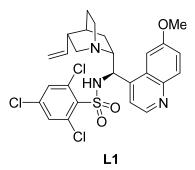
Supporting Information

Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C–O Bond Coupling of Acyl Radicals

Zhang-Long Yu, $^{\dagger, \ddagger, \parallel}$ Yong-Feng Cheng, $^{\ddagger, \parallel}$ Ji-Ren Liu, ‡ Wu Yang, ‡ Dan-Tong Xu, ‡ Yu

Tian,[‡] Jun-Qian Bian,[‡] Zhong-Liang Li,[§] Li-Wen Fan,[‡] Cheng Luan,[§] Ang Gao,[§] Qiang-Shuai Gu,^{§,*} and Xin-Yuan Liu^{‡,*}

[†]School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China


[‡]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

[§]Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China ^{II}These authors contributed equally.

*To whom correspondence should be addressed. E-mail: guqs@sustech.edu.cn; liuxy3@sustech.edu.cn

Table of contents

Figures S1–S8	
Schemes S1–S5	S12
Tables S1–S4	S17
1. General information	S22
2. Synthesis of substrates	S23
3. Synthesis of catalysts	S32
4. Synthesis of the oxidant	S34
5. Cu-catalyzed enantioselective desymmetrizing radical C–O co dicarbofunctionalized 1,3-diols, 2-substituted-2-chloro-1,3-dio diols	ols, and meso 1,4-
6. Cu-catalyzed enantioselective desymmetrizing radical C-O co	
1,2,3-triols, 2-amino 1,3-diols, and <i>meso</i> 1,2-diols	S55
7. Synthetic transformations	
8. Mechanistic study	S67
9. Computational study	S77
10. NMR spectra	S101
11. HPLC spectra	S170
12. Reference	

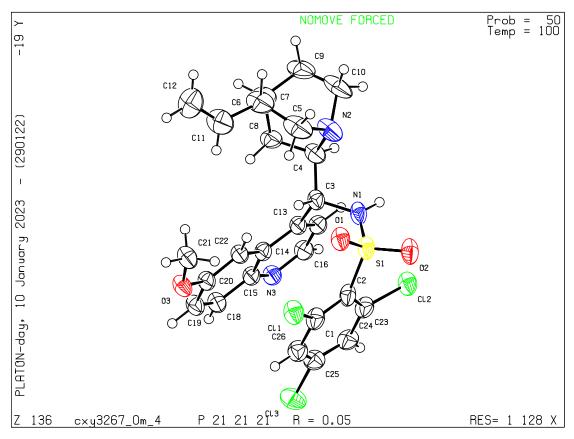
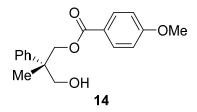



Figure S1. X-ray structure of L1.

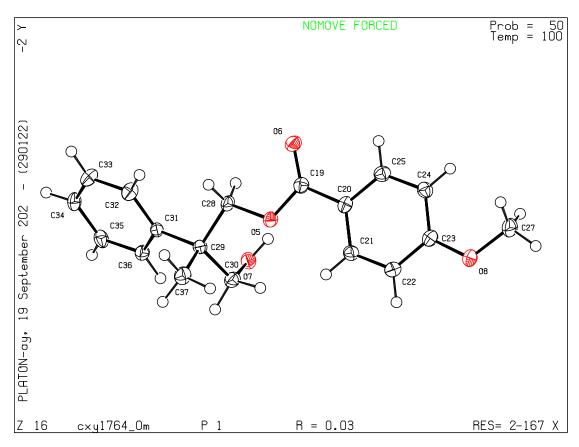


Figure S2. X-ray structure of 14.

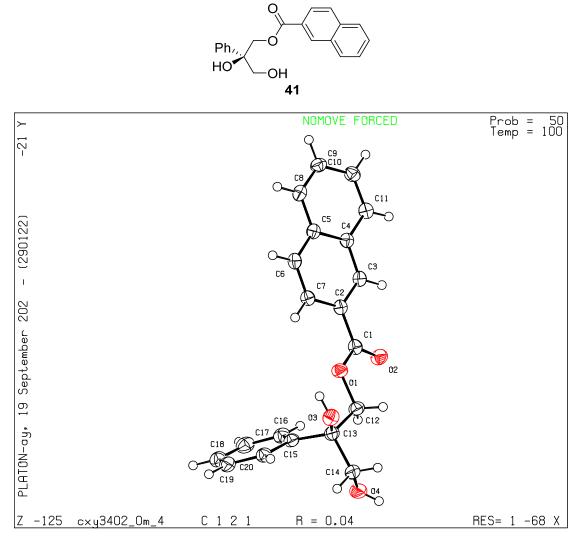
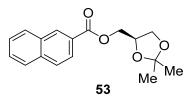



Figure S3. X-ray structure of 41.

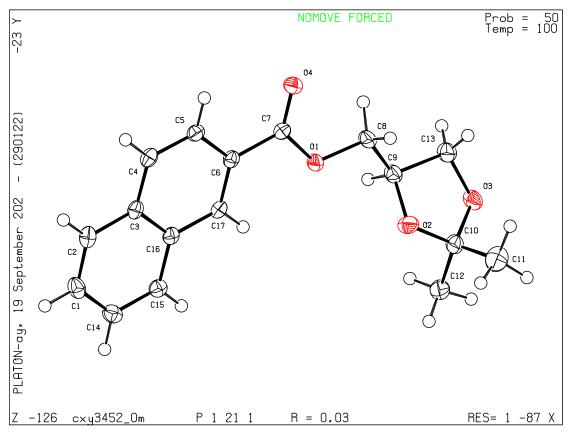
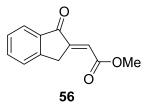



Figure S4. X-ray structure of 53.

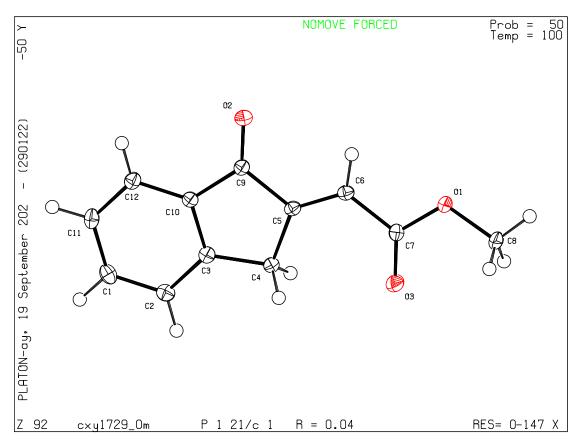
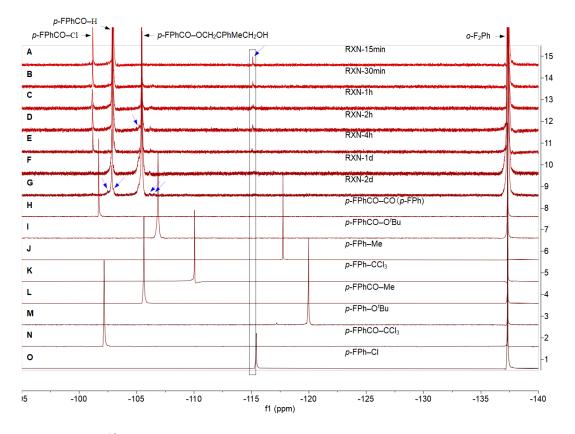
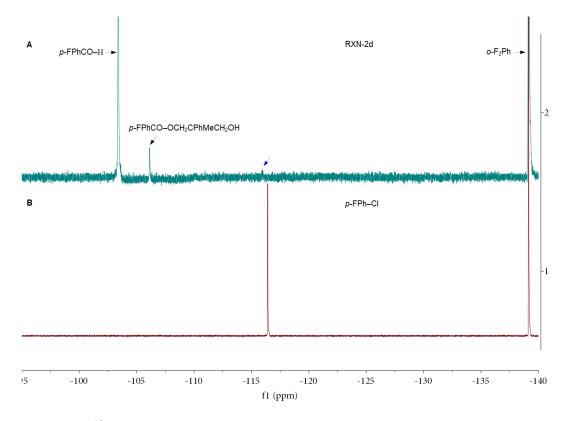




Figure S5. X-ray structure of 56.

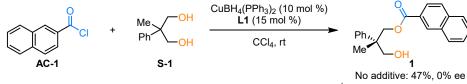
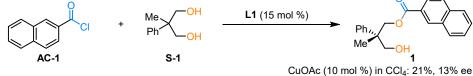


Figure S6. ¹⁹F NMR spectroscopic analysis of the reaction mixtures with *p*-fluorophenyl aldehyde **A-6** in CCl₄. **A**–**G**, ¹⁹F NMR spectra of the reaction mixtures in CCl₄ after stirring for the indicated reaction times. Peaks corresponding to unknown side products were indicated with blue arrows. **H**–**O**, ¹⁹F NMR spectra of the authentic samples of speculated possible side products. For all ¹⁹F NMR spectra shown here, *o*-difluorobenzene was added as an internal standard.


Figure S7.¹⁹F NMR spectroscopic analysis of the reaction mixture with *p*-fluorophenyl aldehyde **A-6** in CH₂Cl₂. **A**, The ¹⁹F NMR spectrum of the reaction mixture in CH₂Cl₂ after stirring for 2 d. The peak corresponding to an unknown side product was indicated with a blue arrow. **B**, The ¹⁹F NMR spectrum of the authentic sample of a speculated possible side product *p*-fluorochlorobenzene. For both ¹⁹F NMR spectra shown here, *o*-difluorobenzene was added as an internal standard.

A. Effects of base and oxidant

No additive: 47%, 0% ee With KO^tBu (2.0 equiv): 68%, 10% ee With **O1** (15 mol %): 24%, 40% ee With **O1** (2.0 equiv): 75%, 89% ee With **O1** (2.0 equiv) and TEMPO (1.2 equiv): trace

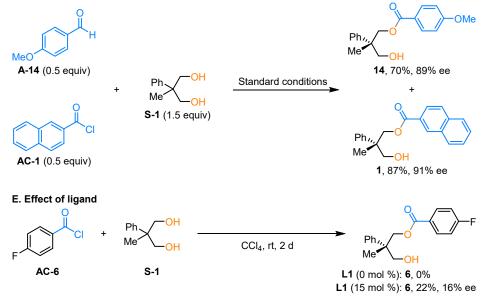
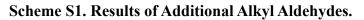
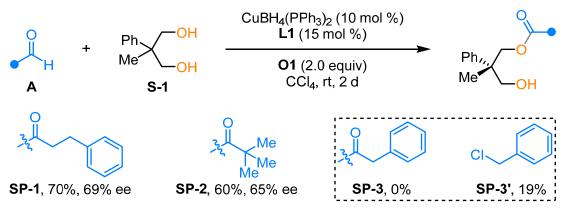
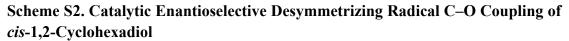
B. Effects of Cu(I) and Cu(II)

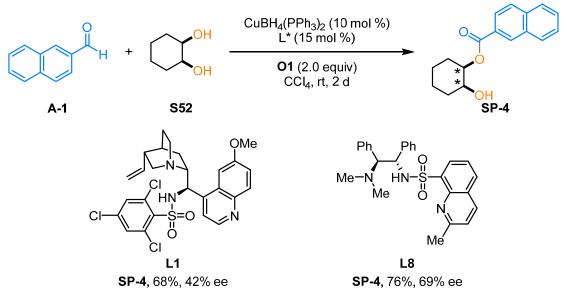
- CuOAc (10 mol %) and **O1** (2.0 equiv) in CCl₄: 71%, 79% ee
 - Cu(OAc)₂ (10 mol %) in CCl₄: 17%, 18% ee
- CuOAc (10 mol %) and O1 (2.0 equiv) in DCM: 31%, 21% ee

C. Additional results concerning the effect of Cu(II)

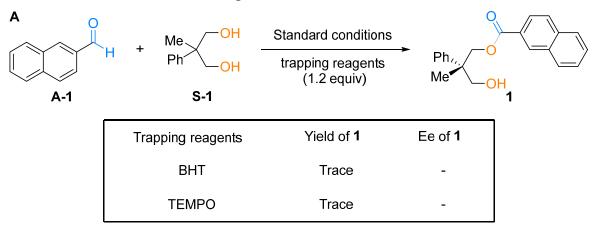
~ ~		+ Me -OH	Cu(II) (L1 (15	10 mol %) 5 mol %)		
	Γ ^{CI}	⁺ Ph <mark>OH</mark>	C	Cl ₄	Ph,, Me OH	<u></u> /
AC-	1	S-1			1	
	Entry	Cu(II)	PPh_3	Yield (%)	Ee (%)	
-	1	CuCl ₂	-	23	7	
	2	CuCl ₂	+	31	0	
	3	CuBr ₂	_	23	7	
	4	CuBr ₂	+	34	0	
	5	Cu(OTf) ₂	_	15	8	
	6	Cu(OTf) ₂	+	34	0	
	7	Cu(acac) ₂	_	18	7	
_	8	Cu(acac) ₂	+	31	0	

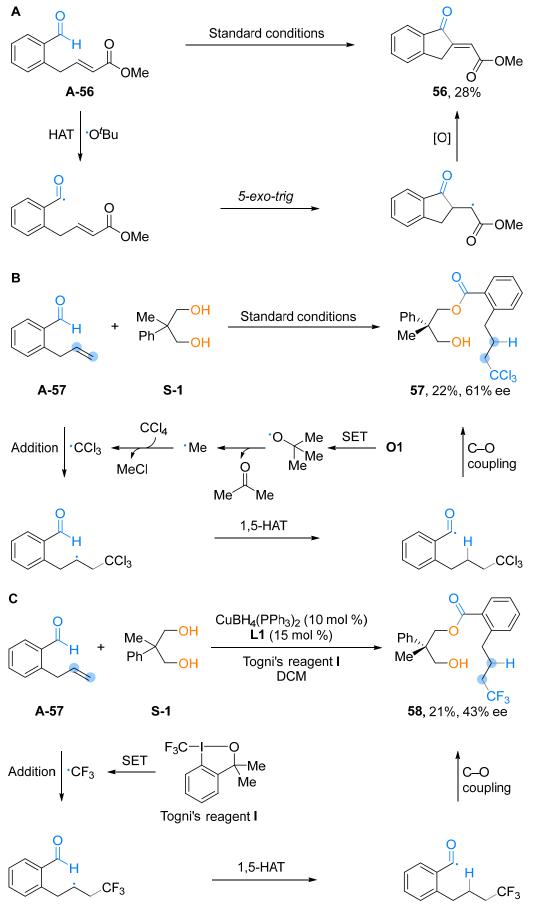
D. Compatibility of reactions with aldehydes and acid chlorides

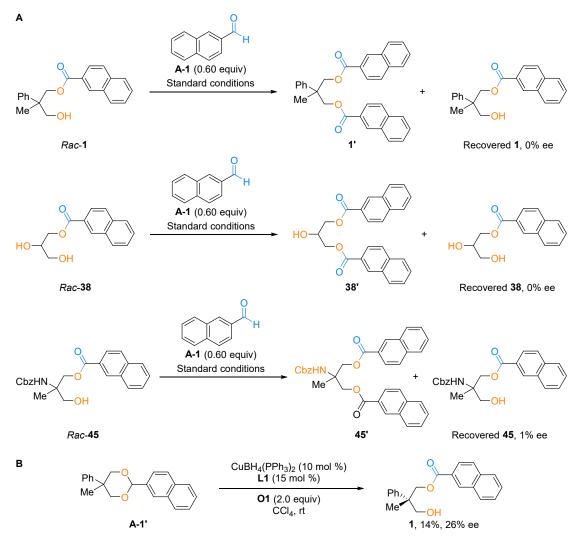






Figure S8. Results of control experiments with acid chlorides. A, In the presence of Cu(I) salt $CuBH_4(PPh_3)_2$ and chiral ligand L1, the reaction of acid chloride AC-1 with

diol S-1 provided ester 1 with no enantioselectivity. The addition of base KO'Bu delivered still low enantioselectivity. By contrast, stoichiometric oxidant O1 led to greatly improved enantiocontrol while a catalytic amount of **O1** only afforded a slightly increased ee value. The further addition of TEMPO completely inhibited the reaction, suggesting the involvement of radical species in the highly enantioselective formation of 1 in the presence of stoichiometric oxidant O1 (for preliminary theoretical investigations, see Figure S14). B, Consistent with the aforementioned results, Cu(I) salt CuOAc also delivered marginal enantioselectivity in the absence of oxidant O1 while the further addition of 2 equiv of O1 resulted in greatly boosted enantioselectivity. Changing the solvent from carbon tetrachloride to dichloromethane totally abrogated this enantioselectivity enhancement. These results together indicated the indispensable roles of oxidant O1 and carbon tetrachloride solvent in the Cu(I)/L1-catalyzed high enantioselective reaction of acid chloride A-1 and diol S-1. Further, in the absence of oxidant O1, Cu(II) salt Cu(OAc)₂ was also incapable of inducing significant enantioselectivity. C, Without O1, many other common Cu(II) salts failed to elicit good enantioselectivity, too, regardless of the presence or absence of triphenylphosphine, further disproving the Cu(II)-catalyzed ionic esterification pathway (Lewis acid catalysis). D, The enantioselective reaction of acid chloride AC-1 and S-1 exhibited good compatibility with that of aldehyde A-14 and S-1 when carried out simultaneously in the same reaction flask. E, Acid chloride AC-6 hardly reacted with S-1 in the absence of any catalyst and the addition of ligand L1 only led to ester 6 in low yield with marginal enantioselectivity. These results suggested that the non-enantioselective background reaction was very sluggish and free ligand L1 was a very poor Lewis base catalyst for this esterification reaction.

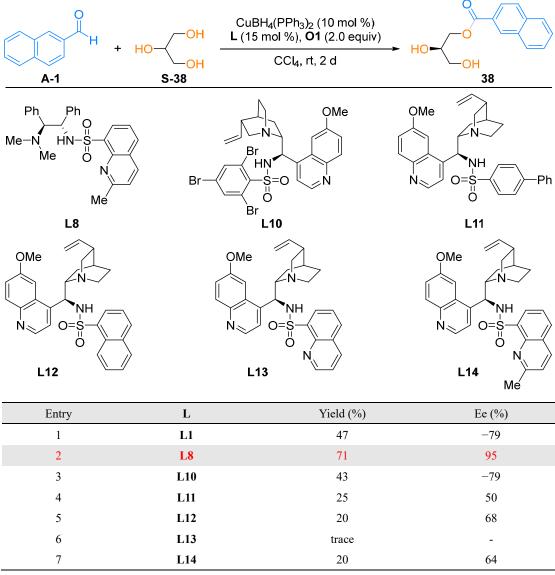






Scheme S3. Radical Inhibition Experiments

Scheme S4. Possible Reaction Mechanisms for the Formation of 56–58


Scheme S5. Control Experiments for Possible Product Kinetic Resolution and Oxidative Acetal Cleavage

		+ Ph OH S-1	[Cu] (10 mo L (15 mol %), [O] (Solvent, rt,	(2.0 equiv)	H L6 , Ar = 2	-NO ₂ Ph ,4,6-Me ₃ Ph ,4,6-F ₃ Ph
$\bigcirc ``$		L1 L2 ^u HO _O ^t Bu TBHP	Cl [′] Ph O [′] Bu O TBPB	O Ph O ^C BPC	[] O	^u `O ^{_O} ʻłBu DTBP
Entry	L	[Cu]	[0]	Solvent	Yield (%)	Ee (%)
1	L1	$CuBH_4(PPh_3)_2$	01	MTBE	9	61 85
2 3	L1 L1	CuBH ₄ (PPh ₃) ₂	01 01	EA <i>n</i> -Hexane	8 Trace	85
3 4	LI L1	CuBH ₄ (PPh ₃) ₂ CuBH ₄ (PPh ₃) ₂	01	CH ₂ Cl ₂	6	- 75
4 5	LI L1	CuBH4(PPh3)2 CuBH4(PPh3)2	01	CH2Cl2 CHCl3	Trace	75
6	L1	CuBH ₄ (PPh ₃) ₂	01	CCl ₄	76	93
7	L1 L2	CuBH ₄ (PPh ₃) ₂	01	CCl4	68	-89
8	L2 L3	CuBH4(PPh3)2	01	CCl4	46	-72
9	L4	CuBH4(PPh3)2	01	CCl4	30	-73
10	L5	CuBH ₄ (PPh ₃) ₂	01	CCl4	67	-86
11	L6	$CuBH_4(PPh_3)_2$	01	CCl ₄	60	-83
12	L7	CuBH ₄ (PPh ₃) ₂	01	CCl ₄	67	-87
13	L1	CuI	01	CCl4	14	78
14	L1	Cu ₂ O	01	CCl4	56	88
15	L1	CuOAc	01	CCl4	26	83
16	L1	CuTC	01	CCl ₄	54	81
17	L1	CuCN	01	CCl4	48	58
18	L1	CuCF3PPh3(phen)	01	CCl4	7	50
19	L1	CuBH ₄ (PPh ₃) ₂	TBHP	CCl ₄	30	38
20	L1	CuBH4(PPh3)2	TBPB	CCl ₄	17	69
21	L1	CuBH ₄ (PPh ₃) ₂	BPO	CCl ₄	Trace	-
22	L1	CuBH4(PPh3)2	DTBP	CCl4	Trace	-
23	L1 (12%)	CuBH4(PPh3)2(10%)	01	CCl4	61	91
24	L1 (10%)	CuBH4(PPh3)2(10%)	01	CCl ₄	64	90
25	L1 (5.0%)	CuBH4(PPh3)2(10%)	01	CCl4	60	84
26	L1 (7.5%)	CuBH4(PPh3)2 (5.0%)	01	CCl4	53	82

Table S1. Optimization of Reaction Conditions for 2,2-Dicarbosubstituted 1,3diols^a

27	L1 (3.0%)	CuBH4(PPh3)2(2.0%)	01	CCl4	17	49
28	L1	CuBH4(PPh3)2	O1 (1.0 equiv)	CCl4	36	89
29	L1	CuBH4(PPh3)2	O1 (1.5 equiv)	CCl4	47	90

^{*a*}Reaction conditions: **A-1** (0.20 mmol), **S-1** (0.30 mmol), $CuBH_4(PPh_3)_2$ (10 mol %), **L** (15 mol %), **[O]** (2.0 equiv) in anhydrous solvent (4.0 mL) at rt for 2 d under argon. Yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee values were based on chiral high-performance liquid chromatography (HPLC) analysis.

Table S2. Optimization of Reaction Conditions for Glycerol^a

^{*a*}Reaction conditions: **A-1** (0.20 mmol), **S-38** (0.30 mmol), CuBH₄(PPh₃)₂(10 mol %), **L** (15 mol %), **O1** (2.0 equiv) in anhydrous CCl₄ (4.0 mL) at rt for 2 d under argon. Yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee values were based on chiral high-performance liquid chromatography (HPLC) analysis.

		CuBH ₄ (PPh ₃₎₂ (10 mol %) L1 (15 mol %)		°→−F	
F A-6	Me ⁻ OH	O1 (2.0 CCl ₄ , r		Ph,, Me OH 6	
	Entry	Time (h)	Ee of 6 (%)	_	
	1	0.25	91	_	
	2	0.5	92		
	3	1	91		
	4	2	92		
	5	8	92		
	6	24	92		
	7	48	92		

Table S3. Product Ee Values in the Reaction

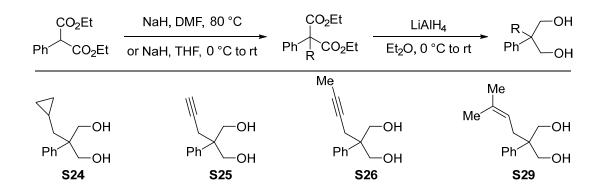
Reaction conditions: A-6 (0.025 mmol), S-1 (1.5 equiv), $CuBH_4(PPh_3)_2$ (10 mol %), L1 (15 mol %), and O1 (2.0 equiv) in anhydrous carbon tetrachloride (0.50 mL) at rt for the indicated time under argon. Upon completion, the reaction mixture was purified by thin layer chromatography (petroleum ether/EtOAc = 3/1) and ee values were based on chiral HPLC analysis.

F H +		Ph OH Me OH	CuBH ₄ (PPh ₃) ₂ (10 mol %) L1 (15 mol %)		∽_F	
			O1 (2.0 ¢ CCl ₄ , rt		Ph,,,O Me r OH	
A-6		S-1			6	
-	Entry	Time (h)	A-6 (%)	AC-6 (%)	6 (%)	
·	1	0.25	89	11	0	
	2	0.5	78	12	10	
	3	1	72	8	20	
	4	2	55	6	39	
	5	8	31	0.8	68	
	6	24	23	0	77	
_	7	48	22	0	78	

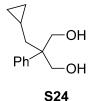
Table S4. Generation of Acid Chlorides in the Reaction

Reaction conditions: A-6 (0.025 mmol), S-1 (1.5 equiv.), CuBH₄(PPh₃)₂ (10 mol %), L1 (15 mol %), and O1 (2.0 equiv) in anhydrous carbon tetrachloride (0.50 mL) at rt for the indicated time under argon. Upon completion, *o*-difluorobenzene (0.50 mol/L in CCl₄, 50 μ L, 1.0 equiv) was added and the reaction mixture was directedly analyzed by ¹⁹F NMR spectroscopy.

1. General information


All reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Extra dry solvents were purchased from J&K[®]. Chloroform (CHCl₃) was distilled from anhydrous calcium hydride (CaH₂) and stored under argon. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). ¹H, ¹³C, ¹⁹F, and ³¹P-NMR spectra were recorded on Bruker Avance-400 spectrometers. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hitachi detector or SHIMADZU LC-20AD with an SPD-20AV detector; column conditions are reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. X-ray diffraction was measured on a 'Bruker APEX-II CCD diffractometer with Cu-Ka radiation.

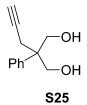
2. Synthesis of substrates


Glycerol (S38) and *cis*-1,2-cyclohexadiol (S52) was purchased from commercial sources and directly used. The following substrates were synthesized according to literature reports:

S1 & S22,¹ S23,² S27,³ S28,⁴ S32,⁵ S39-S42,⁶ S43,⁷ S44,⁸ S45,⁹ S46,¹⁰ S47,¹¹ S49,¹² S50,¹³ and S51.¹⁴

2.1 The synthesis of substrates S24–S26 and S29

2-(Cyclopropylmethyl)-2-phenylpropane-1,3-diol (S24)

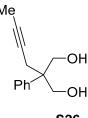

To a suspension of NaH (60% dispensed in mineral oil, 400.0 mg, 10.0 mmol, 2.0 equiv) in dry DMF (15 mL) at 0 °C was slowly added diethyl 2-phenylmalonate (196.0 mg, 5.0 mmol, 1.0 equiv). After stirring for 30 min, KI (830 mg, 5.0 mmol, 1.0 equiv) and cyclopropylmethyl chloride (1.81 g, 20.0 mmol, 4.0 equiv) were added dropwise. The reaction mixture was heated to 80 °C while stirring for 1 d. After completion of the reaction, the mixture was cooled to rt, quenched with saturated NH₄Cl (aq.), and extracted with EtOAc (3x). The combined organic layer was washed with H₂O (4x), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was briefly purified by silica gel column chromatography to give the crude diester product.

To a suspension of LiAlH4 (760.0 mg, 20 mmol, 4.0 equiv) in Et₂O (15 mL) at 0 °C was slowly added a solution of the diester obtained above in Et₂O (5 mL). Then the reaction mixture was warmed to rt and stirred for 2 h. Upon completion, the reaction was quenched by slowly, portionwise adding wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. The resulting mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 2/1) to yield product **S24** as a white solid

(577.1 mg, 56% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 4H), 7.27 – 7.21 (m, 1H), 4.16 (d, J = 10.6 Hz, 2H), 4.00 (d, J = 10.7 Hz, 2H), 2.60 (br s, 2H), 1.55 (d, J = 6.1 Hz, 2H), 0.42 – 0.28 (m, 3H), -0.01 – -0.06 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 141.8, 128.6, 127.1, 126.5, 68.6, 48.3, 39.9, 5.8, 4.6. **HRMS** (ESI) m/z calcd. for C₁₃H₁₈NaO₂ [M + Na]⁺ 229.1199, found 229.1195.

2-Phenyl-2-(prop-2-yn-1-yl)propane-1,3-diol (S25)

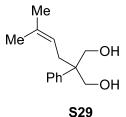

To a suspension of NaH (60% dispensed in mineral oil, 240.0 mg, 6.0 mmol, 1.2 equiv) in dry THF (15 mL) at 0 °C was slowly added diethyl 2-phenylmalonate (196.0 mg, 5.0 mmol, 1.0 equiv). After stirring for 30 min, 2-propynyl bromide (0.71 g, 6.0 mmol, 1.2 equiv) was added dropwise. The reaction mixture was warmed to rt and stirred overnight. Upon completion, the reaction was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was briefly purified by silica gel column chromatography to give the crude diester product.

To a suspension of LiAlH4 (760.0 mg, 20 mmol, 4.0 equiv) in Et₂O (15 mL) at 0 °C was slowly added a solution of the diester obtained above in Et₂O (5 mL). Then the reaction mixture was warmed to rt and stirred for 2 h. Upon completion, the reaction was quenched by slow, portionwise addition of wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. The resulting mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 2/1) to yield product **S25** as a white solid (408.0 mg, 43% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 4H), 7.32 – 7.25 (m, 1H), 4.10 (dd, J = 11.1, 5.7 Hz, 2H), 4.00 (dd, J = 11.1, 6.0 Hz, 2H), 2.76 (d, J = 2.6 Hz, 2H), 2.17 (t, J = 6.0 Hz, 2H), 1.99 (t, J = 2.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 128.8, 127.2, 126.7, 80.9, 71.3, 67.8, 47.4, 23.2. HRMS (ESI) *m/z* calcd. for C₁₂H₁₅O₂ [M + H]⁺ 191.1067, found 191.1064.

```
2-(But-2-yn-1-yl)-2-phenylpropane-1,3-diol (S26)
```

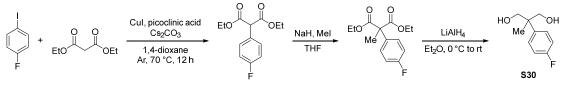


The synthesis of substrate **S26** is similar to that of **S25**, and the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S26** as a white solid (458.8 mg, 45% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 4H), 7.26 – 7.19 (m, 1H), 3.96 (d, *J* = 11.0 Hz, 2H), 3.87 (d, *J* = 11.0 Hz, 2H), 3.09 (br s, 2H), 2.59 (d, *J* = 2.3 Hz, 2H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 128.3, 126.7, 126.6, 78.4, 75.2, 67.3, 47.2, 23.5, 3.4.

HRMS (ESI) m/z calcd. for C₁₃H₁₆NaO₂ [M + Na]⁺ 227.1043, found 227.1042.

2-(3-Methylbut-2-en-1-yl)-2-phenylpropane-1,3-diol (S29)

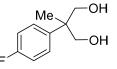

The synthesis of substrate **S29** is similar to that of **S25**, and the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S29** as a white solid (600.0 mg, 55% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 4H), 7.28 – 7.21 (m, 1H), 4.88 (t, *J* = 7.2 Hz, 1H), 4.06 (dd, *J* = 11.0, 3.3 Hz, 2H), 3.91 (dd, *J* = 11.0, 3.4 Hz, 2H), 2.36 (d, *J* = 7.3 Hz, 2H), 2.32 – 2.11 (m, 2H), 1.61 (s, 3H), 1.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 134.5, 128.6, 127.1, 126.5, 118.8, 68.5, 47.8, 32.9, 25.9, 17.9.

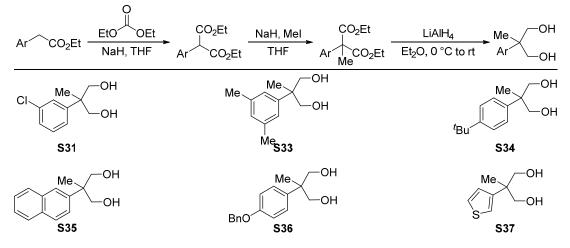
HRMS (ESI) m/z calcd. for C₁₄H₁₉O [M + H – H₂O]⁺ 203.1430, found 203.1427.

2.2 Synthesis of substrate S30


To a solution of CuI (48 mg, 0.25 mmol, 5.0 mol %), 2-picolinic acid (62 mg, 0.50 mmol, 10.0 mol %), Cs₂CO₃ (4.89 g, 15 mmol, 3.0 equiv), and diethyl malonate (1.52

mL, 10 mmol, 2.0 equiv) in 1,4-dioxane (5.0 mL) was added 1-fluoro-4-iodobenzene (1.11 g, 5.0 mmol, 1.0 equiv) under argon atmosphere. The mixture was sealed and placed in a preheated oil bath at 70 °C for stirring overnight. Then the reaction mixture was cooled to rt and partitioned between ethyl acetate (EtOAc, 3×20 mL) and saturated aqueous NH4Cl (10 mL). The organic portions were dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The thus-obtained crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give diethyl 2-(4-fluorophenyl)malonate (0.74 g, 2.9 mmol, 58% yield).

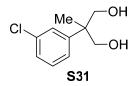
To a solution of diethyl 2-(4-fluorophenyl)malonate (0.74 g, 2.9 mmol, 1.0 equiv) in dry THF (3 mL) was added NaH (60% dispensed in mineral oil, 0.15 g, 3.8 mmol, 1.3 equiv) portionwise at 0 °C under argon atmosphere. The resulting mixture was stirred at the same conditions for 30 min before the dropwise addition of methyl iodide (0.49 g, 3.5 mmol, 1.2 equiv). Then the reaction mixture was warmed to rt and stirred overnight. Upon completion, the reaction was quenched with saturated NH4Cl (aq.) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 20/1) to give diethyl 2-(4-fluorophenyl)-2-methylmalonate (0.59 g, 2.2 mmol, 76% yield).


To a suspension of LiAlH₄ (0.25 g, 6.6 mmol, 3.0 equiv) in Et₂O (15 mL) was slowly added a solution of diethyl 2-(4-fluorophenyl)-2-methylmalonate (0.59 g, 2.2 mmol) in Et₂O (5 mL) at 0 °C. Then the reaction mixture was warmed to rt and stirred for 2 h. Upon completion, the reaction was quenched by slow, portionwise addition of wet Na₂SO₄ (2.0 mL water in 16.0 g Na₂SO₄) at 0 °C. The resulting mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 2/1) to give the corresponding diol product **S30** (0.22 g, 1.2 mmol, 55% yield) as a white solid.

2-(4-Fluorophenyl)-2-methylpropane-1,3-diol (S30)

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 2H), 7.05 (t, J = 8.7 Hz, 2H), 3.94 (d, J = 11.0 Hz, 2H), 3.81 (d, J = 11.0 Hz, 2H), 2.13 (br s, 2H), 1.27 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.3 (tt, J = 8.2, 5.3 Hz). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.5 (d, J = 245.5 Hz), 138.8 (d, J = 3.2 Hz), 128.3 (d, J = 7.7 Hz), 115.4 (d, J = 20.8 Hz), 69.9, 44.1, 20.9. **HRMS** (ESI) *m/z* calcd. for C₁₀H₁₃FNaO₂ [M + Na]⁺ 207.0792, found 207.0790.

2.3 The synthesis of substrates S31 and S33–S37

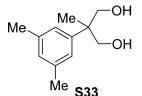

General procedure I:

To a suspension of NaH (60% dispensed in mineral oil, 480.0 mg, 12.0 mmol, 2.4 equiv) in dry THF (15 mL) at 0 °C was slowly added the corresponding ester (5.0 mmol, 1.0 equiv). After stirring for 30 min, ethyl carbonate (1.7 g, 15 mmol, 3.0 equiv) was added dropwise. The mixture was warmed to rt and then heated to reflux while stirring under argon atmosphere for 24 h. After cooling to rt, the reaction was quenched by carefully adding saturated NH4Cl (aq.) and extracted with EtOAc (3x). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The crude malonate diester product was used directly in the next step without further purification.

To a solution of the crude malonate diester obtained above in dry THF (15 mL) was added NaH (60% dispensed in mineral oil, 240.0 mg, 6.0 mmol, 1.2 equiv) portionwise at 0 °C under argon atmosphere. After stirring for 30 min, methyl iodide (852.0 mg, 6.0 mmol, 1.2 equiv) was added dropwise. The reaction mixture was warmed to rt and stirred overnight. Upon completion, the reaction was quenched with saturated NH₄Cl (aq.) and extracted with CH₂Cl₂ (3x). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to give the α,α -disubstituted malonate diester product

To a suspension of LiAlH₄ (0.76 g, 20 mmol, 4.0 equiv) in Et₂O (15 mL) at 0 °C was slowly added a solution of the α,α -disubstituted malonate diester obtained above in Et₂O (5 mL). Then the reaction mixture was warmed to rt and stirred for 2 h. Upon completion, the reaction was quenched by slowly, portionwise adding wet Na₂SO₄ (4.0 mL water in 32.0 g Na₂SO₄) at 0 °C. The resulting mixture was warmed to rt, stirred for additional 30 min, filtered, and concentrated. The residue was purified by silica gel column chromatography to give the corresponding diol product.

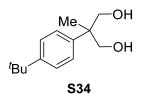
2-(3-Chlorophenyl)-2-methylpropane-1,3-diol (S31)


According to **General procedure I** with ethyl 2-(3-chlorophenyl)acetate (0.99 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S31** as a white solid (350.5 mg, 35% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.42 (m, 1H), 7.35 – 7.27 (m, 2H), 7.24 (dt, J = 7.1, 1.9 Hz, 1H), 3.95 (d, J = 10.9 Hz, 2H), 3.83 (d, J = 11.0 Hz, 2H), 2.18 (br s, 2H), 1.27 (s, 3H).

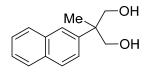
¹³C NMR (100 MHz, CDCl₃) δ 145.4, 134.6, 129.8, 127.1, 126.9, 124.9, 69.9, 44.6, 20.8.

HRMS (ESI) m/z calcd. for C₁₀H₁₃ClNaO₂ [M + Na]⁺ 223.0496, found 223.0493.


2-(3,5-Dimethylphenyl)-2-methylpropane-1,3-diol (S33)

According to **General procedure I** with ethyl 2-(3,5-dimethylphenyl)acetate (0.96 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S33** as a white solid (475.8 mg, 49% yield over three steps).

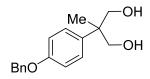
¹**H NMR** (400 MHz, CDCl₃) δ 6.96 (s, 2H), 6.85 (s, 1H), 3.83 (d, J = 10.9 Hz, 2H), 3.67 (d, J = 11.0 Hz, 2H), 3.21 (br s, 2H), 2.29 (s, 6H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.0, 137.7, 128.1, 124.2, 69.3, 44.0, 21.4, 20.5. **HRMS** (ESI) m/z calcd. for C₁₂H₁₈NaO₂ [M + Na]⁺ 217.1199, found 217.1200.


2-(4-(tert-Butyl)phenyl)-2-methylpropane-1,3-diol (834)

According to **General procedure I** with ethyl 2-(4-(*tert*-butyl)phenyl)acetate (1.10 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S34** as a white solid (488.2 mg, 44% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 4H), 3.97 (dd, *J* = 11.0, 6.0 Hz, 2H), 3.84 (dd, *J* = 11.0, 5.9 Hz, 2H), 1.96 (t, *J* = 6.0 Hz, 2H), 1.32 (s, 9H), 1.31 (s, 3H). ¹³**C NMR** (100 MHz, CD₃OD) δ 152.4, 145.0, 130.1, 128.6, 71.7, 48.0, 37.6, 34.3, 23.1. **HRMS** (ESI) *m/z* calcd. for C₁₄H₂₂NaO₂ [M + Na]⁺ 245.1512, found 245.1508.

2-Methyl-2-(naphthalen-2-yl)propane-1,3-diol (S35)


S35

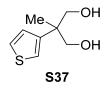
According to **General procedure I** with ethyl methyl 2-(naphthalen-2-yl)acetate (2.0 g, 10 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel to give product **S35** (0.53 g, 25% yield over three steps) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.74 (m, 4H), 7.58 – 7.51 (m, 1H), 7.51 – 7.40 (m, 2H), 4.04 (d, *J* = 11.0 Hz, 2H), 3.89 (d, *J* = 11.1 Hz, 2H), 2.32 (br s, 2H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 133.4, 132.2, 128.4, 128.0, 127.4, 126.2, 125.9, 125.8, 124.7, 70.0, 44.8, 20.9.

HRMS (ESI) m/z calcd. for C₁₄H₁₆NaO₂ [M + Na]⁺ 239.1043, found 239.1038.

2-(4-(Benzyloxy)phenyl)-2-methylpropane-1,3-diol (S36)

S36

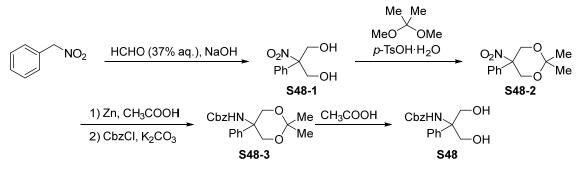

According to **General procedure I** with ethyl 2-(4-(benzyloxy)phenyl)acetate (1.35 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **S36** as a white solid (340.0 mg, 25% yield over three steps).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.29 (m, 7H), 7.01 – 6.94 (m, 2H), 5.05 (s, 2H), 3.91 (dd, J = 10.9, 5.7 Hz, 2H), 3.79 (dd, J = 11.0, 5.6 Hz, 2H), 2.14 (t, J = 5.8 Hz, 2H), 1.27 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 157.4, 136.9, 135.0, 128.6, 128.0, 127.8, 127.4, 114.9, 70.2, 44.0, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NaO₃ [M + Na]⁺ 295.1305, found 295.1300.

2-Methyl-2-(thiophen-3-yl)propane-1,3-diol (837)



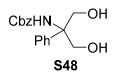
According to General procedure I with ethyl 2-(thiophen-3-yl)acetate (0.85 g, 5.0 mmol, 1.0 equiv). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product S37 as a white solid (154.6 mg, 18% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.21 (dd, *J* = 2.9, 1.4 Hz, 1H), 7.13 (dd, *J* = 5.0, 1.4 Hz, 1H), 3.89 (dd, *J* = 10.9, 5.9 Hz, 2H), 3.80 (dd, *J* = 10.9, 6.0 Hz, 2H), 2.02 – 1.94 (m, 2H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.4, 126.1, 126.0, 121.0, 69.9, 43.5, 20.6. HRMS (ESI) *m/z* calcd. for C₈H₁₂NaO₂S [M + Na]⁺ 195.0450, found 195.0449.

2.4 The synthesis of substrate S48

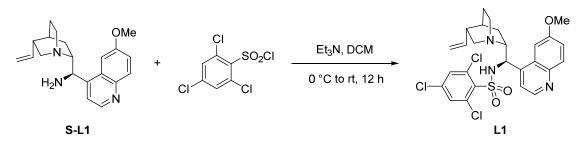
To a solution of phenylnitromethane (4.66 g, 34.0 mmol) in a mixture of EtOH (46 mL) and 1,4-dioxane (19 mL) were added aqueous NaOH (1.0 M, 0.19 mL, 0.19 mmol, 0.5 mol %) and formalin (37% aq., 5.6 mL, 68 mmol, 2.0 equiv) at rt, and the mixture was stirred under the same conditions for 5 h. After the evaporation of all volatile materials *in vacuo*, H₂O (45 mL) was added. The mixture was extracted with EtOAc (3×45 mL) and the combined organic layer was dried, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to afford the diol **S48-1** (4.74 g, 71% yield).


To a solution of **S48-1** (3.43 g, 17.4 mmol) in acetone (40 mL) were added *p*-TsOH·H₂O (330.9 mg, 1.74 mmol, 0.10 equiv) and 2,2-dimethoxypropane (2.4 mL, 19 mmol, 1.1 equiv) at rt and the resulting mixture was stirred under the same conditions for 2 h. Upon completion, the reaction was quenched by adding Et₃N (0.34 mL, 2.4 mmol, 0.14 equiv) and stirred at rt for 30 min. The resulting mixture was concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 5/1) to provide the acetonide **S48-2** (3.71 g, 90% yield).

To a solution of S48-2 (1.427 g, 6.0 mmol) in CH₃COOH (36 mL) were added zinc powders (1.56 g, 72.0 mmol, 12.0 equiv) at 15-min intervals within 3 h at rt. Upon completion, the reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was diluted with CH₂Cl₂ (30 mL), washed with saturated NaHCO₃ (30 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to provide the crude amine.

To a solution of the crude amine in THF/H₂O (1/1 v/v, 10 mL) were successively added K₂CO₃ (1.59 g, 11.5 mmol, 2.0 equiv) and benzyl chloroformate (0.96 mL, 6.9 mmol, 1.2 equiv) at 0 °C while stirring. The resulting reaction mixture was stirred at rt for 3 h. Upon completion, the reaction was quenched by dropwise adding aqueous 3N HCl until the pH reached ~ 3 . Next, the reaction mixture was extracted with EtOAc (2 \times 15 mL). The combined organic layer was washed with water $(1 \times 15 \text{ mL})$ and brine $(1 \times 15 \text{ mL})$, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to afford S48-3.

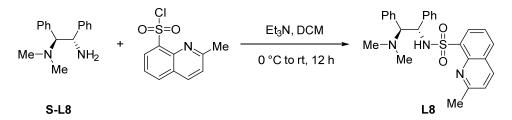
A mixture of the thus-obtained S48-3 (35 mL) in acetic acid and H₂O (4/1 v/v, 35 mL) was heated at 60 °C for 1 h. Upon completion, all the volatile materials were removed in vacuo and the residue was purified by column chromatography (petroleum ether/EtOAc = 50/1 to 1/3) to offer product S48 as a white solid (1.48 g, 86% over three steps).


Benzyl (1,3-dihydroxy-2-phenylpropan-2-yl) carbamate (S48)

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 10H), 5.91 (s, 1H), 5.11 (s, 2H), 4.00 (dd, *J* = 11.8, 5.0 Hz, 2H), 3.92 (dd, *J* = 11.8, 5.4 Hz, 2H), 3.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 139.5, 136.1, 128.8, 128.6, 128.3, 128.2, 127.8, 126.0, 67.8, 67.2, 63.9.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NO₄ [M + H]⁺ 302.1387, found 302.1380.

3. Synthesis of catalysts

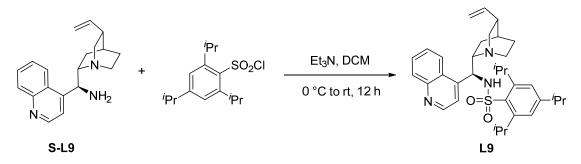

To a solution of amine S-L1 (1.62 g, 5.0 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (10 mL) were successively added 2,4,6-trichlorobenzenesulfonyl chloride (1.68 g, 6.0 mmol, 1.2 equiv) and Et₃N (1.67 mL, 12.0 mmol, 2.0 equiv) under argon at 0 °C. The reaction mixture was stirred for 12 h at rt, and quenched by H₂O. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3×20 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, concentrated, and purified by silica gel flash column chromatography (eluent: CH₂Cl₂/MeOH = 20:1 to 10:1) to afford product L1 as a white solid (2.60 g, 92% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (d, *J* = 4.3 Hz, 1H × 0.6), 8.55 (d, *J* = 4.6 Hz, 1H), 7.98 (d, *J* = 9.2 Hz, 1H), 7.90 (d, *J* = 9.2 Hz, 1H × 0.6), 7.46 (d, *J* = 2.7 Hz, 1H × 0.6), 7.38 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.34 – 7.19 (m, 4H + 2H × 0.6), 6.94 (s, 2H × 0.6), 5.94 – 5.78 (m, 1H + 1H × 0.6), 5.20 – 4.97 (m, 3H + 2H × 0.6), 4.50 (d, *J* = 10.7 Hz, 1H × 0.6), 3.96 (s, 3H), 3.95 (s, 3H × 0.6), 3.41 (q, *J* = 9.3 Hz, 1H × 0.6), 3.05 – 2.80 (m, 5H + 2H × 0.6), 2.73 – 2.61 (m, 1H + 1H × 0.6), 2.37 – 2.24 (m, 1H + 1H × 0.6), 1.79 – 1.65 (m, 1H + 1H × 0.6), 1.63 – 1.45 (m, 2H + 2H × 0.6), 1.33 – 1.17 (m, 1H + 2H × 0.6), 1.06 – 0.82 (m, 1H + 2H × 0.6).

¹³C NMR (100 MHz, CDCl₃) δ 158.0, 156.8, 147.3, 147.0, 144.7, 144.5, 142.8, 140.5, 139.7, 139.0, 137.7, 137.4, 136.0, 135.5, 134.2, 133.4, 131.9, 131.6, 130.6, 130.4, 128.2, 126.5, 124.8, 122.4, 120.6, 119.8, 115.1, 114.6, 103.2, 100.3, 62.6, 61.2, 55.9, 55.5, 55.4, 52.7, 49.3, 49.0, 46.3, 39.0, 38.4, 27.4, 27.2, 26.4, 25.6, 24.4.

HRMS (ESI) m/z calcd. for C₂₆H₂₇Cl₃N₃O₃S [M + H]⁺ 566.0833, found 566.0825.

The structure of L1 was further confirmed by X-ray diffraction analysis (Figure S1).

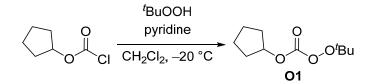


To a solution of amine S-L8 (1.20 g, 5.0 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (10 mL) were successively added 2-methylquinoline-8-sulfonyl chloride (1.45 g, 6.0 mmol, 1.2 equiv) and Et₃N (1.67 mL, 12.0 mmol, 2.0 equiv) under argon at 0 °C. The reaction

mixture was stirred for 12 h at rt and quenched by H₂O. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3×20 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, concentrated, and purified by silica gel flash column chromatography (eluent: CH₂Cl₂/MeOH = 20:1 to 10:1) to afford product **L8** as a white solid (1.80 g, 81% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 7.3, 1.5 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H + 1H), 7.97 (dd, J = 8.2, 1.5 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.19 - 7.05 (m, 5H), 7.05 - 6.93 (m, 3H), 6.80 (dd, J = 6.6, 2.9 Hz, 2H), 4.48 (d, J = 10.8 Hz, 1H), 3.63 (d, J = 10.8 Hz, 1H), 2.89 (s, 3H), 1.58 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 160.2, 143.3, 140.5, 136.5, 136.2, 132.7, 131.5, 130.6, 129.8, 128.1, 127.6, 127.5, 127.4, 126.9, 126.9, 124.6, 123.0, 73.9, 58.4, 40.2, 25.9. HRMS (ESI) *m/z* calcd. for C₂₆H₂₈N₃O₂S [M + H]⁺ 446.1897, found 446.1890.

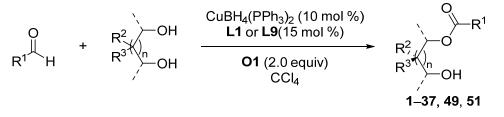

To a solution of amine S-L9 (1.47 g, 5.0 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (10 mL) were successively added 2,4,6-triisopropylbenzenesulfonyl chloride (1.82 g, 6.0 mmol, 1.2 equiv.) and Et₃N (1.67 mL, 12.0 mmol, 2.0 equiv) under argon at 0 °C. The reaction mixture was stirred for 12 h at rt and was quenched by H₂O. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 ×). The combined organic phase was washed with brine, dried with anhydrous Na₂SO₄, concentrated, and purified over silica gel flash column chromatography (eluent: CH₂Cl₂:MeOH = 20:1 ~ 10:1) to afford the products L9 as a white solid (1.68 g, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H×0.2), 8.50 (d, *J* = 4.4 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 1H×0.2), 8.28 (d, *J* = 8.4 Hz, 1H), 8.07 – 8.05 (m, 1H+1H×0.2), 7.71 (t, *J* = 7.6 Hz, 1H), 7.64 – 7.60 (m, 1H+1H×0.2), 7.34 – 7.30 (m, 2H×0.2), 7.18 (d, *J* = 4.8 Hz, 1H), 6.93 – 6.90 (m, 2H+2H×0.2), 5.68 – 5.53 (m, 1H+1H×0.2), 5.36 (d, *J* = 10.4 Hz, 1H), 4.95 – 4.82 (m, 2H+2H×0.2), 4.58 (d, *J* = 10.8 Hz, 1H×0.2), 3.91 – 3.78 (m, 2H+2H×0.2), 3.25 – 3.19 (m, 1H+2H×0.2), 3.11 – 3.03 (m, 1H), 2.83 – 2.65 (m, 4H+4H×0.2), 2.27 (s, 1H+1H×0.2), 1.67 – 1.53 (m, 3H+3H×0.2), 1.21 – 1.19 (m, 14H+14H×0.2), 1.05 – 1.03 (m, 1H+1H×0.2), 0.96 – 0.91 (m, 6H×0.2), 0.76 (d, *J* = 7.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 149.7, 149.4, 141.2, 130.3, 129.1, 126.9, 123.1, 122.7, 120.0, 114.7, 61.9, 55.8, 52.6, 40.3, 39.6, 34.1, 29.6, 27.8, 27.4, 25.1, 24.9, 24.0, 23.7, 23.6.

HRMS (ESI) m/z calcd. for C₃₄H₄₆N₃O₂S [M+H]⁺ 560.3305, found 560.3306.

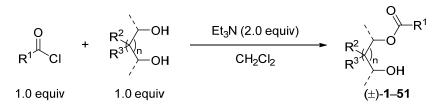
4. Synthesis of the oxidant



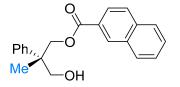
O1 was prepared from cyclopentyl carbonochloridate in 85% yield according to a literature procedure.¹⁵

5. Cu-catalyzed enantioselective desymmetrizing radical C–O

coupling with 2,2-dicarbofunctionalized 1,3-diols, 2-substituted-2-


chloro-1,3-diols, and meso 1,4-diols

General procedure A:


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.020 mmol, 10 mol %), L1 or L9 (0.030 mmol, 15 mol %), diol (0.30 mmol, 1.5 equiv), corresponding fresh aldehyde (0.20 mmol, 1.0 equiv), and anhydrous CCl₄ (4.0 mL). Then, O1 (80.9 mg, 0.40 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt. Upon completion (monitored by TLC), the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel to afford the desired product.

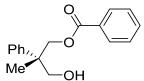
The preparation of racemic product (\pm) -1–51:

To the mixture of diol (0.10 mmol, 1.0 equiv) and Et₃N (27.7 μ L, 0.20 mmol, 2.0 equiv) in dry CH₂Cl₂ (1.0 mL) was added the corresponding acyl chloride (0.10 mmol, 1.0 equiv) at rt. After stirring for 24 h, the reaction was quenched by adding saturated NH₄Cl (aq.). Then, the mixture was extracted with CH₂Cl₂ (3x) and the combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemic product.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 2-naphthoate (1)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 3/1) to yield product **1** as a colorless oil (46.1 mg, 72% yield, 93% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm), *t*_R (major) = 18.45 min, *t*_R (minor) = 22.17 min.


¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.02 (dd, J = 8.6, 1.7 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.89 – 7.82 (m, 2H), 7.63 – 7.48 (m, 4H), 7.45 – 7.37 (m, 2H), 7.34 – 7.27 (m, 1H), 4.69 (d, J = 0.9 Hz, 2H), 3.91 (s, 2H), 2.52 (br s, 1H), 1.53 (s, 3H).

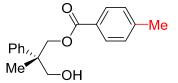
¹³C NMR (100 MHz, CDCl₃) δ 167.1, 142.8, 135.6, 132.5, 131.3, 129.4, 128.7, 128.4,

128.3, 127.8, 127.2, 126.9, 126.8, 126.6, 125.2, 69.2, 68.0, 44.2, 20.8.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₃ [M + Na]⁺ 343.1305, found 343.1300.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl benzoate (2)

According to **General procedure A** with benzaldehyde (21.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **2** as a colorless oil (46.8 mg, 86% yield, 92% ee).

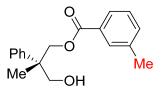

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 11.37 min, t_R (minor) = 14.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 7.93 (m, 2H), 7.61 – 7.51 (m, 1H), 7.49 – 7.34 (m, 6H), 7.32 – 7.26 (m, 1H), 4.60 (s, 2H), 3.84 (s, 2H), 1.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.6, 133.2, 129.9, 129.7, 128.7, 128.5, 126.9, 126.5, 68.9, 68.0, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NaO₃ [M + Na]⁺ 293.1148, found 293.1144.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-methylbenzoate (3)

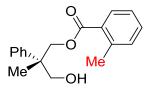

According to **General procedure A** with *p*-tolualdehyde (24.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **3** as a colorless oil (46.0 mg, 81% yield, 93% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.31 min, t_R (minor) = 14.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.51 – 7.43 (m, 2H), 7.43 – 7.34 (m, 2H), 7.30 – 7.26 (m, 1H), 7.25 – 7.19 (m, 2H), 4.58 (s, 2H), 3.82 (s, 2H), 2.40 (s, 3H), 1.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 144.0, 142.7, 129.7, 129.2, 128.7, 127.1, 126.9, 126.5, 68.7, 67.9, 44.1, 21.7, 20.8.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₃ [M + Na]⁺ 307.1305, found 307.1299.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 3-methylbenzoate (4)

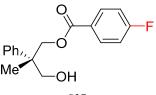

According to **General procedure A** with *m*-tolualdehyde (24.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product 4 as a colorless oil (48.0 mg, 84% yield, 93% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.31 min, t_R (minor) = 14.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.74 (m, 2H), 7.50 – 7.43 (m, 2H), 7.41 – 7.35 (m, 3H), 7.34 – 7.26 (m, 2H), 4.59 (s, 2H), 3.83 (s, 2H), 2.39 (s, 3H), 1.46 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 142.6, 138.3, 134.0, 130.2, 129.8, 128.7, 128.4, 126.9, 126.8, 126.6, 68.8, 67.9, 44.1, 21.3, 20.8.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₃ [M + Na]⁺ 307.1305, found 307.1300.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 2-methylbenzoate (5)

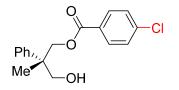

According to **General procedure A** with *o*-tolualdehyde (24.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **5** as a colorless oil (39.0 mg, 68% yield, 90% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 10.15 min, t_R (minor) = 15.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.7 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.42 – 7.33 (m, 3H), 7.31 – 7.17 (m, 3H), 4.59 (d, J = 2.1 Hz, 2H), 3.83 (d, J = 1.3 Hz, 2H), 2.52 (s, 3H), 1.46 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.9, 142.6, 140.4, 132.2, 131.8, 130.6, 129.3, 128.7, 126.9, 126.5, 125.8, 68.9, 68.1, 44.0, 21.8, 20.9.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₃ [M + Na]⁺ 307.1305, found 307.1300.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-fluorobenzoate (6)


According to **General procedure A** with 4-fluorobenzaldehyde (24.8 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **6** as a colorless oil (46.0 mg, 80% yield, 93% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 9.67 min, t_R (minor) = 11.41 min.

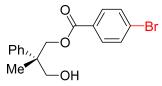
¹**H** NMR (400 MHz, CDCl₃) δ 8.08 – 7.90 (m, 2H), 7.48 – 7.42 (m, 2H), 7.42 – 7.34 (m, 2H), 7.32 – 7.27 (m, 1H), 7.14 – 7.05 (m, 2H), 4.60 (d, *J* = 1.3 Hz, 2H), 3.83 (s, 2H), 1.46 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.9, 165.9 (d, *J* = 254.2 Hz), 142.5, 132.2 (d, *J* = 9.3 Hz), 128.7, 127.0, 126.5, 126.2 (d, *J* = 3.1 Hz), 115.6 (d, *J* = 22.0 Hz), 69.0, 68.0, 44.1, 20.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –105.2 (tt, J = 8.5, 5.4 Hz, 1F). HRMS (ESI) *m/z* calcd. for C₁₇H₁₇FNaO₃ [M + Na]⁺ 311.1054, found 311.1049.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-chlorobenzoate (7)

According to **General procedure A** with 4-chlorobenzaldehyde (28.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product 7 as a pale-yellow oil (49.0 mg, 80% yield, 94% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 11.57 min, *t*_R (minor) = 12.54 min.

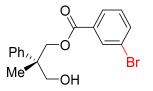
¹**H NMR** (400 MHz, CDCl₃) δ 8.0 – 7.8 (m, 2H), 7.5 – 7.4 (m, 2H), 7.4 – 7.3 (m, 4H), 7.3 – 7.3 (m, 1H), 4.6 (d, *J* = 2.0 Hz, 2H), 3.8 (s, 2H), 1.5 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 142.4, 139.7, 131.0, 128.8, 128.7, 128.4, 127.0, 126.5, 69.1, 68.0, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₇ClNaO₃ [M + Na]⁺ 327.0758, found 327.0754.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-bromobenzoate (8)

According to **General procedure A** with 4-bromobenzaldehyde (37.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **8** as a light-yellow solid (52.2 mg, 75% yield, 93% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 24.12 min, t_R (minor) = 25.65 min.

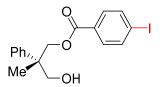
¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 2H), 7.59 – 7.52 (m, 2H), 7.46 – 7.41 (m, 2H), 7.41 – 7.34 (m, 2H), 7.32 – 7.23 (m, 1H), 4.59 (d, *J* = 2.4 Hz, 2H), 3.82 (s, 2H), 1.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.1, 142.4, 131.8, 131.1, 128.8, 128.7, 128.3, 127.0, 126.5, 69.2, 68.0, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₇BrNaO₃ [M + Na]⁺ 371.0253, found 371.0248.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 3-bromobenzoate (9)

According to **General procedure A** with 3-bromobenzaldehyde (37.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **9** as a pale-yellow oil (44.0 mg, 63% yield, 92% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 10.87 min, t_R (minor) = 16.56 min.

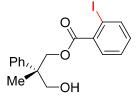
¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (t, J = 1.8 Hz, 1H), 7.89 (dt, J = 7.8, 1.3 Hz, 1H), 7.73 – 7.63 (m, 1H), 7.49 – 7.42 (m, 2H), 7.42 – 7.34 (m, 2H), 7.34 – 7.27 (m, 2H), 4.60 (s, 2H), 3.84 (d, J = 1.9 Hz, 2H), 1.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.5, 142.3, 136.1, 132.6, 131.9, 130.0, 128.7, 128.2, 127.0, 126.5, 122.5, 69.3, 68.0, 44.1, 20.7.

HRMS (ESI) m/z calcd. for C₁₇H₁₇BrNaO₃ [M + Na]⁺ 371.0253, found 371.0249.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-iodobenzoate (10)

According to **General procedure A** with 4-iodobenzaldehyde (46.4 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **10** as a pale-yellow oil (60.0 mg, 76% yield, 93% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 18.42 min, t_R (minor) = 20.44 min.

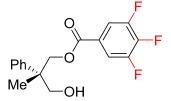
¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 2H), 7.71 – 7.58 (m, 2H), 7.49 – 7.33 (m, 4H), 7.32 – 7.26 (m, 1H), 4.59 (t, *J* = 2.2 Hz, 2H), 3.82 (s, 2H), 1.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 142.4, 137.8, 131.0, 129.4, 128.7, 127.0, 126.5, 101.0, 69.2, 68.0, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₁₇INaO₃ [M + Na]⁺ 419.0115, found 419.0107.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 2-iodobenzoate (11)

According to **General procedure A** with 2-iodobenzaldehyde (46.4 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **11** as a pale-yellow oil (16.0 mg, 20% yield, 90% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.30 min, *t*_R (minor) = 13.60 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 7.9, 1.2 Hz, 1H), 7.65 (dd, J = 7.8, 1.7 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.41 – 7.33 (m, 3H), 7.31 – 7.26 (m, 1H), 7.20 – 7.05 (m, 1H), 4.63 (d, J = 1.0 Hz, 2H), 3.86 (d, J = 2.3 Hz, 2H), 1.46 (s, 3H).

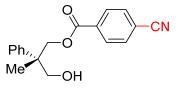
¹³C NMR (100 MHz, CDCl₃) δ 166.8, 142.4, 141.4, 135.0, 132.8, 131.0, 128.7, 128.0, 127.0, 126.6, 94.1, 69.7, 68.1, 44.0, 20.9.

HRMS (ESI) m/z calcd. for C₁₇H₁₇INaO₃ [M + Na]⁺ 419.0115, found 419.0107.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 3,4,5-trifluorobenzoate (12)

According to **General procedure A** with 3,4,5-trifluorobenzaldehyde (32.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **12** as a pale-yellow oil (44.0 mg, 68% yield, 93% ee).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 8.32 min, t_R (minor) = 10.36 min.


¹**H** NMR (600 MHz, CDCl₃) δ 7.63 – 7.54 (m, 2H), 7.51 – 7.37 (m, 4H), 7.32 – 7.27 (m, 1H), 4.61 (q, *J* = 11.1 Hz, 2H), 3.96 – 3.72 (m, 2H), 1.46 (s, 3H).

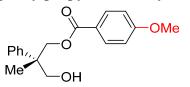
¹³**C** NMR (151 MHz, CDCl₃) δ 164.0, 151.0 (ddd, J = 252.2, 10.2, 3.5 Hz), 143.2 (dt, J = 259.9, 15.3 Hz), 142.1, 128.8, 127.1, 126.4, 125.9 (dt, J = 7.4, 3.6 Hz), 114.2 (dd, J = 17.5, 4.9 Hz), 69.8, 68.0, 44.0, 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –132.2 – –132.6 (m, 2F), –152.2 (tt, *J* = 20.1, 6.6 Hz, 1F).

HRMS (ESI) m/z calcd. for C₁₇H₁₅F₃NaO₃ [M + Na]⁺ 347.0866, found 347.0861.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-cyanobenzoate (13)

According to **General procedure A** with 4-formylbenzonitrile (26.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **13** as a pale-yellow oil (40.0 mg, 68% yield, 84% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.72 min, t_R (minor) = 11.50 min.

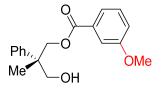
¹**H** NMR (400 MHz, CDCl₃) δ 8.11 – 7.99 (m, 2H), 7.78 – 7.66 (m, 2H), 7.48 – 7.35 (m, 4H), 7.33 – 7.26 (m, 1H), 4.77 – 4.53 (m, 2H), 3.84 (d, *J* = 1.9 Hz, 2H), 1.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 142.2, 133.8, 132.3, 130.1, 128.8, 127.1, 126.4, 117.9, 116.6, 69.7, 68.1, 44.0, 20.7.

HRMS (ESI) m/z calcd. for C₁₈H₁₇NNaO₃ [M + Na]⁺ 318.1101, found 318.1097.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 4-methoxybenzoate (14)

According to **General procedure A** with 4-methoxybenzaldehyde (27.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **14** as a light-yellow solid (46.0 mg, 76% yield, 92% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.23 min, *t*_R (minor) = 10.50 min.

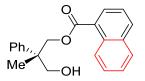
¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.50 – 7.43 (m, 2H), 7.37 (dd, J = 8.5, 6.9 Hz, 2H), 7.31 – 7.23 (m, 1H), 6.94 – 6.85 (m, 2H), 4.57 (s, 2H), 3.85 (s, 3H), 3.81 (s, 2H), 1.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 163.6, 142.7, 131.7, 128.6, 126.9, 126.6, 122.3, 113.7, 68.6, 67.9, 55.5, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₄ [M + Na]⁺ 323.1254, found 323.1249.

The structure of 14 was further confirmed by X-ray diffraction analysis (Figure S2).

According to **General procedure A** with 3-methoxybenzaldehyde (27.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **15** as a pale-yellow oil (47.4 mg, 79% yield, 93% ee).

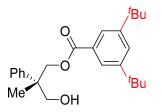

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 7.54 min, *t*_R (minor) = 9.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.32 (d, *J* = 1.3 Hz, 4H), 7.09 (ddd, *J* = 8.3, 2.7, 1.0 Hz, 1H), 4.59 (d, *J* = 1.0 Hz, 2H), 3.83 (s, 2H), 3.82 (s, 3H), 1.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 159.6, 142.6, 131.2, 129.5, 128.7, 126.9, 126.5, 122.0, 119.6, 114.2, 69.0, 68.0, 55.4, 44.1, 20.8.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₄ [M + Na]⁺ 323.1254, found 323.1249.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 1-naphthoate (16)


According to **General procedure A** with 1-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **16** as a light-yellow solid (44.0 mg, 69% yield, 85% ee).

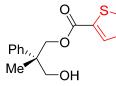
HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.28 min, t_R (minor) = 15.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 – 8.66 (m, 1H), 8.06 (dd, *J* = 7.3, 1.3 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.92 – 7.81 (m, 1H), 7.60 – 7.35 (m, 7H), 7.33 – 7.26 (m, 1H), 4.84 – 4.61 (m, 2H), 3.88 (s, 2H), 1.50 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.9, 142.7, 133.8, 133.6, 131.3, 130.3, 128.7, 128.6, 127.9, 127.0, 126.6, 126.3, 125.8, 124.5, 69.3, 68.2, 44.1, 21.0.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₃ [M + Na]⁺ 343.1305, found 343.1301.

According to **General procedure A** with 3,5-di-*tert*-butylbenzaldehyde (46.8 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **17** as a pale-yellow oil (58.1 mg, 76% yield, 88% ee).


HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 8.87 min, t_R (minor) = 9.92 min.

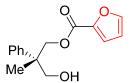
¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 1.9 Hz, 2H), 7.63 (t, *J* = 1.9 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.44 – 7.33 (m, 2H), 7.31 – 7.23 (m, 1H), 4.65 – 4.49 (m, 2H), 3.83 (s, 2H), 1.47 (s, 3H), 1.32 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 151.2, 142.7, 129.2, 128.6, 127.4, 126.9, 126.6, 123.9, 68.9, 67.8, 44.2, 34.9, 31.3, 20.7.

HRMS (ESI) m/z calcd. for C₂₅H₃₄NaO₃ [M + Na]⁺ 405.2400, found 405.2394.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl thiophene-2-carboxylate (18)

According to **General procedure A** with thiophene-2-carbaldehyde (22.4 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **18** as a pale-yellow oil (44.0 mg, 80% yield, 94% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.68 min, t_R (minor) = 19.05 min.

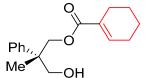
¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.70 (m, 1H), 7.64 – 7.52 (m, 1H), 7.50 – 7.33 (m, 4H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.15 – 7.01 (m, 1H), 4.55 (s, 2H), 3.83 (s, 2H), 1.44 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.5, 142.4, 133.7, 133.4, 132.8, 128.7, 127.9, 127.0, 126.6, 69.0, 67.9, 44.1, 20.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₃S [M + Na]⁺ 299.0712, found 299.0708.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl furan-2-carboxylate (19)

According to **General procedure A** with furan-2-carbaldehyde (19.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **19** as a pale-yellow oil (30.0 mg, 58% yield, 92% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 16.06 min, t_R (minor) = 20.39 min.

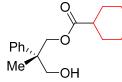
¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 1.8, 0.9 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.41 – 7.33 (m, 2H), 7.31 – 7.22 (m, 2H), 7.13 (d, J = 3.4 Hz, 1H), 6.50 (dd, J = 3.5, 1.7 Hz, 1H), 4.66 – 4.48 (m, 2H), 3.83 (s, 2H), 1.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.9, 146.6, 144.3, 142.4, 128.7, 127.0, 126.5, 118.3, 111.9, 68.9, 68.0, 44.0, 20.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₄ [M + Na]⁺ 283.0941, found 283.0937.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl cyclohex-1-ene-1-carboxylate (20)

According to **General procedure A** with cyclohex-1-ene-1-carbaldehyde (22.0 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **20** as a pale-yellow oil (34.0 mg, 62% yield, 86% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 10.11 min, t_R (minor) = 11.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 4H), 7.30 – 7.22 (m, 1H), 6.97 (tt, *J* = 3.8, 1.8 Hz, 1H), 4.46 – 4.35 (m, 2H), 3.76 (s, 2H), 2.27 – 2.14 (m, 4H), 1.70 – 1.53 (m, 4H), 1.38 (s, 3H).

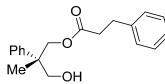
¹³**C NMR** (100 MHz, CDCl₃) δ 167.9, 142.8, 140.7, 130.0, 128.6, 126.8, 126.5, 68.3, 67.9, 44.0, 25.9, 24.1, 22.0, 21.4, 20.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₂NaO₃ [M + Na]⁺ 297.1461, found 297.1457.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl cyclohexanecarboxylate (21)

According to General procedure A with cyclohexanecarbaldehyde (22.4 mg, 0.20

mmol, 1.0 equiv) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **21** as a colorless oil (34.0 mg, 59% yield, 79% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 8.88 min, t_R (minor) = 10.14 min.

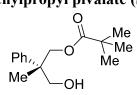
¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 4H), 7.28 – 7.23 (m, 2H), 4.35 (d, J = 1.4 Hz, 2H), 3.73 (s, 2H), 2.38 – 2.23 (m, 1H), 1.91 – 1.80 (m, 2H), 1.77 – 1.67 (m, 2H), 1.66 – 1.58 (m, 1H), 1.47 – 1.36 (m, 2H), 1.35 (s, 3H), 1.32 – 1.14 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.5, 142.6, 128.6, 126.8, 126.5, 68.1, 68.0, 43.9, 43.2, 29.0, 25.7, 25.4, 20.8.

HRMS (ESI) *m/z* calcd. for C₁₇H₂₄NaO₃ [M + Na]⁺ 299.1618, found 299.1613.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 3-phenylpropanoate (SP-1)

According to **General procedure A** with phenylpropyl aldehyde (16.8 mg, 0.2 mmol, 1.0 equiv.) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.3 mmol, 1.5 equiv.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **SP-1** as a pale-yellow oil (42.0 mg, 70% yield, 69% ee).

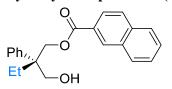

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) =11.00 min, *t*_R (minor) = 12.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 4.3 Hz, 4H), 7.31 – 7.23 (m, 3H), 7.23 – 7.14 (m, 3H), 4.34 (s, 2H), 3.66 (s, 2H), 2.92 (t, *J* = 7.7 Hz, 2H), 2.72 – 2.58 (m, 2H), 1.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.3, 142.5, 140.3, 128.60, 128.55, 128.3, 126.9, 126.5, 126.4, 68.5, 67.8, 43.7, 35.8, 30.9, 20.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NaO₃ [M + Na]⁺ 321.1461, found 321.1460.

(S)-3-Hydroxy-2-methyl-2-phenylpropyl pivalate (SP-2)


According to **General procedure A** with pivaldehyde (17.2 mg, 0.2 mmol, 1.0 equiv.) and 2-methyl-2-phenylpropane-1,3-diol (49.9 mg, 0.3 mmol, 1.5 equiv.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **SP-2** as a pale-yellow oil (30.0 mg, 60% yield, 65% ee).

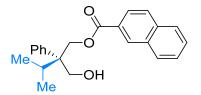
HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R (major) =7.30 min, t_R (minor) = 8.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.28 – 7.23 (m, 1H), 4.34 (s, 2H),

3.74 (d, *J* = 0.9 Hz, 2H), 1.37 (s, 3H), 1.16 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 142.6, 128.5, 126.8, 126.5, 68.4, 68.0, 44.0, 39.0, 27.2, 20.7. HRMS (ESI) *m/z* calcd. for C₁₅H₂₂NaO₃ [M + Na]⁺ 273.1461, found 273.1458.

(S)-2-(Hydroxymethyl)-2-phenylbutyl 2-naphthoate (22)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-ethyl-2-phenylpropane-1,3-diol (54.1 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **22** as a pale-yellow oil (30.8 mg, 76% yield, 93% ee).

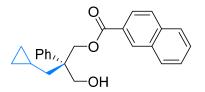

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 22.38 min, t_R (minor) = 24.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.99 (dd, J = 8.6, 1.7 Hz, 1H), 7.96 – 7.91 (m, 1H), 7.90 – 7.84 (m, 2H), 7.66 – 7.51 (m, 2H), 7.40 (d, J = 4.3 Hz, 4H), 7.32 – 7.26 (m, 1H), 4.79 (s, 2H), 4.05 – 3.86 (m, 2H), 2.13 – 2.03 (m, 1H), 1.90 (q, J = 7.5 Hz, 2H), 0.79 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 141.1, 135.6, 132.5, 131.3, 129.4, 128.7, 128.4, 128.3, 127.8, 127.2, 126.8, 126.7, 125.2, 66.4, 65.9, 47.4, 26.5, 7.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₃ [M + Na]⁺ 357.1461, found 357.1455.

(S)-2-(Hydroxymethyl)-3-methyl-2-phenylbutyl 2-naphthoate (23)


According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-isopropyl-2-phenylpropane-1,3-diol (58.2 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **23** as a white solid (62.0 mg, 89% yield, 95% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 20.05 min, t_R (minor) = 23.91 min.

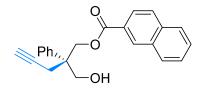
¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.98 – 7.82 (m, 4H), 7.61 – 7.50 (m, 2H), 7.43 – 7.35 (m, 4H), 7.32 – 7.26 (m, 1H), 5.03 – 4.86 (m, 2H), 4.14 (s, 2H), 2.27 – 2.12 (m, 1H), 0.95 (d, *J* = 6.9 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.2, 139.8, 135.6, 132.4, 131.3, 129.4, 128.4, 128.3, 127.8, 127.5, 127.2, 126.72, 126.66, 125.1, 65.6, 64.4, 49.7, 32.4, 18.1, 18.0.

HRMS (ESI) m/z calcd. for C₂₃H₂₄NaO₃ [M + Na]⁺ 371.1618, found 371.1611.

(S)-3-Cyclopropyl-2-(hydroxymethyl)-2-phenylpropyl 2-naphthoate (24)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(cyclopropylmethyl)-2-phenylpropane-1,3-diol (61.8 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **24** as a pale-yellow oil (54.0 mg, 75% yield, 95% ee).

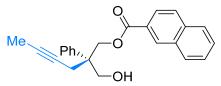

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 10.10 min, t_R (minor) = 11.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.02 – 7.90 (m, 2H), 7.90 – 7.82 (m, 2H), 7.66 – 7.51 (m, 2H), 7.51 – 7.45 (m, 2H), 7.45 – 7.37 (m, 2H), 7.33 – 7.26 (m, 1H), 4.90 (s, 2H), 4.00 (s, 2H), 1.88 (dd, *J* = 14.2, 5.9 Hz, 1H), 1.73 (dd, *J* = 14.2, 7.1 Hz, 1H), 0.54 – 0.44 (m, 1H), 0.44 – 0.29 (m, 2H), 0.11 – 0.01 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 141.7, 135.6, 132.5, 131.3, 129.4, 128.7, 128.4, 128.3, 127.8, 127.2, 126.8, 126.7, 125.1, 66.6, 66.0, 48.2, 39.4, 5.8, 5.0, 4.4.

HRMS (ESI) m/z calcd. for C₂₄H₂₄NaO₃ [M + Na]⁺ 383.1618, found 383.1612.

(S)-2-(Hydroxymethyl)-2-phenylpent-4-yn-1-yl 2-naphthoate (25)

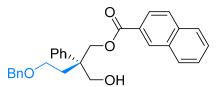

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-phenyl-2-(prop-2-yn-1-yl)propane-1,3-diol (57.1 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **25** as a pale-yellow oil (42.0 mg, 61% yield, 93% ee).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 20.29 min, t_R (minor) = 23.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.01 – 7.80 (m, 4H), 7.65 – 7.47 (m, 4H), 7.46 – 7.37 (m, 2H), 7.35 – 7.27 (m, 1H), 4.82 (s, 2H), 4.03 (s, 2H), 2.89 (t, *J* = 2.9 Hz, 2H), 2.00 (t, *J* = 2.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 140.0, 135.7, 132.4, 131.3, 129.4, 128.7, 128.5, 128.3, 127.8, 127.4, 127.0, 126.80, 126.78, 125.1, 80.2, 71.7, 66.9, 66.0, 47.0, 24.0. HRMS (ESI) *m/z* calcd. for C₂₃H₂₀NaO₃ [M + Na]⁺ 367.1305, found 367.1299.

(S)-2-(Hydroxymethyl)-2-phenylhex-4-yn-1-yl 2-naphthoate (26)


According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(but-2-yn-1-yl)-2-phenylpropane-1,3-diol (61.2 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **26** as a pale-yellow oil (52.0 mg, 73% yield, 86% ee).

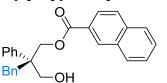
HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 15.84 min, *t*_R (minor) = 17.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.02 – 7.80 (m, 4H), 7.65 – 7.47 (m, 4H), 7.45 – 7.34 (m, 2H), 7.33 – 7.26 (m, 1H), 4.79 (s, 2H), 4.03 (s, 2H), 2.94 – 2.70 (m, 2H), 1.72 (t, *J* = 2.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 140.5, 135.6, 132.4, 131.3, 129.4, 128.7, 128.4, 128.3, 127.8, 127.15, 127.12, 126.9, 126.7, 125.1, 79.1, 74.8, 67.3, 66.3, 47.1, 24.4, 3.6. HRMS (ESI) *m/z* calcd. for C₂₄H₂₂NaO₃ [M + Na]⁺ 381.1461, found 381.1455.

(S)-4-(Benzyloxy)-2-(hydroxymethyl)-2-phenylbutyl 2-naphthoate (27)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(2-(benzyloxy)ethyl)-2-phenylpropane-1,3-diol (85.6 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **27** as a colorless oil (58.0 mg, 66% yield, 90% ee).

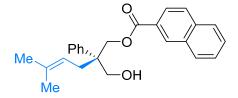

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 9.93 min, t_R (minor) = 21.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.97 – 7.78 (m, 4H), 7.64 – 7.48 (m, 2H), 7.45 – 7.21 (m, 11H), 4.76 – 4.62 (m, 2H), 4.43 (s, 2H), 4.13 – 3.95 (m, 2H), 3.61 – 3.51 (m, 1H), 3.50 – 3.42 (m, 1H), 2.37 – 2.14 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 141.3, 137.6, 135.6, 132.4, 131.2, 129.4, 128.7, 128.5, 128.3, 128.2, 127.83, 127.76, 127.2, 126.8, 126.7, 125.1, 73.3, 68.2, 66.5, 65.6, 46.6, 34.1.

HRMS (ESI) m/z calcd. for C₂₉H₂₈NaO₄ [M + Na]⁺ 463.1880, found 463.1874.

(S)-2-Benzyl-3-hydroxy-2-phenylpropyl 2-naphthoate (28)


According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-benzyl-2-phenylpropane-1,3-diol (72.7 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **28** as a white solid (62.0 mg, 78% yield, 96% ee). **HPLC** analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 11.58 min, t_R (minor) = 17.99 min.

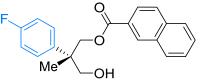
¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.03 – 7.82 (m, 4H), 7.65 – 7.49 (m, 2H), 7.42 – 7.25 (m, 5H), 7.17 – 7.04 (m, 3H), 6.90 – 6.78 (m, 2H), 4.84 – 4.63 (m, 2H), 3.98 (d, J = 2.5 Hz, 2H), 3.28 – 3.05 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 140.7, 136.4, 135.7, 132.5, 131.3, 130.4, 129.4, 128.6, 128.5, 128.3, 127.9, 127.8, 127.1, 127.01, 126.96, 126.8, 126.5, 125.1, 65.8, 64.9, 48.2, 41.0.

HRMS (ESI) m/z calcd. for C₂₇H₂₄NaO₃ [M + Na]⁺ 419.1618, found 419.1613.

(S)-2-(Hydroxymethyl)-5-methyl-2-phenylhex-4-en-1-yl 2-naphthoate (29)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(3-methylbut-2-en-1-yl)-2-phenylpropane-1,3-diol (66.2 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **29** as a pale-yellow oil (56.0 mg, 75% yield, 93% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 14.18 min, t_R (minor) = 15.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.02 – 7.82 (m, 4H), 7.64 – 7.49 (m, 2H), 7.48 – 7.34 (m, 4H), 7.33 – 7.24 (m, 2H), 5.03 – 4.89 (m, 1H), 4.82 – 4.67 (m, 2H), 3.95 (s, 2H), 2.70 – 2.47 (m, 2H), 1.62 (s, 1H), 1.56 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 141.3, 135.6, 134.9, 132.5, 131.3, 129.4, 128.6, 128.4, 128.3, 127.8, 127.2, 126.9, 126.8, 126.7, 125.1, 118.5, 66.7, 66.2, 47.6, 32.7, 26.0, 18.0.

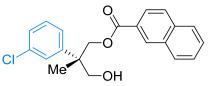
HRMS (ESI) m/z calcd. for C₂₅H₂₆NaO₃ [M + Na]⁺ 397.1774, found 397.1769.

(S)-2-(4-Fluorophenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (30)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(4-fluorophenyl)-2-methylpropane-1,3-diol (55.2 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **30** as a white solid (42.0 mg, 62% yield,

87% ee).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (minor) = 17.13 min, t_R (major) = 18.88 min.

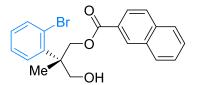

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.03 – 7.82 (m, 4H), 7.64 – 7.51 (m, 2H), 7.51 – 7.42 (m, 2H), 7.11 – 7.04 (m, 2H), 4.63 (s, 2H), 3.84 (s, 2H), 1.48 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 161.7 (d, *J* = 245.7 Hz), 138.4 (d, *J* = 3.3 Hz), 135.7, 132.5, 131.3, 129.4, 128.5, 128.3 (d, *J* = 2.9 Hz), 128.2, 127.8, 127.0, 126.8, 125.1, 115.4 (d, *J* = 21.0 Hz), 69.0, 67.9, 43.8, 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –115.9 – –116.1 (m, 1F).

HRMS (ESI) m/z calcd. for C₂₁H₁₉FNaO₃ [M + Na]⁺ 361.1210, found 361.1204.

(S)-2-(3-Chlorophenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (31)


According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-(m-tolyl)propane-1,3-diol (60.0 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **31** as a pale-yellow oil (42.0 mg, 59% yield, 87% ee).

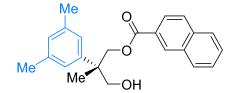
HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 14.57 min, t_R (minor) = 20.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.02 – 7.91 (m, 2H), 7.87 (d, *J* = 8.6 Hz, 2H), 7.64 – 7.47 (m, 3H), 7.42 – 7.26 (m, 3H), 4.62 (d, *J* = 2.6 Hz, 2H), 3.85 (s, 2H), 1.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 145.0, 135.7, 134.6, 132.5, 131.3, 129.9, 129.4, 128.5, 128.4, 127.8, 127.17, 127.15, 126.9, 126.8, 125.1, 124.8, 68.7, 67.6, 44.3, 20.7. HRMS (ESI) *m/z* calcd. for C₂₁H₁₉ClNaO₃ [M + Na]⁺ 377.0915, found 377.0910.

(S)-2-(2-Bromophenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (32)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(2-bromophenyl)-2-methylpropane-1,3-diol (73.5 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **32** as a pale-yellow oil (62.0 mg, 78% yield, 85% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 230 nm), t_R (major) = 9.93 min, t_R (minor) = 15.69 min.

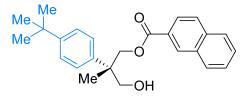
¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.96 – 7.79 (m, 4H), 7.65 (dd, J = 7.9, 1.5

Hz, 1H), 7.61 – 7.50 (m, 3H), 7.37 – 7.30 (m, 1H), 7.17 – 7.10 (m, 1H), 4.98 (q, *J* = 11.3 Hz, 2H), 4.20 (s, 2H), 1.67 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 140.4, 136.2, 135.6, 132.4, 131.3, 130.4, 129.4, 128.7, 128.4, 128.3, 127.8, 127.6, 127.1, 126.7, 125.1, 122.4, 67.4, 65.9, 46.1, 19.9. HRMS (ESI) *m/z* calcd. for C₂₁H₁₉BrNaO₃ [M + Na]⁺ 421.0410, found 421.0405.

(S)-2-(3,5-Dimethylphenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (33)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(3,5-dimethylphenyl)-2-methylpropane-1,3-diol (52.2 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **33** as a white solid (46.0 mg, 70% yield, 94% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 11.81 min, t_R (minor) = 20.99 min.

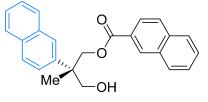
¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.02 (dd, J = 8.6, 1.7 Hz, 1H), 7.98 – 7.83 (m, 3H), 7.66 – 7.48 (m, 2H), 7.09 (s, 2H), 6.93 (s, 1H), 4.63 (d, J = 1.9 Hz, 2H), 3.86 (d, J = 2.1 Hz, 2H), 2.34 (s, 6H), 1.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 142.4, 138.1, 135.6, 132.5, 131.2, 129.4, 128.7, 128.4, 128.3, 127.8, 127.2, 126.8, 125.2, 124.4, 69.2, 68.0, 44.0, 21.6, 20.8.

HRMS (ESI) m/z calcd. for C₂₃H₂₄NaO₃ [M + Na]⁺ 371.1618, found 371.1613.

(S)-2-(4-(tert-Butyl)phenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (34)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(4-(*tert*-butyl)phenyl)-2-methylpropane-1,3-diol (66.7 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **34** as a white solid (60.0 mg, 80% yield, 90% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 11.71 min, t_R (minor) = 13.20 min.

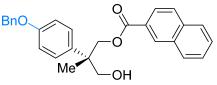
¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.01 (dd, J = 8.6, 1.7 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.65 – 7.50 (m, 2H), 7.41 (s, 4H), 4.74 – 4.57 (m, 2H), 3.86 (s, 2H), 1.49 (s, 3H), 1.33 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 149.7, 139.4, 135.6, 132.5, 131.3, 129.4, 128.4, 128.3, 127.8, 127.2, 126.7, 126.2, 125.6, 125.2, 69.1, 68.0, 43.8, 34.4, 31.3, 20.8.

HRMS (ESI) m/z calcd. for C₂₅H₂₈NaO₃ [M + Na]⁺ 399.1931, found 399.1926.

(S)-3-Hydroxy-2-methyl-2-(naphthalen-2-yl)propyl 2-naphthoate (35)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-(naphthalen-2-yl)propane-1,3-diol (64.8 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **35** as a white solid (54.8 mg, 74% yield, 94% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 11.89 min, t_R (minor) = 16.67 min.

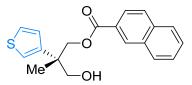
¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.99 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.95 – 7.78 (m, 7H), 7.66 – 7.44 (m, 5H), 4.77 (s, 2H), 3.97 (s, 2H), 1.59 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 140.0, 135.6, 133.4, 132.5, 132.3, 131.3, 129.4, 128.4, 128.35, 128.31, 128.1, 127.8, 127.5, 127.1, 126.7, 126.2, 126.0, 125.7, 125.2, 124.6, 69.0, 68.0, 44.4, 20.9.

HRMS (ESI) m/z calcd. for C₂₅H₂₂NaO₃ [M + Na]⁺ 393.1461, found 393.1455.

(S)-2-(4-(Benzyloxy)phenyl)-3-hydroxy-2-methylpropyl 2-naphthoate (36)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-(4-(benzyloxy)phenyl)-2-methylpropane-1,3-diol (81.6 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **36** as a white solid (58.0 mg, 68% yield, 94% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 29.07 min, t_R (minor) = 32.95 min.

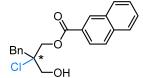
¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.00 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 – 7.83 (m, 3H), 7.65 – 7.50 (m, 2H), 7.48 – 7.28 (m, 7H), 7.00 (d, *J* = 8.9 Hz, 2H), 5.06 (s, 2H), 4.62 (s, 2H), 3.84 (s, 2H), 1.47 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 157.7, 137.0, 135.6, 134.8, 132.5, 131.3, 129.4, 128.6, 128.4, 128.3, 128.0, 127.8, 127.7, 127.5, 127.2, 126.8, 125.2, 114.9, 70.0, 69.2, 68.1, 43.6, 20.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₆NaO₄ [M + Na]⁺ 449.1723, found 449.1716.

(S)-3-Hydroxy-2-methyl-2-(thiophen-3-yl)propyl 2-naphthoate (37)

According to **General procedure A** with 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-2-(thiophen-3-yl)propane-1,3-diol (51.7 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product **37** as a white solid (46.0 mg, 71% yield, 90% ee).


HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 37.10 min, t_R (minor) = 41.04 min.

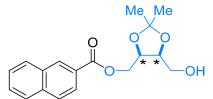
¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.01 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.98 – 7.91 (m, 1H), 7.91 – 7.81 (m, 2H), 7.65 – 7.49 (m, 2H), 7.38 – 7.31 (m, 1H), 7.27 – 7.22 (m, 2H), 7.23 – 7.17 (m, 1H), 4.59 (d, *J* = 1.6 Hz, 2H), 3.79 (s, 2H), 1.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 144.1, 135.7, 132.5, 131.3, 129.4, 128.5, 128.3, 127.8, 127.1, 126.8, 126.3, 125.9, 125.1, 121.1, 68.8, 67.7, 43.0, 20.9.

HRMS (ESI) m/z calcd. for C₁₉H₁₈NaO₃S [M + Na]⁺ 349.0869, found 349.0862.

2-Benzyl-2-chloro-3-hydroxypropyl 2-naphthoate (49)

According to **General procedure A** with 2-naphthaldehyde (15.6 mg, 0.10 mmol, 1.0 equiv), 2-benzyl-2-chloropropane-1,3-diol (30.1 mg, 0.15 mmol, 1.5 equiv.), and **L9** (8.4 mg, 0.015 mmol, 15 mol %). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield product **49** as a colorless oil (25.5 mg, 72% yield, 85% ee).


HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) =16.08 min, t_R (major) = 19.25 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 1.6 Hz, 1H), 8.07 (dd, J = 8.6, 1.7 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.95 – 7.86 (m, 2H), 7.67 – 7.53 (m, 2H), 7.39 – 7.27 (m, 5H), 4.61 (d, J = 11.8 Hz, 1H), 4.49 (d, J = 11.8 Hz, 1H), 3.77 (s, 2H), 3.29 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.7, 135.8, 134.6, 132.5, 131.6, 131.0, 129.5, 128.7, 128.5, 128.4, 127.9, 127.4, 126.9, 126.5, 125.1, 73.5, 66.2, 65.6, 41.7.

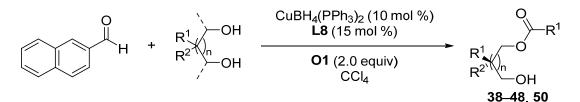
HRMS (ESI) *m/z* calcd. for C₂₁H₂₀ClO₃ [M+H]⁺ 350.1095, found 350.1094.

5-(Hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-naphthoate (51)

According to General procedure A with 2-naphthaldehyde (15.6 mg, 0.10 mmol, 1.0

equiv) and *meso*-2,2-dimethyl-1,3-dioxolane-4,5-diyl)dimethanol (24.3 mg, 0.15 mmol, 1.5 equiv.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **51** as a white solid (19.0 mg, 60% yield, 87% ee).

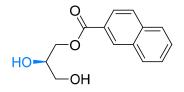
HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) =14.59 min, t_R (major) = 16.30 min.


¹**H NMR** (400 MHz, CDCl₃) δ 8.65 – 8.60 (m, 1H), 8.06 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.9 Hz, 2H), 7.64 – 7.51 (m, 2H), 4.65 – 4.53 (m, 2H), 4.54 – 4.45 (m, 1H), 4.47 – 4.37 (m, 1H), 3.94 – 3.80 (m, 2H), 1.54 (s, 3H), 1.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 135.6, 132.5, 131.4, 129.4, 128.4, 128.3, 127.8, 126.9, 126.8, 125.2, 109.2, 77.2, 74.7, 63.5, 61.2, 27.7, 25.2.

HRMS (ESI) *m/z* calcd. for C₁₈H₂₀NaO₅ [M+Na]⁺ 339.1203, found 339.1202.

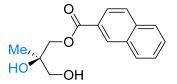
6. Cu-catalyzed enantioselective desymmetrizing radical C-O


coupling with 1,2,3-triols, 2-amino 1,3-diols, and meso 1,2-diols

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.020 mmol, 10 mol %), **L8** (0.030 mmol, 15 mol %), alcohol (0.30 mmol, 1.5 equiv), 2-naphthaldehyde (31.2 mg, 0.20 mmol, 1.0 equiv), and anhydrous CCl₄ (4.0 mL). Then, **O1** (80.9 mg, 0.40 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt. Upon completion (monitored by TLC), the reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel to afford the desired product.

(R)-2,3-Dihydroxypropyl 2-naphthoate (38)


According to **General procedure B** with glycerol (27.6 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield product **38** as a white solid (35.0 mg, 71% yield, 95% ee). **HPLC** analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 12.62 min, *t*_R (minor) = 16.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.15 – 7.94 (m, 2H), 7.94 – 7.83 (m, 2H), 7.65 – 7.49 (m, 2H), 4.61 – 4.42 (m, 2H), 4.21 – 4.07 (m, 1H), 3.92 – 3.79 (m, 1H), 3.78 – 3.69 (m, 1H), 2.69 (d, J = 5.2 Hz, 1H), 2.20 (t, J = 6.1 Hz, 1H).

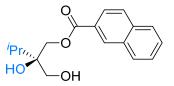
¹³C NMR (100 MHz, CDCl₃) δ 167.2, 135.7, 132.4, 131.4, 129.4, 128.5, 128.3, 127.8, 126.82, 126.76, 125.1, 70.4, 65.9, 63.5.

HRMS (ESI) m/z calcd. for C₁₄H₁₄NaO₄ [M + Na]⁺ 269.0784, found 269.0779.

(R)-2,3-Dihydroxy-2-methylpropyl 2-naphthoate (39)

According to **General procedure B** with 2-methylpropane-1,2,3-triol (31.8 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on

silica gel (petroleum ether/EtOAc = 1/1) to yield product **39** as a white solid (40.0 mg, 77% yield, 96% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 12.08 min, t_R (major) = 17.08 min.

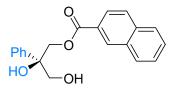
¹**H** NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.13 – 7.93 (m, 2H), 7.93 – 7.84 (m, 2H), 7.69 – 7.47 (m, 2H), 4.49 (d, J = 11.3 Hz, 1H), 4.31 (d, J = 11.3 Hz, 1H), 3.63 (d, J = 11.5 Hz, 1H), 3.52 (d, J = 11.6 Hz, 1H), 1.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 135.7, 132.4, 131.5, 129.4, 128.6, 128.4, 127.8, 126.9, 126.7, 125.1, 72.2, 68.5, 66.9, 21.5.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₄ [M + Na]⁺ 283.0941, found 283.0937.

(R)-2-Hydroxy-2-(hydroxymethyl)-3-methylbutyl 2-naphthoate (40)

According to **General procedure B** with 2-isopropylpropane-1,2,3-triol (53.0 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **40** as a light-yellow solid (44.0 mg, 67% yield, 93% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 15.22 min, t_R (major) = 17.44 min.

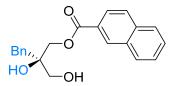
¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.07 – 7.93 (m, 2H), 7.89 (d, J = 8.7 Hz, 2H), 7.66 – 7.51 (m, 2H), 4.57 (d, J = 11.7 Hz, 1H), 4.40 (d, J = 11.7 Hz, 1H), 3.75 – 3.55 (m, 2H), 2.74 (br s, 1H), 2.12 – 1.94 (m, 1H), 1.74 (br s, 1H), 1.06 (dd, J = 7.0, 4.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.4, 135.7, 132.5, 131.4, 129.4, 128.6, 128.4, 127.8, 126.9, 126.8, 125.1, 75.3, 65.9, 64.1, 32.0, 17.0, 16.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NaO₄ [M + Na]⁺ 311.1254, found 311.1248.

(R)-2,3-Dihydroxy-2-phenylpropyl 2-naphthoate (41)

According to **General procedure B** with 2-phenylpropane-1,2,3-triol (50.5 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **41** as a white solid (44.0 mg, 68% yield, 97% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 36.48 min, t_R (major) = 41.78 min.

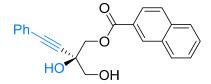
¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.03 – 7.90 (m, 2H), 7.90 – 7.77 (m, 2H), 7.67 – 7.49 (m, 4H), 7.47 – 7.37 (m, 2H), 7.37 – 7.28 (m, 1H), 4.77 (d, *J* = 11.7 Hz,

1H), 4.66 (d, J = 11.7 Hz, 1H), 3.97 (dd, J = 11.7, 7.2 Hz, 1H), 3.86 (dd, J = 11.7, 6.1 Hz, 1H), 3.38 (s, 1H), 2.42 (t, J = 6.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 140.8, 135.7, 132.4, 131.5, 129.4, 128.6, 128.6, 128.3, 127.9, 127.8, 126.8, 126.7, 125.6, 125.1, 76.1, 68.9, 67.3. HRMS (ESI) *m/z* calcd. for C₂₀H₁₈NaO₄ [M + Na]⁺ 345.1097, found 345.1090.

The structure of 41 was further confirmed by X-ray diffraction analysis (Figure S3).

(R)-2-Benzyl-2,3-dihydroxypropyl 2-naphthoate (42)

According to **General procedure B** with 2-benzylpropane-1,2,3-triol (54.4 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **42** as a white solid (48.0 mg, 71% yield, 97% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 11.92 min, t_R (major) = 17.99 min.

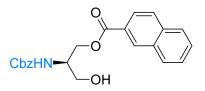
¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.08 – 7.94 (m, 2H), 7.94 – 7.84 (m, 2H), 7.68 – 7.50 (m, 2H), 7.38 – 7.24 (m, 5H), 4.41 (d, *J* = 11.5 Hz, 1H), 4.27 (d, *J* = 11.5 Hz, 1H), 3.70 – 3.50 (m, 2H), 2.98 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3, 135.8, 135.6, 132.5, 131.5, 130.6, 129.5, 128.63, 128.55, 128.4, 127.8, 127.0, 126.9, 126.7, 125.1, 74.0, 66.2, 65.3, 40.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₄ [M + Na]⁺ 359.1254, found 359.1247.

(R)-2-Hydroxy-2-(hydroxymethyl)-4-phenylbut-3-yn-1-yl 2-naphthoate (43)

According to **General procedure B** with 2-(phenylethynyl)propane-1,2,3-triol (57.7 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **43** as a white solid (59.0 mg, 85% yield, 89% ee).

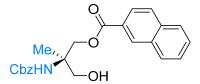

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 17.79 min, t_R (major) = 34.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.09 (dd, J = 8.6, 1.7 Hz, 1H), 7.98 – 7.91 (m, 1H), 7.88 (dd, J = 8.4, 3.1 Hz, 2H), 7.66 – 7.50 (m, 2H), 7.47 – 7.39 (m, 2H), 7.35 – 7.23 (m, 3H), 4.72 (d, J = 11.3 Hz, 1H), 4.62 (d, J = 11.3 Hz, 1H), 3.99 – 3.76 (m, 2H), 3.38 (br s, 1H), 2.67 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 135.8, 132.5, 131.9, 131.6, 129.5, 128.9, 128.6, 128.37, 128.36, 127.8, 126.8, 126.7, 125.2, 121.7, 86.9, 86.7, 71.1, 67.4, 66.7.

HRMS (ESI) m/z calcd. for C₂₂H₁₈NaO₄ [M + Na]⁺ 369.1097, found 369.1096.

(R)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxypropyl 2-naphthoate (44)

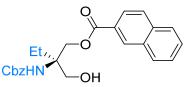

According to **General procedure B** with benzyl (1,3-dihydroxypropan-2-yl)carbamate (67.6 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product 44 as a white solid (54.0 mg, 71% yield, 94% ee).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 12.66 min, t_R (minor) = 16.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.01 (dd, J = 8.6, 1.7 Hz, 1H), 7.97 – 7.81 (m, 3H), 7.67 – 7.47 (m, 2H), 7.43 – 7.27 (m, 5H), 5.44 (d, J = 8.6 Hz, 1H), 5.11 (s, 2H), 4.53 (d, J = 5.9 Hz, 2H), 4.25 – 4.04 (m, 1H), 3.86 – 3.67 (m, 2H), 2.79 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 156.3, 136.2, 135.7, 132.4, 131.5, 129.4, 128.6, 128.4, 128.3, 128.2, 127.8, 126.8, 126.6, 125.1, 67.1, 63.3, 61.7, 51.9.

HRMS (ESI) m/z calcd. for C₂₂H₂₁NNaO₅ [M + Na]⁺ 402.1312, found 402.1304.

(R)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxy-2-methylpropyl 2-naphthoate (45)

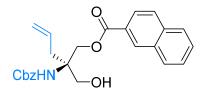

According to **General procedure B** with benzyl (1,3-dihydroxy-2-methylpropan-2-yl)carbamate (71.7 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **45** as a white solid (63.7 mg, 81% yield, 98% ee).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 16.57 min, t_R (major) = 31.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.02 (dd, J = 8.6, 1.8 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.65 – 7.51 (m, 2H), 7.40 – 7.27 (m, 5H), 5.33 (s, 1H), 5.09 (s, 2H), 4.70 – 4.47 (m, 2H), 3.89 – 3.60 (m, 2H), 1.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 155.9, 136.2, 135.7, 132.4, 131.4, 129.4, 128.61, 128.57, 128.4, 128.3, 128.2, 127.8, 126.8, 126.7, 125.1, 66.9, 66.7, 66.5, 56.9, 19.9. HRMS (ESI) *m/z* calcd. for C₂₃H₂₃NNaO₅ [M + Na]⁺ 416.1468, found 416.1461.

(R)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)butyl 2-naphthoate (46)


According to **General procedure B** with benzyl (1-hydroxy-2-(hydroxymethyl)butan-2-yl)carbamate (76.0 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **46** as a colorless oil (53.0 mg, 65% yield, 95% ee).

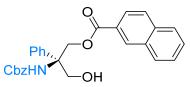
HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 230$ nm), t_R (minor) = 11.72 min, t_R (major) = 19.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.02 (dd, J = 8.6, 1.7 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.65 – 7.51 (m, 2H), 7.39 – 7.26 (m, 5H), 5.18 (s, 1H), 5.10 (s, 2H), 4.69 – 4.44 (m, 2H), 3.79 (s, 3H), 1.99 (dq, J = 15.1, 7.6 Hz, 1H), 1.79 (dq, J = 14.8, 7.5 Hz, 1H), 0.97 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 156.1, 136.2, 135.7, 132.4, 131.4, 129.4, 128.61, 128.57, 128.4, 128.3, 128.1, 127.8, 126.84, 126.73, 125.1, 66.9, 65.4, 59.5, 25.6, 7.6. HRMS (ESI) *m/z* calcd. for C₂₄H₂₅NNaO₅ [M + Na]⁺ 430.1625, found 430.1618.

(*R*)-2-(((Benzyloxy)carbonyl)amino)-2-(hydroxymethyl)pent-4-en-1-yl 2naphthoate (47)

According to **General procedure B** with benzyl (1-hydroxy-2-(hydroxymethyl)pent-4-en-2-yl)carbamate (79.6 mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **47** as a pale-yellow oil (42.0 mg, 50% yield, 95% ee).


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 10.45 min, t_R (major) = 18.12 min.

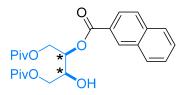
¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.02 (dd, J = 8.6, 1.8 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.67 – 7.51 (m, 2H), 7.41 – 7.27 (m, 5H), 5.98 – 5.73 (m, 1H), 5.25 (s, 1H), 5.20 (s, 1H), 5.18 – 5.13 (m, 1H), 5.10 (s, 2H), 4.70 – 4.47 (m, 2H), 3.94 – 3.69 (m, 3H), 2.84 – 2.68 (m, 1H), 2.57 – 2.41 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 156.0, 136.1, 135.7, 132.4, 131.8, 131.4, 129.5, 128.61, 128.59, 128.4, 128.3, 128.2, 127.8, 126.9, 126.7, 125.1, 120.2, 67.0, 65.3, 65.2, 58.8, 37.3.

HRMS (ESI) m/z calcd. for C₂₅H₂₅NNaO₅ [M + Na]⁺ 442.1625, found 442.1617.

(R)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxy-2-phenylpropyl 2-naphthoate (48)

According to **General procedure B** with benzyl (1,3-dihydroxy-2-phenylpropan-2-yl)carbamate (90.4mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **48** as a white solid (71.0 mg, 78% yield, 98% ee).

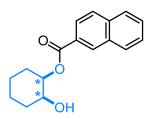

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 230$ nm), t_R (minor) = 10.45 min, t_R (major) = 18.12 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.00 – 7.81 (m, 4H), 7.65 – 7.46 (m, 4H), 7.44 – 7.20 (m, 8H), 5.86 (s, 1H), 5.10 (q, *J* = 12.2 Hz, 2H), 4.94 (d, *J* = 2.9 Hz, 2H), 4.24 – 3.97 (m, 2H), 3.67 (br s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.9, 156.0, 139.3, 136.1, 135.7, 132.4, 131.5, 129.5, 128.8, 128.61, 128.58, 128.4, 128.3, 128.2, 128.0, 127.8, 126.8, 126.6, 126.1, 125.1, 67.3, 67.1, 66.7, 62.9.

HRMS (ESI) *m/z* calcd. for C₂₈H₂₅NNaO₅ [M + Na]⁺ 478.1625, found 478.1617.

2-((2-Naphthoyl)oxy)-3-hydroxybutane-1,4-diyl bis(2,2-dimethylpropanoate) (50)


According to **General procedure B** with 2,3-dihydroxybutane-1,4-diyl bis(2,2-dimethylpropanoate) (87.1mg, 0.30 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield product **50** as a pale-yellow oil (65.8 mg, 74% yield, 85% ee).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (minor) = 21.30 min, *t*_R (major) = 24.22 min.

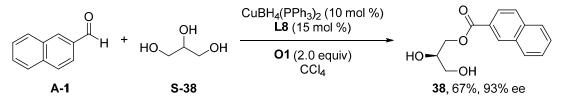
¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.02 (dd, J = 8.7, 1.7 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.65 – 7.51 (m, 2H), 5.51 – 5.33 (m, 1H), 4.62 – 4.49 (m, 2H), 4.37 (dd, J = 11.8, 3.2 Hz, 1H), 4.26 (dd, J = 11.8, 5.5 Hz, 1H), 4.22 – 4.14 (m, 1H), 1.22 (s, 9H), 1.17 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.1, 178.6, 165.7, 135.7, 132.5, 131.4, 129.4, 128.5, 128.4, 127.8, 126.8, 126.7, 125.1, 72.0, 69.1, 65.2, 62.5, 38.95, 38.90, 27.2, 27.1. HRMS (ESI) *m/z* calcd. for C₂₅H₃₂NaO₇ [M + Na]⁺ 467.2040, found 467.2033.

2-Hydroxycyclohexyl 2-naphthoate (SP-4)

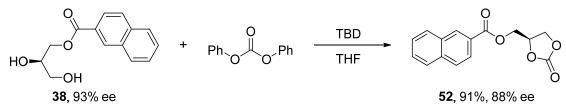
According to **General procedure A/B** with 2-naphthaldehyde (15.6 mg, 0.10 mmol, 1.0 equiv) and *cis*-1,2-cyclohexanediol **S52** (17.4 mg, 0.15 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield product as a colorless oil (18.5 mg, 68% yield, 42% ee with L1; 20.5 mg, 76% yield, 69% ee with L8).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) =9.01 min, *t*_R (major) = 10.14 min.

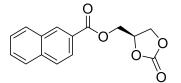

¹**H** NMR (400 MHz, CDCl₃) δ 8.67 – 8.57 (m, 1H), 8.07 (dd, J = 8.6, 1.7 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.7 Hz, 2H), 7.65 – 7.51 (m, 2H), 5.29 (dt, J = 7.7, 2.8 Hz, 1H), 4.03 (dt, J = 7.7, 2.9 Hz, 1H), 2.17 – 1.67 (m, 8H), 1.56 – 1.38 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.4, 135.6, 132.5, 131.1, 129.4, 128.3, 128.2, 127.8, 127.6, 126.7, 125.2, 74.8, 69.7, 30.5, 27.4, 22.0.

HRMS (ESI) *m/z* calcd. for C₁₇H₁₉O₃ [M+H]⁺ 271.1329, found 271.1327.


7. Synthetic transformations

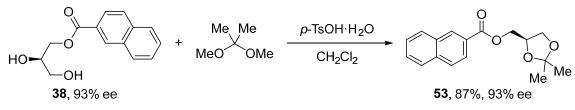
7.1 Synthesis of chiral 38 on a 1-mmol scale


According to General procedure B with 2-naphthaldehyde A-1 (156.0 mg, 1.0 mmol, 1.0 equiv) and glycerol S-38 (138.0 mg, 1.52 mmol, 1.5 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield product 38 as a white solid (164.0 mg, 67% yield, 93% ee).

7.2 Synthesis of 52 from 38

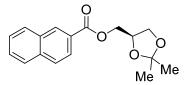
To a solution of compound **38** (24.6 mg, 0.10 mmol, 1.0 equiv) and diphenyl carbonate (23.6 mg, 0.11 mmol, 1.1 equiv) in THF (1.0 mL) was added 1,5,7-triazabicylo[4.4.0]dec-5-ene (1 mg, 0.005 mmol, 5 mol %) and the reaction mixture was stirred at rt. Upon completion, the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product **52** as a white solid (24.8 mg, 91% yield, 88% ee).

(S)-(2-Oxo-1,3-dioxolan-4-yl)methyl 2-naphthoate (52)


HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 20.75 min, t_R (major) = 24.94 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 – 8.58 (m, 1H), 8.08 – 7.94 (m, 2H), 7.94 – 7.86 (m, 2H), 7.67 – 7.53 (m, 2H), 5.16 – 5.06 (m, 1H), 4.72 – 4.55 (m, 3H), 4.47 (dd, *J* = 8.8, 5.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.2, 154.5, 135.8, 132.4, 131.7, 129.5, 128.8, 128.6, 127.8, 126.9, 126.0, 125.0, 74.0, 66.2, 63.8.

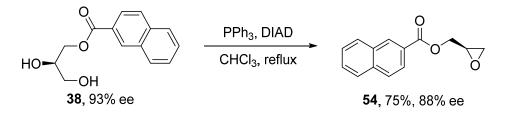

HRMS (ESI) m/z calcd. for C₁₅H₁₂NaO₅ [M + Na]⁺ 295.0577, found 295.0573.

7.3 Synthesis of 53 from 38

A mixture of **38** (24.6 mg, 0.10 mmol, 1.0 equiv), 2,2-dimethoxypropane (20.8 mg, 0.20 mmol, 2.0 equiv), and *p*-toluenesulfonic acid monohydrate (1 mg, 0.005 mmol, 5 mol %) in CH₂Cl₂ (1.0 mL) was stirred at rt for 2 h. Upon completion, the reaction was quenched with K₂CO₃ (2.0 mg) at rt, filtered, and evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield product **53** as a white solid (25.0 mg, 87% yield, 93% ee).

(R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 2-naphthoate (53)

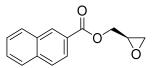
HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 238 nm), t_R (major) = 7.25 min, t_R (minor) = 8.04 min.


¹**H** NMR (400 MHz, CDCl₃) δ 8.66 – 8.60 (m, 1H), 8.07 (dd, J = 8.6, 1.7 Hz, 1H), 7.96 (dd, J = 8.1, 1.4 Hz, 1H), 7.88 (dd, J = 8.3, 2.1 Hz, 2H), 7.64 – 7.50 (m, 2H), 4.56 – 4.38 (m, 3H), 4.19 (dd, J = 8.5, 6.3 Hz, 1H), 3.92 (dd, J = 8.5, 5.8 Hz, 1H), 1.49 (s, 3H), 1.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 135.6, 132.5, 131.3, 129.4, 128.4, 128.2, 127.8, 127.0, 126.7, 125.3, 109.9, 73.8, 66.5, 65.2, 26.8, 25.4.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NaO₄ [M + Na]⁺ 309.1097, found 309.1091.

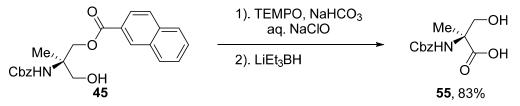
The structure of 53 was further confirmed by X-ray diffraction analysis (Figure S4).


7.4 Synthesis of 54 from 38

A stirred mixture of **38** (24.6 mg, 0.10 mmol, 1.0 equiv), triphenylphosphine (27.5 mg, 0.105 mmol, 1.05 equiv) and diisopropyl azodicarboxylate (21.2 mg, 0.105 mmol, 1.05 equiv) in dry chloroform (1.0 mL) was refluxed for 8 h. After evaporation of the solvent at reduced pressure, the crude residue was purified by flash column chromatography on

silica gel (petroleum ether/EtOAc = 5/1) to yield product 54 as a colorless oil (17.1 mg, 75% yield, 88% ee).

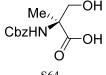
(R)-Oxiran-2-ylmethyl 2-naphthoate (54)


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (minor) = 19.72 min, *t*_R (major) = 20.98 min.

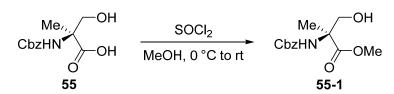
¹**H NMR** (400 MHz, CDCl₃) δ 8.72 – 8.58 (m, 1H), 8.08 (dd, J = 8.6, 1.7 Hz, 1H), 8.03 – 7.93 (m, 1H), 7.89 (dd, J = 8.0, 2.7 Hz, 2H), 7.65 – 7.51 (m, 2H), 4.73 (dd, J = 12.3, 3.0 Hz, 1H), 4.23 (dd, J = 12.3, 6.3 Hz, 1H), 3.47 – 3.34 (m, 1H), 2.94 (dd, J = 4.9, 4.1 Hz, 1H), 2.78 (dd, J = 4.8, 2.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 135.7, 132.5, 131.4, 129.4, 128.4, 128.3, 127.8, 126.9, 126.8, 125.2, 65.7, 49.6, 44.8.

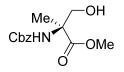
HRMS (ESI) m/z calcd. for C₁₄H₁₂NaO₃ [M + Na]⁺ 251.0679, found 251.0674.


7.5 Synthesis of 55 from chiral 45

To a solution of **45** (39.3 mg, 0.10 mmol, 1.0 equiv) in CH₃CN (0.5 mL) and H₂O (0.8 mL) were added 2,2,6,6-tetramethylpiperidinooxy (5.2 mg, 0.033 mmol, 0.33 equiv), NaHCO₃ (43.4 mg, 0.54 mmol, 5.4 equiv), and aq. NaClO (0.15 mL, activated chlorine 6%–14%). The reaction was allowed to stir at rt until the starting compound disappeared. Then the reaction was acidified with 1M HCl until the pH was 4–5 and was extracted with EtOAc (6x). The extract was dried over Na₂SO₄ and evaporated.

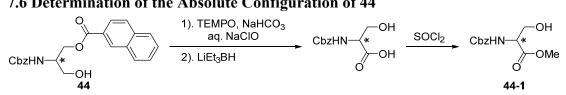

To a solution of the residue in anhydrous THF (1.0 mL) was slowly added LiEt₃BH (1 M, 0.45 mL, 0.45 mmol, 4.5 equiv) at 0 °C under argon. After stirring at 0 °C for 30 min, the reaction mixture was treated with 1M HCl (10 mL) and then extracted with CHCl₃ (6x). The extract was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1 to 5/1) to yield product **55** as a pale-yellow oil (21.0 mg, 83% yield).

(S)-2-(((Benzyloxy)carbonyl)amino)-3-hydroxy-2-methylpropanoic acid (55)¹¹

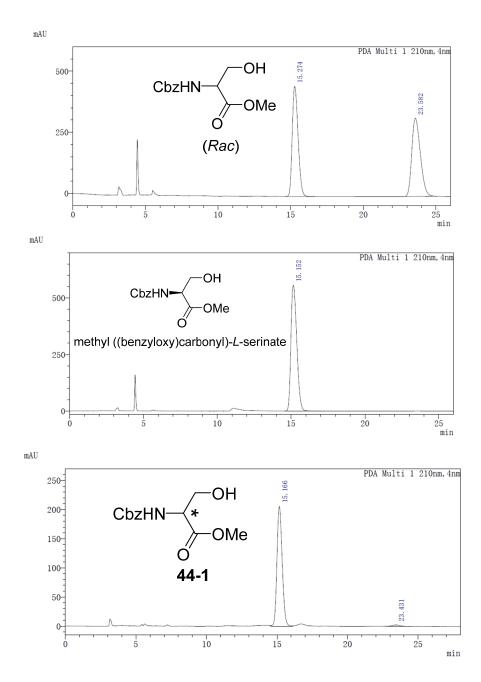

¹**H** NMR (400 MHz, MeOD) δ 7.42 – 7.21 (m, 5H), 5.04 (s, 2H), 3.96 (d, J = 10.8 Hz, 1H), 3.76 (d, J = 10.8 Hz, 1H), 1.41 (s, 3H). **HRMS** (ESI) m/z calcd. for C₁₂H₁₅NNaO₅ [M + Na]⁺ 276.0842, found 276.0839.

Determination of the ee value of 55

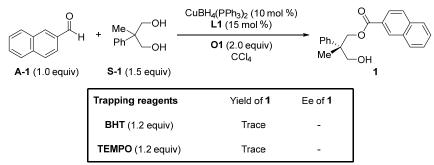
To a stirred solution of 55 (12.7 mg, 0.050 mmol, 1.0 equiv) in MeOH (0.5 mL) was added thionyl chloride (12.0 mg, 0.10 mmol, 2.0 equiv) dropwise at 0 °C. The reaction was allowed to stir at rt until the starting compound disappeared. Then the solvent was evaporated in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield product 55-1 as a colorless oil (12.4 mg, 93% yield, 97% ee).


(S)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxy-2-methylpropanoate (55-**1**)¹⁶

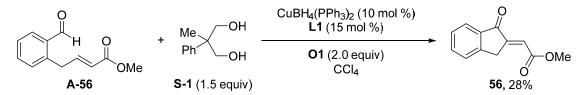
HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 210 nm), $t_{\rm R}$ (major) = 17.82 min, $t_{\rm R}$ (minor) = 20.08 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 5.65 (br s, 1H), 5.10 (s, 2H), 4.10


- 4.00 (m, 1H), 3.89 - 3.78 (m, 1H), 3.78 (s, 3H), 2.90 (br s, 1H), 1.51 (s, 3H). **HRMS** (ESI) m/z calcd. for C₁₃H₁₇NNaO₅ [M + Na]⁺ 290.0999, found 290.0994.

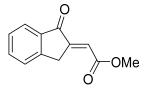
7.6 Determination of the Absolute Configuration of 44


44-1 was prepared by following the same procedures as those for 55-1 using 44 as the starting material; the racemic product was prepared from commercially available Nbenzyloxycarbonyl-DL-serine; methyl ((benzyloxy)carbonyl)-L-serinate was synthesized from commercially available N-(benzyloxycarbonyl)-L-serine.¹⁷

The HPLC spectra of 44-1 and methyl ((benzyloxy)carbonyl)-L-serinate indicate that these two compounds have the same absolute configuration.

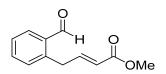

8. Mechanistic study

8.1 Radical inhibition experiments


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), fresh 2-naphthaldehyde (15.6 mg, 0.10 mmol, 1.0 equiv), the corresponding trapping reagents (1.2 equiv), and anhydrous CCl₄ (2.0 mL). Then, **O1** (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 3/1).

8.2 Radical trapping experiments

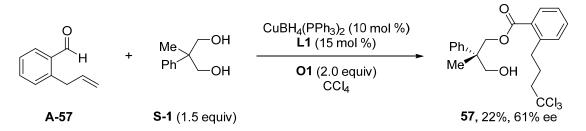
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), A-56 (20.4 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). Then, O1 (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. Then the reaction mixture was concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 10/1) to yield product 56 as a white solid (5.6 mg, 28% yield).


Methyl (E)-2-(1-oxo-1,3-dihydro-2H-inden-2-ylidene)acetate (56)

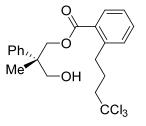
¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.4 Hz, 1H), 7.66 (td, J = 7.5, 1.2 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.48 – 7.39 (m, 1H), 6.83 (t, J = 2.4 Hz, 1H), 4.14 (d, J = 2.2 Hz, 2H), 3.85 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 193.4, 166.6, 150.5, 149.8, 137.2, 135.9, 127.9, 126.5, 124.8, 120.7, 52.0, 32.4. HRMS (ESI) *m/z* calcd. for C₁₂H₁₀NaO₃ [M + Na]⁺ 225.0522, found 225.0519.

The structure of 56 was further confirmed by X-ray diffraction analysis (Figure S5).

Methyl (E)-4-(2-formylphenyl)but-2-enoate (A-56)


A-56 was synthesized according to the literature report.¹⁸

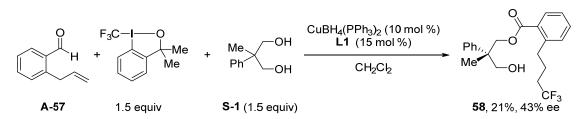
¹**H** NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.84 (dd, J = 7.6, 1.5 Hz, 1H), 7.56 (td, J = 7.5, 1.6 Hz, 1H), 7.47 (td, J = 7.5, 1.3 Hz, 1H), 7.28 (d, J = 7.6, 2H), 7.15 (dt, J = 15.6, 6.4 Hz, 1H), 5.73 (dt, J = 15.6, 1.7 Hz, 1H), 3.98 (dd, J = 6.4, 1.8 Hz, 2H), 3.70 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 192.5, 166.8, 147.0, 139.7, 134.1, 133.9, 133.8, 131.5, 127.6, 122.2, 51.5, 35.3.

HRMS (ESI) m/z calcd. for C₁₂H₁₂NaO₃ [M + Na]⁺ 227.0679, found 227.0675.

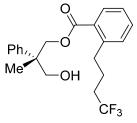
8.3 Observation of trichloromethyl radicals and formation of 57 from A-57

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-allylbenzaldehyde A-57 (14.6 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). Then, O1 (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 5/1) to yield product 57 as a pale-yellow oil (9.2 mg, 22% yield, 61% ee).


HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 226 nm), t_R (major) = 8.16 min, t_R (minor) = 10.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 1H), 7.51 – 7.42 (m, 3H), 7.42 – 7.35 (m, 2H), 7.34 – 7.22 (m, 4H), 4.69 – 4.51 (m, 2H), 3.84 (d, *J* = 1.3 Hz, 2H), 3.10 – 2.91 (m, 2H), 2.74 – 2.58 (m, 2H), 2.12 – 1.96 (m, 2H), 1.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 143.2, 142.5, 132.4, 131.0, 130.9, 129.1, 128.7, 127.0, 126.5, 126.4, 99.9, 69.1, 68.1, 54.6, 44.0, 32.7, 28.2, 20.9.

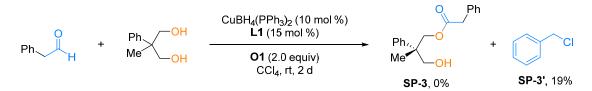

HRMS (ESI) m/z calcd. for C₂₁H₂₃Cl₃NaO₃ [M + Na]⁺ 451.0605, found 451.0602.

8.4 Enantioselective C–O coupling of acyl radicals initiated by the generation of trifluoromethyl radicals with a known strategy¹⁹

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-allylbenzaldehyde A-57 (14.6 mg, 0.10 mmol, 1.0 equiv), Togni's reagent I (49.5 mg, 0.15 mmol, 1.5 equiv), and anhydrous CH₂Cl₂ (2.0 mL). The reaction mixture was stirred at rt for 2 d. Then the reaction mixture was concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 5/1) to yield product **58** as a pale-yellow oil (8.0 mg, 21% yield, 43% ee).

(S)-3-Hydroxy-2-methyl-2-phenylpropyl 2-(4,4,4-trifluorobutyl)benzoate (58)

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (major) = 6.44 min, t_R (minor) = 7.82 min.


¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.40 – 7.34 (m, 2H), 7.30 – 7.20 (m, 3H), 4.69 – 4.50 (m, 2H), 3.83 (d, *J* = 1.7 Hz, 2H), 3.04 – 2.87 (m, 2H), 2.16 – 2.00 (m, 2H), 1.88 – 1.77 (m, 2H), 1.46 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.5, 143.2, 142.5, 132.4, 131.0, 130.9, 129.1, 128.7,

127.2 (q, J = 276.3 Hz), 127.0, 126.5, 126.4, 69.1, 68.2, 44.0, 33.4 (q, J = 28.5 Hz), 33.1, 23.7 (q, J = 2.7 Hz), 20.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –66.2 (t, J = 10.8 Hz, 3F).

HRMS (ESI) m/z calcd. for C₂₁H₂₃F₃NaO₃ [M + Na]⁺ 403.1492, found 403.1483.

8.5 The reaction with phenylacetaldehyde

According to **General procedure A** with phenylacetaldehyde (12.0 mg, 0.10 mmol, 1.0 equiv.) and 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv.). Upon completion, 1,3,5-trimethoxybenzene (16.8 mg, 0.10 mmol, 1.0 equiv) was added as an internal standard and the mixture was subjected for ¹H NMR analysis, which indicated the formation of **SP-3'** in ca. 19% yield. Further purification and characterization of the reaction mixture revealed no formation of the desired product **SP-3**.

8.6 ¹⁹F NMR analysis of the reaction mixtures

¹⁹F NMR analysis of the reaction mixtures under standard conditions (Figure S6)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (1.5 mg, 0.0025 mmol, 10 mol %), L1 (2.13 mg, 0.00375 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (6.23 mg, 0.0375 mmol, 1.5 equiv), 4-fluorobenzaldehyde A-6 (3.1 mg, 0.025 mmol, 1.0 equiv), and anhydrous CCl₄ (0.50 mL). Then, O1 (10.1 mg, 0.050 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt. Upon completion, *o*-difluorobenzenethe (50 μ L, 0.50 mol/L in CCl₄, 1.0 equiv) was added. The reaction mixture was transferred to an NMR tube through a 0.22 μ m filter and immediately analyzed by ¹⁹F NMR spectroscopy.

¹⁹F NMR analysis of the reaction mixtures in CH₂Cl₂ (Figure S7)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (1.5 mg, 0.0025 mmol, 10 mol %), L1 (2.13 mg, 0.00375 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (6.23 mg, 0.0375 mmol, 1.5 equiv), 4-fluorobenzaldehyde A-6 (3.1 mg, 0.025 mmol, 1.0 equiv),

and anhydrous CH₂Cl₂ (0.50 mL). Then, **O1** (10.1 mg, 0.050 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt. After 2 d, *o*-difluorobenzenethe (50 μ L, 0.50 mol/L in CH₂Cl₂, 1.0 equiv) was added. The reaction mixture was transferred to an NMR tube through a 0.22 μ m filter and immediately analyzed by ¹⁹F NMR spectroscopy.

8.7 Control experiments on the possible ionic enantioselective C–O bond formation catalyzed by Lewis acidic Cu(II) species

	O CI +	Me Ph OH S-1 (1.5 equiv)	CuB	H ₄ (PPh ₃) ₂ (0 or 10 m L1 (0 or 15 mol %) O1 Additive, CCl ₄ , rt	Ph,, Me	о —ОН 1	
Entry	CuBH ₄ (PPh ₃) ₂	(mol %) L1	(mol %)	O1 (equiv)	Additive (equiv)	Yield	Ee
1	10		15	2.0	-	75%	89%
2	10		15	0	-	47%	0%
3	10		15	0.15	-	24%	40%
4	10		15	2.0	TEMPO (1.2)	trace	-
5	10		15	0	KO ^t Bu (2.0)	68%	10%
6	0		0	0	-	0%	-
7	0		15	0	-	22%	16%

Control experiment with **O1**:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $CuBH_4(PPh_3)_2$ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl4 (2.0 mL). Then, O1 (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (24.0 mg, 75% yield, 89% ee).

Control experiment without O1:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). The reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (15.1 mg, 47% yield, 0% ee).

Control experiment with a catalytic amount of **O1**:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). Then, O1 (3.0 mg, 0.015 mmol, 15 mol %) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (7.8 mg, 24% yield, 40% ee).

Control experiment with TEMPO:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv), TEMPO (18.8 mg, 0.12 mmol, 1.2 equiv), and anhydrous CCl₄ (2.0 mL). Then, **O1** (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The residue was purified with column chromatography (petroleum ether/EtOAc = 3/1).

Control experiment with **O1** replaced by KO'Bu:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (3.0 mg, 0.0050 mmol, 10 mol %), L1 (4.25 mg, 0.0075 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (12.5 mg, 0.075 mmol, 1.5 equiv), 2-naphthoyl chloride (9.5 mg, 0.050 mmol, 1.0 equiv), and anhydrous CCl₄ (1.0 mL). Then, potassium *tert*-butoxide (11.2 mg, 0.10 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (10.9 mg, 68% yield, 10% ee).

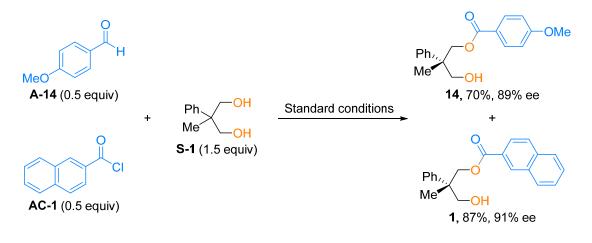
Control experiment without the catalyst and oxidant or with only L1:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with L1 (4.25 mg, 0.0075 mmol, 15 mol %) or without L1, 2-methyl-2-phenylpropane-1,3-diol (12.5 mg, 0.075 mmol, 1.5 equiv), 2-naphthoyl chloride (9.5 mg, 0.050 mmol, 1.0 equiv), and anhydrous CCl₄ (1.0 mL). The reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (3.6 mg, 22% yield, 16% ee with L1; 0% yield without L1).

AC-1 (1.0	O Cl D equiv)	+ Me OH Ph OH S-1 (1.5 equiv)	L1 (15	mol %) mol %) equiv) Cl ₄	Ph _{//} Me ⁻ OH 1	>
	Entry	[Cu]	01	Yield (%)	Ee (%)	
	1	CuOAc	_	21	13	
	2	Cu(OAc) ₂	_	17	18	
	3	CuOAc	+	71	79	
	4 ^a	CuOAc	+	31	21	

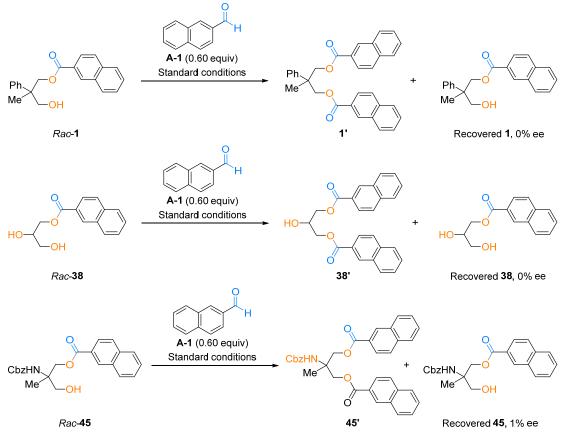
8.8 Control experiments with Cu(OAc)₂ and CuOAc

^aCH₂Cl₂ as solvent.

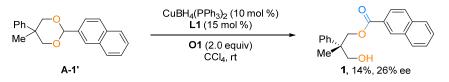

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with copper (I) acetate or copper (II) acetate (0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv) and anhydrous CCl₄ (2.0 mL) (anhydrous CH₂Cl₂ (2.0 mL) as the solvent in entry 4). Then, the reaction mixture was stirred at rt for 2 d (for entries 3 and 4, **O1** (40.5 mg, 0.20 mmol, 2.0 equiv) was added into the mixture). The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product **1**.

8.9 Control experiments with other Cu(II) salts

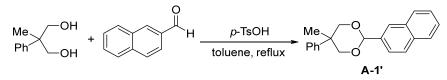
AC-1	CI + Me OH Ph OH S-1	L1 (15	0 mol %) 5 mol %) Cl ₄	Ph., Me ^{OH} OH
Entry	r Cu(II)	PPh ₃	Yield (%)	Ee (%)
1	CuCl ₂	_	23	7
2	CuCl ₂	+	31	0
3	CuBr ₂	_	23	7
4	CuBr ₂	+	34	0
5	Cu(OTf) ₂	_	15	8
6	Cu(OTf) ₂	+	34	0
7	Cu(acac) ₂	_	18	7
8	Cu(acac) ₂	+	31	0


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu (II) (0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (19.0 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). The reaction mixture was stirred at rt for 2 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. Yield was based on ¹H NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard. The residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1.

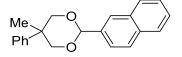
8.10 Simultaneous reactions of acyl chloride AC-1 and aldehyde A-14 with S-1, respectively, in the same reaction flask


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), 2-methyl-2-phenylpropane-1,3-diol (24.9 mg, 0.15 mmol, 1.5 equiv), 2-naphthoyl chloride (9.5 mg, 0.050 mmol, 0.5 equiv), 4-methoxybenzaldehyde (6.8 mg, 0.050 mmol, 0.5 equiv), and anhydrous CCl₄ (2.0 mL). Then, **O1** (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 5/1) to give product **1** (14.0 mg, 87% yield, 91% ee) and **14** (10.5 mg, 70% yield, 89% ee).

8.11 Control experiments on the possible product kinetic resolution


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %) or L8 (6.7 mg, 0.015 mmol, 15 mol %), 2-naphthaldehyde (9.4 mg, 0.060 mmol, 0.6 equiv), corresponding racemic alcohol (0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). Then, O1 (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 1 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1).

8.12 Control experiment on the possible oxidative acetal cleavage


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), L1 (8.5 mg, 0.015 mmol, 15 mol %), A-1' (30.4 mg, 0.10 mmol, 1.0 equiv), and anhydrous CCl₄ (2.0 mL). Then, O1 (40.5 mg, 0.20 mmol, 2.0 equiv) was added to the mixture and the reaction mixture was stirred at rt for 2 d. The reaction mixture was concentrated *in vacuo* and the residue was purified with column chromatography (petroleum ether/EtOAc = 3/1) to give product 1 (4.5 mg, 14% yield, 26% ee).

Synthesis of compound A-1'

To a solution of 2-methyl-2-phenylpropane-1,3-diol (166 mg, 1.0 mmol, 1.0 equiv) and 2-naphthaldehyde (234 mg, 1.5 mmol, 1.5 equiv) in toluene (5.0 mL) was added *p*-toluenesulfonic acid (9.5 mg, 0.050 mmol, 5 mol %). The reaction was allowed to stir at 120 °C until the starting material disappeared. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 20/1) to give product **A-1'** as a pale-yellow solid (214 mg, 70% yield).

5-Methyl-2-(naphthalen-2-yl)-5-phenyl-1,3-dioxane (A-1')

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 – 7.95 (m, 1H), 7.95 – 7.81 (m, 3H), 7.69 (dd, J = 8.6, 1.7 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.43 – 7.35 (m, 2H), 7.34 – 7.24 (m, 4H), 5.67 (s, 1H), 4.20 (s, 4H), 1.74 (s, 3H).

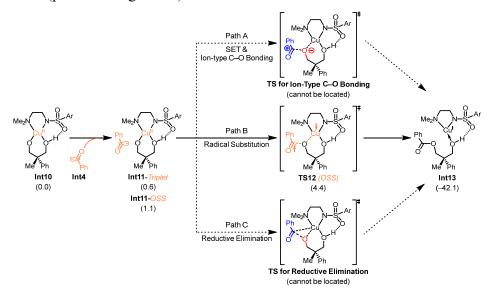
¹³C NMR (100 MHz, CDCl₃) δ 143.2, 135.7, 133.7, 133.1, 128.8, 128.4, 128.3, 127.8, 127.0, 126.4, 126.1, 125.6, 125.3, 123.8, 102.1, 76.3, 36.8, 22.9.

HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₂ [M + Na]⁺ 327.1356, found 327.1350.

9. Computational study

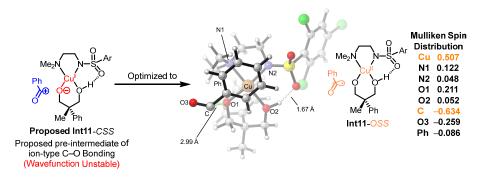
9.1 Computational Details

All density functional theory (DFT) calculations were performed using Gaussian 16 program²⁰ with default parameters. Geometry optimizations were conducted with B3LYP functional,²¹ employing the D3 version of Grimme's dispersion corrections²² with Becke-Johnson damping.²³ LANL2DZ basis set²⁴ was used for copper and 6-31G(d) basis set was used for all other atoms. (5d,7f) keyword in Gaussian 16 software is used. Single-point energies and solvent effects at CCl4 (tetrachloromethane) were evaluated with B3LYP functional and D3 version of Grimme's dispersion corrections with Becke-Johnson damping. SDD basis set²⁵ was used for copper and 6-311+G(d,p) basis set was used for all other atoms. The solvation energies were calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model.²⁶ Frequency analysis was also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Mulliken spin distribution was acquired at the same level of theory as geometry optimization.

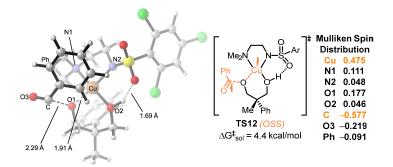

In addition, geometry optimization, frequency analysis, and single point energy of open-shell local minimums were calculated with unrestricted DFT methods, while the same computations for close-shell transition states and local minima were performed with restricted DFT methods. Wavefunction stability test at the same level of theory as geometry optimizations was employed to ensure that the SCF converged wavefunction was stable.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT \ln(c_s/c_g)$ is added to energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.040876 mol/L), and R is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol was used. For solvent CCl4 (tetrachloromethane) with density of 1554.96 g/L at 298.15 K and molecular weight of 153.82 g/mol, the correction value equaling to 3.26 kcal/mol was used.

The 3D diagrams of optimized structures shown in the main text and below here in Supporting Information for computations were generated with CYLview software.²⁷


9.2 Discussions on C–O Bond Formation Mechanism

The proposed C–O bond formation mechanism between LCu(II)Alkoxyl intermediate **Int10** and benzoyl radical **Int4** includes the following three possible pathways: sequential SET and ion-type C–O bond formation (path A in Figure S9), radical-substitution-type C–O bond formation (path B in Figure S9) and reductive elimination (path C in Figure S9).


Figure S9. Results of the preliminary DFT calculations on the C–O coupling mechanism. Calculations were carried out at the B3LYP-D3(BJ)/6-311+G(d, p)-SDD-SMD(Tetrachloromethane)// B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory. Free energies in kcal/mol relative to **Int4** and **Int10** were shown in parentheses. Ar = 2,4,6-trichlorophenyl.

Regarding path A, sequential SET and ion-type C–O bond formation, the proposed pre-intermediate of the ion-type C–O bond formation transition state has an unstable wavefunction (UHF to RHF wavefunction instability). Further optimization of this structure leads to an open-shell singlet diradical species **Int11**-*OSS*, which is the pre-intermediate of radical-substitution-type C–O bond formation transition state. Thus, we believe that sequential SET and ion-type C–O bond formation is not an operative pathway for the C–O bond formation. (Figure S10)

Figure S10. Results of the DFT study on the ion-type C–O bond formation mechanism. The proposed pre-intermediate of the ion-type C–O bond formation transition state has an unstable wavefunction and was further optimized to open-shell singlet diradical species **Int11**-*OSS*. Ar = 2,4,6-trichlorophenyl.

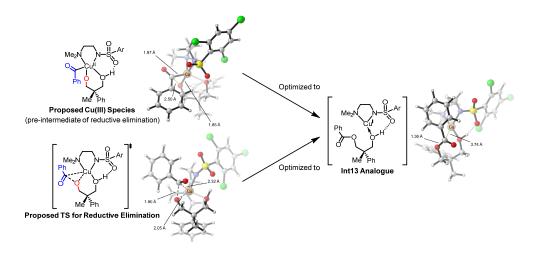

Regarding path B, the radical substitution pathway via **TS12** is operative for the C–O bond formation with a free energy barrier of 4.4 kcal/mol. **TS12** is an open-shell diradical singlet C–O bond formation transition state, whose nature of radical substitution is confirmed by the computed Mulliken spin distribution. Significant radical characters are identified on the carbons of the forming C–O bond, the coordinating nitrogen and oxygen atoms, and the copper center (Figure S11).

Figure S11. Located open-shell singlet radical-substitution-type C–O bond formation transition state **TS12**. Ar = 2,4,6-trichlorophenyl.

Regarding path C, the reductive elimination, attempts on locating the C–O reductive elimination transition state unfortunately fail despite extensive efforts. Both the proposed pre-intermediate structures and the transition state structures of the reductive elimination are optimized to an analogue of the C–O bond formation product **Int13**. This is probably due to the shallow shape of the free energy surface of the C–O bond formation. Considering both the unfruitful optimizations of the pre-intermediate and transition structures, we believe the reductive elimination transition state cannot be located, and thus, the reductive elimination may not be operative. (Figure S12)

Therefore, the reaction most likely undergoes an outer-sphere singlet radicalsubstitution-type C–O bond formation via **TS12**.

Figure S12. Attempts on locating the C–O reductive elimination transition state. The proposed pre-intermediate and transition state structures of the reductive elimination were both optimized to an analogue of the C–O bond formation product **Int13** despite extensive efforts. Ar = 2,4,6-trichlorophenyl.

On the basis of these results, we have proposed two radical substitution-type C–O coupling transition states **TS-Major** and **TS-Minor** (Figure S13) that likely lead to the two product enantiomers, respectively. Regarding the disfavored transition state **TS-Minor**, the vinyl, quinoline, and 2,4,6-trichlorophenyl groups in the ligand L1 likely provide the steric hindrance that disfavors the approach of the attacking acyl radical.

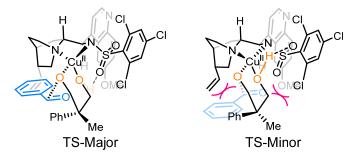


Figure S13. Proposed transition states leading to the two product enantiomers.

9.3 Discussions on Possible XAT Species

Preliminary DFT computations on proposed XAT processes are discussed in this section. The XAT between benzoyl chloride (**Int1**) and trichloromethyl radical (**Int2**) has a reaction barrier of 25.0 kcal/mol and an endergonic free energy change of 19.4 kcal/mol. (**TS3**, Figure S14A) These results correspond to a k_{act} around 10^{-5} L/mol/s ($k_{act} = k_B T(h^{-1}) \exp(-\Delta G^{\ddagger}/RT)$, Erying Equation) and a K_{eq} around 10^{-15} ($K_{eq} = \exp(-\Delta G/RT)$), respectively, indicating that XAT between benzoyl chloride and trichloromethyl radical was not consistent with the observed reaction rate. Accordingly, this reaction is unlikely involved in the regeneration of acyl radicals from acid chlorides.

Next, we examined the XAT reaction of methyl radicals (Int6) with benzoyl chlorides (Figure S14B). Although the reaction barrier was lower than that of trichloromethyl radicals (18.8 kcal/mol via TS7 vs 25.0 kcal/mol via TS3), the reaction proved to be uncompetitive to the XAT reaction of methyl radicals with carbon tetrachloride (Int5) given the much lower reaction barrier of the latter (TS9, free energy barrier: 8.4 kcal/mol, Figure S14C).

All in all, although our experimental results indicated the likely involvement of radical species in the enantioselective reaction of acid chlorides with diols, we have thus far been unable to elucidate its mechanism. Further experimental and theoretical studies on these processes are ongoing in our laboratories.

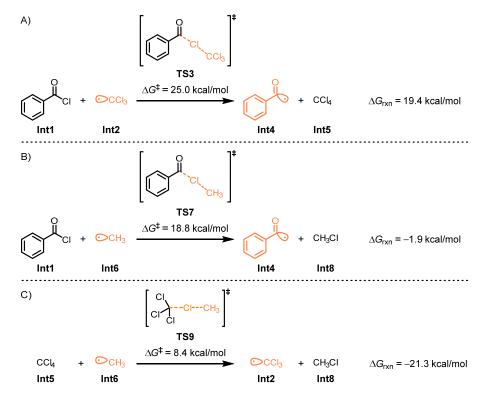


Figure S14. Results of DFT calculations on possible XAT processes.

9.4 Table of Energies

Table S5. Energies in Figures S9 to S12 and S14. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Tetrachloromethane)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	Ε	Н	G	Imaginary Frequency
Int1	0.101469	0.109761	0.068385	-805.347377	-805.237616	-805.278992	
Int2	0.007127	0.012540	-0.021677	-1418.734576	-1418.722036	-1418.756253	
TS3	0.107734	0.122160	0.061089	-2224.053439	-2223.931279	-2223.992350	290.8 <i>i</i>
Int4	0.097913	0.105179	0.066670	-345.048649	-344.943470	-344.981979	
Int5	0.009350	0.015923	-0.020289	-1879.004256	-1878.988333	-1879.024545	
Int6	0.029834	0.033884	0.011045	-39.854956	-39.821072	-39.843911	
TS7	0.134840	0.146350	0.094646	-845.184649	-845.038299	-845.090003	422.4 <i>i</i>
Int8	0.038118	0.042077	0.015481	-500.159413	-500.117336	-500.143932	
TS9	0.042629	0.052471	0.004709	-1918.854611	-1918.802140	-1918.849902	441.1 <i>i</i>
Int10	0.436054	0.468534	0.372045	-3164.276342	-3163.807808	-3163.904297	
Int11-OSS	0.535384	0.576069	0.459953	-3509.341426	-3508.765357	-3508.881473	
Int11-Triplet	0.535393	0.576076	0.459014	-3509.341380	-3508.765304	-3508.882366	
TS12	0.535109	0.574942	0.462570	-3509.338902	-3508.763960	-3508.876332	195.2 <i>i</i>
Int13	0.538412	0.578538	0.463511	-3509.413903	-3508.835365	-3508.950392	

9.5 Cartesian Coordinates of Computed Species

Int1

Charge = 0, Multiplici	ty = 1		
С	2.39076400	-0.11634500	0.00000000
С	1.09772500	-0.63409700	0.00000000
С	0.00000000	0.23675400	0.00000000
С	0.20846900	1.62735500	0.00000000
С	1.50191800	2.13654300	0.00000000
С	2.59485800	1.26502100	0.00000000
Н	3.23999100	-0.79266200	0.00000000
Н	0.93700300	-1.70498700	0.00000000
Н	-0.65308000	2.28556400	0.00000000
Н	1.66015000	3.21068900	0.00000000
Н	3.60549300	1.66315400	0.00000000
С	-1.41088300	-0.21046100	0.00000000
0	-2.37471300	0.49462900	0.00000000
Cl	-1.65229100	-2.02631800	0.00000000

Int2

Charge $= 0, 1$	Multiplicity = 2		
С	0.00000000	0.00000000	0.27511600
Cl	0.00000000	1.70124100	-0.03236700
Cl	-1.47331800	-0.85062000	-0.03236700
Cl	1.47331800	-0.85062000	-0.03236700

TS3			
Charge = 0, Multiplicity	v = 2		
С	3.32618000	1.84128000	-0.00006800
С	2.29869400	0.90109700	-0.00010800
С	2.61585800	-0.46391600	-0.00004000
С	3.95967000	-0.88608800	0.00005700
С	4.97608500	0.06106900	0.00009800
С	4.65897800	1.42383800	0.00004200
Н	3.08701200	2.90000800	-0.00011600
Н	1.26085500	1.21025600	-0.00020200
Н	4.18068900	-1.94832000	0.00009800
Н	6.01403000	-0.25769100	0.00017500
Н	5.45574600	2.16205900	0.00008300
С	1.57884500	-1.50196200	-0.00004600
		S83	

0	1.65748400	-2.68306700	-0.00004300
Cl	-0.58851600	-0.66237500	0.00004800
С	-2.43520400	0.15561700	0.00001900
Cl	-3.26451100	-0.37280200	1.47437500
Cl	-3.27910100	-0.40539000	-1.45378200
Cl	-2.22862800	1.92366200	-0.02060700

Int4

Charge = 0, Mu	altiplicity = 2		
С	1.63447500	-1.16916100	0.00000000
С	1.33541000	0.19193600	0.00000000
С	0.00000000	0.61237700	0.00000000
С	-1.04041400	-0.33262900	0.00000000
С	-0.73699600	-1.68991400	0.00000000
С	0.59913500	-2.10678500	0.00000000
Н	2.66869900	-1.49994100	0.00000000
Н	2.12271100	0.93970100	0.00000000
Н	-2.06807400	0.01700800	0.00000000
Н	-1.53555900	-2.42627300	0.00000000
Н	0.83226200	-3.16788900	0.00000000
С	-0.29983500	2.06187200	0.00000000
Ο	-1.37133600	2.59140200	0.00000000

Int5

Charge $= 0$, Multip	plicity = 1		
Cl	-1.03341100	1.03341100	-1.03341100
Cl	1.03341100	-1.03341100	-1.03341100
Cl	1.03341100	1.03341100	1.03341100
С	0.00000000	0.00000000	0.00000000
Cl	-1.03341100	-1.03341100	1.03341100

Int6

Charge = 0, Multiplic	ity = 2		
С	0.00000000	0.00000000	0.00015100
Н	0.00000000	1.08284100	-0.00030200
Н	-0.93776800	-0.54142000	-0.00030200
Н	0.93776800	-0.54142000	-0.00030200

TS7

Charge = 0, Multiplicity = 2					
C	-1.97388900	-1.74371200	0.00011200		
С	-0.76726400	-1.04732500	0.00012600		
С	-0.77728500	0.35299500	0.00001200		
С	-1.99811000	1.05235000	-0.00010900		
С	-3.19733700	0.34951600	-0.00013800		
С	-3.18538000	-1.04901700	-0.00002600		
Н	-1.96922900	-2.82940200	0.00020400		
Н	0.17995900	-1.57204400	0.00022500		
Н	-1.98237900	2.13713200	-0.00019100		
Н	-4.14092700	0.88706200	-0.00024700		
Н	-4.12324400	-1.59719600	-0.00004500		
С	0.45957200	1.15728400	0.00005200		
0	0.57325100	2.33934200	0.00016100		
Cl	2.26265800	0.01870300	-0.00004500		
С	4.11294500	-1.12482400	-0.00007800		
Н	4.86463600	-0.34176100	-0.01474300		
Н	4.03375500	-1.71098300	-0.91067700		
Н	4.04673300	-1.68910800	0.92525100		

Int8

Charge = 0, Multip	plicity = 1		
С	0.00000000	0.00000000	-1.13877700
Н	0.00000000	1.03396800	-1.48480900
Н	0.89544300	-0.51698400	-1.48480900
Н	-0.89544300	-0.51698400	-1.48480900
Cl	0.00000000	0.00000000	0.66394600

TS9

Charge $= 0$, Multipl	icity = 2		
Cl	1.45499800	0.00031200	-0.00069200
С	-0.55857600	0.00001700	-0.00001300
Cl	-1.08743900	-0.46186600	1.62506700
Cl	-1.08850800	-1.17639200	-1.21207000
Cl	-1.08873600	1.63792700	-0.41229300
С	3.73024800	0.00002900	-0.00003400
Н	3.91176900	1.00711000	-0.35838800
Н	3.91165800	-0.81393900	-0.69294900
Н	3.91120100	-0.19314500	1.05140500

Int10

Charge $= 0$, Multiplication of the second	plicity = 2	2
---	-------------	---

Charge $= 0$, Mul	tiplicity = 2		
С	0.70199200	-1.68269400	1.25267100
Н	0.83460200	-2.75045700	1.03235600
Ν	0.25829000	-0.92211400	0.07637200
С	-0.34544100	-1.46304400	2.33527900
Ν	-1.69725700	-1.76862300	1.82221200
Н	-0.34389700	-0.40606300	2.61554100
С	-2.74928100	-1.15204300	2.64926500
С	-1.94285800	-3.21619400	1.67988300
Н	-3.70135400	-1.29275200	2.13836900
Н	-2.55622200	-0.08189900	2.73607300
Н	-2.91438700	-3.34692200	1.19995500
Н	-1.17269500	-3.66742300	1.05011200
S	1.27573800	-0.99832500	-1.16677300
С	2.77535300	-0.13023000	-0.55549500
С	3.96090700	-0.79853300	-0.18617100
С	2.77518900	1.27357300	-0.40964900
С	5.09930700	-0.10470600	0.23351500
С	3.90163900	1.98091400	0.00481400
С	5.06162500	1.27957300	0.31077200
Ο	0.75462300	-0.13676600	-2.26049800
0	1.67749100	-2.35557500	-1.54635400
Cu	-1.75121900	-1.01976800	-0.13557000
Н	1.66640100	-1.31381600	1.63039600
Н	-1.93838400	-3.71067100	2.66295900
Н	-0.12422700	-2.06394400	3.23028500
Н	-2.76946100	-1.60643700	3.65155100
Н	5.99460500	-0.65173100	0.49915000
Н	3.86389400	3.05910300	0.09141100
Cl	4.13706400	-2.53808400	-0.16352800
Cl	6.48387000	2.15415900	0.82648600
Cl	1.36195000	2.26583700	-0.68978100
С	-3.87465700	0.82972400	-1.37062200
С	-4.40150100	-0.60914400	-1.03272400
Н	-5.40815400	-0.49114900	-0.59296600
Н	-4.54078400	-1.13288200	-1.99808200
С	-2.75175100	0.69656900	-2.40804100
Н	-3.19361500	0.42393300	-3.37270200
Н	-2.21414400	1.64417600	-2.53261900
0	-3.60940600	-1.31977300	-0.14843800
С	-3.41576300	1.50239300	-0.07484500
С	-4.34969000	1.74856400	0.94466700

С	-2.07912200	1.84154300	0.17531500
С	-3.97009200	2.32710300	2.15262300
Н	-5.38944900	1.47373400	0.79655800
С	-1.68807500	2.40798500	1.39357400
Н	-1.31383200	1.66120200	-0.56840300
С	-2.63210300	2.66035800	2.38581900
Н	-4.71854100	2.51125000	2.91861300
Н	-0.64097200	2.64934900	1.55022500
Н	-2.33414200	3.10865700	3.32944800
С	-4.99945400	1.64168200	-2.04042000
Н	-5.40570400	1.09414200	-2.89900400
Н	-5.82142500	1.83256900	-1.34597800
Н	-4.63152800	2.61115600	-2.39544000
0	-1.82921000	-0.33979100	-2.04203300
Н	-0.89466800	-0.14909800	-2.32479600

Int11-OSS

Charge $= 0$,	Multiplicity $= 1$

\mathcal{O}	[,] 1 [,]		
С	0.82517800	-1.04666200	1.65552100
Н	0.61608000	-2.12274100	1.71326800
Ν	0.55384100	-0.50711400	0.31595000
С	-0.03547100	-0.25679900	2.63148500
Ν	-1.44792100	-0.24811600	2.19865200
Н	0.30228900	0.78338400	2.63829000
С	-2.21467500	0.81808000	2.86722100
С	-2.10995700	-1.54956600	2.40222000
Н	-3.19916700	0.86517100	2.40328700
Н	-1.71140400	1.77314300	2.71601000
Н	-3.13104500	-1.47660600	2.02815400
Н	-1.59091200	-2.33127000	1.84636100
S	1.47362500	-1.13421400	-0.83793300
С	3.15928800	-0.49914500	-0.46301900
С	4.15673300	-1.28123700	0.15695000
С	3.50682500	0.83606200	-0.75757500
С	5.43918800	-0.78371100	0.40338800
С	4.78117000	1.34759700	-0.52250700
С	5.74235400	0.52234700	0.04822800
0	1.09498300	-0.52261200	-2.13880300
0	1.57428300	-2.59751700	-0.83142600
Cu	-1.38811900	0.04227800	0.12312800
Н	1.87715100	-0.90975400	1.94251800
Н	-2.12582800	-1.81205500	3.47113500
Н	0.05346100	-0.66125300	3.65129400

Н	-2.29883400	0.61150900	3.94498300
Н	6.18049200	-1.41752300	0.87254100
Н	5.00912200	2.37468400	-0.77664800
Cl	3.91080700	-2.91913100	0.72185700
Cl	7.34620900	1.14779100	0.34531600
Cl	2.37482900	2.00135700	-1.40956000
С	-2.81072000	2.35133600	-1.39510800
С	-3.76551200	1.22965400	-0.85745100
Н	-4.67041300	1.72749700	-0.46916000
Н	-4.09366800	0.63497200	-1.73244600
С	-1.81594400	1.71590600	-2.37796200
Н	-2.34228700	1.48084800	-3.30983000
Н	-0.99626800	2.40525300	-2.61223900
0	-3.23001700	0.44416400	0.14795700
С	-2.12513800	3.03157700	-0.20861400
С	-2.89246300	3.75018200	0.72195800
С	-0.74745900	2.93662300	0.02496500
С	-2.30420000	4.37118100	1.82093200
Н	-3.96793400	3.81997500	0.59189000
С	-0.15082100	3.54822900	1.13213700
Н	-0.11228400	2.37723200	-0.64721400
С	-0.92510300	4.27625800	2.03256400
Н	-2.92460600	4.92698300	2.51866000
Н	0.92216100	3.45188400	1.27378200
Н	-0.46635600	4.76120000	2.88955100
С	-3.63336900	3.36976400	-2.20803800
Н	-4.21838200	2.85690300	-2.98044800
Н	-4.33089100	3.91867500	-1.57094900
Н	-2.98356200	4.10284100	-2.69976200
0	-1.28811000	0.48891000	-1.85495300
Н	-0.37152500	0.26590000	-2.16614200
С	-3.70968000	-2.72761600	-0.49218600
С	-2.75628900	-2.28982300	-1.41919100
С	-1.53326200	-2.94776700	-1.52085300
С	-1.27477300	-4.06613300	-0.72237700
С	-2.24737700	-4.53775600	0.16569500
С	-3.46209200	-3.86613300	0.29028900
Н	-2.96264100	-1.41256300	-2.01940500
Н	-0.77270700	-2.58521800	-2.20243800
Н	-0.30805200	-4.55303500	-0.79176500
Н	-2.04876500	-5.41688600	0.77290800
Н	-4.21653400	-4.19340900	0.99938600
С	-4.95687100	-1.95211500	-0.31684800
0	-5.74606100	-2.03170000	0.57823200

Int11-Triplet

Charge = 0, Multiplic	vity = 3		
С	0.82468100	-1.06400900	1.63927600
Н	0.60066200	-2.13777000	1.68423800
Ν	0.55563800	-0.50369400	0.30783000
С	-0.02144000	-0.27380500	2.62749100
Ν	-1.43585300	-0.24445300	2.20191600
Н	0.32925800	0.76199700	2.64174800
С	-2.18386600	0.83313000	2.87344500
С	-2.11576200	-1.53609500	2.40876000
Н	-3.17096700	0.89149100	2.41641500
Н	-1.66951800	1.78135300	2.71607000
Н	-3.13501200	-1.45060700	2.03215000
Н	-1.60588200	-2.32628400	1.85646100
S	1.47485000	-1.11439200	-0.85526000
С	3.16277600	-0.49255500	-0.46882800
С	4.15670000	-1.28967300	0.13770300
С	3.51651900	0.84575400	-0.74122200
С	5.44156700	-0.80240000	0.39182400
С	4.79347100	1.34708700	-0.49825100
С	5.75090000	0.50789400	0.05819600
0	1.09866300	-0.47943900	-2.14566700
0	1.57082800	-2.57801700	-0.87356000
Cu	-1.38768800	0.04521300	0.12557300
Н	1.87936700	-0.94535800	1.92411600
Н	-2.13670100	-1.79481000	3.47848300
Н	0.06780000	-0.68852400	3.64310100
Н	-2.26299800	0.63029500	3.95229700
Н	6.17998200	-1.44741200	0.85013700
Н	5.02622900	2.37715300	-0.73541300
Cl	3.90343200	-2.93540000	0.67608000
Cl	7.35787300	1.12054100	0.36481800
Cl	2.38982800	2.02680500	-1.37283900
С	-2.82975800	2.34419500	-1.39164100
С	-3.77697600	1.22457300	-0.83640700
Н	-4.67782000	1.72409600	-0.44060400
Н	-4.11448100	0.62423600	-1.70396600
С	-1.84486700	1.70416000	-2.38116400
Н	-2.38171900	1.45983200	-3.30458300
Н	-1.03066300	2.39447900	-2.63095400
0	-3.22913300	0.44632500	0.16750100
С	-2.13231900	3.03198100	-0.21654600

С	-2.89046800	3.75407100	0.71881200
С	-0.75211100	2.93959000	0.00264700
С	-2.29123400	4.38035500	1.80879900
Н	-3.96732900	3.82229500	0.59980800
С	-0.14439900	3.55636000	1.10090200
Н	-0.12368800	2.37775100	-0.67391600
С	-0.90991600	4.28745500	2.00630100
Н	-2.90474600	4.93872800	2.51056500
Н	0.92999400	3.46117600	1.23170000
Н	-0.44262300	4.77640300	2.85637600
С	-3.66260300	3.35645600	-2.20177700
Н	-4.25496700	2.83816200	-2.96491000
Н	-4.35422600	3.90795700	-1.56048900
Н	-3.01931900	4.08770300	-2.70466900
0	-1.30497800	0.48277500	-1.85617400
Н	-0.38585900	0.27113400	-2.16840100
С	-3.72018200	-2.74086100	-0.47918000
С	-2.77202400	-2.29313900	-1.40671800
С	-1.54075100	-2.93586900	-1.50629200
С	-1.26851600	-4.04913900	-0.70531400
С	-2.23530100	-4.53056200	0.18400900
С	-3.45832700	-3.87392400	0.30675400
Н	-2.98918300	-1.42042000	-2.00976000
Н	-0.78500200	-2.56655200	-2.18951000
Н	-0.29596200	-4.52431200	-0.77429200
Н	-2.02579300	-5.40562500	0.79343100
Н	-4.20880300	-4.20883200	1.01647700
С	-4.97826100	-1.98252700	-0.30902800
0	-5.76508400	-2.06510500	0.58788700

Proposed Int11-CSS

Charge = 0 , Multiplicity = 1				
С	-1.24581200	-0.08411300	2.06832600	
Н	-0.96863200	0.75519100	2.72139500	
Ν	-0.78060200	0.12161000	0.69473400	
С	-0.58343400	-1.38952700	2.52164800	
Ν	0.87553600	-1.32839600	2.30862000	
Н	-0.98163500	-2.19638500	1.90115300	
С	1.43084700	-2.60481300	1.84618200	
С	1.59756800	-0.84123700	3.48988100	
Н	2.49941400	-2.48223000	1.66595900	
Н	0.95880600	-2.88191700	0.90195100	
Н	2.63607000	-0.64755500	3.20971100	

Н	1.15832700	0.09782200	3.83172000
S	-1.65534400	1.02127900	-0.31253700
С	-3.25439400	0.12395100	-0.35420200
C	-4.47998300	0.68504900	0.05826300
C	-3.29231700	-1.20647100	-0.82949700
C	-5.67975900	-0.02689400	-0.03261000
C C	-4.48058200	-1.92674200	-0.92446900
C C	-5.66795400	-1.32185600	-0.52914700
0	-1.06015400	0.84739100	-1.66415100
0	-1.89640300	2.40242800	0.11436800
Cu	1.14702000	0.26609500	0.70287100
C	3.54338400	-0.59210100	-1.51898500
C	3.67123200	0.56927800	-0.49016500
Н	4.73790100	0.69839200	-0.24261000
Н	3.38103900	1.49903100	-1.01097300
С	2.17676600	-0.51567400	-2.21236900
Н	2.04909500	0.49847700	-2.61388200
Н	2.13651600	-1.20898400	-3.06427900
0	2.99125500	0.40388600	0.71098900
С	3.78567000	-1.95241300	-0.86253000
С	4.77301400	-2.09289800	0.12438600
С	3.08701200	-3.10253500	-1.25123900
С	5.04852000	-3.33076100	0.70367300
Н	5.32736000	-1.22351000	0.45966700
С	3.35813000	-4.34467900	-0.67453500
Н	2.29833700	-3.03526900	-1.99096000
С	4.33962500	-4.46636300	0.30793600
Н	5.81519900	-3.40544700	1.47028300
Н	2.79329100	-5.21699300	-0.99265100
Н	4.54862900	-5.43127200	0.76130100
С	4.61269800	-0.36286300	-2.60907900
Н	4.49182700	0.62258900	-3.07747700
Н	5.61721200	-0.41346400	-2.17777400
Н	4.54575700	-1.12651700	-3.39126400
Н	-2.33738800	-0.19214100	2.11488600
Н	1.56963700	-1.57566100	4.31287100
Н	-0.82631000	-1.61257400	3.57184300
Н	1.28029700	-3.41050700	2.58481100
Н	-6.60372100	0.43631500	0.28844300
Н	-4.47062900	-2.94237300	-1.29837300
Cl	-4.64680400	2.28366000	0.74075400
Cl	-7.16579000	-2.21352600	-0.64628300
Cl	-1.86224600	-2.08621400	-1.31516000
0	1.12883200	-0.82209300	-1.29533400

Н	0.28789100	-0.42320800	-1.60823700
С	1.29359500	2.14176500	1.28135300
С	1.61137300	3.16814000	0.28101000
С	1.32087200	2.99408800	-1.07595100
С	2.23669600	4.34203100	0.73488000
С	1.64747500	4.00171300	-1.98061700
Н	0.80502700	2.10252000	-1.40932500
С	2.57716400	5.33232000	-0.17938400
Н	2.44919100	4.45454900	1.79258200
С	2.28143000	5.16325500	-1.53635900
Н	1.40424400	3.87826600	-3.03125200
Н	3.06648200	6.23907300	0.16338800
Н	2.54271300	5.94270200	-2.24635900
0	1.15705800	2.25674400	2.46045600

TS12

Charge = 0 , Multiplicity = 1			
С	-0.84066500	0.81638600	1.79760300
Н	-0.78896600	1.89934000	1.96621700
Ν	-0.56582400	0.46439700	0.39832400
С	0.18034100	0.07736100	2.65420300
Ν	1.55164600	0.31564600	2.15684600
Н	-0.00129800	-0.99867200	2.58718900
С	2.52030200	-0.61251900	2.76710900
С	1.98117300	1.70988300	2.37895300
Н	3.47276400	-0.50215600	2.24937000
Н	2.16911700	-1.63574200	2.63854800
Н	3.02403300	1.80348400	2.08111000
Н	1.38250600	2.39715800	1.77937300
S	-1.48665800	1.23001500	-0.66734800
С	-3.15179000	0.49819300	-0.38970400
С	-4.18510400	1.16056800	0.30397000
С	-3.43674900	-0.81126900	-0.83041600
С	-5.44468300	0.58182200	0.48396000
С	-4.68580800	-1.40403900	-0.66313600
С	-5.68588200	-0.69012100	-0.01343200
0	-1.09682800	0.80816400	-2.03737600
0	-1.61052700	2.67530300	-0.45821500
Cu	1.37247900	-0.00093200	0.08500300
Н	-1.84584300	0.49179700	2.10429400
Н	1.88503900	1.97452600	3.44333000
Н	0.09547800	0.38207800	3.70884300
Н	2.63629200	-0.39717300	3.84040800

Н	-6.21599600	1.12659900	1.01285100
Н	-4.86549100	-2.40674800	-1.02881600
Cl	-4.01178900	2.73699800	1.04206400
Cl	-7.26009800	-1.41750700	0.20094600
Cl	-2.24869700	-1.84830700	-1.59835400
С	2.71005100	-2.33475700	-1.47033700
С	3.69425200	-1.16864100	-1.12607400
Н	4.64354100	-1.61974600	-0.79611900
Н	3.91264200	-0.63991800	-2.07201700
С	1.59467000	-1.78941600	-2.37597100
Н	2.00774900	-1.60811700	-3.37511000
Н	0.77523500	-2.51219600	-2.47096400
0	3.24430600	-0.29325900	-0.13882900
С	2.17903000	-2.96153700	-0.17787800
С	3.07394900	-3.59070200	0.70298600
С	0.82585600	-2.93143600	0.18484400
С	2.63264800	-4.19367900	1.87799000
Н	4.13417900	-3.60598600	0.47074800
С	0.37785300	-3.52774700	1.36851900
Н	0.09478600	-2.44034300	-0.44289300
С	1.27641500	-4.16935900	2.21755700
Н	3.34971900	-4.67940100	2.53397600
Н	-0.68065000	-3.49007700	1.61177800
Н	0.93062300	-4.64080100	3.13297700
С	3.46598800	-3.39099900	-2.30230800
Н	3.94043800	-2.92347600	-3.17289000
Н	4.24876200	-3.87661000	-1.71500100
Н	2.78474100	-4.17147600	-2.65983600
0	1.10990600	-0.54845500	-1.86300000
Н	0.20518000	-0.26909200	-2.15491200
С	3.47018000	2.57759900	-0.53416700
С	2.47110700	2.30903300	-1.47996700
С	1.43126500	3.21514600	-1.67224300
С	1.40853200	4.41496100	-0.95479600
С	2.43918100	4.71652700	-0.06058500
С	3.46685400	3.79986000	0.15577800
Н	2.49009100	1.37480600	-2.02606100
Н	0.62422100	2.97356500	-2.35477600
Н	0.58459100	5.10793300	-1.09327900
Н	2.43014100	5.65717500	0.48357800
Н	4.25541900	4.00103500	0.87453400
C	4.53647300	1.58905700	-0.24087300
0	5.28090700	1.57869100	0.69756700

Proposed Cu-III-Species

Charge = 0, Multiplic	ity = 1		
C	-1.24581200	-0.08411300	2.06832600
Н	-0.96863200	0.75519100	2.72139500
Ν	-0.78060200	0.12161000	0.69473400
С	-0.58343400	-1.38952700	2.52164800
Ν	0.87553600	-1.32839600	2.30862000
Н	-0.98163500	-2.19638500	1.90115300
С	1.43084700	-2.60481300	1.84618200
С	1.59756800	-0.84123700	3.48988100
Н	2.49941400	-2.48223000	1.66595900
Н	0.95880600	-2.88191700	0.90195100
Н	2.63607000	-0.64755500	3.20971100
Н	1.15832700	0.09782200	3.83172000
S	-1.65534400	1.02127900	-0.31253700
С	-3.25439400	0.12395100	-0.35420200
С	-4.47998300	0.68504900	0.05826300
С	-3.29231700	-1.20647100	-0.82949700
С	-5.67975900	-0.02689400	-0.03261000
С	-4.48058200	-1.92674200	-0.92446900
С	-5.66795400	-1.32185600	-0.52914700
0	-1.06015400	0.84739100	-1.66415100
0	-1.89640300	2.40242800	0.11436800
Cu	1.14702000	0.26609500	0.70287100
С	3.54338400	-0.59210100	-1.51898500
С	3.67123200	0.56927800	-0.49016500
Н	4.73790100	0.69839200	-0.24261000
Н	3.38103900	1.49903100	-1.01097300
С	2.17676600	-0.51567400	-2.21236900
Н	2.04909500	0.49847700	-2.61388200
Н	2.13651600	-1.20898400	-3.06427900
0	2.99125500	0.40388600	0.71098900
С	3.78567000	-1.95241300	-0.86253000
С	4.77301400	-2.09289800	0.12438600
С	3.08701200	-3.10253500	-1.25123900
С	5.04852000	-3.33076100	0.70367300
Н	5.32736000	-1.22351000	0.45966700
С	3.35813000	-4.34467900	-0.67453500
Н	2.29833700	-3.03526900	-1.99096000
С	4.33962500	-4.46636300	0.30793600
Н	5.81519900	-3.40544700	1.47028300
Н	2.79329100	-5.21699300	-0.99265100
Н	4.54862900	-5.43127200	0.76130100

С	4.61269800	-0.36286300	-2.60907900	
Н	4.49182700	0.62258900	-3.07747700	
Н	5.61721200	-0.41346400	-2.17777400	
Н	4.54575700	-1.12651700	-3.39126400	
Н	-2.33738800	-0.19214100	2.11488600	
Н	1.56963700	-1.57566100	4.31287100	
Н	-0.82631000	-1.61257400	3.57184300	
Н	1.28029700	-3.41050700	2.58481100	
Н	-6.60372100	0.43631500	0.28844300	
Н	-4.47062900	-2.94237300	-1.29837300	
Cl	-4.64680400	2.28366000	0.74075400	
Cl	-7.16579000	-2.21352600	-0.64628300	
Cl	-1.86224600	-2.08621400	-1.31516000	
0	1.12883200	-0.82209300	-1.29533400	
Н	0.28789100	-0.42320800	-1.60823700	
С	1.29359500	2.14176500	1.28135300	
С	1.61137300	3.16814000	0.28101000	
С	1.32087200	2.99408800	-1.07595100	
С	2.23669600	4.34203100	0.73488000	
С	1.64747500	4.00171300	-1.98061700	
Н	0.80502700	2.10252000	-1.40932500	
С	2.57716400	5.33232000	-0.17938400	
Н	2.44919100	4.45454900	1.79258200	
С	2.28143000	5.16325500	-1.53635900	
Н	1.40424400	3.87826600	-3.03125200	
Н	3.06648200	6.23907300	0.16338800	
Н	2.54271300	5.94270200	-2.24635900	
0	1.15705800	2.25674400	2.46045600	

Proposed Reductive Elimination TS

Charge = 0, Multiplicity = 1

С	-1.10559500	1.07876600	1.44142400
Н	-0.71593300	2.07528500	1.69501900
Ν	-0.68622400	0.68014600	0.10792400
С	-0.56908500	0.01075500	2.40414600
Ν	0.88462000	-0.21180200	2.22465700
Н	-1.07573400	-0.92799000	2.16866200
С	1.24966600	-1.60646300	2.50731900
С	1.67266500	0.70174500	3.05947800
Н	2.32276500	-1.73425200	2.36331800
Н	0.72706800	-2.26413400	1.80976200
Н	2.73202700	0.59219900	2.81078500
Н	1.37700200	1.73353700	2.86026400

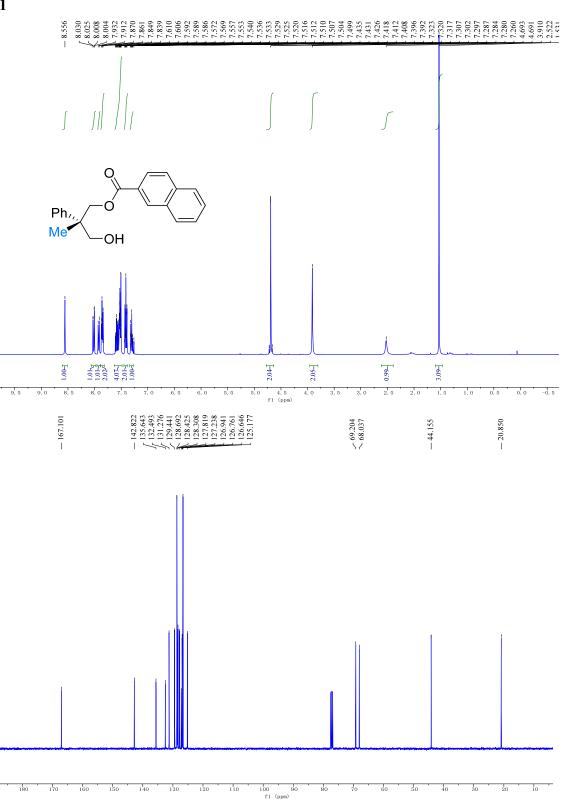
S	-1.66493200	0.72684500	
С	-3.14393500	-0.23353500	-0.57847600
С	-4.42093900	0.32259200	-0.36404500
С	-3.01061500	-1.61162100	-0.30016500
С	-5.50670700	-0.45385100	0.05343600
С	-4.07999800	-2.40199300	0.11449900
С	-5.32613600	-1.80984500	0.27988700
0	-1.05231900	-0.06310700	-2.23047300
0	-2.15337200	2.06029300	-1.51537900
Cu	1.25961000	0.25135100	0.07988200
С	3.65069300	-1.09220900	-1.69446600
С	3.83167000	0.43102400	-1.49355900
Н	4.88894600	0.64955700	-1.28834900
Н	3.58799300	0.91564200	-2.44910500
С	2.29414900	-1.38829200	-2.36755900
Н	2.13702100	-0.66163200	-3.17313100
Н	2.31459800	-2.38793800	-2.82358000
0	3.08170400	1.01970300	-0.45045100
С	3.83807900	-1.88033000	-0.39546700
С	4.61857800	-1.37837700	0.65658700
С	3.31880800	-3.17639100	-0.26061300
С	4.89228300	-2.15074100	1.78723200
Н	5.01570900	-0.37171600	0.60379800
С	3.58506000	-3.94973000	0.86876900
Н	2.69218700	-3.58993700	-1.04282000
С	4.38128200	-3.44403800	1.89741400
Н	5.50551800	-1.73629100	2.58309000
Н	3.16857500	-4.95055700	0.94308100
Н	4.59269000	-4.04638900	2.77634500
С	4.74913800	-1.52936400	-2.69217300
Н	4.64871300	-0.99506800	-3.64543800
Н	5.74448800	-1.32342700	-2.28607300
Н	4.68381300	-2.60327100	-2.89206100
Н	-2.19757700	1.12826500	1.55246700
Н	1.53328700	0.49228000	4.13435300
Н	-0.79395700	0.26793400	3.45194400
Н	0.99197500	-1.89516900	3.54117300
Н	-6.47389300	0.00925600	0.20001500
Н	-3.93404500	-3.45726000	0.30601600
Cl	-4.79923400	2.02074500	-0.55569100
Cl	-6.68105500	-2.78686300	0.79954900
Cl	-1.48178000	-2.45391900	-0.42446300
0	1.22675000	-1.32437800	-1.42953300
Н	0.39807800	-0.99967900	-1.86118200

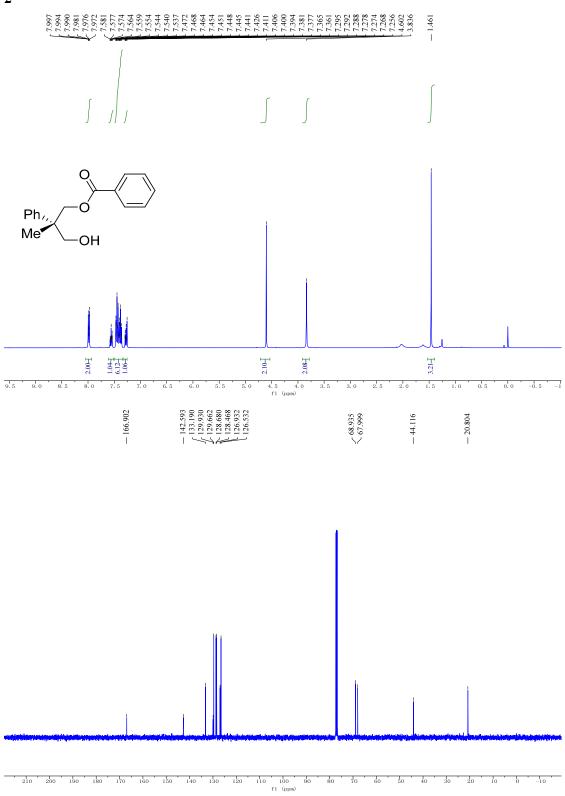
С	1.42349400	3.12477200	-0.19196000
С	2.29408200	3.39277200	0.87407800
С	1.95176000	4.37639900	1.79769300
С	0.74813600	5.07526500	1.66720800
С	-0.11637400	4.79792200	0.60370800
С	0.21502200	3.82852700	-0.33739500
Н	3.21267100	2.82701700	0.95237800
Н	2.62431300	4.59717800	2.62114000
Н	0.48285700	5.83584500	2.39593600
Н	-1.05647900	5.33222800	0.50863300
Н	-0.46872500	3.57054700	-1.13787800
С	1.73651300	2.12754100	-1.20752200
0	1.56979800	1.99419400	-2.36640100

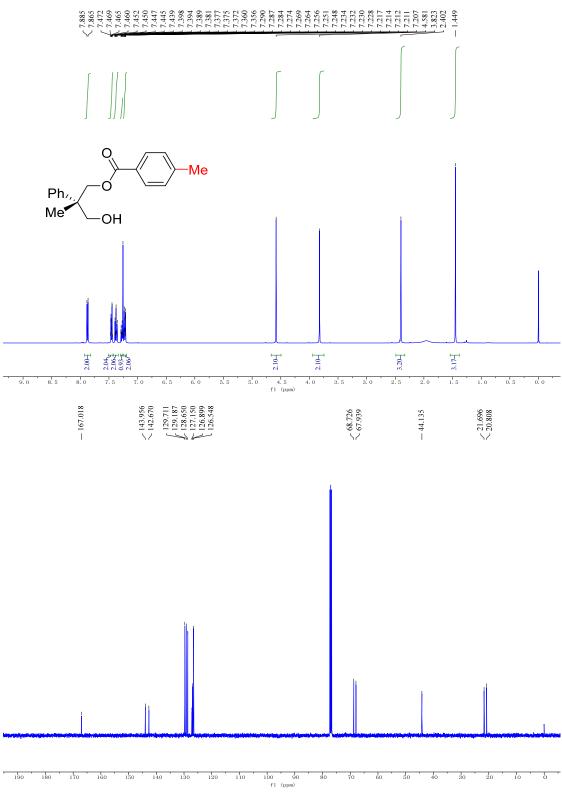
Int13-Analogue

Charge = 0 , Multiplicity = 1			
С	-1.21064600	1.17592200	1.88469400
Н	-0.67645300	2.03110800	2.32061800
Ν	-0.74343200	0.92512700	0.53199700
С	-0.97290900	-0.09932000	2.70108000
Ν	0.42136500	-0.61474500	2.59053300
Н	-1.62809400	-0.88035700	2.30439900
С	0.46161700	-2.01446400	3.04995400
С	1.34676400	0.20187000	3.39892700
Н	1.48244400	-2.38838700	2.97517500
Н	-0.18135600	-2.62307500	2.40956600
Н	2.35938300	-0.19187800	3.28428400
Н	1.33336300	1.23337000	3.04527500
S	-1.63948200	1.32732100	-0.69325600
С	-3.10832100	0.19539500	-0.61093900
С	-4.42852000	0.61828500	-0.35467900
С	-2.92273100	-1.20022200	-0.71605700
С	-5.49230300	-0.28367700	-0.24324900
С	-3.96563700	-2.11676400	-0.61037400
С	-5.25062800	-1.64187400	-0.37681000
0	-0.92663500	0.91461700	-1.93759500
0	-2.17445000	2.69396400	-0.68559600
Cu	0.90518200	-0.37229700	0.58661300
С	3.55387400	-1.21157200	-1.84773500
С	4.36485400	0.10197200	-1.86780400
Н	5.39713700	-0.09649900	-1.56789700

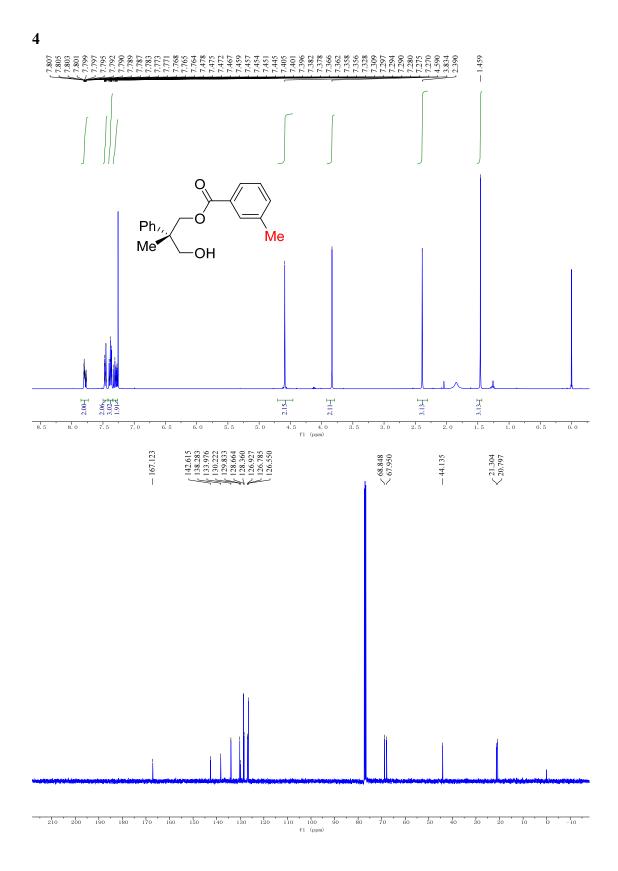
Н	4.35733800	0.51447400	-2.87860800
С	2.10097600	-0.96287300	-2.30474700
Н	2.11236300	-0.41635900	-3.25345900
Н	1.59549700	-1.92536200	-2.46193900
0	3.88208300	1.09684500	-0.95807400
С	3.55277900	-1.90098100	-0.47759200
С	4.16106300	-1.35465600	0.66059100
С	2.95044600	-3.16470700	-0.35433300
С	4.20547100	-2.06597000	1.86353500
Н	4.60649300	-0.36970800	0.61695300
С	2.98524400	-3.87288300	0.84450300
Н	2.46509500	-3.61361400	-1.21656200
С	3.62852500	-3.33098200	1.95984500
Н	4.70430800	-1.62715200	2.72375500
Н	2.52230800	-4.85400100	0.90363400
Н	3.67655700	-3.88886400	2.89093000
С	4.22066500	-2.13459700	-2.91773100
Н	5.08268400	-1.64552300	-3.38383400
Н	4.57266100	-3.06945600	-2.47695900
Н	3.52078900	-2.38495300	-3.72240400
Н	-2.28218300	1.41387300	1.94804900
Н	1.06709900	0.17778800	4.46533100
Н	-1.22313500	0.05567600	3.76343100
Н	0.11594900	-2.10093400	4.09369500
Н	-6.49184800	0.08558500	-0.05326400
Н	-3.77288000	-3.17727300	-0.70921100
Cl	-4.89981800	2.29009800	-0.13449100
Cl	-6.57601900	-2.77640900	-0.23942400
Cl	-1.34798200	-1.93673300	-0.97484800
0	1.39727900	-0.19465000	-1.34234400
Н	0.56844100	0.21861600	-1.71990700
С	2.32692200	2.76189100	-0.36061700
С	2.83230500	2.77610000	0.94714400
С	2.17406500	3.50577900	1.93457100
С	0.99321100	4.19077000	1.62910600
С	0.47632100	4.15502000	0.33313200
С	1.15011300	3.45424800	-0.66386400
Н	3.74001300	2.23033800	1.17755400
Н	2.57992300	3.54118500	2.94222100
Н	0.47437700	4.74798300	2.40460300
Н	-0.46401000	4.64057000	0.09984500
Н	0.75144500	3.39847200	-1.66990600
С	2.97227800	1.98601200	-1.44694300
0	2.72676600	2.10629400	-2.62957100

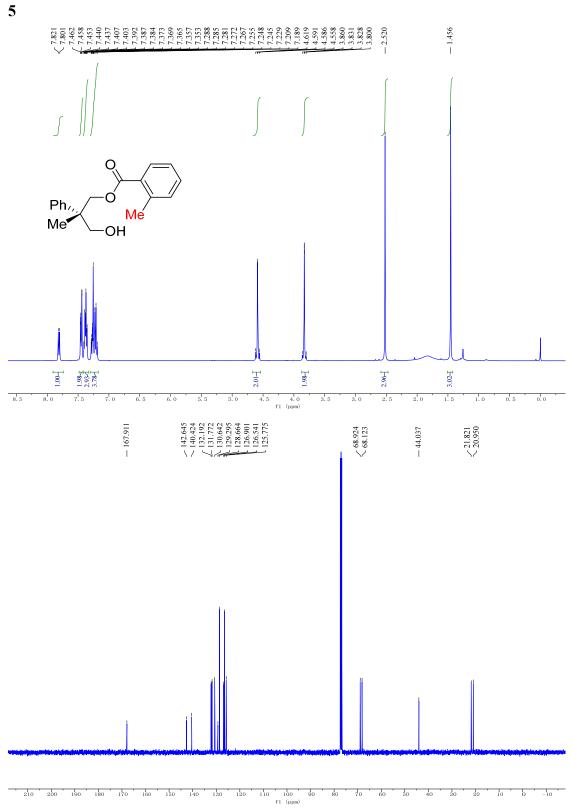

Int13

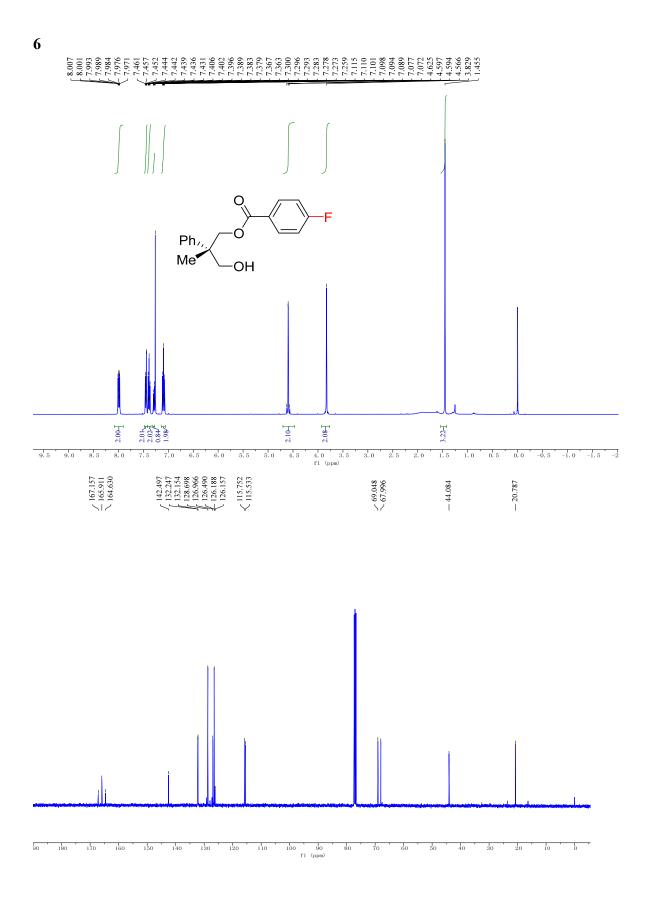

Charge = 0, Multiplic	ity = 1		
С	-1.09037300	0.76254000	1.75591200
Н	-1.11129100	1.85912400	1.69059800
Ν	-0.85387700	0.12524100	0.46049400
С	0.00837100	0.30316800	2.71737100
Ν	1.36614800	0.62099500	2.21506300
Н	-0.05014700	-0.78339000	2.82485200
С	2.38843100	-0.08058900	3.00494900
С	1.60833800	2.07246600	2.27129100
Н	3.37403000	0.12719200	2.57950400
Н	2.21021100	-1.15524900	2.96164300
Н	2.62069400	2.28537100	1.92769500
Н	0.91259200	2.59669400	1.61759700
S	-1.59394800	0.77591800	-0.77958000
С	-3.37165000	0.38951500	-0.51010600
С	-4.35921200	1.34871700	-0.21308900
С	-3.79221900	-0.95841400	-0.51345800
С	-5.69211200	0.99403800	0.01677400
С	-5.11499100	-1.33193000	-0.28949400
С	-6.05687600	-0.34267800	-0.03227900
0	-1.24611000	0.00198300	-2.00628800
0	-1.46482000	2.23894500	-0.89597500
Cu	1.21817100	-0.12143500	0.21895400
Н	-2.05582000	0.45172800	2.18631700
Н	1.49226500	2.44720400	3.30206600
Н	-0.14521300	0.75878700	3.70999900
Н	2.38150600	0.24676700	4.05863000
Н	-6.42370300	1.76201300	0.23225000
Н	-5.39690000	-2.37665100	-0.31212100
Cl	-4.04578000	3.06557300	-0.08001300
Cl	-7.72342700	-0.79490000	0.25060900
Cl	-2.69560200	-2.30140800	-0.77517300
С	2.92069700	-2.35533500	-1.41166900
С	4.11387900	-1.40084000	-1.22925700
Н	4.85895900	-1.80192500	-0.53831400
Н	4.61074900	-1.22954900	-2.19026100
С	1.90003900	-1.74793500	-2.39594000
Н	2.41688600	-1.53509300	-3.34116600
Н	1.12045900	-2.48969700	-2.60852200
0	3.62970500	-0.14338100	-0.73925700
С	2.28652000	-2.73326400	-0.06491200

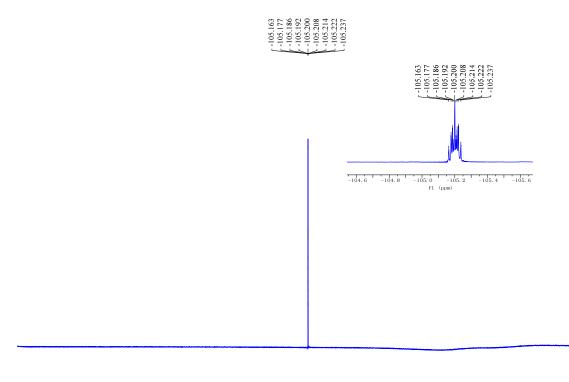

С	3.09966100	-3.20445300	0.98106000	
С	0.89604700	-2.72763600	0.14220300	
С	2.55143200	-3.66428000	2.17599500	
Н	4.17801800	-3.23345000	0.85792300	
С	0.34470300	-3.17180500	1.34983000	
Н	0.21500800	-2.38769400	-0.62605800	
С	1.16634500	-3.64768700	2.36794100	
Н	3.20703100	-4.03418200	2.95943400	
Н	-0.73273000	-3.13189700	1.47408000	
Н	0.73796700	-4.00161400	3.30128600	
С	3.46894500	-3.64154000	-2.07260900	
Н	3.89168800	-3.42698200	-3.06115600	
Н	4.25126800	-4.09710000	-1.45842300	
Н	2.66805800	-4.37766300	-2.19132200	
0	1.32019700	-0.54818200	-1.89826000	
Н	0.35716800	-0.45608600	-2.13175900	
С	3.81103200	2.17922100	-0.50164800	
С	2.50439400	2.34048400	-0.98946800	
С	1.85203400	3.56409900	-0.84296400	
С	2.50667900	4.62742800	-0.21713500	
С	3.81824600	4.47594800	0.24683200	
С	4.47523100	3.25613600	0.09903500	
Н	2.01447700	1.51883000	-1.49885900	
Н	0.83014500	3.66435300	-1.19582100	
Н	1.99711700	5.57891400	-0.09299600	
Н	4.32609500	5.30935300	0.72352800	
Н	5.49338300	3.11770100	0.44839600	
С	4.51793400	0.87806000	-0.62245600	
0	5.72014900	0.71305700	-0.61931700	

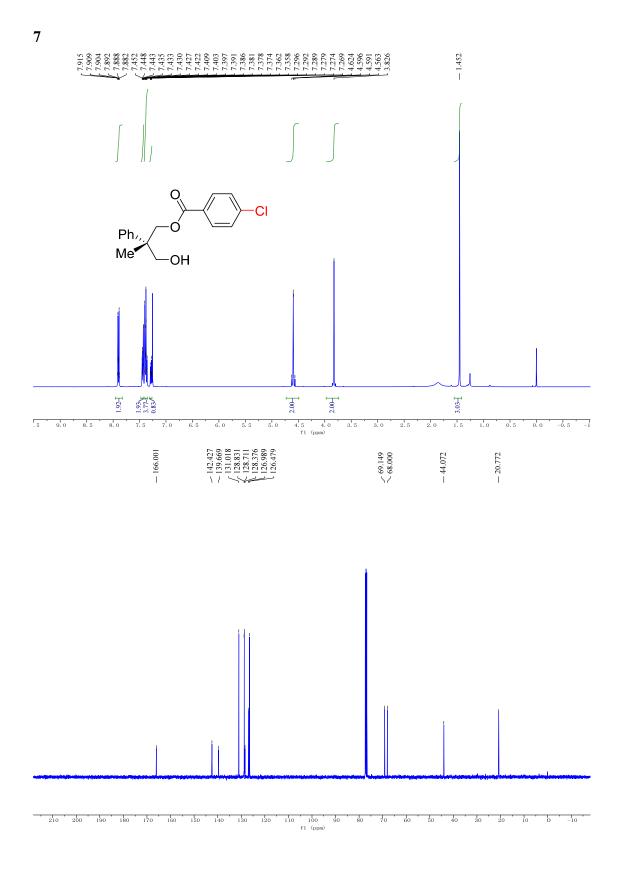
10. NMR spectra

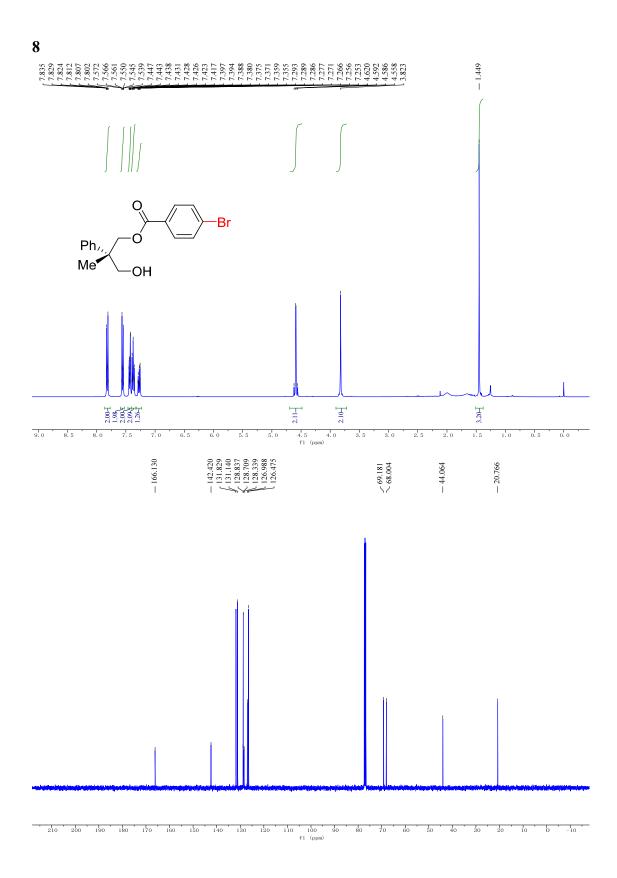

1

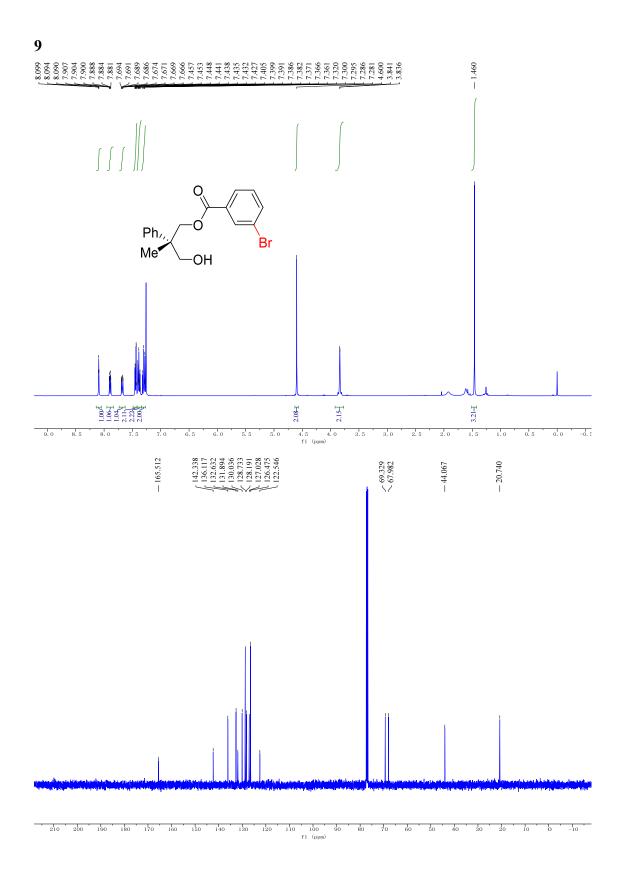


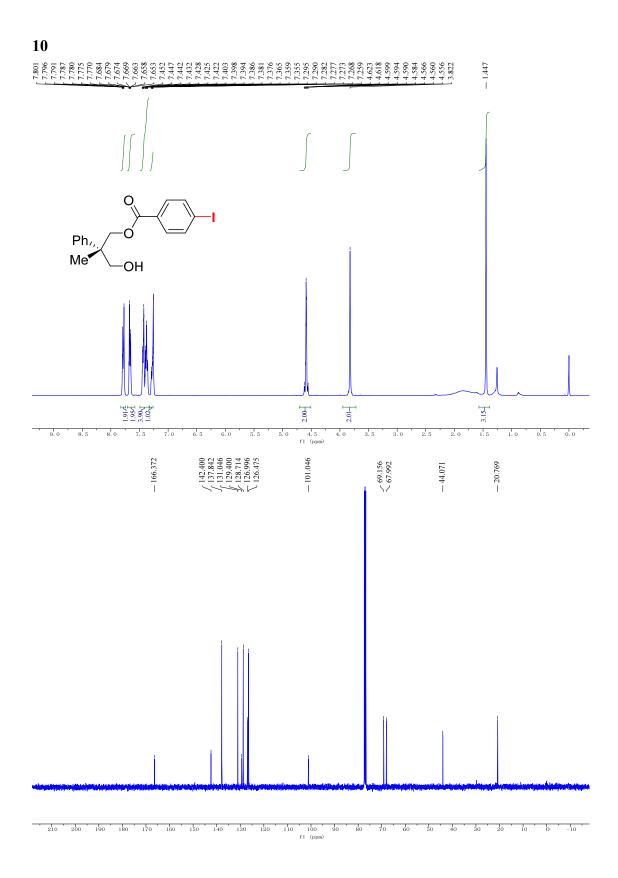


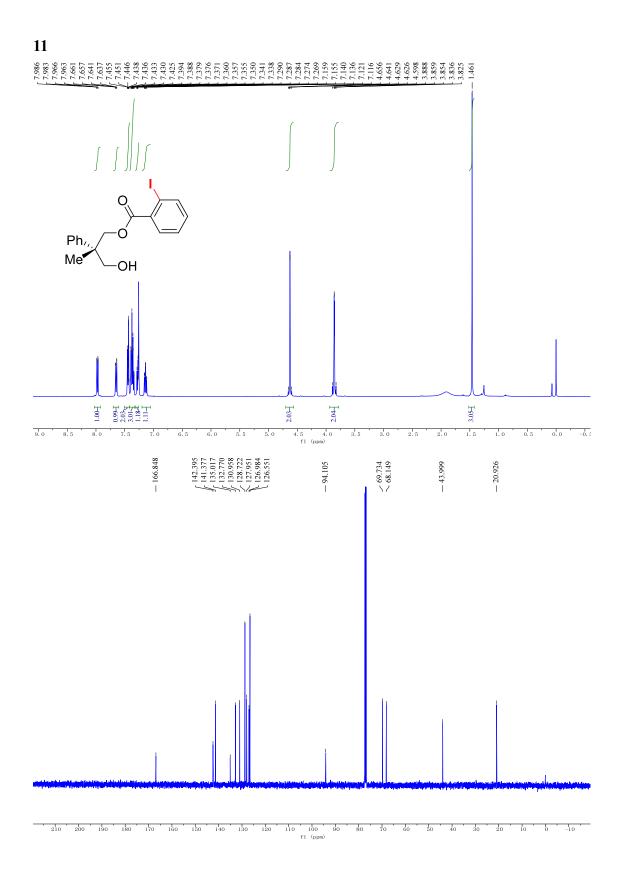

3

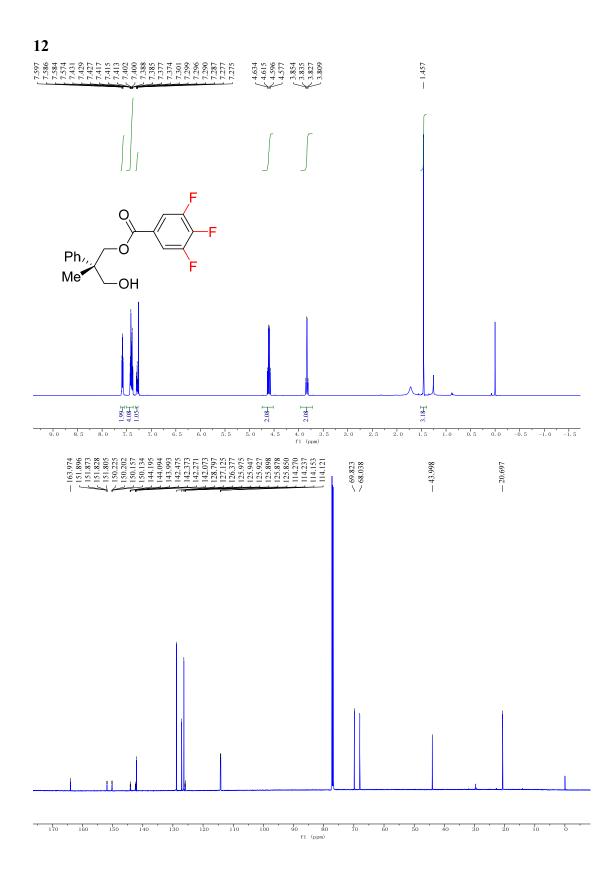


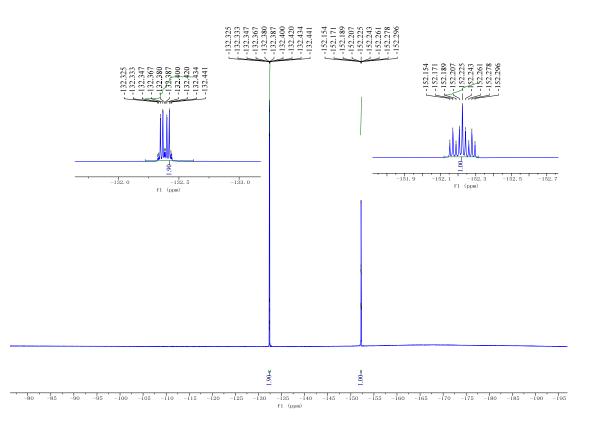


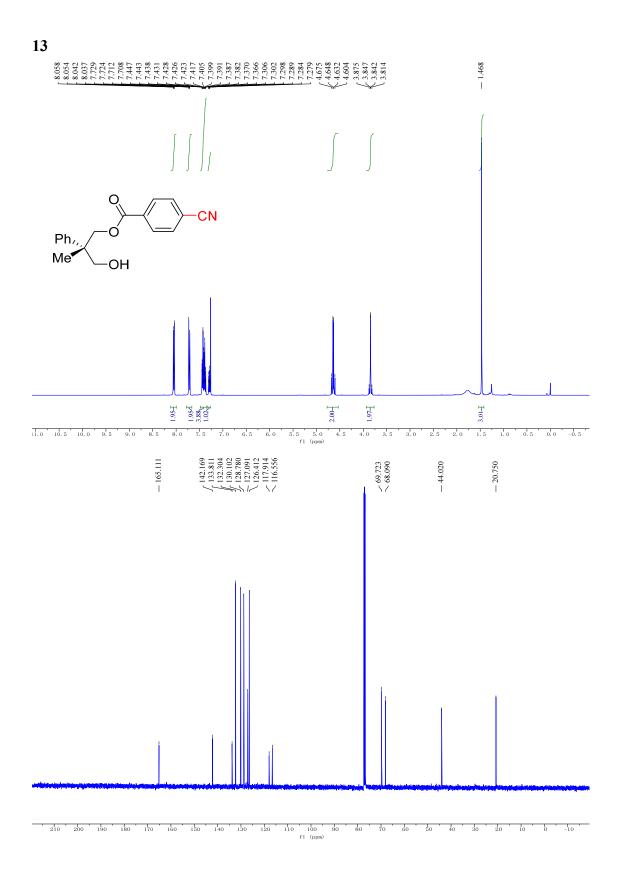

S106

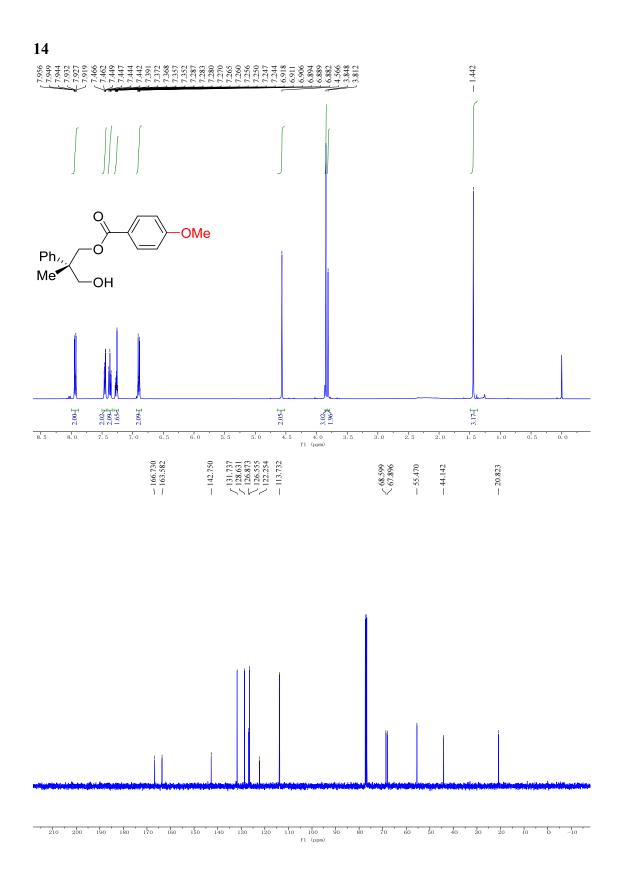


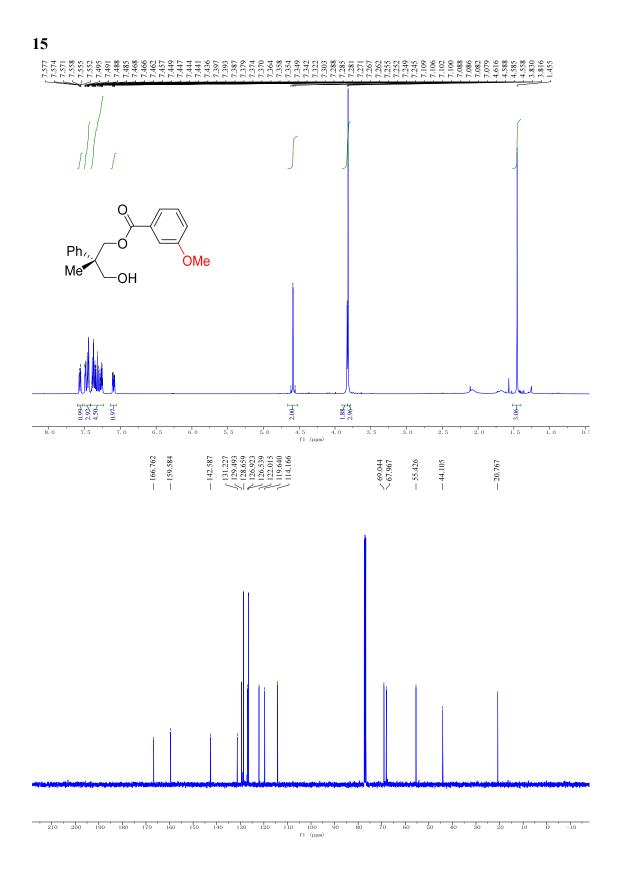

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

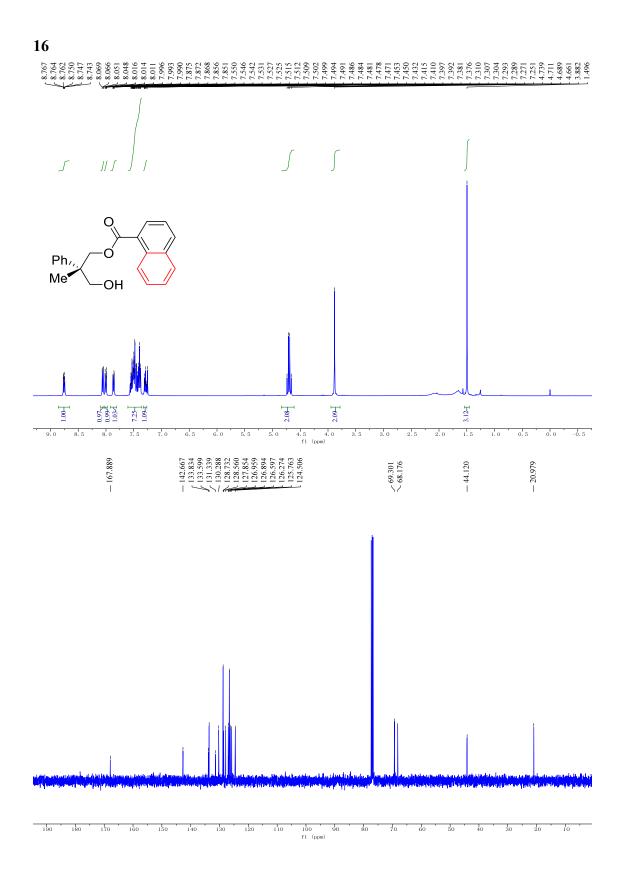


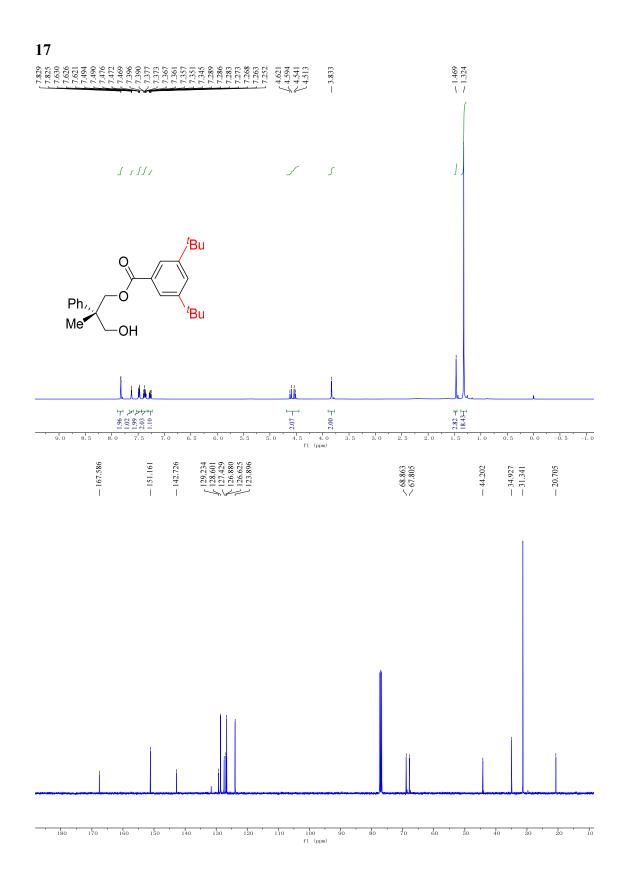


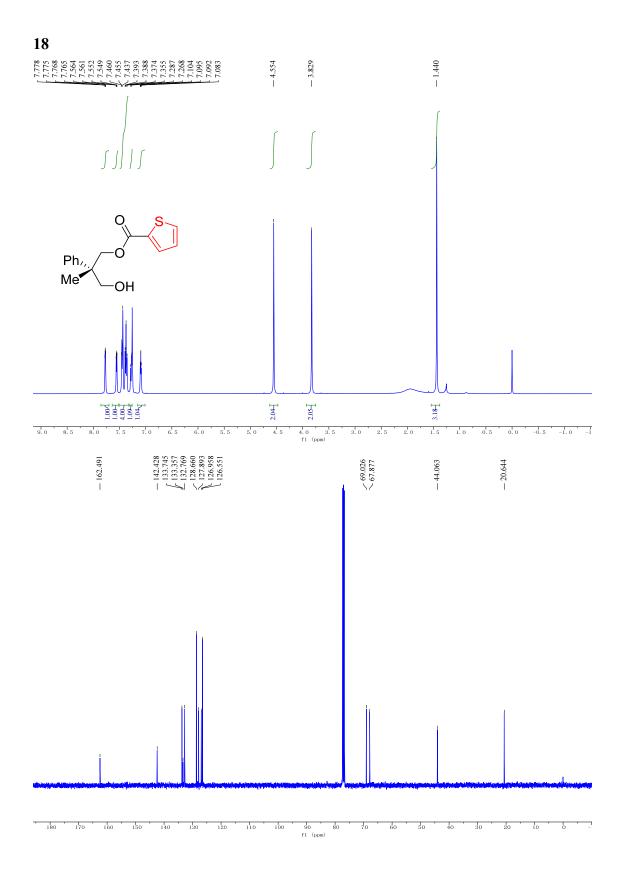


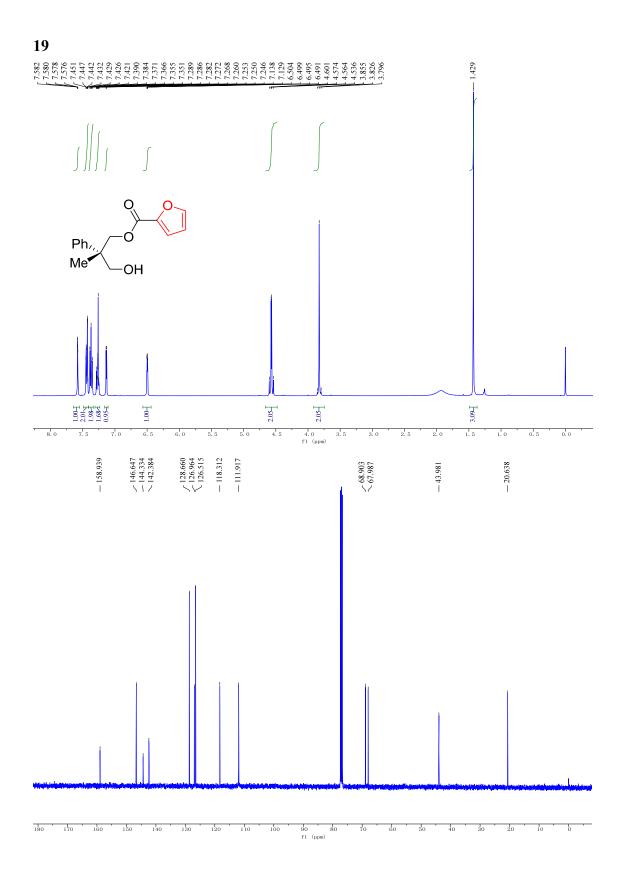


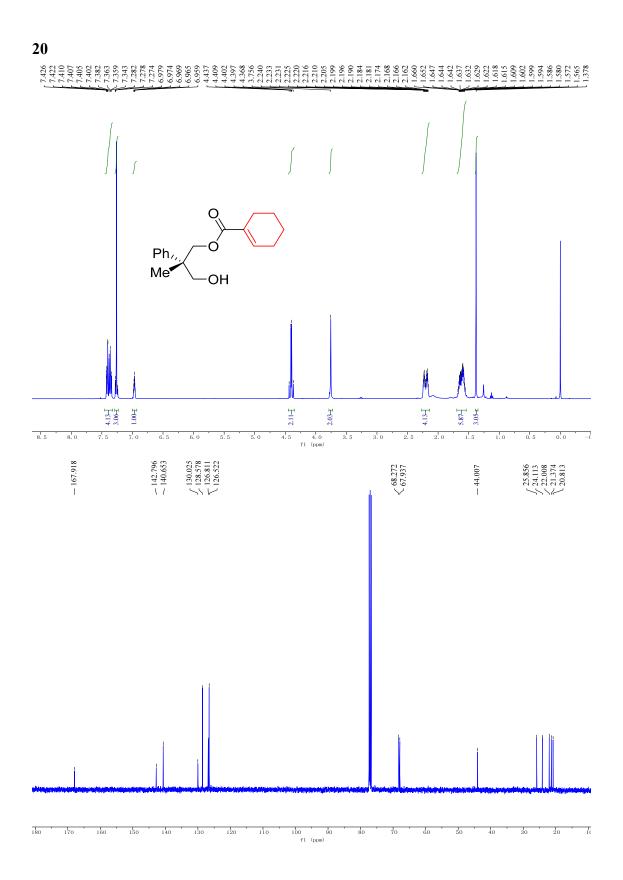


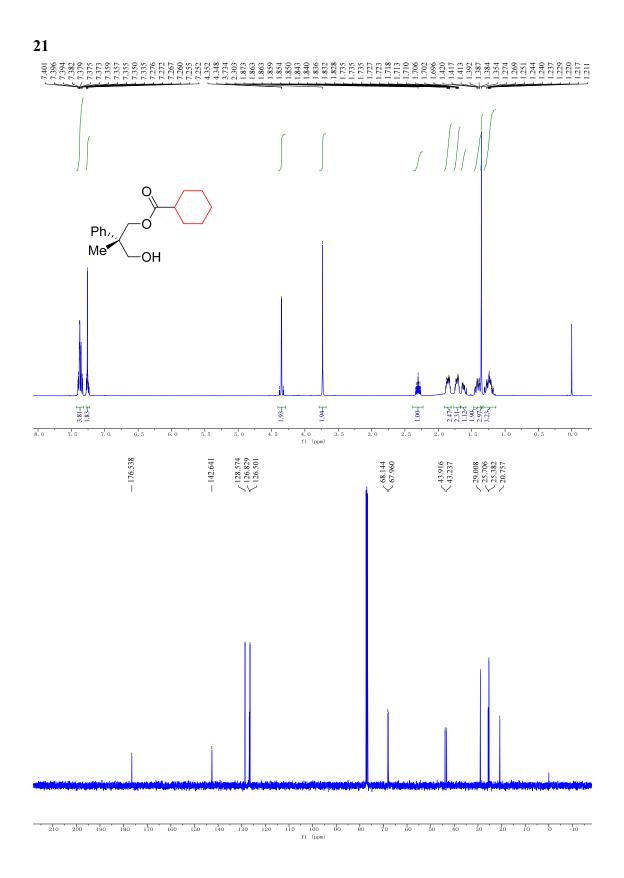


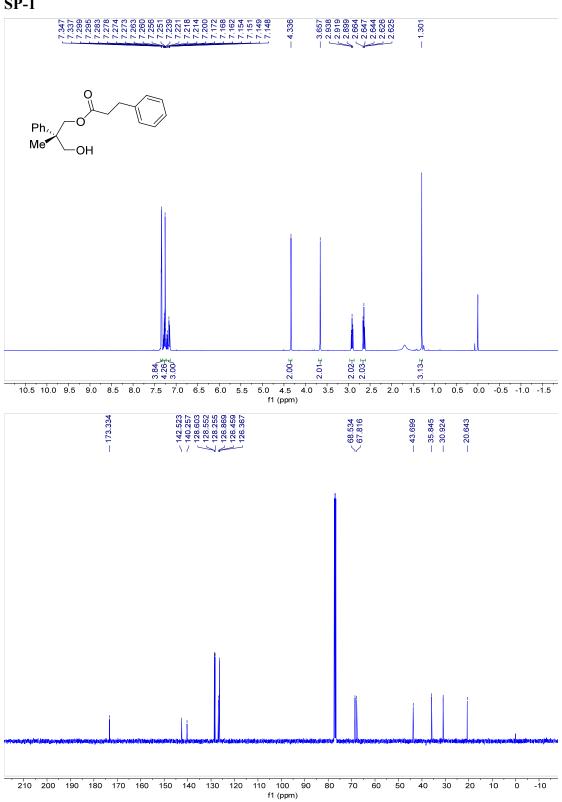


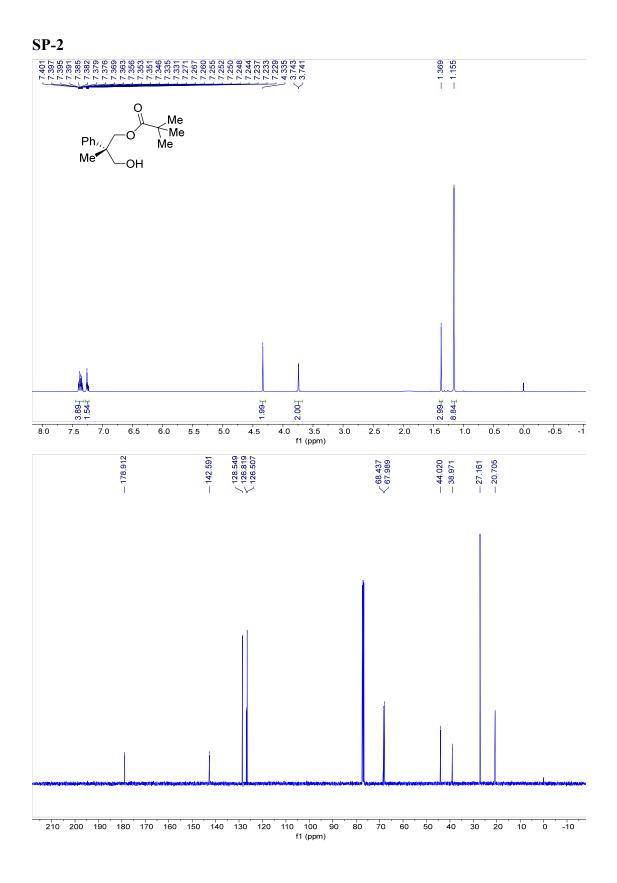


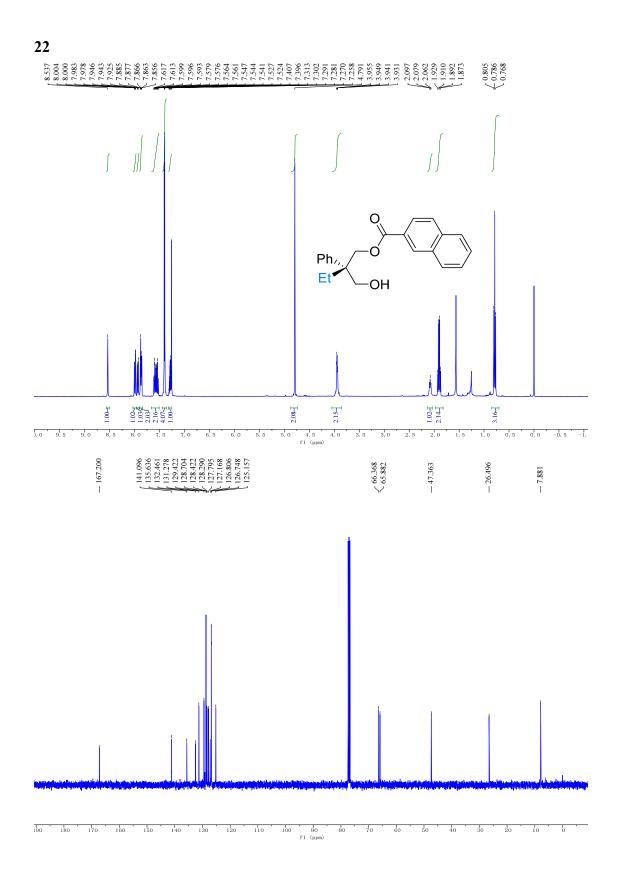


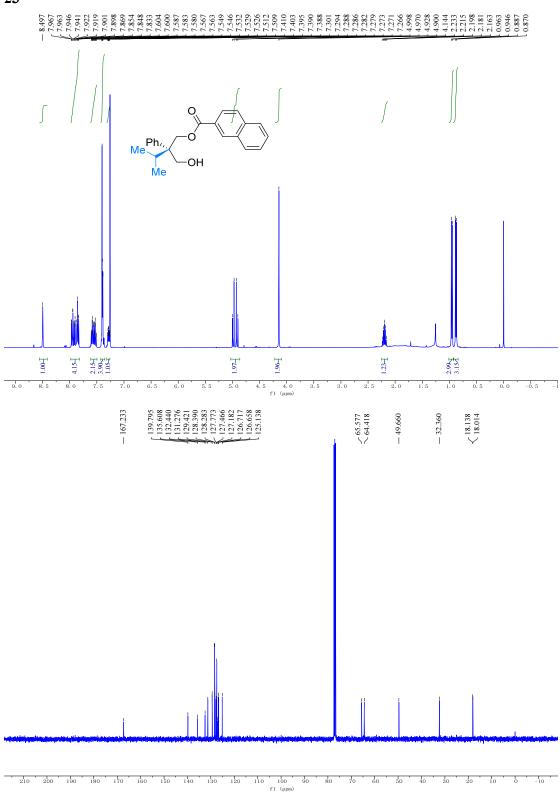


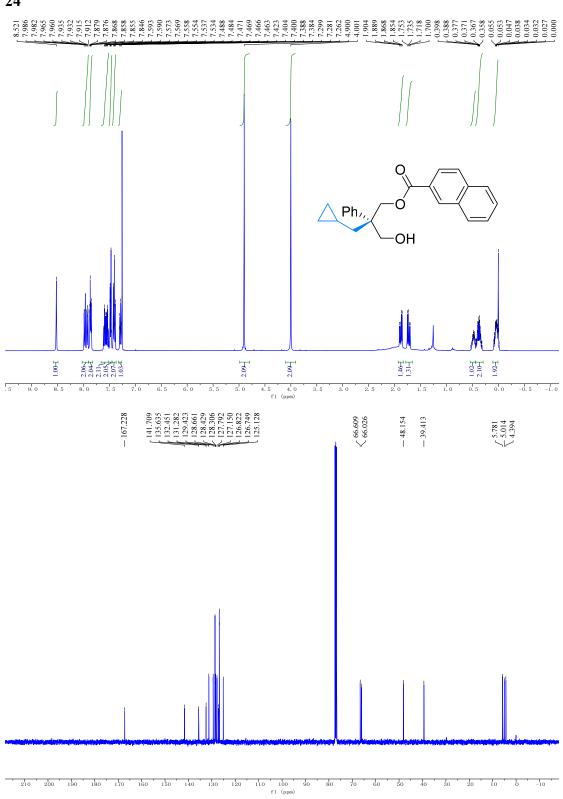


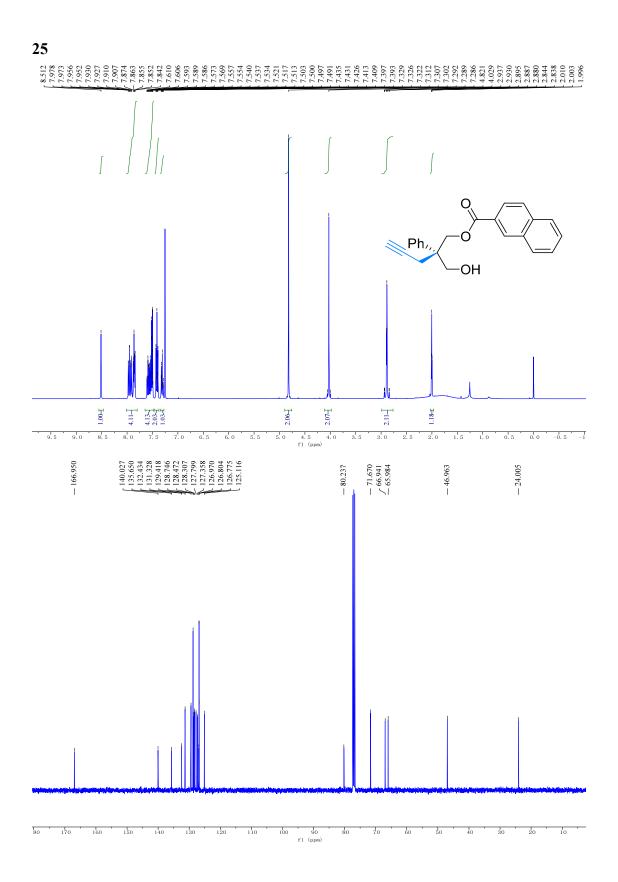


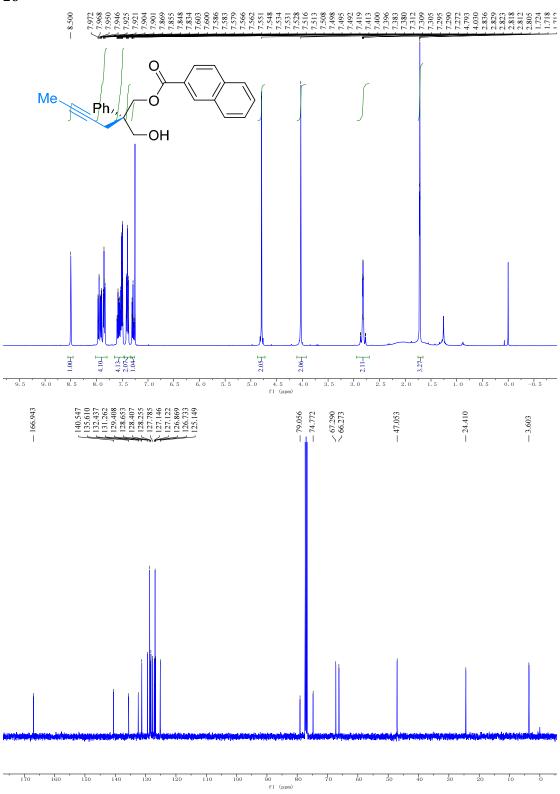


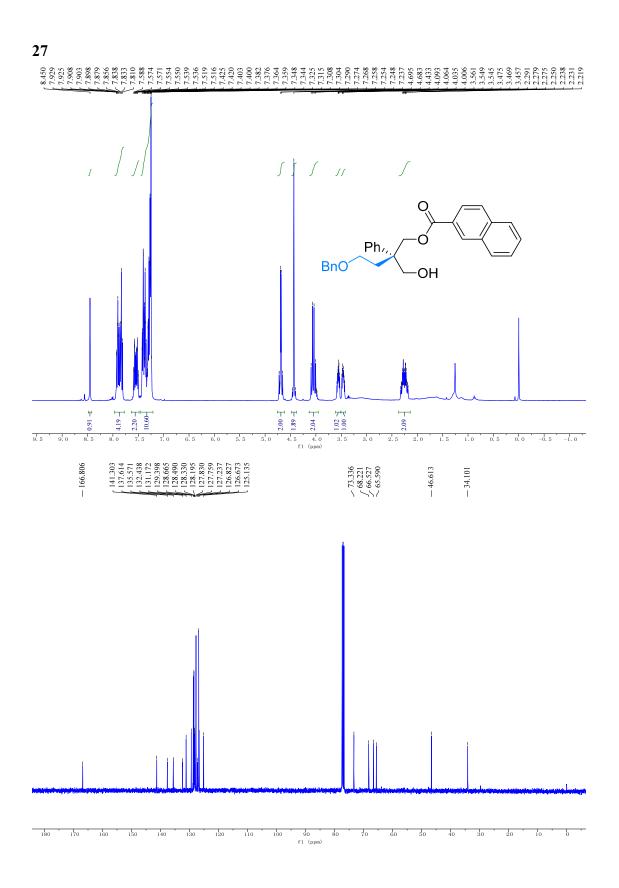


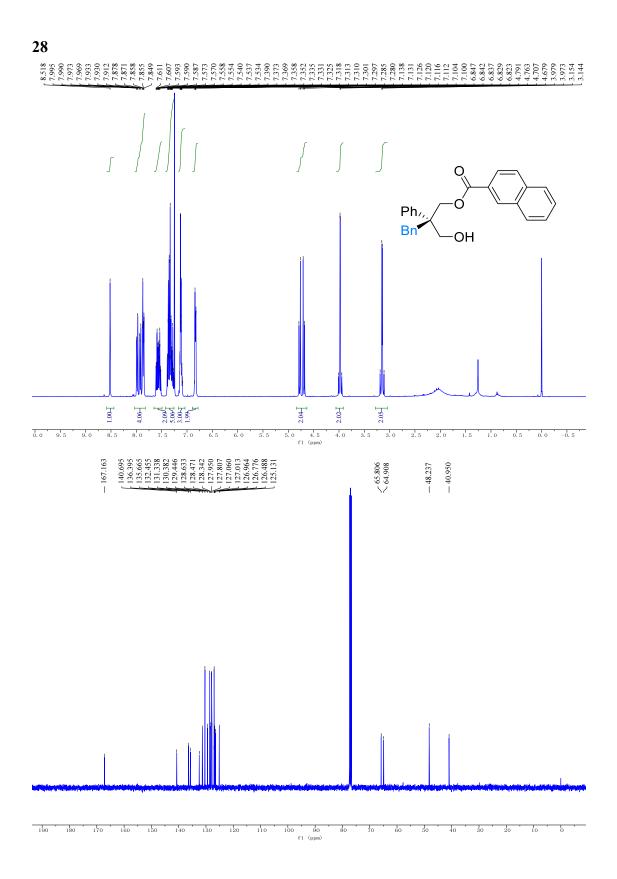


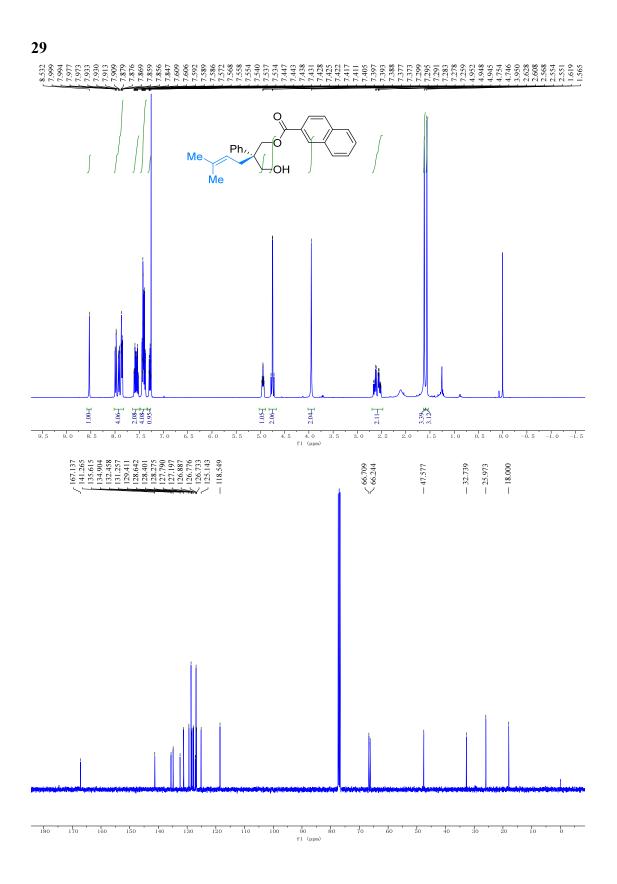


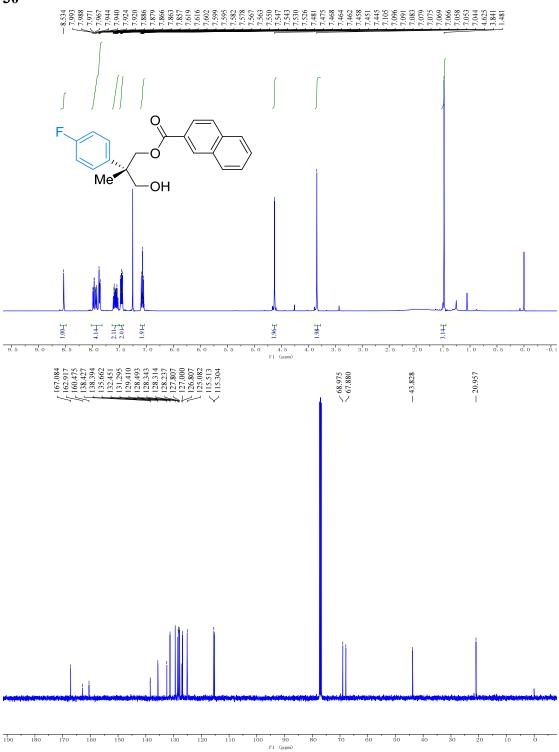

SP-1

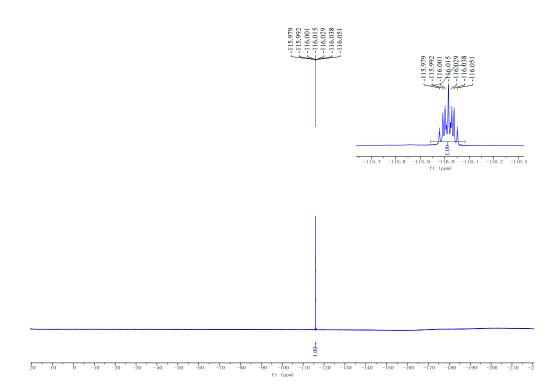


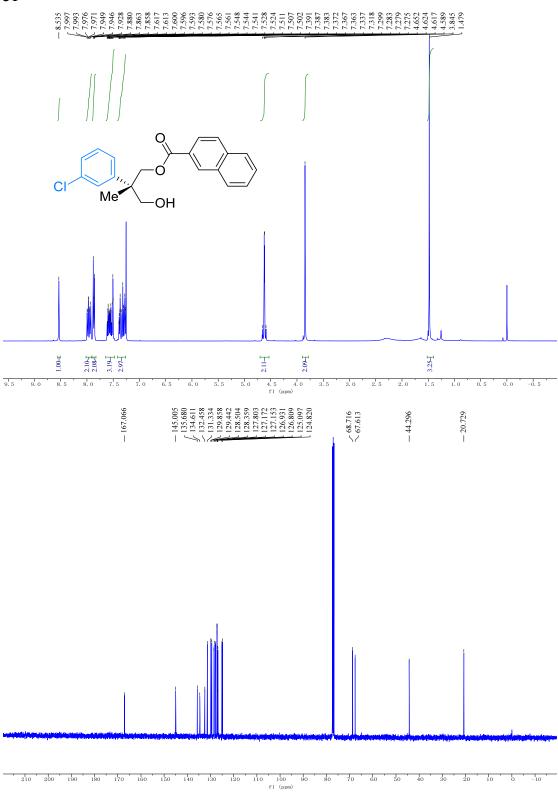


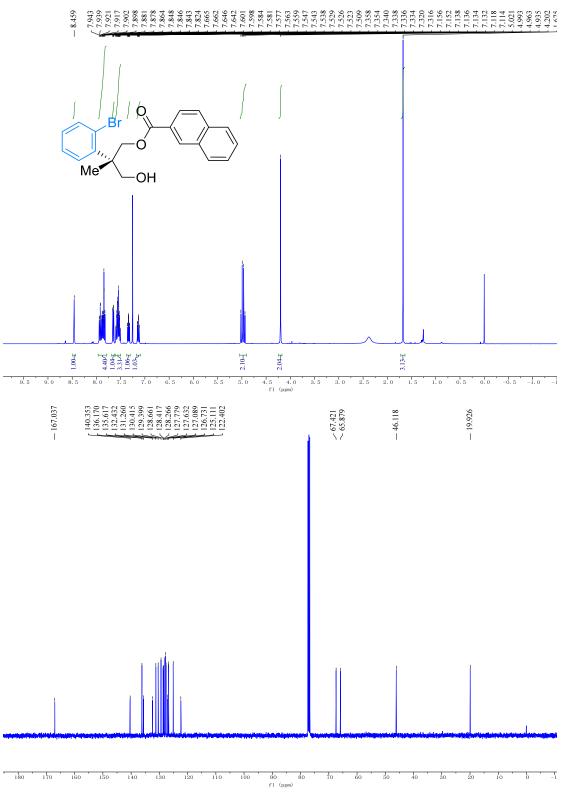


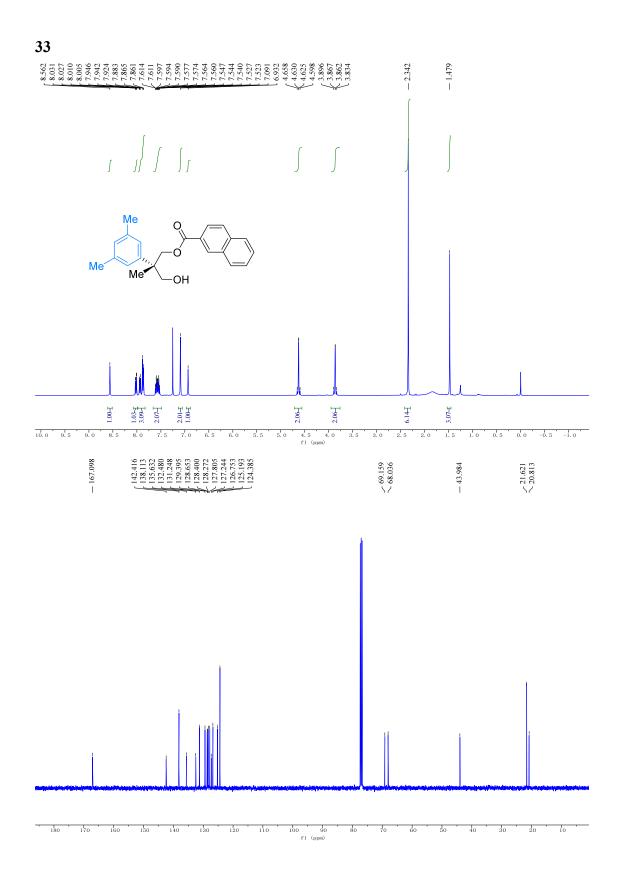


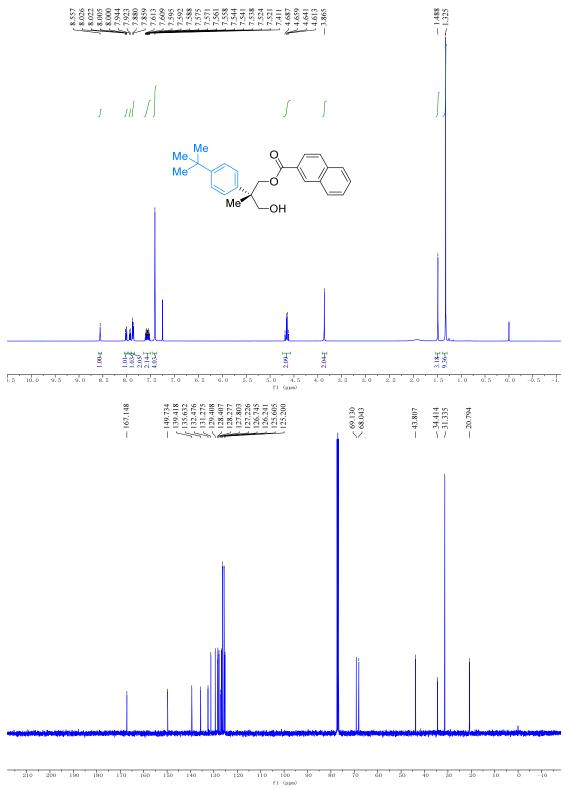


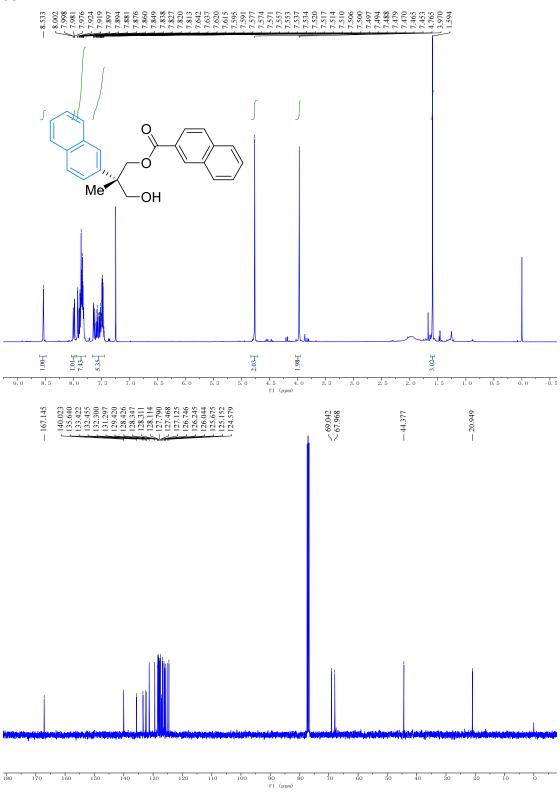


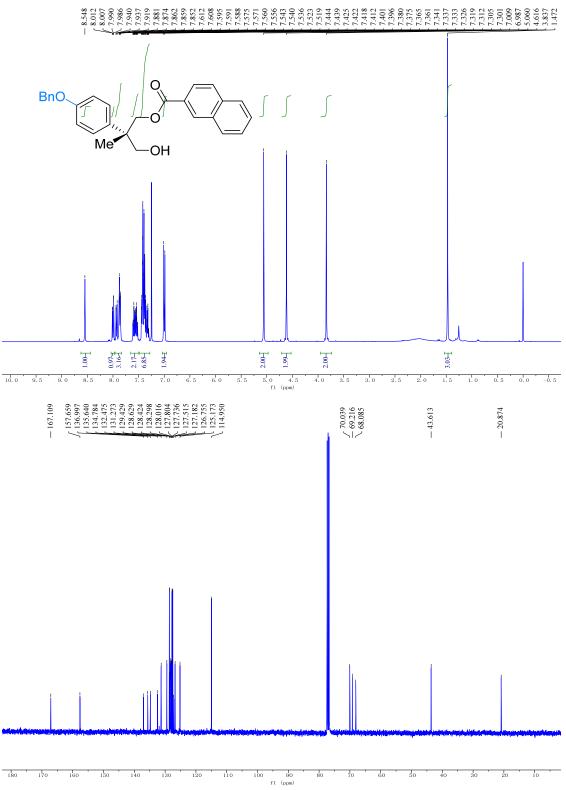


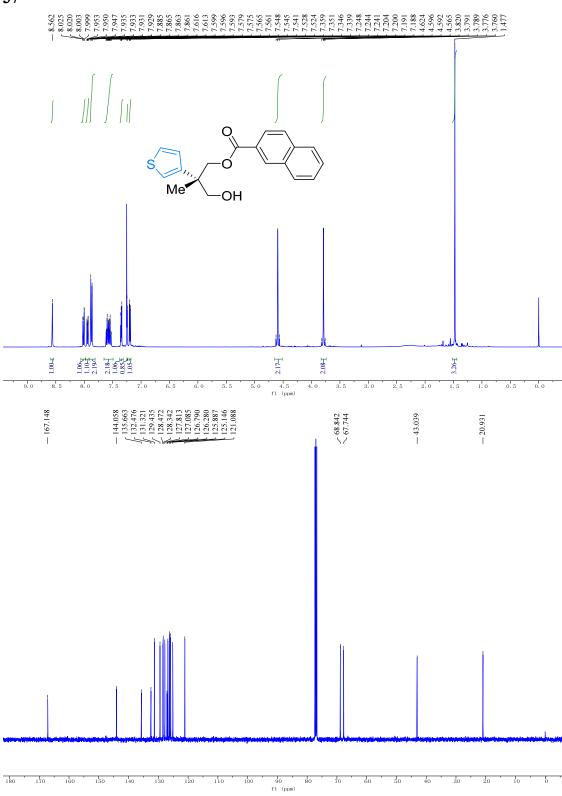


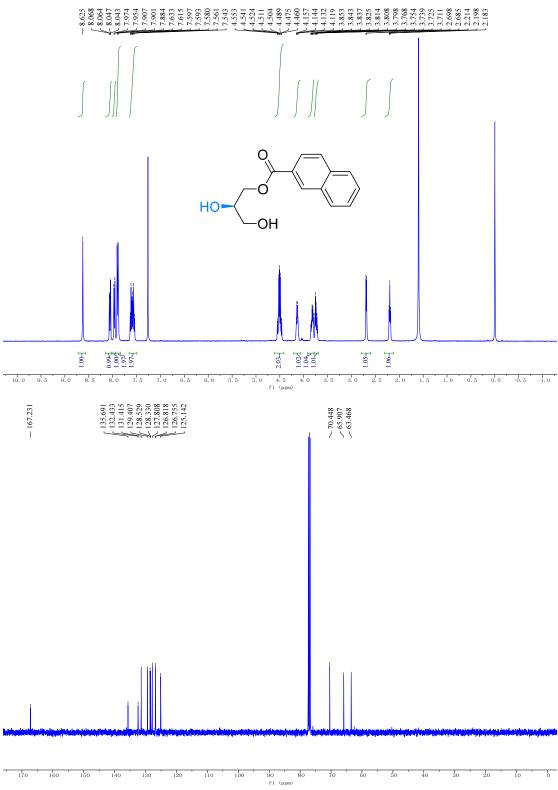


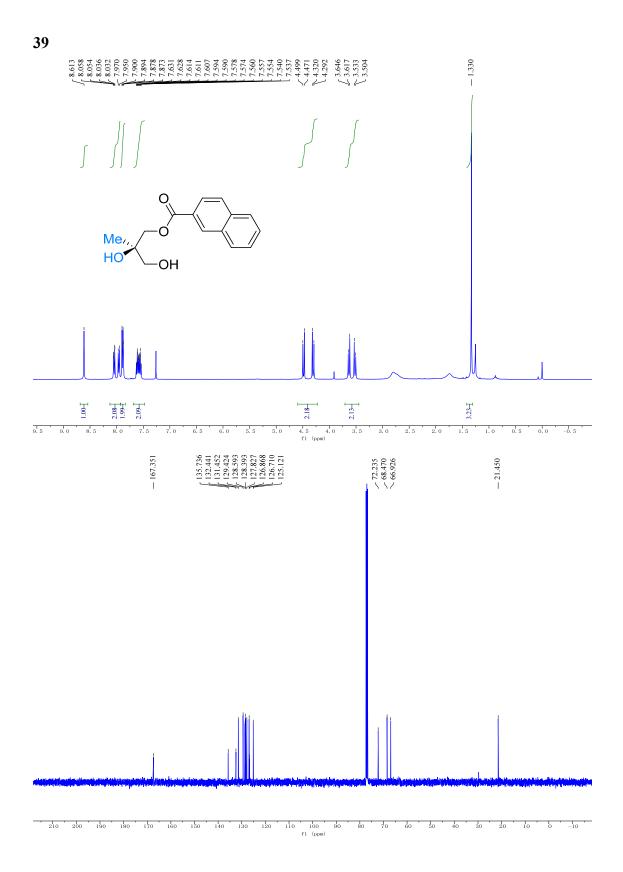


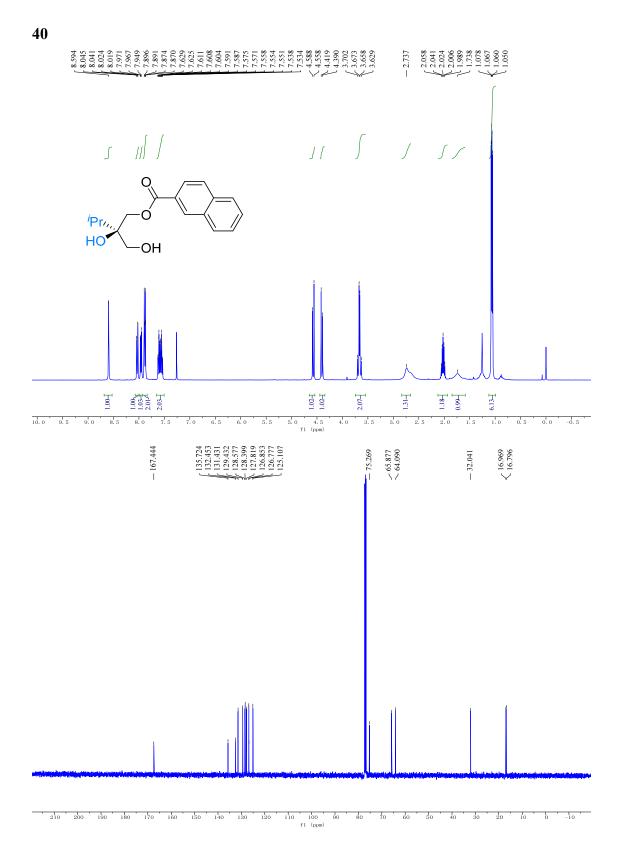


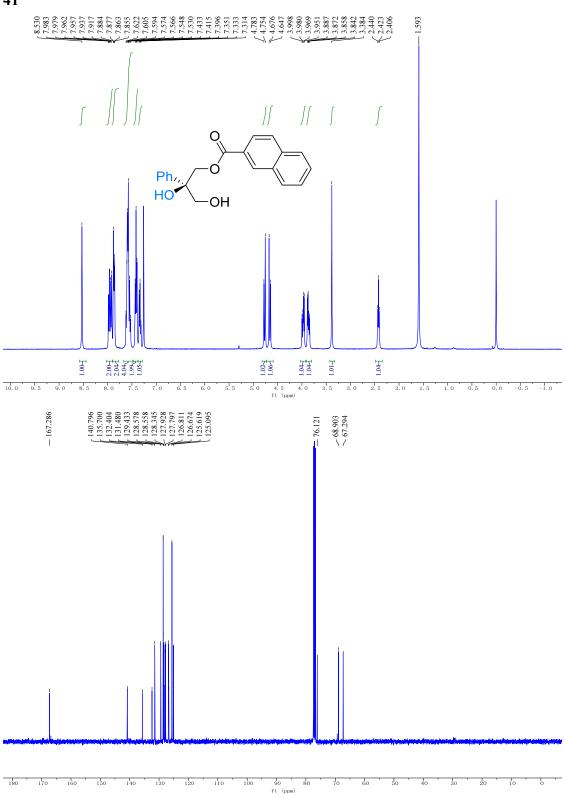


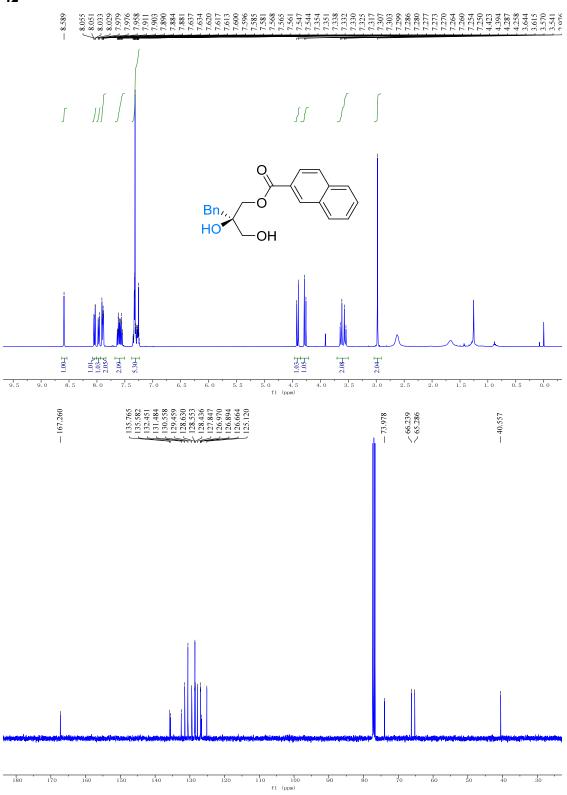


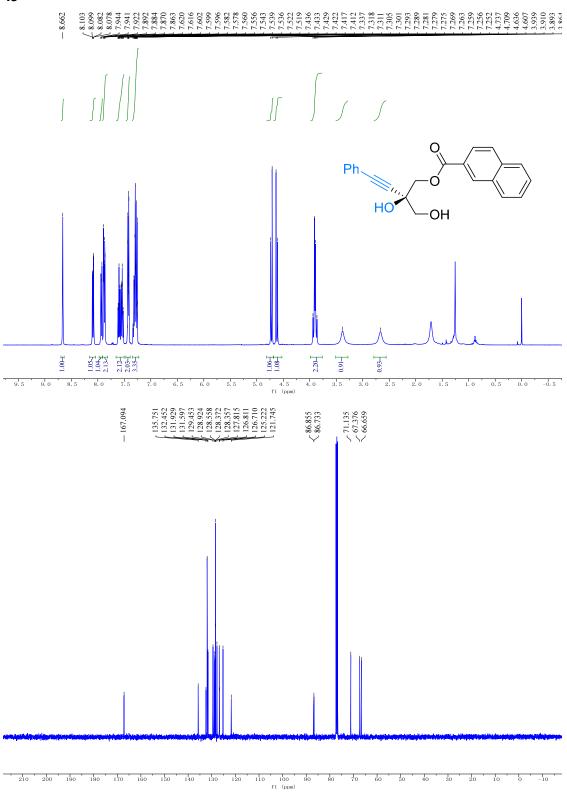


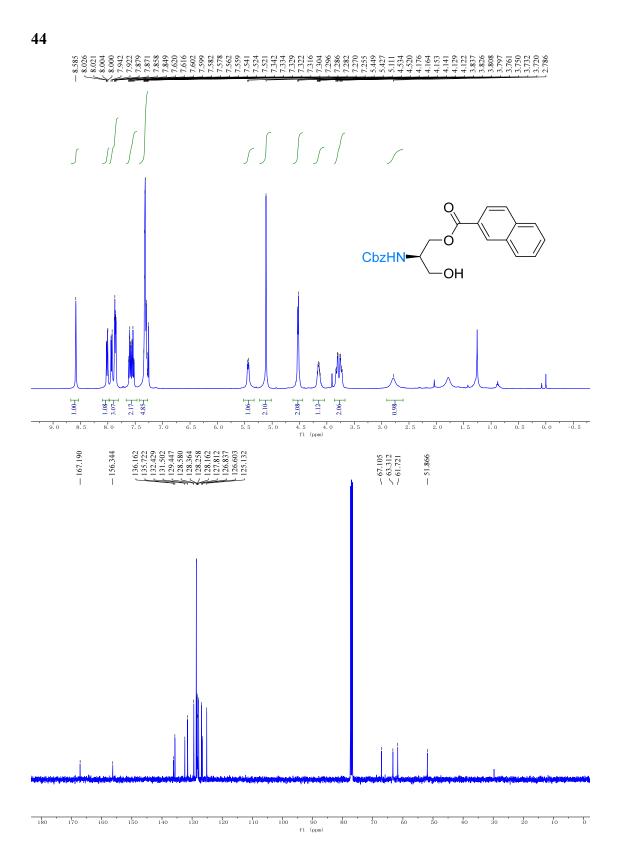


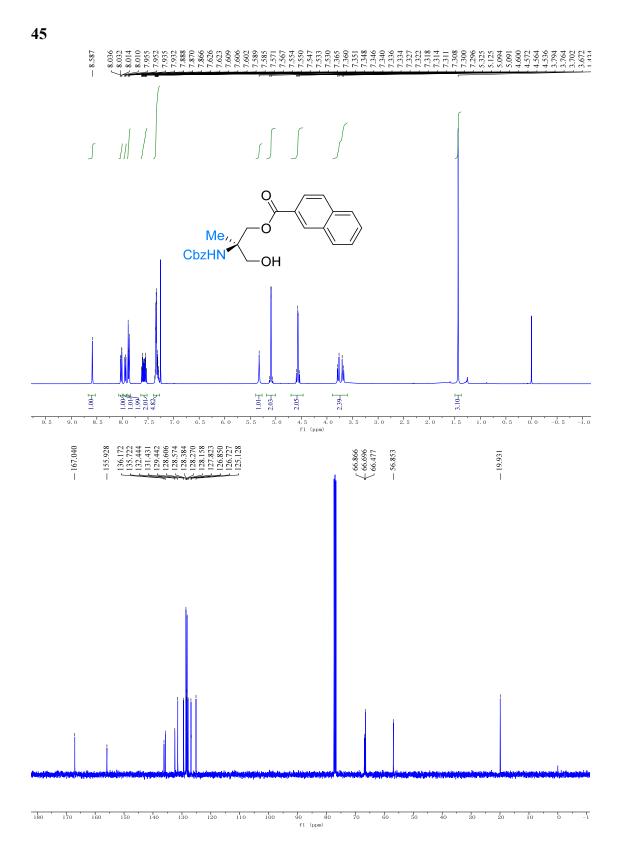


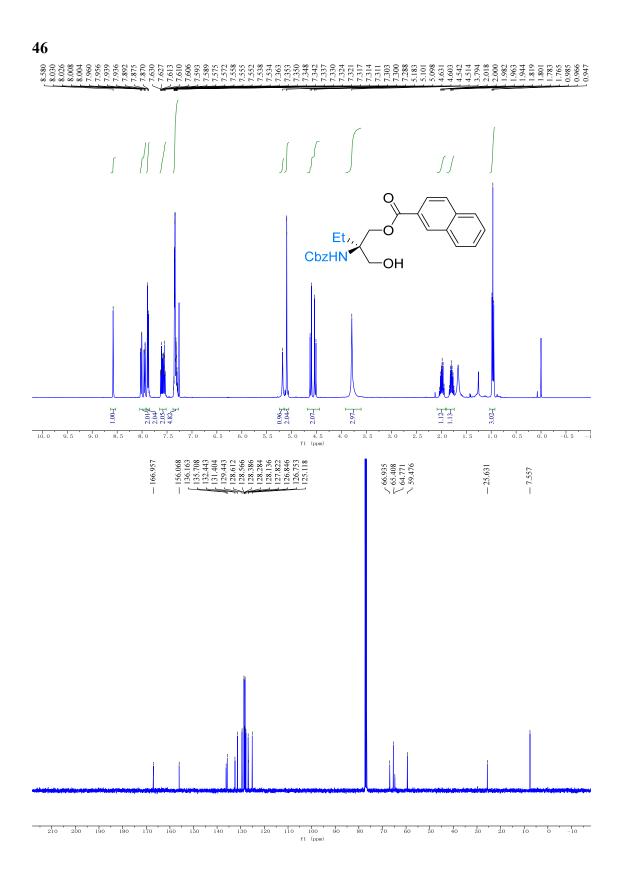


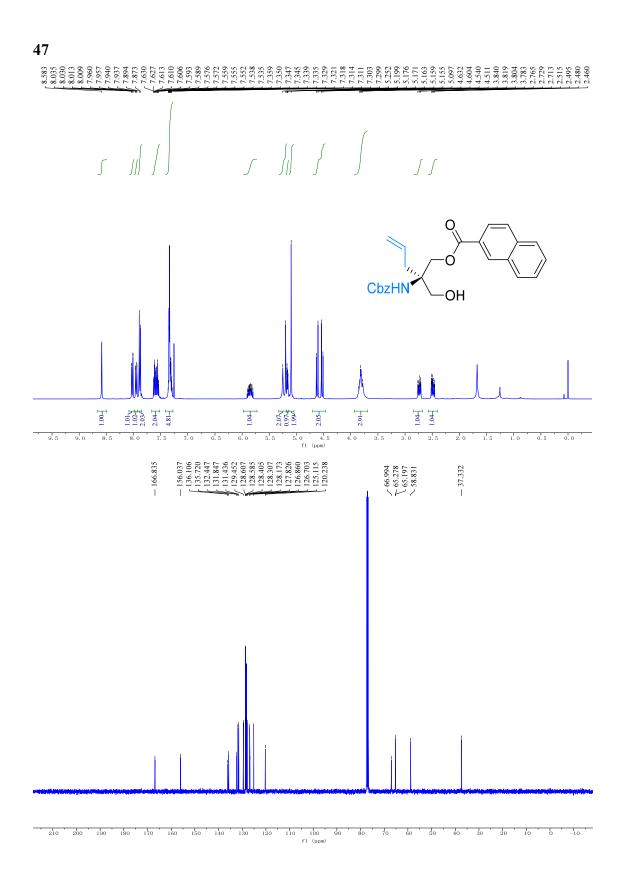


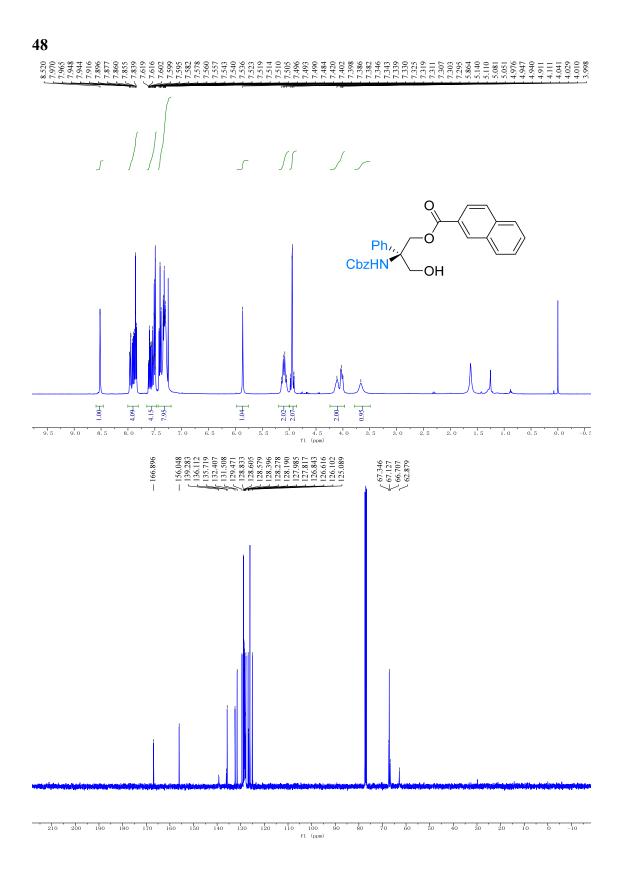


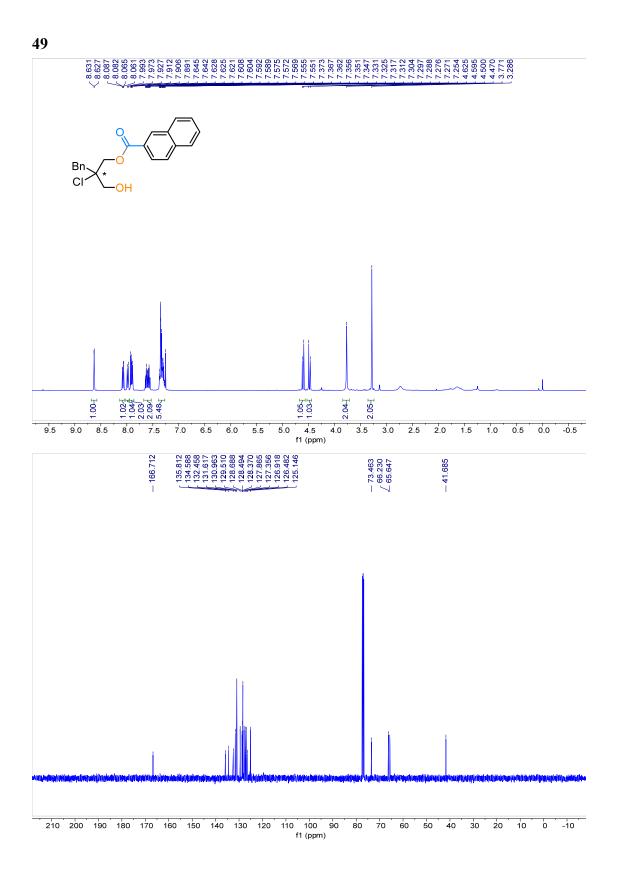

S144

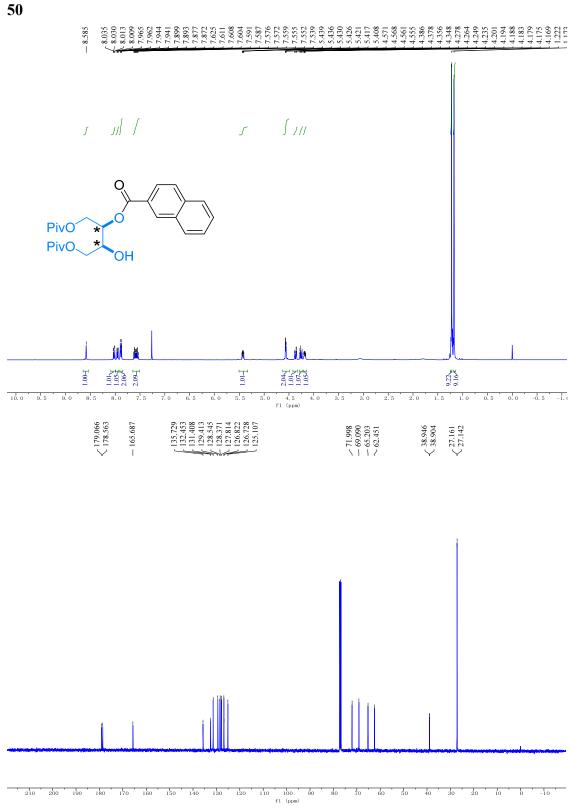


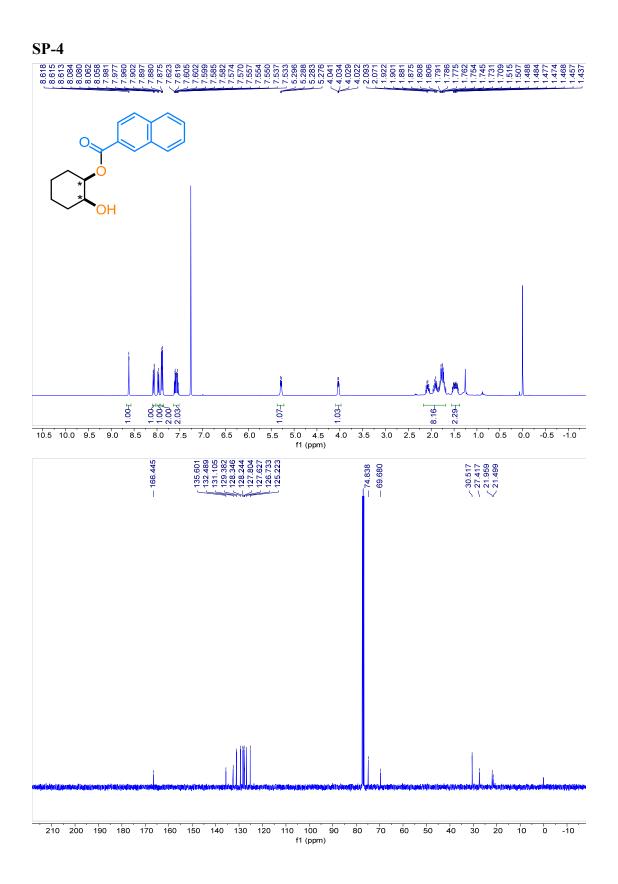


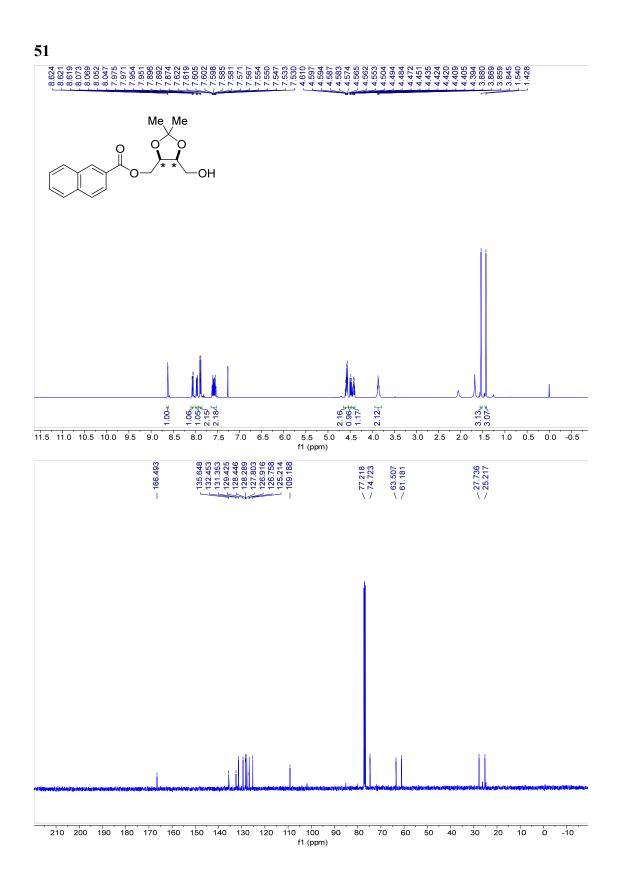


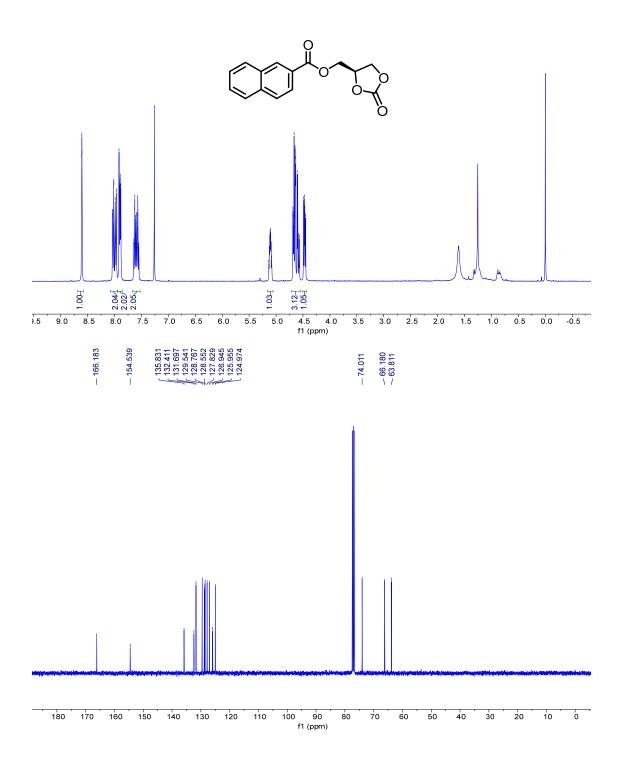



S149

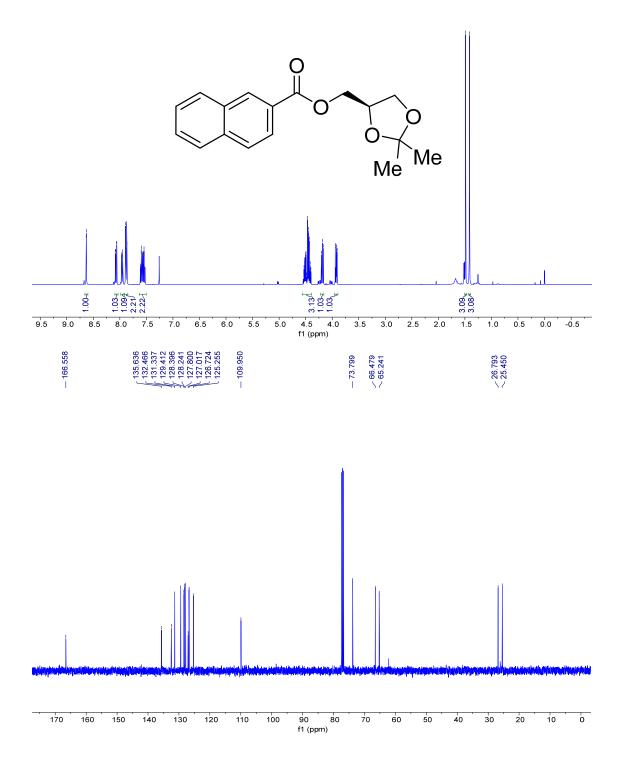







- .PJ

S155



 8.653

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6449

 8.6475

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.6073

 8.60744

 7.555

 7.7553

 8.7553

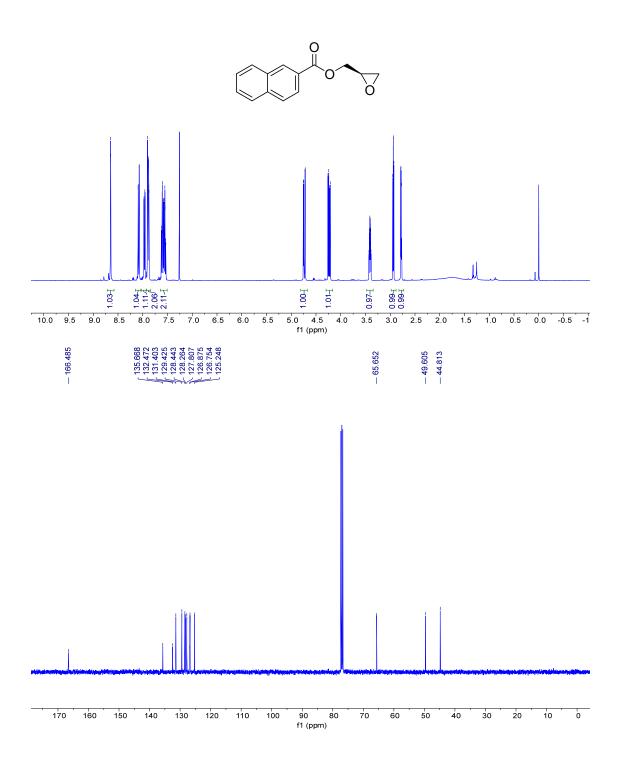
 8.7553

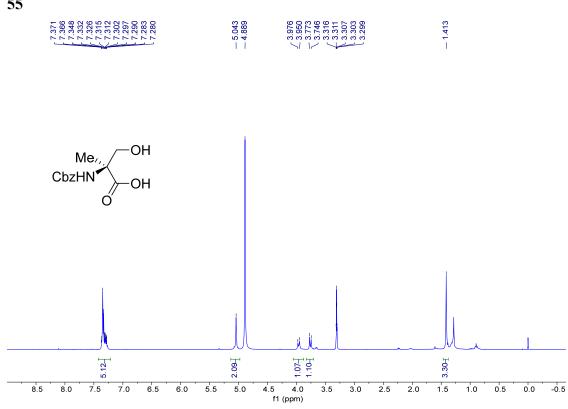
 8.7553

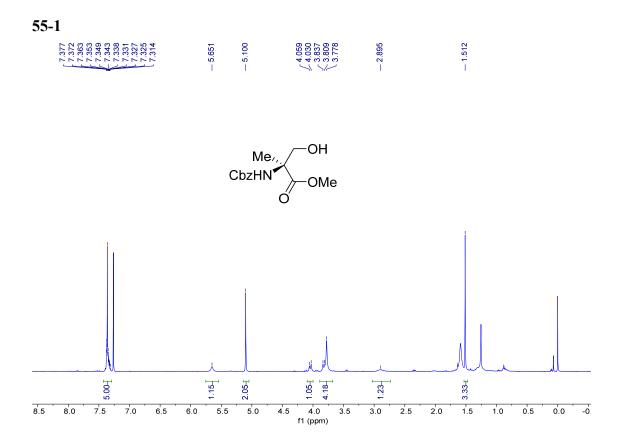
 8.7553

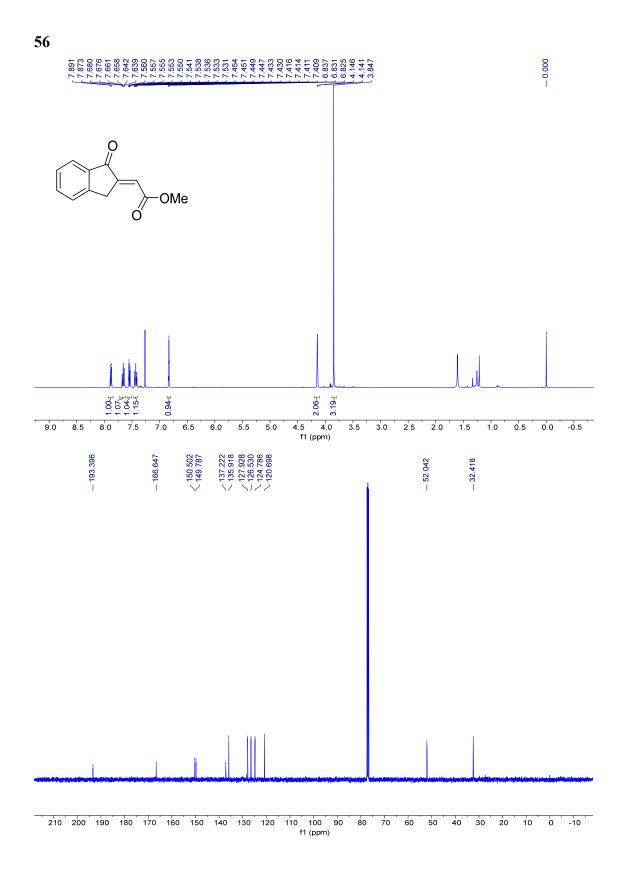
 8.7553

 8.7553

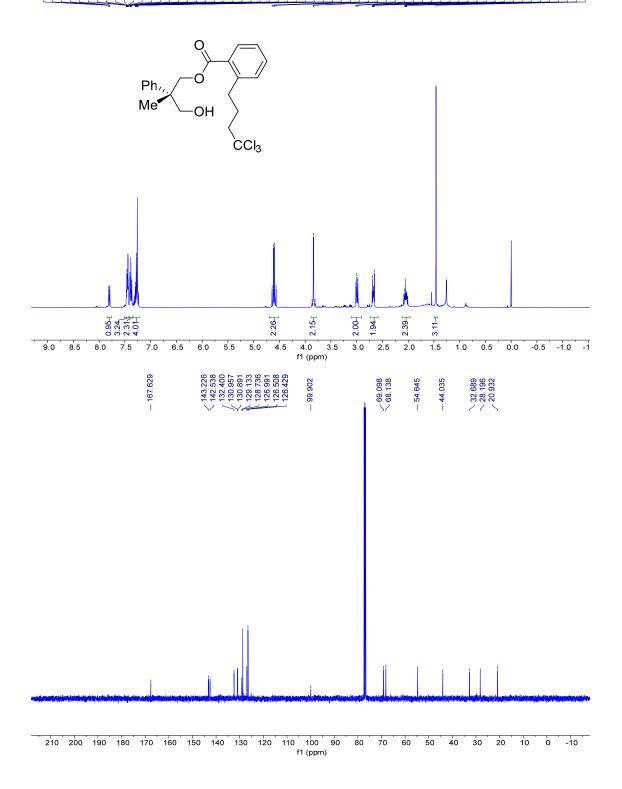

 8.7553

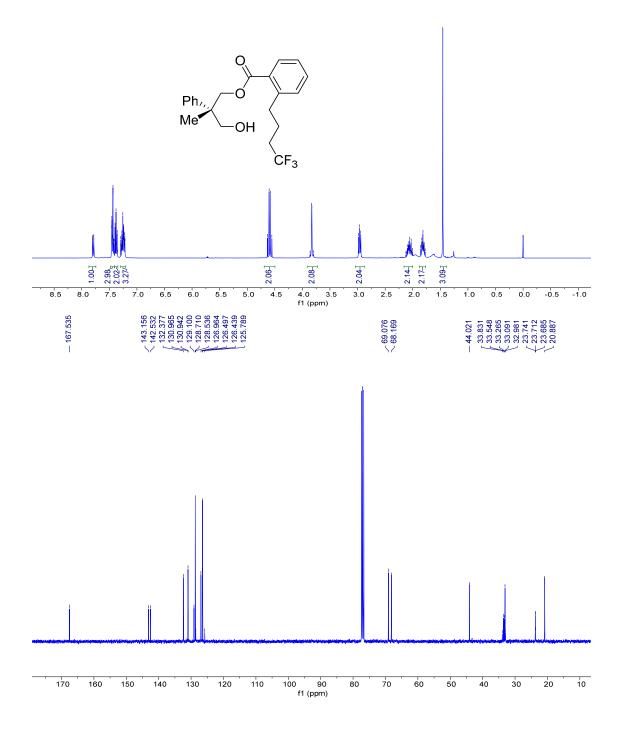

 8.7553

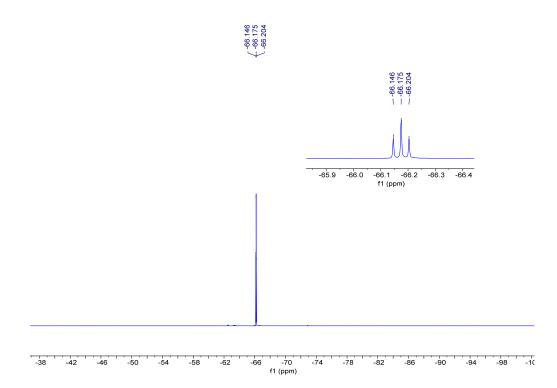

 8.7553

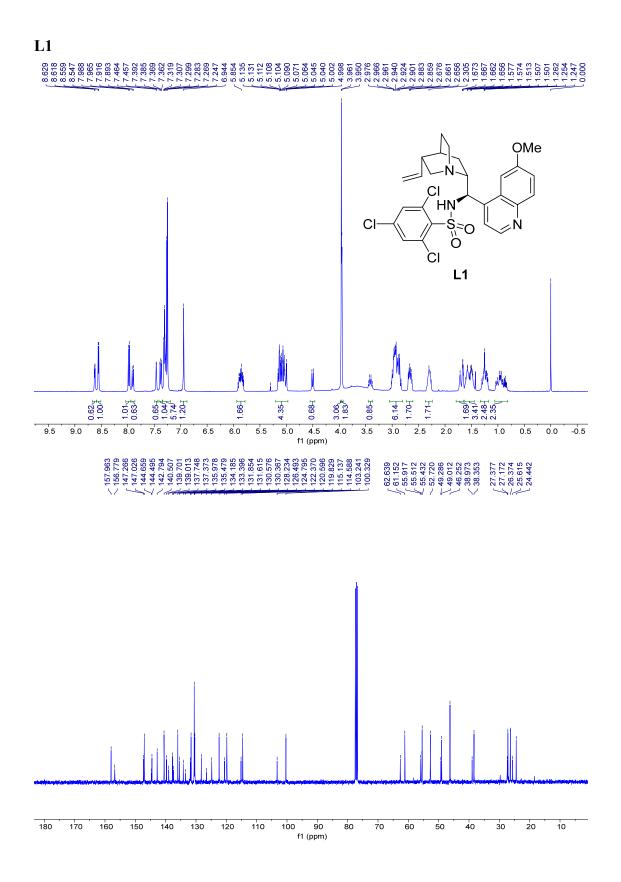

 8.7553

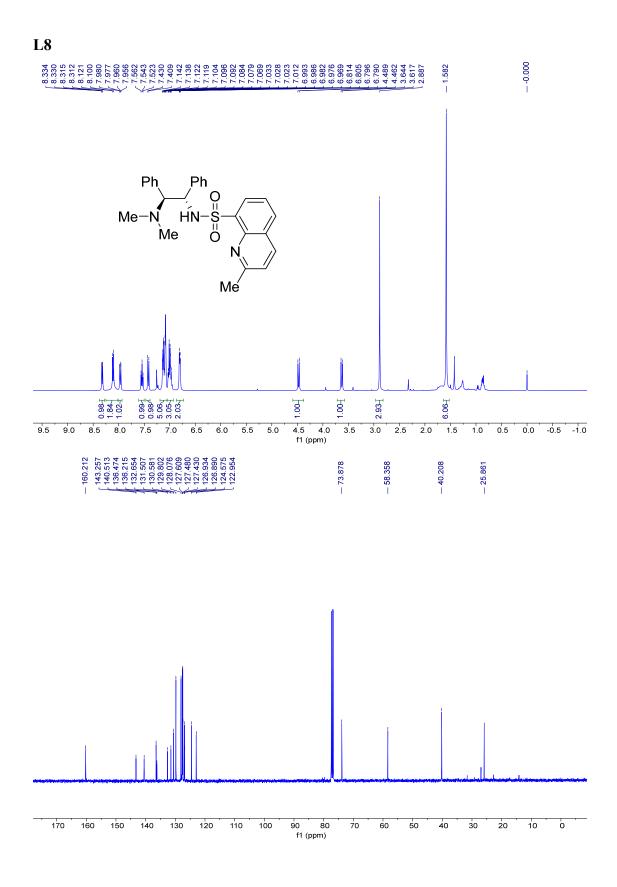
 8.7

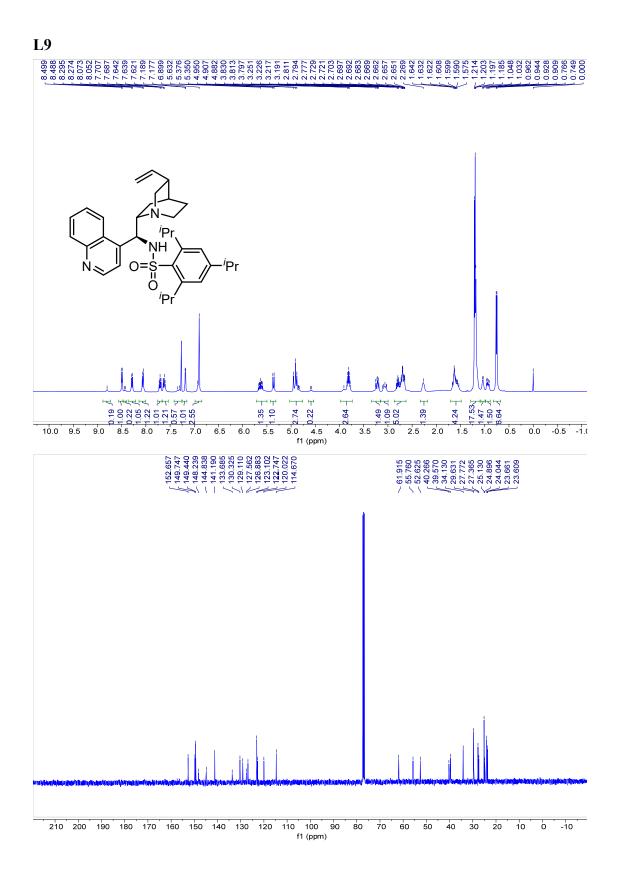


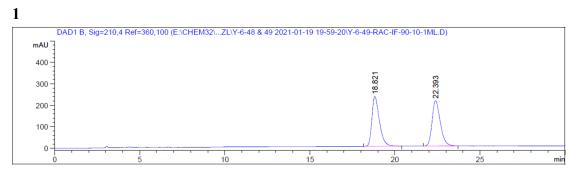




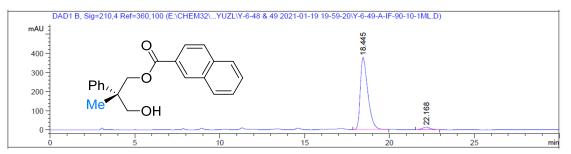

7,815 7,7195 7,7195 7,795 7,795 7,795 7,795 7,795 7,495 7,299 7,29





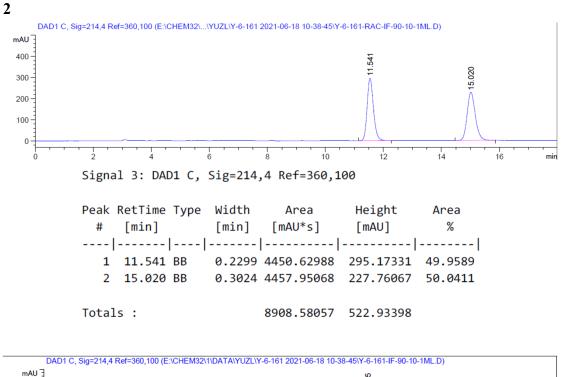


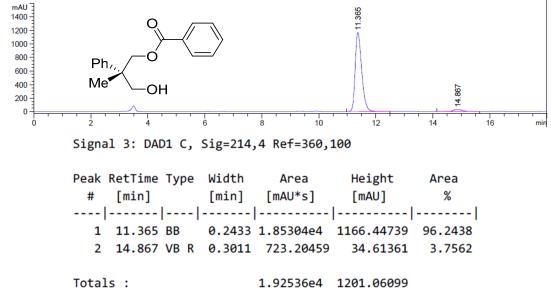
11. HPLC spectra

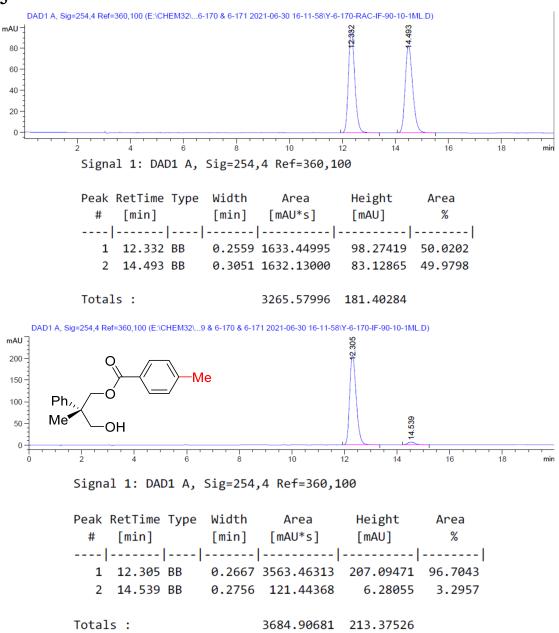


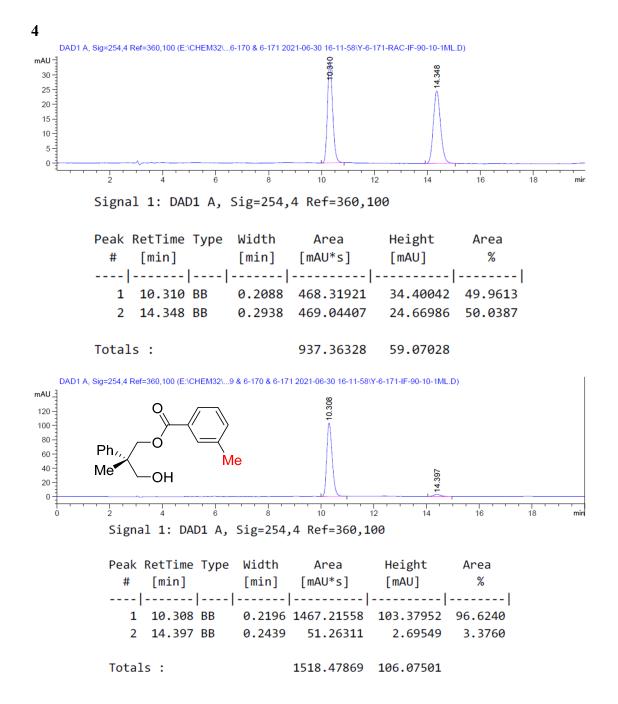
Signal 2: DAD1 B, Sig=210,4 Ref=360,100

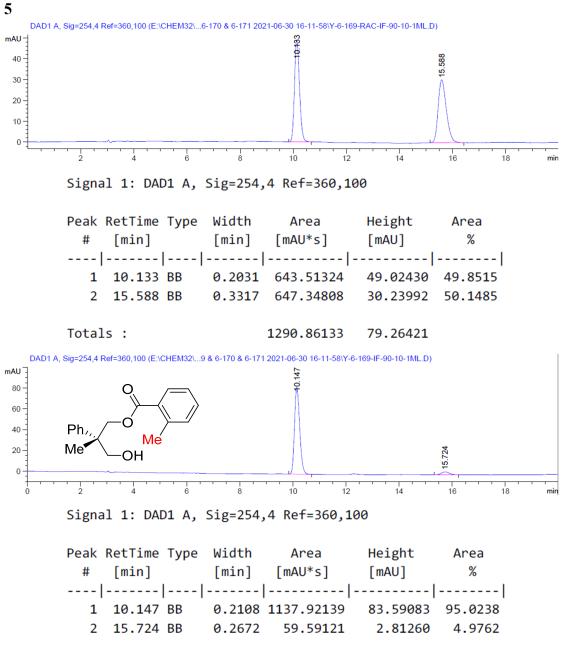
#			[min]	Area [mAU*s]		Area %
1	18.821	BB	0.4655	7092.12402	231.46718	50.0352
2	22.393	BB	0.5045	7082.15674	211.58578	49.9648

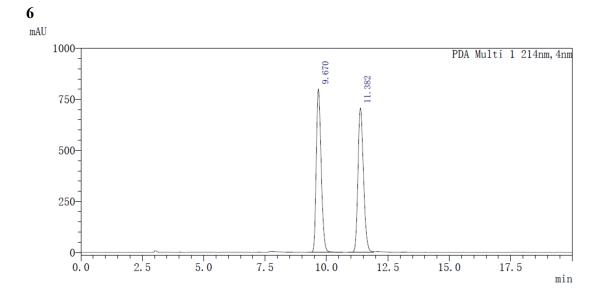

Totals :

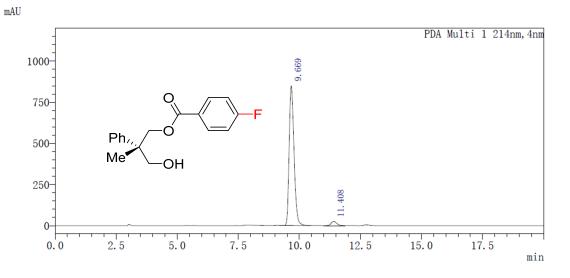

1.41743e4 443.05296

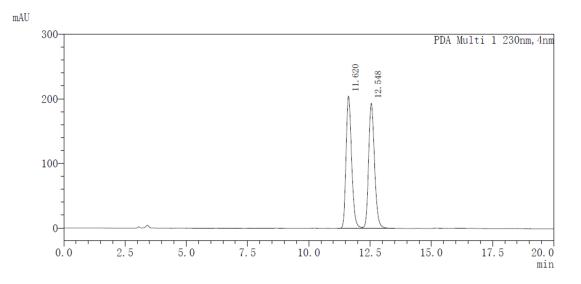



Signal 2: DAD1 B, Sig=210,4 Ref=360,100

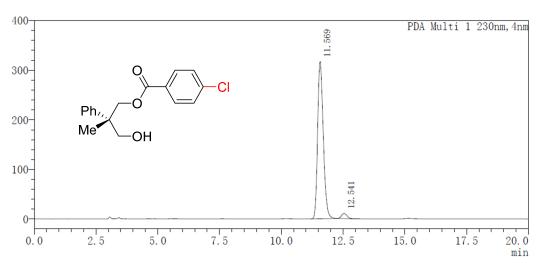

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	18.445	BB	0.4598	1.15674e4	377.22275	96.6831
2	22.168	BB	0.4199	396.84653	12.31530	3.3169
Total	s :			1.19643e4	389.53805	



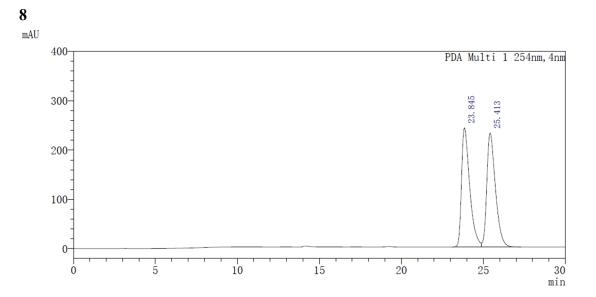



Totals : 1197.51260 86.40343

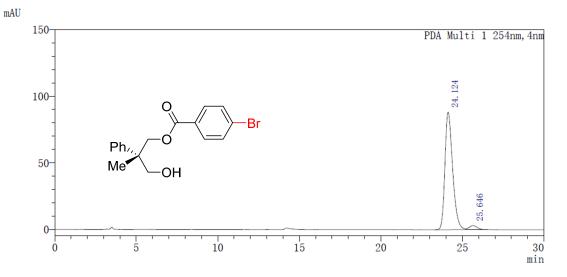
PDA Ch1 214nm				
Т	Hight	Area	Area%	
9.670	800608	11104403	50.000	
11.382	707456	11104442	50.000	

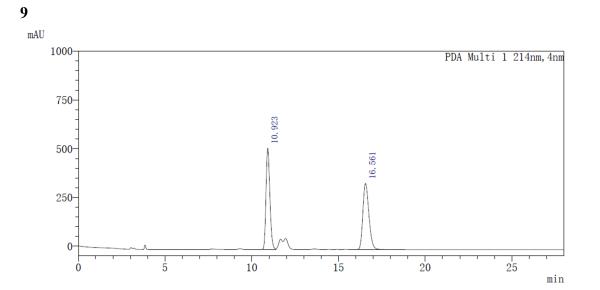


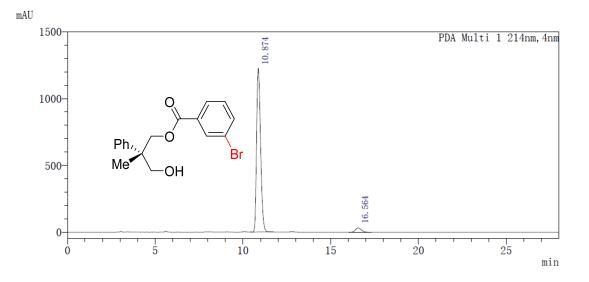
PDA Ch1 214nm				
Т	Hight	Area	Area%	
9.669	848975	11742426	96.524	
11. 408	26290	422805	3.476	

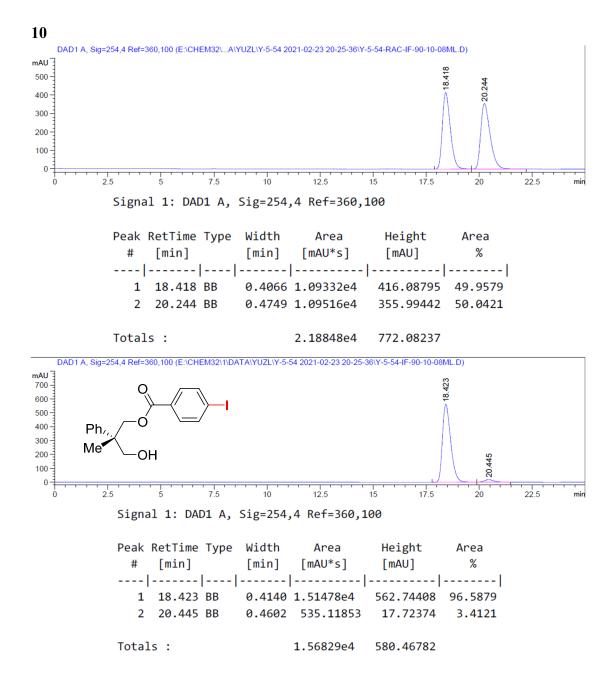


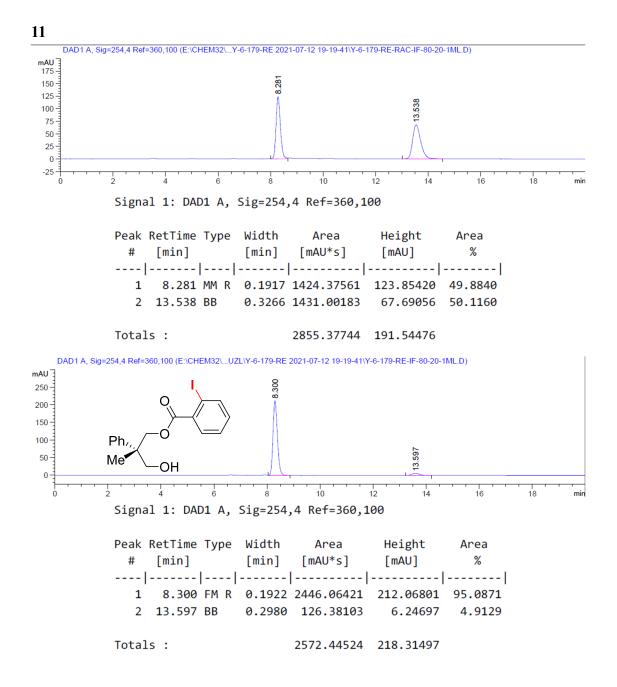
PDA Ch1 230nm				
Т	Hight	Area	Area%	
11.620	204986	3247589	49.850	
12.548	194003	3267154	50.150	



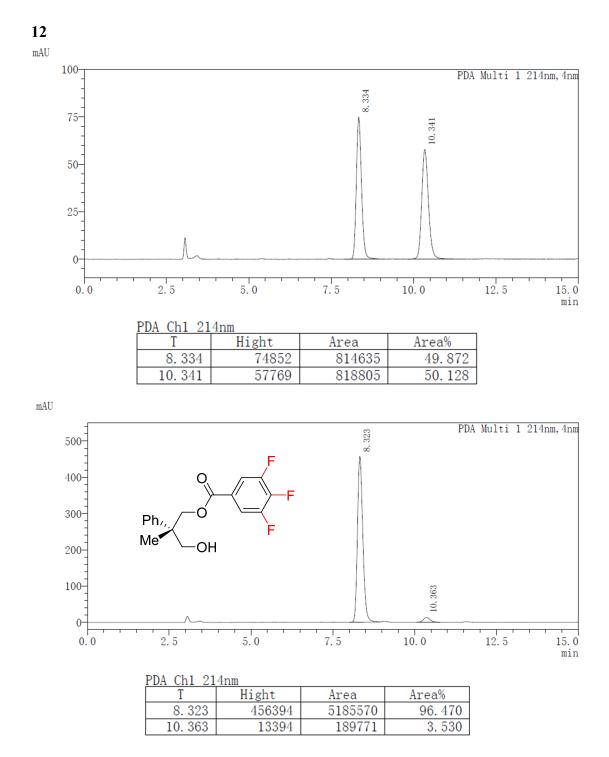

PDA Ch1 230nm				
Т	Hight	Area	Area%	
11.569	316894	5050458	96.761	
12.541	10654	169042	3.239	

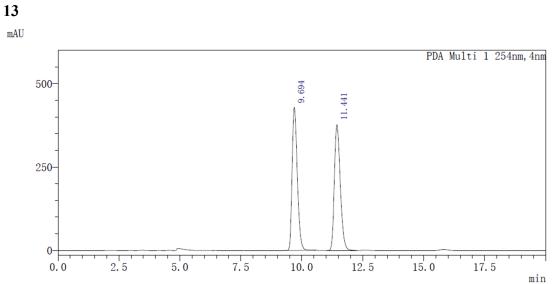

PDA Ch1 254nm				
Т	Hight	Area	Area%	
23.845	241471	8395626	49.775	
25. 413	230947	8471453	50.225	

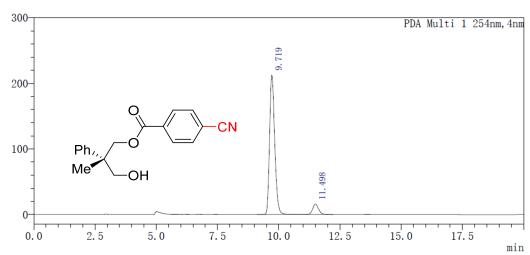

PDA Ch1 254nm				
Т	Hight	Area	Area%	
24.124	<mark>88350</mark>	2896320	96.489	
25.646	3064	105406	3. 511	

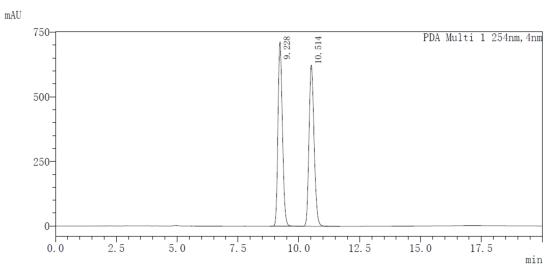


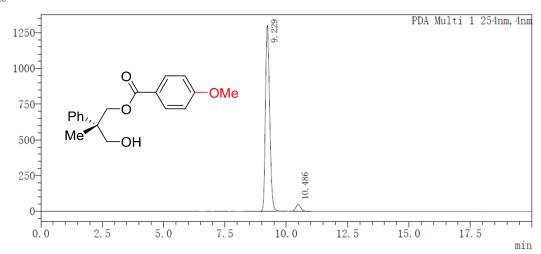
PDA Ch1 214nm				
Т	Hight	Area	Area%	
10.923	518787	8071359	49.622	
16.561	339622	8194453	50.378	



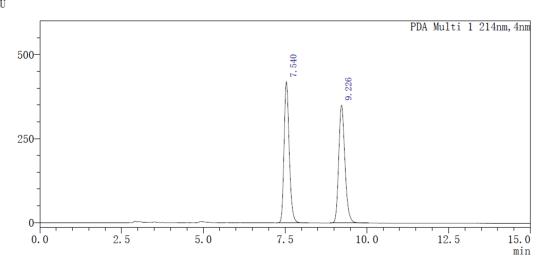

PDA Ch1 214nm				
Т	Hight	Area	Area%	
10.874	1225796	19408993	96.331	
16.564	31906	739198	3.669	

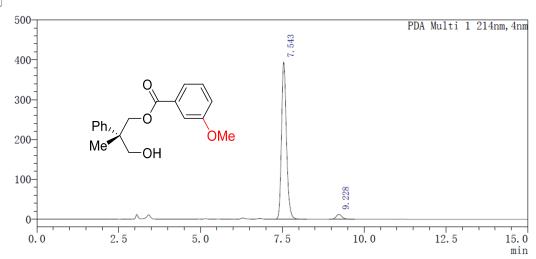

S180



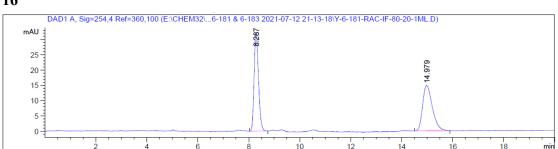

Area	Area%
6354936	49.929
6372902	50.071
	6354936

PDA Ch1 25	4nm		
Т	Hight	Area	Area%
9.719	212234	3093702	92.228
11.498	15740	260720	7.772

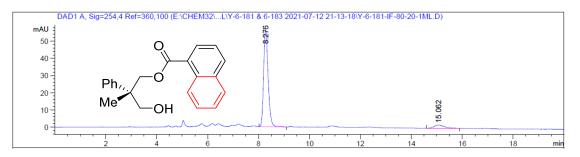

PDA Ch1 25	4nm		
Т	Hight	Area	Area%
9.228	713080	9083051	49.928
10. 514	623293	9109180	50.072


PDA Ch1 25	4nm		
Т	Hight	Area	Area%
9.229	1302355	15762771	95.976
10.486	47535	660855	4.024

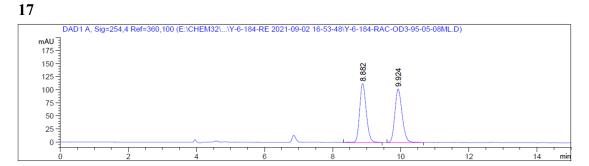
14



PDA Ch1 21	4nm		
Т	Hight	Area	Area%
7.540	419953	4592606	49.759
9.226	350293	4637014	50.241



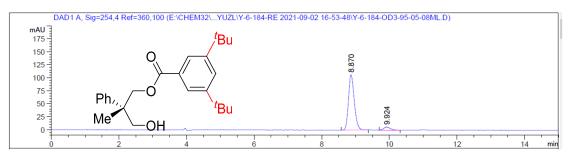
PDA Ch1 21	4nm		
Т	Hight	Area	Area%
7.543	394795	4148127	96.302
9.228	12581	159296	3.698


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 8.287 BB 0.1851 383.56494 32.17307 49.4535 2 14.979 BB 0.3920 392.04233 14.84985 50.5465 Totals : 775.60727 47.02292

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

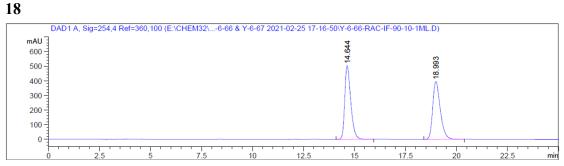
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.276	BB	0.1888	687.56091	56.16941	92.6722
2	15.062	BB	0.3307	54.36721	1.96563	7.3278
Total	s :			741.92813	58.13504	



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] # [min] [min] [mAU] % 8.882 VB R 0.2088 1514.27246 112.65430 50.1301 1 2 9.924 BB 0.2280 1506.41003 102.15164 49.8699

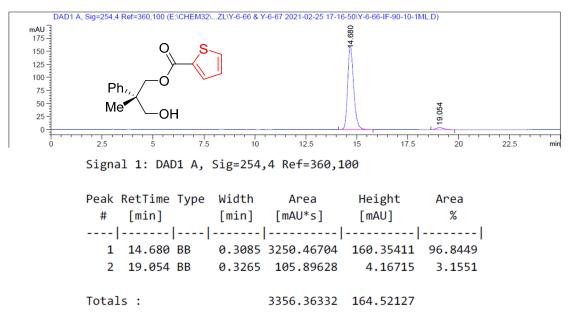
3020.68250 214.80595

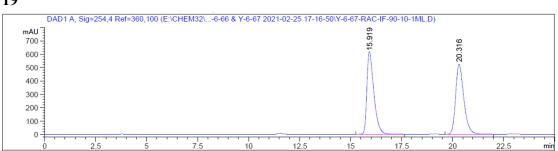


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak F	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
-						
1	8.870	BB	0.1856	1276.99780	106.72684	94.2120
2	9.924	BB	0.2069	78.45339	5.98542	5.7880

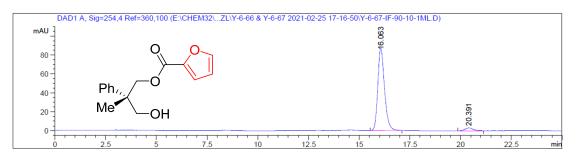
Totals :


1355.45119 112.71226



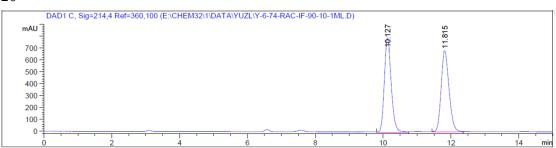
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

	RetTime			Area [mAU*s]	Height [mAU]	Area %
					[IIIAO]	
1	14.644	BB	0.3096	1.03291e4	502.96863	50.2244
2	18.993	BB	0.3918	1.02368e4	395.76633	49.7756



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] # [min] [min] [mAU] % 1 15.919 BB 0.3558 1.46185e4 618.48370 49.9666 2 20.316 BB 0.4233 1.46380e4 525.03961 50.0334



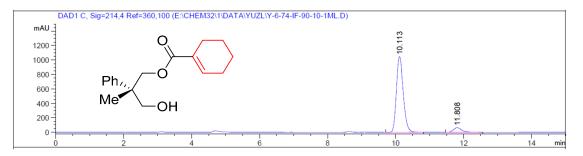
2.92565e4 1143.52332

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

<pre>Peak RetTime Type # [min]</pre>			Height [mAU]	Area %
1 16.063 BB	0.3491	1994.12415	87.11172	95.8835
2 20.391 BB	0.3370	85.61294	3.11142	4.1165
Totals :		2079.73708	90.22314	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

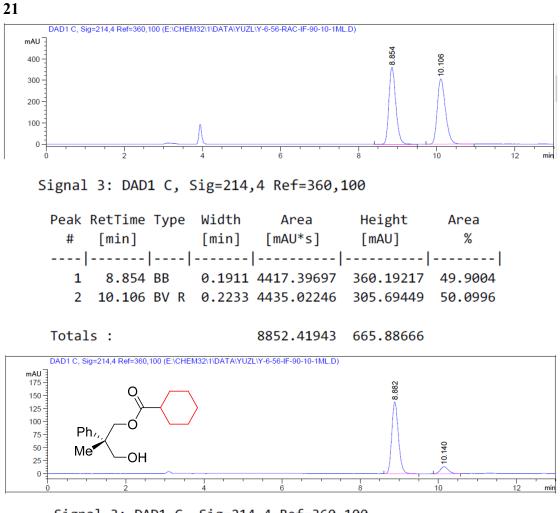
 Peak RetTime Type
 Width
 Area
 Height
 Area


 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|------|
 -----|------|------|
 -----|
 1

 1
 10.127
 MM R
 0.2341
 1.11544e4
 794.26135
 50.2879

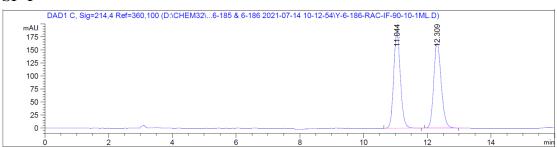
 2
 11.815
 MM R
 0.2690
 1.10267e4
 683.19043
 49.7121



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

					Area	Height [mAU]	
						[IIIA0]	
1	10.113	BB		0.2180	1.45710e4	1049.05383	92.9759
2	11.808	BV	R	0.2550	1100.80603	65.19671	7.0241

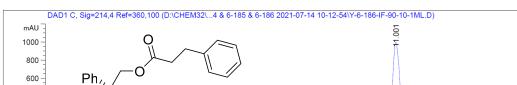
Totals : 1.56718	e4 1114.25054
------------------	---------------



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 8.882	BB 0.181	9 1631.71301	138.05721	89.5252
2 10.140	BB 0.221	.5 190.91646	13.45651	10.4748

1822.62947 151.51372



Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 11.044 BV R	0.2270	2690.99194	183.58548	50.1247
2 12.309 BB	0.2538	2677.60352	162.88426	49.8753

Totals : 5368.59546 346.46974

OH

12.303

12

10

14

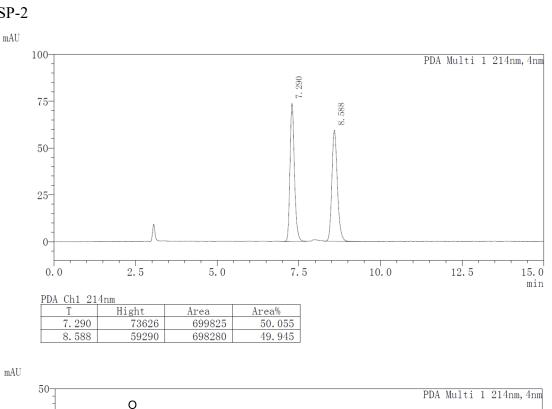
mi

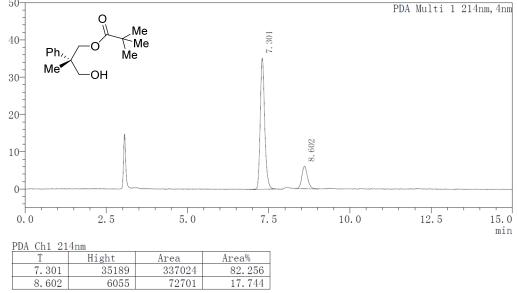
Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Me

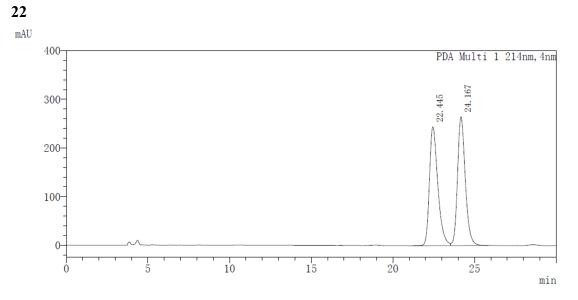
#	[min]			[min]		Height [mAU]	
1	11.001	MM	R	0.2701	1.61704e4	997.82214	84.5188
2	12.303	MF	R	0.2829	2961.90503	174.50294	15.4812

4

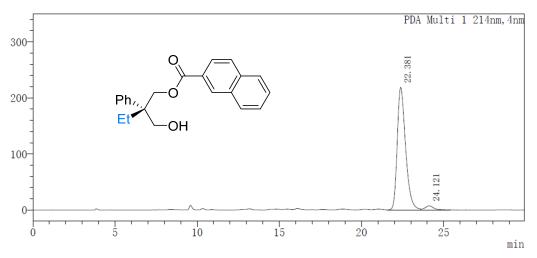

Totals : 1.91323e4 1172.32509


SP-1

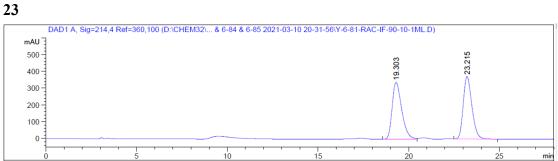
400

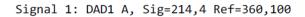

200 -

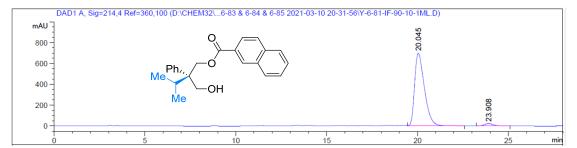
ò

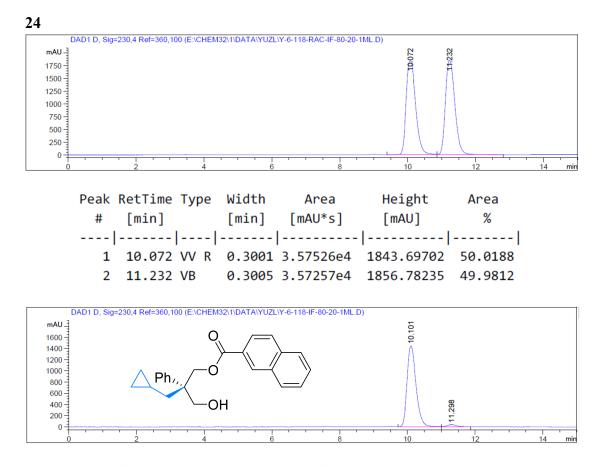


SP-2




PDA Ch1 214nm						
Peak#	Ret. Time	Area	Area%			
1	22.445	8740266	49.983			
2	24.167	8746249	50.017			

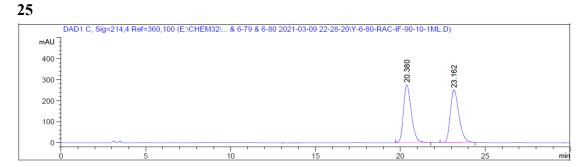

PDA Ch1 214nm						
Peak#	Ret. Time	Area	Area%			
1	22. 381	7716968	96.738			
2	24.121	260185	3.262			


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.303	BV	0.5639	1.24636e4	339.83795	50.2714
2	23.215	BB	0.5127	1.23291e4	371.94122	49.7286

Totals : 2.47927e4 711.77917

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

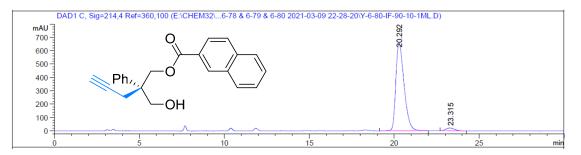
				Area [mAU*s]	•	
1	20.045	VB	0.5732	2.60245e4	697.69598	97.2829
2	23.908	BB	0.4886	726.85822	22.87988	2.7171
Total	s :			2.67514e4	720.57586	



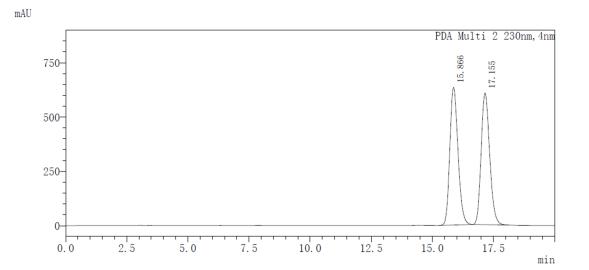
Signal 4: DAD1 D, Sig=230,4 Ref=360,100

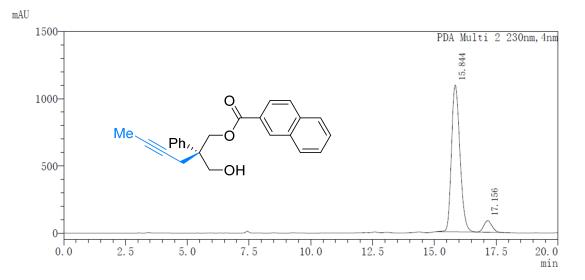
Peak	RetTime	Туре	Width	Area	Height	Area
					[mAU]	
1	10.101	MM R	0.3047	2.64277e4	1445.55627	97.4091
2	11.298	MM R	0.3085	702.93396	37.96986	2.5909

Totals :

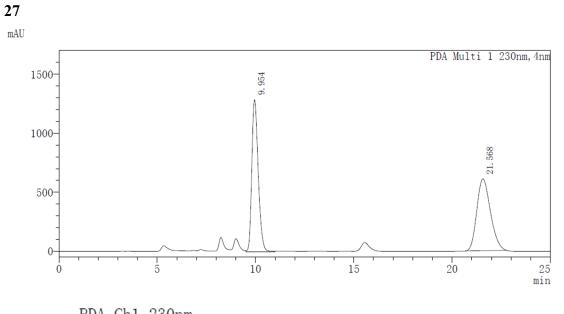

2.71306e4 1483.52613

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

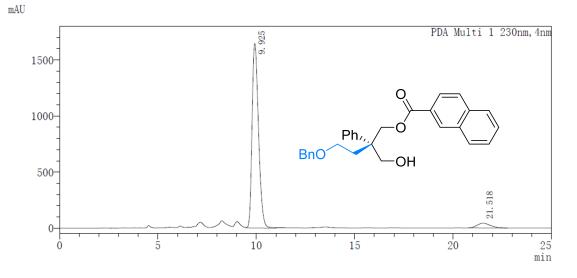

e Width	Area	Height	Area
			%
-			
0.4851	8813.44336	275.55588	50.0630
0.5313	8791.27344	249.36247	49.9370
	[min] - 0.4851	[min] [mAU*s] - 0.4851 8813.44336	<pre>width Area Height [min] [mAU*s] [mAU] - 0.4851 8813.44336 275.55588 0.5313 8791.27344 249.36247</pre>


Signal 3: DAD1 C, Sig=214,4 Ref=360,100

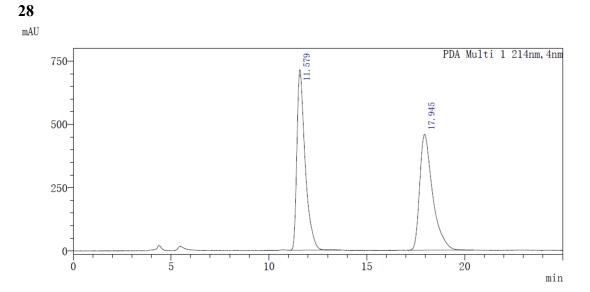
Peak	RetTime Typ	be Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	20.292 VV	R 0.5152	2.21312e4	656.69611	96.7152
2	23.315 BB	0.4211	751.65027	21.54066	3.2848
Total	s :		2.28828e4	678.23677	

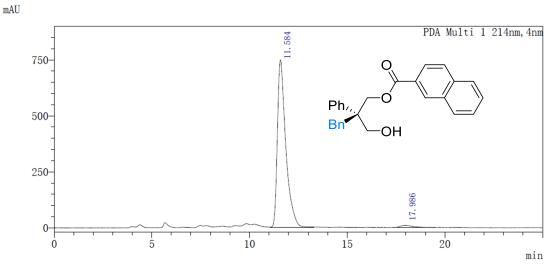

26

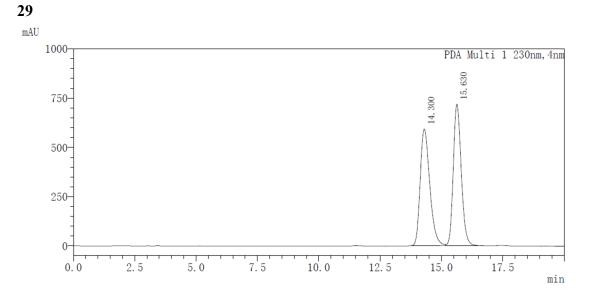
PDA Ch2 23	Onm		
Т	Hight	Area	Area%
15.866	633647	14761282	50.068
17.155	606099	14721154	49.932

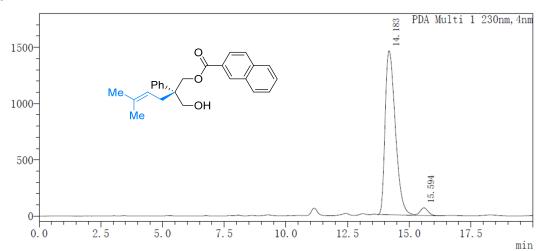


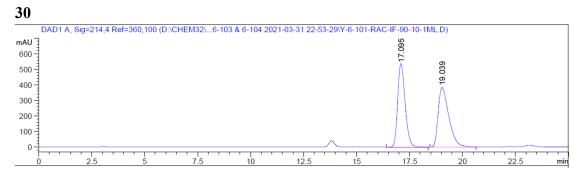
PDA Ch2 23	Onm		
Т	Hight	Area	Area%
15.844	1092614	26135304	92.868
17.156	86230	2006990	7.132


S197

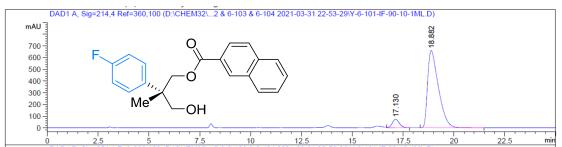

PDA Chi 23	Onm		
Т	Hight	Area	Area%
9.954	1285251	29108389	49.853
21.568	608386	29279890	50.147


PDA Ch1 230nm						
Т	Hight	Area	Area%			
9.925	1645528	37490793	94.990			
21.518	42219	1977346	5.010			

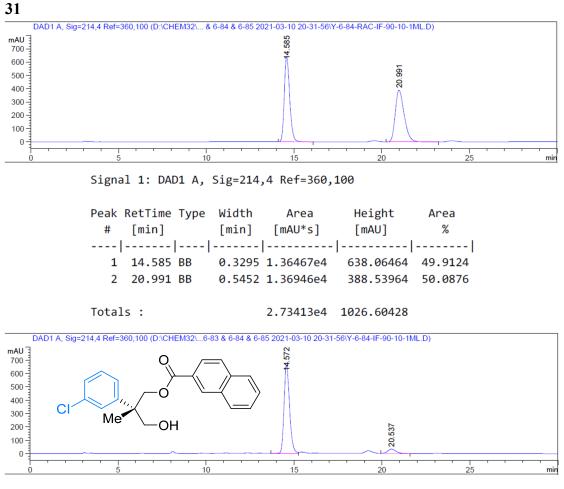

PDA Ch1 214nm						
Т	Hight	Area	Area%			
11.579	711753	20896190	49.926			
17.945	457176	20957939	50.074			


PDA Ch1 214nm						
Т	Hight	Area	Area%			
11.584	746294	22309170	98.123			
17.986	9820	426721	1.877			

PDA Ch1 230nm							
Т	Hight	Area	Area%				
14.300	592867	16093852	49.907				
15.630	717690	16153694	50.093				

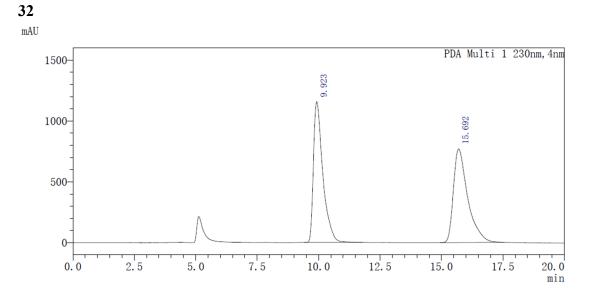

PDA Ch1 230nm						
Т	Hight	Area	Area%			
14. 183	1457263	41950514	96.497			
15. 594	67966	1522844	3. 503			

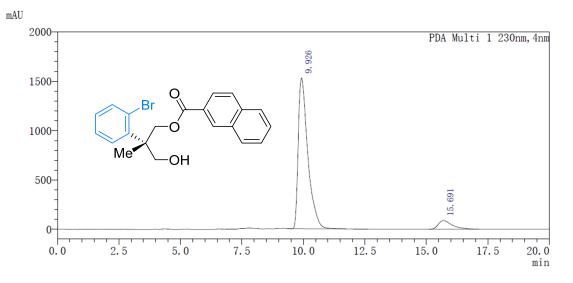
Signal 1: DAD1 A, Sig=214,4 Ref=360,100


Peak RetTime	Туре	Width	Area	Height	Area
# [min]					%
1 17.095	MM R	0.4091	1.32250e4	538.72211	49.6436
2 19.039	MM R	0.5835	1.34149e4	383.18976	50.3564

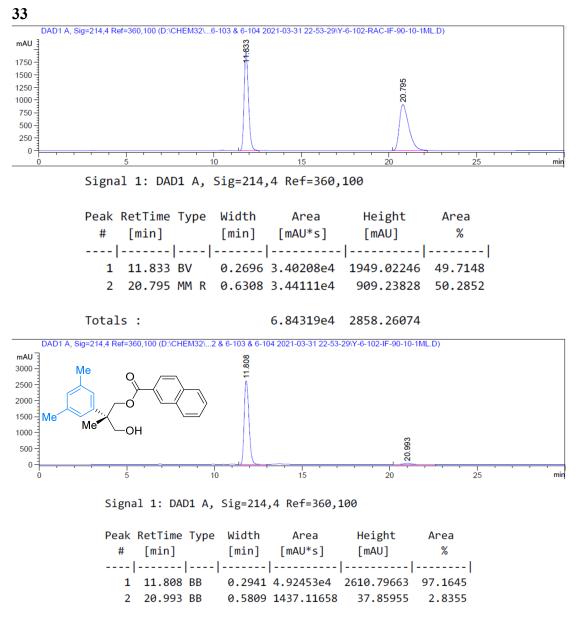
Totals : 2.66399e4 921.91187

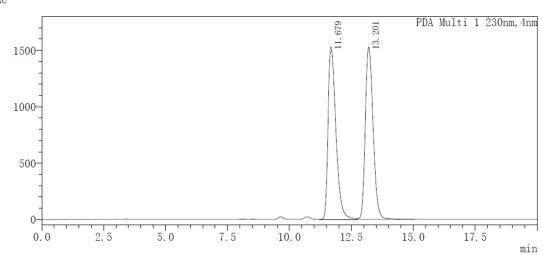
Signal 1: DAD1 A, Sig=214,4 Ref=360,100


Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	%
 1 17.130 VB 2 18.882 BB	0.3747	1729.35962 2.43437e4	71.36333	6.6327
Totals :		2.60731e4	729.30029	

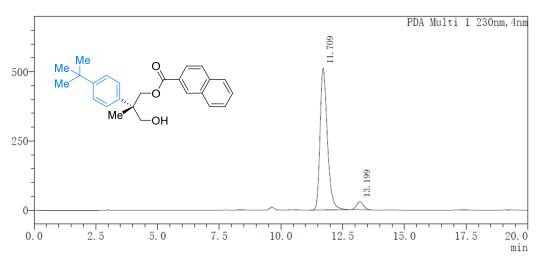

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

#			[min]	Area [mAU*s]	Height [mAU]	
1	14.572 20.537	BV	0.3361	 1.44125e4 1016.99640	661.67725	93.4088

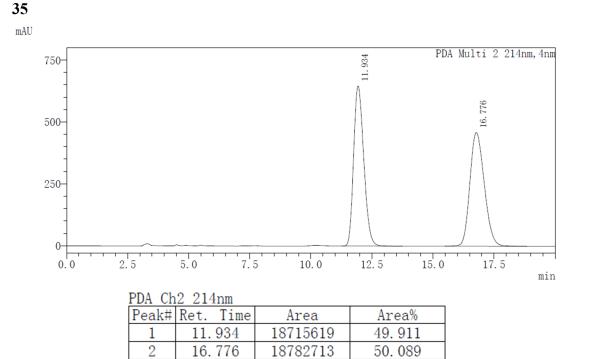

Totals : 1.542	95e4 694.03901
----------------	----------------


PDA Ch1 23	0nm		
Т	Hight	Area	Area%
9.923	1156383	30811650	49.787
15.692	769235	31075167	50.213

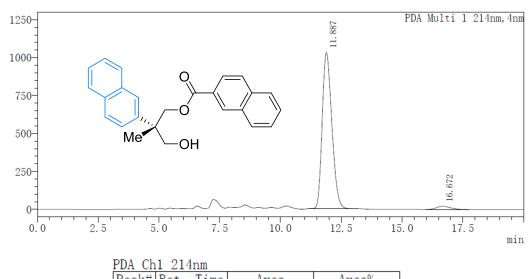
PDA Ch1 230nm						
Т	Hight	Area	Area%			
9.926	1528562	41494874	92.495			
15.691	88351	3367077	7.505			

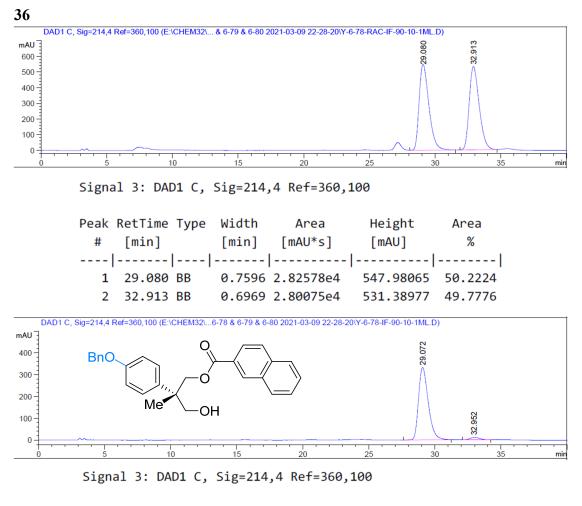


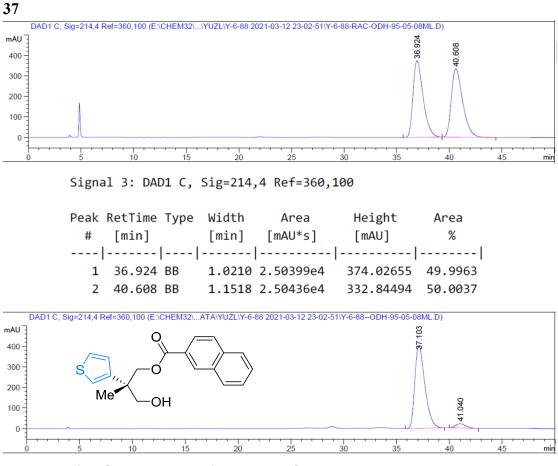
T - 4 - 1	F 06004 4	2642 65640
Totals :	5.06824e4	2648.65619



PDA Ch1 23	Onm		
Т	Hight	Area	Area%
11.679	1528230	33667628	49.986
13.201	1527808	33686713	50.014

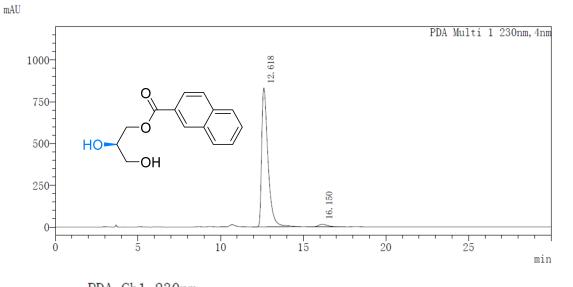

mAU


PDA Ch1 23	Onm		
Т	Hight	Area	Area%
11.709	511804	10588466	95.096
13.199	28429	546003	4.904

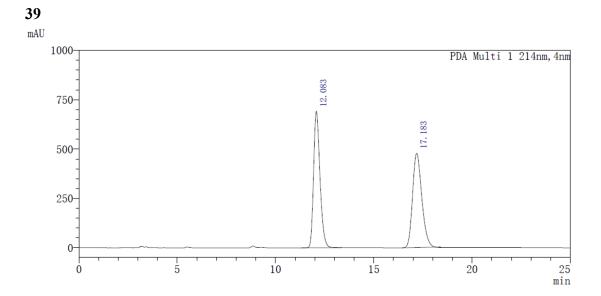


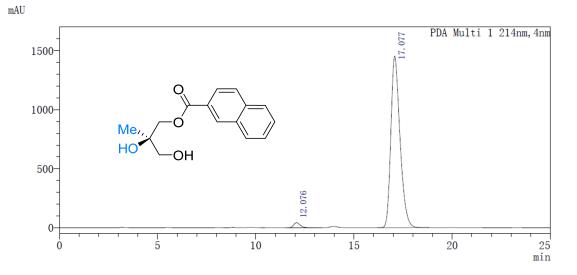
Peak#	Ret.	Time	Area	Area%
1	11.	887	28467984	97.227
2	16.	672	812023	2.773

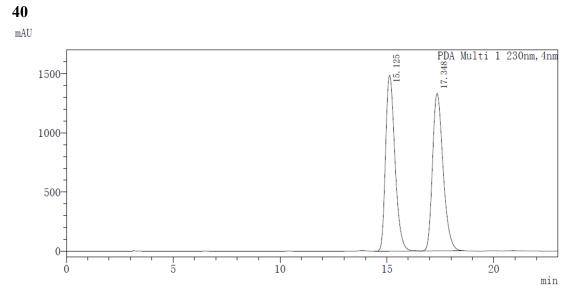
Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 29.072	VV R	0.7583	1.70300e4	332.05759	96.8178
2 32.952	BV R	0.6001	559.74548	11.14227	3.1822

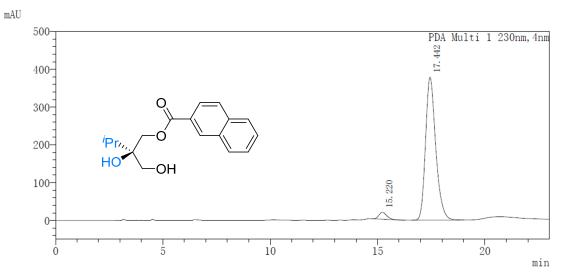


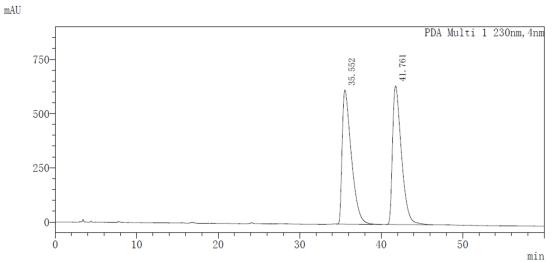
Signal 3: DAD1 C, Sig=214,4 Ref=360,100

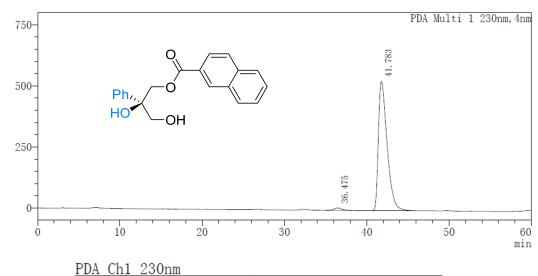

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.103	MM R	1.0998	2.66017e4	403.11874	95.0809
2	41.040	MM R	1.1070	1376.27942	20.72047	4.9191


Т	Hight	Area	Area%
12.638	710370	18703878	49.774
15.728	499909	18873618	50.226

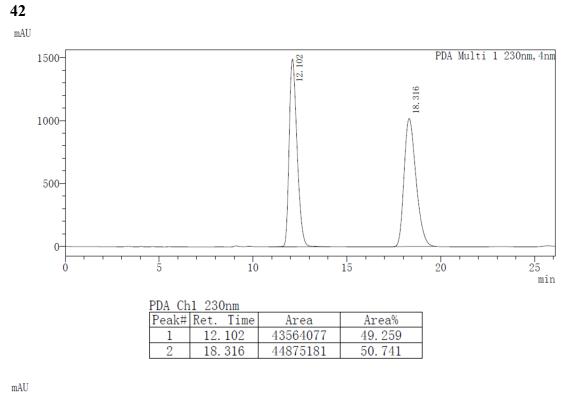

<u>PDA ChI 23</u>	Onm		
Т	Hight	Area	Area%
12.618	831412	22226163	97.537
16.150	15091	561278	2.463

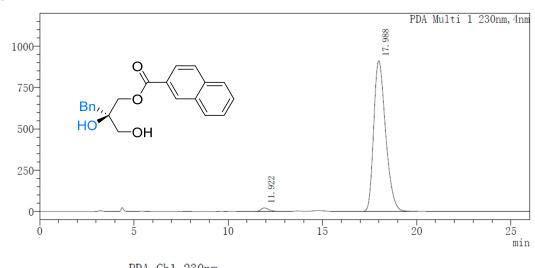

PDA Ch1 21	4nm		
Т	Hight	Area	Area%
12.083	691286	15593495	50.03 2
17.183	478011	15573344	49.968

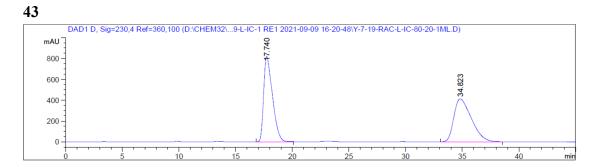

PDA Ch1 21	4nm		
Т	Hight	Area	Area%
12.076	43361	1017127	2.116
17.077	1451881	47052073	97.884


PDA Ch1 23	Onm		
Т	Hight	Area	Area%
15.125	1484768	45355586	49.717
17.348	1328751	45871839	50.283

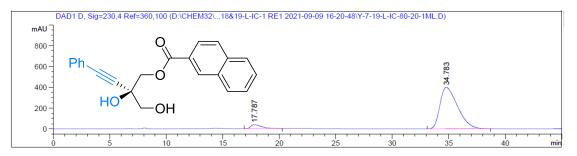
PDA Ch1 23	Onm		
Т	Hight	Area	Area%
15.220	18290	459254	3. 537
17.442	378472	12525391	96.463



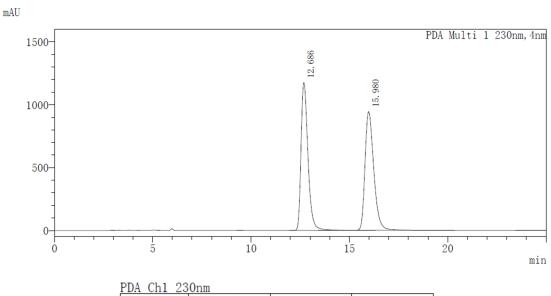

PDA Ch1 230nm						
Т	Hight	Area	Area%			
35. 552	618602	48439203	49.891			
41.761	639438	48651347	50.109			


Т	Hight	Area	Area%
36. 475	10011	674312	1.698
41.783	529129	39026805	98.302

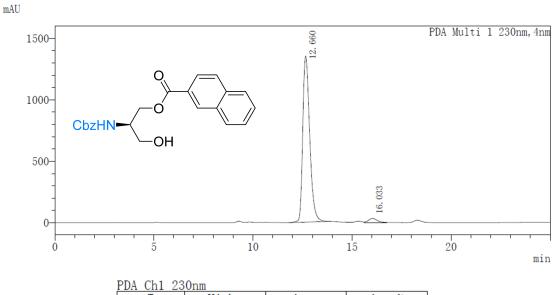
mAU



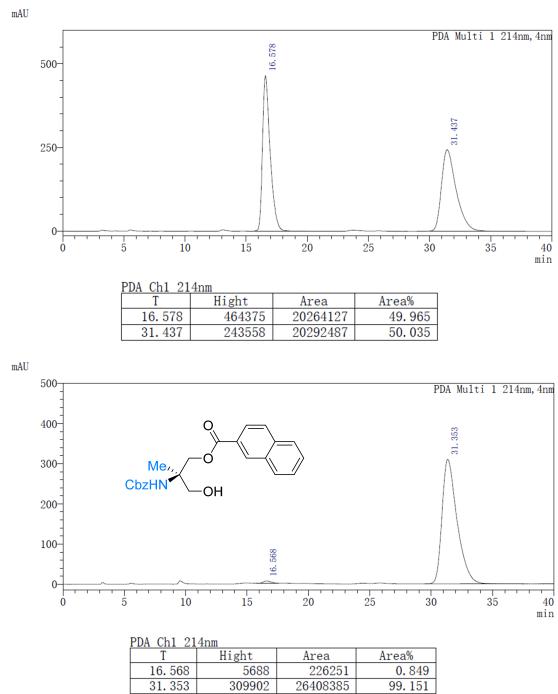
PDA Ch1 230nm						
Peak#	Ret. Time	Area	Area%			
1	11.922	631272	1.555			
2	17.988	39959537	98.445			

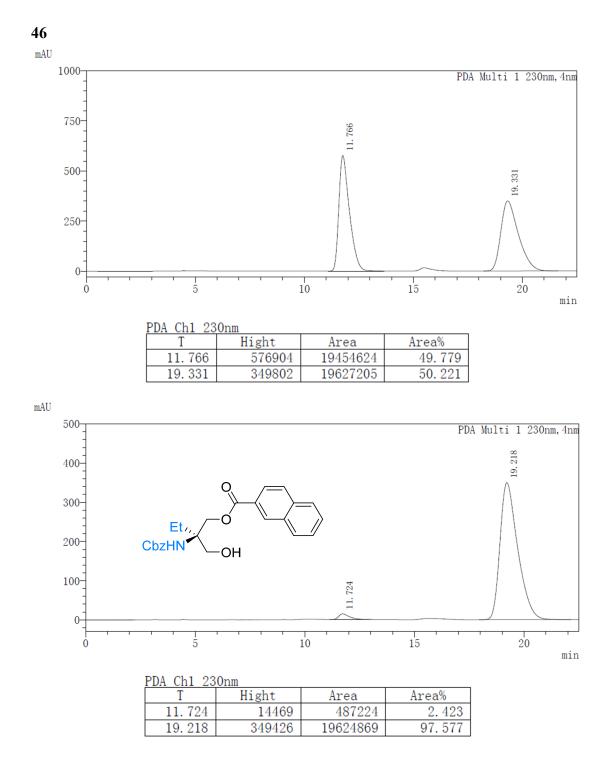

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

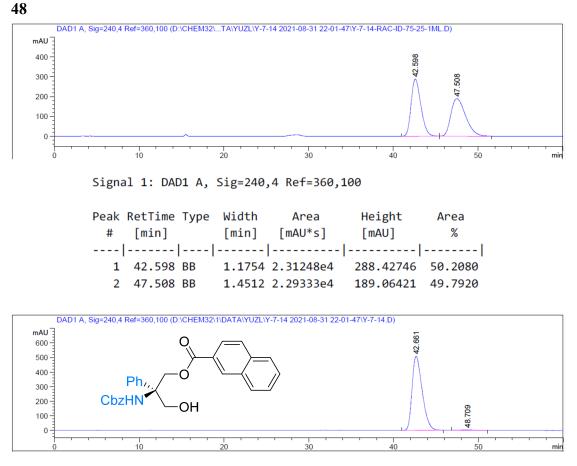
Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]	[mAU]	%
1	17.740	BB	0.7538	4.39730e4	817.20239	49.9349
2	34.823	BB	1.2634	4.40876e4	411.69104	50.0651


Signal 4: DAD1 D, Sig=230,4 Ref=360,100

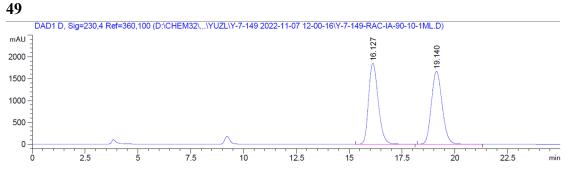
Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]	[mAU]	%
1	17.787	BB	0.7696	2459.97046	37.88008	5.3871
2	34.783	BB	1.4009	4.32040e4	399.73822	94.6129


44


1DA OII 23	UTIII		
Т	Hight	Area	Area%
12.686	1175205	28685965	49.644
15.980	942978	29096898	50.356


Т	Hight	Area	Area%		
12.660	1351225	32949114	96.998		
16.033	33577	1019629	3.002		

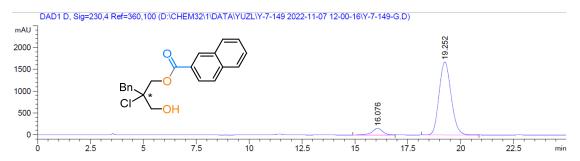
S215



Signal 1: DAD1 A, Sig=240,4 Ref=360,100

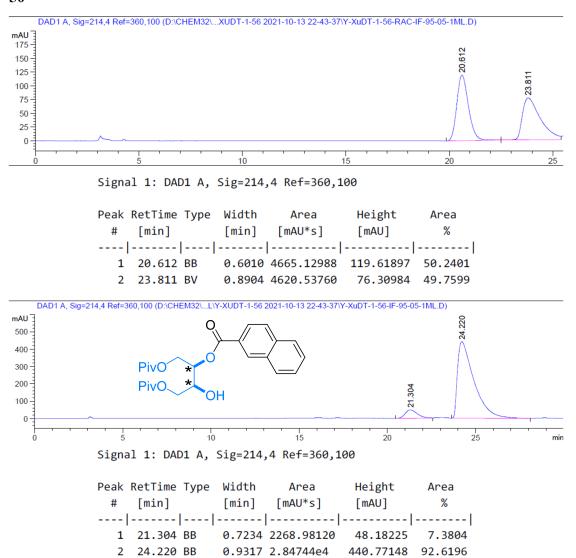
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	42.661	BB	1.1711	4.21642e4	508.64670	99.1679
2	48.709	MM R	2.0594	353.79117	2.86323	0.8321

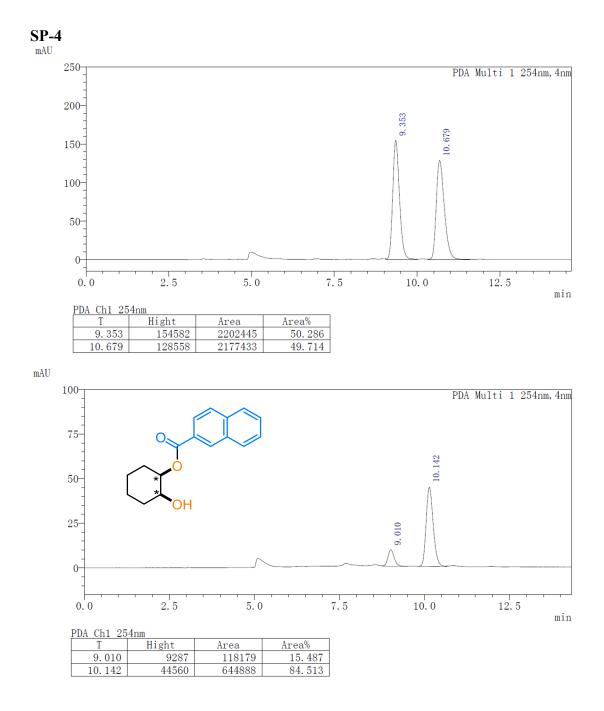
S219



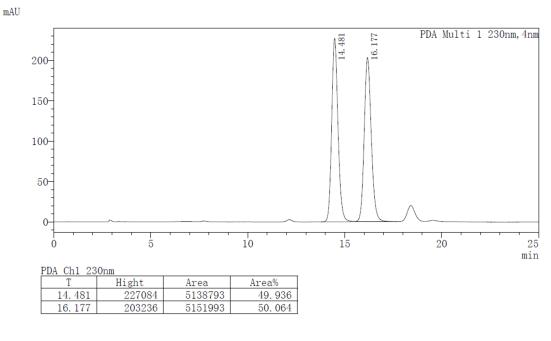
Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.127	BB	0.4463	5.84222e4	1850.80847	49.7344
2	19.140	BB	0.5477	5.90461e4	1665.04810	50.2656

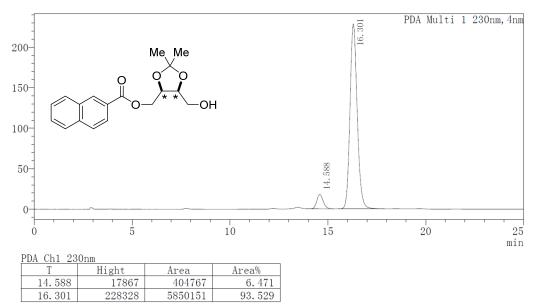

1.17468e5 3515.85657

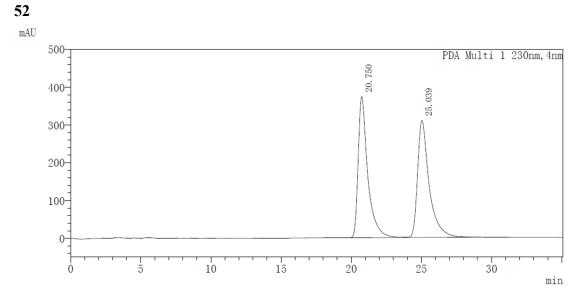

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 16.076 MF R 0.5856 5373.36914 152.94269 7.5040 1 19.252 MF R 0.6590 6.62337e4 2 1675.01343 92.4960

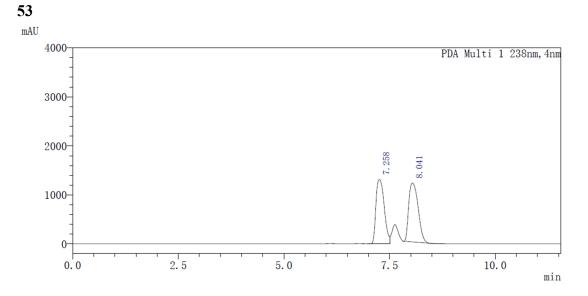

Totals : 7.16070e4 1827.95612

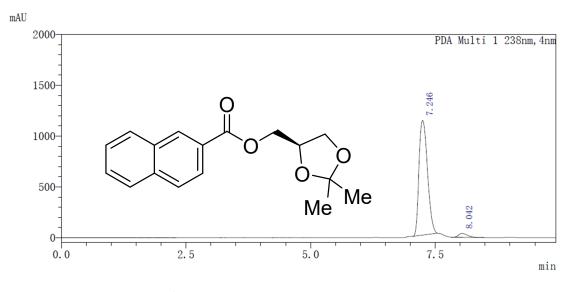
50

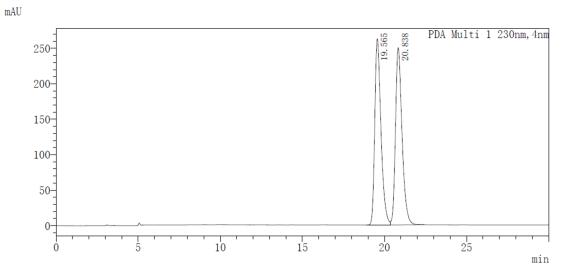


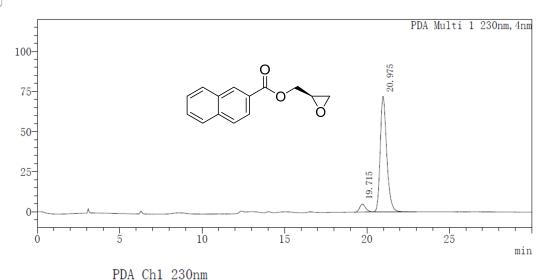

S222

51

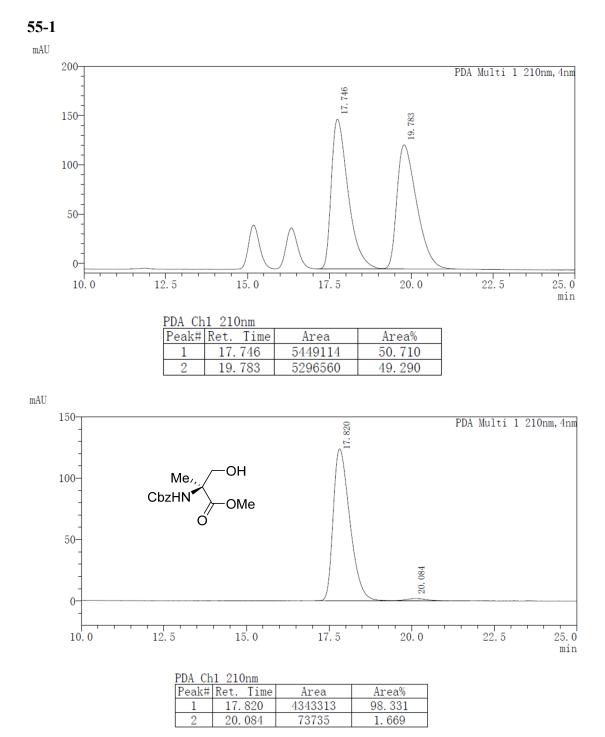


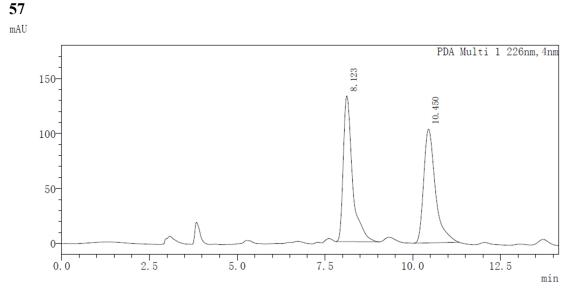

PDA Ch1 23	Onm		
Т	Hight	Area	Area%
20.750	373594	17712581	49.949
25.039	310126	17748922	50.051


DA CHI 20			
Т	Hight	Area	Area%
20.747	77109	3558545	5.822
24.939	982182	57567062	94.178


PDA Ch1 23	8nm		
Т	Hight	Area	Area%
7.258	1315338	17975876	49.245
8.041	1200671	18527083	50.755

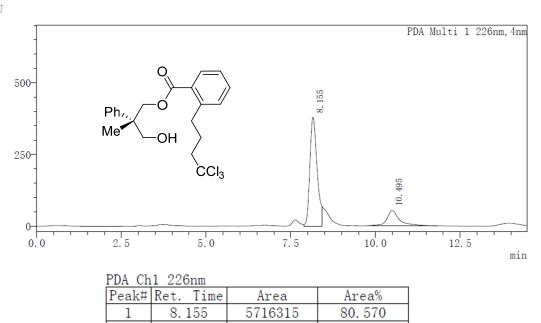
<u>PDA Ch1 23</u>	8nm		
Т	Hight	Area	Area%
7.246	1130769	13376039	96.666
8.042	37824	461362	3.334


PDA Ch	1 230nm		
Peak#	Ret. Time	Area	Area%
1	19.565	6885587	49.787
2	20.838	6944619	50.213



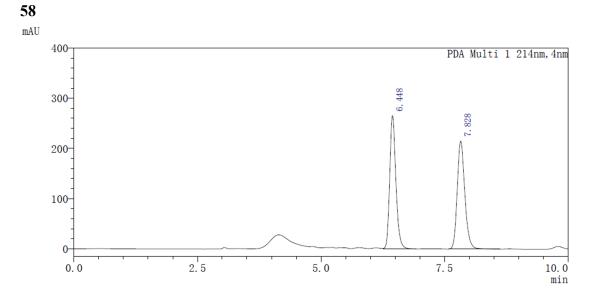
Peak#	Ret.	Time	Area	Area%
1	19.	715	123908	5.913
2	20.	975	1971533	94.087

54

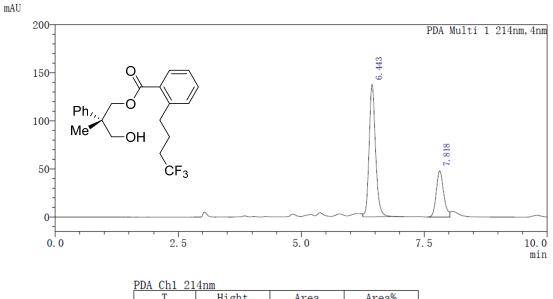

mAU

PDA Ch1 226nm					
Peak#	Ret. Time	Area	Area%		
1	8.123	2416176	50.202		
2	10.450	2396699	49.798		

mAU



1378553


19.430

2

10.495

PDA Ch1 21	4nm		
Т	Hight	Area	Area%
6.448	265410	2316945	50.175
7.828	214970	2300765	49.825

Т	Hight	Area	Area%
6.443	137593	1253006	71.461
7.818	47752	500400	28.539

12. Reference

Lin, C.; Hiraga, Y.; Masaki, K.; Iefuji, H.; Ohkata, K. Comparison of the Chiral Recognition of Prochiral Substrates in the Acetylation Reaction by a Novel Lipase (CSL) from the Yeast, *Cryptococcus* spp. S-2 with Immobilized PPL: Enzyme-Catalyzed Desymmetrization and Asymmetrization of Prochiral 2-Substituted 1,3-Propanediols by CSL and Immobilized PPL. *J. Mol. Catal. B: Enzym.* 2006, *38*, 1–10.
 Buza, M.; Andersen, K. K.; Pazdon, M. D. Sulfoxides, Sulfilimines, Methoxysulfonium Salts, and Sulfoximines Derived from 3-Methyl-3-phenylthietane. *J. Org. Chem.* 1978, *43*, 3827–3834.

(3) Loy, R. N.; Jacobsen, E. N. Enantioselective Intramolecular Openings of Oxetanes Catalyzed by (salen)Co(III) Complexes: Access to Enantioenriched Tetrahydrofurans. *J. Am. Chem. Soc.* **2009**, *131*, 2786–2787.

(4) Yu, X.; Liu, Z.; Xia, Z.; Shen, Z.; Pan, X.; Zhang, H.; Xie, W. Oxidative Rearrangement of Malondialdehyde: Substrate Scope and Mechanistic Insights. *RSC Adv.* **2014**, *4*, 53397–53401.

(5) Gutiérrez-Bonet, Á.; Juliá-Hernández, F.; de Luis, B.; Martin, R. Pd-Catalyzed C(sp³)–H Functionalization/Carbenoid Insertion: All-Carbon Quaternary Centers via Multiple C–C Bond Formation. *J. Am. Chem. Soc.* **2016**, *138*, 6384–6387.

(6) Jung, B.; Kang, S. H. Chiral imine copper chloride-catalyzed enantioselective desymmetrization of 2-substituted 1,2,3-propanetriols. *Proc. Natl. Acad. Sci. U. S. A.* **2007**, *104*, 1471–1475.

(7) Grammatoglou, K.; Bolsakova, J.; Jirgensons, A. C-Quaternary Alkynyl Glycinols via the Ritter Reaction of Cobalt Complexed Alkynyl Glycols. *RSC Adv.* **2017**, *7*, 27530–27537.

(8) Choi, J. Y.; Borch, R. F. Highly Efficient Synthesis of Enantiomerically Enriched 2-Hydroxymethylaziridines by Enzymatic Desymmetrization. *Org. Lett.* **2007**, *9*, 215–218.

(9) Honjo, T.; Nakao, M.; Sano, S.; Shiro, M.; Yamaguchi, K.; Sei, Y.; Nagao, Y. Nonenzymatic Enantioselective Monoacetylation of Prochiral 2-Protectedamino-2-alkyl-1,3-propanediols Utilizing a Chiral Sulfonamide–Zn Complex Catalyst. *Org. Lett.* **2007**, *9*, 509–512.

(10) Oble, J.; Riflade, B.; Noël, A.; Malacria, M.; Thorimbert, S.; Hasenknopf, B.; Lacôte, E. Carbonyl-Inserted Organo-Hybrids of a Dawson-Type Phosphovanadotungstate: Scope and Chemoselective Oxidation Catalysis. *Org. Lett.* 2011, *13*, 5990–5993.

(11) Sano, S.; Nakao, M.; Takeyasu, M.; Yamamoto, C.; Kitaike, S.; Yoshioka, Y.; Nagao, Y. Chemoenzymatic Synthesis of α -Substituted Serines via Enantiodivergent Transformation. *Open Org. Chem. J.* **2009**, *3*, 22–34.

(12) Li, B.-S.; Wang, Y.; Proctor, R. S.; Jin, Z.; Chi, Y. R. Carbene-Catalyzed Desymmetrization of 1,3-Diols: Access to Optically Enriched Tertiary Alkyl Chlorides. *Chem. Commun.* **2016**, *52*, 8313–8316.

(13) Mandai, H.; Yasuhara, H.; Fujii, K.; Shimomura, Y.; Mitsudo, K.; Suga, S. Desymmetrization of *meso*-1,2-Diols by a Chiral *N*,*N*-4-Dimethylaminopyridine

Derivative Containing a 1,1'-Binaphthyl Unit: Importance of the Hydroxy Groups. J. Org. Chem. 2017, 82, 6846–6856.

(14) Arai, K.; Kumakura, F.; Takahira, M.; Sekiyama, N.; Kuroda, N.; Suzuki, T.; Iwaoka, M. Effects of Ring Size and Polar Functional Groups on the Glutathione Peroxidase-Like Antioxidant Activity of Water-Soluble Cyclic Selenides. *J. Org. Chem.* **2015**, *80*, 5633–5642.

(15) Zhu, N.; Zhao, J.; Bao, H. Iron Catalyzed Methylation and Ethylation of Vinyl Arenes. *Chem. Sci.* **2017**, *8*, 2081–2085.

(16) Foss Jr., F. W.; Mathews, T. P.; Kharel, Y.; Kennedy, P. C.; Snyder, A. H.; Davis, M. D.; Lynch, K. R.; Macdonald, T. L. Synthesis and Biological Evaluation of Sphingosine Kinase Substrates as Sphingosine-1-phosphate Receptor Prodrugs. *Bioorg. Med. Chem.* **2009**, *17*, 6123–6136.

(17) Stewart, H. L.; Hanby, A. R.; King, T. A.; Bond, A. D.; Moss, T. A.; Sore, H. F.; Spring, D. R. An Efficient, Stereocontrolled and Versatile Synthetic Route to Bicyclic Partially Saturated Privileged Scaffolds. *Chem. Commun.* **2020**, *56*, 6818–6821.

(18) Maciver, E. E.; Knipe, P. C.; Cridland, A. P.; Thompson, A. L.; Smith, M. D. Catalytic Enantioselective Electrocyclic Cascades. *Chem. Sci.* **2012**, *3*, 537–540.

(19) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Copper-Catalyzed Trifluoromethylation of Alkenes with Redox-Neutral Remote Amidation of Aldehydes. *Org. Lett.* **2016**, *18*, 2852–2855.

(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gausian, Inc., Wallingford CT, **2016**.

(21) (a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* 1988, *37*, 785–789. (b) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* 1993, *98*, 5648–5652.

(22) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *Ab Initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(23) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465.

(24) (a) Hay, P. J.; Wadt, W. R. *Ab Initio* Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. *J. Chem. Phys.* **1985**,

82, 270–283. (b) Wadt, W. R.; Hay, P. J. *Ab Initio* Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. *J. Chem. Phys.* 1985, 82, 284–298. (c) Hay, P. J.; Wadt, W. R. *Ab Initio* Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. *J. Chem. Phys.* 1985, 82, 299–310.

(25) (a) Dunning, T. H.; Jr.; Hay, P. J. Gaussian Basis Sets for Molecular Calculations. In *Methods of Electronic Structure Theory*; Schaefer III, H. F., Ed.; Plenum Press: New York, 1977; pp 1–27. (b) Stoll, H.; Fuentealba, P.; Schwerdtfeger, P.; Flad, J.; Szentpály, L. v.; Preuss, H. Cu and Ag as One-Valence-Electron Atoms: CI Results and Quadrupole Corrections for Cu₂, Ag₂, CuH, and AgH. *J. Chem. Phys.* **1984**, *81*, 2732–2736. (c) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-Adjusted *Ab Initio* Pseudopotentials for the First Row Transition Elements. *J. Chem. Phys.* **1987**, *86*, 866–872. (d) Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.; Schwerdtfeger, P.; Pitzer, R. M. Accuracy of Energy-Adjusted Quasirelativistic *Ab Initio* Pseudopotentials: All-Electron and Pseudopotential Benchmark Calculations for Hg, HgH and Their Cations. *Mol. Phys.* **1993**, *78*, 1211–1224. (e) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. *Ab Initio* Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. *Mol. Phys.* **1993**, *80*, 1431–1441.

(26) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.

(27) Legault, C. Y. CYLView, 1.0b, Universitéde Sherbrooke, Canada, 2009.