
Supporting Information

Copper-Catalyzed Enantioconvergent Radical C(sp³)–N Cross-Coupling: Access to α,α-Disubstituted Amino Acids

Y.-F. Zhang, J.-H. Wang, N.-Y. Yang, Z. Chen, L.-L. Wang, Q.-S. Gu, Z.-L. Li, X.-Y. Liu*

Contents

Scheme S1. Effect of ligands in the reaction	
Table S1: Investigation of bases for the model reaction.	
Table S2: Investigation of solvents for the model reaction	S3
Table S3: Investigation of copper salts for the model reaction.	S4
Figure S1. Crystal structure of 9	S5
Figure S2. Crystal structure of 12	S6
Figure S3. Crystal structure of 15	S7
Figure S4. Crystal structure of (S)-E1	S8
Figure S5. Spin trap study.	S9
General information	S10
Asymmetric cross-coupling of tertiary halides	S11
Transformation	S29
Mechanism	S33
NMR Spectra	S36
HPLC Spectra	S77

L4, Ar = 1-naphthyl, 95%, 84% ee L5, Ar = 9-anthryl, 92%, 92% ee L6, R = H, 60%, 2% ee [a] Reaction conditions: E1 (0.05 mmol), N1 (0.05 mmol), Cu(HFac)₂ (5 mol%), L (5 mol%) and Cs₂CO₃ (4.0 equiv.) in Et₂O (1.0 mL) at 15 °C for 16 h under argon (Ar). Yields were based on ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. Ee values were based on HPLC analysis.

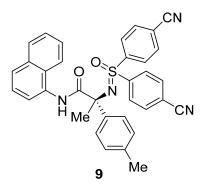
Scheme S1. Effect of ligands in the reaction.^[a]

E1	Cl Ph Me +	$Ar \stackrel{O}{=} NH \\Ar = 4-cyano$	nol%) equiv.)	H Me Ph O S Ar Ar
Entry	Base	Conv. of E1	Yield of 1 [%]	Ee of 1 [%]
1	LiO ^t Bu	87	78	93
2	NaO ^t Bu	>99	65	87
3	KO ^t Bu	>99	0	-
4	Na ₂ CO ₃	0	0	-
5	K ₂ CO ₃	30	28	95
6	Cs_2CO_3	>99	>95	93
7	K ₃ PO ₄	79	73	93
8	LiOH	45	40	93
9	NaOH	55	50	93
10	Et ₃ N	0	0	-

Table S1: Investigation of bases for the model reaction.^[a]

[a] Reaction conditions: E1 (0.05 mmol), N1 (0.05 mmol), Cu(HFac)₂ (5 mol %), L5 (5 mol %), and base (4.0 equiv.) in Et₂O (1.0 mL) at 15 °C for 16 h under argon; yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee was determined by analysis of chiral HPLC measurement. HFac, hexafluoroacetylacetonate; PCP, 4-cyanophenyl.

E1	CI Ph Me +	$ \begin{array}{c} O \\ H \\ Ar \\ Ar \end{array} \\ N1 \end{array} \begin{array}{c} Cu(HFac)_2 \\ L5 (5 r) \\ Cs_2CO_3 (4 \\ solvent, 15 \\ Ar = 4-cyano \end{array} $	nol%) 4.0 equiv.)	H Me Ph O N S-Ar Ar
Entry	Solvent	Conv. of E1	Yield of 1 [%]	Ee of 1 [%]
1	Et ₂ O	>99	>95	93
2	^{<i>i</i>} Pr ₂ O	42	39	95
3	ⁿ Bu ₂ O	42	38	95
4	PhCF ₃	50	49	89
5	toluene	25	25	91
6	EtOAc	96	87	90
7	THF	82	82	87
8	hexane	trace	0	-
9	DCM	24	24	76
10	DMF	>99	0	-


Table S2: Investigation of solvents for the model reaction.^[a]

[a] Reaction conditions: E1 (0.05 mmol), N1 (0.05 mmol), Cu(HFac)₂ (5 mol %), L5 (5 mol %), and Cs_2CO_3 (4.0 equiv.) in solvent (1.0 mL) at 15 °C for 16 h under argon; yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee was determined by analysis of chiral HPLC measurement. HFac, hexafluoroacetylacetonate. PCP, 4-cyanophenyl. THF, tetrahydrofuran. DCM, dichloromethane; DMF, *N*,*N*-dimethyl formamide.

Table S3: Investigation of copper salts for the model reaction.^[a]

E1	Me + Ar S O Ar	[Cu] (5 m L5 (5 m Cs ₂ CO ₃ (4. Et ₂ O, 15 ° Ar = 4-cyanop	ol%) 0 equiv.) C, 16 h	Me Ph O N ^S -Ar Ar
Entry	[Cu]	Conv. of E1	Yield of 1 [%]	Ee of 1 [%]
1	Cu(HFac) ₂	>99	>95	93
2	CuI	23	17	93
3	CuBr	45	31	93
4	CuTc	13	13	94
5	Cu(PPh3)3Br	29	20	60
6	Cu(CH ₃ CN) ₄ PF ₆	10	10	94
7	Cu(OTf) ₂	45	38	94
8	Cu(OAc) ₂	37	30	94
9	Cu(CO ₂ CF ₃) ₂	62	62	94

[a] Reaction conditions: E1 (0.05 mmol), N1 (0.05 mmol), Cu (5 mol %), L5 (5 mol %), and Cs₂CO₃ (4.0 equiv.) in Et₂O (1.0 mL) at 15 °C for 16 h under argon; yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee was determined by analysis of chiral HPLC measurement. PCP, 4-cyanophenyl; HFac, hexafluoroacetylacetonate; Tc, thiophene-2-carboxylate; Tf, triflate.

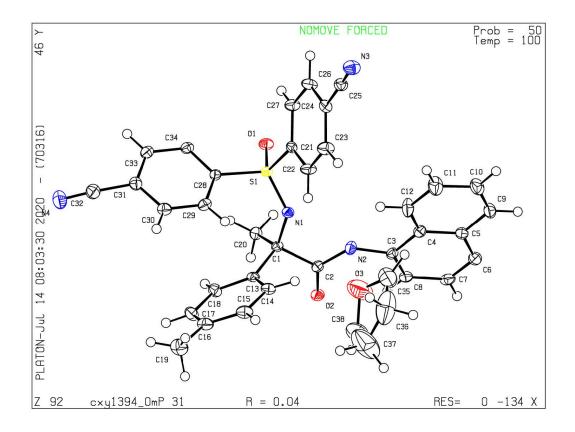


Figure S1. Crystal structure of 9.

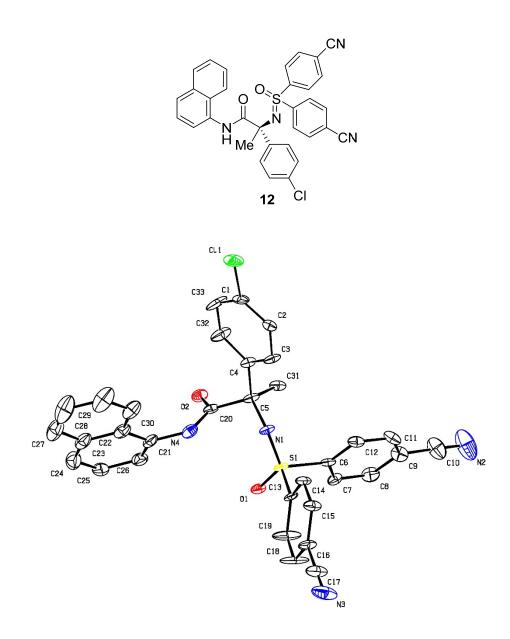
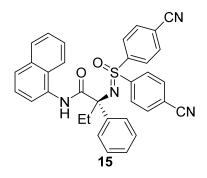



Figure S2. Crystal structure of 12.

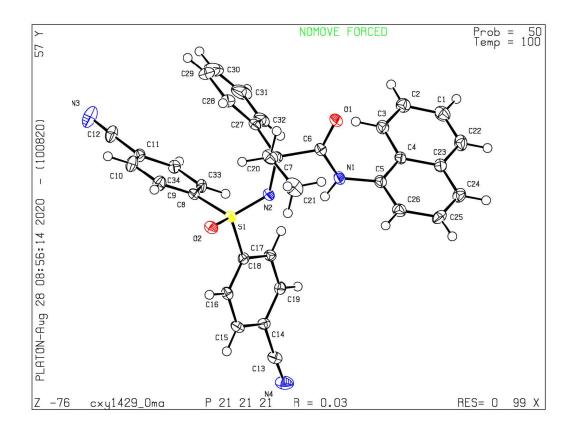


Figure S3. Crystal structure of 15.

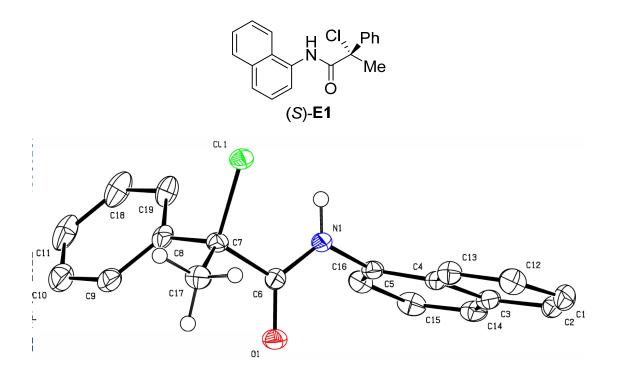
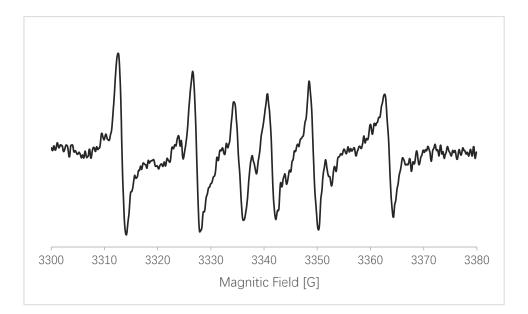
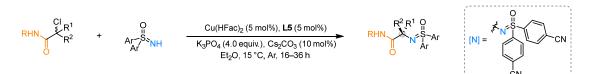
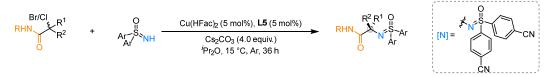


Figure S4. Crystal structure of (S)-E1.




Figure S5. Spin trap study.

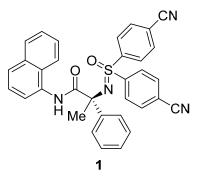
Room Temperature Q-band CW-EPR spectra of the spin trap study. g = 2.0061; $A_H = 22.00 \text{ G}$; $A_N = 14.11 \text{ G}$. EPR acquisition parameters: temperature = 298 K; MW power = 40 dB; modulation amplitude = 0.5 G. conversion time = 20 ms.


General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CH₂Cl₂, THF and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. Copper(II) hexafluoroacetylacetonate (Cu(HFac)₂, CAS No. 14781-45-4) was purchased from TCI. K₃PO₄ was purchased from Shanghai Titan Scientific Co. Ltd. and Cs₂CO₃ was purchased from Leyan., both of them were treated by hot gun (approximate 500 to 600 °C) for 5 minutes in vacuum. Anhydrous diethyl ether (Et₂O) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was treated by 4 Å Molecular sieve and distilled after refluxing with sodium and benzophenone. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), hexane, ethyl acetate (EtOAc), dichloromethane (CH2Cl2) and methanol were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR and 162 MHz or 243 MHz for ³¹P NMR, respectively, in CDCl₃, CD₃OD, C₆D₆, D₂O or DMSO-d₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) value was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. Specific optical rotation was measured on a Rudolph-Autopol I. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation. Q-band continuous-wave (CW) EPR spectra was recorded on a Bruker ELEXSYS-II spectrometer at room temperature.

Asymmetric cross-coupling of tertiary halides

General procedure A: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 4,4'-sulfonimidoyldibenzonitrile (53.4 mg, 0.20 mmol, 1.0 equiv.), Cu(HFac)₂ (4.4 mg, 0.010 mmol, 5.0 mol%), L5 (4.3 mg, 0.010 mmol, 5.0 mol%), Cs₂CO₃ (6.5 mg, 0.020 mmol, 10.0 mol%), K₃PO₄ (169.6 mg, 0.80 mmol, 4.0 equiv.) and anhydrous Et₂O (2.0 mL). Then, tertiary halide (0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 16 to 36 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.



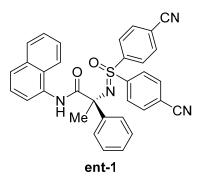
General procedure B: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 4,4'-sulfonimidoyldibenzonitrile (53.4 mg, 0.20 mmol, 1.0 equiv.), Cu(HFac)₂ (4.4 mg, 0.010 mmol, 5.0 mol%), L5 (4.3 mg, 0.010 mmol, 5.0 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and anhydrous 1 Pr₂O (2.0 mL). Then, tertiary halide (0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 36 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The synthesis of tertiary alkyl halides

All the tertiary alkyl halides were synthesized according to the reported literature.^[1] All the characterization data are consistent with those in the reported literature.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N-(naphthalen-1-yl)-2-phenylpropanamide (1)

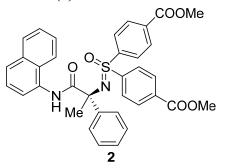
According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpropanamide (61.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **1** as a white amorphous solid (99.4 mg, 92% yield, 92% ee).


HPLC analysis: Chiralcel IE (hexane/*i*-PrOH = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 26.19 min, t_R (minor) = 41.18 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.22 – 8.16 (m, 3H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.75 – 7.65 (m, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.55 – 7.46 (m, 4H), 7.44 – 7.34 (m, 1H), 7.31 – 7.18 (m, 3H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 145.9, 145.6, 143.2, 134.1, 133.3, 132.9, 132.3, 129.1, 128.8, 128.50, 128.47, 127.8, 126.5, 126.23, 126.15, 126.1, 125.9, 125.1, 119.8, 118.5, 117.1, 117.04, 116.97, 116.4, 67.4, 26.4.

HRMS (ESI) m/z calcd. for C₃₃H₂₅N₄O₂S [M + H]⁺ 541.1693, found 541.1695.

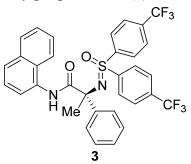

(S)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N-(naphthalen-1-yl)-2-phenylpropanamide (ent-1)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpropanamide (61.8 mg, 0.20 mmol, 1.0 equiv.) and (*R*, *R*)-L₅ for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **ent-1** as a white amorphous solid (98.3 mg, 91% yield, -92% ee).

HPLC analysis: Chiralcel IE (hexane/*i*-PrOH = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 28.55 min, t_R (major) = 45.47 min.

Dimethyl 4,4'-((1-(naphthalen-1-ylamino)-1-oxo-2-phenylpropan-2yl)sulfonimidoyl)(*R*)-dibenzoate (2)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpropanamide (61.8 mg, 0.20 mmol, 1.0 equiv.) and dimethyl 4,4'-sulfonimidoyldibenzoate (66.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **2** as a light yellow amorphous solid (99.4 mg, 82% yield, 88% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.33 min, t_R (minor) = 21.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.31 – 8.25 (m, 1H), 8.23 – 8.14 (m, 4H), 8.02 – 7.92 (m, 2H), 7.90 – 7.85 (m, 1H), 7.83 – 7.73 (m, 3H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.53 – 7.45 (m, 2H), 7.39 – 7.33 (m, 1H), 7.29 – 7.17 (m, 3H), 3.98 (s, 3H), 3.94 (s, 3H), 2.06 (s, 3H).

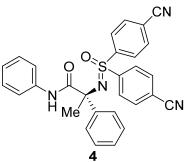
¹³C NMR (100 MHz, CDCl₃) δ 173.4, 165.5, 165.4, 146.3, 145.9, 143.8, 134.2, 134.0, 133.6, 132.6, 130.6, 130.2, 128.9, 128.3, 128.2, 127.9, 127.5, 126.4, 126.2, 126.08, 126.07, 125.8, 124.7, 120.0, 118.1, 67.1, 52.8, 52.7, 26.0.

HRMS (ESI) m/z calcd. for C₃₅H₃₁N₂O₆S [M + H]⁺ 607.1897, found 607.1892.

(*R*)-*N*-(Naphthalen-1-yl)-2-((oxobis(4-(trifluoromethyl)phenyl)- λ^6 -sulfaneylidene)amino)-2-phenylpropanamide (3)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2phenylpropanamide (61.8 mg, 0.20 mmol, 1.0 equiv.) and iminobis(4-(trifluoromethyl)phenyl)- λ^6 -sulfanone (70.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **3** as a light yellow amorphous solid (108.9 mg, 87% yield, 88% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.70 min, t_R (major) = 13.52 min.

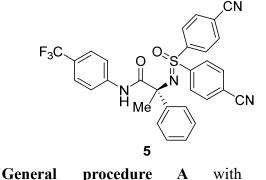

¹**H NMR** (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.40 – 8.10 (m, 3H), 7.93 – 7.73 (m, 6H), 7.69 (d, J = 8.2 Hz, 1H), 7.60 – 7.46 (m, 6H), 7.39 – 7.33 (m, 1H), 7.28 – 7.16 (m, 3H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 145.7, 145.1, 143.4, 134.9 (d, *J* = 33.2 Hz), 134.2 (d, J = 34.2 Hz), 134.1, 132.5, 129.0, 128.7, 128.42, 128.35, 127.6, 126.7 (q, J = 3.7 Hz), 126.4, 126.3 (q, J = 3.7 Hz), 126.2, 126.1, 126.0, 125.9, 124.9, 123.09 (q, J = 272.9) Hz), 123.06 (q, J = 272.9 Hz), 119.9, 118.2, 67.3, 26.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.12, -63.25.

HRMS (ESI) m/z calcd. for C₃₃H₂₅F₆N₂O₂S [M + H]⁺ 627.1535, found 627.1530.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N,2diphenylpropanamide (4)


According to General procedure A with 2-chloro-*N*,2-diphenylpropanamide (51.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product 4 as a white amorphous solid (64.7 mg, 66% yield, 77% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ (major) = 13.11 min, $t_{\rm R}$ (minor) = 15.71 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (s, 1H), 8.13 – 8.07 (m, 3H), 7.85 – 7.78 (m, 2H), 7.74 - 7.68 (m, 2H), 7.62 - 7.50 (m, 4H), 7.46 - 7.39 (m, 2H), 7.38 - 7.30 (m, 2H), 7.25 – 7.18 (m, 3H), 7.22 – 7.10 (m, 1H), 1.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 145.8, 145.5, 143.2, 137.6, 133.3, 132.8, 129.1, 128.7, 128.44, 128.39, 127.7, 126.4, 124.5, 119.5, 117.03, 116.97, 116.4, 67.0, 26.5. **HRMS** (ESI) m/z calcd. for C₂₉H₂₃N₄O₂S [M + H]⁺ 491.1536, found 491.1532.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^{6} -sulfaneylidene)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)propenamide (5)

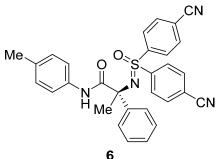
with 2-chloro-2-phenyl-N-(4-

Α

According

to

(trifluoromethyl)phenyl)propanamide (65.4 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc=50/1) to yield the product **5** as a white amorphous solid (96.0 mg, 86% yield, 54% ee).

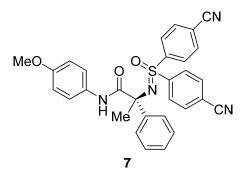

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (major) = 15.77 min, t_R (minor) = 28.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.42 (s, 1H), 8.15 – 8.07 (m, 2H), 7.87 – 7.81 (m, 2H), 7.75 – 7.63 (m, 4H), 7.63 – 7.52 (m, 4H), 7.45 – 7.38 (m, 2H), 7.26 – 7.20 (m, 3H), 1.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 145. 6, 145.4, 142.9, 140.6, 133.3, 132.9, 128.8, 128.5, 128.4, 127.9, 126.31, 126.29 (m), 126.1 (q, J = 21.7 Hz), 124.1 (q, J = 271.6 Hz), 119.2, 117.2, 116.9 (d, J = 5.8 Hz), 116.5, 67.0, 26.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.06.

HRMS (ESI) m/z calcd. for C₃₀H₂₂F₃N₄O₂S [M + H]⁺ 559.1410, found 559.1407.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-phenyl-*N*-(*p*-tolyl)propenamide (6)

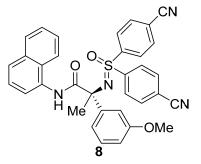

According to **General procedure A** with 2-chloro-2-phenyl-N-(p-tolyl)propanamide (54.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **6** as a white amorphous solid (61.5 mg, 61% yield, 84% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 17.08 min, t_R (minor) = 41.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.10 – 8.03 (m, 2H), 7.81 – 7.75 (m, 2H), 7.72 – 7.65 (m, 2H), 7.58 – 7.51 (m, 2H), 7.43 – 7.36 (m, 4H), 7.21 – 7.14 (m, 3H), 7.11 (d, *J* = 8.2 Hz, 2H), 2.31 (s, 3H), 1.94 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 145.8, 145.5, 143.2, 135.1, 134.1, 133.3, 132.8, 129.5, 128.7, 128.5, 128.4, 127.7, 126.4, 119.5, 117.0, 116.3, 66.9, 26.6, 20.9. HRMS (ESI) *m/z* calcd. for C₃₀H₂₅N₄O₂S [M + H]⁺ 505.1693, found 505.1688.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfanylidene)amino)-*N*-(4-methoxyphenyl)-2-phenylpropanamide (7)

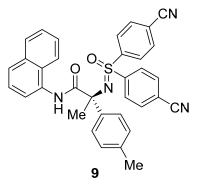

According to **General procedure A** with 2-chloro-*N*-(4-methoxyphenyl)-2-phenylpropanamide (57.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product 7 as a white amorphous solid (79.0 mg, 76% yield, 95% ee).

HPLC analysis: Chiralcel IF (hexane/*i*-PrOH = 30/70, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 23.59 min, t_R (minor) = 45.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.38 (m, 4H), 7.24 – 7.18 (m, 3H), 6.87 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 1.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 156.5, 145.8, 145.5, 143.2, 133.3, 132.8, 130.8, 128.8, 128.5, 128.4, 127.7, 126.4, 121.2, 117.1, 117.0, 116.3, 114.2, 66.9, 55.5, 26.5. HRMS (ESI) *m/z* calcd. for C₃₀H₂₅N₄O₃S [M + H]⁺ 521.1642, found 521.1646.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(3-methoxyphenyl)-*N*-(naphthalen-1-yl)propenamide (8)


According to **General procedure A** with 2-chloro-2-(3-methoxyphenyl)-N-(naphthalen-1-yl)propanamide (67.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 30/1) to yield the product **8** as an amorphous solid (92.3 mg, 81% yield, 90% ee).

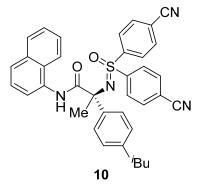
HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.81 min, t_R (major) = 15.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.27 – 8.09 (m, 3H), 7.89 (d, *J* = 8.3 Hz, 1H), 7.79 (dd, *J* = 12.9, 8.5 Hz, 4H), 7.75 – 7.71 (m, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.54 – 7.45 (m, 2H), 7.40 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 1H), 7.22 – 7.09 (m, 2H), 6.99 (t, *J* = 2.1 Hz, 1H), 6.73 (ddd, *J* = 7.9, 2.5, 1.1 Hz, 1H), 3.76 (s, 3H), 2.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 159.5, 145.8, 145.5, 144.5, 134.1, 133.2, 132.8, 132.3, 129.6, 129.1, 128.8, 128.5, 126.3, 126.2, 126.1, 125.9, 125.1, 119.8, 119.0, 118.6, 117.07, 117.06, 117.0, 116.3, 113.4, 112.0, 67.3, 55.3, 26.5. HRMS (ESI) *m/z* calcd. for C₃₄H₂₇N₄O₃S [M + H]⁺ 571.1798, found 571.1796.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)-λ⁶-sulfaneylidene)amino)-*N*-(naphthalen-1-yl)-2-(*p*-tolyl)propenamide (9)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-(*p*-tolyl)propanamide (64.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **9** as an white amorphous solid (102.9 mg, 93% yield, 93% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 30/70, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 19.90 min, t_R (major) = 29.01 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.17 (dd, J = 7.6, 1.1 Hz, 1H), 8.14 (d, J = 8.6 Hz, 1H), 7.86 (dd, J = 8.4, 1.3 Hz, 1H), 7.76 (d, J = 8.6 Hz, 3H), 7.75 – 7.68 (m, 3H), 7.64 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.51 – 7.42 (m, 2H), 7.39 – 7.31 (m, 3H), 6.98 (d, J = 8.1 Hz, 2H), 2.28 (s, 3H), 2.02 (s, 3H).

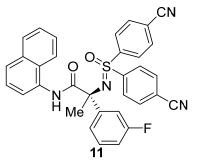
¹³**C NMR** (100 MHz, CDCl₃) δ 173.0, 145.9, 145.7, 140.1, 137.6, 134.1, 133.2, 132.8, 132.4, 129.09, 129.05, 128.9, 128.5, 126.4, 126.2, 126.14, 126.08, 125.9, 125.1, 119.8, 118.5, 117.1, 117.01, 116.99, 116.2, 67.3, 26.5, 21.0.

HRMS (ESI) m/z calcd. for C₃₄H₂₆N₄O₂SNa [M + Na]⁺ 577.1669, found 577.1669.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-isobutylphenyl)-*N*-(naphthalen-1-yl)propenamide (10)

According to **General procedure A** with 2-chloro-2-(4-isobutylphenyl)-*N*-(naphthalen-1-yl)propanamide (73.0 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction

mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **10** as an white amorphous solid (113.0 mg, 98% yield, 90% ee).


HPLC analysis: Chiralcel IE (hexane/*i*-PrOH = 30/70, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 41.18 min, t_R (minor) = 66.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.22 – 8.08 (m, 3H), 7.85 (dd, J = 8.2, 1.2 Hz, 1H), 7.76 (dd, J = 8.6, 1.9 Hz, 4H), 7.70 – 7.57 (m, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.50 – 7.30 (m, 5H), 6.98 (d, J = 8.2 Hz, 2H), 2.40 (d, J = 7.1 Hz, 2H), 2.03 (s, 3H), 1.80 (dp, J = 13.5, 6.8 Hz, 1H), 0.90 (dd, J = 6.7, 1.1 Hz, 6H).

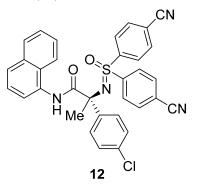
¹³**C NMR** (100 MHz, CDCl₃) δ 173.0, 146.0, 145.7, 141.4, 140.4, 134.1, 133.2, 132.8, 132.4, 129.14, 129.08, 128.9, 128.5, 126.3, 126.2, 126.13, 126.06, 125.9, 125.0, 119.0, 118.5, 117.1, 117.02, 116.96, 116.3, 67.3, 44.9, 30.1, 26.6, 22.4.

HRMS (ESI) m/z calcd. for C₃₇H₃₃N₄O₂S [M + H]⁺ 597.2319, found 597.2315.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(3-fluorophenyl)-N-(naphthalen-1-yl)propenamide (11)

According to **General procedure B** with 2-chloro-2-(3-fluorophenyl)-*N*-(naphthalen-1-yl)propanamide (65.4 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **11** as a yellow oil (98.2 mg, 88% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 18.197 min, t_R (major) = 21.701 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.33 – 8.10 (m, 3H), 7.90 (dd, J = 8.3, 1.3 Hz, 1H), 7.87 – 7.78 (m, 4H), 7.74 – 7.67 (m, 2H), 7.67 – 7.60 (m, 2H), 7.56 – 7.45 (m, 2H), 7.44 – 7.37 (m, 1H), 7.35 – 7.29 (m, 1H), 7.29 – 7.17 (m, 2H), 6.93 (tdd, J = 8.2, 2.5, 1.0 Hz, 1H), 2.04 (s, 3H).

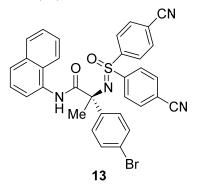
¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 162.7 (d, J = 246.5 Hz), 145.9 (d, J = 6.6 Hz), 145.7, 145.5, 134.1, 133.4, 133.0, 132.2, 130.1 (d, J = 8.2 Hz), 129.1, 128.7, 128.5, 126.3, 126.03, 126.00, 125.3, 122.2 (d, J = 2.9 Hz), 119.7, 118.7, 117.3, 116.94, 116.92, 116.7, 114.7 (d, J = 21.0 Hz), 113.8 (d, J = 22.7 Hz), 67.02, 67.00, 26.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.0 – –112.2 (m).

HRMS (ESI) m/z calcd. for C₃₃H₂₄FN₄O₂S [M + H]⁺ 559.1599, found 559.1598.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-chlorophenyl)-*N*-(naphthalen-1-yl)propenamide (12)

According to **General procedure A** with 2-chloro-2-(4-chlorophenyl)-*N*-(naphthalen-1-yl)propanamide (68.6 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **12** as a light yellow amorphous solid (101.1 mg, 88% yield, 90% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.116 min, t_R (major) = 21.01 min.

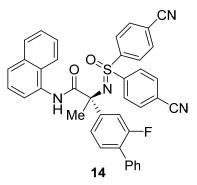
¹**H** NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.26 – 8.06 (m, 3H), 7.91 – 7.85 (m, 1H), 7.85 – 7.74 (m, 4H), 7.72 – 7.66 (m, 2H), 7.66 – 7.60 (m, 2H), 7.55 – 7.42 (m, 4H), 7.41 – 7.34 (m, 1H), 7.19 (d, J = 8.6 Hz, 2H), 2.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 145.8, 145.6, 141.8, 134.1, 133.8, 133.3, 133.0, 132.1, 129.2, 128.7, 128.48, 128.45, 128.0, 126.2, 126.1, 126.0, 125.3, 119.6, 118.6, 117.3, 116.9, 116.7, 67.0, 26.5.

HRMS (ESI) m/z calcd. for C₃₃H₂₄ClN₄O₂S [M + H]⁺ 575.1303, found 575.1301.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-bromophenyl)-N-(naphthalen-1-yl)propenamide (13)

According to **General procedure A** with 2-(4-bromophenyl)-2-chloro-*N*-(naphthalen-1-yl)propanamide (77.4 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **13** as a white amorphous solid (111.1 mg, 90% yield, 91% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 30/70, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 21.64 min, t_R (major) = 32.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.22 – 8.10 (m, 3H), 7.91 – 7.86 (m, 1H), 7.83 – 7.79 (m, 2H), 7.78 – 7.74 (m, 2H), 7.73 – 7.65 (m, 2H), 7.64 – 7.59 (m, 2H), 7.53 – 7.44 (m, 2H), 7.42 – 7.28 (m, 5H), 2.00 (s, 3H).

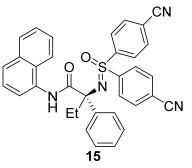
¹³C NMR (100 MHz, CDCl₃)δ 172.4, 145.7, 145.5, 142.3, 134.1, 133.3, 133.01, 132.97, 132.1, 131.4, 129.1, 128.7, 128.5, 128.3, 126.3, 126.1, 126.0, 125.3, 122.0, 119.7, 118.7, 117.2, 116.9, 116.7, 67.1, 26.4.

HRMS (ESI) m/z calcd. for C₃₃H₂₄BrN₄O₂S [M + H]⁺ 619.0798 & 621.0777, found 619.0796 & 621.0777.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(2-fluoro-[1,1'-biphenyl]-4-yl)-N-(naphthalen-1-yl)propenamide (14)

According to **General procedure A** with 2-chloro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)-N-(naphthalen-1-yl)propanamide (80.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **14** as a white powder (114.1 mg, 90% yield, >99% ee).

HPLC analysis: Chiralcel ID (hexane/*i*-PrOH = 30/70, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 26.47 min, t_R (major) = 39.02 min.


¹**H** NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.36 – 8.15 (m, 3H), 7.92 (d, *J* = 7.1 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 4H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 2H), 7.58 – 7.47 (m, 6H), 7.46 – 7.29 (m, 5H), 2.11 (s, 3H).

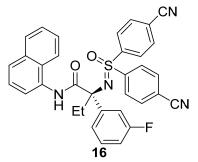
¹³**C** NMR (100 MHz, CDCl₃) δ 172.4, 159.3 (d, J = 248.9 Hz), 145.7, 145.5, 144.5 (d, J = 6.9 Hz), 134.9, 134.1, 133.4, 132.9, 132.2, 130.7 (d, J = 3.8 Hz), 129.2, 128.84, 128.81, 128.79, 128.73, 128.68, 128.5, 128.4, 128.0, 126.27, 126.25, 126.1, 126.0, 125.3, 122.6 (d, J = 3.3 Hz), 119.7, 118.7, 117.3, 116.9 (d, J = 2.8 Hz), 116.6, 114.7 (d, J = 24.4 Hz), 67.0 (d, J = 1.4 Hz), 26.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.94 (dd, J = 11.8, 8.0 Hz)

HRMS (ESI) m/z calcd. for C₃₉H₂₈FN₄O₂S [M + H]⁺ 635.1912, found 635.1916.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N-(naphthalen-1-yl)-2-phenylbutanamide (15)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylbutanamide (64.8 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **15** as a light yellow amorphous solid (85.3 mg, 77% yield, 91% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 18.56 min, t_R (major) = 25.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.27 (dd, J = 7.6, 1.1 Hz, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.93 (dd, J = 8.3, 1.3 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.77 – 7.64 (m, 5H), 7.63 – 7.50 (m, 4H), 7.45 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.16 – 7.04 (m, 3H), 2.74 – 2.58 (m, 1H), 2.49 (dq, J = 14.0, 7.1 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.1, 145.8, 145.1, 141.9, 134.1, 133.1, 132.6, 132.2, 129.2, 128.7, 128.31, 128.26, 127.8, 127.4, 126.3, 126.1, 126.0, 125.1, 119.7, 118.4, 117.1, 117.0, 116.8, 116.0, 71.8, 32.2, 9.2.

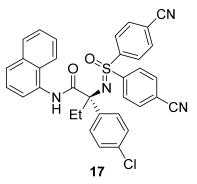
HRMS (ESI) m/z calcd. for C₃₄H₂₇N₄O₂S [M + H]⁺ 555.1849, found 555.1850.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(3-fluorophenyl)-N-(naphthalen-1-yl)butanamide (16)

According to **General procedure A** with 2-chloro-2-(3-fluorophenyl)-*N*-(naphthalen-1-yl)butanamide (68.2 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **16** as a light yellow amorphous solid (75.5 mg, 66% yield, 89% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 17.55 min, t_R (major) = 28.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.01 (s, 1H), 8.25 (d, J = 7.5 Hz, 1H), 8.11 – 8.05 (m, 2H), 7.94 (d, J = 8.1 Hz, 1H), 7.87 – 7.76 (m, 3H), 7.76 – 7.69 (m, 3H), 7.62 – 7.41 (m,

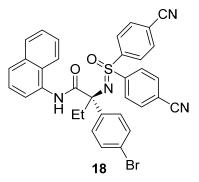

5H), 7.20 – 6.99 (m, 3H), 6.85 – 6.77 (m, 1H), 2.61 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.47 (dq, *J* = 14.0, 7.1 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 171.5, 162.4 (d, J = 246.9 Hz), 145.5, 145.0, 144.4 (d, J = 6.5 Hz), 134.1, 133.2, 132.7, 131.9, 129.9 (d, J = 8.1 Hz), 129.2, 128.6, 128.3, 126.3, 126.1, 126.0, 125.3, 123.1 (d, J = 2.9 Hz), 119.6, 118.5, 117.1, 117.0, 116.9, 116.3, 114.8 (d, J = 11.6 Hz), 114.6 (d, J = 10.2 Hz), 71.4 (d, J = 1.7 Hz), 32.3, 9.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.22 (td, *J* = 9.6, 6.4 Hz).

HRMS (ESI) m/z calcd. for C₃₄H₂₆FN₄O₂S [M + H]⁺ 573.1755, found 573.1758.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-chlorophenyl)-N-(naphthalen-1-yl)butanamide (17)


According to **General procedure A** with 2-chloro-2-(4-chlorophenyl)-N-(naphthalen-1-yl)butanamide (71.4 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **17** as a light yellow amorphous solid (82.3 mg, 70% yield, 88% ee).

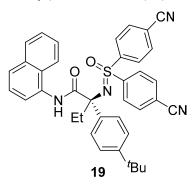
HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 11.64 min, t_R (major) = 24.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.26 – 8.20 (m, 1H), 8.04 – 7.98 (m, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.80 – 7.73 (m, 3H), 7.73 – 7.64 (m, 3H), 7.60 – 7.56 (m, 2H), 7.55 – 7.48 (m, 2H), 7.47 – 7.40 (m, 1H), 7.33 – 7.20 (m, 2H), 7.05 – 6.98 (m, 2H), 2.57 (dq, J = 14.2, 7.2 Hz, 1H), 2.45 (dq, J = 14.2, 7.2 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 145.6, 145.1, 140.4, 134.1, 133.9, 133.1, 132.7, 131.9, 129.2, 128.9, 128.7, 128.3, 128.2, 126.3, 126.12, 126.08, 126.0, 125.3, 119.5, 118.4, 117.0, 116.89, 116.86, 116.3, 71.3, 32.4, 9.2.

HRMS (ESI) m/z calcd. for C₃₄H₂₆ClN₄O₂S [M + H]⁺ 589.1460, found 589.1456.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-bromophenyl)-N-(naphthalen-1-yl)butanamide (18)

According to **General procedure A** with 2-(4-bromophenyl)-2-chloro-*N*-(naphthalen-1-yl)butanamide (80.2 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **18** as a light yellow amorphous solid (93.5 mg, 74% yield, 88% ee).

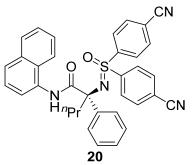

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.64 min, t_R (major) = 28.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.26 (d, *J* = 7.6 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.84 – 7.76 (m, 3H), 7.76 – 7.66 (m, 3H), 7.63 – 7.42 (m, 5H), 7.23 – 7.15 (m, 4H), 2.54 (ddq, *J* = 41.2, 14.0, 7.1 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 145.6, 145.0, 140.9, 134.1, 133.1, 132.7, 131.9, 131.2, 129.23, 129.21, 128.7, 128.2, 126.3, 126.13, 126.10, 126.0, 125.3, 122.1, 119.5, 118.5, 117.1, 116.91, 116.87, 116.2, 71.3, 32.3, 9.2.

HRMS (ESI) m/z calcd. for C₃₄H₂₆BrN₄O₂S [M + H]⁺ 633.0594, found 633.0597.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-(4-(*tert*-butyl)phenyl)-N-(naphthalen-1-yl)butanamide (19)



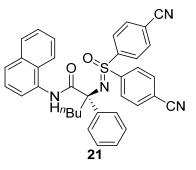
According to **General procedure A** with 2-(4-(*tert*-butyl)phenyl)-2-chloro-*N*-(naphthalen-1-yl)butanamide (75.8 mg, 0.20 mmol, 1.0 equiv.) for 16 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **19** as an amorphous solid (109.8 mg, 90% yield, 87% ee). **HPLC** analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 12.68 min, *t*_R (major) = 23.47 min. ¹**H** NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 8.27 (dd, J = 7.6, 1.1 Hz, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.91 (dd, J = 8.3, 1.3 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.58 – 7.38 (m, 5H), 7.21 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 2.67 – 2.44 (m, 2H), 1.25 (t, J = 9.0 Hz, 3H), 1.23 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 150.7, 145.9, 145.2, 138.7, 134.1, 133.1, 132.5, 132.2, 129.2, 128.7, 128.3, 127.0, 126.20, 126.17, 126.1, 125.9, 125.1, 125.0, 119.7, 118.3, 117.03, 116.96, 116.8, 115.9, 71.6, 34.4, 32.3, 31.3, 9.3.

HRMS (ESI) m/z calcd. for C₃₈H₃₅N₄O₂S [M + H]⁺ 611.2475, found 611.2470.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-*N*-(naphthalen-1-yl)-2-phenylpentanamide (20)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpentanamide (67.8 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **20** as an amorphous solid (97.7 mg, 86% yield, 89% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 8.32 min, t_R (major) = 12.80 min.

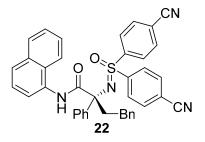
¹**H** NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.25 (dd, J = 7.5, 1.1 Hz, 1H), 8.04 (d, J = 8.6 Hz, 2H), 7.88 (d, J = 1.3 Hz, 1H), 7.79 – 7.70 (m, 3H), 7.67 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.55 – 7.45 (m, 4H), 7.41 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.12 – 7.00 (m, 3H), 2.53 (td, J = 12.7, 4.5 Hz, 1H), 2.36 (td, J = 12.6, 3.9 Hz, 1H), 1.98 – 1.82 (m, 1H), 1.59 – 1.44 (m, 1H), 1.02 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 145.8, 145.0, 142.1, 134.1, 133.1, 132.6, 132.2, 129.2, 128.7, 128.33, 128.26, 127.8, 127.2, 126.24, 126.15, 126.1, 126.0, 125.0, 119.6, 118.2, 117.1, 117.0, 116.9, 116.0, 71.2, 41.4, 18.0, 14.5.

HRMS (ESI) m/z calcd. for C₃₅H₂₉N₄O₂S [M + H]⁺ 569.2006, found 569.2004.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N-(naphthalen-1-yl)-2-phenylhexanamide (21)

According to **General procedure B** with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylhexanamide (70.2 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **21** as a light yellow amorphous solid (82.6 mg, 71% yield, 88% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 21.70 min, t_R (major) = 25.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 8.3 Hz, 2H), 7.93 (d, J = 8.2 Hz, 1H), 7.78 (dd, J = 8.4, 4.3 Hz, 3H), 7.71 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.59 – 7.50 (m, 4H), 7.44 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.35 (dd, J = 7.7, 1.9 Hz, 2H), 7.16 – 7.04 (m, 3H), 2.64 – 2.53 (m, 1H), 2.48 – 2.36 (m, 1H), 1.95 – 1.81 (m, 1H), 1.56 – 1.39 (m, 3H), 0.96 (t, J = 7.1 Hz, 3H).

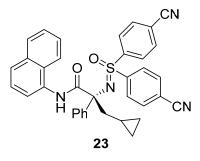
¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 145.8, 145.1, 142.2, 134.1, 133.1, 132.6, 132.2, 129.2, 128.7, 128.34, 128.27, 127.8, 127.2, 126.21, 126.17, 126.1, 126.0, 125.0, 119.6, 118.2, 117.1, 117.0, 116.9, 116.0, 71.2, 39.0, 26.6, 23.1, 14.1.

HRMS (ESI) m/z calcd. for C₃₆H₃₁N₄O₂S [M + H]⁺ 583.2162, found 583.2160.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-*N*-(naphthalen-1-yl)-2,4-diphenylbutanamide (22)

According to **General procedure A** with 2-chloro-*N*-(naphthalen-1-yl)-2,4diphenylbutanamide (85.4 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **22** as an amorphous solid (110.9 mg, 88% yield, 91% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 19.17 min, t_R (minor) = 75.25 min.


¹**H** NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.31 (dd, J = 7.6, 1.1 Hz, 1H), 8.14 (d, J = 8.6 Hz, 2H), 8.00 – 7.91 (m, 1H), 7.82 – 7.74 (m, 3H), 7.71 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.6 Hz, 2H), 7.61 – 7.51 (m, 2H), 7.52 – 7.43 (m, 3H), 7.42 – 7.29 (m, 6H), 7.28

- 7.19 (m, 1H), 7.16 - 7.05 (m, 3H), 3.27 (td, *J* = 12.2, 3.5 Hz, 1H), 2.95 (td, *J* = 12.2, 4.1 Hz, 1H), 2.79 (dtd, *J* = 38.7, 12.0, 3.9 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 145.6, 144.8, 142.0, 141.9, 134.1, 133.2, 132.6, 132.1, 129.2, 128.7, 128.6, 128.5, 128.4, 127.9, 127.2, 126.3, 126.2, 126.1, 126.0, 125.2, 119.6, 118.4, 117.1, 117.03, 116.95, 116.0, 71.1, 41.6, 31.0.

HRMS (ESI) m/z calcd. for C₄₀H₃₁N₄O₂S [M + H]⁺ 631.2162, found 631.2162.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-3-cyclopropyl-N-(naphthalen-1-yl)-2-phenylpropanamide (23)

According to **General procedure A** with 2-chloro-3-cyclopropyl-*N*-(naphthalen-1-yl)-2-phenylpropanamide (69.8 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **23** as a light yellow amorphous solid (94.0 mg, 81% yield, 87% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 30/70, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (minor) = 13.29 min, t_R (major) = 18.78 min.

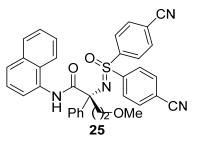
¹**H NMR** (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.33 – 8.26 (m, 1H), 8.08 – 8.01 (m, 2H), 7.93 – 7.89 (m, 1H), 7.88 – 7.82 (m, 1H), 7.79 – 7.72 (m, 2H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.55 – 7.47 (m, 4H), 7.46 – 7.40 (m, 1H), 7.27 – 7.22 (m, 2H), 7.14 – 6.95 (m, 3H), 2.83 (dd, *J* = 13.5, 4.3 Hz, 1H), 2.11 (dd, *J* = 13.5, 8.9 Hz, 1H), 1.34 – 1.21 (m, 1H), 0.58 – 0.46 (m, 1H), 0.44 – 0.28 (m, 2H), 0.27 – 0.18 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 145.8, 145.1, 141.8, 134.1, 133.1, 132.6, 132.4, 129.2, 128.7, 128.3, 128.1, 127.8, 127.5, 126.3, 126.2, 126.1, 126.0, 124.9, 119.7, 118.3, 117.1, 117.0, 116.8, 115.9, 71.4, 43.7, 6.8, 5.0, 4.2.

HRMS (ESI) m/z calcd. for C₃₆H₂₉N₄O₂S [M + H]⁺ 581.2006, found 581.2003.

 $(R)-2-((Bis(4-cyanophenyl)(oxo)-\lambda^6-sulfaneylidene)amino)-5,5,5-trifluoro-N-(naphthalen-1-yl)-2-phenylpentanamide (24)$

According to **General procedure B** with 2-chloro-5,5,5-trifluoro-*N*-(naphthalen-1-yl)-2-phenylpentanamide (78.2 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture

was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **24** as a light yellow oil (109.5 mg, 88% yield, 95% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.12 min, t_R (major) = 16.76 min.

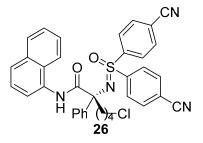
¹**H NMR** (400 MHz, CDCl₃) δ 9.76 (s, 1H), 8.16 (dd, J = 7.6, 1.0 Hz, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.93 (dd, J = 8.3, 1.2 Hz, 1H), 7.82 – 7.63 (m, 6H), 7.59 – 7.47 (m, 5H), 7.43 – 7.37 (m, 2H), 7.27 – 7.13 (m, 3H), 2.99 – 2.84 (m, 1H), 2.78 – 2.50 (m, 2H), 2.45 – 2.30 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.8, 145.3, 144.8, 140.6, 134.1, 133.2, 132.8, 131.7, 129.3, 128.7, 128.6, 128.4, 128.3, 127.4 (q, J = 275.0 Hz), 127.0, 126.5, 126.1, 126.0, 125.9, 125.4, 119.3, 118.2, 117.0, 116.9, 116.4, 69.9, 32.0, 29.7 (q, J = 29.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –65.82 (t, J = 10.6 Hz).

HRMS (ESI) m/z calcd. for C₃₅H₂₆F₃N₄O₂S [M + H]⁺ 623.1723, found 623.1719.

 $(R)-2-((Bis(4-cyanophenyl)(oxo)-\lambda^6-sulfaneylidene)amino)-4-methoxy-N-(naphthalen-1-yl)-2-phenylbutanamide (25)$

According to **General procedure A** with 2-chloro-4-methoxy-*N*-(naphthalen-1-yl)-2-phenylbutanamide (70.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **25** as an amorphous solid (82.9 mg, 71% yield, 92% ee).


HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 27.84 min, t_R (minor) = 37.26 min.

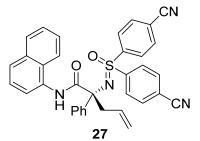
¹**H NMR** (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.23 (dd, J = 7.6, 1.1 Hz, 1H), 8.01 (d, J = 8.6 Hz, 2H), 7.94 – 7.88 (m, 1H), 7.83 – 7.66 (m, 6H), 7.61 – 7.38 (m, 5H), 7.34 (d, J = 6.4 Hz, 2H), 7.20 – 6.98 (m, 3H), 3.91 (ddd, J = 9.5, 8.4, 5.0 Hz, 1H), 3.76 (ddd, J = 9.4, 8.1, 6.2 Hz, 1H), 3.35 (s, 3H), 2.95 (ddd, J = 13.2, 8.4, 6.2 Hz, 1H), 2.74 (ddd, J = 13.3, 8.2, 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 145.7, 145.1, 141.3, 134.1, 133.1, 132.7, 132.1, 129.2, 128.7, 128.4, 128.3, 128.0, 127.2, 126.3, 126.14, 126.12, 126.0, 125.1, 119.7, 118.4, 117.1, 117.0, 116.8, 116.2, 69.4, 69.2, 58.8, 38.7.

HRMS (ESI) m/z calcd. for C₃₅H₂₉N₄O₃S [M + H]⁺ 585.1955, found 585.1951.

(*R*)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-6-chloro-*N*-(naphthalen-1-yl)-2-phenylhexanamide (26)

According to **General procedure B** with 2,6-dichloro-*N*-(naphthalen-1-yl)-2-phenylhexanamide (77.0 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **26** as a light yellow amorphous solid (94.9 mg, 77% yield, 87% ee).

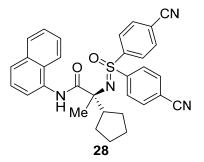

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.42 min, t_R (major) = 17.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.23 (dd, J = 7.6, 1.1 Hz, 1H), 8.09 – 8.00 (m, 2H), 7.95 – 7.89 (m, 1H), 7.81 – 7.68 (m, 6H), 7.63 – 7.41 (m, 5H), 7.39 – 7.32 (m, 2H), 7.18 – 7.03 (m, 3H), 3.88 – 3.41 (m, 2H), 2.85 – 2.53 (m, 1H), 2.49 – 2.39 (m, 1H), 2.16 – 2.02 (m, 1H), 2.02 – 1.83 (m, 2H), 1.74 – 1.59 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 145.7, 145.0, 141.8, 134.1, 133.1, 132.7, 132.0, 129.2, 128.7, 128.4, 128.3, 127.9, 127.2, 126.3, 126.12, 126.10, 126.0, 125.2, 119.6, 118.4, 117.1, 117.0, 116.9, 116.1, 71.0, 44.9, 38.4, 32.8, 22.0.

HRMS (ESI) m/z calcd. for C₃₆H₃₀ClN₄O₂S [M + H]⁺ 617.1773, found 617.1769.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-N-(naphthalen-1-yl)-2-phenylpent-4-enamide (27)


According to General procedure A with 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpent-4-enamide (72.6 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **27** as an amorphous solid (83.8 mg, 74% yield, 92% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 11.40 min, t_R (major) = 19.42 min.

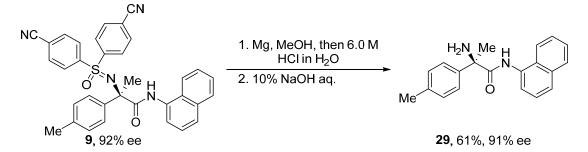
¹**H** NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.20 (dd, J = 7.6, 1.1 Hz, 1H), 7.99 (d, J = 8.6 Hz, 2H), 7.92 (dd, J = 8.2, 1.3 Hz, 1H), 7.80 – 7.68 (m, 6H), 7.62 – 7.40 (m, 5H), 7.39 – 7.31 (m, 2H), 7.18 – 7.05 (m, 3H), 6.18 (ddt, J = 17.2, 10.2, 6.9 Hz, 1H), 5.32 (dd, J = 17.2, 1.9 Hz, 1H), 5.19 (dd, J = 10.2, 2.0 Hz, 1H), 3.49 – 3.09 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 145.9, 145.3, 141.2, 134.1, 133.3, 133.0, 132.7, 132.1, 129.1, 128.7, 128.3, 128.2, 128.0, 127.4, 126.3, 126.2, 126.1, 126.0, 125.2, 119.8, 119.4, 118.6, 117.1, 117.0, 116.8, 116.2, 71.0, 43.6. HRMS (ESI) *m/z* calcd. for C₃₅H₂₇N₄O₂S [M + H]⁺ 567.1849, found 567.1849.

(R)-2-((Bis(4-cyanophenyl)(oxo)- λ^6 -sulfaneylidene)amino)-2-cyclopentyl-N-(naphthalen-1-yl)propenamide (28)

According to **General procedure B** with 2-bromo-2-cyclopentyl-*N*-(naphthalen-1-yl)propanamide (69.0 mg, 0.20 mmol, 1.0 equiv.) for 36 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to yield the product **28** as a yellow oil (70.2 mg, 66% yield, 64% ee).

HPLC analysis: Chiralcel IA (hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.02 min, t_R (minor) = 13.47 min.

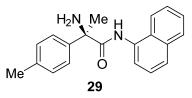

¹**H** NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 8.21 (d, J = 8.3 Hz, 2H), 8.12 (d, J = 8.0 Hz, 3H), 7.92 – 7.75 (m, 6H), 7.69 (d, J = 8.2 Hz, 1H), 7.50 (td, J = 7.8, 4.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 2.47 (p, J = 8.6 Hz, 1H), 1.93 – 1.58 (m, 8H), 1.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 147.9, 146.9, 134.1, 133.4, 133.3, 132.5, 129.0, 128.7, 128.5, 126.7, 126.1, 126.0, 125.9, 125.2, 120.2, 119.2, 117.1, 117.0, 116.94, 116.90, 68.0, 51.3, 27.9, 27.5, 25.6, 25.4, 24.3.

HRMS (ESI) m/z calcd. for C₃₂H₂₈N₄O₂SNa [M + Na]⁺ 555.1825, found 555.1824.

Transformation

The synthesis of 29.

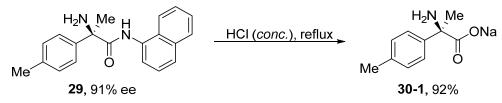


To a flamed flask charged with a stir bar were added 9 (83.1 mg, 0.15 mmol, 1.0 equiv.,

92% ee), Mg (36.0 mg, 1.5 mmol, 10.0 equiv.) and anhydrous MeOH (2.0 mL) under argon. The reaction was stirred at room temperature until Mg disappeared. Upon completion (monitored by TLC), HCl (0.55 mL, 3.3 mmol, 22.0 equiv., 6.0 M in H₂O) was added at 0 °C, and the reaction mixture was stirred at room temperature to afford a homogenous solution in 0.5 h.

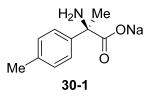
After completion (monitored by TLC), 10% aqueous NaOH solution was added to adjust the pH value to 10. Then, the mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the desired product **29** as a colorless oil (27.8 mg, 61% yield, 91% ee).

(R)-2-Amino-N-(naphthalen-1-yl)-2-(p-tolyl)propanamide (29)


HPLC analysis: Chiralcel AD (hexane/^{*i*}PrOH = 75/25, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 7.47 min, t_R (minor) = 15.37 min.

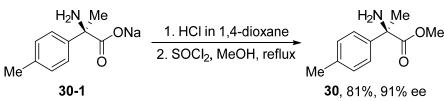
¹**H** NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 8.24 (d, *J* = 7.5 Hz, 1H), 7.91 – 7.80 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.42 (m, 5H), 7.22 (d, *J* = 8.1 Hz, 2H), 2.71 (brs, 2H), 2.36 (s, 3H), 1.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 140.9, 137.5, 134.0, 132.6, 129.5, 128.8, 126.2, 126.1, 126.0, 125.8, 125.3, 124.7, 120.2, 118.0, 61.2, 28.1, 21.0.

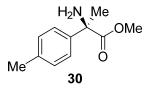

HRMS (ESI) m/z calcd. for C₂₀H₂₁N₂O₂ [M + H]⁺ 305.1648, found 305.1654.

The synthesis of 30-1

The compound of **29** (27.4 mg, 0.090 mmol, 1.0 equiv., 92% ee) in concentrated HCl (1.0 mL) was refluxed for 24 h. The reaction mixture was concentrated and adjusted pH to 10 with 10% aqueous NaOH solution, and extracted with CH_2Cl_2 three times. After that, the aqueous phase was evaporated to yield **30-1** as a white solid (16.6 mg, 92% yield) without further purification.


Sodium (*R*)-2-amino-2-(*p*-tolyl)propanoate (30-1)

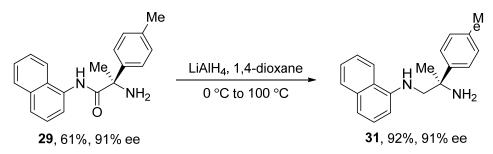
¹**H NMR** (400 MHz, D₂O) δ 7.34 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 2.30 (s, 3H), 1.78 (s, 3H).


¹³C NMR (100 MHz, D₂O) δ 178.3, 138.9, 136.7, 129.5, 125.7, 62.4, 22.5, 20.2. HRMS (ESI) *m/z* calcd. for C₁₀H₁₂NO₂ [M – Na]⁻ 178.0874, found 178.0869.

The synthesis of 30

To a solution of **30-1** (10.1 mg, 0.050 mmol, 1.0 equiv.) in MeOH (1.0 mL) was added HCl (15 μ l, 0.06 mmol, 1.2 equiv., 4.0 M in 1,4-dioxane),the mixture was stirred for 5 min, then the mixture was added thionyl chloride (29.5 mg, 0.25 mmol, 5.0 equiv.) and the reaction mixture was refluxed for 3 h. The solvent was evaporated, followed by the addition of CH₂Cl₂. Then the solution was washed with saturated aqueous Na₂CO₃ solution, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the desired product **30** (7.8 mg, 81% yield, 91% ee) as a slight yellow oil.

Methyl (R)-2-amino-2-(p-tolyl)propanoate (30)



HPLC analysis: Chiralcel OJH (hexane/^{*i*}PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (minor) = 7.79 min, *t*_R (major) = 10.71 min.

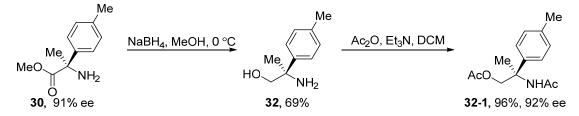
¹**H NMR** (600 MHz, CDCl₃) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 3.70 (s, 3H), 2.33 (s, 3H), 2.11 (brs, 2H), 1.70 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 176.5, 140.8, 137.3, 129.2, 125.0, 60.5, 52.6, 27.2, 21.0. HRMS (ESI) *m/z* calcd. for C₁₁H₁₆NO₂ [M + H]⁺ 194.1176, found 194.1182.

The synthesis of 31

To a solution of LiAlH₄ (9.5 mg, 0.25 mmol, 2.5 equiv.) in 1,4-dioxane (2.0 ml) at 0 °C, **29** (30.4 mg, 0.10 mmol, 1.0 equiv.) was added and warmed up to 100 °C. After completion (monitored by TLC), the mixture was quenched by water at 0 °C and extracted with EtOAc three times. The organic phase was concentrated in vacuum and purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1) to yield the desired product **31** (26.7 mg, 92% yield, 91% ee) as a slight yellow oil.

(*R*)-*N*¹-(Naphthalen-1-yl)-2-(*p*-tolyl)propane-1,2-diamine (31)

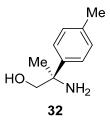

HPLC analysis: Chiralcel INB (hexane/^{*i*}PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 17.50 min, t_R (minor) = 28.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.32 (m, 5H), 7.26 (t, *J* = 8.2 Hz, 3H), 6.66 (d, *J* = 7.5 Hz, 1H), 4.70 (brs, 1H), 3.47 (q, *J* = 11.5 Hz, 2H), 2.40 (s, 3H), 1.87 (brs, 2H), 1.67 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.9, 136.6, 134.3, 129.4, 128.6, 126.7, 125.7, 125.2, 124. 7, 123.8, 120.1, 117.4, 104.6, 55.9, 55.4, 29.5, 21.0.

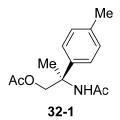
HRMS (ESI) m/z calcd. for C₂₀H₂₃N [M + H]⁺ 291.1856, found 291.1848.

The synthesis of 32



To a solution of **30** (19.3 mg, 0.10 mmol, 1.0 equiv.) in MeOH (1.0 ml) at 0 °C, NaBH₄ (7.6 mg, 0.2 mmol, 2.0 equiv.) was added and stirred at this temperature. After completion (monitored by TLC), the mixture was quenched by water at 0 °C and extracted with CH₂Cl₂ three times. The organic phase was concentrated in vacuum and purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1) to yield the desired product **32** (26.7 mg, 69% yield) as a yellow oil.

The ee value of **32** was determined by **32-1**.

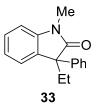

To a solution of **32** (11.4 mg, 0.069 mmol, 1.0 equiv.) and Ac₂O (21.1 mg, 0.207 mmol, 3.0 equiv.) in CH₂Cl₂ (1.0 ml), Et₃N (20.9 mg, 0.207 mmol, 3.0 equiv.) was added dropwise and stirred at room temperature overnight. After concentration, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the desired product **32-1** (16.5 mg, 96% yield, 92% ee) as a white amorphous solid.

(R)-2-Amino-2-(p-tolyl)propan-1-ol (32)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 2H), 7.24 – 7.12 (m, 2H), 3.70 – 3.53 (m, 2H), 2.36 (s, 3H), 2.10 (brs, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.5, 129.2, 125.2, 71.7, 56.2, 27.0, 20.9. HRMS (ESI) *m/z* calcd. for C₁₀H₁₆NO [M + H]⁺ 166.1226, found 166.1224.

(R)-2-Acetamido-2-(p-tolyl)propyl acetate (32-1)

HPLC analysis: Chiralcel INA (hexane/^{*i*}PrOH = 95/05, flow rate 0.7 mL/min, λ = 214 nm), *t*_R (major) = 29.30 min, *t*_R (minor) = 38.53 min.

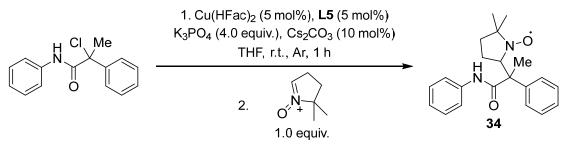

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.34 (s, 1H), 4.41 (d, *J* = 11.3 Hz, 1H), 4.25 (d, *J* = 11.3 Hz, 1H), 2.31 (s, 3H), 2.06 (s, 3H), 1.97 (s, 3H), 1.73 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 169.5, 139.3, 136.9, 129.2, 125.3, 70.1, 58.5, 24.2, 23.0, 21.0, 20.9.

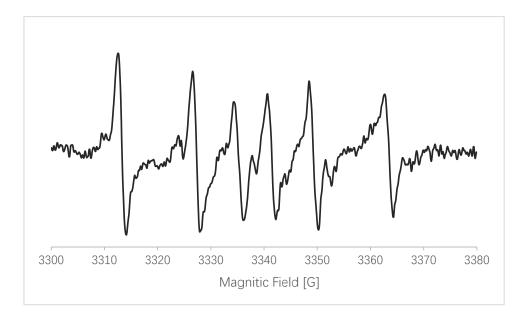
HRMS (ESI) m/z calcd. for C₁₄H₂₀NO₃ [M + H]⁺ 250.1438, found 250.1430.

Mechanism

3-Ethyl-1-methyl-3-phenylindolin-2-one (33)


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 4,4'-sulfonimidoyldibenzonitrile (53.4 mg, 0.20 mmol, 1.0 equiv.), Cu(HFac)₂ (4.4 mg, 0.010 mmol, 5.0 mol%), L5 (4.3 mg, 0.010 mmol, 5.0 mol%), Cs₂CO₃ (260.8 mg, 0.80 mmol, 4.0 equiv.) and PhCF₃ (2.0 mL). Then, 2-chloro-*N*-methyl-*N*,2-diphenylbutanamide (67.4 mg, 0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at 80 °C for 16 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc= 50/1) to afford the product **33** as a white amorphous solid (41.2 mg, 82% yield).

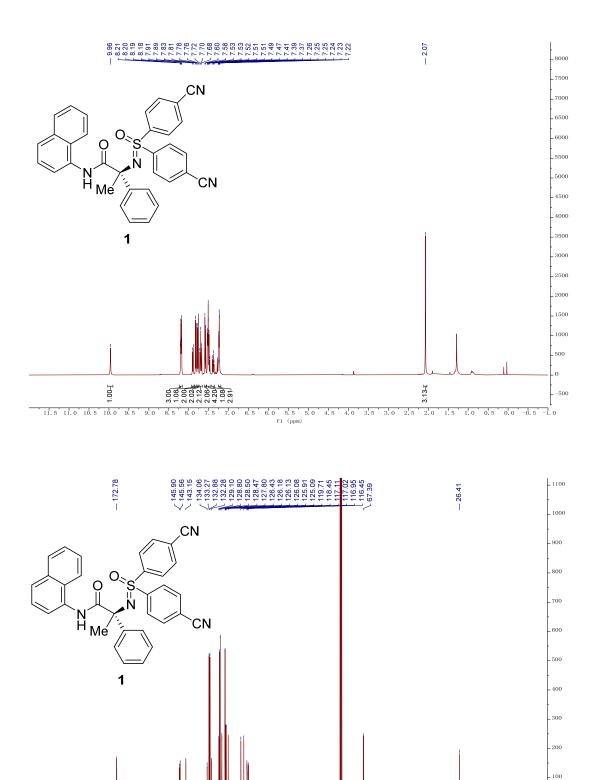
¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.21 (m, 7H), 7.15 (td, *J* = 7.5, 1.1 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 3.26 (s, 3H), 2.46 (dq, *J* = 13.5, 7.3 Hz, 1H), 2.27 (dq, *J* = 13.4, 7.4 Hz, 1H), 0.71 (t, *J* = 7.4 Hz, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 178.6, 144.1, 140.3, 132.1, 128.5, 128.1, 127.2, 127.0, 124.8, 122.6, 108.2, 57.3, 30.9, 26.4, 9.1.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NO [M + H]⁺ 252.1383, found 252.1386.

Spin trap Study.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(HFac)₂ (4.4 mg, 0.010 mmol, 5.0 mol%), L5 (4.3 mg, 0.010 mmol, 5.0 mol%), Cs₂CO₃ (6.5 mg, 0.020 mmol, 10.0 mol%), K₃PO₄ (169.6 mg, 0.80 mmol, 4.0 equiv.) and anhydrous THF (2.0 mL). Then, 2-chloro-*N*,2-diphenylpropanamide (51 mmol, 0.2 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 1h. Then the reaction was transferred into the glove box and DMPO (2,2-dimethyl-3,4-dihydro-2*H*-pyrrole 1-oxide, 22mg, 0.2 mmol, 1.0 equiv.) was added, After that an aliquot (0.3 mL) was taken from the mixture for room temperature Q-band CW-EPR.


Figure S5. Spin trap study. Room Temperature Q-band CW-EPR spectra of the spin trap study. g = 2.0061; $A_H = 22.00$ G; $A_N = 14.11$ G. EPR acquisition parameters: temperature = 298 K; MW power = 40 dB; modulation amplitude = 0.5 G. conversion time = 20 ms.

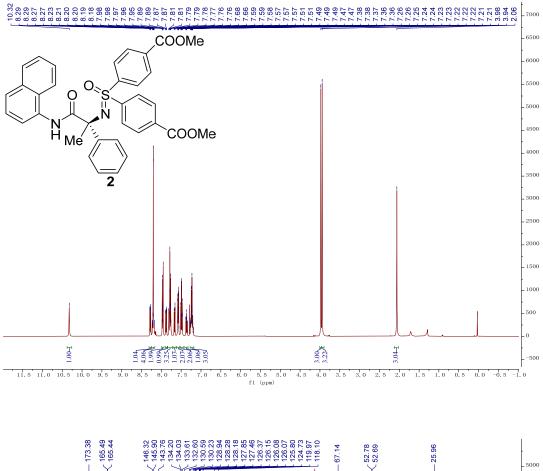
HRMS (ESI) *m/z* calcd. for C₂₁H₂₅N₂O₂ M⁺ 337.1911, found 337.1897.

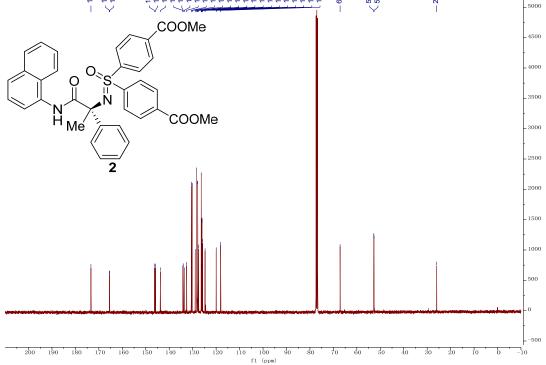
Reference

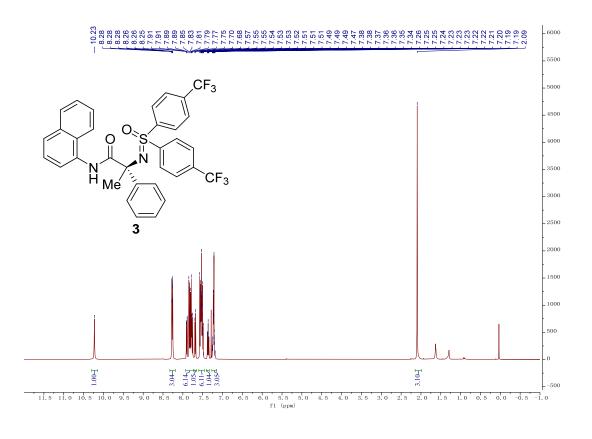
 F.-L. Wang, C.-J. Yang, J.-R. Liu, N.-Y. Yang, X.-Y. Dong, R.-Q. Jiang, X.-Y. Chang, Z.-L. Li, G.-X. Xu, D.-L. Yuan, Y.-S. Zhang, Q.-S. Gu, X. Hong, X.-Y. Liu, *Nat. Chem.* 2022, 949–957.

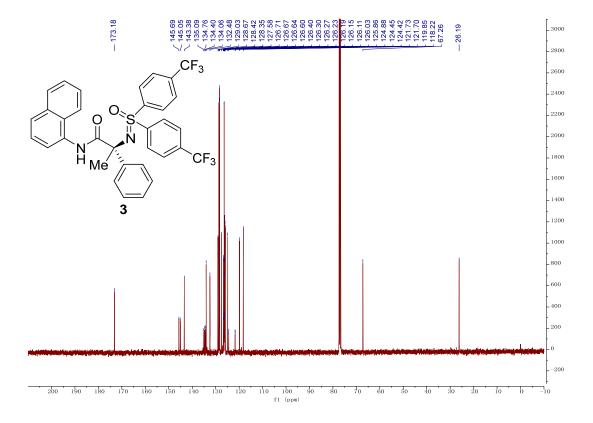
NMR Spectra

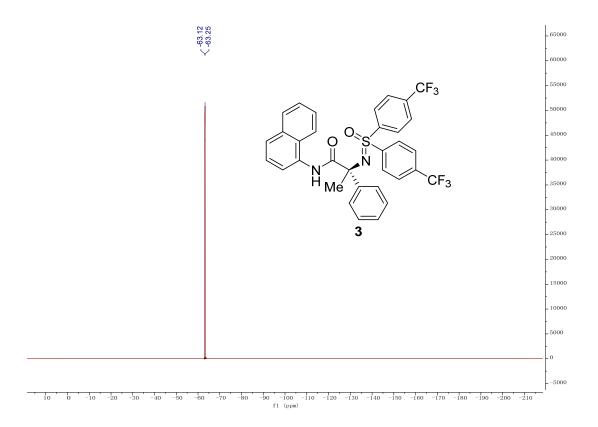
90 80

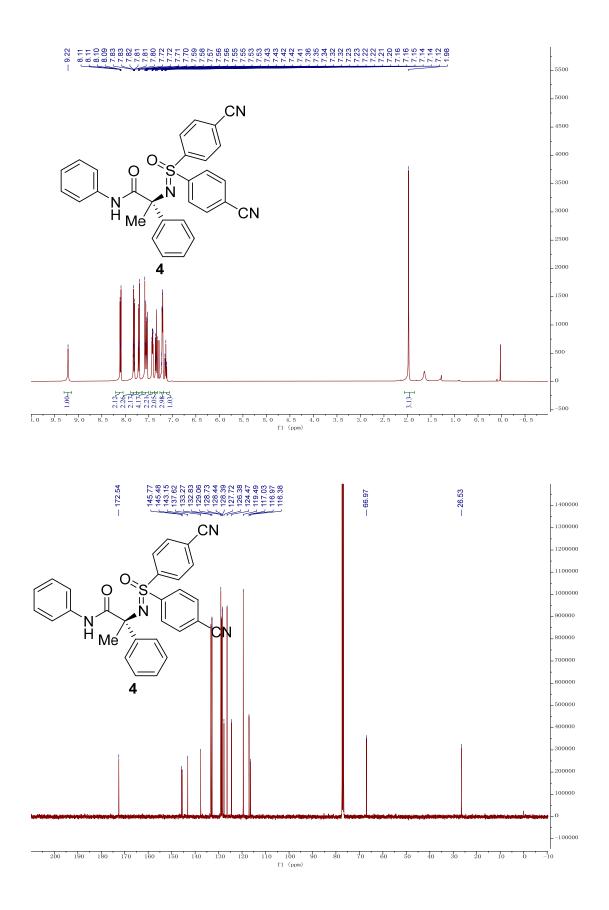

70 60

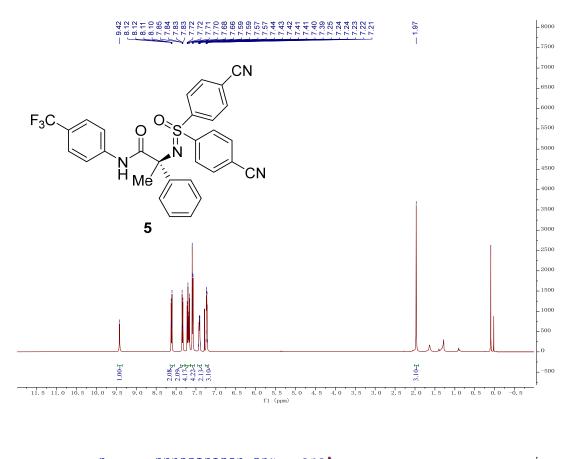

50 40

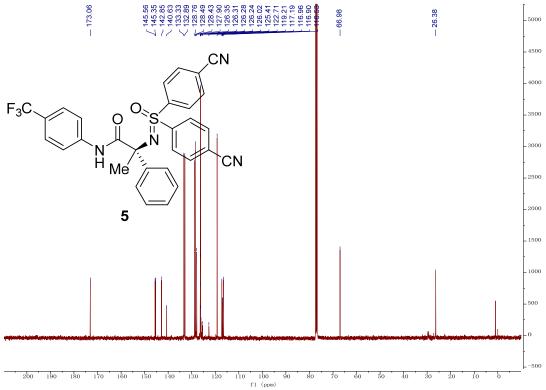

30 20 10 0 -10

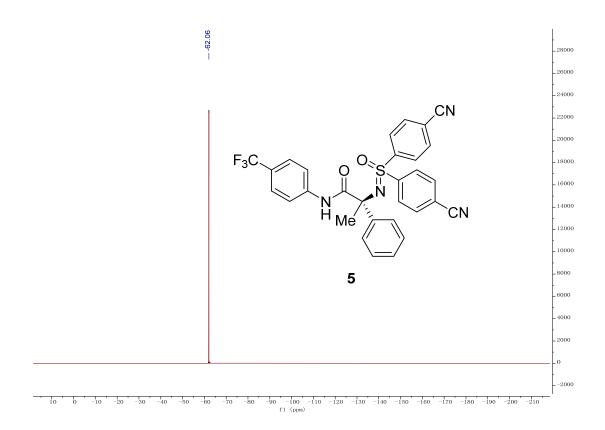

200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 0

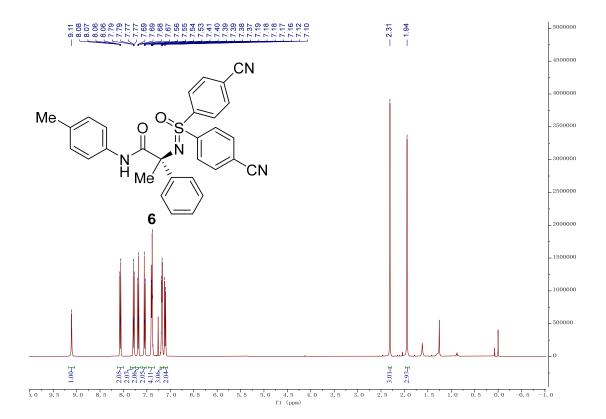

-100

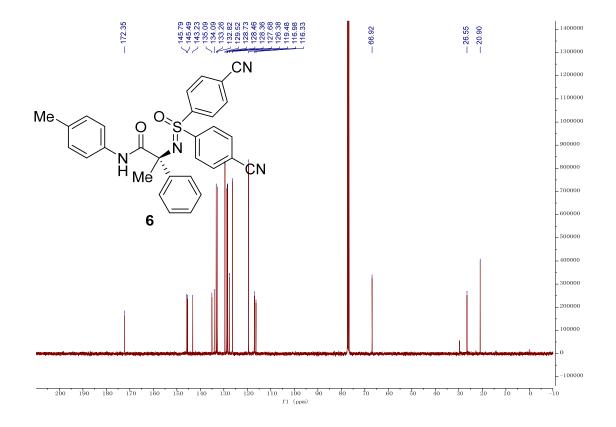


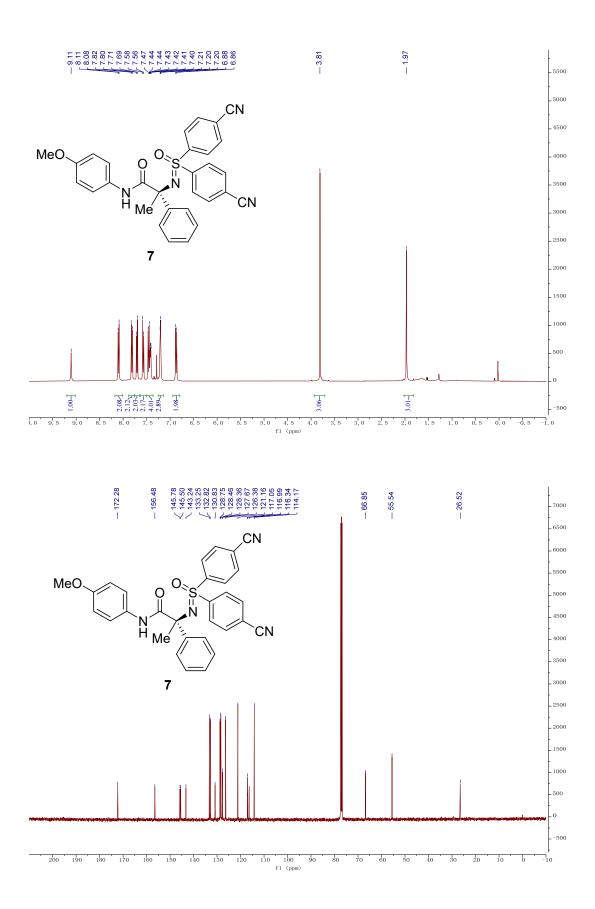


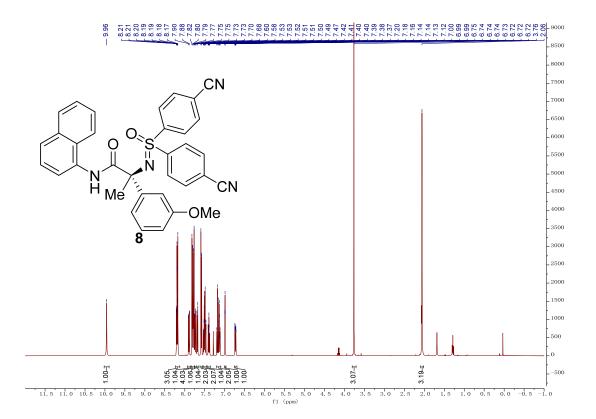


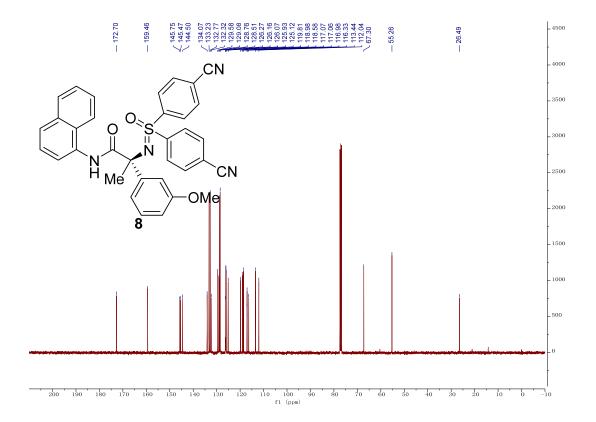


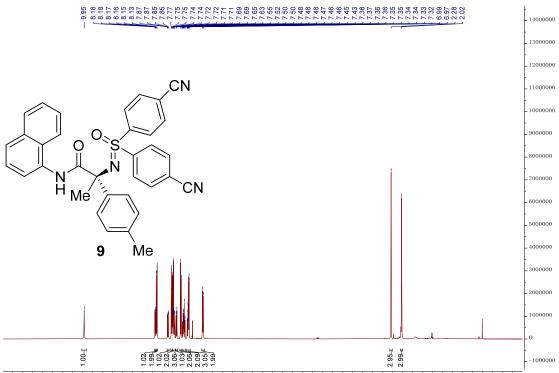


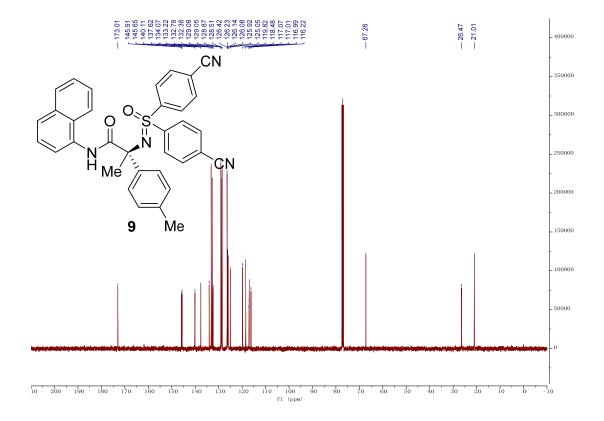


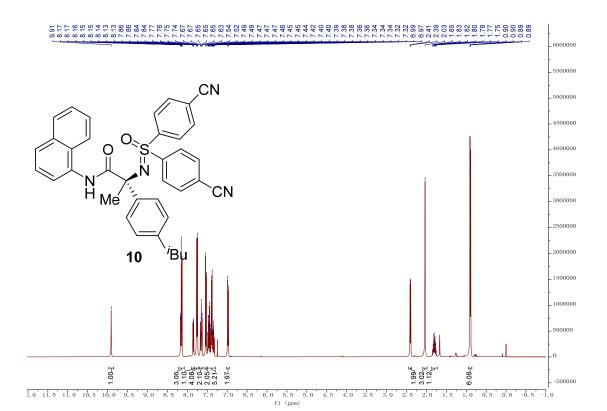


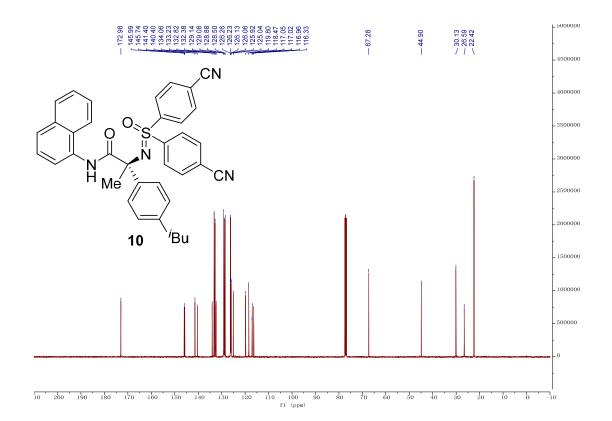


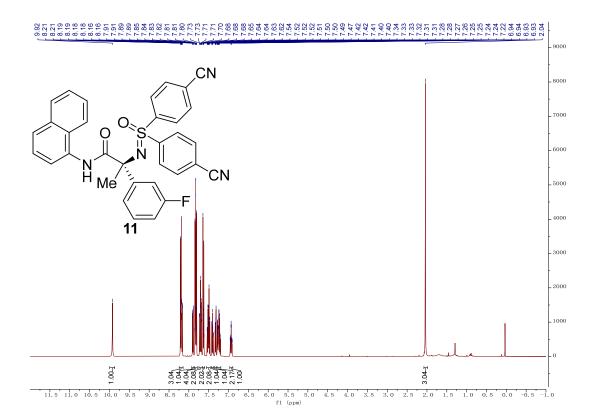


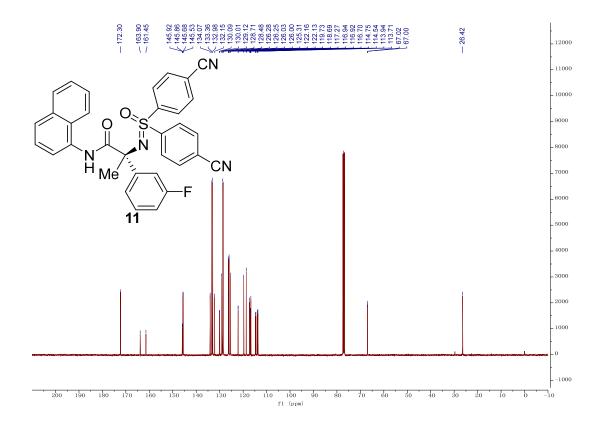


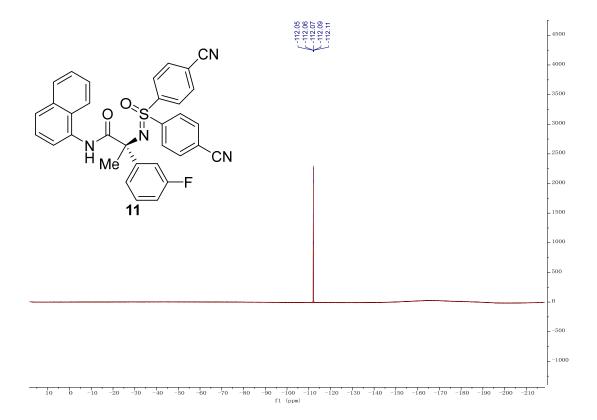


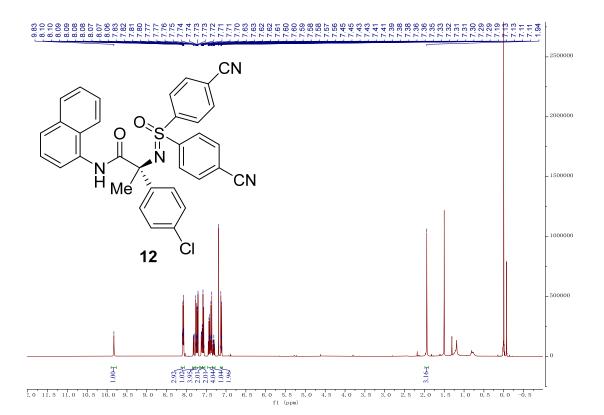


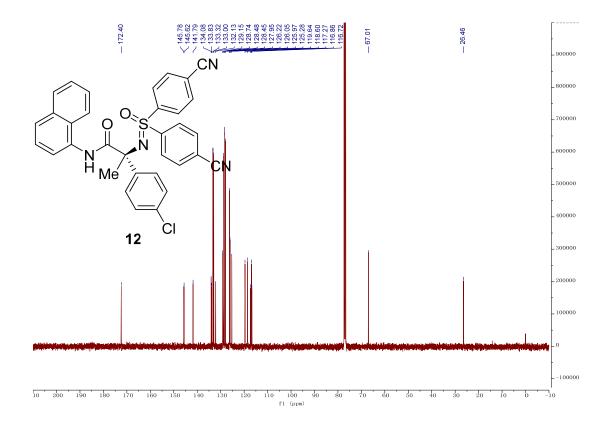


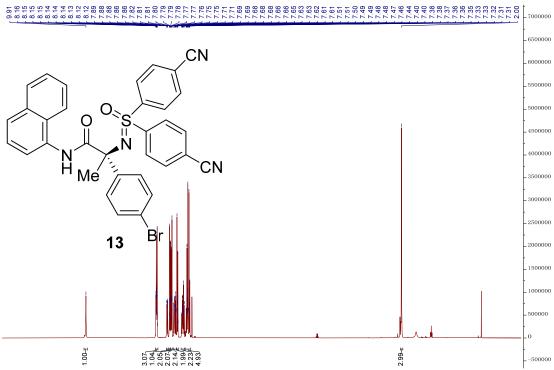


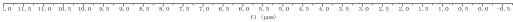

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

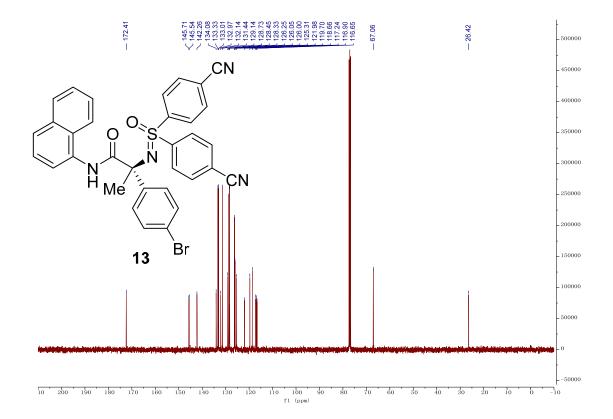


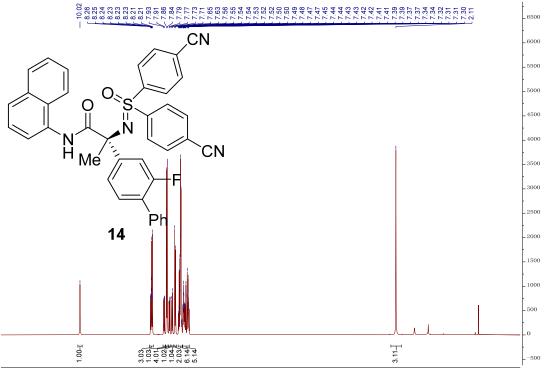


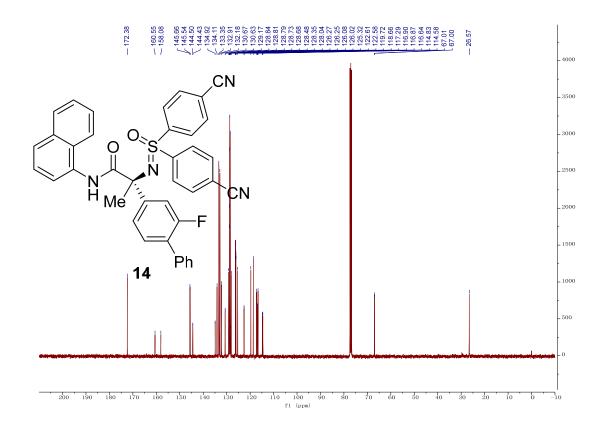


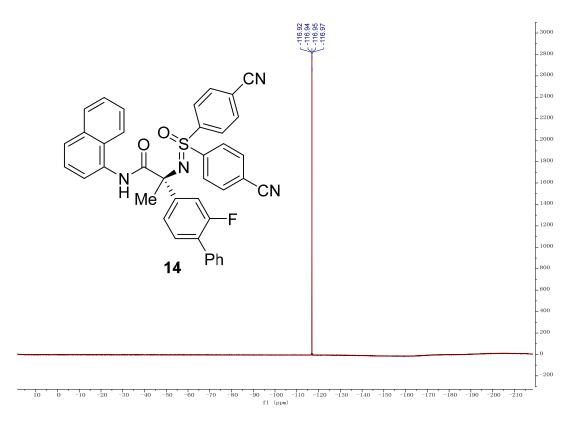


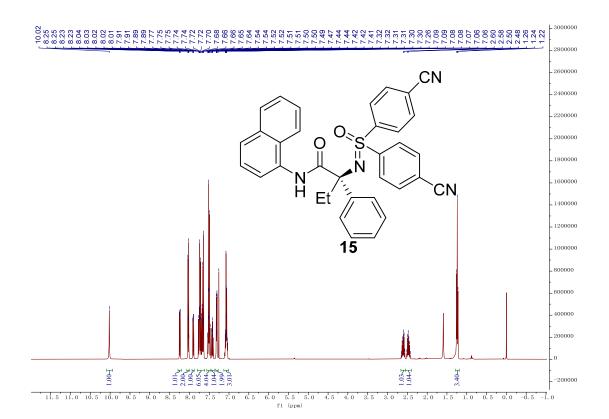


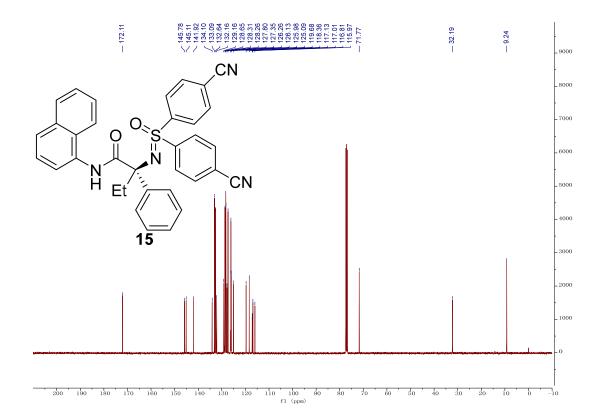


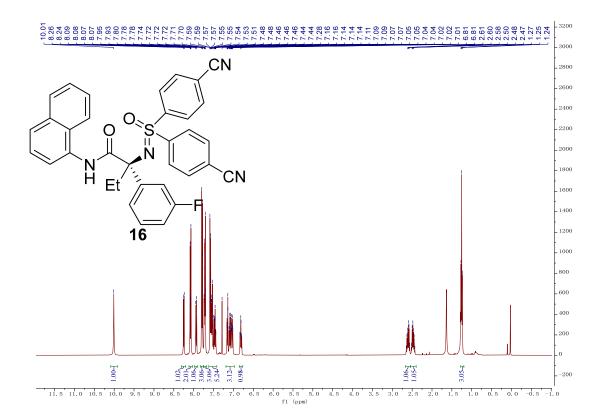


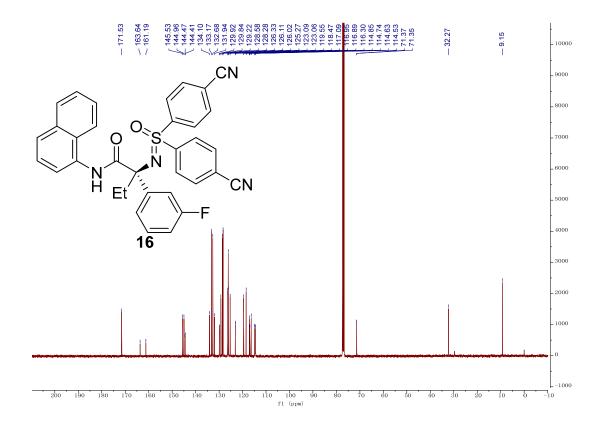


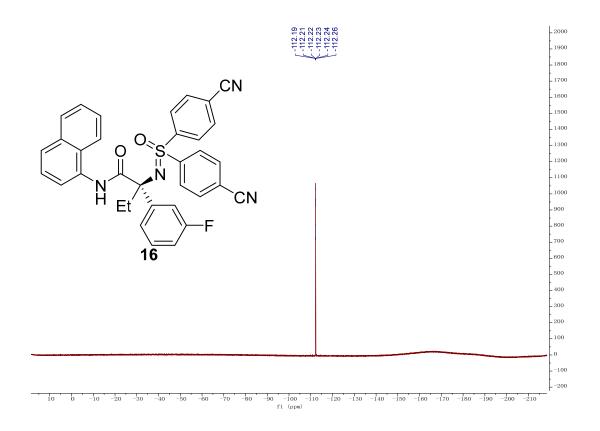


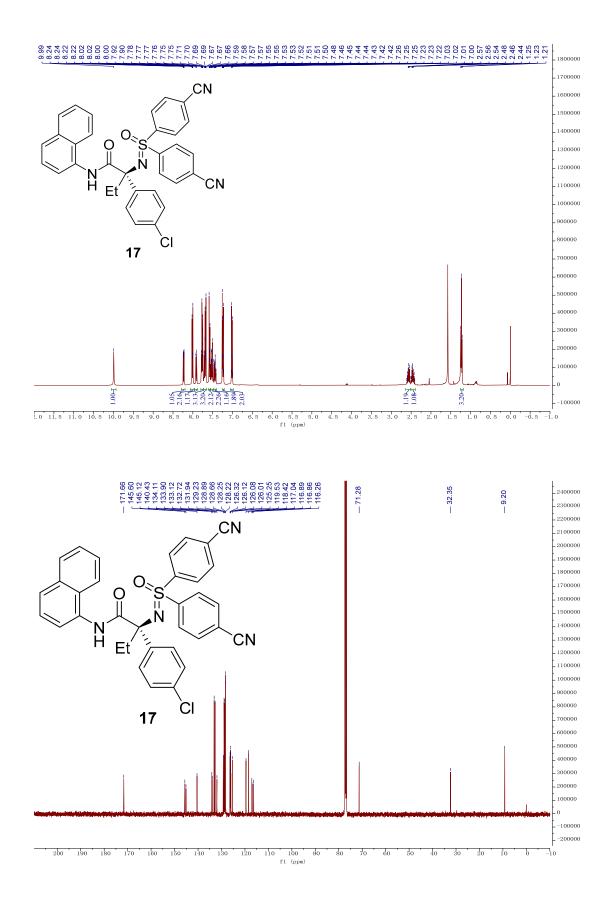


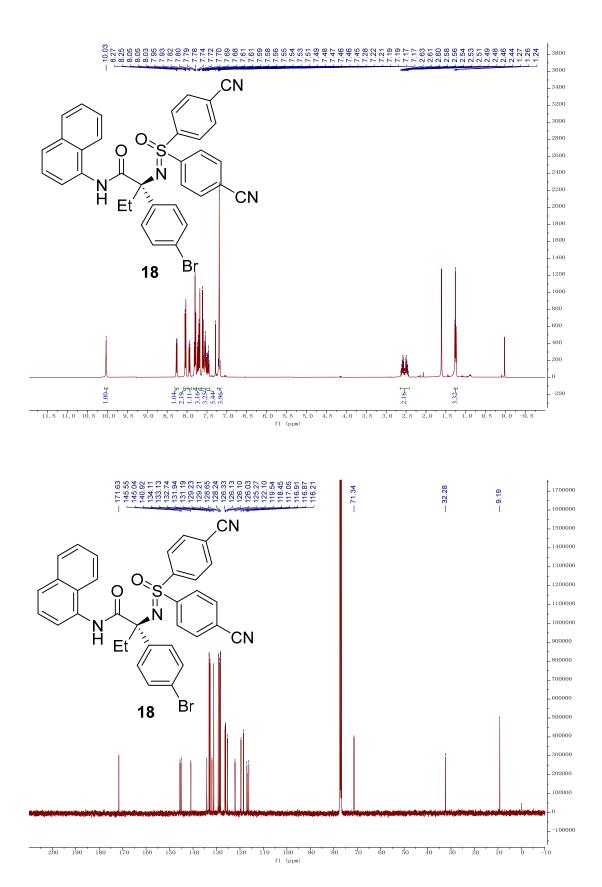


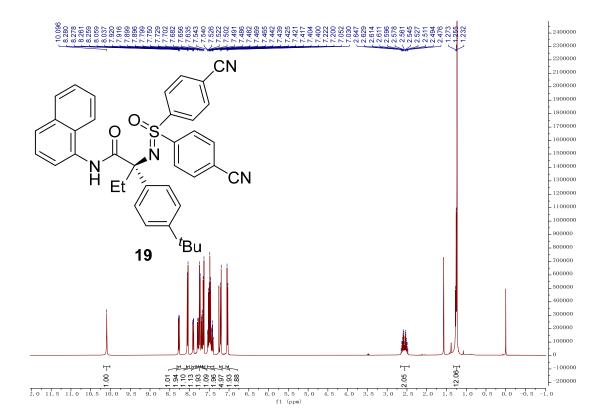

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

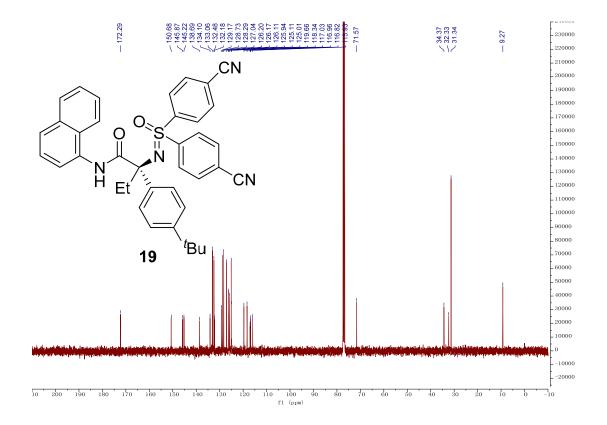


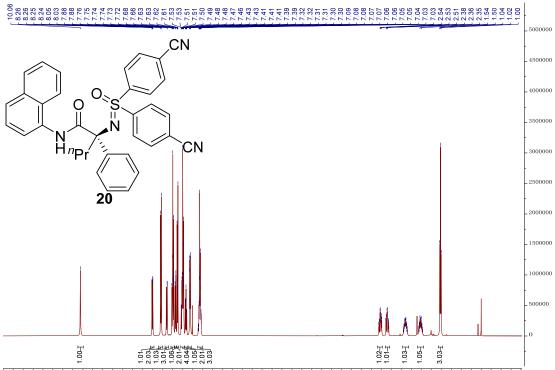


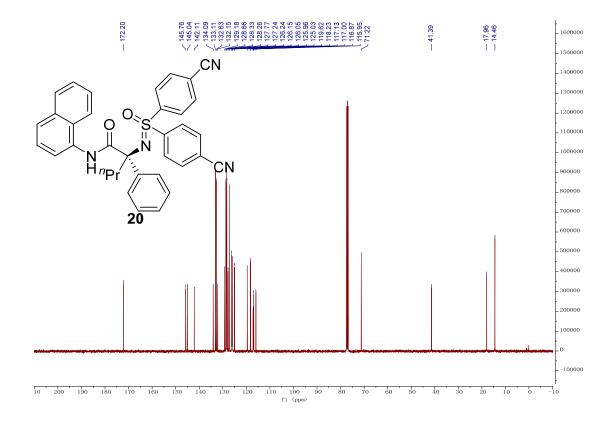


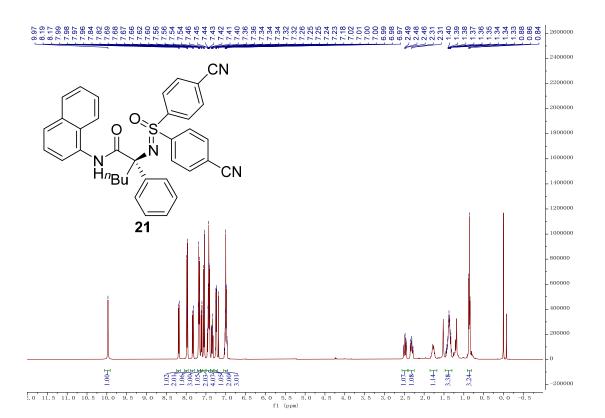


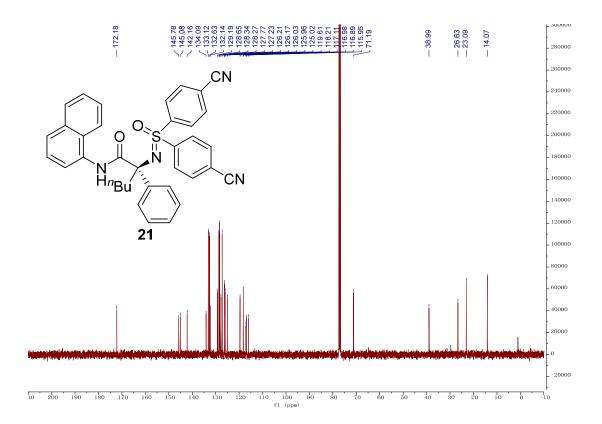


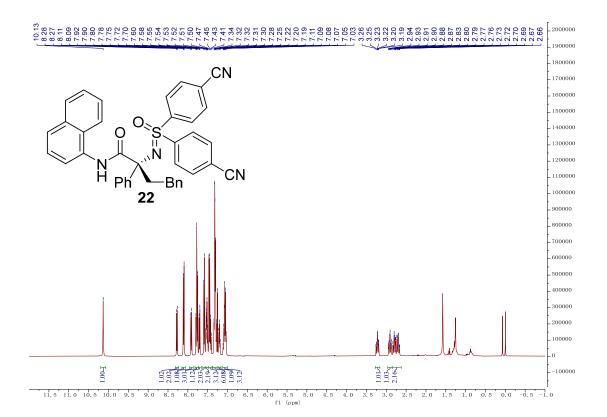


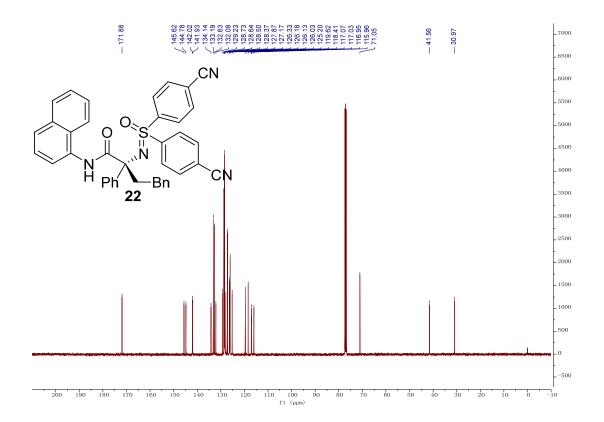


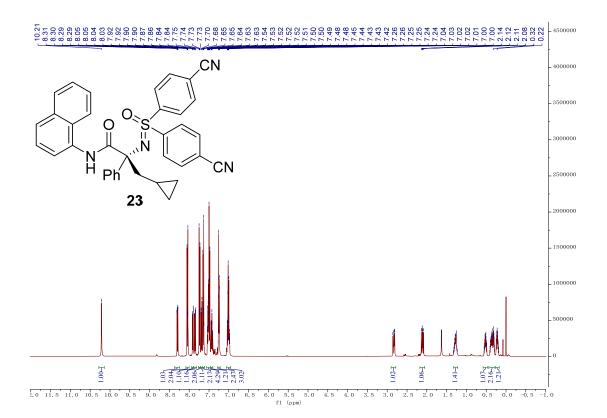


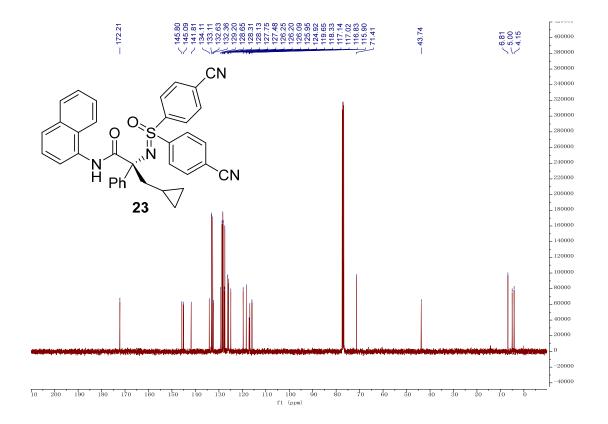


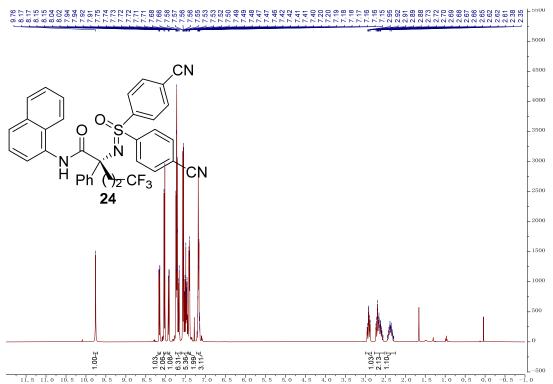


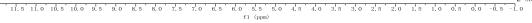


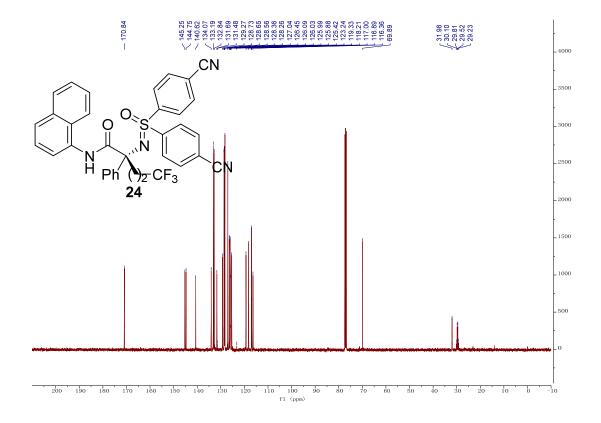


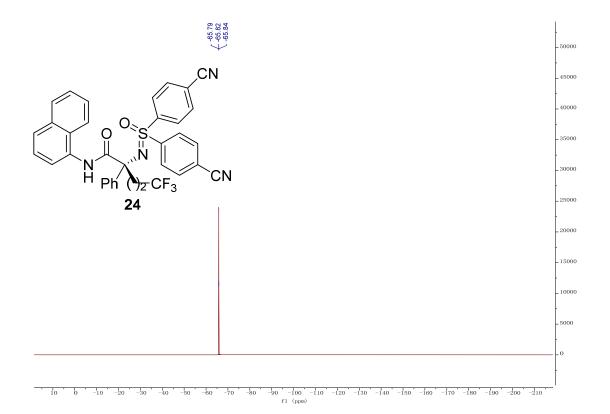


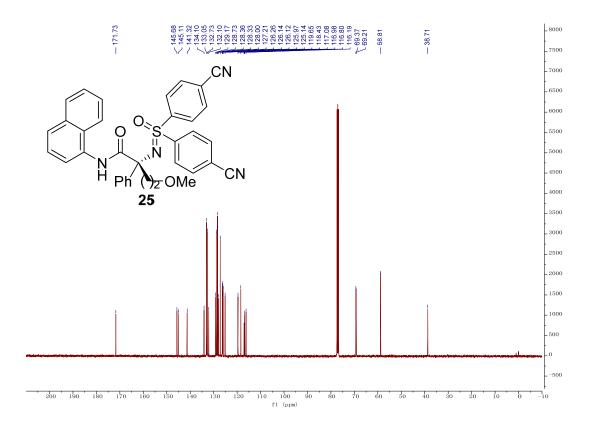


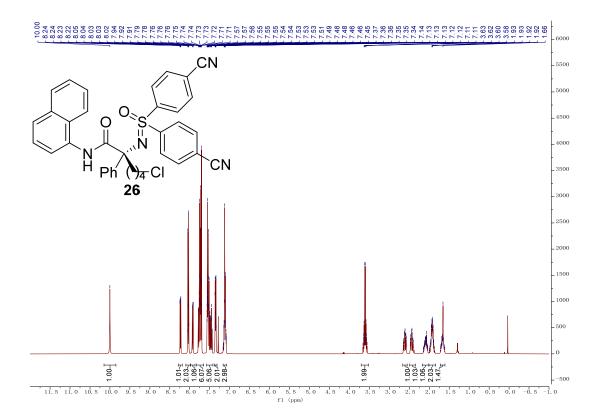


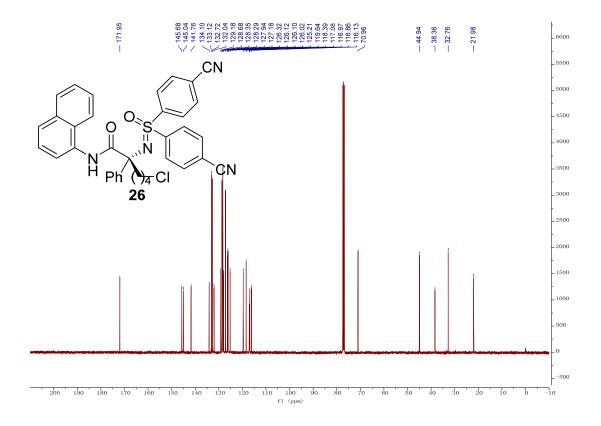


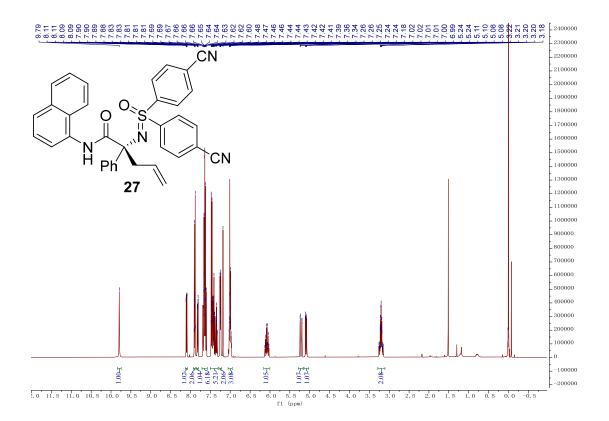


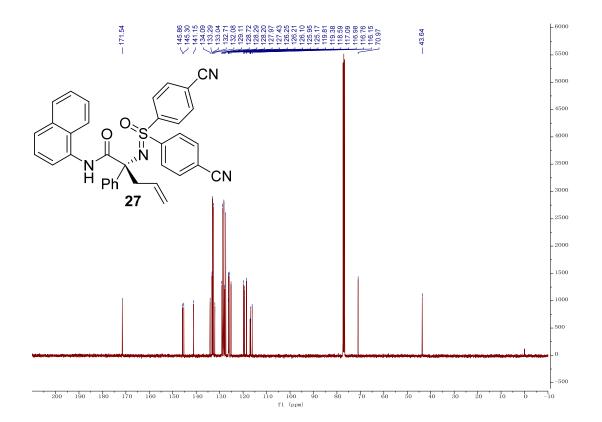


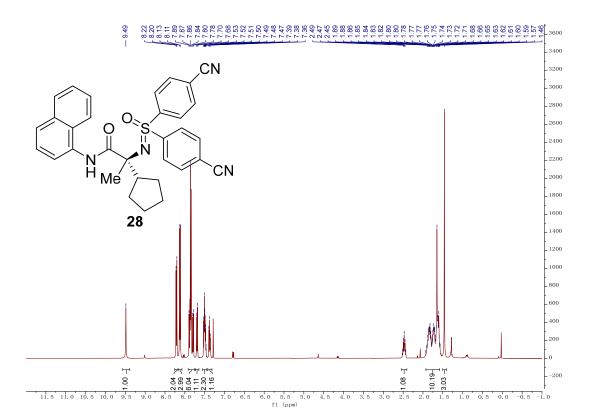


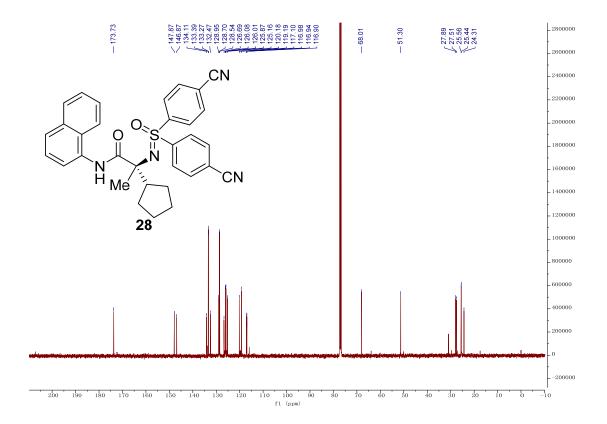


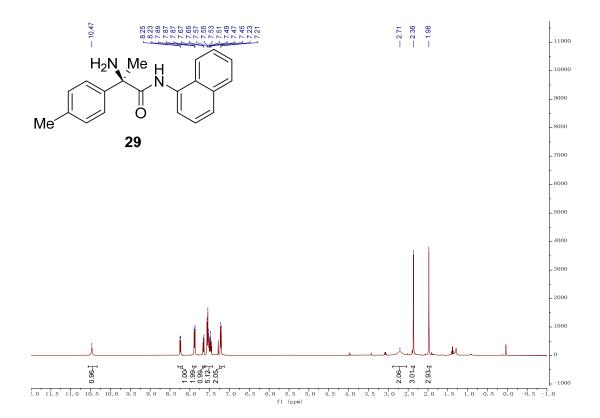


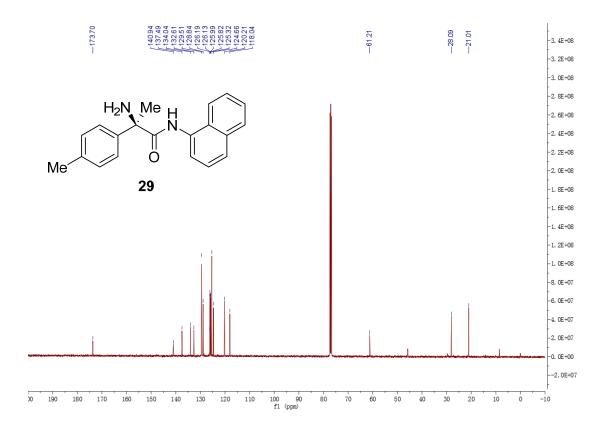


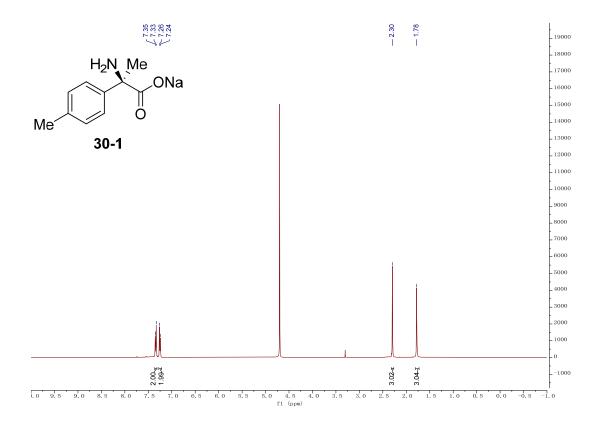


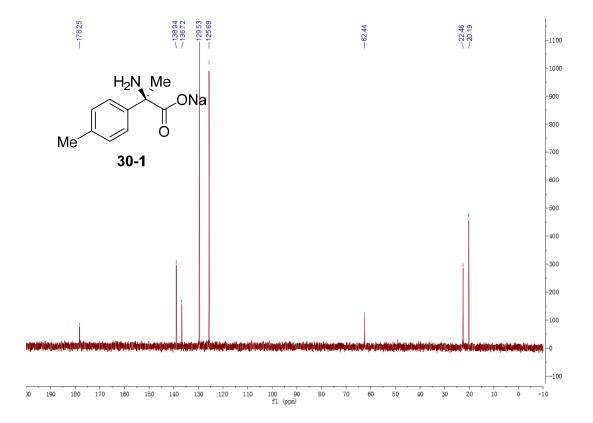


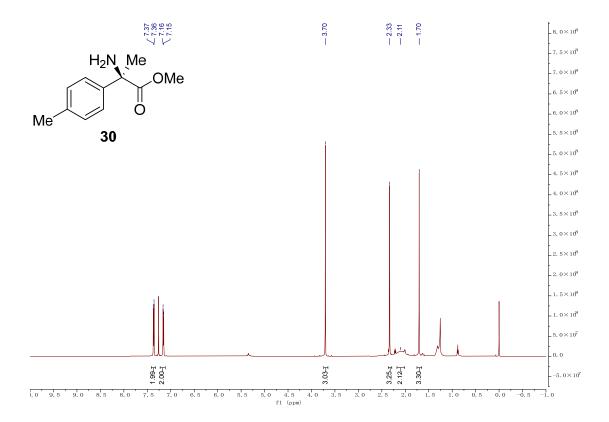


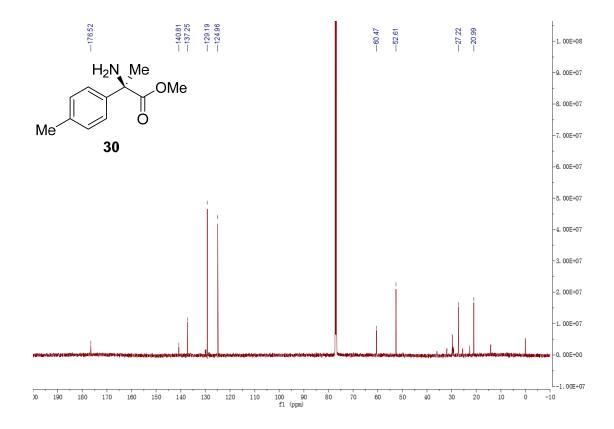


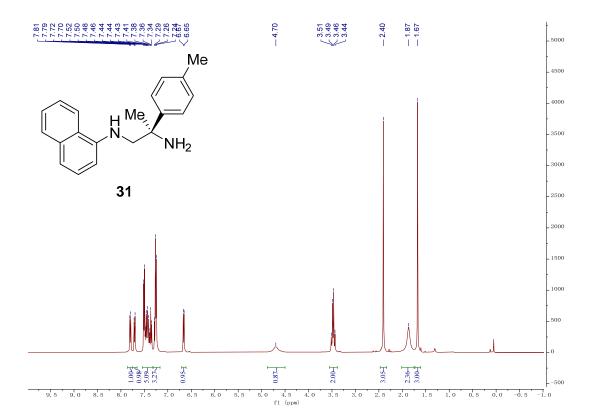


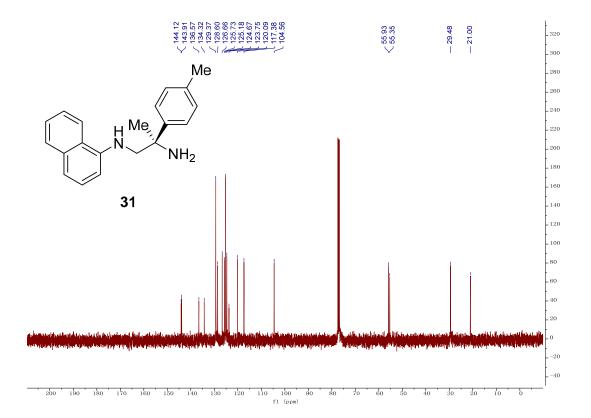


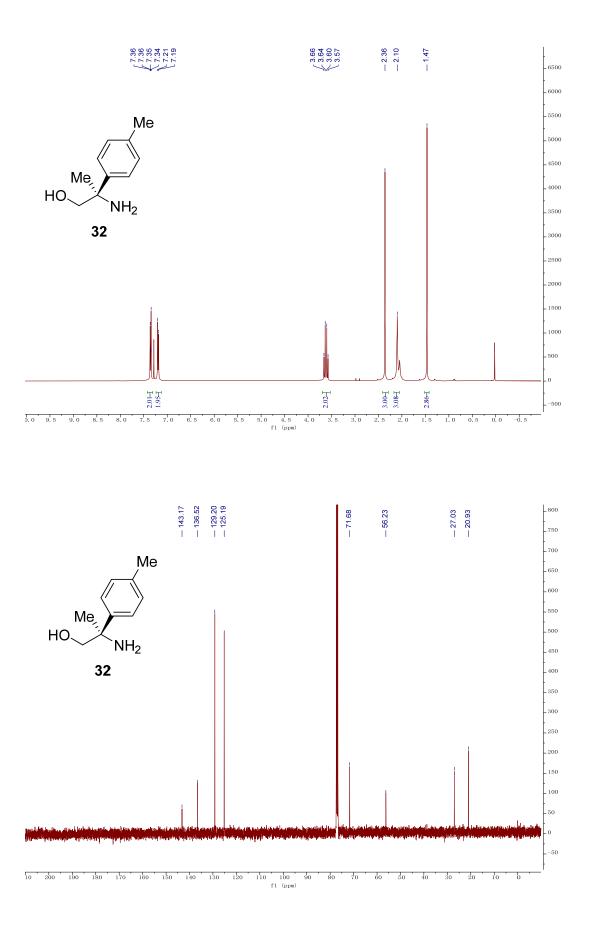


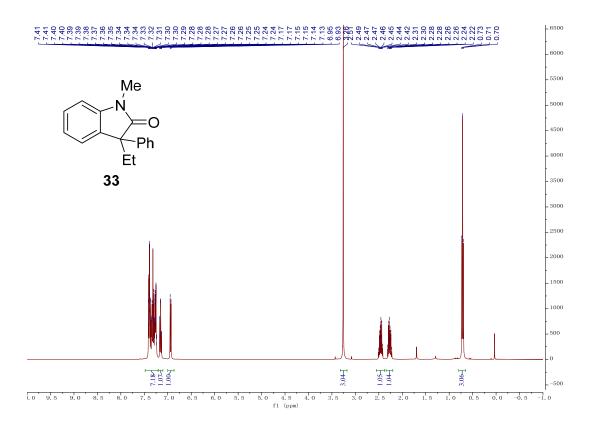


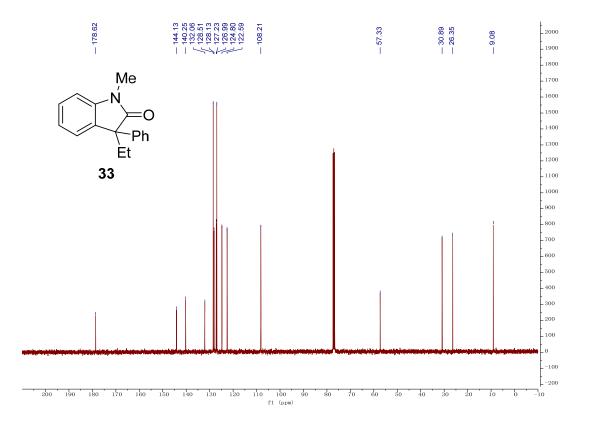




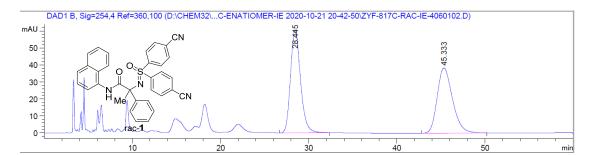






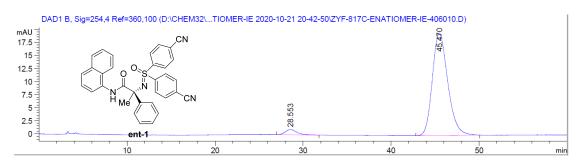






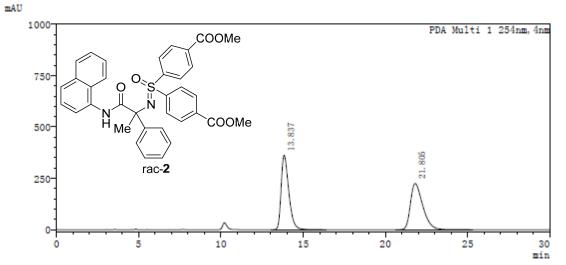
HPLC Spectra

S77

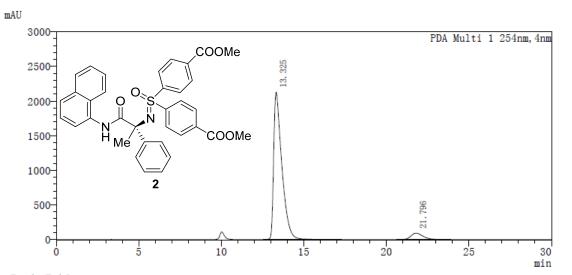


Signal 2: DAD1 B, Sig=254,4 Ref=360,100

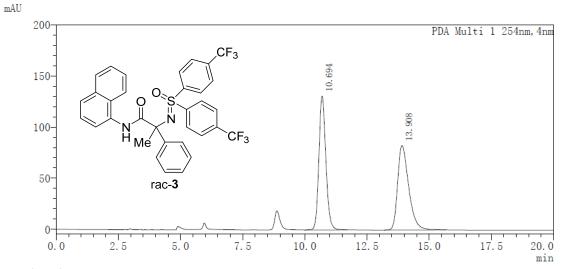
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.445	BB	1.1909	4770.96777	60.70808	50.8533
2	45.333	BB	1.6951	4610.86133	38.39438	49.1467

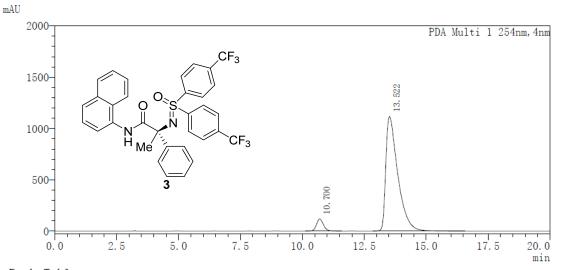


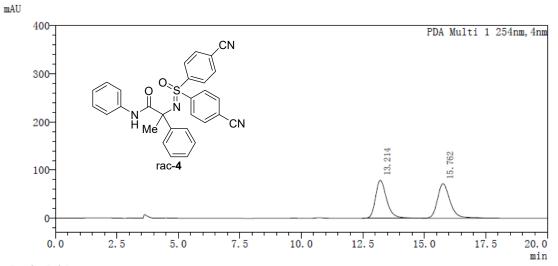
9381.82910 99.10246



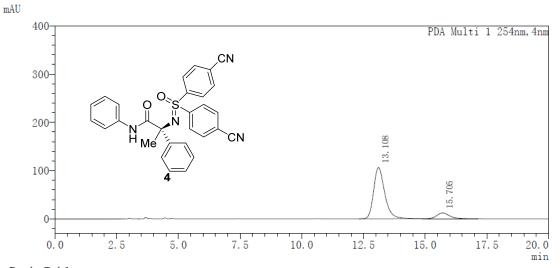

```
Signal 2: DAD1 B, Sig=254,4 Ref=360,100
```


#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	28.553	MM R	1.5080	93.17999	1.02984	3.7624
2	45.470	BB	1.4626	2383.42773	19.62934	96.2376
Total	ls :			2476.60773	20.65918	

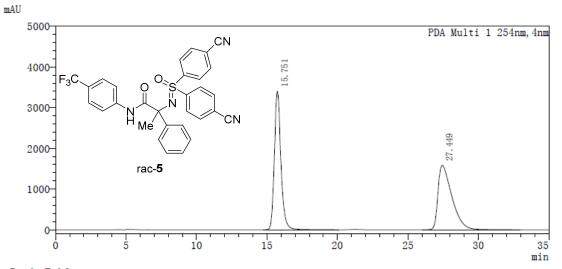

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	13.837	11775710	50.092		
2	21.805	11732389	49.908		


PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	13.325	73284200	94.025			
2	21.796	4656645	5.975			

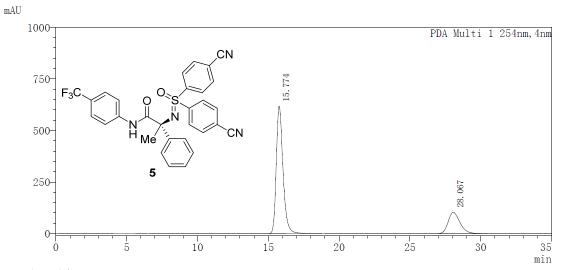
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	10.694	2556136	49.862		
2	13.908	2570250	50.138		



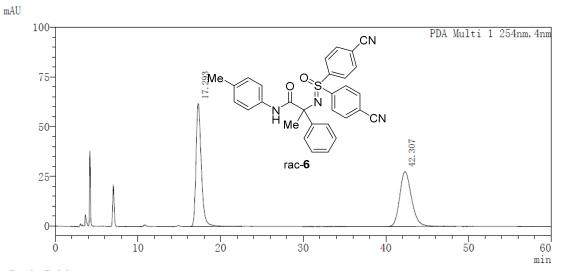
PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	10.700	2308687	5.784				
2	13.522	37604420	94.216				


Peak Table

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	13.214	2495395	49.225			
2	15.762	2573970	50.775			


Peak Table

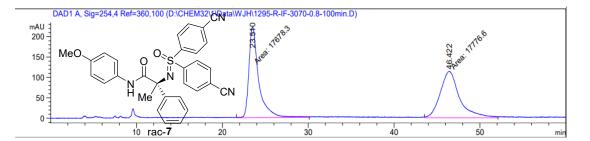
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	13.108	3327114	88.302			
2	15.705	440769	11.698			



Peak Table

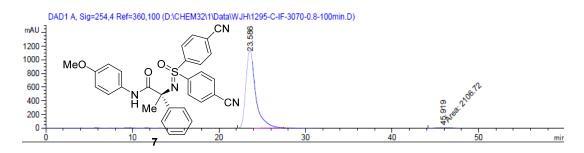
PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	15.751	109897219	50.366			
2	27.449	108298765	49.634			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	15.774	20465820	77.098			
2	28.067	6079270	22.902			

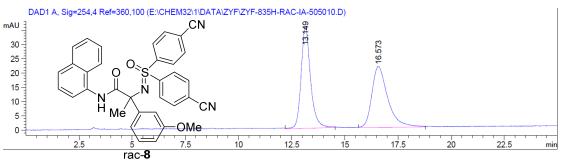

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	17.2	293	2772534	50.060	
2	42.3	307	2765834	49.940	

Peak Table


PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	17.077	33137078	91.976			
2	41.887	2890819	8.024			

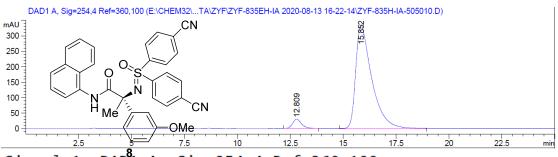
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	23.510	MM	1.3273	1.76783e4	221.98308	49.8615
2	46.422	MM	2.5955	1.77766e4	114.14861	50.1385

Totals: 3.54549e4 336.13169

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

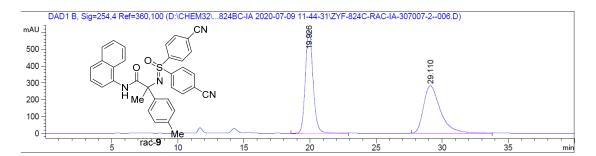
#	[min]		[min]	[mAU*s]	Height [mAU]	8
1	23.586	BV R	0.9295	8.88058e4	1136.64563	97.6827
2	45.919	MM	2.6512	2106.71973	13.24364	2.3173
Total	s:			9.09125e4	1149.88927	



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

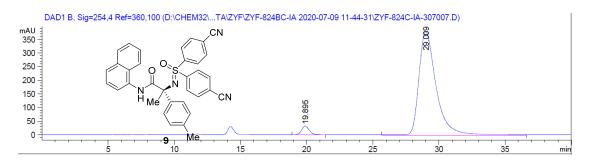
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.149	MM R	0.5131	1101.85181	35.78836	49.8572
2	16.573	MM R	0.8641	1108.16541	21.37340	50.1428

2210.01721 57.16176

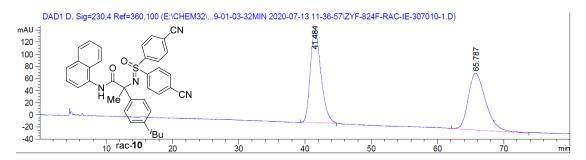

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.809	BB	0.4236	888.89850	30.18337	4.7745
2	15.852	MM R	0.8862	1.77287e4	333.42511	95.2255

1.86176e4


363.60848

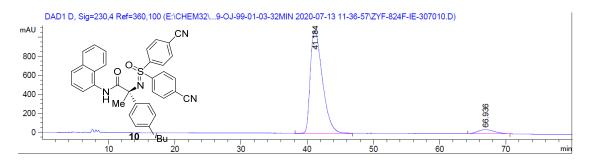
Totals :


Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.926	MM R	0.6829	2.51603e4	614.03613	49.8012
2	29.110	MM R	1.4925	2.53611e4	283.21234	50.1988
Total	s :			5.05214e4	897.24847	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

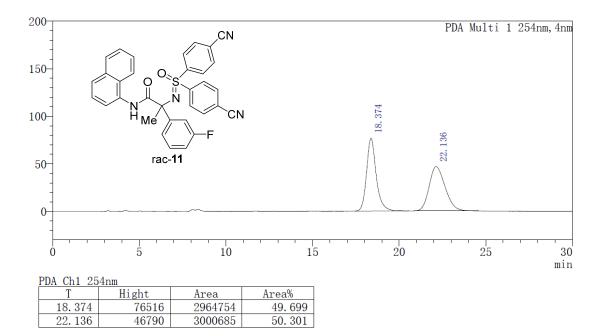
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.895	BB	0.6101	1299.21606	31.83745	3.6172
2	29.009	MM R	1.5161	3.46180e4	380.57184	96.3828
Total	s :			3.59173e4	412.40928	

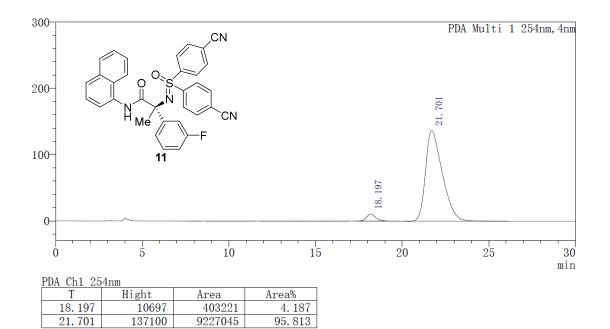


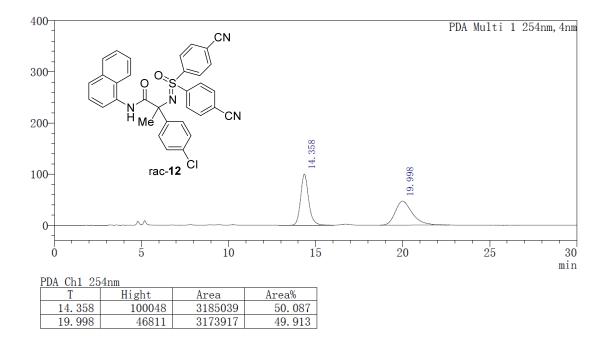
Signal 4: DAD1 D, Sig=230,4 Ref=360,100

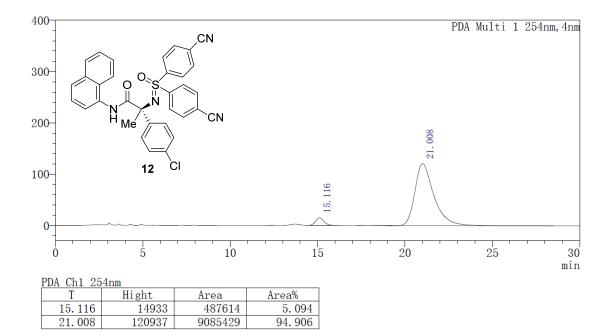
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	41.484	VV R	1.3253	1.71483e4	152.09937	49.9755
2	65.787	MM R	3.0587	1.71652e4	93.53107	50.0245

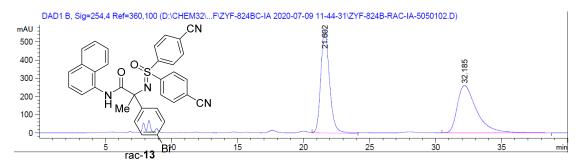
3.43135e4 245.63043

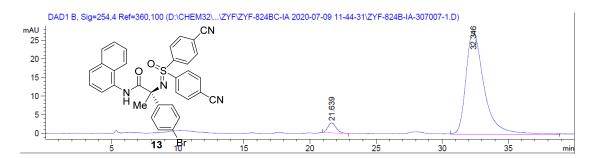


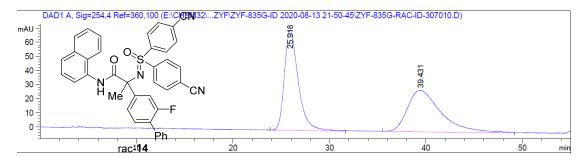

Signal 4: DAD1 D, Sig=230,4 Ref=360,100


Peak	RetTime	Тур	be	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
1	41.184	MM	R	2.1393	1.38809e5	1081.42053	94.7657
2	66.936	VV	R	2.0192	7667.04102	44.56421	5.2343


```
Totals :
```


1.46476e5 1125.98474

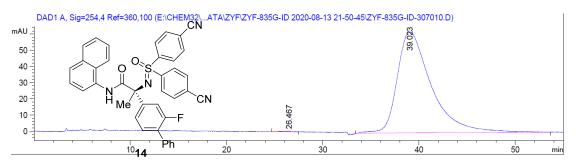



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.602	MM R	0.7691	2.61297e4	566.22473	49.9234
2	32.185	BB	1.4948	2.62100e4	259.83215	50.0766
Tota]	s:			5.23397e4	826.05688	

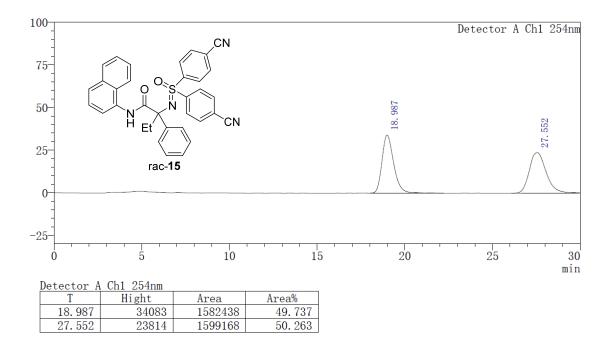
Signal 2: DAD1 B, Sig=254,4 Ref=360,100

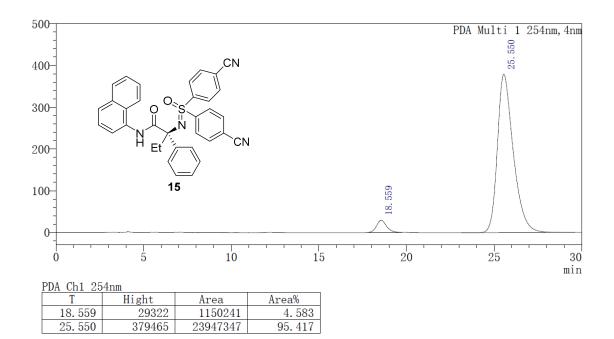
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.639	BB	0.5212	117.49535	2.70282	4.2766
2	32.346	MM R	1.5764	2629.93579	27.80507	95.7234
Total	s :			2747.43114	30.50789	

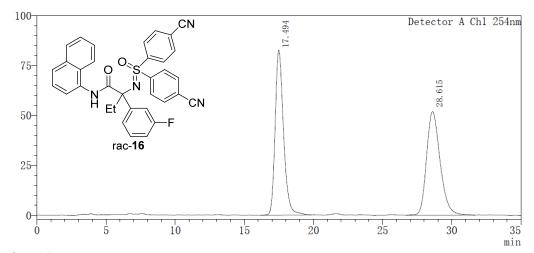


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

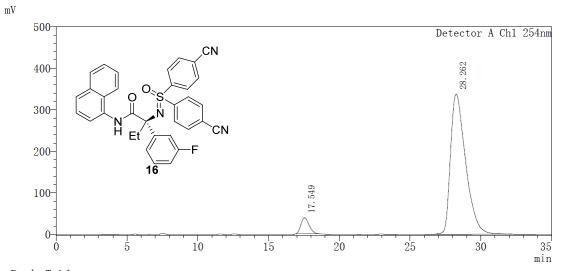
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.918	MM R	1.6710	7152.39697	71.33807	49.9408
2	39.431	MM R	4.0426	7169.35400	29.55756	50.0592

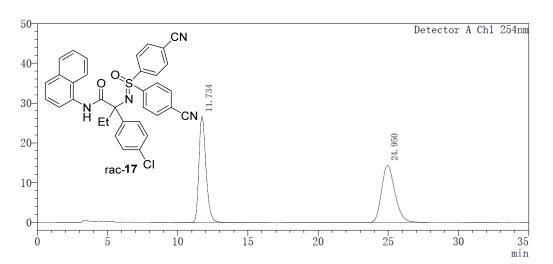

Totals :


1.43218e4 100.89564

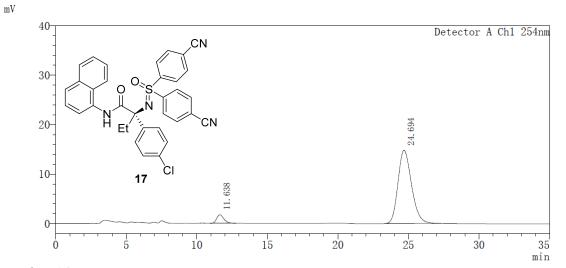

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] [min] % # [min] 26.467 MM R 1.1152 29.54226 4.41522e-1 1 0.1918 2 39.023 MM R 4.1035 1.53757e4 62.44929 99.8082 Totals : 1.54052e4 62.89081



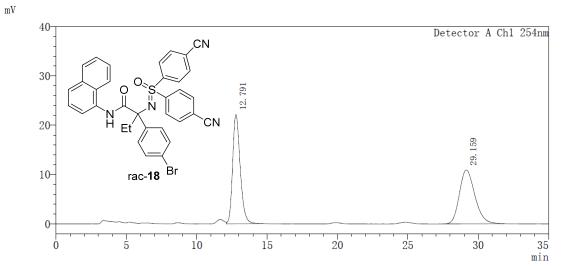

Peak Table

Detector A Ch1 254nm									
Peak#	Ret.	Time	Area	Area%					
1	17.	494	3498879	49.689					
2	28.	615	3542713	50.311					

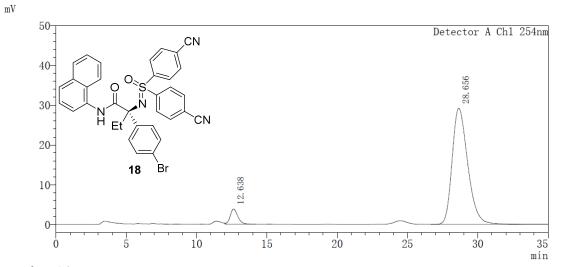


Peak Table

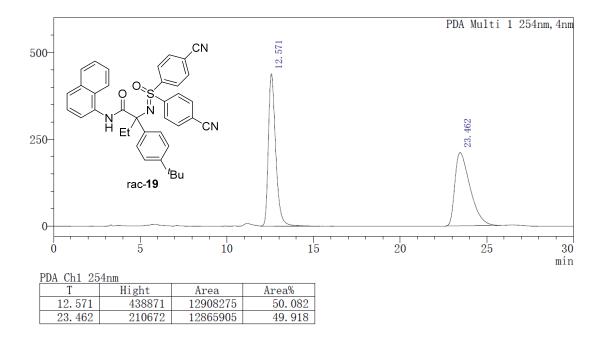
Detector A Chl 254nm						
Peak#	Ret. Time	Area	Area%			
1	17.549	1493264	5.628			
2	28.262	25039997	94.372			

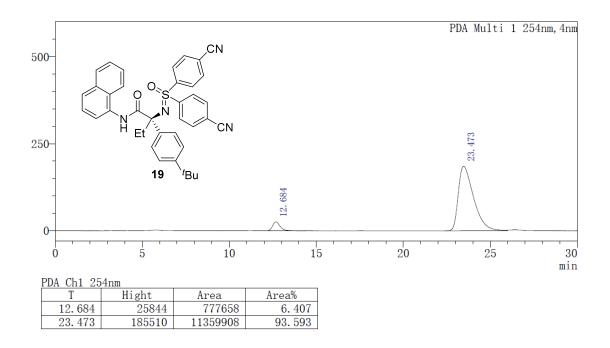

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	11.734	939360	49.477				
2	24.950	959217	5 0. 523				

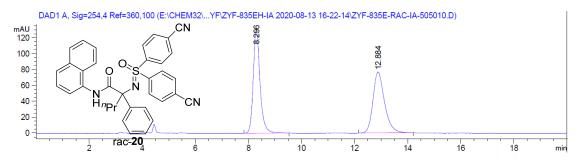
Peak Table


Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	11.638	62198	5.902				
2	24.694	991660	94.098				

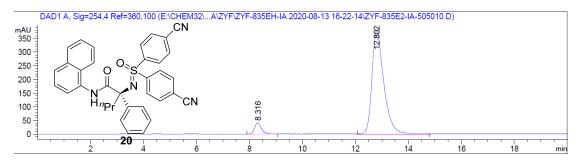
mV




Peak Table

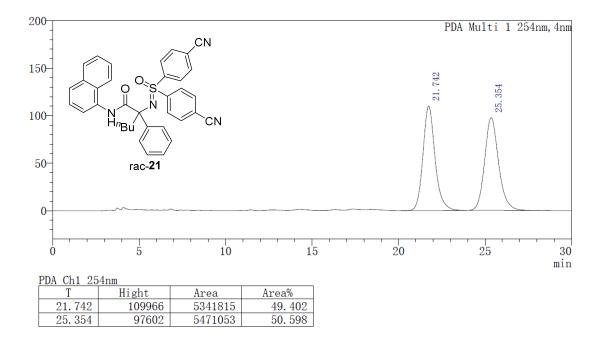

Detector A Ch1 254nm						
Peak#	Ret. Tim	e Area	Area%			
1	12.791	825063	49.739			
2	29.159	833739	50.261			

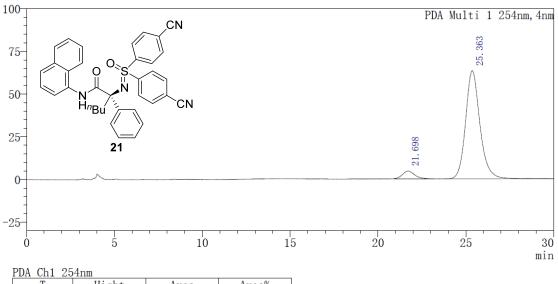
Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.638	143511	5. 985				
2	28.656	2254474	94.015				

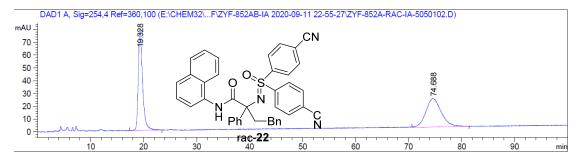


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.296	BB	0.2674	2311.95264	130.03482	49.7802
2	12.884	BB	0.4460	2332.36475	76.86443	50.2198

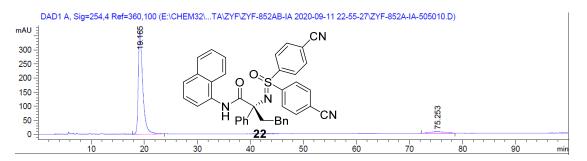

Totals :


4644.31738 206.89925


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

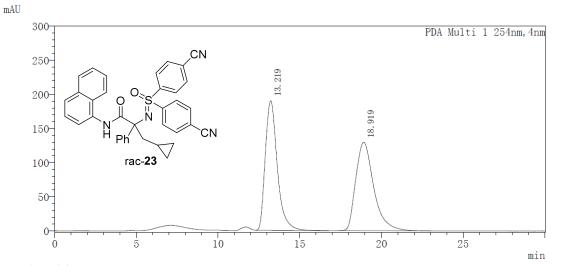
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.316	BB	0.2683	730.57251	40.90911	5.7395
2	12.802	MM R	0.5272	1.19984e4	379.33862	94.2605
Total	s:			1.27290e4	420.24773	

Т	Hight	Area	Area%
21.698	4622	226532	5. 9 24
25.363	63341	3597716	94.076

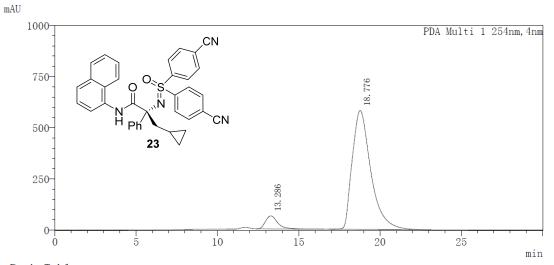


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

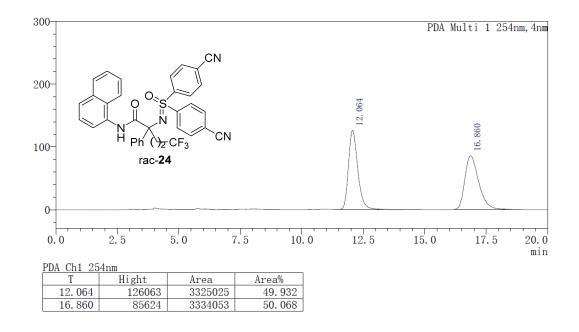
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.328	MM R	0.9394	4486.34521	79.59953	50.0603
2	74.688	MM R	3.3370	4475.53857	22.35321	49.9397

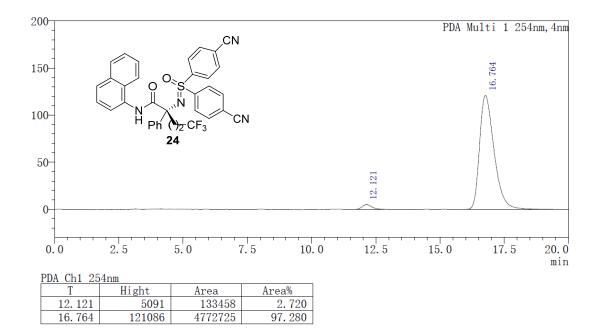

```
Totals :
```

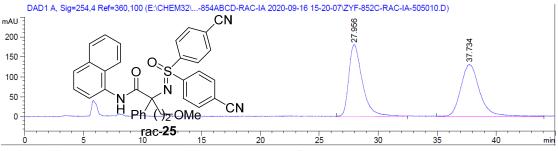
8961.88379 101.95274



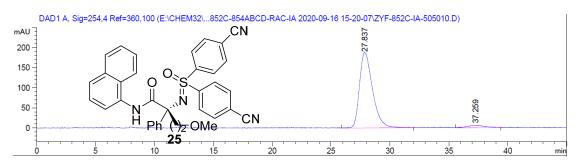
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


				Area [mAU*s]	0	
1	19.165	MM R	0.9802	2.16186e4	367.57486	95.3100
2	75.253	MM R	3.0835	1063.79956	5.74996	4.6900
Tota]	.s :			2.26824e4	373.32482	



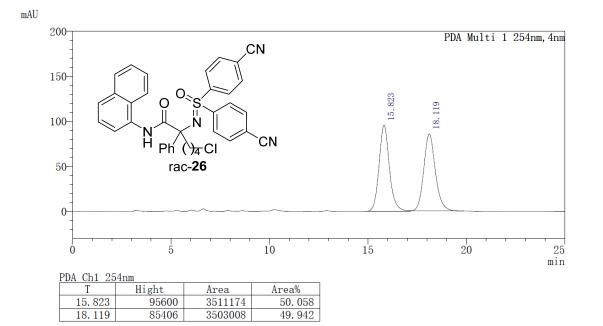

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	13.219	9726175	49. 6 44				
2	18.919	9865703	50.356				

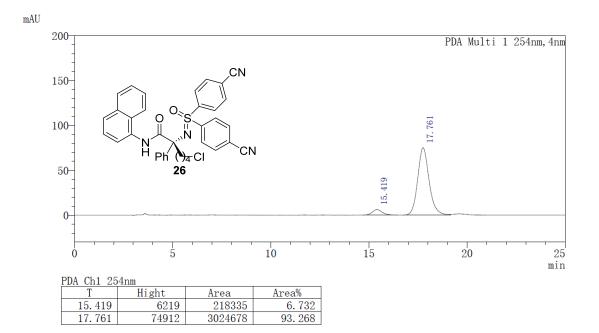
PDA Ch1 254nm								
Peak#	Ret. Time	Area	Area%					
1	13.286	3266530	6. 594					
2	18.776	46274461	93. 406					



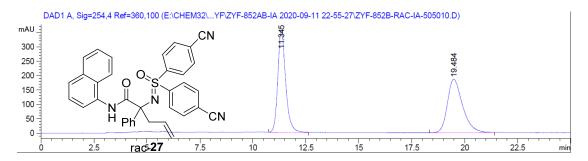

```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.956	MM R	1.3450	1.45055e4	179.74248	50.4092
2	37.734	MM R	1.8343	1.42700e4	129.65741	49.5908

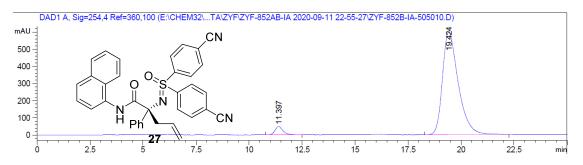




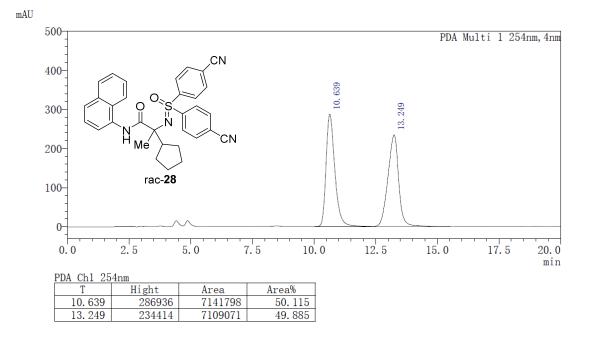
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

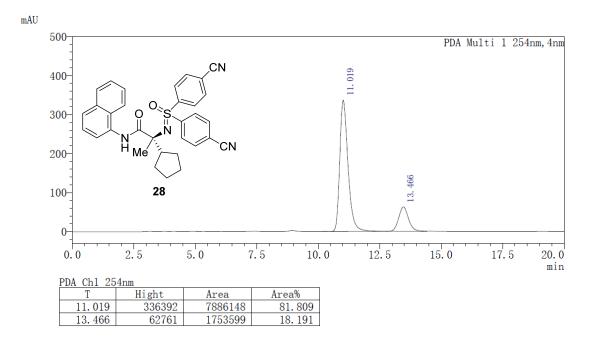

Peak RetTime Type Width Area Height Area [mAU*s] # [min] [min] % [mAU] 27.837 MM R 1.2856 1.45605e4 188.76358 95.9090 1 37.259 MM R 1.7927 621.06989 2 5.77400 4.0910

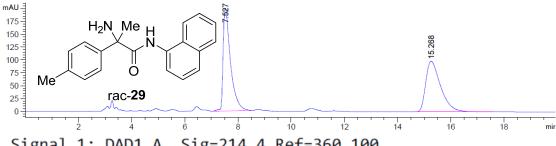
Totals: 1.51815e4 194.53758



S103

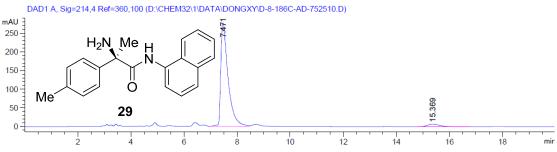

Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.345	MM R	0.4332	9290.48535	357.46802	50.1069
2	19.484	BV R	0.7035	9250.84277	186.23959	49.8931
Total	c •			1 85413e4	543 70761	


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.397	BB	0.3829	1299.19897	48.75248	4.0077
2	19.424	BV R	0.7404	3.11187e4	600.67297	95.9923
Tota]	s:			3.24179e4	649.42545	

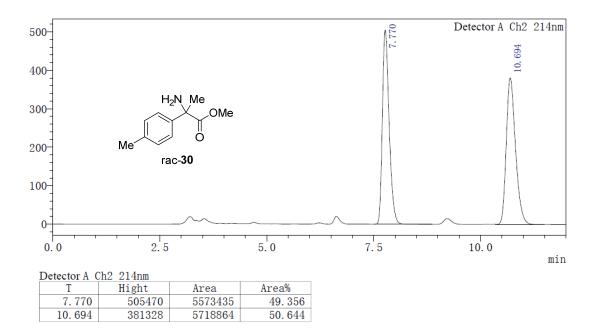
DAD1 A, Sig=214,4 Ref=360,100 (D:\CHEM32\1\DATA\DONGXY\D-8-186B RAC-AD-752510.D)

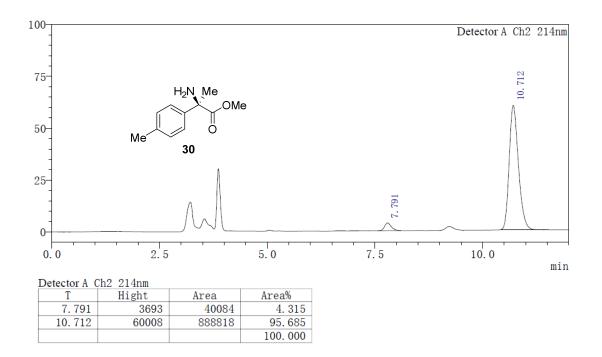


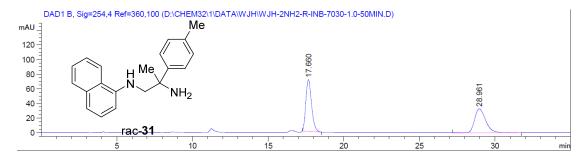
Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.527	BB	0.2853	3864.03564	200.08275	50.2452
2	15.268	BB	0.5803	3826.31519	98.69917	49.7548

Totals :

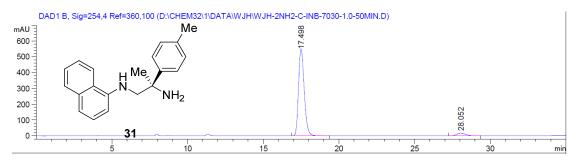

7690.35083 298.78191




```
Signal 1: DAD1 A, Sig=214,4 Ref=360,100
```

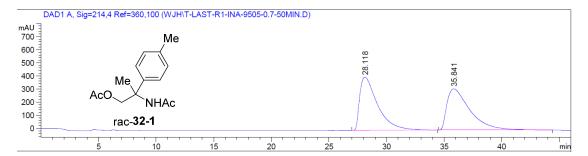
Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 7.471 BV 0.2814 5306.15479 1 277.10092 95.6885 15.369 BB 2 0.4398 239.08099 7.08251 4.3115

Totals : 5545.23578 284.18343



Signal 2: DAD1 B, Sig=254,4 Ref=360,100

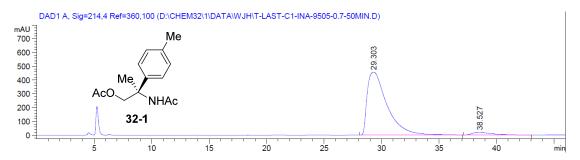
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.660	MM R	0.4366	1850.22595	70.62350	52.4332
2	28.961	MM R	0.8510	1678.50574	32.87244	47.5668


3528.73169 103.49594

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	17.498	BB	0.4053	1.43747e4	549.30121	95.2739
2	28.052	BB	0.5294	713.06238	16.65885	4.7261

Totals : 1.50878e4 565.96006



Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.118	BB	1.6015	4.38098e4	404.53345	49.9457
2	35.841	MM R	2.3278	4.39049e4	314.35239	50.0543

8.77147e4 718.88583

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

RetTime [min]		Area [mAU*s]	0	Area %
 29.303		 5.47107e4		•
38.527		2352.22241		

Totals :

5.70629e4 475.33415