1H), 3.70 – 3.57 (m, 1H), 3.18 (ddd, *J* = 25.1, 9.2, 3.3 Hz, 1H), 2.38 – 2.23 (m, 2H), 1.30 – 1.23 (m, 12H), 1.09 – 1.01 (m, 6H), 0.87 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.2, 167.0, 137.6 (d, J = 8.0 Hz), 134.4 (d, J = 6.6 Hz), 130.9 (d, J = 7.2 Hz), 130.3 (d, J = 2.8 Hz), 128.6 (d, J = 2.9 Hz), 128.5 (d, J = 3.4 Hz), 80.3, 62.8 (d, J = 7.1 Hz), 62.2 (d, J = 7.4 Hz), 52.2, 43.3 (d, J = 15.8 Hz), 41.7 (d, J = 136.5 Hz), 39.4 (d, J = 2.8 Hz), 27.9, 26.1, 25.9, 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.10.

HRMS (ESI) m/z calcd. for $[C_{22}H_{36}O_7P]^+$ ($[M + H]^+$) 443.2193, found 443.2193.

Tert-butyl (S)-4-(3-cyanophenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (19)

According to the **general procedure A**, 3-vinylbenzonitrile (25.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **19** as a colorless oil (55.7 mg, 68% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (minor) = 7.39 min, t_R (major) = 9.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 2H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 4.14 – 3.98 (m, 2H), 3.94 – 3.82 (m, 1H), 3.77 – 3.65 (m, 1H), 3.15 (ddd, *J* = 25.0, 10.1, 2.4 Hz, 1H), 2.37 – 2.18 (m, 2H), 1.31 – 1.24 (m, 12H), 1.11 – 1.05 (m, 6H), 0.88 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 175.9, 139.0 (d, J = 7.8 Hz), 134.4 (d, J = 6.8 Hz), 133.2 (d, J = 7.1 Hz), 130.9 (d, J = 3.5 Hz), 129.3 (d, J = 2.9 Hz), 118.7, 112.6 (d, J = 3.0 Hz), 80.5, 62.9 (d, J = 7.1 Hz), 62.3 (d, J = 7.4 Hz), 43.2 (d, J = 15.4 Hz), 41.6 (d, J = 137.0 Hz), 39.4 (d, J = 3.0 Hz), 27.9, 26.4, 25.7, 16.5 (d, J = 5.8 Hz), 16.3 (d, J = 5.7 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 27.26.

HRMS (ESI) m/z calcd. for $[C_{21}H_{33}NO_5P]^+$ ($[M + H]^+$) 410.2091, found 410.2095.

Methyl (S)-3-(4-(tert-butoxy)-1-(diethoxyphosphoryl)-3,3-dimethyl-4oxobutyl)benzoate

tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(4-nitrophenyl)butanoate (20)

According to the **general procedure A**, 1-nitro-4-vinylbenzene (29.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **20** as a white solid (m.p.: 96.8-98.6 °C) (68.7 mg, 80% yield, 88% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 21.48 min, t_R (major) = 26.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 2H), 7.56 – 7.48 (m, 2H), 4.16 – 4.02 (m, 2H), 3.96 – 3.84 (m, 1H), 3.79 – 3.67 (m, 1H), 3.27 (ddd, J = 25.2, 10.4, 2.2 Hz, 1H), 2.43 – 2.23 (m, 2H), 1.33 – 1.27 (m, 12H), 1.13 – 1.05 (m, 6H), 0.88 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.0, 147.2 (d, J = 4.3 Hz), 145.3 (d, J = 8.0 Hz), 130.7 (d, J = 6.8 Hz), 123.6 (d, J = 2.9 Hz), 80.6, 63.0 (d, J = 7.2 Hz), 62.5 (d, J = 7.4 Hz), 43.4 (d, J = 15.2 Hz), 42.2 (d, J = 135.9 Hz), 39.6 (d, J = 3.3 Hz), 27.9, 26.2, 25.9, 16.6 (d, J = 5.8 Hz), 16.4 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 26.82.

HRMS (ESI) m/z calcd. for $[C_{21}H_{33}NO_7P]^+$ ($[M + H]^+$) 430.1989, found 430.1994.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butanoate (21)

According to the **general procedure A**, 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2dioxaborolane (46.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **21** as a colorless oil (63.3 mg, 62% yield, 89% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 96/4, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 7.61 min, t_R (majnor) = 8.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 7.7 Hz, 2H), 7.40 – 7.33 (m, 2H), 4.15 – 3.98 (m, 2H), 3.90 – 3.78 (m, 1H), 3.63 – 3.51 (m, 1H), 3.16 (ddd, J = 25.0, 10.6, 2.0 Hz, 1H), 2.43 – 2.24 (m, 2H), 1.37 – 1.28 (m, 24H), 1.10 – 1.03 (m, 6H), 0.86 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 140.3 (d, J = 8.0 Hz), 134.9 (d, J = 2.9 Hz), 129.2 (d, J = 6.9 Hz), 83.9, 80.2, 63.0 (d, J = 7.1 Hz), 62.0 (d, J = 7.3 Hz), 43.5 (d, J = 16.1 Hz), 42.3 (d, J = 135.6 Hz), 39.4 (d, J = 2.9 Hz), 27.9, 26.4, 25.5, 25.1, 24.9, 24.8, 16.6 (d, J = 6.0 Hz), 16.4 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.46.

HRMS (ESI) m/z calcd. for $[C_{26}H_{45}BO_7P]^+$ ($[M + H]^+$) 511.2991, found 511.3005.

Tert-butyl (S)-4-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4-(diethoxyphosphoryl)-2,2dimethylbutanoate (22)

According to the **general procedure A**, 1-(4-vinylphenyl)-1H-1,2,4-triazole (34.2 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tertbutyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **22** as a colorless oil (43.3 mg, 48% yield, 88% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 13.95 min, t_R (minor) = 16.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.12 (s, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.46 (m, 2H), 4.18 – 4.06 (m, 2H), 3.98 – 3.86 (m, 1H), 3.80 – 3.66 (m, 1H), 3.23 (ddd, *J* = 25.1, 10.5, 2.2 Hz, 1H), 2.45 – 2.22 (m, 2H), 1.37 – 1.30 (m, 12H), 1.16 – 1.08 (m, 6H), 0.93 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.1, 152.6, 137.5 (d, J = 8.2 Hz), 136.0 (d, J = 5.2 Hz), 131.2 (d, J = 6.9 Hz), 120.0 (d, J = 3.0 Hz), 80.4, 63.0 (d, J = 7.2 Hz), 62.3 (d, J = 7.3 Hz), 43.3 (d, J = 15.7 Hz), 41.5 (d, J = 136.8 Hz), 39.5 (d, J = 2.9 Hz), 27.9, 26.2, 25.7, 16.5 (d, J = 5.8 Hz), 16.4 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 27.92.

HRMS (ESI) m/z calcd. for $[C_{22}H_{35}N_3O_5P]^+$ ($[M + H]^+$) 452.2309, found 452.2304.

Tert-butyl(S)-4-(3,4-dichlorophenyl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (23)

According to the **general procedure A**, 1,2-dichloro-4-vinylbenzene (34.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **23** as a white solid (m.p.: 81.7-84.3 °C) (59.7 mg, 66% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 15.06 min, t_R (major) = 20.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 2.4 Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.16 (dd, J = 8.2, 2.4 Hz, 1H), 4.14 – 3.97 (m, 2H), 3.95 – 3.82 (m, 1H), 3.79 – 3.66 (m, 1H), 3.06 (ddd, J = 25.0, 10.3, 2.3 Hz, 1H), 2.34 – 2.13 (m, 2H), 1.33 – 1.24 (m, 12H), 1.10 (t, J = 7.0 Hz, 3H), 1.07 (s, 3H), 0.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.0, 137.4 (d, *J* = 8.0 Hz), 132.4 (d, *J* = 3.3 Hz), 131.6 (d, *J* = 7.2 Hz), 131.3 (d, *J* = 4.3 Hz), 130.3 (d, *J* = 3.0 Hz), 129.2 (d, *J* = 6.9 Hz), 80.4, 62.9 (d, *J* = 7.1 Hz), 62.3 (d, *J* = 7.3 Hz), 43.2 (d, *J* = 15.5 Hz), 41.2 (d, *J* = 137.0 Hz), 39.4 (d, *J* = 2.9 Hz), 27.8, 26.4, 25.6, 16.5 (d, *J* = 5.9 Hz), 16.4 (d, *J* = 5.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.39.

HRMS (ESI) m/z calcd. for $[C_{20}H_{32}Cl_2O_5P]^+$ ($[M + H]^+$) 453.1359, found 453.1363.

Tert-butyl (S)-4-(benzo[d][1,3]dioxol-5-yl)-4-(diethoxyphosphoryl)-2,2dimethylbutanoate (24)

According to the **general procedure A**, 5-vinylbenzo-[d]-[1,3]dioxole (29.6 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **24** as a colorless oil (57.4 mg, 67% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (minor) = 9.13 min, t_R (major) = 13.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.88 – 6.84 (m, 1H), 6.78 – 6.69 (m, 2H), 5.92 (s, 2H), 4.14 – 3.97 (m, 2H), 3.93 – 3.81 (m, 1H), 3.73 – 3.60 (m, 1H), 3.04 (ddd, *J* = 25.0, 10.4, 2.5 Hz, 1H), 2.32 – 2.14 (m, 2H), 1.35 – 1.27 (m, 12H), 1.13 – 1.05 (m, 6H), 0.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 147.7 (d, J = 2.9 Hz), 146.9 (d, J = 3.6 Hz), 130.3 (d, J = 8.3 Hz), 123.3 (d, J = 8.4 Hz), 110.0 (d, J = 6.1 Hz), 108.3 (d, J = 2.9 Hz), 101.1, 80.2, 62.9 (d, J = 7.2 Hz), 62.0 (d, J = 7.4 Hz), 43.3 (d, J = 16.5 Hz), 41.6 (d, J = 137.2 Hz), 39.6 (d, J = 2.3 Hz), 27.9, 26.0, 25.9 (d, J = 5.4 Hz), 16.6 (d, J = 5.9 Hz), 16.4 (d, J = 5.8 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 28.83. HRMS (ESI) *m/z* calcd. for [C₂₁H₃₄O₇P]⁺ ([M + H]⁺) 429.2037, found 429.2035.

Tert-butyl(S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(phenanthren-2-
yl)butanoate (25)

According to the **general procedure A**, 2-vinylphenanthrene (40.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **25** as a colorless oil (48.4 mg, 50% yield, 93% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 17.35 min, t_R (minor) = 21.31 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.70 – 8.58 (m, 2H), 7.91 – 7.83 (m, 2H), 7.73 – 7.55 (m, 5H), 4.18 – 4.01 (m, 2H), 3.86 – 3.73 (m, 1H), 3.55 – 3.44 (m, 1H), 3.36 (ddd, *J* = 24.9, 8.4, 4.1 Hz, 1H), 2.53 – 2.39 (m, 2H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.24 (s, 9H), 1.12 (s, 3H), 0.97 (t, *J* = 7.1 Hz, 3H), 0.90 (s, 3H).

¹³**C** NMR (100 MHz,CDCl₃) δ 176.3, 135.2 (d, *J* = 8.0 Hz), 132.1 (d, *J* = 2.9 Hz), 132.0, 130.2 (d, *J* = 1.6 Hz), 129.5 (d, *J* = 5.4 Hz), 129.4, 128.6, 128.3 (d, *J* = 6.0 Hz), 127.2, 127.0, 126.7, 126.6, 122.9 (d, *J* = 2.6 Hz), 122.7, 80.2, 63.0 (d, *J* = 7.1 Hz), 62.0 (d, *J* = 7.4 Hz), 43.4 (d, *J* = 16.1 Hz), 41.9 (d, *J* = 136.2 Hz), 39.7 (d, *J* = 2.6 Hz), 27.8, 26.1, 26.0, 16.6 (d, *J* = 5.9 Hz), 16.3 (d, *J* = 5.7 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 28.67.

HRMS (ESI) m/z calcd. for $[C_{28}H_{38}O_5P]^+$ ($[M + H]^+$) 485.2451, found 485.2462.

Tert-butyl(S)-4-(benzo[d]oxazol-6-yl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (26)

According to the **general procedure A**, 6-vinylbenzo-[d]-oxazole (29.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **26** as a colorless oil (40.8 mg, 48% yield, 90% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.34 min, t_R (major) = 14.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.37 – 7.29 (m, 1H), 4.14 – 3.99 (m, 2H), 3.88 – 3.76 (m, 1H), 3.65 – 3.52 (m, 1H), 7.37 – 7.29 (m, 2H), 7.37 – 7.29 (m, 2H), 7.38 – 7.29 (m,

1H), 3.27 (ddd, *J* = 25.1, 9.0, 3.8 Hz, 1H), 2.41 – 2.27 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.23 (s, 9H), 1.08 (s, 3H), 1.02 (t, *J* = 7.0 Hz, 3H), 0.87 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.1, 152.9, 150.2 (d, J = 3.0 Hz), 139.4 (d, J = 3.2 Hz), 135.1 (d, J = 8.0 Hz), 126.8 (d, J = 7.0 Hz), 120.2 (d, J = 2.7 Hz), 112.1 (d, J = 7.2 Hz), 80.2, 62.9 (d, J = 7.2 Hz), 62.1 (d, J = 7.3 Hz), 43.2 (d, J = 15.9 Hz), 42.0 (d, J = 136.9 Hz), 40.0 (d, J = 2.6 Hz), 27.8, 26.2, 25.8, 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.18.

HRMS (ESI) m/z calcd. for $[C_{21}H_{33}NO_6P]^+$ ($[M + H]^+$) 426.2040, found 426.2040.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(pyridin-4-yl)butanoate (27)

According to the **general procedure A**, 4-vinylpyridine (21.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **27** as a colorless oil (53.9 mg, 70% yield, 84% ee).

HPLC analysis: Chiralcel AS-H (hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 11.04 min, t_R (major) = 12.56 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 2H), 7.37 – 7.26 (m, 2H), 4.14 – 3.99 (m, 2H), 3.94 – 3.82 (m, 1H), 3.77 – 3.64 (m, 1H), 3.11 (ddd, *J* = 25.1, 9.6, 2.8 Hz, 1H), 2.38 – 2.21 (m, 2H), 1.32 – 1.23 (m, 12H), 1.13 – 1.04 (m, 6H), 0.89 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 175.9, 149.7 (d, J = 3.0 Hz), 147.1 (d, J = 7.0 Hz), 125.2, 80.5, 63.1 (d, J = 7.1 Hz), 62.4 (d, J = 7.3 Hz), 43.3 (d, J = 15.1 Hz), 41.7 (d, J = 135.5 Hz), 39.0 (d, J = 3.5 Hz), 27.8, 26.2, 25.7, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 26.82.

HRMS (ESI) m/z calcd. for $[C_{19}H_{33}NO_5P]^+$ ($[M + H]^+$) 386.2091, found 386.2097.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(pyridin-3-yl)butanoate (28)

According to the **general procedure A**, 3-vinylpyridine (21.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **28** as a colorless oil (41.6 mg, 54% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 91/9, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.43 min, t_R (minor) = 15.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (brs, 2H), 7.77 (d, J = 7.7 Hz, 1H), 7.26 (s, 1H), 4.14 – 4.01 (m, 2H), 3.93 – 3.82 (m, 1H), 3.79 – 3.66 (m, 1H), 3.16 (ddd, J = 25.1, 8.7, 3.9 Hz, 1H), 2.39 – 2.24 (m, 2H), 1.32 – 1.26 (m, 12H), 1.11 – 1.05 (m, 6H), 0.93 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 176.4, 157.4 (d, *J* = 7.7 Hz), 149.2 (d, *J* = 2.7 Hz), 136.4 (d, *J* = 2.8 Hz), 124.8 (d, *J* = 5.3 Hz), 122.1 (d, *J* = 3.3 Hz), 80.2, 62.5 (d, *J* = 7.4 Hz), δ 62.4 (d, *J* = 7.5 Hz), 44.5 (d, *J* = 133.2 Hz), 43.4 (d, *J* = 15.4 Hz), 38.4 (d, *J* = 3.3 Hz), 28.0, 25.9, 25.3, 16.5 (d, *J* = 5.9 Hz), 16.4 (d, *J* = 5.9 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 27.58.

HRMS (ESI) m/z calcd. For $[C_{19}H_{33}NO_5P]^+$ ($[M + H]^+$) 386.2091, found 386.2092.

Tert-butyl(S)-4-(6-bromopyridin-2-yl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (29)

According to the **general procedure A**, 2-bromo-6-vinylpyridine (36.8 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **29** as a colorless oil (54.9 mg, 59% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.72 min, t_R (minor) = 14.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (t, J = 2.7 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.41 (d, J = 8.3 Hz, 1H), 4.14 – 3.99 (m, 2H), 3.97 – 3.86 (m, 1H), 3.85 – 3.74 (m, 1H), 3.11 (ddd, J = 25.1, 9.8, 3.0 Hz, 1H), 2.33 – 2.18 (m, 2H), 1.31 – 1.24 (m, 12H), 1.12 (t, J = 7.1 Hz, 3H), 1.08 (s, 3H), 0.93 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 175.9, 151.2 (d, *J* = 8.3 Hz), 140.8 (d, *J* = 4.3 Hz), 139.6 (d, *J* = 5.7 Hz), 132.5 (d, *J* = 8.0 Hz), 127.8 (d, *J* = 2.9 Hz), 80.6, 63.0 (d, *J* = 7.1 Hz), 62.5 (d, *J* = 7.3 Hz), 43.0 (d, *J* = 15.3 Hz), 39.0 (d, *J* = 2.9 Hz), 38.7 (d, *J* = 138.1 Hz), 27.8, 26.8, 25.3, 16.5 (d, *J* = 5.8 Hz), 16.4 (d, *J* = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 26.85.

HRMS (ESI) m/z calcd. for $[C_{19}H_{32}BrNO_5P]^+$ ($[M + H]^+$) 466.1176, found 466.1177.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(pyrimidin-5-yl)butanoate (30)

According to the **general procedure A**, 5-vinylpyrimidine (21.2 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-

methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **30** as a colorless oil (40.2 mg, 52% yield, 91% ee).

HPLC analysis: Chiralcel AS-H (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 21.33 min, t_R (minor) = 30.72 min.

¹**H NMR** (600 MHz, DMSO) δ 9.05 (d, *J* = 2.1 Hz, 1H), 8.76 (d, *J* = 2.4 Hz, 2H), 4.09 – 3.98 (m, 2H), 3.96 – 3.83 (m, 2H), 3.28 (ddd, *J* = 25.3, 11.0, 1.9 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.20 – 2.10 (m, 1H), 1.24 – 1.18 (m, 12H), 1.09 (t, *J* = 7.0 Hz, 3H), 1.05 (s, 3H), 0.97 (s, 3H).

¹³**C NMR** (150 MHz, DMSO) δ 175.6, 157.9 (d, J = 6.6 Hz), 157.3 (d, J = 3.7 Hz), 131.7 (d, J = 7.8 Hz), 80.2, 62.6 (d, J = 7.2 Hz), 62.5 (d, J = 7.2 Hz), 42.9 (d, J = 15.1 Hz), 38.1 (d, J = 2.9 Hz), 36.5 (d, J = 136.2 Hz), 27.8, 27.2, 24.7, 16.6 (d, J = 5.6 Hz), 16.5 (d, J = 5.4 Hz).

³¹**P NMR** (243 MHz, DMSO) δ 31.69.

HRMS (ESI) m/z calcd. for $[C_{18}H_{32}N_2O_5P]^+$ ($[M + H]^+$) 387.2043, found 387.2048.

Tert-butyl (S)-4-(diethoxyphosphoryl)-2,2-dimethyl-4-(thiophen-3-yl)butanoate (31)

According to the **general procedure A**, 3-vinylthiophene (22.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **31** as a colorless oil (33.6 mg, 43% yield, 86% ee).

HPLC analysis: Chiralcel INA (hexane/*i*-PrOH = 98.5/1.5, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 24.70 min, t_R (minor) = 26.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.17 (m, 1H), 7.12 – 7.02 (m, 2H), 4.12 – 3.93 (m, 2H), 3.89 – 3.76 (m, 1H), 3.66 – 3.52 (m, 1H), 3.33 – 3.20 (m, 1H), 2.30 – 2.12 (m, 2H), 1.32 – 1.22 (m, 12H), 1.08 – 1.01 (m, 6H), 0.88 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 136.8 (d, J = 8.4 Hz), 128.8 (d, J = 4.5 Hz), 125.3 (d, J = 2.0 Hz), 123.2 (d, J = 10.2 Hz), 80.1, 62.8 (d, J = 7.0 Hz), 61.9 (d, J = 7.4 Hz), 43.1 (d, J = 15.9 Hz), 39.8 (d, J = 2.5 Hz), 37.0 (d, J = 139.1 Hz), 27.9, 25.8, 25.6, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.10.

HRMS (ESI) m/z calcd. for $[C_{18}H_{32}O_5PS]^+$ ($[M + H]^+$) 391.1703, found 391.1709.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged

with CuI (3.8 mg, 0.02 mmol, 10 mol%), L6 (7.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane (2.0 mL) was added by syringe under argon atmosphere. Finally, but-3-en-1-yn-1-yltriisopropylsilane (41.6 mg, 0.20 mmol, 1.0 equiv), dibenzyl phosphite (104.8 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at rt for 3 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product **32** as a colorless oil (73.5 mg, 60% yield, 51% ee).

Tert-butyl(S)-4-(bis(benzyloxy)phosphoryl)-2,2-dimethyl-6-(triisopropylsilyl)hex-5-ynoate (32)

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (minor) = 11.29 min, t_R (major) = 13.20 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, *J* = 3.2, 2.7 Hz, 10H), 5.11 – 5.00 (m, 4H), 2.98 (ddd, *J* = 27.1, 10.7, 1.7 Hz, 1H), 2.38 – 2.22 (m, 1H), 1.82 – 1.77 (m, 1H), 1.39 (s, 9H), 1.26 (s, 3H), 1.20 (s, 3H), 1.08 – 0.99 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 176.1, 136.4 (d, J = 6.2 Hz), 136.2 (d, J = 5.9 Hz), 128.5 (d, J = 2.1 Hz), 128.3 (d, J = 5.3 Hz), 127.9 (d, J = 9.9 Hz), 103.5 (d, J = 14.1 Hz), 85.5 (d, J = 9.2 Hz), 80.4, 68.4 (d, J = 7.1 Hz), 68.2 (d, J = 6.8 Hz), 43.4 (d, J = 14.9 Hz), 38.8 (d, J = 3.8 Hz), 28.8 (d, J = 142.6 Hz), 27.9, 27.0, 23.8, 18.6, 11.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.23.

HRMS (ESI) m/z calcd. for $[C_{35}H_{54}O_5PSi]^+$ ($[M + H]^+$) 613.3473, found 613.3469.

Tert-butyl (S)-4-(4-(tert-butyl)phenyl)-4-(dimethoxyphosphoryl)-2,2dimethylbutanoate (33)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), dimethyl phosphite (44.0 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **33** as a colorless oil (53.6 mg, 65% yield, 92% ee).

HPLC analysis: Chiralcel IH (hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 230$ nm), t_R (minor) = 11.82 min, t_R (major) = 14.50 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, J = 8.3 Hz, 2H), 7.27 – 7.22 (m, 2H), 3.69 (d, J = 10.7 Hz, 3H), 3.36 (d, J = 10.4 Hz, 3H), 3.13 (ddd, J = 25.1, 10.3, 2.2 Hz, 1H), 2.39 – 2.19 (m, 2H), 1.27 (s, 9H), 1.25 (s, 9H), 1.09 (s, 3H), 0.92 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 150.2 (d, J = 3.9 Hz), 132.9 (d, J = 8.2 Hz),

129.4 (d, J = 7.0 Hz), 125.5 (d, J = 2.9 Hz), 80.1, 53.7 (d, J = 7.0 Hz), 52.7 (d, J = 7.4 Hz), 43.1 (d, J = 16.1 Hz), 40.9 (d, J = 136.1 Hz), 39.4 (d, J = 2.5 Hz), 34.5, 31.4, 27.8, 26.4, 25.5.

³¹**P NMR** (162 MHz, CDCl₃) δ 31.48.

HRMS (ESI) m/z calcd. for $[C_{22}H_{38}O_5P]^+$ ($[M + H]^+$) 413.2451, found 413.2460.

Tert-butyl (S)-4-(4-(tert-butyl)phenyl)-4-(dibutoxyphosphoryl)-2,2dimethylbutanoate (34)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), dibutyl phosphite (77.6 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **34** as a white solid (m.p.: 80.1-82.5 °C) (59.6 mg, 60% yield, 90% ee).

HPLC analysis: Chiralcel IH (hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 230 nm), t_R (minor) = 9.72 min, t_R (major) = 13.27 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 4.07 – 3.90 (m, 2H), 3.80 – 3.68 (m, 1H), 3.53 – 3.39 (m, 1H), 3.12 (ddd, J = 25.0, 10.8, 1.9 Hz, 1H), 2.39 (ddd, J = 14.4, 10.8, 3.8 Hz, 1H), 2.30 – 2.15 (m, 1H), 1.67 – 1.57 (m, 2H), 1.41 – 1.30 (m, 4H), 1.28 (s, 9H), 1.23 (s, 9H), 1.20 – 1.13 (m, 2H), 1.10 (s, 3H), 0.97 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H), 0.80 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.2, 150.0 (d, *J* = 3.8 Hz), 133.3 (d, *J* = 8.0 Hz), 129.5 (d, *J* = 7.0 Hz), 125.4 (d, *J* = 2.9 Hz), 80.0, 66.6 (d, *J* = 7.2 Hz), 65.5 (d, *J* = 7.6 Hz), 43.0 (d, *J* = 16.4 Hz), 41.2 (d, *J* = 136.6 Hz), 39.6 (d, *J* = 2.4 Hz), 34.5, 32.7 (d, *J* = 6.0 Hz), 32.4 (d, *J* = 6.0 Hz), 31.5, 27.8, 26.8, 25.2, 18.8, 18.6, 13.8, 13.7. ³¹P NMR (162 MHz, CDCl₃) δ 29.12.

HRMS (ESI) m/z calcd. for $[C_{28}H_{50}O_5P]^+$ ($[M + H]^+$) 497.3390, found 497.3405.

Tert-butyl (S)-4-(4-(tert-butyl)phenyl)-4-(diisopropoxyphosphoryl)-2,2dimethylbutanoate (35)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diisopropyl phosphite (66.4 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-

2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **35** as a colorless oil (48.7 mg, 52% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 8.28 min, t_R (minor) = 11.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 4H), 4.72 – 4.60 (m, 1H), 4.29 – 4.16 (m, 1H), 3.03 (ddd, J = 25.1, 10.9, 1.8 Hz, 1H), 2.37 (ddd, J = 14.5, 10.9, 3.7 Hz, 1H), 2.20 (td, J = 14.4, 1.9 Hz, 1H), 1.33 – 1.26 (m, 15H), 1.22 (s, 9H), 1.18 (d, J = 6.1 Hz, 3H), 1.09 (s, 3H), 0.96 (s, 3H), 0.67 (d, J = 6.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 150.0 (d, J = 3.6 Hz), 133.5 (d, J = 7.7 Hz), 129.7 (d, J = 7.2 Hz), 125.3 (d, J = 2.9 Hz), 79.9, 71.5 (d, J = 7.3 Hz), 70.0 (d, J = 7.7 Hz), 43.0 (d, J = 16.6 Hz), 41.8 (d, J = 138.6 Hz), 39.8 (d, J = 2.2 Hz), 34.5, 31.5, 27.8, 26.9, 25.1, 24.5 (d, J = 2.7 Hz), 24.1 (d, J = 4.4 Hz), 22.8 (d, J = 6.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.97.

HRMS (ESI) m/z calcd. for $[C_{26}H_{46}O_5P]^+$ ($[M + H]^+$) 469.3077, found 469.3092.

Tert-butyl(S)-4-(4-(tert-butyl)phenyl)-4-(diisobutoxyphosphoryl)-2,2-dimethylbutanoate (36)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diisobutyl phosphite (77.6 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **36** as a colorless oil (42.7 mg, 43% yield, 89% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 98.5/1.5, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 21.17 min, t_R (minor) = 22.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 4H), 3.81 – 3.66 (m, 2H), 3.56 – 3.44 (m, 1H), 3.25 – 3.08 (m, 2H), 2.42 (ddd, J = 14.5, 10.9, 3.7 Hz, 1H), 2.23 (td, J = 14.4, 1.8 Hz, 1H), 1.93 – 1.84 (m, 1H), 1.66 – 1.54 (m, 1H), 1.27 (s, 9H), 1.22 (s, 9H), 1.10 (s, 3H), 0.99 (s, 3H), 0.91 (d, J = 6.7 Hz, 6H), 0.74 (d, J = 6.7 Hz, 3H), 0.71 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.3, 150.1 (d, *J* = 3.8 Hz), 133.3 (d, *J* = 8.1 Hz), 129.6 (d, *J* = 7.0 Hz), 125.3 (d, *J* = 2.9 Hz), 80.0, 72.7 (d, *J* = 7.4 Hz), 71.7 (d, *J* = 7.8 Hz), 42.9 (d, *J* = 16.2 Hz), 41.2 (d, *J* = 136.8 Hz), 39.6 (d, *J* = 2.4 Hz), 34.5, 31.4, 29.4 (d, *J* = 6.3 Hz), 29.1 (d, *J* = 6.4 Hz), 27.8, 27.0, 25.0, 18.9, 18.8, 18.7, 18.6. ³¹P NMR (162 MHz, CDCl₃) δ 28.69.

HRMS (ESI) m/z calcd. for $[C_{28}H_{50}O_5P]^+$ ($[M + H]^+$) 497.3390, found 497.3406.

Tert-butyl(S)-4-(bis(benzyloxy)phosphoryl)-4-(4-(tert-butyl)phenyl)-2,2-dimethylbutanoate (37)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), dibenzyl phosphite (104.8 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **37** as a white solid (m.p.: 84.3-87.2 °C) (45.1 mg, 40% yield, 94% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 27.40 min, t_R (major) = 31.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 12H), 7.09 – 7.00 (m, 2H), 5.13 – 4.91 (m, 2H), 4.76 – 4.70 (m, 1H), 4.47 – 4.33 (m, 1H), 3.23 (dd, *J* = 25.1, 10.5 Hz, 1H), 2.47 – 2.36 (m, 1H), 2.33 – 2.18 (m, 1H), 1.32 (s, 9H), 1.20 (s, 9H), 1.07 (s, 3H), 0.94 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 150.2 (d, J = 3.8 Hz), 136.6 (d, J = 5.2 Hz), 132.9 (d, J = 8.0 Hz), 129.6 (d, J = 7.1 Hz), 128.5 (d, J = 14.8 Hz), 128.3 (d, J = 17.4 Hz), 128.0 (d, J = 27.9 Hz), 125.5 (d, J = 2.9 Hz), 80.0, 68.2 (d, J = 6.9 Hz), 67.4 (d, J = 7.5 Hz), 43.0 (d, J = 16.5 Hz), 41.4 (d, J = 135.8 Hz), 39.4, 34.5, 31.5, 27.8, 26.7, 25.2.

³¹**P NMR** (162 MHz, CDCl₃) δ 30.13.

HRMS (ESI) m/z calcd. for $[C_{34}H_{46}O_5P]^+$ ($[M + H]^+$) 565.3077, found 565.3069.

Tert-butyl4-((benzyloxy)(methoxy)phosphoryl)-4-(4-(tert-butyl)phenyl)-2,2-dimethylbutanoate (38)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), benzyl methyl phosphite (74.5 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **38** as a colorless oil (39.1 mg, 40% yield, 1.4:1 dr, 95% ee (major), 90% ee (minor)).

HPLC analysis: Chiralcel IB (hexane/*i*-PrOH = 97/3, flow rate 0.5 mL/min, λ = 214 nm), t_R (major₁) = 13.15 min, t_R (minor₂) = 14.84 min, t_R (major₂) = 21.16 min, t_R (minor₁) = 26.54 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.17 (m, 8H), 7.14 – 7.04 (m, 1H), 5.09 – 4.93 (m, 1.27H), 4.80 (dd, J = 11.7, 6.3 Hz, 0.40H), 4.33 (dd, J = 11.7, 7.4 Hz, 0.37H), 3.66 (d, J = 10.8 Hz, 1.23H), 3.34 (d, J = 10.5 Hz, 1.77H), 3.25 – 3.05 (m, 1H), 2.46 – 2.14 (m, 2H), 1.31 – 1.26 (m, 9H), 1.24 (s, 3.72H), 1.19 (s, 5.28H), 1.09 (s, 1.20H), 1.06 (s, 1.80H), 0.93 (s, 1.10H), 0.91 (s, 1.74H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 176.2, 150.3 (d, J = 3.8 Hz), 150.2 (d, J = 3.9 Hz), 136.6 (d, J = 1.2 Hz), 136.5 (d, J = 1.8 Hz), 132.9 (d, J = 8.1 Hz), 132.8 (d, J = 8.1 Hz), 129.5 (d, J = 7.0 Hz), 129.4 (d, J = 7.1 Hz), 128.7, 128.5(4), 128.4(6), 128.3, 128.1, 127.9, 125.6(1) (d, J = 2.9 Hz), 125.5(5) (d, J = 3.0 Hz), 80.1, 80.0, 68.4 (d, J = 6.8 Hz), 67.5 (d, J = 7.2 Hz), 53.5 (d, J = 7.1 Hz), 52.5 (d, J = 7.7 Hz), 43.1 (d, J = 16.4 Hz), 43.0 (d, J = 16.4 Hz), 42.9 (d, J = 9.5 Hz), 41.2 (d, J = 135.7 Hz), 41.1 (d, J = 136.0 Hz), 39.5 (d, J = 3.0 Hz), 39.4 (d, J = 2.5 Hz), 34.5, 31.5, 31.4, 27.8, 27.7, 26.6, 26.5, 25.5, 25.2.

³¹P NMR (162 MHz, CDCl₃) δ 30.88, 30.78. HRMS (ESI) *m*/*z* calcd. for [C₃₄H₄₆O₅P]⁺ ([M + H]⁺) 565.3077, found 565.3069.

Ethyl (S)-4-([1,1'-biphenyl]-4-yl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (39)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and ethyl 2-bromo-2-methylpropanoate (97.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **39** as a colorless oil (52.9 mg, 61% yield, 94% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 17.05 min, t_R (minor) = 20.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.52 (d, *J* = 7.9 Hz, 2H), 7.46 – 7.36 (m, 4H), 7.33 (t, *J* = 7.3 Hz, 1H), 4.16 – 3.98 (m, 2H), 3.94 – 3.82 (m, 1H), 3.75 – 3.61 (m, 2H), 3.51 – 3.40 (m, 1H), 3.16 (ddd, *J* = 24.9, 11.1, 1.9 Hz, 1H), 2.47 (ddd, *J* = 14.6, 11.0, 3.8 Hz, 1H), 2.24 (td, *J* = 14.2, 1.9 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.18 (s, 3H), 1.11 – 1.04 (m, 6H), 1.02 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.8, 140.7 (d, J = 1.6 Hz), 140.0 (d, J = 3.7 Hz), 135.1 (d, J = 7.9 Hz), 130.3 (d, J = 7.0 Hz), 128.9, 127.4, 127.0, 126.9 (d, J = 3.0 Hz), 62.9 (d, J = 7.1 Hz), 62.0 (d, J = 7.4 Hz), 60.4, 42.0 (d, J = 7.4 Hz), 41.3 (d, J = 128.3Hz), 40.2 (d, J = 2.5 Hz), 27.1, 24.3, 16.5 (d, J = 6.1 Hz), 16.3 (d, J = 5.8 Hz), 13.9. ³¹P NMR (162 MHz, CDCl₃) δ 28.50.

HRMS (ESI) m/z calcd. for $[C_{24}H_{34}O_5P]^+$ ($[M + H]^+$) 433.2138, found 433.2127.

Cyclopentyl (S)-4-([1,1'-biphenyl]-4-yl)-4-(diethoxyphosphoryl)-2,2dimethylbutanoate (40)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and cyclopentyl 2-bromo-2-methylpropanoate (117.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **40** as a colorless oil (62.3 mg, 66% yield, 93% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.97 min, t_R (minor) = 10.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 7.9 Hz, 2H), 7.45 – 7.36 (m, 4H), 7.32 (t, J = 7.5 Hz, 1H), 4.66 – 4.54 (m, 1H), 4.17 – 3.99 (m, 2H), 3.93 – 3.79 (m, 1H), 3.71 – 3.57 (m, 1H), 3.23 – 3.08 (m, 1H), 2.42 (ddd, J = 14.7, 10.6, 4.0 Hz, 1H), 2.32 – 2.21 (m, 1H), 1.71 – 1.36 (m, 8H), 1.30 (t, J = 7.0 Hz, 3H), 1.14 (s, 3H), 1.06 (t, J = 7.0 Hz, 3H), 1.03 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.6, 140.8 (d, *J* = 1.6 Hz), 140.0 (d, *J* = 3.7 Hz), 135.2 (d, *J* = 8.0 Hz), 130.3 (d, *J* = 7.1 Hz), 128.9, 127.4, 127.0, 126.9 (d, *J* = 3.0 Hz), 77.2, 62.3 (d, *J* = 7.0 Hz), 62.0 (d, *J* = 7.5 Hz), 42.2 (d, *J* = 15.9 Hz), 41.3 (d, *J* = 136.8 Hz), 40.0 (d, *J* = 2.7 Hz), 32.7, 32.3, 26.8, 24.7, 23.8, 23.7, 16.5 (d, *J* = 6.0 Hz), 16.3 (d, *J* = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.64.

HRMS (ESI) m/z calcd. for $[C_{27}H_{38}O_5P]^+$ ($[M + H]^+$) 473.2451, found 473.2446.

Phenyl(S)-4-([1,1'-biphenyl]-4-yl)-4-(diethoxyphosphoryl)-2,2-dimethylbutanoate (41)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and phenyl 2-bromo-2-methylpropanoate (121.6 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **41** as a colorless oil (57.6 mg, 60% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.76 min, t_R (minor) = 12.93 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.3 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.41 (m, 4H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 2H), 4.18 – 4.02 (m, 2H), 3.96 – 3.83 (m, 1H), 3.74 – 3.61 (m, 1H), 3.29 (ddd, *J* = 25.1, 10.8, 1.9 Hz, 1H), 2.63 (ddd, *J* = 14.5, 10.7, 3.9 Hz, 1H), 2.46 (td, *J* = 14.6, 1.9 Hz, 1H), 1.34 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.24 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 175.4, 150.8, 140.7 (d, J = 1.5 Hz), 140.3 (d, J = 3.7 Hz), 135.2 (d, J = 8.0 Hz), 130.4 (d, J = 7.0 Hz), 129.2, 128.9, 127.5, 127.3 (d, J = 2.9 Hz), 127.1, 125.6, 121.4, 63.1 (d, J = 7.0 Hz), 62.1 (d, J = 7.4 Hz), 42.7 (d, J = 15.9 Hz), 41.4 (d, J = 136.9 Hz), 40.1 (d, J = 2.4 Hz), 27.0, 24.8, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.9 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 28.36.

HRMS (ESI) m/z calcd. for $[C_{28}H_{34}O_5P]^+$ ($[M + H]^+$) 481.2138, found 481.2135.

Ethyl (S)-1-(2-([1,1'-biphenyl]-4-yl)-2-(diethoxyphosphoryl)ethyl)cyclobutane-1-carboxylate (42)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and ethyl 1-bromocyclobutane-1-carboxylate (103.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **42** as a colorless oil (73.7 mg, 83% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.88 min, t_R (minor) = 11.98 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, J = 7.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.44 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 4.18 – 4.00 (m, 2H), 3.95 – 3.83 (m, 1H), 3.80 – 3.63 (m, 2H), 3.58 – 3.45 (m, 1H), 3.03 (ddd, J = 24.0, 7.8, 5.3 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.50 – 2.40 (m, 1H), 2.12 – 2.04 (m, 1H), 2.00 – 1.92 (m, 1H), 1.87 – 1.77 (m, 2H), 1.74 – 1.65 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.10 – 0.99 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 140.7 (d, J = 1.5 Hz), 140.0 (d, J = 3.5 Hz), 134.8 (d, J = 7.5 Hz), 130.3 (d, J = 7.3 Hz), 128.8, 127.3, 127.0, 126.8 (d, J = 2.6 Hz), 62.9 (d, J = 7.1 Hz), 61.9 (d, J = 7.3 Hz), 60.3, 47.5 (d, J = 16.3 Hz), 41.4 (d, J = 137.5 Hz), 38.1 (d, J = 2.6 Hz), 31.6, 29.3, 16.5 (d, J = 6.1 Hz), 16.3 (d, J = 5.9 Hz), 15.7, 14.0.

³¹**P NMR** (162 MHz, CDCl₃) δ 28.22.

HRMS (ESI) m/z calcd. for $[C_{25}H_{34}O_5P]^+$ ($[M + H]^+$) 445.2138, found 445.2137.

Methyl (S)-1-(2-([1,1'-biphenyl]-4-yl)-2-(diethoxyphosphoryl)ethyl)cyclopentane-1-carboxylate (43)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and methyl 1-bromocyclopentane-1-carboxylate (103.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **43** as a colorless oil (56.9 mg, 64% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.73 min, t_R (minor) = 11.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.35 (m, 4H), 7.34 – 7.28 (m, 1H), 4.15 – 3.98 (m, 2H), 3.93 – 3.80 (m, 1H), 3.72 – 3.60 (m, 1H), 3.15 – 3.01 (m, 4H), 2.52 (ddd, *J* = 14.4, 10.8, 3.5 Hz, 1H), 2.38 – 2.21

(m, 2H), 1.90 – 1.80 (m, 1H), 1.67 – 1.47 (m, 5H), 1.42 – 1.34 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz,CDCl₃) δ 177.0, 140.6 (d, J = 1.5 Hz), 139.9 (d, J = 3.6 Hz), 134.8 (d, J = 7.8 Hz), 130.4 (d, J = 7.1 Hz), 128.8, 127.4, 126.9, 126.8 (d, J = 2.9 Hz), 62.9 (d, J = 7.1 Hz), 62.0 (d, J = 7.4 Hz), 53.9 (d, J = 15.7 Hz), 51.3, 42.2 (d, J = 137.0 Hz), 38.8 (d, J = 2.6 Hz), 37.8, 34.4, 24.5, 24.3, 16.5 (d, J = 6.1 Hz), 16.3 (d, J = 5.8 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 28.35.

HRMS (ESI) m/z calcd. for $[C_{25}H_{34}O_5P]^+$ ($[M + H]^+$) 445.2138, found 445.2135.

Methyl (S)-1-(2-([1,1'-biphenyl]-4-yl)-2-(diethoxyphosphoryl)ethyl)cyclohexane-1-carboxylate (44)

According to the **general procedure A**, 1-phenyl-4-vinyl-benzene (36.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and methyl 1-bromocyclohexane-1-carboxylate (110.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **44** as a colorless oil (77.0 mg, 84% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.64 min, t_R (minor) = 10.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.56 – 7.51 (m, 2H), 7.45 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 4.14 – 3.98 (m, 2H), 3.91 – 3.80 (m, 1H), 3.69 – 3.57 (m, 1H), 3.18 (ddd, J = 25.0, 10.6, 1.8 Hz, 1H), 3.10 (s, 3H), 2.43 – 2.33 (m, 1H), 2.31 – 2.14 (m, 2H), 1.96 – 1.77 (m, 2H), 1.63 – 1.56 (m, 1H), 1.55 – 1.45 (m, 2H), 1.43 – 1.34 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.24 – 1.12 (m, 3H), 1.06 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.1, 140.7 (d, J = 1.5 Hz), 139.8 (d, J = 3.7 Hz), 135.1 (d, J = 8.0 Hz), 130.4 (d, J = 6.9 Hz), 128.9, 127.4, 127.0, 126.8 (d, J = 3.0 Hz), 63.0 (d, J = 7.0 Hz), 62.0 (d, J = 7.3 Hz), 51.2, 46.4 (d, J = 14.8 Hz), 40.0 (d, J = 136.7 Hz), 39.9, 36.0, 33.1, 25.8, 23.2, 23.0, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 28.58.

HRMS (ESI) m/z calcd. for $[C_{26}H_{36}O_5P]^+$ ($[M + H]^+$) 459.2295, found 459.2294.

Diethyl (phenylamino)butyl)phosphonate (45)

(S)-(1-(4-(tert-butyl)phenyl)-3-methyl-3-

EtO_P^{=O} EtO^{_} NHPh

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and 2-bromo-2-methyl-N-phenylpropanamide (121.1 mg, 0.50 mmol, 2.5 equiv) were employed to yield the
product 45 as a colorless oil (65.2 mg, 71% yield, 88% ee).

HPLC analysis: Chiralcel IC (hexane/*i*-PrOH = 94/6, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 43.15 min, t_R (minor) = 49.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.27 – 7.17 (m, 6H), 7.03 (t, J = 7.5 Hz, 1H), 4.10 – 3.95 (m, 2H), 3.92 – 3.81 (m, 1H), 3.75 – 3.63 (m, 1H), 3.26 – 3.11 (m, 1H), 2.52 – 2.39 (m, 2H), 1.28 (s, 3H), 1.27 – 1.18 (m, 12H), 1.11 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.8, 150.1 (d, J = 3.7 Hz), 138.2, 132.8 (d, J = 8.1 Hz), 129.2 (d, J = 6.8 Hz), 128.7, 125.4 (d, J = 2.9 Hz), 123.9, 120.1, 62.9 (d, J = 7.1 Hz), 62.2 (d, J = 7.3 Hz), 43.7 (d, J = 15.2 Hz), 41.3 (d, J = 135.9 Hz), 40.3 (d, J = 2.5 Hz), 34.4, 31.3, 26.6, 26.3, 16.4 (d, J = 5.9 Hz), 16.2 (d, J = 5.9 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 28.93.

HRMS (ESI) m/z calcd. for $[C_{26}H_{39}NO_4P]^+$ ($[M + H]^+$) 460.2611, found 460.2610.

Diethyl (S)-(1-(4-(tert-butyl)phenyl)-4-(methoxy(methyl)amino)-3,3-dimethyl-4oxobutyl)phosphonate (46)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and 2-bromo-N-methoxy-N,2-dimethylpropanamide (105.0 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **46** as a colorless oil (43.6 mg, 51% yield, 86% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 11.66 min, t_R (major) = 12.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.5 Hz, 2H), 7.27 – 7.22 (m, 2H), 4.11 – 3.98 (m, 2H), 3.87 – 3.77 (m, 1H), 3.59 – 3.50 (m, 4H), 3.17 – 3.05 (m, 1H), 2.72 (ddd, J = 14.4, 11.1, 3.4 Hz, 1H), 2.51 (s, 3H), 2.18 – 2.09 (m, 1H), 1.32 – 1.26 (m, 12H), 1.22 (s, 4H), 1.20 (s, 3H), 0.99 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 176.8, 149.8 (d, J = 3.7 Hz), 132.4 (d, J = 8.0 Hz), 129.7 (d, J = 7.1 Hz), 125.1 (d, J = 2.9 Hz), 62.9 (d, J = 7.0 Hz), 61.8 (d, J = 7.4 Hz), 60.4, 42.5 (d, J = 16.2 Hz), 40.7 (d, J = 136.6 Hz), 38.3 (d, J = 2.2 Hz), 34.5, 33.1, 31.4, 26.7, 25.9, 16.5 (d, J = 6.0 Hz), 16.2 (d, J = 6.0 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 29.47.

HRMS (ESI) m/z calcd. for $[C_{22}H_{39}NO_5P]^+$ ($[M + H]^+$) 428.2560, found 428.2558.

Ethyl (S)-4-(4-(tert-butyl)phenyl)-2,2-dichloro-4-(diethoxyphosphoryl)butanoate (47)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and ethyl 2,2,2-trichloroacetate (95.7 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **47** as a colorless oil (52.4 mg, 58% yield, 91% ee) at -10 °C.

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 230$ nm), t_R (minor) = 14.84 min, t_R (major) = 17.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.5 Hz, 2H), 7.25 – 7.21 (m, 2H), 4.16 – 4.02 (m, 2H), 3.92 – 3.81 (m, 1H), 3.76 – 3.59 (m, 2H), 3.49 – 3.24 (m, 3H), 3.14 – 3.05 (m, 1H), 1.31 (t, J = 7.0 Hz, 3H), 1.26 (s, 9H), 1.07 – 0.99 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 150.8 (d, J = 3.3 Hz), 130.3 (d, J = 7.6 Hz), 129.8 (d, J = 7.0 Hz), 125.3 (d, J = 2.6 Hz), 84.6 (d, J = 23.1 Hz), 63.7, 63.3 (d, J = 6.9 Hz), 62.3 (d, J = 7.4 Hz), 45.9, 41.5 (d, J = 139.4 Hz), 34.6, 31.4, 16.5 (d, J = 6.0 Hz), 16.2 (d, J = 5.8 Hz), 13.6.

³¹**P NMR** (162 MHz, CDCl₃) δ 26.32.

HRMS (ESI) m/z calcd. for $[C_{20}H_{32}Cl_2O_5P]^+$ ($[M + H]^+$) 453.1359, found 453.1356.

Dibutyl (S)-(1-(4-(tert-butyl)phenyl)-3,3-dichloro-3-(phenylamino)propyl)phosphonate (48)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), dibutyl phosphite (77.6 mg, 0.40 mmol, 2.0 equiv), and 2,2,2-trichloro-N-phenylacetamide (119.2 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **48** as a colorless oil (68.8 mg, 62% yield, 81% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.87 min, t_R (major) = 17.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.28 – 7.22 (m, 6H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.08 (m, 1H), 4.07 – 3.94 (m, 2H), 3.88 – 3.79 (m, 1H), 3.67 – 3.47 (m, 3H), 3.24 – 3.13 (m, 1H), 1.66 – 1.57 (m, 2H), 1.44 – 1.33 (m, 4H), 1.26 – 1.19 (m, 2H), 1.14 (s, 9H), 0.91 (t, *J* = 7.4 Hz, 3H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.4, 150.6 (d, *J* = 3.6 Hz), 136.5, 130.4 (d, *J* = 7.9 Hz), 129.7 (d, *J* = 6.8 Hz), 129.0, 125.4, 125.3 (d, *J* = 2.6 Hz), 120.1, 87.0 (d, *J* = 22.7 Hz), 66.9 (d, *J* = 7.3 Hz), 66.2 (d, *J* = 7.6 Hz), 44.7, 42.1 (d, *J* = 139.1 Hz), 34.4, 32.6 (d, *J* = 5.9 Hz), 32.4 (d, *J* = 6.1 Hz), 31.3, 18.8, 18.7, 13.7, 13.6.

³¹**P NMR** (162 MHz, CDCl₃) δ 26.13.

HRMS (ESI) m/z calcd. for $[C_{28}H_{41}Cl_2NO_4P]^+$ ($[M + H]^+$) 556.2145, found 556.2145.

Tetraethyl(3-(4-(tert-butyl)phenyl)-1,1-dichloropropane-1,3-diyl)(S)-bis(phosphonate) (49)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and diethyl (trichloromethyl)phosphonate (127.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **49** as a colorless oil (41.3 mg, 40% yield, 93% ee).

HPLC analysis: Chiralcel IH (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm), t_R (minor) = 14.69 min, t_R (major) = 17.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (s, 4H), 4.37 – 4.17 (m, 4H), 4.14 – 4.02 (m, 2H), 3.90 – 3.79 (m, 1H), 3.72 (ddd, *J* = 25.3, 8.9, 2.2 Hz, 1H), 3.66 – 3.55 (m, 1H), 3.19 – 2.99 (m, 2H), 1.38 – 1.29 (m, 9H), 1.28 (s, 9H), 1.02 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.4 (d, *J* = 3.7 Hz), 132.7 (d, *J* = 7.9 Hz), 129.5 (d, *J* = 6.7 Hz), 125.4 (d, *J* = 2.9 Hz), 82.5 (dd, *J* = 179.1, 18.4 Hz), 65.8 (d, *J* = 7.2 Hz), 65.7 (d, *J* = 7.3 Hz), 63.3 (d, *J* = 7.0 Hz), 62.3 (d, *J* = 7.4 Hz), 42.4 (d, *J* = 3.6 Hz), 40.3 (dd, *J* = 138.8, 7.8 Hz), 34.5, 31.5, 16.7 – 16.4 (m), 16.2 (d, *J* = 5.8 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 27.03 (d, J = 4.0 Hz), 11.60 (d, J = 4.2 Hz).

HRMS (ESI) m/z calcd. for $[C_{21}H_{37}Cl_2O_6P_2]^+$ ($[M + H]^+$) 517.1437, found 517.1437.

Diethyl (S)-(1-(4-(tert-butyl)phenyl)-3,3-dichloropropyl-3-d)phosphonate (50)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and chloroform-*d* (60.2 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **50** as a colorless oil (39.6 mg, 52% yield, 70% ee) at -10 °C.

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm), t_R (major) = 12.45 min, t_R (minor) = 13.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.29 – 7.25 (m, 2H), 4.19 – 4.04 (m, 2H), 3.99 – 3.88 (m, 1H), 3.82 – 3.70 (m, 1H), 3.37 (ddd, J = 23.0, 9.1, 6.3 Hz, 1H), 2.91 – 2.79 (m, 2H), 1.37 – 1.31 (m, 12H), 1.10 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.1 (d, J = 5.7 Hz), 130.3 (d, J = 7.3 Hz), 128.9 (d, J = 6.6 Hz), 126.0 (d, J = 2.5 Hz), 63.2 (d, J = 6.9 Hz), 62.3 (d, J = 7.2 Hz), 43.8, 41.8 (d, J = 140.5 Hz), 34.7, 31.4, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 26.61.

HRMS (ESI) m/z calcd. for $[C_{17}H_{27}DCl_2O_3P]^+$ ($[M + H]^+$) 382.1210, found 382.1209.

Diethyl (S)-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)phosphonate (51)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole (165.0 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **51** as a colorless oil (31.5 mg, 43% yield, 74% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 9.58 min, t_R (minor) = 14.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.29 – 7.23 (m, 2H), 4.16 – 3.99 (m, 2H), 3.94 – 3.82 (m, 1H), 3.73 – 3.61 (m, 1H), 3.31 (ddd, *J* = 24.4, 10.6, 3.4 Hz, 1H), 2.94 – 2.71 (m, 2H), 1.34 – 1.27 (m, 12H), 1.05 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 150.9 (d, J = 3.5 Hz), 131.0 (d, J = 8.0 Hz), 128.7 (d, J = 6.8 Hz), 126.37 (qd, J = 276.2 Hz), 125.7 (d, J = 2.6 Hz), 63.5 (d, J = 7.0 Hz), 62.4 (d, J = 7.4 Hz), 38.47 (dq, J = 142.2, 2.6 Hz), 35.4 – 34.3 (m), 34.6, 31.4, 16.5 (d, J = 6.1 Hz), 16.2 (d, J = 5.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.39.

³¹**P NMR** (162 MHz, CDCl₃) δ 25.96.

HRMS (ESI) m/z calcd. for $[C_{17}H_{27}F_{3}O_{3}P]^{+}$ ($[M + H]^{+}$) 367.1650, found 367.1642.

Ethyl (S)-4-(4-(tert-butyl)phenyl)-4-(diethoxyphosphoryl)butanoate (52)

According to the **general procedure A**, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and ethyl 2-bromoacetate (83.5 mg, 0.50 mmol, 2.5 equiv) were employed to yield the product **52** as a colorless oil (61.6 mg, 80% yield, 29% ee).

HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 12.55 min, t_R (minor) = 14.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.2 Hz, 2H), 7.24 – 7.19 (m, 2H), 4.12 – 3.99 (m, 4H), 3.95 – 3.85 (m, 1H), 3.79 – 3.68 (m, 1H), 3.05 (ddd, J = 22.4, 10.3, 4.1 Hz, 1H), 2.47 – 2.34 (m, 1H), 2.30 – 2.16 (m, 3H), 1.31 – 1.27 (m, 12H), 1.21 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.7, 150.4 (d, *J* = 4.0 Hz), 132.0 (d, *J* = 6.8 Hz), 129.0 (d, *J* = 6.8 Hz), 125.7 (d, *J* = 2.6 Hz), 62.7 (d, *J* = 7.1 Hz), 62.0 (d, *J* = 7.4 Hz), 60.5, 43.4 (d, *J* = 138.5 Hz), 34.6, 32.4 (d, *J* = 15.7 Hz), 31.5, 25.3 (d, *J* = 4.0 Hz), 16.6 (d, *J* = 6.1 Hz), 16.3 (d, *J* = 6.0 Hz), 14.3.

³¹**P** NMR (162 MHz, CDCl₃) δ 28.42.

HRMS (ESI) m/z calcd. for $[C_{20}H_{34}O_5P]^+$ ($[M + H]^+$) 385.2138, found 385.2130.

The transformation of product

Under an argon atmosphere, HOAc (1.0 mL) was added to a mixture of 47 (45.3 mg, 0.10 mmol, 1.0 equiv, 91% ee) and Zn powder (52.3 mg, 0.80 mmol, 8.0 equiv) in an oven-dried Schlenk tube. The reaction mixture was then stirred at room temperature overnight. After completion of the reaction (monitored by TLC), the saturated Na₂CO₃ solution was added to the reaction mixture. Then EtOAc was used to extract the product from the aqueous layer (3×5.0 mL). The combined organic layer was washed by brine, dried over Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product **52** as a colorless oil (31.5 mg, 82% yield, 89% ee).

Ethyl (S)-4-(4-(tert-butyl)phenyl)-4-(diethoxyphosphoryl)butanoate (52)

HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 12.55 min, t_R (minor) = 14.48 min.

Mechanistic investigation A. Preparation of CuL complex^[6]

In a 50 mL round-bottomed flask containing 10 mL of 95% EtOH, was placed compound **L6** (161.5 mg, 0.30 mmol); stirring was then initiated until complete dissolution of all solids. The resulting colorless mixture was then treated with CuCl₂•H₂O (67.2 mg, 0.40 mmol) at room temperature and stirring was continued for overnight. The resulting mixture was concentrated to afford the green-colored precipitate which was washed with diethyl ether (3×5.0 mL) and dried on a rotary evaporator. The powdered product was crystallized from a sealed vial by dissolving 0.2 g of the powder in 2.0 mL of CH₂Cl₂ and then layering with hexane (5.0 mL) and leaving undisturbed for approximately 48 h.

B. Reaction of CuL complex

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with complex **D** (8.4 mg, 0.02 mmol, 10 mol%) above mentioned, and anhydrous Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane/CPME (2.0 mL, v/v = 1:1) was added by syringe under argon. Finally, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at -5 °C for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was diluted with EtOAc. The mixture was then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the product **4** (62.5 mg, 72%, 91% ee).

The reaction with CuCl₂•2H₂O (3.4 mg, 0.02 mmol, 10 mol%) and L6 (7.8 mg, 0.024 mmol, 12 mol%) followed the **general procedure** to afford 4 in 70% yield with 91% ee.

C. The nonlinear effect

[a] Reaction conditions: **1a** (0.20 mmol), **2a** (0.40 mmol), **3a** (0.50 mmol), Cul (10 mol%), **L6** (12 mol%), and Cs_2CO_3 (3.0 equiv) in 1,4-dioxane/CPME (1.0 mL/1.0 mL) at $-5^{\circ}C$ for 5 d.

[b] the ee of ligand was calculated by mixing dufferent amounts of ligand (R)-L and ligand (S)-L, ee = [m((S)-L)-m((R)-L)]/[m((S)-L)+m((R)-L)]

[c] ¹H NMR yield.

[d] ee values determined by chiral HPLC analysis.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L6 with different ee (7.8 mg, 0.024 mmol, 12

mol%), and anhydrous Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane/CPME (2.0 mL, (v/v = 1:1) was added by syringe under argon atmosphere. Finally, 4-tert-butylstyrene (32.0 mg, 0.20 mmol, 1.0 equiv), diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), and tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at -5 °C for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product. The e.e. values of products were then determined by HPLC, which indicated a linear relationship between e.e. values of products and corresponding catalysts. The catalyst L6 with different e.e. values were prepared by mixing (*S*)-L6 (99% e.e.) and (*R*)-L6 (99% e.e.) in appropriate ratios.

D. Radical inhibiting experiment

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L6** (7.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane/CPME (2.0 mL, (v/v = 1:1)) was added by syringe under argon. Finally, 1-phenyl-4-vinyl-benzene (59.8 mg, 0.20 mmol, 1.0 equiv) and diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv), tert-butyl 2-bromo-2-methylpropanoate (111.6 mg, 0.50 mmol, 2.5 equiv) were sequentially added into the mixture. To this solution was added BHT (132.0 mg, 0.60 mmol, 3.0 equiv), and the reaction mixture was stirred at -5 °C for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was diluted with EtOAc. The mixture was then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product (16.6 mg, 18% yield, 91% ee), **53** (61.5 mg, 34% yield), **54** (5.4 mg, 5% yield).

Tert-butyl2-(3,5-di-tert-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-2-methylpropanoate (53)

¹**H NMR** (400 MHz, CDCl₃) δ 6.58 (s, 2H), 1.48 (s, 9H), 1.25 – 1.21 (m, 21H), 1.08 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 186.5, 174.9, 147.0, 144.1, 81.1, 49.3, 43.2, 35.1, 29.7, 28.2, 22.2, 22.0.

HRMS (ESI) m/z calcd. for $[C_{23}H_{39}O_3]^+$ ($[M + H]^+$) 363.2894, found 363.2893.

Tert-butyl 4-([1,1'-biphenyl]-4-yl)-4-(3,5-di-tert-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-2,2-dimethylbutanoate (54)

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.46 – 7.38 (m, 4H), 7.35 – 7.30 (m, 1H), 7.14 (d, J = 8.3 Hz, 2H), 6.57 (d, J = 2.9 Hz, 1H), 6.42 (d, J = 2.9 Hz, 1H), 2.87 – 2.79 (m, 1H), 1.95 (dd, J = 14.2, 10.6 Hz, 1H), 1.83 (dd, J = 14.2, 1.5 Hz, 1H), 1.28 (s, 9H), 1.26 (s, 9H), 1.11 (s, 3H), 1.09 (s, 9H), 1.01 (s, 3H), 0.92 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.3, 176.8, 147.6, 146.4, 145.4, 145.3, 141.1, 140.4, 139.9, 128.9, 127.3, 127.1, 126.6, 80.1, 51.7, 43.5, 42.9, 40.1, 35.0, 34.8, 29.6, 29.4, 27.9, 26.3, 25.8, 25.2.

HRMS (ESI) m/z calcd. for $[C_{37}H_{50}NaO_3]^+$ ($[M + Na]^+$) 565.3652, found 565.3656.

E. Radical clock experiment

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L6 (7.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Then 1,4-dioxane/CPME (2.0 mL, (v/v = 1:1)) was added by syringe under argon. Finally, (1-(2-phenylcyclopropyl)vinyl)benzene 55 (44.1 mg, 0.20 mmol, 1.0 equiv) and diethyl phosphite (55.2 mg, 0.40 mmol, 2.0 equiv),

2-bromo-2-methyl-N-phenylpropanamide (121.0 mg, 0.50 mmol, 2.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at -5 °C for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was diluted with EtOAc. The mixture was then filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the product **56** as a colorless oil (55.0 mg, 53% yield, E/Z = 9/1, 19% ee_{major}).

Diethyl (6,6-dimethyl-7-oxo-1,4-diphenyl-7-(phenylamino)hept-3-en-1yl)phosphonate (56)

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.19 (m, 9H), 7.13 (d, J = 4.2 Hz, 5H), 7.09 – 6.99 (m, 2H), 5.47 (t, J = 6.9 Hz, 1H), 4.14 – 3.98 (m, 2H), 3.95 – 3.82 (m, 1H), 3.76 – 3.64 (m, 1H), 3.14 – 2.98 (m, 2H), 2.92 – 2.73 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.16 (s, 3H), 1.13 (s, 3H), 1.08 (t, J = 7.0 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 175.2, 143.9, 139.3 (d, J = 1.7 Hz), 137.8, 135.8 (d, J = 6.6 Hz), 130.2 (d, J = 15.9 Hz), 129.4 (d, J = 6.8 Hz), 128.7, 128.5 (d, J = 2.5 Hz), 128.2, 127.3 (d, J = 3.1 Hz), 126.8, 126.8, 124.0, 120.0, 62.8 (d, J = 7.0 Hz), 61.9 (d, J = 7.3 Hz), 44.8 (d, J = 137.2 Hz), 43.9, 40.0, 29.7 (d, J = 2.5 Hz), 25.9, 25.8, 16.5 (d, J = 6.0 Hz), 16.3 (d, J = 5.8 Hz).

³¹**P** NMR (162 MHz, CDCl₃) δ 28.24.

HRMS (ESI) m/z calcd. for $[C_{31}H_{39}NO_4P]^+$ ($[M + H]^+$) 520.2611, found 520.2609.

References

- [1] Y. Lv, W. Pu, S. Mao, X. Ren, Y. Wu, H. Cui, RSC Adv. 2017, 7, 41723–41726.
- [2] J. Zhang, J. Zhang, T. Chen, L. Han, Org. Biomol. Chem. 2017, 15, 5462–5467.
- [3] X.-Y. Dong, J.-T. Cheng, Y.-F. Zhang, Z.-L. Li, T.-Y. Zhan, J.-J. Chen, F.-L. Wang,
- N.-Y. Yang, L. Ye, Q.-S. Gu, X.-Y. Liu, J. Am. Chem. Soc. 2020, 142, 9501–9509.
- [4] C. C. Price, B. D. Halpern, J. Am. Chem. Soc. 1951, 73, 818-820.
- [5] A. A. S. Gietter, P. G. Gildner, A. P. Cinderella, D. A. Watson, *Org. Lett.* **2014**, *16*, 3166–3169.
- [6] M. Taghvaee, M. J. Rodríguez-Álvarez, J. García-Álvarez, I. del Río, A. J. Lough, R. A. Gossage, *J. Organomet. Chem.* **2017**, *845*, 107–114.

NMR spectra

¹H NMR, 400 MHz, CDCl₃ P(O)Ph₂]] С A A È I 6.02√ 6.02√ 1.90 1 2.00H 1.991 9.05₌ 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 3.5 0.5 0.0 -0. 4.0 3.0 2.5 2.0 1.0 4.5 1.5 5.5 5.0 fl (ppm) ¹³C NMR, 100 MHz, CDCl₃ 149.326 138.249 138.096 133.337 132.359 131.941 131.941 131.943 130.940 130.940 130.940 130.940 130.847 128.775 127.846 127.846 34.496 32.262 31.567 31.465 31.465 27.069 P(O)Ph₂ ^tBu С 10 0 -00 190 180 170 160 150 140 130 100 90 f1 (ppm) 80 60 50 40 30 20 120 110 70

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2ε f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

³¹P NMR, 162 MHz, CDCl₃

140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
110	120	100	00	00	10	20	~	20	10		00	100	100	1.10	100	100	200	220	210
fl (ppm)																			
									** '	(b.b.m).									

¹H NMR, 400 MHz, CDCl₃

7,256 7,227 7,228 7,2256 7,2256 8,807 7,228 8,2008 8,307 8,308 8,307 8,3

f1 (ppm)

³¹P NMR, 162 MHz, CDCl₃

S62

-40 -60 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

140 120 100 80 60 40 20 0 -20 -40 -60 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

S77

-50 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

³¹P NMR, 162 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

140 120 100 80 60

1 40 20 0

-40 -60 f1 (ppm)

80

-100

-20

-140

-160 -180 -200 -220 -240

-120

0 190 ò 100 90 f1 (ppm) -1 ³¹P NMR, 162 MHz, CDCl₃

-50 f1 (ppm)

³¹P NMR, 243 MHz, DMSO

¹³C NMR, 100 MHz, CDCl₃

-40 -60 f1 (ppm)

S95

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

¹³C NMR, 100 MHz, CDCl₃

30 10

-10

150 130 110 90 70 50

-50 f1 (ppm) -70

-90

-110

-130 -150 -170 -190 -210 -230 -25

-30

-40 -60 f1 (ppm)

10.0

2.124 1.094 1.084 1.06H 2.31H 1.11년 5.29년 1.22년 3.10년 3.16년 1.93 2.05 4.00 1.09 4.00H 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0

-50 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

 $\begin{array}{c} 7.594\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.556\\ 7$

¹³C NMR, 100 MHz, CDCl₃

$\begin{array}{c} 62,956\\ 62,886\\ 762,153\\ 62,153\\ 62,153\\ 62,153\\ 62,154\\ 64,156\\ 43,154\\ 40,619\\ 943,503\\ -31,291\\ 40,619\\ 940,619\\ 6420\\ -31,291\\ 16,156\\ 16,$

-80

-100

-120 -140 -160 -180 -200 -220 -240

-20

140 120 100 80 60 40 20 0

³¹P NMR, 162 MHz, CDCl₃

140 120 100 80 60 40

-40 -60 f1 (ppm) -80

-100 -120

-140 -160 -180 -200 -220 -240

-20

20 0

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

7,239 4,3074

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

- 25.963

³¹P NMR, 162 MHz, CDCl₃

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2£ f1 (ppm)

Peak#	Ret. Time	Area	Area%
1	19.148	14979977	49.790
2	21.112	15106343	50.210

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	19.207	22517587	95.166		
2	21.218	1143671	4.834		

Peak Table

Ò

PDA Ch	2 230nm		
Peak#	Ret. Tim	e Area	Area%
1	37.463	29543933	93.832
2	40.761	1942088	6.168

20

30

40

50

min

10

Peak#	Ret. Time	Area	Area%
1	13.188	13697952	95.475
2	14.357	649183	4.525

Peak#	Ret. Time	Area	Area%
1	42.369	43994097	49.893
2	44.797	44182777	50.107

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	43.086	4205347	95.991	
2	45.393	175625	4.009	

Peak#	Ret. Time	Area	Area%
1	10.949	1372713	49.774
2	11.637	1385151	50.226

C1	22
J-	LUU

Peak Table

Peak#	Ret. Time	Area	Area%
1	13.682	4782777	50.045
2	14.710	4774226	49.955

3.488

Peak#	Ret. Time	Area	Area%
1	11.151	1757520	50.327
2	11.966	1734647	49.673

Peak#	Ret. Time	Area	Area%
1	11.152	3845999	94.737
2	11.972	213653	5.263

Peak#	Ret. Time	Area	Area%
1	10.281	999964	50.252
2	12.406	989918	49.748

Peak#	Ret. Time	e Area	Area%
1	10.259	4484300	95.431
2	12.387	214697	4.569

Peak#	Ret. Time	Area	Area%
1	7.840	4683781	50.103
2	10.765	4664588	49.897

PDA Ch2 214nm				
Peak#	Ret. Time	Area	Area%	
1	7.835	498996	4.863	
2	10.760	9762850	95.137	

Peak#	Ret. Time	Area	Area%
1	8.606	3267133	95.499
2	9.590	153987	4.501

2

7.696

803739

95.015

Peak#	Ret. Time	Area	Area%
1	5.389	10491761	50.422
2	10.666	10316145	49.578

PDA Ch3 230nm				
Peak#	Ret. Time	Area	Area%	
1	5. 439	182554	6.702	
2	10.939	2541399	93.298	

Peak Table

Peak#	Ret. Time	Area	Area%
1	7.382	3686971	49.861
2	9.016	3707593	50.139

Peak#	Ret. Time	Area	Area%
1	7.387	644172	5.127
2	9.015	11920232	94.873

Peak#	Ret. Time	Area	Area%
1	21.440	8444228	49.522
2	26.967	8607124	50. 478

Peak#	Ret. Time	Area	Area%
1	21.476	1816597	6.195
2	26.869	27504749	93.805

2

Peak#	Ret. Time	Area	Area%
1	14.894	23341188	49.630
2	20.258	23689389	50.370

Peak#	Ret. Time	Area	Area%
1	15.063	1080700	5.038
2	15.063	1080700	5.03

Peak Table

Peak#	Ret. Time	Area	Area%
1	9.135	5702615	49.323
2	13.865	5859121	50.677

]	PDA Ch	3 210nm		
[Peak#	Ret. Time	Area	Area%
[1	9.128	286709	4.534
ſ	2	13.853	6036224	95.466

	C CEIV
1 17.350 27505856 96.	257
2 21.312 1069682 3.	743

	ALC OF A AMO	114 0 01	
1	10.305	5592506	50.201
2	14.269	5547612	49.799

Peak#	Ret. Time	Area	Area%
1	10.340	263573	4.865
2	14.222	5154238	95.135

S150

Peak#	Ret. Time	Area	Area%
1	10.481	4963289	49.672
2	12.548	5028851	50.328

DA Ch	1 254nm		S
Peak#	Ret. Time	Area	Area%
1	11.041	327607	8.138
2	12.564	3698226	91.862

Peak#	Ret. Time	Area	Area%
1	10.723	192524	95. 531
2	14.670	9005	4.469

20

25

30.722

30

35

40 min

mAU

25-

0-

ò

5

30.722

Peak Table

2

PDA Ch1 254nm Peak# Ret. Time 1 21.333 10

Area 3496725

156903

15

Area% 95.706

4.294

S155

Peak#	Ret. Time	Area	Area%
1	11.380	6635800	50.291
2	13.336	6558984	49.709

PDA Ch	1 210nm		
Peak#	Ret. Time	Area	Area%
1	11.290	2414308	24.690
2	13.201	7364073	75.310

Peak#	Ret. Time	Area	Area%
1	11.813	1311032	50.095
2	14.557	1306081	49.905

49.359

2

12.936

Peak#	Ret. Time	Area	Area%
1	8.295	2257063	50.226
2	11.375	2236749	49.774

PDA Ch2 230nm			
Peak#	Ret. Time	Area	Area%
1	8.280	1311261	95.931
2	11 200	55620	4 069

Peak#	Ret Time	Area	Area%
1	21, 172	2654237	94.724
2	22.675	147826	5.276

49.847

PDA	Ch2	230nm	

Peak#	Ret. Time	Area	Area%
1	27.403	295839	3.188
2	31.611	8982766	96.812

PDA Ch	1 214nm		
Peak#	Ret. Time	Area	Area%
1	13.198	3121624	26.403
2	14.831	2816971	23.827
3	21.299	2794991	23.641
4	26.704	3089190	26.129

Peak Table

Peak#	Ret. Time	Area	Area%
1	13.154	13723853	58.725
2	14.837	489636	2.095
3	21.155	8800441	37.658
4	26.539	355572	1.522

Peak#	Ret. Time	Area	Area%
1	17.139	3242283	49.980
2	20.466	3244888	50.020

Pea	k 1	Table
DDA	Chi	254mm

Peak#	Ret. Time	Area	Area%
1	8.973	16814363	96.541
2	10.392	602421	3. 459

3.859

546519

Peak#	Ret. Time	Area	Area%
1	7.877	5157299	95.273
2	11.980	255897	4.727

Peak#	Ret. Time	Area	Area%
1	8.750	7669595	49.958
2	11.637	7682566	50.042

Peak#	Ret. Time	Area	Area%
1	8.734	6678442	95.836
2	11.599	290154	4.164

Peak#	Ret. Time	Area	Area%
1	8.642	2590416	95. 531
2	10.647	121172	4.469

Peak#	Ret. Time	Area	Area%
1	43.963	5899796	49.587
2	48.988	5998144	50.413

Peak#	Ret Tim	Area	Arest
1	11. 708	6360049	50. 360
2	12.822	6269142	49.640

Peak#	Ret.	Time	Area	Area%
1	11.	661	518694	7.088
2	12.	795	6798999	92.912

Peak#	Ret. Time	Area	Area%
1	14.852	2256385	49.734
2	17.659	2280477	50.266

Peak#	Ret. Tin	ne Area	Area%
1	14.839	267044	4. 486
2	17.584	5685524	95.514

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.689	10132798	49.834
2	17.877	10200315	50.166

Peak#	Ret. Time	Area	Area%
1	14.872	1344672	9.440
2	17.942	12900154	90.560

Peak#	Ret. T	ime	Area	Area%
1	14.6	52	4463904	50.153
2	17.79	97	4436749	49.847

Peak#	Ret.	Time	Area	Area%
1	14.	689	360005	3.689
2	17.	735	9399648	96.311

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	12.399	31190284	49.631
2	13.855	31653877	50.369

PDA Ch	12 210nm		
Peak#	Ret. Time	Area	Area%
1	12.446	7197815	84.843
2	13.930	1285863	15.157

Peak#	Ret. Time	Area	Area%
1	9.592	14709147	49.349
2	14.673	15097400	50.651

Peal	K I	a	b.	Le
------	-----	---	----	----

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	9.575	16286921	86.763
2	14.687	2484749	13.237

Peak Table

Peak#	Ret. Time	Area	Area%
1	13.016	3027529	49.776
2	14,790	3054721	50, 224

13	D	Acres 6	1
Peak#	Ret. Time	Area	Areas
1	12.553	5078885	64.621
2	14,770	2780638	35, 379

Peak Table

Peak#	Ret. Time	Area	Area%
1	12.553	17040142	94.395
2	14.475	1011867	5.605

Peak Table

Peak#	Ret. Time	Area	Area%
1	11.991	6117624	49.586
2	13.070	6219817	50.414

Peak Table

Peak#	Ret. Time	Area	Area%
1	11.966	11367981	40.334
2	13.029	16816637	59,666