Supplementary Material

Copper-Catalyzed Radical Trifluoromethylalkynylation of Unactivated Alkenes with Terminal Alkynes

Yang-Qing Ren^{a,b}, Chang-Jiang Yang^a, Zhong-Liang Li^c, Qiang-Shuai Gu^c, Lin Liu^{a,*}, Xin-Yuan Liu^{b,*}

^aSchool of Science and Institute of Scientific Research, Great Bay University, Dongguan 523000, China

^bShenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

^cAcademy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Table of contents

General information	S2
Table S1 The effect of water on the reaction efficiency	S3
The synthesis of ligand L5	S4
General procedure	S5
Analytical data	S7
Synthetic applications	S17
Mechanistic studies	S19
NMR spectra	S21

General information

All reactions were carried out under argon atmosphere using Schlenk techniques unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuOAc was purchased from TCI chemicals. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. Anhydrous 1,4-dioxane, THF and MeCN were purchased from J&K Scientific. Other solvents and reagents were purchased from Aladdin, J&K Scientific, Leyan, and Bidepharm. or reactions that need heating, an oil bath was employed and the temperature of the oil bath was denoted. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV colorless (254 nm), iodine, or basic KMnO₄ indicator.

NMR spectra were recorded on Bruker DRX-400 spectrometers at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃ with tetramethylsilane (TMS) as an internal standard. Data for ¹H NMR were recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR were reported in terms of chemical shift (δ, ppm). High-resolution mass spectrometry (HRMS) was performed on an Agilent Technologies 6230 TOF LC/MS under the conditions of electrospray ionization (ESI)/ atmospheric pressure chemical ionization (APCI) in a positive/negative mode using isopropyl alcohol or DCM as the solvent.

Table S1. The effect of water on the reaction efficiency

Entry	H ₂ O (equiv)	Yield (%)
1		80
2	1.0	78
3	2.0	77
4	5.0	78
5	10	79
6	100	54

The synthesis of ligand L5

N-(1-(dimethylamino)-3-phenylpropan-2-yl)picolinamide (L5)

To a solution of **SL5** (1.78 g, 10 mmol) in anhydrous CH₂Cl₂ (70 mL) was added 2-picolinic acid (1.35 g, 11 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 2.11 g, 11 mmol), and 4-dimethylaminopyridine (DMAP, 1.34 g, 11 mmol). The reaction mixture was stirred at ambient temperature for 12 h. After completion, water was poured to above mixture, and the mixture was extracted with CH₂Cl₂. The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (gradient eluent: petroleum ether/ethyl acetate 9/1 to petroleum ether/ethyl acetate 2/1) to provide the product **L5**. Yield: 1.72 g (61%). ¹H NMR (400 MHz, CDCl₃): δ 8.56 – 8.50 (m, 1H), 8.21 – 8.14 (m, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.87 – 7.79 (m, 1H), 7.47 – 7.37 (m, 1H), 7.35 – 7.17 (m, 5H), 4.54 – 4.41 (m, 1H), 3.13 – 2.90 (m, 2H), 2.49 (dd, J = 12.4, 8.4 Hz, 1H), 2.35 (dd, J = 12.4, 6.2 Hz, 1H), 2.27 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 164.1, 149.9, 148.1, 137.8, 137.3, 129.7, 128.4, 126.4, 126.1, 122.2, 62.0, 48.4, 45.7, 38.9. HRMS (ESI) m/z calcd. for C₁₇H₂₂N₃O [M+H]⁺ 284.1757, found 284.1749.

General procedure

General procedure A:

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with radical precursor **3a** (0.24 mmol, 1.2 equiv), CuOAc (2.5 mg, 0.02 mmol, 10 mol%), **L5** (6.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then MeCN (2.0 mL) was added by syringe under argon atmosphere. Finally, alkene **2** (0.30 mmol, 1.5 equiv), and alkyne **1** (0.20 mmol, 1.0 equiv) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 3.5-7 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure B:

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with radical precursor **3a** (0.24 mmol, 1.2 equiv), alkynes **1** (0.20 mmol, 1.0 equiv), CuOAc (2.5 mg, 0.02 mmol, 10 mol%), **L5** (6.8 mg, 0.024 mmol, 12 mol%), and anhydrous Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then MeCN (2.0 mL) was added by syringe under argon atmosphere. Finally, alkenes **2** (0.30 mmol, 1.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 3.5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short pad of Celite and washed with EtOAc. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

Gram-scale reaction

$$Cz$$
 + ${}^{n}C_{9}H_{19}$ + CF_{3} CuOAc (10 mol%)

L5 (12 mol%)

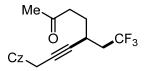
 Cz $CE_{2}CO_{3}$ (2.0 equiv)

 CE_{3} CE_{3}

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with radical precursor **3a** (6.0 mmol, 1.2 equiv), alkynes **1a** (5.0 mmol, 1.0 equiv), CuOAc (30.7 mg, 0.25 mmol, 5 mol%), **L5** (85.0 mg, 0.30 mmol, 6 mol%), and anhydrous Cs₂CO₃ (3.3 g, 10 mmol, 2.0 equiv). The tube was evacuated and backfilled with argon three times. Then MeCN (50 mL) was added by syringe under argon

atmosphere. Finally, alkenes **2a** (7.5 mmol, 1.5 equiv) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered through a short plug of silica gel eluted with EtOAc and purified by column chromatography to afford **4** as a colorless oil (1.84 g, 86% yield).

Analytical data


9-(4-(2,2,2-trifluoroethyl)tridec-2-yn-1-yl)-9H-carbazole (4)

68.4 mg, 80% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.10 – 8.04 (m, 2H), 7.51 – 7.42 (m, 4H), 7.28 – 7.18 (m, 2H), 4.99 (d, J = 1.9 Hz, 2H), 2.65 – 2.58 (m, 1H), 2.28 – 2.00 (m, 2H), 1.44 – 1.08 (m, 16H), 0.89 (t, J = 6.9 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 140.0, 126.1 (q, J = 277.5 Hz), 125.8, 123.2, 120.4, 119.4, 108.8, 84.9, 76.3, 38.9 (q, J = 27.8 Hz), 34.5, 32.7, 31.9, 29.5, 29.4, 29.3, 29.1, 26.8, 25.8 (q, J = 3.0 Hz), 22.7, 14.2. 19 F NMR (376 MHz, CDCl₃): δ -64.18. HRMS (ESI) m/z calcd. for C₂₇H₃₃F₃N [M+H]⁺ 428.2560, found 428.2554.

9-(10-phenyl-4-(2,2,2-trifluoroethyl)dec-2-yn-1-yl)-9H-carbazole (5)

70.7 mg, 77% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.49 – 7.31 (m, 4H), 7.29 – 7.11 (m, 7H), 4.98 (d, J = 2.0 Hz, 2H), 2.66 – 2.57 (m, 1H), 2.56 – 2.49 (m, 2H), 2.27 – 1.99 (m, 2H), 1.62 – 1.02 (m, 10H). 13 C NMR (101 MHz, CDCl₃) δ 142.8, 140.0, 128.5, 128.3, 126.2 (q, J = 277.4 Hz), 125.8, 125.7, 123.2, 120.4, 119.4, 108.9, 84.8, 76.4, 38.9 (q, J = 27.7 Hz), 36.0, 34.5, 32.7, 31.4, 29.1, 29.0, 26.7, 25.8 (q, J = 3.1 Hz). 19 F NMR (376 MHz, CDCl₃) δ -64.11. HRMS (ESI) m/z calcd. for C₃₀H₃₁F₃N [M+H]⁺ 462.2403, found 462.2401.

8-(9H-carbazol-9-yl)-5-(2,2,2-trifluoroethyl)oct-6-yn-2-one (6)

6

49.8 mg, 67% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.17 – 8.10 (m, 2H), 7.56 – 7.46 (m, 4H), 7.34 – 7.22 (m, 2H), 5.06 (d, J = 2.1 Hz, 2H), 2.75 – 2.69 (m, 1H), 2.41 – 2.09 (m, 4H), 1.89 (s, 3H), 1.86 – 1.76 (m, 1H), 1.58 – 1.44 (m, 1H). 13 C NMR (101 MHz, CDCl₃): δ 207.7, 139.9, 125.9 (q, J = 277.4 Hz), 125.9, 123.2, 120.5, 119.5, 108.8, 83.8, 77.4, 40.4, 39.0 (q, J = 28.0 Hz), 32.6, 29.8, 28.1, 25.1 (q, J = 3.1 Hz). 19 F NMR (376 MHz, CDCl₃): δ -64.17. HRMS (ESI) m/z calcd. for C₂₂H₂₁F₃NO [M+H]⁺ 372.1570, found 372.1568.

naphthalen-2-yl 8-(9H-carbazol-9-yl)-5-(2,2,2-trifluoroethyl)oct-6-ynoate (7)

55.7 mg, 54% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 7.8 Hz, 2H), 7.94 – 7.77 (m, 3H), 7.62 – 7.46 (m, 7H), 7.37 – 7.26 (m, 2H), 7.22 (dd, J = 8.9, 2.4 Hz, 1H), 5.08 (d, J = 1.9 Hz, 2H), 2.85 – 2.72 (m, 1H), 2.57 (t, J = 7.3 Hz, 2H), 2.44 – 2.13 (m, 2H), 2.00 – 1.74 (m, 2H), 1.72 – 1.51 (m, 2H). 13 C NMR (101 MHz, CDCl₃): δ 171.8, 148.3, 139.9, 133.8, 131.5, 129.5, 127.8, 127.7, 126.6, 126.0 (q, J = 277.6 Hz), 125.9, 125.8, 123.2, 121.1, 120.4, 119.5, 118.5, 108.9, 84.0, 77.3, 38.8 (q, J = 28.0 Hz), 33.7, 33.7, 32.7, 25.7 (q, J = 3.2 Hz), 22.2. 19 F NMR (376 MHz, CDCl₃): δ -64.02. HRMS (ESI) m/z calcd. for C₃₂H₂₇F₃NO₂ [M+H]⁺ 514.1988, found 514.1973.

8-(9H-carbazol-9-yl)-5-(2,2,2-trifluoroethyl)oct-6-yn-1-ol (8)

8

57.7 mg, 77% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.12 – 8.06 (m, 2H), 7.54 – 7.42 (m, 4H), 7.30 – 7.21 (m, 2H), 5.02 (d, J = 2.0 Hz, 2H), 3.43 (t, J = 6.2 Hz, 2H), 2.75 – 2.56 (m, 1H), 2.34 – 2.02 (m, 2H), 1.61 – 1.16 (m, 7H). 13 C NMR (101 MHz, CDCl₃): δ 139.9, 126.1 (q, J = 277.5 Hz), 125.8, 123.2, 120.4, 119.4, 108.9, 84.5, 76.6, 62.6, 38.8 (q, J = 27.9 Hz), 34.2, 32.6, 32.1, 25.8 (q, J = 3.0 Hz), 23.0. 19 F NMR (376 MHz, CDCl₃): δ -64.18. HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_3NO$ [M+H] $^{+}$ 374.1726, found 374.1724.

9-(8-(naphthalen-2-ylmethoxy)-4-(2,2,2-trifluoroethyl)oct-2-yn-1-yl)-9H-carbazole (9)

60.8 mg, 59% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): 8.08 - 8.01 (m, 2H), 7.83 - 7.76 (m, 3H), 7.75 - 7.70 (m, 1H), 7.49 - 7.38 (m, 7H), 7.25 - 7.18 (m, 2H), 4.95 (d, J = 1.9 Hz, 2H), 4.57 (brs, 2H), 3.36 - 3.28 (m, 2H), 2.64 - 2.60 (m, 1H), 2.26 - 1.97 (m, 2H), 2.55 - 1.28 (m, 6H). 2.55 - 1.28 (m, 6H). 2.55 - 1.28 (m, 6H).

δ 140.0, 136.1, 133.4, 133.0, 128.2, 127.9, 127.8, 126.4, 126.2, 126.2 (q, J = 277.6 Hz), 125.9, 125.8, 123.2, 120.4, 119.4, 108.9, 84.6, 76.6, 73.0, 70.0, 38.8 (q, J = 27.8 Hz), 34.3, 32.7, 29.3, 25.8 (q, J = 3.0 Hz), 23.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.07. HRMS (ESI) m/z calcd. for C₃₃H₃₁F₃NO [M+H]⁺ 514.2352, found 514.2350.

$9-(10-((3-methoxybenzyl)oxy)-4-(2,2,2-trifluoroethyl)dec-2-yn-1-yl)-9H-carbazole \\ (10)$

74.6 mg, 74% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.10 – 8.04 (m, 2H), 7.49 – 7.42 (m, 4H), 7.29 – 7.18 (m, 3H), 6.93 – 6.87 (m, 2H), 6.85 – 6.78 (m, 1H), 5.00 (d, J = 2.0 Hz, 2H), 4.46 (d, J = 1.7 Hz, 2H), 3.79 (s, 3H), 3.43 – 3.33 (m, 2H), 2.70 – 2.54 (m, 1H), 2.28 – 2.00 (m, 2H), 1.55 – 1.46 (m, 2H), 1.44 – 1.12 (m, 8H). 13 C NMR (101 MHz, CDCl₃): δ 159.8, 140.4, 139.9, 129.4, 126.1 (q, J = 277.3 Hz), 125.8, 123.2, 120.4, 119.9, 119.4, 113.1, 113.0, 108.9, 84.7, 76.4, 72.8, 70.4, 55.2, 38.8 (q, J = 27.7 Hz), 34.5, 32.7, 29.6, 28.9, 26.7, 26.0, 25.8 (q, J = 3.1 Hz). 19 F NMR (376 MHz, CDCl₃): δ -64.08. HRMS (ESI) m/z calcd. for $C_{32}H_{35}F_{3}NO_{2}$ [M+H] $^{+}$ 522.2614, found 522.2613.

2-(8-(9H-carbazol-9-yl)-5-(2,2,2-trifluoroethyl)oct-6-yn-1-yl)isoindoline-1,3-dione (11)

$$O$$
 N
 O
 Cz
 O
 CF_3

70.4 mg, 70% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 7.8 Hz, 2H), 7.84 – 7.77 (m, 2H), 7.70 – 7.62 (m, 2H), 7.50 – 7.40 (m, 4H), 7.27 – 7.19 (m, 2H), 4.98 (d, J = 1.9 Hz, 2H), 3.54 (t, J = 7.3 Hz, 2H), 2.68 – 2.56 (m, 1H), 2.30 – 2.00 (m, 2H), 1.66 – 1.20 (m, 6H). 13 C NMR (101 MHz, CDCl₃): δ 168.4, 139.9, 133.9, 132.1, 126.0 (q, J = 277.5 Hz), 125.8, 123.2, 123.2, 120.4, 119.4, 108.9, 84.3, 76.7, 38.8 (q, J = 27.8 Hz), 37.6, 33.9, 32.6, 28.1, 25.8 (q, J = 3.1 Hz), 24.1. 19 F NMR (376 MHz, CDCl₃): δ -64.11. HRMS (ESI) m/z calcd. for C₃₀H₂₆F₃N₂O₂ [M+H]⁺ 503.1941, found 503.1936.

9-(6,6,6-trifluoro-4-phenylhex-2-yn-1-yl)-9H-carbazole (12)

45.3 mg, 60% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 4.0 Hz, 4H), 7.30 – 7.20 (m, 7H), 5.08 (d, J = 1.9 Hz, 2H), 3.96 – 3.88 (m, 1H), 2.59 – 2.32 (m, 2H). 13 C NMR (101 MHz, CDCl₃): δ 138.9, 138.1, 127.8, 126.5, 126.2, 124.8, 124.4 (q, J = 278.1 Hz), 122.2, 119.3, 118.4, 107.8, 82.3, 77.1, 40.8 (q, J = 27.7 Hz), 31.7, 30.8 (q, J = 3.3 Hz). 19 F NMR (376 MHz, CDCl₃): δ -64.39. HRMS (ESI) m/z calcd. for C₂₄H₁₉F₃N [M+H]⁺ 378.1464, found 378.1456.

2-(6-(9H-carbazol-9-yl)-1,1,1-trifluorohex-4-yn-3-yl)isoindoline-1,3-dione (13)

$$Cz$$
 CF_3

51.0 mg, 57% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 7.8 Hz, 2H), 7.87 – 7.79 (m, 2H), 7.74 – 7.68 (m, 2H), 7.49 – 7.39 (m, 4H), 7.27 – 7.20 (m, 2H), 5.41 – 5.33 (m, 1H), 5.04 (d, J = 2.1 Hz, 2H), 3.27 – 3.11 (m, 1H), 2.84 – 2.62 (m, 1H). 13 C NMR (101 MHz, CDCl₃): δ 166.4, 139.8, 134.4, 131.6, 125.9, 124.8 (q, J = 277.6 Hz), 123.7, 123.2, 120.4, 119.6, 108.8, 78.8, 78.3, 36.7 (q, J = 28.7 Hz), 35.8 (q, J = 4.0 Hz), 32.5. 19 F NMR (376 MHz, CDCl₃): δ -65.17. HRMS (ESI) m/z calcd. for C₂6H₁₈F₃N₂O₂ [M+H]⁺ 447.1315, found 447.1319.

9-(4-ethoxy-6,6,6-trifluorohex-2-yn-1-yl)-9H-carbazole (14)

14

56.4 mg, 82% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 7.8 Hz, 2H), 7.50 – 7.36 (m, 4H), 7.24 (t, J = 7.3 Hz, 2H), 4.98 (d, J = 1.6 Hz, 2H), 4.24 (t, J = 6.6 Hz, 1H), 3.68 – 3.56 (m, 1H), 3.34 – 3.22 (m, 1H), 2.56 – 2.28 (m, 2H), 1.10 (t, J = 7.0, 1.7 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 139.9, 125.9, 125.1 (q, J = 277.2 Hz), 123.3, 120.5, 119.6, 108.7, 81.0, 80.7, 64.7, 63.3 (q, J = 3.9 Hz), 40.1 (q, J = 28.2 Hz), 32.5, 14.8. 19 F NMR (376 MHz, CDCl₃): δ -63.77. HRMS (ESI) m/z calcd. for C₂₀H₁₉F₃NO [M+H]⁺ 346.1413, found 346.1410.

2-(((7-cyclopropyl-5-(2,2,2-trifluoroethyl)hept-6-yn-1-yl)oxy)methyl)naphthalene (17)

38.4 mg, 51% yield (General procedure A). colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.80 (m, 3H), 7.78 (s, 1H), 7.51 – 7.43 (m, 3H), 4.66 (s, 2H), 3.51 (t, J = 6.3 Hz, 2H), 2.72 – 2.58 (m, 1H), 2.35 – 2.05 (m, 2H), 1.74 – 1.37 (m, 6H), 1.23 – 1.13 (m, 1H), 0.73 – 0.67 (m, 2H), 0.63 – 0.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 133.8, 133.5, 128.7, 128.4, 128.2, 126.8, 126.8 (q, J = 277.4 Hz), 126.6, 126.3, 126.3, 86.2, 76.1, 73.5, 70.7, 39.9 (q, J = 27.4 Hz), 35.4, 29.9, 26.4 (q, J = 3.0 Hz), 24.2, 8.67, 8.65. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.08. HRMS (ESI) m/z calcd. for C₂₃H₂₆F₃O [M+H]⁺ 375.1930, found 375.1921.

2-(((7-cyclohexyl-5-(2,2,2-trifluoroethyl)hept-6-yn-1-yl)oxy)methyl)naphthalene (18)

42.8 mg, 51% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.86 – 7.80 (m, 3H), 7.78 (s, 1H), 7.52 – 7.37 (m, 3H), 4.67 (s, 2H), 3.52 (t, J = 6.2 Hz, 2H), 2.73 – 2.62 (m, 1H), 2.37 – 2.05 (m, 3H), 1.81 – 1.16 (m, 16H). 13 C NMR (101 MHz, CDCl₃): δ 136.1, 133.3, 133.0, 128.1, 127.9, 126.3 (q, J = 278.8 Hz), 127.7, 126.3, 126.1, 125.8, 125.8, 86.9, 80.3, 73.0, 70.2, 39.6 (q, J = 27.3 Hz), 34.9, 32.9, 29.4, 28.9, 25.9, 25.9 (q, J = 3.0 Hz), 24.8, 23.6. 19 F NMR (376 MHz, CDCl₃): δ -63.99. HRMS (ESI) m/z calcd. for C₂₆H₃₂F₃O [M+H]⁺ 417.2400, found 417.2389.

13-((3-methoxybenzyl)oxy)-7-(2,2,2-trifluoroethyl)tridec-5-yn-1-ol (19)

44.8 mg, 54% yield (General procedure A). colorless oil. ¹H NMR (400 MHz, CDCl₃):

 δ 7.30 – 7.21 (m, 1H), 6.94 – 6.88 (m, 2H), 6.86 – 6.78 (m, 1H), 4.48 (s, 2H), 3.81 (s, 3H), 3.63 (t, J = 6.4 Hz, 2H), 3.46 (t, J = 6.6 Hz, 2H), 2.67 – 2.63 (m, 1H), 2.39 – 2.08 (m, 4H), 1.92 – 1.76 (m, 1H), 1.71 – 1.19 (m, 14H). ¹³C NMR (101 MHz, CDCl₃): δ 159.7, 140.2, 129.4, 126.3 (q, J = 277.6 Hz), 119.9, 113.1, 113.0, 82.1, 80.9, 72.8, 70.4, 62.4, 55.2, 39.4 (q, J = 27.4 Hz), 35.0, 31.8, 29.7, 29.0, 26.8, 26.1, 25.8 (q, J = 3.0 Hz), 25.2, 18.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.07. HRMS (ESI) m/z calcd. for C₂₃H₃₄F₃O₃ [M+H]⁺ 415.2455, found 415.2450.

((4-(2,2,2-trifluoroethyl)tridec-2-yn-1-yl)oxy)benzene (20)

$$^{n}C_{9}H_{19}$$
 CF_{3}

20

59.0 mg, 83% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.38 – 7.21 (m, 2H), 7.07 – 6.88 (m, 3H), 4.68 (d, J = 2.0 Hz, 2H), 2.76 – 2.69 (m, 1H), 2.42 – 2.04 (m, 2H), 1.60 – 1.15 (m, 16H), 0.89 (t, J = 6.6 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 157.7, 129.4, 126.1 (q, J = 277.4 Hz), 121.3, 115.0, 88.2, 77.2, 56.1, 38.8 (q, J = 27.8 Hz), 34.6, 31.9, 29.6, 29.5, 29.3, 29.2, 26.8, 25.9 (q, J = 3.0 Hz), 22.7, 14.2. 19 F NMR (376 MHz, CDCl₃): δ -64.25. HRMS (ESI) m/z calcd. for C₂₁H₃₀F₃O [M+H]⁺ 355.2243, found 355.2240.

1-(((10,10-diethoxy-7-(2,2,2-trifluoroethyl)dec-8-yn-1-yl)oxy)methyl)-3-methoxybenzene (21)

71.0 mg, 80% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.29 – 7.20 (m, 1H), 6.94 – 6.87 (m, 2H), 6.85 – 6.78 (m, 1H), 5.26 (d, J = 1.4 Hz, 1H), 4.47 (s, 2H), 3.80 (s, 3H), 3.77 – 3.67 (m, 2H), 3.63 – 3.51 (m, 2H), 3.46 (t, J = 6.5 Hz, 2H), 2.82 – 2.71 (m, 1H), 2.47 – 2.12 (m, 2H), 1.70 – 1.27 (m, 12H), 1.22 (t, J

6.5 Hz, 2H), 2.82 - 2.71 (m, 1H), 2.47 - 2.12 (m, 2H), 1.70 - 1.27 (m, 12H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.71, 140.29, 129.36, 126.09 (q, J = 277.4 Hz), 119.83, 113.05, 112.90, 91.29, 86.11, 77.92, 72.74, 70.33, 60.67, 55.16, 38.70 (q, J = 27.9 Hz), 34.33, 29.68, 29.02, 26.82, 26.07, 25.75 (q, J = 3.0 Hz), 15.08. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.24. HRMS (ESI) m/z calcd. for C₂₄H₃₆F₃O₄ [M+H]⁺ 445.2560, found 445.2572.

phenyl(4-(2,2,2-trifluoroethyl)tridec-2-yn-1-yl)sulfane (22)

22

52.3 mg, 71% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.42 (dd, J = 7.7, 1.6 Hz, 2H), 7.30 (dd, J = 8.6, 6.8 Hz, 2H), 7.26 – 7.20 (m, 1H), 3.62 (d, J = 2.2 Hz, 2H), 2.69 – 2.62 (m, 1H), 2.30 – 2.04 (m, 2H), 1.50 – 1.16 (m, 16H), 0.89 (t, J = 6.8 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 135.3, 130.0, 128.8, 126.7, 126.2 (q, J = 277.5 Hz), 84.3, 77.8, 39.0 (q, J = 27.6 Hz), 34.8, 31.9, 29.6, 29.5, 29.3, 29.2, 26.8, 25.9 (q, J = 3.0 Hz), 22.9, 22.7, 14.2. 19 F NMR (376 MHz, CDCl₃): δ -64.23. HRMS (ESI) m/z calcd. for C₂₁H₃₀F₃S [M+H]⁺ 371.2015, found 371.2012.

(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)benzene (23)

35.2 mg, 54% yield (General procedure A). colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.36 (m, 2H), 7.31 – 7.25 (m, 3H), 2.98 – 2.86 (m, 1H), 2.52 – 2.20 (m, 2H), 1.66 – 1.43 (m, 4H), 1.40 – 1.20 (m, 12H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 131.6, 128.2, 127.9, 126.3 (q, J = 277.5 Hz), 123.4, 90.2, 82.5, 39.2 (q, J = 27.6 Hz), 34.8, 31.9, 29.6, 29.5, 29.3, 29.3, 26.9, 26.5 (q, J = 3.0 Hz), 22.7, 14.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.14. HRMS (APCI) m/z calcd. for C₂₀H₂₈F₃ [M+H]⁺ 325.2138, found 325.2134.

1- ethyl-4-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)benzene (24)

38.8 mg, 55% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 2.96 – 2.85 (m, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.50 – 2.19 (m, 2H), 1.65 – 1.41 (m, 4H), 1.36 – 1.17 (m, 15H), 0.88 (t, J = 6.6 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 144.3, 131.6, 127.8, 126.3 (q, J = 277.4 Hz), 120.6, 89.5, 82.6, 39.2 (q, J = 27.5 Hz), 34.9, 31.9, 29.6, 29.5, 29.3, 29.3, 28.8, 27.0, 26.5 (q, J = 3.0 Hz), 22.7, 15.5, 14.1. 19 F NMR (376 MHz, CDCl₃): δ -64.12. HRMS (ESI) m/z calcd. for C₂₂H₃₂F₃ [M+H]⁺ 353.2451, found 353.2444.

1-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)-4-(trifluoromethyl)benzene (25)

53.1 mg, 68% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 3.00 – 2.88 (m, 1H), 2.49 – 2.21 (m, 2H), 1.76 – 1.43 (m, 4H), 1.39 – 1.20 (m, 12H), 0.93 – 0.81 (m, 3H). 13 C NMR (101 MHz, CDCl₃): δ 131.8, 129.7 (q, J = 32.6 Hz), 127.21 (q, J = 1.1 Hz), 126.2 (q, J = 277.4 Hz), 125.1 (q, J = 3.8 Hz), 124.0 (q, J = 272.2 Hz), 92.9, 81.4, 39.0 (q, J = 27.7 Hz), 34.7, 31.9, 29.5, 29.5, 29.3, 29.2, 26.9, 26.5 (q, J = 3.0 Hz), 22.7, 14.1. 19 F NMR (376 MHz, CDCl₃): δ -62.80, -64.20. HRMS (ESI) m/z calcd. for C₂₁H₂₇F₆ [M+H]⁺ 393.2012, found 393.2012.

methyl 4-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)benzoate (26)

41.0 mg, 54% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.98 – 7.94 (m, 2H), 7.47 – 7.42 (m, 2H), 3.91 (s, 3H), 2.99 – 2.89 (m, 1H), 2.52 – 2.22 (m, 2H), 1.68 – 1.42 (m, 4H), 1.39 – 1.19 (m, 12H), 0.91 – 0.82 (m, 3H). 13 C NMR (101 MHz, CDCl₃): δ 166.6, 131.5, 129.4, 129.2, 128.1, 126.2 (q, J = 277.4 Hz), 93.5, 82.0, 52.2, 39.0 (q, J = 27.7 Hz), 34.7, 31.9, 29.5, 29.5, 29.3, 29.2, 26.9, 26.6 (q, J = 3.0 Hz), 22.7, 14.1. 19 F NMR (376 MHz, CDCl₃): δ -64.17. HRMS (ESI) m/z calcd. for C₂₂H₃₀F₃O₂ [M+H]⁺ 383.2192, found 383.2187.

4-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)benzonitrile (27)

39.8 mg, 57% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 3.04 – 2.87 (m, 1H), 2.49 – 2.23 (m, 2H), 1.68 – 1.41 (m, 4H), 1.39 – 1.19 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 132.2, 131.9, 128.3, 126.1 (q, J = 277.5 Hz), 118.5, 111.3, 95.1, 81.3, 38.9 (q, J = 27.9 Hz), 34.6, 31.9, 29.5, 29.5, 29.3, 29.2, 26.9, 26.6 (q, J = 3.0 Hz), 22.7, 14.1. 19 F NMR (376 MHz, CDCl₃): δ -64.20. HRMS (ESI) m/z calcd. for

 $C_{21}H_{27}F_3N [M+H]^+ 350.2090$, found 350.2089.

1- nitro-4-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)benzene (28)

40.0 mg, 54% yield (General procedure B). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.19 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 3.04 – 2.93 (m, 1H), 2.52 – 2.25 (m, 2H), 1.71 – 1.44 (m, 4H), 1.42 – 1.21 (m, 12H), 0.90 (t, J = 6.7 Hz, 3H). 13 C NMR (101 MHz, CDCl₃): δ 146.9, 132.4, 130.3, 126.1 (q, J = 277.5 Hz), 123.5, 96.0, 81.1, 38.8 (q, J = 27.9 Hz), 34.6, 31.9, 29.5, 29.5, 29.3, 29.2, 27.0, 26.6 (q, J = 3.0 Hz), 22.7, 14.1. 19 F NMR (376 MHz, CDCl₃): δ -64.21. HRMS (ESI) m/z calcd. for C₂₀H₂₇F₃NO₂ [M+H]⁺ 370.1988, found 370.1984.

2-(3-(2,2,2-trifluoroethyl)dodec-1-yn-1-yl)thiophene (29)

24.6 mg, 37% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.19 (dd, J = 5.2, 1.1 Hz, 1H), 7.14 (dd, J = 3.6, 1.2 Hz, 1H), 6.94 (dd, J = 5.2, 3.6 Hz, 1H), 2.99 – 2.88 (m, 1H), 2.51 – 2.19 (m, 2H), 1.69 – 1.40 (m, 4H), 1.37 – 1.21 (m, 12H), 0.91 – 0.85 (m, 3H). 13 C NMR (101 MHz, CDCl₃): δ 131.5, 126.8, 126.4, 126.2 (q, J = 277.5 Hz), 123.4, 94.2, 75.7, 39.0 (q, J = 27.7 Hz), 34.7, 31.9, 29.5, 29.5, 29.3, 29.2, 26.9, 26.7 (q, J = 2.9 Hz), 22.7, 14.2. 19 F NMR (376 MHz, CDCl₃): δ -64.21. HRMS (ESI) m/z calcd. for C₁₈H₂₆F₃S [M+H]⁺ 331.1702, found 331.1694.

1- methoxy-3-(((7-(2,2,2-trifluoroethyl)non-8-yn-1-yl)oxy)methyl)benzene (30)

32.1 mg, 47% yield (General procedure A). colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 7.29 – 7.22 (m, 1H), 6.94 – 6.88 (m, 2H), 6.86 – 6.79 (m, 1H), 4.48 (s, 2H), 3.81 (s, 3H), 3.52 – 3.43 (m, 2H), 2.75 – 2.63 (m, 1H), 2.43 – 2.30 (m, 1H), 2.27 – 2.16 (m, 1H), 2.14 – 2.11 (m, 1H), 1.68 – 1.28 (m, 10H). 13 C NMR (101 MHz, CDCl₃): δ 159.7,

140.3, 129.4, 126.1 (q, J = 277.4 Hz), 119.9, 113.1, 112.9, 84.7, 72.8, 70.4, 70.4, 55.2, 39.0 (q, J = 27.9 Hz), 34.5, 29.7, 29.0, 26.7, 26.1, 25.6 (q, J = 3.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -64.26.

HRMS (ESI) m/z calcd. for $C_{19}H_{26}F_3O_2$ [M+H]⁺ 343.1879, found 343.1870.

Synthetic applications

9-(4-(2,2,2-trifluoroethyl)tridecyl)-9H-carbazole (31)

$$Cz$$
 CF_3
 $Et_3SiH, Pd/C$
 $EtOH, 60 °C$
 Cz
 Cz
 CF_3
 CF_3
 CF_3
 CF_3

To a mixture of Pd/C (5.0 mg, 10% w/w Pd on carbon) in MeOH (1.0 mL) was added 4 (42.8 mg, 0.10 mmol, 1.0 equiv.) under argon atmosphere. Then Et₃SiH (118.7 mg, 1.00 mmol, 10.0 equiv) were sequentially added into the mixture. The resulting reaction mixture was stirred under the hydrogen atmosphere at room temperature for 24 h. After completion, the reaction mixture was filtered and rinsed with CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to afford **31** as a colorless oil (42.8 mg, 99% yield). 42.8 mg, 99% yield, colorless oil. 1 H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 7.7 Hz, 2H), 7.42 – 7.34 (m, 2H), 7.29 (d, J = 8.2 Hz, 2H), 7.15 (t, J = 7.4 Hz, 2H), 4.20 (t, J = 7.3 Hz, 2H), 2.00 – 1.81 (m, 2H), 1.84 – 1.71 (m, 2H), 1.72 – 1.61 (m, 1H), 1.44 – 1.33 (m, 2H), 1.24 – 1.06 (m, 16H), 0.85 – 0.76 (m, 3H). 13 C NMR (101 MHz, CDCl₃): δ 139.3, 126.2 (q, J = 277.5 Hz), 124.6, 121.8, 119.4, 117.8, 107.5, 42.0, 36.3 (q, J = 26.9 Hz), 32.2, 31.0 (q, J = 2.2 Hz), 30.9, 29.7, 28.6, 28.5, 28.5, 28.3, 25.0, 24.3, 21.7, 13.1. 19 F NMR (376 MHz, CDCl₃): δ -63.35. HRMS (ESI) m/z calcd. for C₂₇H₃₇F₃N [M+H]⁺ 432.2873, found 432.2862.

(Z)-9-(4-(2,2,2-trifluoroethyl)tridec-2-en-1-yl)-9H-carbazole (32)

To a flamed Schlenk tube charged with a stir bar were added NaO'Bu (19.2 mg, 0.20 mmol, 2.0 equiv.), **4** (42.8 mg, 0.10 mmol, 1.0 equiv), Pd(OAc)₂ (1.12 mg, 0.005 mmol, 5.0 mol%), L (3.8 mg, 0.010 mmol, 10 mol%), IPrCuCl (4.88 mg, 0.010 mmol, 10 mol%), TMDSO (1,1,3,3-tetramethyldisiloxane) (26.9 mg, 0.20 mmol, 2.0 S49 equiv.), MeOH (16.0 mg, 0.5 mmol, 5.0 equiv.), and toluene (1.0 mL). The reaction mixture was stirred at 60 °C for 1.5 h. Upon completion, the reaction mixture was filtered through a short plug of silica gel eluted with EtOAc (3 mL) and purified by column chromatography to afford **32** as a colorless oil (36.9 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 7.8 Hz, 2H), 7.49 – 7.40 (m, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 7.4 Hz, 2H), 5.60 – 5.49 (m, 1H), 5.37 – 5.25 (m, 1H), 4.93 (dd, J = 5.9, 2.0 Hz, 2H), 3.01 – 2.87 (m, 1H), 2.37 – 2.02 (m, 2H), 1.42 – 1.20 (m, 16H), 0.93 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 140.2, 134.8, 126.8 (q, J = 277.6 Hz), 126.6,

125.7, 123.0, 120.4, 119.1, 108.7, 40.3, 39.3 (q, J = 26.9 Hz), 35.7, 32.6 (q, J = 2.5 Hz), 32.0, 29.7, 29.7, 29.6, 29.4, 27.2, 22.8, 14.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.36. HRMS (ESI) m/z calcd. for C₂₇H₃₅F₃N [M+H]⁺ 430.2716, found 430.2702.

1-phenyl-3-(2,2,2-trifluoroethyl)dodecan-1-one (33)

$$CF_3$$
 CF_3 CF_3

To a solution of **23** (32.4 mg, 0.10 mmol, 1.0 equiv.) in CF₃CH₂OH (0.5 mL) were added CF₃SO₃H (3.06 mg, 0.020 mmol, 0.2 equiv.) and H₂O (3.6 mg, 0.20 mmol, 2.0 equiv.). And the reaction mixture was stirred at 80 °C for 16 h. After evaporation under reduced pressure, the residue was purified with column chromatography on silica gel to yield the product **33** as a colorless oil (20.9 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.97 – 7.90 (m, 2H), 7.61 – 7.54 (m, 1H), 7.51 – 7.43 (m, 2H), 3.13 – 2.98 (m, 2H), 2.55 – 2.41 (m, 1H), 2.31 – 2.16 (m, 2H), 1.51 – 1.41 (m, 2H), 1.35 – 1.19 (m, 14H), 0.87 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 198.8, 137.0, 133.2, 128.6, 127.9, 127.2 (q, J = 277.5 Hz), 42.1, 37.1 (q, J = 27.0 Hz), 33.9, 31.9, 29.6, 29.5, 29.5, 29.3, 28.9 (q, J = 2.1 Hz), 26.6, 22.7, 14.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.86. HRMS (ESI) m/z calcd. for C₂₀H₃₀F₃O [M+H]⁺ 343.2243, found 343.2232.

Mechanistic studies

Control experiment with copper phenylacetylide

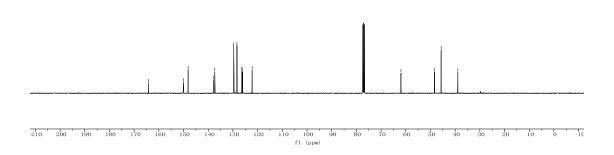
Ph + 2a + 3a
$$\frac{\text{Cs}_2\text{CO}_3}{\text{MeCN}, \text{ rt}}$$
 Ph 23 $\frac{\text{Ph}}{\text{Ph}}$ With L5 (1 equiv.): 23, 36% Without L5: 23, 0%

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with copper phenylacetylide (8.2 mg, 0.05 mmol, 1.0 equiv.), alkene **2a** (11.6 mg, 0.075 mmol, 1.5 equiv.), radical precursor **3a** (19.0 mg, 0.06 mmol, 1.2 equiv.), L5 (17.0 mg, 0.06 mmol, 1.2 equiv.), Cs₂CO₃ (32.6 mg, 0.10 mmol, 2.0 equiv.), and anhydrous MeCN (0.5 mL). The resulting reaction mixture was stirred at room temperature for 3.5 d. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered and washed by EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford **23** (5.84 mg, 36% yield).

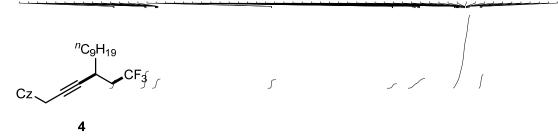
The procedure for the reaction without L5 was the same with that described above except that L5 was not added. No desired product 23 was observed.

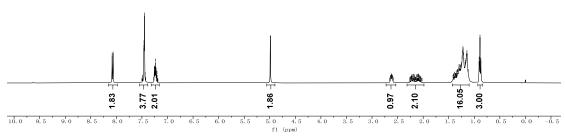
Radical-trapping experiment

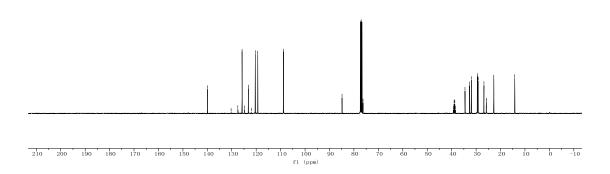
According to General Procedure **B** with alkyne **1a** (20.5 mg, 0.10 mmol, 1.0 equiv.), alkene **2a** (23.1 mg, 0.15 mmol, 1.5 equiv.), radical precursor **3a** (38.0 mg, 0.12 mmol, 1.2 equiv.), and 2,2,6,6- tetramethylpiperidinyloxy (TEMPO) (23.4 mg, 0.15 mmol, 1.5 equiv.) after 3.5 d, the reaction mixture was monitored by TLC. There was no product **4** observed, TEMPO-CF₃ product **34** was detected by HRMS, HRMS (ESI) m/z calcd. for C₁₀H₁₉F₃NO [M+H]⁺ 226.1413, found 226.1410.


Clock experiment

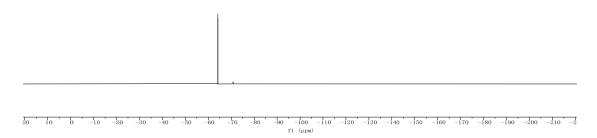
Ta, 3a
$$\frac{1a, 3a}{\text{standard conditions}}$$
 F₃C $\frac{N}{Ts}$ Cz $\frac{N}{Ts}$ 35 36, 60% (dr = 4:1)

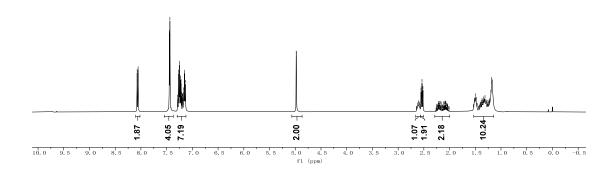

According to General Procedure B with alkyne 1a (41.0 mg, 0.20 mmol, 1.0 equiv.),

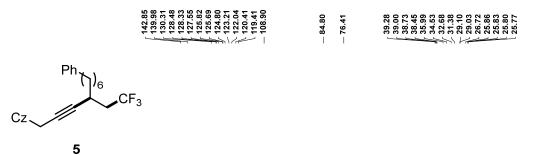

alkene **35** (75.4 mg, 0.30 mmol, 1.5 equiv.), and radical precursor **3a** (75.8 mg, 0.24 mmol, 1.2 equiv.) after 3.5 d, Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered and washed by EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to afford a colorless oil **36** (62.9 mg, 60% yield, dr = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 8.18 – 8.04 (m, 2.00H), 7.64 – 7.44 (m, 4.17H), 7.44 – 7.36 (m, 2.00H), 7.30 – 7.18 (m, 3.02H), 7.01 (d, J = 8.0 Hz, 1.54H), 4.99 – 4.70 (m, 2.05H), 3.53 – 3.31 (m, 1.33H), 3.30 – 3.21 (m, 1.63H), 2.97 – 2.81 (m, 1.23H), 2.43 – 2.25 (m, 1.77H), 2.25 – 2.05 (m, 3.69H), 2.05 – 1.85 (m, 2.10H), 1.83 – 1.68 (m, 1.30H), 1.56 – 1.45 (m, 0.81H). ¹³C NMR (101 MHz, CDCl₃): δ 143.8, 143.7, 139.9, 139.8, 133.3, 133.0, 129.8, 129.7, 127.6, 127.5, 127.3, 126.4 (q, J = 276.9 Hz), 126.0, 126.0, 123.2, 120.5, 120.5, 119.6, 119.6, 108.7, 108.7, 80.8, 80.1, 77.3, 76.6, 76.4, 52.8, 51.7, 51.6, 50.6, 42.3, 40.2, 37.1 (q, J = 2.5 Hz), 36.1 (q, J = 28.8 Hz), 35.1 (q, J = 2.5 Hz), 32.4, 32.2 (q, J = 28.9 Hz), 21.6, 21.4, 20.7, 17.7. 19 F NMR (376 MHz, CDCl₃): δ -64.81, -64.83. HRMS (ESI) m/z calcd. for $C_{30}H_{29}F_{3}NO_{2}S$ [M+H] $^{+}$ 525.1818, found 525.1811.

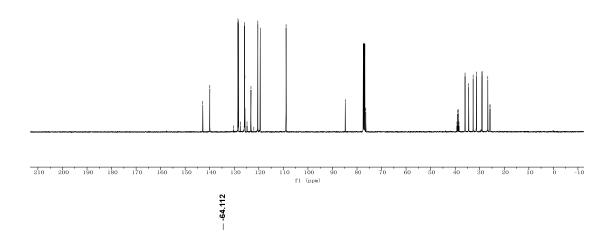


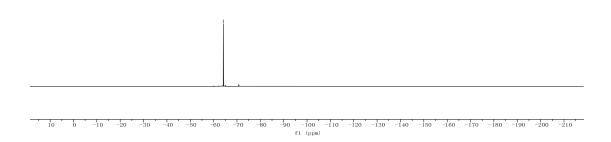
8.083 8.083 8.064

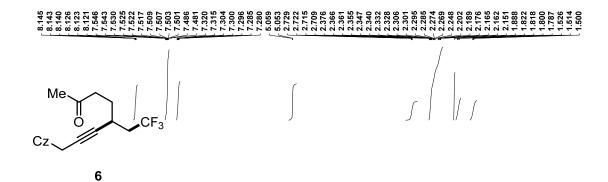


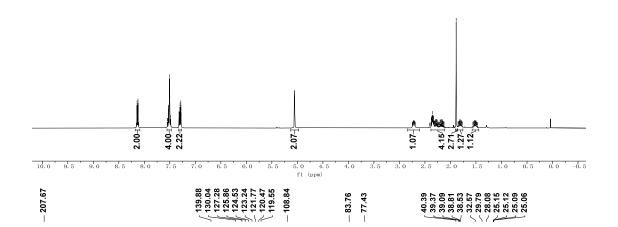

139.96 120.27 120.27 121.99 121.99 121.99 121.99 121.99 121.99 121.91 121.99 121.91 121.99 131.91 129.13 12

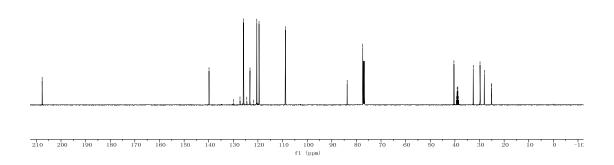




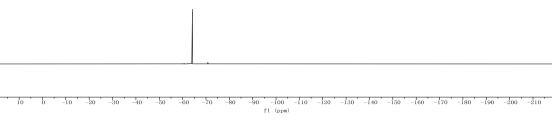

Ph (6 CF₃)

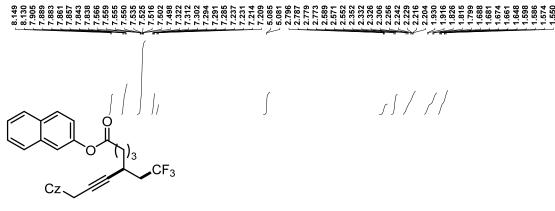


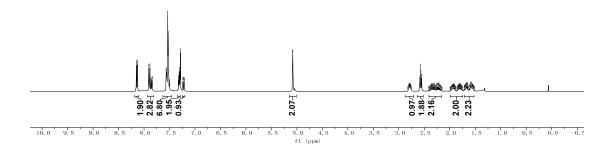


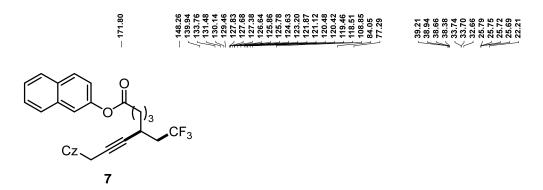


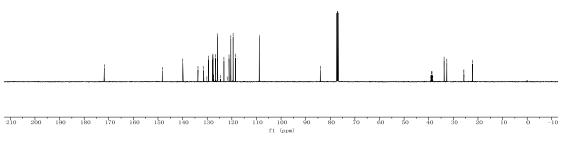
Cz Ph O₆ CF₃

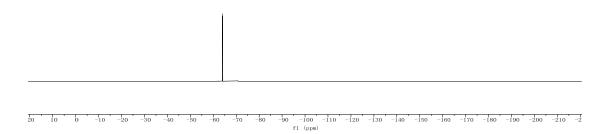




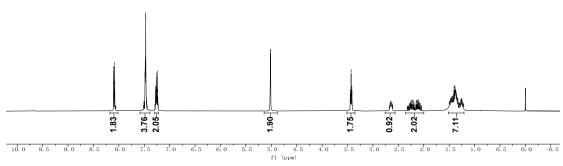




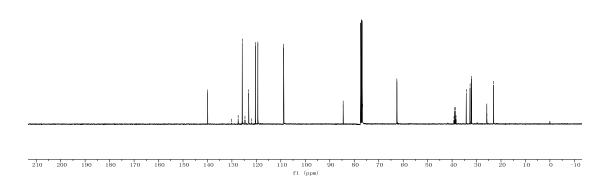


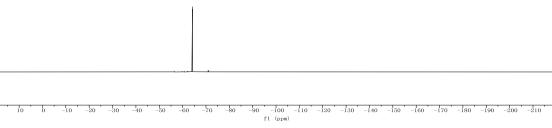


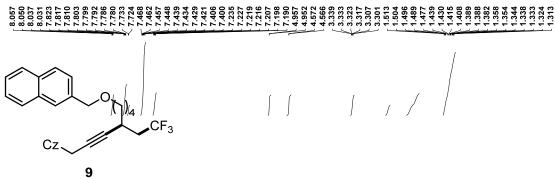


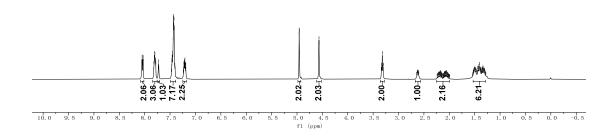


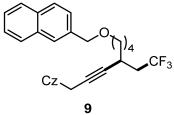
--64.016

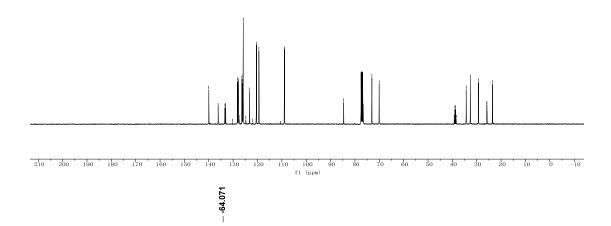


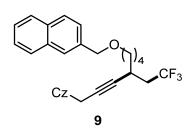


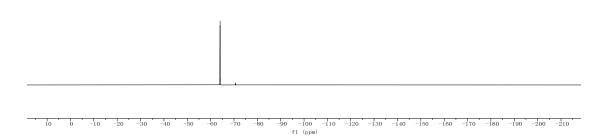


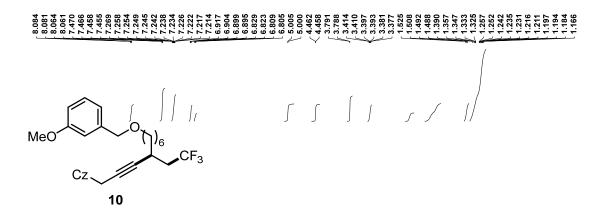

$$Cz$$
 HO
 CF_3

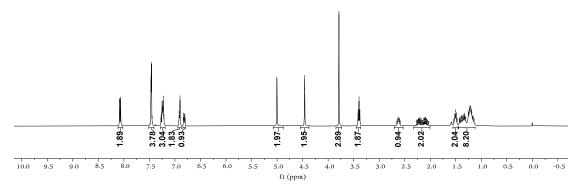


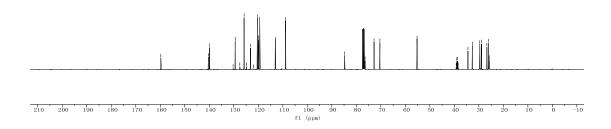


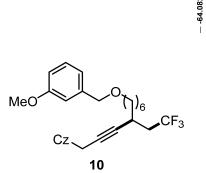


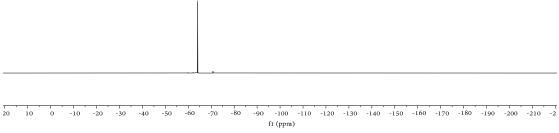


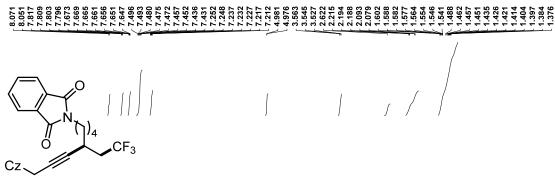


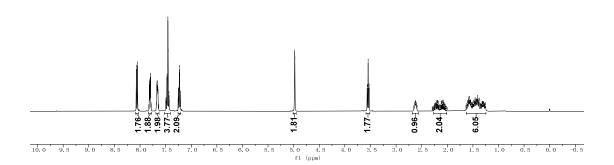


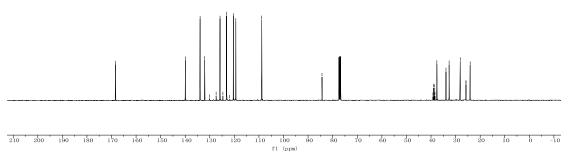


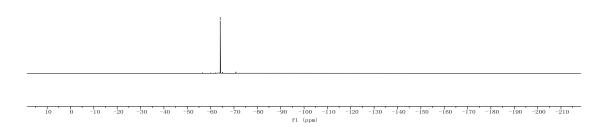


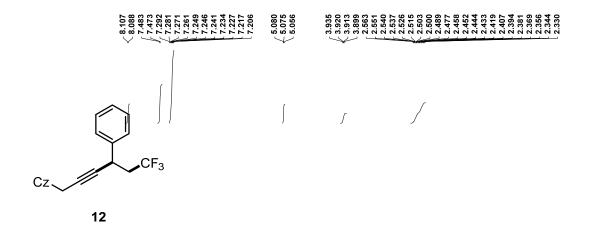

140.38 130.26 130.28 130.28 130.28 112.01 112.01 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 113.07 125.03 26.70 26

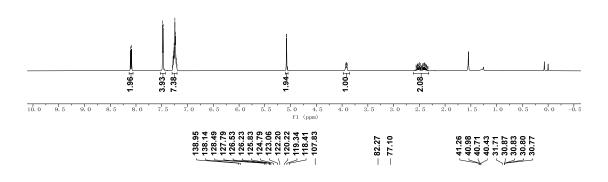

MeO
$$Cz$$
 CF_3

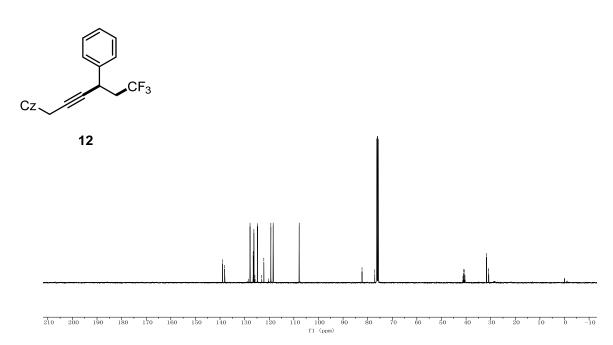


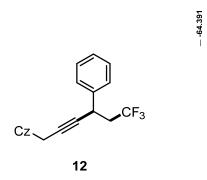

11

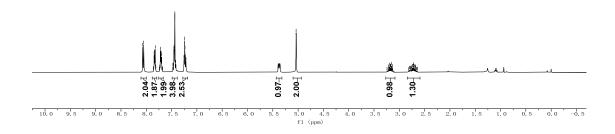


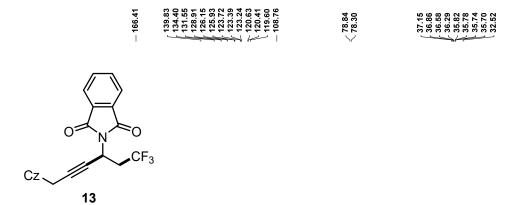


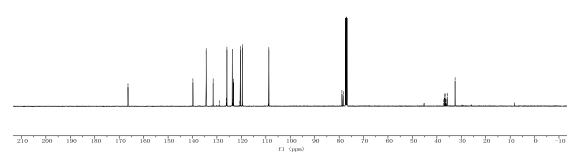



— -64.110

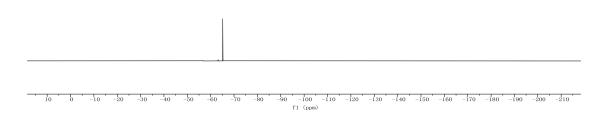

$$O$$
 N
 O
 Cz
 CF_3

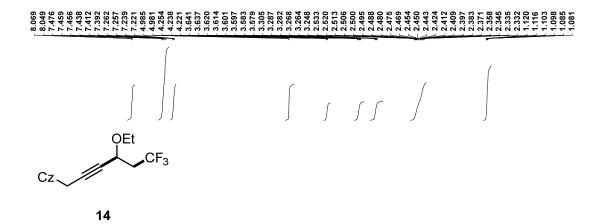


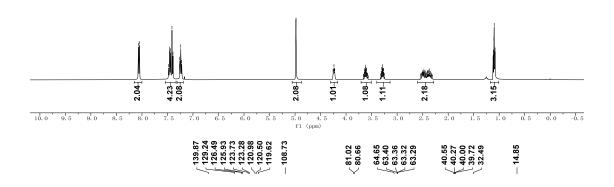


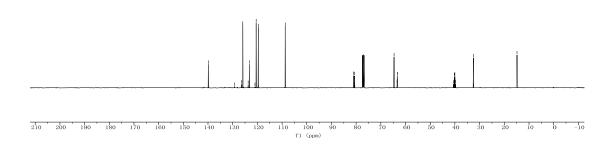


20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -: f1 (ppm)

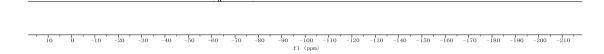


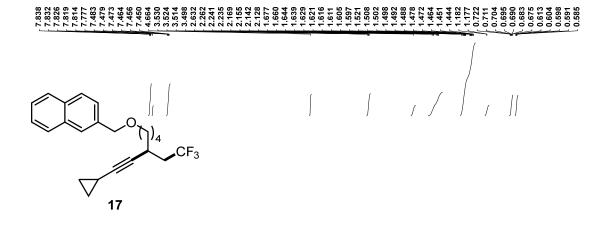


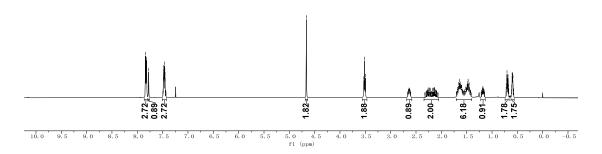


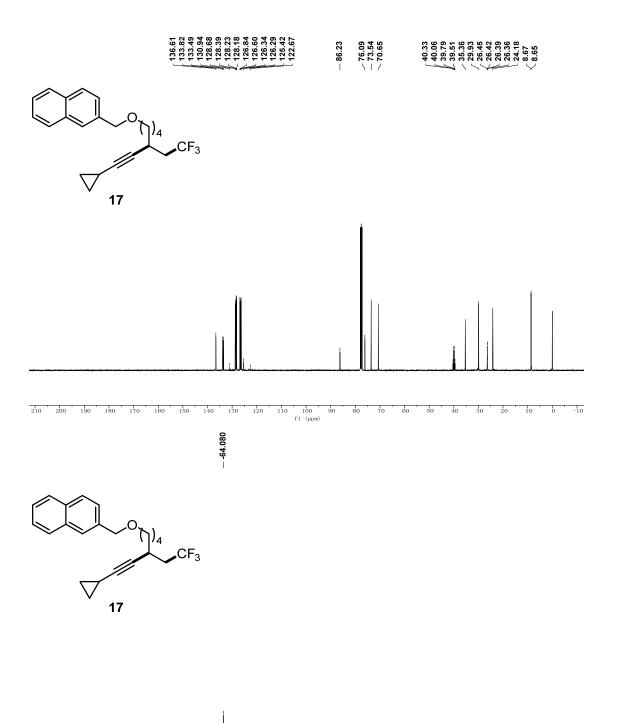


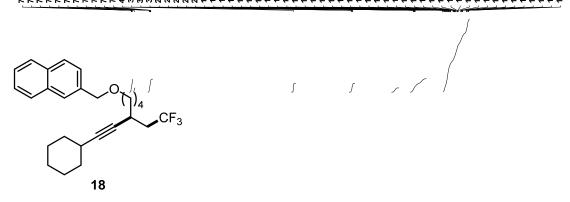
--65.175

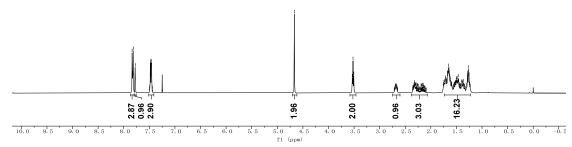


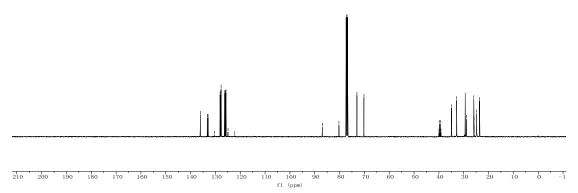


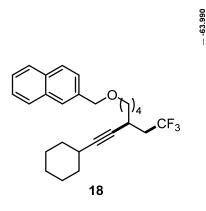


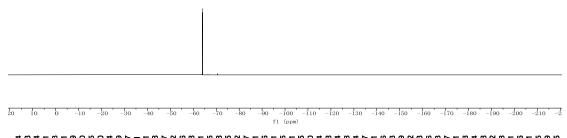


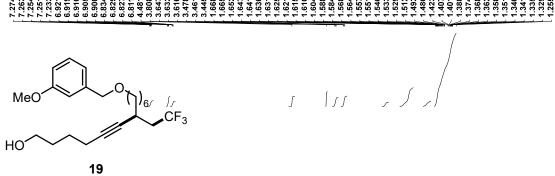


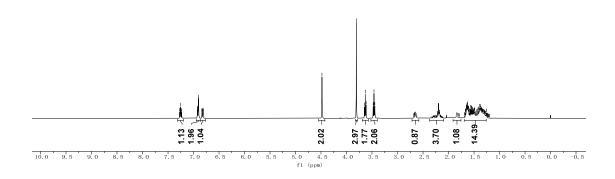


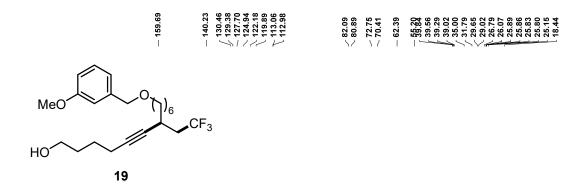

7,836 7,827 7,827 7,827 7,827 7,448 7,446 7,446 7,446 7,446 7,446 7,466

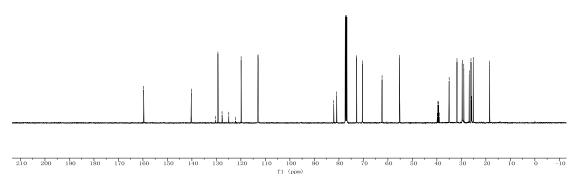


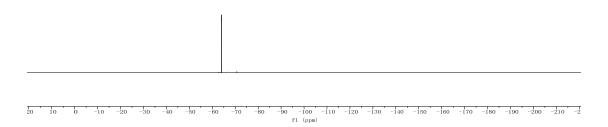


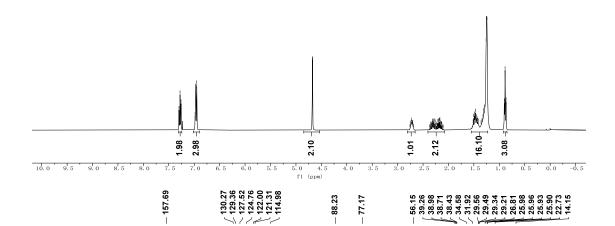






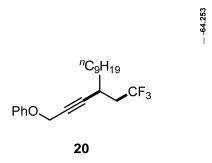


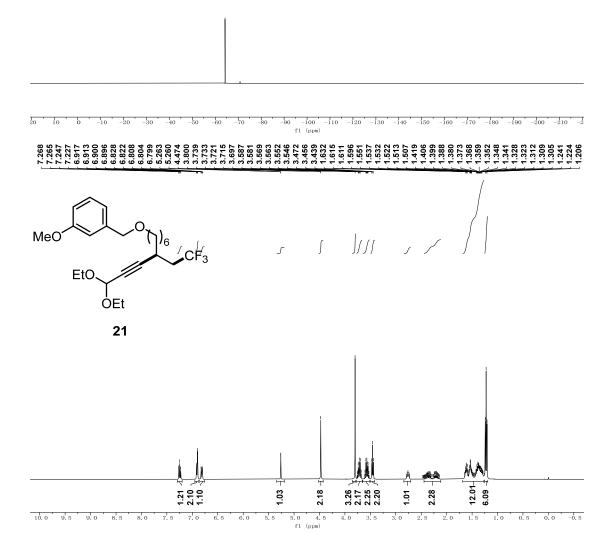


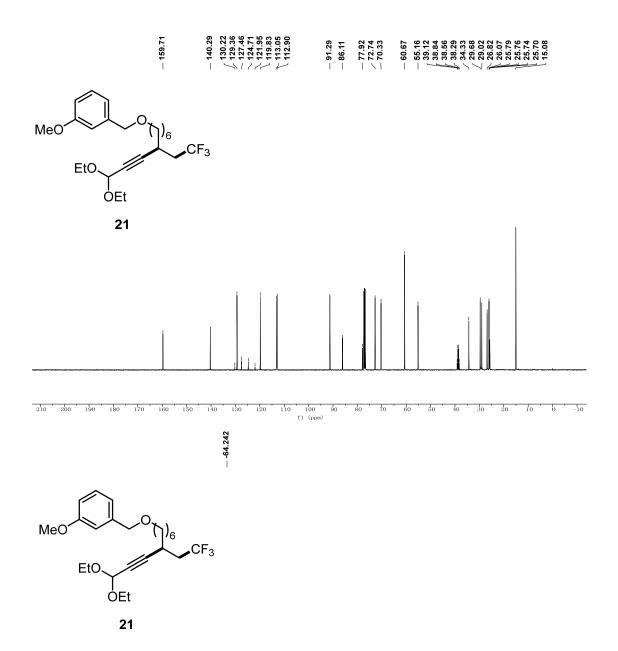

--64.074

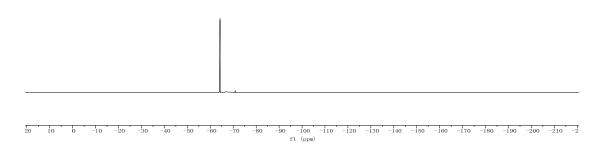
7,729 7,729 6,985 6,985 6,986 6, ⁿC₉H₁₉ CF₃

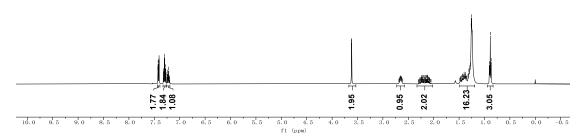

20


PhO.



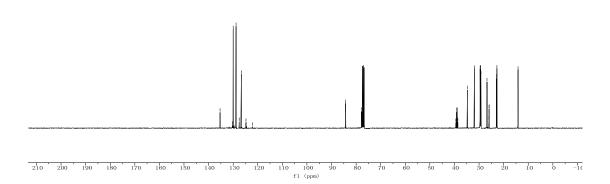

 $^{n}C_{9}H_{19}$ PhO.


20



7,429 7,4426 7,4426 7,4426 7,4426 7,4426 7,4426 7,4426 7,4426 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4296 7,4396 7,4

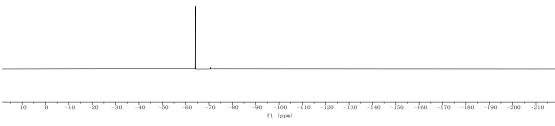
22

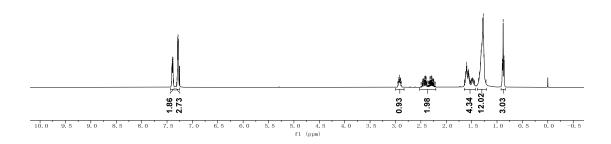


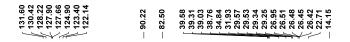
135.32 130.31 129.99 128.83 127.55 126.67 124.79

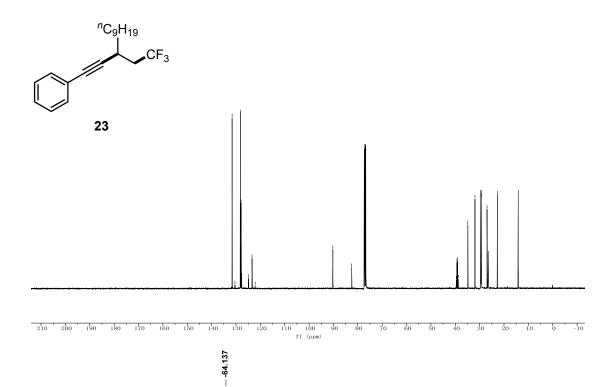
84.30 77.80 39.46 39.46 38.81 38.61 38.61 34.75 29.50 29.50 29.50 29.54

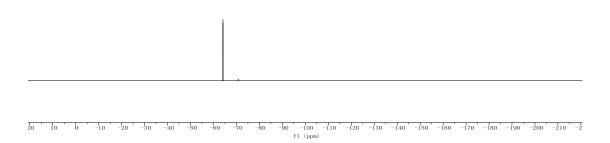
$$\begin{array}{c} ^{n}C_{9}H_{19} \\ \\ \text{PhS} \end{array}$$

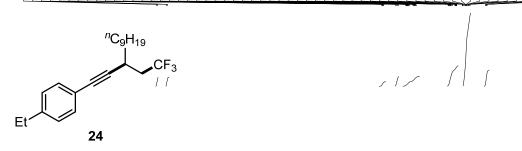

22

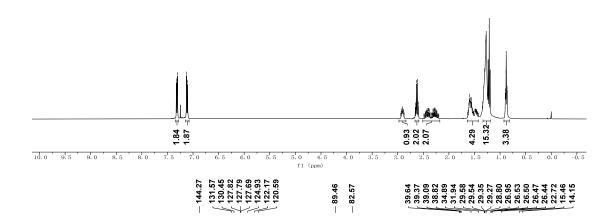


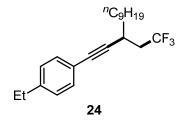

$$^{n}C_{9}H_{19}$$
 CF_{3}

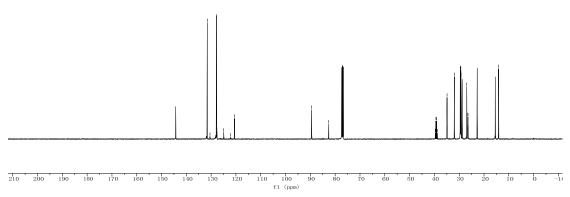

22


7.406 7.3397 7.3397 7.3382 7.3382 7.3382 7.2391 7.2291 7.2291 7.2291 7.2291 7.2291 7.2291 7.2291 7.2291 7.2291 7.2391 7.2

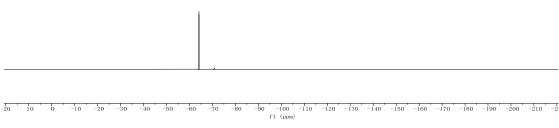


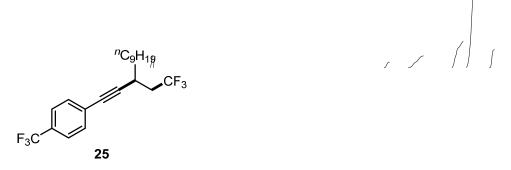


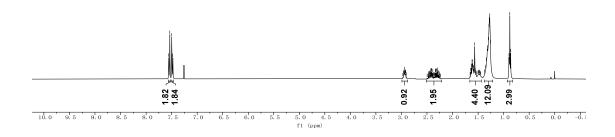

CF₃

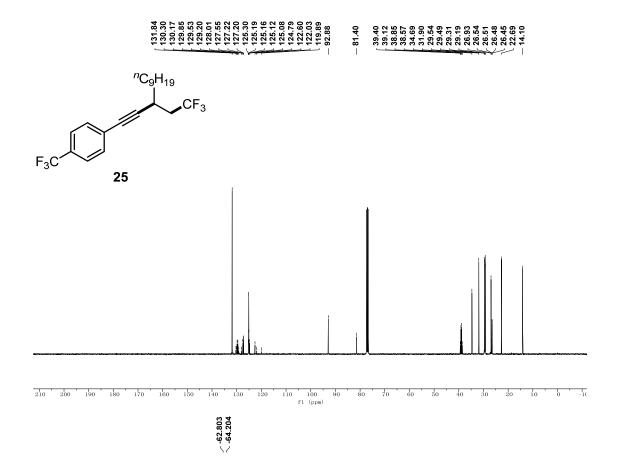


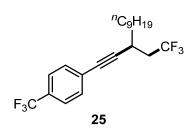
7,7323 7,7302 7,702 7,705 7,70

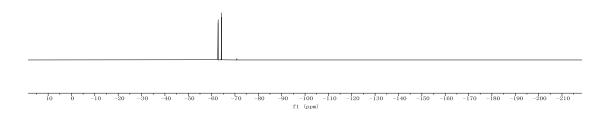


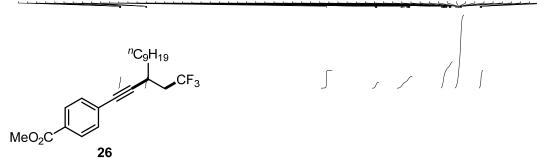


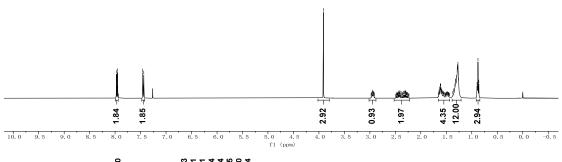


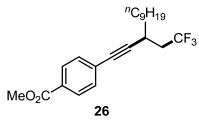


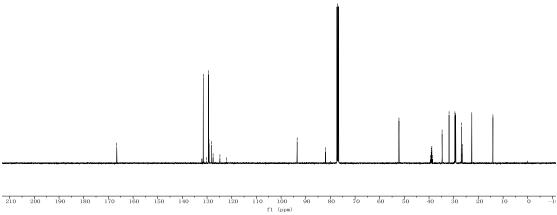


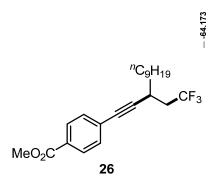

7.556 7.7536 7.7536 7.7536 7.7536 7.7536 7.2939 7.2

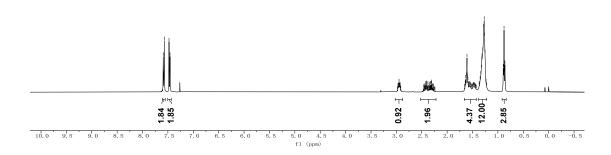


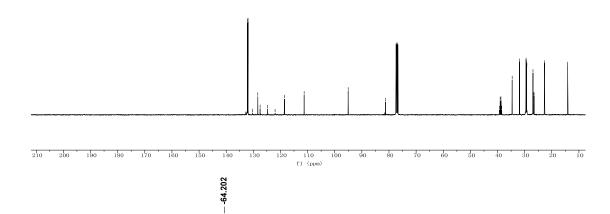


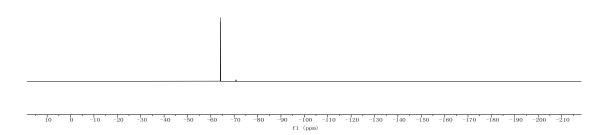


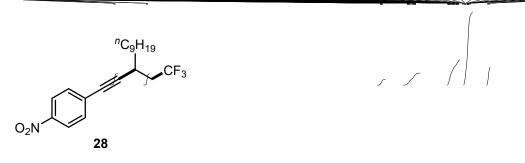

7.973 7.7963 7.7963 7.7964 7.7454 7.7

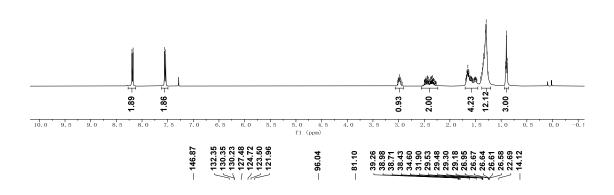


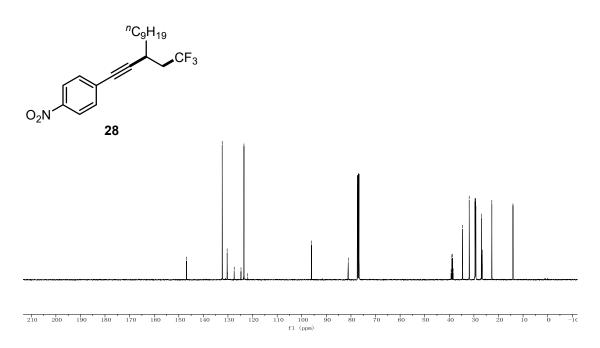


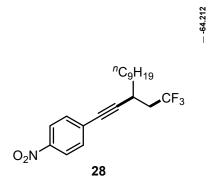


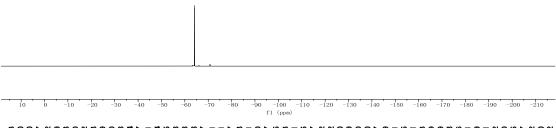


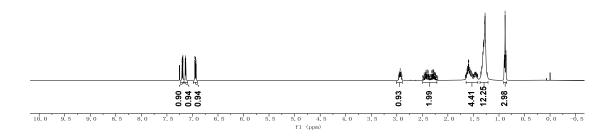


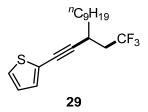


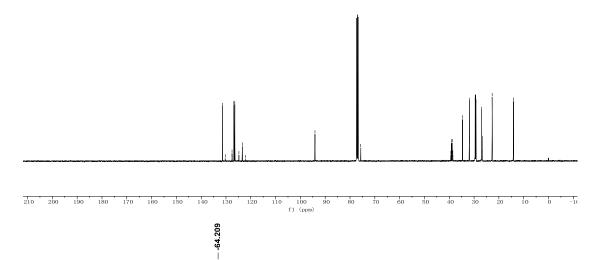

ⁿC₉H₁₉ CF₃

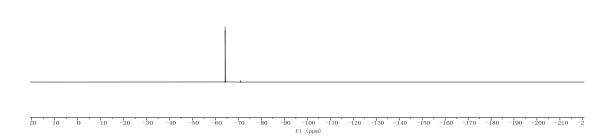


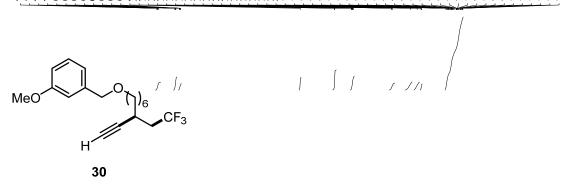

8.198 8.196 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.538 7.539 7.

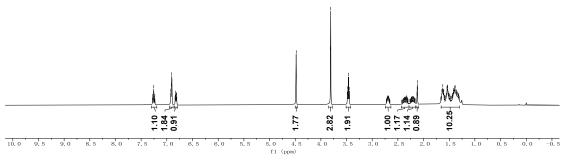


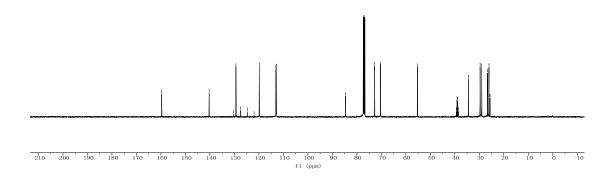


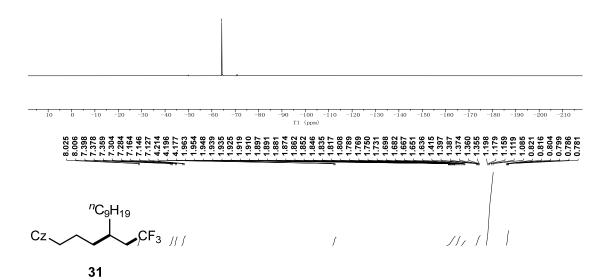

7.203 7.7190 7.7190 7.7190 7.7190 7.7190 7.7190 7.7190 7.7190 7.7190 7.7190 6.930 6.930 6.930 6.930 6.930 6.930 6.930 6.930 7.7190 6.930 6.930 7.7190

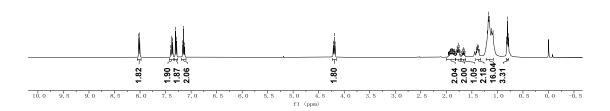


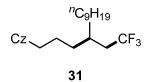


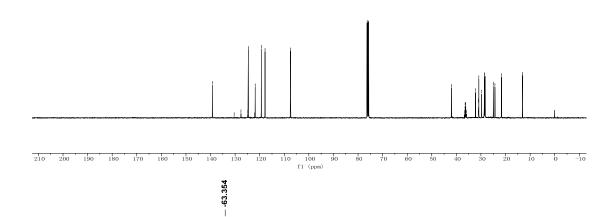


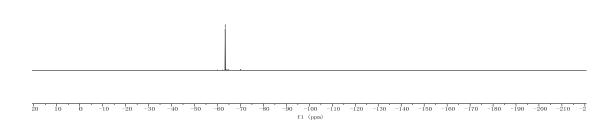

CF₃

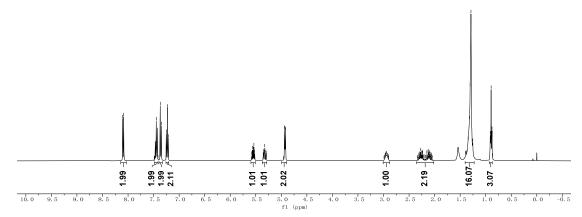




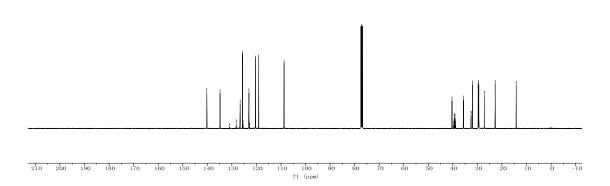

- 159.7.1 - 140.3.1 - 127.49 - 127.49 - 127.49 - 127.49 - 127.49 - 113.07 - 11

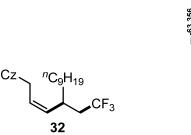




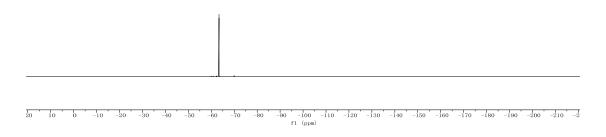


Cz CF_3 CF_3

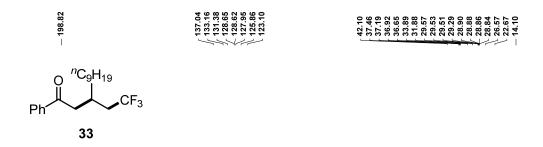


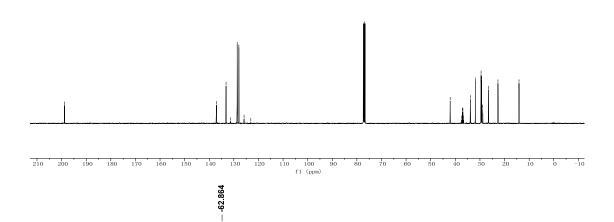


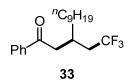
134.80 134.80 134.80 128.20 126.60 125.64 123.04 123.04 119.05

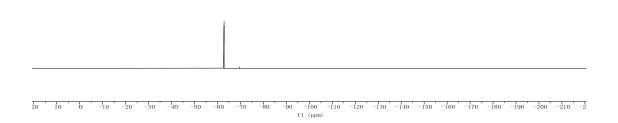

40.35 39.44 39.44 39.14 38.88 32.68 32.56 32.55 32.53

$$Cz \xrightarrow{^{n}C_{9}H_{19}} CF_{3}$$




33




O "C9H₁₉ Ph CF₃ //

