ChemCatChem

Supporting Information

Catalytic Asymmetric Intermolecular Radical Aminotrifluoromethylation of Alkenes with Hydrazines by Cu(I)/CPA Cooperative Catalysis

Zhe Wang⁺, Jiang-Tao Cheng⁺, Zhichao Shi, Na Wang, Feng Zhan, Sheng-Peng Jiang, Jin-Shun Lin,* Yuyang Jiang,* and Xin-Yuan Liu*

Supporting Information

Catalytic Asymmetric Intermolecular Radical Aminotrifluoromethylation of Alkenes with Hydrazines by Cu(I)/CPA Cooperative Catalysis

Zhe Wang,^[a, b] Jiang-Tao Cheng,^[c] Zhichao Shi,^[a, b] Na Wang,^[c] Feng Zhan,^[a, b] Sheng-Peng Jiang,^[c] Jin-Shun Lin,^{*[a, b]} Yuyang Jiang,^{*[b, d]} Xin-Yuan Liu^{*[c]}

^[a] Department of Chemistry, Tsinghua University. Beijing 100084, China
^[b] State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen
International Graduate School, Shenzhen, 518055, PR China
^[c] Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis,
Southern University of Science and Technology, Shenzhen 518055, China
^[d] School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
E-mail: lin.jinshun@sz.tsinghua.edu.cn;
jiangyy@sz.tsinghua.edu.cn
liuxy3@sustech.edu.cn.
Table of Contents
General information and general procedures for the synthesis of substrates
Synthesis of the catalyst (S)-A4S8
General procedure for initial exploration
General procedure: Cu/CPA-catalyzed asymmetric three-component radical-initiated amino-
trifluoromethylation of 1,1-diarylalkeneS12
The absolute configuration of 4N was determined by ECD

General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CuI was purchased from Sigma-Aldrich. Chiral phosphoric acid (CPA) was purchased from Daicel Chiral Technologies (China). Commercial solvents were used without further purification with the following exceptions: CH₂Cl₂ was freshly distilled from CaH₂. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on Bruker 400 MHz spectrometer at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR in CDCl₃, or CD₃OD with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; g, quarter; p, pentet; m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectral analysis (HRMS) data were obtained using AB SCIEX QSTAR Elite. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector ($\lambda = 254$ or 214 nm). Column conditions are reported in the experimental section below. Circular dichroism (CD) spectra were recorded on an Applied PhotoPhysics Chirascan CD spectropolarimeter, using a 10 mm quartz cuvette.

General procedures for the synthesis of substrates:

General synthesis of substrates 1a-1g, 1l

1a-1g, 1l were synthesized according to the procedures previously reported.^[1]

4-((triisopropylsilyl)oxy)benzaldehyde (S-1a)

¹**H NMR** (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.78 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 1.33-1.24 (m, 3H), 1.10 (d, J = 7.4 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 161.9, 132.0, 130.2, 120.3,

17.9, 12.7.

(4-(2,2-dibromovinyl)phenoxy)triisopropylsilane (S-1b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 2H), 7.39 (s, 1H), 6.86 (d, J= 7.9 Hz, 2H), 1.35-1.20 (m, 3H), 1.10 (t, J = 6.0 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 156.5, 136.4, 129.9, 128.1, 119.8, 87.0, 17.9, 12.7.

(4-ethynylphenoxy)triisopropylsilane (S-1c)

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.6 Hz, 2H), 6.81 (d, J= 8.6 Hz, 2H), 2.97 (s, 1H), 1.24 (m, 3H), 1.09 (d, *J* = 7.4 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 133.6, 120.0, 114.6, 83.8,

75.8, 17.9, 12.7.

(4-(1-bromovinyl)phenoxy)triisopropylsilane (S-1d)

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, J = 8.7 Hz, 2H), 6.83 (d, J =8.7 Hz, 2H), 6.01 (d, J = 2.0 Hz, 1H), 5.66 (d, J= 2.0 Hz, 1H), 1.34-1.17 (m, 3H), 1.10 (d, *J* = 7.3 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 131.3, 130.9, 128.6, 119.5, 115.8, 17.9, 12.7.

4-(1-(*p*-tolyl)vinyl)phenol (1a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.36-7.25 (m, 4H), 7.20 (d, J =7.9 Hz, 2H), 6.91-6.83 (m, 2H), 5.39 (dd, J = 5.3, 1.3 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.6, 149.4, 139.0, 137.5, 134.2, 129.7, 128.9, 128.3, 115.1, 112.3, 21.2.

4-(1-([1,1'-biphenyl]-4-yl)vinyl)phenol (1b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.47-7.32 (m, 4H), 7.23 (t, J = 7.8 Hz, 1H), 6.96 (d, J = 7.7 Hz, 2H), 6.82 (dd, J = 11.4, 2.1 Hz, 2H), 5.49 (d, J = 13.4 Hz, 2H), 4.89 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.4, 149.2, 143.2, 140.7, 140.6, 140.2, 129.5, 128.8, 127.4, 127.0, 121.0, 115.3, 114.7, 114.5.

4-(1-(4-(*tert*-butyl)phenyl)vinyl)phenol (1c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 5.99 (s, 1H), 5.44 (d, *J* = 5.7 Hz, 2H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.2, 150.8, 149.3, 138.8, 134.5, 129.8, 128.0, 125.2, 115.1, 112.6, 34.7, 31.5.

4-(1-(4-nitrophenyl)vinyl)phenol (1d)

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 5.55 (s, 1H), 5.47 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.9, 148.5, 147.8, 147.3, 132.8, 129.6, 129.1, 123.6, 115.9, 115.4.

4-(1-(4-cyanobenzene)vinyl)phenol (1e)

¹**H NMR** (400 MHz, CDCl₃) δ 7.66-7.59 (m, 2H), 7.47-7.40 (m, 2H), 7.20-7.12 (m, 2H), 6.86-6.78 (m, 2H), 5.51 (d, J = 0.9 Hz, 1H), 5.42 (d, J = 0.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 148.2, 146.6, 132.7, 132.1, 129.6, 129.0, 119.0, 115.4, 115.4, 111.1.

4-(1-(4-(trifluoromethyl)phenyl)vinyl)phenol (1f)

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 5.54 (s, 1H), 5.46 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.6, 148.4, 145.4, 133.4, 129.7, 128.7, 125.2 (q, J = 3.7 Hz), 124.3 (q, J = 270.0 Hz), 115.4, 114.6.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.3 (s, 3F).

4-(1-(4-fluorophenyl)vinyl)phenol (1g)

¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.27 (m, 2H), 7.22-7.16 (m, 2H), 7.05-6.97 (m, 2H), 6.81-6.76 (m, 2H), 5.36 (d, J = 1.2 Hz, 1H), 5.30 (d, J = 1.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, J = 246.4 Hz), 155.6, 148.6, 137.9, 133.9, 130.0 (d, J = 8.0 Hz), 129.6, 115.2, 115.0 (d, J = 21.4 Hz), 112.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.8 (s, 1F).

4-(1-(4-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)vinyl)phenol (11)

¹**H** NMR (400 MHz, DMSO- d_6) δ 9.6 (s, 1H), 7.4 (d, J = 7.9 Hz, 2H), 7.3 (d, J = 8.0 Hz, 2H), 7.1 – 7.0 (m, 2H), 6.8 – 6.7 (m, 2H), 5.4 (s, 1H), 5.4 (s, 1H), 5.3 (s, 1H), 3.6 (q, J =

10.9 Hz, 4H), 1.2 (s, 3H), 0.7 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 157.9, 149.2, 142.2, 138.6, 131.8, 129.5, 128.1, 126.6, 115.6, 113.0, 101.0, 77.0, 23.2, 21.9.

General synthesis of substrate 1h

1h was synthesized according to the procedures previously reported.^[2]

4-(1-(4-chlorophenyl)vinyl)phenol (1h)

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.26 (m, 4H), 7.23-7.17 (m, 2H), 6.83-6.76 (m, 2H), 5.39 (d, *J* = 1.1 Hz, 1H), 5.33 (d, *J* = 1.2 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.6, 148.5, 140.3, 133.7, 133.6, 129.7, 129.7, 128.4, 115.3, 113.5.

General synthesis of substrates 1i-1k, 1t

1i-1k, 1t were synthesized according to the procedures previously reported.^[3]

4-(1-(4-bromophenyl)vinyl)phenol (1i)

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.42 (m, 2H), 7.20 (m, 4H), 6.82-6.77 (m, 2H), 5.39 (d, *J* = 1.1 Hz, 1H), 5.34 (d, *J* = 1.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.5, 148.5, 140.8, 133.7, 131.3, 130.0, 129.6, 121.8, 115.2, 113.5.

4-(1-(4-iodophenyl)vinyl)phenol (1j)

¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.42 (m, 2H), 7.23-7.17 (m, 4H), 6.82-6.77 (m, 2H), 5.39 (d, *J* = 1.1 Hz, 1H), 5.33 (d, *J* = 1.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.95, 161.52, 155.68, 148.50, 133.47, 129.64, 129.57, 124.05, 115.17, 113.84

4-(1-(3-fluorophenyl)vinyl)phenol (1k)

¹**H** NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 1H), 7.24-7.18 (m, 2H), 7.12 (m, 1H), 7.07-6.97 (m, 2H), 6.83-6.78 (m, 2H), 5.41 (d, J = 1.2 Hz, 1H), 5.37 (d, J = 1.1 Hz, 1H), 4.85 (s, 1H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 245.4 Hz), 155.5, 148.5 (d, J = 2.2 Hz), 144.1 (d, J = 7.4 Hz), 133.6, 129.7, 129.6, 124.0 (d, J = 2.9 Hz), 115.2 (d, J = 21.8 Hz), 115.1, 114.5 (d, J = 21.2 Hz), 113.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.7.

1-methoxy-4-(1-(p-tolyl)vinyl)benzene (1t)

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.22 (m, 4H), 7.15 (d, *J* = 8.2 Hz, 2H), 6.90-6.84 (m, 2H), 5.34 (dd, *J* = 6.0, 1.4 Hz, 2H), 3.83 (s, 3H), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.3, 149.4, 139.0, 137.5, 134.2, 129.5, 128.9, 128.3, 113.5, 112.4, 55.4, 21.2.

Substituted hydrazines were purchased at the highest commercial quality.

Synthesis of the catalyst (S)-A4

(*S*)-6,6'-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-2,2',3,3'-tetrahydro-1,1'spirobi[indene]-7,7'-diol (S-1f)

S-1e was synthesized according to the procedures previously reported.^[4]

(S)-6,6'-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (S-1f)

S-1e (296 mg, 0.5 mmol), (4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)boronic acid (381.2 mg, 1.5 mmol, 3 equiv.), K₂CO₃ (414 mg, 3 mmol, 6 equiv.), THF (10 mL), MeOH (0.4 mL) and H₂O (1 mL) were added into an oven-dried resealable Schlenk tube (100 ml) under argon atmosphere. The resulting solution was degassed for 10 minutes, and Pd(PPh₃)₄ (86.67 mg, 0.075 mmol) was added under argon atmosphere. Then the resulting mixture was degassed for 10 minutes and the reaction mixture was heated at 70 °C for 23 h. Upon cooling to room temperature, the resulting mixture was extracted with CH₂Cl₂ (3 times). The combined organic layers were brined, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (silica gel, eluent: *n*-hexane/ethyl acetate = 100/0-20/1) to give **S-1f** (290.0 mg, 0.38 mmol, 77% yield) as a white solid.

(*S*)-6,6'-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-2,2',3,3'-tetrahydro-1,1'spirobi[indene]-7,7'-diol (8-1g)

A solution of S-1f (290 mg, 0.38 mmol) in a mixture of CHCl₃ (2 mL) and MeOH (3 mL) was treated with conc. HCl (2 mL) and heated to 70 °C for 3 h. After cooling to room temperature, saturated NaHCO₃ solution was added, the layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and evaporated to dryness. The resulting residue was purified by flash column chromatography (silica gel, eluent: *n*-hexane/ethyl acetate = 100/0-20/1) to give S-1g (210.8 mg, 0.32 mmol, 83% yield) as a white solid.

(*S*)-6,6'-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-7,7'-bis (methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi [indene] (S-1f) ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.55 (m, 12H), 7.50-7.45 (m, 4H), 7.19 (d, *J* = 7.7 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 2H), 4.43 (d, J = 5.3 Hz, 2H), 4.29 (d, J = 5.4 Hz, 2H), 3.10 (dd, J = 9.5, 5.2 Hz, 4H), 2.74 (s, 6H), 2.64-2.52 (m, 2H), 2.39-2.26 (m, 2H), 1.36 (s, 18H) ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 150.3, 145.4, 142.6, 139.4, 138.7, 137.9, 132.7, 130.4, 129.5, 126.9, 126.7, 125.8, 120.3, 98.6, 60.1, 56.4, 39.4, 34.6, 31.4, 31.3. HRMS (ESI) m/z calcd. for C₅₃H₅₆O₄Na [M+Na]⁺ 779.4077, found 779.4074.

(S)-6,6'-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-7,7'-bis (methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi [indene] (S-1g)

¹**H NMR** (400 MHz, CDCl₃) δ 7.65-7.59 (m, 4H), 7.58-7.52 (m, 8H), 7.49-7.42 (m, 4H), 7.27-7.22 (m, 2H), 6.96 (d, *J* = 7.7 Hz, 2H), 5.13 (s, 2H), 3.19-3.01 (m, 4H), 2.49-2.34 (m,

4H), 1.36 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 150.4, 149.7, 145.4, 140.0, 138.0, 136.3, 132.1, 130.7, 129.7, 127.3, 126.8, 126.7, 125.9, 117.7, 58.5, 37.9, 34.7, 31.5, 31.3. HRMS (ESI) m/z calcd. for C49H48O₂Na [M+Na]⁺ 691.3552, found 691.3544.

Chiral Phosphoric Acid (S)-A4. S-1g (210.8 mg, 0.32 mmol) was suspended in 3.2 mL of pyridine and treated with 0.32 mL of freshly distilled POCl₃. The resulting solution was stirred at 80 °C for 24 h. After cooling to room temperature, H₂O (0.3 mL) was added carefully and the resulting mixture was heated to 100 °C for 24 h. The reaction mixture was acidified with HCl (2 N) and extracted with DCM for three times. The combined organic layers were washed with 2 N HCl for two times, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (silica gel, eluted with CH₂Cl₂/MeOH = 100/1-20/1) to give the product as a white solid in 75% yield (197.2 mg, 0.24 mmol).

1,10-bis(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-*de*:1',7' *fg*][1,3,2]dioxaphosphocine 12-oxide

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.92 Hz, 4H), 7.29 (d, *J* = 7.65 Hz, 2H), 7.23 (d, *J* = 8.11 Hz, 4H), 7.18 (dd, *J* = 9.72, 7.84 Hz, 6H), 7.11 (d, *J* = 8.08 Hz, 4H), 3.21-3.06 (m,

2H), 2.93 (dd, *J* = 16.10, 7.70 Hz, 2H), 2.33 (dd, *J* = 12.13, 6.22 Hz, 2H), 2.24-2.11 (m, 2H), 1.30 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 149.7, 145.2, 140.7, 139.6, 138.0, 136.6, 134.1, 130.3, 129.7, 127.0, 126.9, 125.3, 122.6, 60.1, 38.6, 34.4, 31.4, 30.4.

³¹P NMR (162 MHz, CDCl₃) δ -7.5(s, 1P).

HRMS (ESI) m/z calcd. for C₄₉H₄₇O₄NaP [M+Na]⁺ 753.3110, found 753.3104. Evaluation of different nitrogen-based nucleophiles with alkenes in the presence of a dual CuI and chiral phosphoric acid catalytic system

^{*a*}Reaction conditions: **1a** (0.05 mmol), **2** (0.05 mmol), Togni's reagent (0.05 mmol), CuI (10 mol%), CPA (10 mol%), DCM (1.0 mL) under argon. ^{*b*} Isolated yield. ^{*c*}Ee value on HPLC.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 1,1-diarylalkene substrate **1a** (0.05 mmol, 1.0 equiv.), nucleophiles **2** (0.05 mmol, 1.0 equiv.), Togni's regent (16.5 mg, 0.05 mmol, 1.0 equiv.), CuI (1 mg, 0.005 mmol, 10 mol%), chiral phosphoric acid ((*S*)-**A1** (3.7 mg, 0.005 mmol, 10 mol%), anhydrous DCM (1.0 mL) at 25 °C, then the sealed tube was stirred at 25 °C for 6 h. Upon completion (monitored by TLC), CH₂Br₂ (internal standard, 0.05 mmol, 1.0 equiv.) was added to the reaction mixture (Yield based on ¹H NMR of the crude product). The reaction mixture was directly purified by a silica gel chromatography (eluent: petroleum ether/ethyl acetate = 10/1-2/1, using petroleum ether (100%) to remove the solvent (CH₂Cl₂) at first) to afford the desired product **4Da**.

Note: Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.

(*R*)-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(*p*-tolyl)propyl)benzohydrazide (4A)

HO (H_{4A}) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 2/1) to afford desired product **4A** (11.5 mg, 56 %) as a yellow solid.

HPLC analysis: Chiralcel IA3(hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 230 nm), t_R (minor) = 16.75 min, t_R (major) = 20.95 min.

¹**H NMR** (400 MHz, MeOD) δ 7.49-7.42 (m, 3H), 7.33 (dd, J = 25.2, 7.7 Hz, 4H), 7.21 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 3.42-3.22 (m, 2H), 2.30 (s, 3H).

¹³**C NMR** (101 MHz, MeOD) δ 167.9, 156.4, 139.9, 136.8, 133.5, 133.0, 131.3, 129.0, 128.1, 128.0, 127.7, 127.0, 126.7 (q, *J* = 278.7 Hz), 114.2, 65.6, 41.0 (q, *J* = 26.0 Hz), 19.7.

 ^{19}F NMR (376 MHz, MeOD) δ -59.3.

HRMS (ESI) m/z calcd. for $C_{23}H_{21}N_2O_2F_3Na [M+Na]^+ 437.1453$, found 437.1445.

4-(3,3,3-trifluoro-1-(*p***-tolyl)prop-1-en-1-yl)phenol (4bb)** The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 2/1) to afford desired product **4bb** (6.1 mg, 44 %) as colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 7.9 Hz, 2H), 7.17-

7.09 (m, 4H), 6.80-6.73 (m, 2H), 6.01 (q, J = 8.4 Hz, 1H), 5.03 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.7, 138.3, 134.6, 133.1, 129.7, 129.1 (q, J = 2.0Hz), 128.7, 122.0 (q, J = 271.5 Hz), 115.3, 113.4 (q, J = 33.6 Hz), 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.1.

General procedure for direct asymmetric intermolecular three-component radical-initiated aminotrifluoromethylation of alkenes

Under argon, an oven-dried Schlenk tube (**25mL**) equipped with a magnetic stir bar was charged with 1,1-diarylalkene substrate **1** (0.1 mmol, 1.0 equiv.), substituted hydrazines (0.1 mmol, 1.0 equiv.), CuI (1.9 mg, 0.01 mmol, 10 mol%), chiral phosphoric acid ((*S*)-**A4** (7.4 mg, 0.01 mmol, 10 mol%), Togni's reagent **3** (33.0 mg, 0.1 mmol, 1.0 equiv.) and anhydrous DCM (4.0 mL) at 0 °C, then the sealed tube was stirred at -20 °C for 6 h. Upon completion (monitored by TLC), the reaction mixture was directly purified by a silica gel chromatography [eluent: *n*-hexane/ethyl acetate = 10/1-2/1, using *n*-hexane (100 %) to remove the solvent (DCM) at first] to afford the desired product **4**.

Note: Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use. The ee value of the products were greatly affected by the size of Schlenk tube largely due to their poor solubility in DCM.

The products **4** bearing a hydroxy group tend to decompose *via* a β -hydride elimination process after they were isolated. Considering the inherent instability of the products **4**, they should be converted to **5** ASAP without the erosion of enantioselectivity after the yield and ee value of **4** were determined.

Under argon, an oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 4 (0.06 mmol, 1.0 equiv.), imidazole (0.15 mmol, 2.5 equiv.), TIPSCl (0.075 mmol, 1.25 equiv.) and anhydrous THF (1.0 mL), then the sealed tube was stirred at 25 °C for 10 h. Upon completion (monitored by TLC), the reaction mixture was directly purified by a silica gel chromatography [eluent: *n*-hexane/ethyl acetate = 20/0-5/1, using *n*-hexane (100 %) to remove the solvent (THF) at first] to afford the desired product **5**.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(*p*-tolyl) propyl)benzohydrazide (4A)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product 4A (38.5 mg, 93 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 230$ nm), $t_{\rm R}$ (major) = 17.82 min, $t_{\rm R}$ (minor) = 22.10 min.

(R)-N'-(3,3,3-trifluoro-1-(p-tolyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5A)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5A as sticky colorless oil.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.4 mL/min, λ = 260 nm), $t_{\rm R}$ (minor) = 22.08 min, $t_{\rm R}$ (major) = 26.42 min.

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.42 (m, 3H), 7.39-7.32 (m, 2H), 7.29-7.19 (m, 4H), 7.14 (d, J = 8.0 Hz, 2H), 6.90 (s, 1H), 6.86-6.80 (m, 2H), 5.97 (s, 1H), 3.20 (q, J) = 10.4 Hz, 2H), 2.34 (s, 3H), 1.26-1.18 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 165.4, 154.4, 138.4, 136.2, 133.8, 131.5, 130.8, 127.8, 127.6, 126.4, 125.7, 124.9 (q, J = 276.8 Hz), 118.6, 64.5, 40.3 (q, J = 25.9 Hz), 20.0, 16.8, 11.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₃₂H₄₁N₂O₂F₃NaSi [M+Na]⁺ 593.2787, found 593.2781.

(R)-N'-(1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoro-1-(4hydroxyphenyl)propyl)benzohydrazide (4B)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford

desired product 4B (45.2 mg, 95 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 13.06 min, $t_{\rm R}$ (minor) = 21.02 min.

(*R*)-*N*'-(1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoro-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5B)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5B as sticky colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64-7.56 (m, 4H), 7.53-7.42 (m, 7H), 7.35 (t, J = 7.5Hz, 3H), 7.28 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 7.2 Hz, 1H), 6.91-6.85 (m, 2H), 6.07 (d, J = 7.5 Hz, 1H), 3.28 (q, J = 10.4 Hz, 2H), 1.31-1.20 (m, 3H), 1.09 (d, J = 7.4 Hz, 18H) ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 155.6, 141.6, 140.4, 140.3, 134.7, 132.6, 131.9, 129.0, 128.8, 128.7, 128.1, 127.5, 127.1, 126.8, 126.7, 125.9 (q, *J* = 278.5 Hz), 119.7, 65.8, 41.5 (q, J = 26.0 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9.

HRMS (ESI) m/z calcd. for C₃₇H₄₃F₃N₂O₂NaSi [M+Na]⁺ 655.2944, found 655.2926.

(*R*)-*N*'-(1-(4-(*tert*-butyl)phenyl)-3,3,3-trifluoro-1-(4hydroxyphenyl)propyl)benzohydrazide (4C)

HO 4C 4C 43.3 mg, 95 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 9.10 min, t_R (minor) = 10.63 min.

(*R*)-*N*'-(1-(4-(*tert*-butyl)phenyl)-3,3,3-trifluoro-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)-benzohydrazide (5C)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to as sticky colorless oil

afford desired product 5C as sticky colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.42 (m, 3H), 7.37-7.31 (m, 4H), 7.29 (d, J = 8.6 Hz, 2H), 7.26-7.23 (m, 2H), 6.90 (d, J = 7.5 Hz, 1H), 6.87-6.80 (m, 2H), 5.97 (d, J = 7.6 Hz, 1H), 3.21 (q, J = 10.4 Hz, 2H), 1.31 (s, 9H), 1.26-1.19 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.3, 155.5, 150.5, 139.2, 134.7, 132.8, 131.7, 129.0, 128.6, 127.3, 126.8, 125.9 (q, *J* = 279.4 Hz), 125.1, 119.6, 65.8, 41.7 (q, *J* = 26.2 Hz), 34.5, 31.3, 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.0.

HRMS (ESI) m/z calcd. for C₃₅H₄₇F₃N₂O₂NaSi [M+Na]⁺ 635.3257, found 635.3253.

(*R*)-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4nitrophenyl)propyl)benzohydrazide (4D)

HO 4D NO₂ The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4D** (41.8 mg, 94 %) as a vellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 11.15 min, t_R (minor) = 25.79 min.

(*R*)-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((tri-

isopropyl-silyl)oxy)phenyl)propyl)-benzohydrazide (5D) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5D as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21-8.14 (m, 2H), 7.63-7.55 (m, 2H), 7.49 (dd, J = 8.0, 5.9 Hz, 3H), 7.37 (t, J = 7.6 Hz, 2H), 7.21-7.12 (m, 2H), 6.97 (d, J = 7.2 Hz, 1H), 6.91-6.84 (m, 2H), 6.04 (d, J = 7.4 Hz, 1H), 3.27 (q, J = 10.1 Hz, 2H), 1.28-1.15 (m, 3H), 1.06 (d, J = 7.3 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 167.1, 156.0, 150.0, 147.1, 133.7, 132.2, 131.9, 128.7, 128.7, 128.6, 126.8, 125.6 (q, *J* = 276.8 Hz), 123.2, 120.0, 65.8, 41.2 (q, *J* = 27.9 Hz),

17.8, 12.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.1. HRMS (ESI) m/z calcd. for C₃₁H₃₈F₃N₄O₃NaSi [M+Na]⁺ 624.2482, found 624.2472.

(*R*)-*N*'-(1-(4-cyanophenyl)-3,3,3-trifluoro-1-(4hydroxyphenyl)propyl)benzohydrazide (4E)

HO 4E The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4E** (38.3 mg, 90 %) as a yellow solid.

HPLC analysis: Chiralcel IA3(hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 260 nm), t_R (major) = 13.98 min, t_R (minor) = 31.85 min.

(*R*)-*N*'-(1-(4-cyanophenyl)-3,3,3-trifluoro-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)-benzohydrazide (5E)

TIPSO **5E CN** The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5E** as colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65-7.58 (m, 2H), 7.56-7.43 (m, 5H), 7.37 (dd, J = 8.4, 7.0 Hz, 2H), 7.21-7.11 (m, 2H), 6.95 (s, 1H), 6.90-6.76 (m, 2H), 6.01 (s, 1H), 3.23 (q, J = 10.2 Hz, 2H), 1.28-1.17 (m, 3H), 1.06 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 156.0, 148.1, 133.8, 132.2, 132.1, 131.8, 128.8, 128.8, 128.5, 126.8, 125.6 (q, *J* = 276.7 Hz), 120.0, 118.6, 111.6, 65.9, 41.3 (q, *J* = 26.2 Hz), 17.9, 12.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₃₂H₃₈F₃N₃O₂NaSi [M+Na]⁺ 604.2583, found 604.2578.

(*R*)-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4-(trifluoromethyl)phenyl)propyl)benzohydrazide (4F)

HO 4F CF_3 The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10:1 to 2:1) to afford desired product **4F** (44.5 mg, 95 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 9.96 min, t_R (minor) = 17.56 min.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-(trifluoromethyl)phenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)-propyl)benzohydrazide (5F)

The product was purified by silica gel flash column

chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5F** as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (q, J = 8.5 Hz, 4H), 7.50-7.42 (m, 3H), 7.33 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 10.2, 7.0 Hz, 3H), 6.91-6.84 (m, 2H), 6.04 (d, J = 7.1 Hz, 1H), 3.39-3.12 (m, 2H), 1.30-1.19 (m, 3H), 1.09 (d, J = 7.5 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 155.9, 146.7, 134.2, 132.3, 132.0, 129.7 (q, *J* =

32.5 Hz), 128.9, 128.7, 128.2, 126.8, 125.8 (q, J = 279.6 Hz), 126.8, 125.0 (q, J = 3.8 Hz), 124.0 (q, J = 273.1 Hz), 119.9, 65.8, 41.4 (q, J = 26.4 Hz), 17.9, 12.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0, -62.5. HDMS (ESD) m/π color for C_1 H. E.N.O. NaSi [M+Na]⁺ (47.2505, found 604.2501)

HRMS (ESI) m/z calcd. for $C_{32}H_{38}F_6N_2O_2NaSi [M+Na]^+ 647.2505$, found 604.2501.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-fluorophenyl)-1-(4hydroxyphenyl)propyl)benzohydrazide (4G)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to 2/220 ms 700% are sufficient solution.

afford desired product 4G (33.0 mg, 79 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 11.59 min, t_R (minor) = 21.55 min.

(*R*)-*N'*-(3,3,3-trifluoro-1-(4-(trifluoromethyl)phenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)-propyl)benzohydrazide (5G)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5G** as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52-7.44 (m, 3H), 7.40-7.31 (m, 4H), 7.23-7.17 (m, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.96 (s, 1H), 6.88-6.81 (m, 2H), 5.95 (br s, 1H), 3.28-3.09 (m, 2H), 1.27-1.19 (m, 3H), 1.07 (d, J = 7.4 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 162.0 (d, J = 247.2 Hz), 155.7, 138.3, 134.6, 132.4, 131.9, 129.5 (d, J = 8.0 Hz), 128.9, 128.7, 126.8, 125.8 (q, J = 278.4 Hz), 119.8, 115.0 (d, J = 21.3 Hz), 65.5, 41.6 (q, J = 26.0 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.2, -114.7.

HRMS (ESI) m/z calcd. for C₃₁H₃₈F₄N₂O₂NaSi [M+Na]⁺ 597.2537, found 597.2531.

(*R*)-*N*'-(1-(4-chlorophenyl)-3,3,3-trifluoro-1-(4hydroxyphenyl)propyl)benzohydrazide (4H)

HO $_{4H}$ The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4H** (41.2 mg, 95 %) as a yellow solid.

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 11.64 min, t_R (minor) = 21.46 min.

(*R*)-*N*'-(1-(4-chlorophenyl)-3,3,3-trifluoro-1-(4-((triisopropyl-silyl)oxy)phenyl)propyl)-benzohydrazide (5H) The graduat was purified by silica cal flack column

TIPSO **5H** The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5H** as colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51-7.43 (m, 3H), 7.40-7.26 (m, 6H), 7.23-7.14 (m, 2H), 6.97 (s, 1H), 6.89-6.81 (m, 2H), 5.96 (d, *J* = 5.7 Hz, 1H), 3.30-3.07 (m, 2H), 1.30-1.17 (m, 3H), 1.07 (d, *J* = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 155.8, 141.2, 134.4, 133.5, 132.4, 132.0, 129.1, 128.8, 128.7, 128.3, 126.8, 125.8 (q, *J* = 278.4 Hz), 119.8, 65.6, 41.4 (q, *J* = 26.3 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

 $HRMS (ESI) m/z calcd. for C_{31}H_{38}F_3ClN_2O_2NaSi [M+Na]^+ 613.2241, found 613.2234.$

(*R*)-*N*'-(1-(4-bromophenyl)-3,3,3-trifluoro-1-(4hydroxyphenyl)propyl)benzohydrazide (4I) The product was purified by silica gel flash column

HO' 4I Br Br HO' Br HO' HO

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 11.73 min, t_R (minor) = 21.98 min.

(*R*)-*N*'-(1-(4-bromophenyl)-3,3,3-trifluoro-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)-benzohydrazide (5I)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to an analytical sil

afford desired product 5I as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51-7.42 (m, 5H), 7.39-7.33 (m, 2H), 7.27 (dd, J = 7.5, 1.5 Hz, 2H), 7.24-7.15 (m, 2H), 6.92 (d, J = 5.1 Hz, 1H), 6.87-6.81 (m, 2H), 5.97 (d, J = 7.5 Hz, 1H), 3.31-3.05 (m, 2H), 1.27-1.19 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 155.7, 141.7, 134.3, 132.3, 132.0, 131.2, 129.4, 128.8, 128.7, 126.8, 125.8 (q, *J* = 279.4 Hz), 121.7, 119.8, 65.5, 41.2 (q, *J* = 26.3 Hz), 17.9, 12.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for $C_{31}H_{38}F_3BrN_2O_2NaSi [M+Na]^+ 657.1736$, found 657.1722.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4iodophenyl)propyl)benzohydrazide (4J)

HO 4J The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4J** (50.0 mg, 95 %) as a yellow solid.

HPLC analysis: Chiralcel IE3 (hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 260 nm), t_R (major) = 24.79 min, t_R (minor) = 30.00 min.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-iodophenyl)-1-(4((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5J)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5J as colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51-7.41 (m, 5H), 7.36 (dd, J = 8.7, 6.8 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.20-7.15 (m, 2H), 6.92 (s, 1H), 6.87-6.79 (m, 2H), 5.98 (s, 1H), 3.28-3.07 (m, 2H), 1.28-1.18 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 155.8, 141.7, 134.4, 132.4, 132.0, 131.2, 129.5, 128.8, 128.7, 126.8, 125.8 (q, *J* = 279.4 Hz), 121.7, 119.8, 65.6, 41.4 (q, *J* = 26.5 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₃₁H₃₈F₃IN₂O₂NaSi [M+Na]⁺ 705.1597, found 705.1588.

(*R*)-*N*'-(3,3,3-trifluoro-1-(3-fluorophenyl)-1-(4hydroxyphenyl)propyl)benzohydrazide (4K) The product was purified by silica gel flash column

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 11.34min, t_R (minor) = 14.48min.

(*R*)-*N'*-(3,3,3-trifluoro-1-(3-fluorophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5K)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5K** as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51-7.44 (m, 3H), 7.39-7.33 (m, 2H), 7.33-7.27 (m, 1H), 7.23-7.10 (m, 4H), 7.02-6.95 (m, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.88-6.82 (m, 2H), 5.98 (d, *J* = 7.5 Hz, 1H), 3.28-3.11 (m, 2H), 1.27-1.18 (m, 3H), 1.07 (d, *J* = 7.4 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 162.6 (d, J = 245.8 Hz), 155.8, 145.4 (d, J = 6.6 Hz), 134.3, 132.4, 132.0, 129.6 (d, J = 8.2 Hz), 128.8, 128.7, 126.8, 125.8 (d, J = 276.4 Hz), 123.3 (d, J = 2.8 Hz), 119.8, 115.0 (d, J = 23.2 Hz), 114.6 (d, J = 21.1 Hz), 65.7, 41.4 (q, J = 26.1 Hz), 17.9, 12.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -58.2, -112.5.

HRMS (ESI) m/z calcd. for $C_{31}H_{38}F_4N_2O_2NaSi\ [M+Na]^+\ 597.2591,$ found 597.2531 .

(*R*)-*N'*-(1-(4-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)-3,3,3-trifluoro-1-(4-hydroxyphenyl)propyl)benzohydrazide (4L)

HPLC analysis: Chiralcel IA3 (hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 12.46 min, t_R (minor) = 14.14 min.

(*R*)-*N'*-(1-(4-(5,5-dimethyl-1,3-dioxan-2-yl)phenyl)-3,3,3-trifluoro-1-(4-((triisopropylsilyl)oxy)phenyl) propyl)benzohydrazide (5L)

The product was purified by silica gel flash column

chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5L** as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54-7.39 (m, 7H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.20-7.14 (m, 2H), 6.87 (s, 1H), 6.83-6.77 (m, 2H), 6.02 (br s, 1H), 5.40 (s, 1H), 3.78 (d, *J* = 11.2 Hz 2H), 3.66 (d, *J* = 10.9 Hz, 2H), 3.31-3.10 (m, 2H), 1.30 (s, 3H), 1.27-1.18 (m, 3H), 1.06 (d, *J* = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.5, 155.6, 143.2, 137.8, 134.7, 132.5, 131.8, 128.9, 128.6, 127.7, 126.8, 126.1, 125.8 (q, *J* = 278.5 Hz), 119.6, 101.5, 65.7, 41.4 (q, *J* = 26.5 Hz), 30.3, 23.1, 21.9, 17.9, 12.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.0.

HRMS (ESI) m/z calcd. for C₃₇H₄₉F₃N₂O₄NaSi [M+Na]⁺ 693.3312, found 693.3307.

(*R*)-4-methyl-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4-nitrophenyl)propyl)benzohydrazide (4M)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4M** (43.6mg, 95%) as a yellow

solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 260 nm), t_R (major) = 13.57 min, t_R (minor) = 23.86 min.

(*R*)-4-methyl-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5M)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5M** as colorless oil.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, $\lambda = 260$ nm), t_R (major) = 12.08 min, t_R (minor) = 15.98 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19-8.10 (m, 2H), 7.62-7.54 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.4 Hz, 4H), 7.00 (d, J = 5.7 Hz, 1H), 6.89-6.83 (m, 2H), 6.02 (d, J = 7.1 Hz, 1H), 3.35-3.13 (m, 2H), 2.36 (s, 3H), 1.27-1.19 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.2, 156.0, 150.2, 147.1, 142.8, 133.8, 129.4, 129.2, 128.8, 128.7, 126.8, 125.6 (q, *J* = 279.6 Hz), 123.1, 120.0, 65.8, 41.3 (q, *J* = 26.5 Hz), 21.5, 17.9, 12.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₃₂H₄₀F₃N₃O₄NaSi [M+Na]⁺ 638.2638, found 638.2628.

(*R*)-4-(*tert*-butyl)-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4-nitrophenyl)propyl)benzohydrazide (4N) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product 4N (45.1 mg, 90%) as a yellow solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 260 nm), t_R (major) = 12.88 min, t_R (minor) = 24.19 min.

(*R*)-4-(*tert*-butyl)-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5N)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5N as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19-8.14 (m, 2H), 7.62-7.56 (m, 2H), 7.46-7.40 (m, 2H), 7.40-7.34 (m, 2H), 7.19-7.12 (m, 2H), 6.94 (s, 1H), 6.89-6.83 (m, 2H), 6.03 (s, 1H), 3.37-3.13 (m, 2H), 1.30 (s, 9H), 1.27-1.17 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 156.0, 155.9, 150.2, 147.2, 133.8, 129.2, 128.8, 128.7, 126.7, 125.7, 125.6 (q, J = 278.5 Hz), 123.2, 120.0, 65.9, 41.3 (q, J = 26.5 Hz), 35.0, 31.1, 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.10.

HRMS (ESI) m/z calcd. for C₃₅H₄₆F₃N₃O₄NaSi [M+Na]⁺ 680.3108, found 680.3103.

(R)-4-methoxy-N'-(3,3,3-trifluoro-1-(4-hydroxy-

phenyl)-1-(4-nitrophenyl)propyl)benzohydrazide (4O) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4O** (26.6 mg, 56%) as a yellow

solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 12.54 min, t_R (minor) = 20.34 min.

(*R*)-4-methoxy-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5O)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1)

to afford desired product 50 as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19-8.11 (m, 2H), 7.62-7.51 (m, 2H), 7.50-7.39 (m, 2H), 7.18-7.09 (m, 2H), 6.95 (s, 1H), 6.89-6.80 (m, 4H), 6.03 (s, 1H), 3.81 (s, 3H), 3.36-3.14 (m, 2H), 1.28-1.17 (m, 3H), 1.07 (d, J = 7.4 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.9, 162.7, 156.0, 150.2, 147.1, 133.9, 128.8, 128.77, 128.69, 125.7 (q, *J* = 278.4 Hz), 124.2, 123.1, 120.0, 114.0, 65.8, 55.5, 41.3 (q, *J* = 26.4 Hz), 17.9, 12.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₃₂H₄₀F₃N₃O₅NaSi [M+Na]⁺ 654.2587, found 654.2572.

(*R*)-3-fluoro-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4nitrophenyl)propyl)benzohydrazide (4P)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4P** (32.0 mg, 69%) as a yellow solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 12.32 min, t_R (minor) = 28.39 min.

(*R*)-3-fluoro-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide(5P)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to as colorless solid

afford desired product **5P** as colorless solid. **HPLC** analysis: Chiralcel IA3 (*n* hexage/*i* PrOH = 70/30

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 273 nm), t_R (major) = 11.01 min, t_R (minor) = 14.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19-8.13 (m, 2H), 7.62-7.56 (m, 2H), 7.37-7.28 (m, 1H), 7.25-7.19 (m, 2H), 7.19-7.12 (m, 3H), 7.09 (d, J = 5.5 Hz, 1H), 6.89-6.83 (m, 2H), 6.01 (d, J = 6.6 Hz, 1H), 3.41-3.09 (m, 2H), 1.25-1.18 (m, 3H), 1.06 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 165.9, 162.7 (d, J = 248.7 Hz), 156.2, 149.9, 147.2, 134.2 (d, J = 6.9 Hz), 133.6, 130.5 (d, J = 7.9 Hz), 128.8, 128.7, 125.6 (q, J = 278.6 Hz), 123.2, 122.3 (d, J = 2.8 Hz), 120.1, 119.2 (d, J = 21.3 Hz), 114.3 (d, J = 23.0 Hz), 65.9, 41.3 (q, J = 26.5 Hz), 17.8, 12.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1, -111.0.

HRMS (ESI) m/z calcd. for $C_{31}H_{37}F_4N_3O_4NaSi [M+Na]^+ 642.2387$, found 642.2371.

(*R*)-2-fluoro-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4-nitrophenyl)propyl)benzohydrazide (4Q)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4Q** (44.0 mg, 95%) as a yellow solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 12.5 min, t_R (minor) = 27.3 min.

(*R*)-2-fluoro-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzohydrazide (5Q)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product $\mathbf{5Q}$ as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20-8.14 (m, 2H), 7.92-7.85 (m, 1H), 7.65 (dd, J = 12.49, 7.87 Hz, 1H), 7.62-7.56 (m, 2H), 7.50-7.40 (m, 1H), 7.25-7.19 (m, 1H), 7.18-7.12 (m, 2H), 7.08-6.99 (m, 1H), 6.89-6.83 (m, 2H), 6.17 (dd, J = 8.05, 2.54 Hz, 1H),

3.38-3.12 (m, 2H), 1.26-1.19 (m, 3H), 1.07 (d, J = 7.33 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 3.5 Hz), 160.3 (d, J = 248.0 Hz), 156.1, 150.0, 147.2, 133.8 (d, J = 9.3 Hz), 133.6, 131.8 (d, J = 2.1 Hz), 128.7, 128.6, 125.6 (q, J = 278.4 Hz), 125.0 (d, J = 3.1 Hz), 123.2, 120.1, 118.8 (d, J = 12.1 Hz), 116.0 (d, J = 24.5 Hz), 65.7, 41.1 (q, J = 26.7 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.3, -112.4.

HRMS (ESI) m/z calcd. for C₃₁H₃₇F₄N₃O₄NaSi [M+Na]⁺ 642.2387, found 642.2370.

(*R*)-2-phenyl-*N'*-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4-nitrophenyl)propyl)acetohydrazide (4R)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to afford desired product **4R** (34.0 mg, 74%) as a yellow solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 8.84 min, t_R (minor) = 10.25 min.

(*R*)-2-phenyl-*N'*-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)-acetohydrazide (5R)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 5R as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 8.6 Hz, 2H), 7.44-7.38 (m, 2H), 7.30-7.24 (m, 3H), 7.02 (dd, J = 6.6, 3.0 Hz, 2H), 7.00-6.95 (m, 2H), 6.80-6.75 (m, 2H), 6.40 (d, J = 7.2 Hz, 1H), 5.64 (d, J = 7.3 Hz, 1H), 3.37 (s, 3H), 3.12-2.97 (m, 2H), 1.27-1.21 (m, 3H), 1.09 (d, J = 7.3 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.7, 156.0, 149.8, 147.1, 133.7, 133.3, 129.0, 128.63, 128.56, 127.6, 125.4 (q, *J* = 279.6 Hz), 123.1, 119.9, 65.6, 41.9, 41.1 (q, *J* = 26.7 Hz), 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.3.

HRMS (ESI) m/z calcd. for C₃₂H₄₀F₃N₃O₄NaSi [M+Na]⁺ 638.2638, found 638.2630.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-hydroxyphenyl)-1-(4nitrophenyl)propyl)thiophene-2-carbohydrazide (4S) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 10/1 to 2/1) to

afford desired product 4S (32.0 mg, 71%) as a yellow solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 14.90 min, t_R (minor) = 38.28 min.

(*R*)-*N*'-(3,3,3-trifluoro-1-(4-nitrophenyl)-1-(4-((triisopropyl-silyl)oxy)phenyl)-propyl)thiophene-2carbohydrazide (58)

The product was purified by silica gel flash column

chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product **5S** as colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22-8.10 (m, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 4.8 Hz, 1H), 7.30 (s, 1H), 7.17-7.10 (m, 2H), 7.02 (t, J = 4.3 Hz, 1H), 6.96 (s, 1H), 6.90-6.82 (m, 2H), 5.86 (s, 1H), 3.36-3.14 (m, 2H), 1.27-1.19 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 161.8, 156.1, 150.0, 147.2, 135.4, 133.5, 130.6, 128.8, 127.7, 125.6 (q, J = 278.9 Hz), 123.2, 120.1, 65.9, 41.2 (q, J = 26.7 Hz), 17.9, 12.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₂₉H₃₆SF₃N₃O₄NaSi [M+Na]⁺ 630.2046, found 630.2026.

The absolute configuration of 4N was determined by ECD

Conformations of (R)-4N was searched using Conflex 7 (Rev. D). Initial low-energy conformers with larger than 1% distribution in Gibb's free energy were chosen for geometry optimization and frequency calculation at the B3LYP/6-311++G(d,p) level in acetonitrile solvent by a self-consistent reaction field (SCRF) using the SMD implicit solvent model with Gaussian 16. Then, conformers with distinct conformations were further subjected to TD-DFT calculation at the same level as aforementioned for dipole and rotational strengths of the first 40 excited states in the UV range. Next, ECD spectra of (R)-4N (Supplementary Figure 1) were calculated from excitation energies and rotational strengths as averages weighed on Boltzmann conformer relative populations as a sum of Gaussian functions centered at the wavelength of each transition with appropriate widths of the band at half-height using SpecDis (version 1.71), respectively. Samples of compounds 4N for ECD were dissolved in CH₃OH, and spectra were acquired in a 10.0-mm pathlength cuvette, respectively. The UV and ECD spectra were recorded using a Chirascan® Spectrophotometer with the following instrumental parameters: 200-400 nm with a 1 nm step and a 1 nm bandwidth with data averaging over 1.0 sec per point. Three spectral acquisitions were taken for each sample and were averaged and smoothed thereafter.

Figure 1. Comparison of the calculated ECD of compound (R)-4N with the experimental one of compound 4N.

The calculated spectrum for (R)-4N was basically in accordance with the experimental one, and thus, the absolute configuration of 4N has been assigned to be R.

Representative product transformations

Procedure for synthetic application

Synthesis of **6a**, **7a**: **6a**, **7a** were synthesized according to the procedures previously reported.^[5]

(*R*)-3,3,3-trifluoro-1-(*p*-tolyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propan-1-amine (6A)

TIPSO GA The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 10/1) to afford desired product **6A** as colorless oil.

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/05, flow rate 0.4 mL/min, λ =

230 nm), $t_{\rm R}$ (minor) = 12.54 min, $t_{\rm R}$ (major) = 17.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.3-7.1 (m, 6H), 6.8 (d, *J* = 8.2 Hz, 2H), 3.1 (q, *J* = 10.7 Hz, 2H), 2.3 (s, 3H), 1.3-1.2 (m, 3H), 1.1 (d, *J* = 7.4 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.9, 144.1, 139.3, 136.6, 128.9, 127.3, 126.3 (q, *J* = 279.1 Hz), 126.1, 119.6, 58.5, 46.0 (q, *J* = 24.6 Hz), 20.9, 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HRMS (ESI) m/z calcd. for C₂₅H₃₆ONF₃S [M+Na]⁺ 474.2416, found 474.2401

(*R*)-2-methoxy-*N*-(3,3,3-trifluoro-1-(*p*-tolyl)-1-(4-((triisopropylsilyl)oxy)phenyl)propyl)benzamide (7A) The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product 7A as colorless oil.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.12 min, t_R (major) = 20.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.11 (dd, J = 7.78, 1.88 Hz, 1H), 7.50-7.42 (m, 1H), 7.24 (d, J = 8.35 Hz, 2H), 7.20-7.17 (m, 2H), 7.12 (d, J = 8.15 Hz, 2H), 7.09-7.01 (m, 2H), 6.85-6.79 (m, 2H), 4.08 (s, 3H), 3.95-3.78 (m, 1H), 3.76-3.62 (m, 1H), 2.30 (s, 3H), 1.27-1.18 (m, 3H), 1.07 (d, J = 7.30 Hz, 18H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.2, 157.6, 155.0, 142.3, 137.1, 136.6, 132.9, 132.4, 129.1, 127.0, 126.2 (q, *J* = 279.8 Hz), 125.8, 122.1, 121.6, 119.8, 111.5, 60.8, 56.3, 40.1 (q, *J* = 25.7 Hz), 21.0, 17.9, 12.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.1.

HRMS (ESI) m/z calcd. for C₃₃H₄₃O₃NF₃SiNa [M+Na]⁺ 608.2784, found 608.2762.

Synthesis of 9A: 9A was synthesized according to the procedures previously reported.^[6]

(R)-4-(1-(2-benzoylhydrazinyl)-1-(4-chlorophenyl)3,3,3-trifluoropropyl)phenyl
trifluoromethanesulfonate (8A)
The product was purified by silica gel flash column chromatography (n-bexane/ethyl acetate = 100/0 to 10/1)

chromatography (*n*-hexane/ethyl acetate = 100/0 to 10/1) to afford desired product **8A** as colorless oil.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 20.47 min, t_R (major) = 26.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53-7.43 (m, 5H), 7.39 (dd, J = 8.4, 6.9 Hz, 2H), 7.31 (q, J = 8.9 Hz, 4H), 7.26-7.21 (m, 2H), 7.01 (d, J = 7.0 Hz, 1H), 5.97 (d, J = 7.3 Hz, 1H), 3.24 (q, J = 10.1 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.5, 148.9, 142.7, 140.3, 134.2, 132.3, 131.9, 129.7, 129.0, 128.8, 128.6, 126.8, 125.5 (q, *J* = 279.4 Hz), 121.1, 118.7 (q, *J* = 322.0 Hz), 65.6, 41.3 (q, *J* = 26.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.2, -72.8.

(*R*)-N'-(1-(4-chlorophenyl)-3,3,3-trifluoro-1-(4'methoxy-[1,1'-biphenyl]-4-yl)propyl)benzohydrazide (9A)

The product was purified by silica gel flash column chromatography (*n*-hexane/ethyl acetate = 100/0 to 5/1) to

afford desired product 9A as a white solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 18.83 min, t_R (major) = 24.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.6-7.4 (m, 7H), 7.41-7.35 (m, 6H), 7.3-7.3 (m, 2H), 7.0 (s, 1H), 7.0-7.0 (m, 2H), 6.1 (s, 1H), 3.8 (s, 3H), 3.35-3.18 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 159.5, 141.0, 140.4, 140.2, 133.7, 132.6, 132.4, 132.1, 129.2, 128.8, 128.4, 128.1, 128.0, 126.8, 126.5, 125.8 (q, *J* = 278.5 Hz), 114.3, 65.7, 55.4, 41.2 (q, *J* = 26.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.0.

HRMS (ESI) m/z calcd. for C₂₉H₂₄O₂N₂F₃ClNa [M+Na]⁺ 547.1365, found 547.1376.

Mechanistic study

Under argon atmosphere, an oven-dried resealable Schlenk tube (**25 mL**) equipped with a magnetic stir bar was charged with 1,1-diarylalkene **1a** (0.05 mmol, 1.0 equiv.), **2a** (0.05 mmol, 1.0 equiv.), CuI (1.0 mg, 0.005 mmol, 10 mol%), chiral phosphoric acid ((*S*)-**A4** (3.7 mg, 0.005 mmol, 10 mol%), Togni's reagent (**3**, 16.5 mg, 0.05 mmol, 1.0 equiv.), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 11.7 mg, 0.075 mmol, 1.5 equiv.) or 2,6-di-*tert*-butyl-4-methylphenol (16.5 mg, 0.075 mmol, 1.5 equiv.), and anhydrous DCM (2 mL) at 0 °C, then the sealed tube was stirred at -20 °C for 6 h. PhCF₃ (internal standard, 0.05 mmol, 1.0 equiv.) was added to the reaction mixture. Yield was based on ¹⁹F NMR analysis of the crude product.

Note: Since the reaction is sensitive to water and air, Schlenk tube and the reagents must be dried prior to use.

N'-(3,3,3-trifluoro-1-(4-methoxyphenyl)-1-(*p*-tolyl)propyl)benzohydrazide (5T)

 $\underbrace{\mathsf{MeO}}_{5\mathsf{T}} \underbrace{\mathsf{CH}_3}_{\mathsf{T}} \xrightarrow{\mathsf{CH}_3} \operatorname{The product was purified by silica gel flash column chromatography ($ *n*-hexane/ethyl acetate = 100/0 to 5/1) to afford desired product**5**T as colorless solid.

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 23.34 min, t_R (major) = 24.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54-7.43 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.33-7.23 (m, 4H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.96 (s, 1H), 6.89-6.80 (m, 2H), 5.98 (d, *J* = 7.6 Hz, 1H), 3.80 (s, 3H), 3.22 (q, *J* = 10.4 Hz, 2H), 2.34 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.7, 158.8, 139.5, 137.3, 134.5, 132.6, 131.9, 128.9, 128.9, 128.7, 127.5, 126.8, 125.9 (q, *J* = 278.4 Hz), 113.4, 65.5, 55.2, 41.3 (q, *J* = 26.1 Hz), 21.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.0.

HRMS (ESI) m/z calcd. for $C_{24}H_{23}F_{3}N_{2}O_{2}Na [M+Na]^{+} 451.1610$, found 451.1605.

Supplementary References

- J.-S. Lin, T.-T. Li, J.-R. Liu, G.-Y. Jiao, Q.-S. Gu, J.-T. Cheng, Y.-L. Guo, X. Hong, X.-Y. Liu, J. Am. Chem. Soc. 2019, 141, 1074.
- [2] K. Sugiyama, T. Yamada, Macromol. Chem. Phys. 2017, 218.
- [3] Z. Wang, F. Ai, Z. Wang, W. Zhao, G. Zhu, Z. Lin, J. Sun, J. Am. Chem. Soc. 2015, 137, 383.
- [4] D. H. Fangxi Xu, Chao Han, Wei Shen, Xufeng Lin and Yanguang Wang, J. Org. Chem. 2010, 75, 8677.
- [5] Z. Wang, F. Ai, Z. Wang, W. Zhao, G. Zhu, Z. Lin, J. Sun, J. Am. Chem. Soc. 2015, 137, 383.
- [6] H. Nambu, W. Hirota, M. Fukumoto, T. Tamura, T. Yakura, Chem. Eur. J. 2017, 23, 16799.

$\begin{array}{c} 7.53\\ 7.7.53\\ 7.7.7.7.7.7.7.7.7.7.563\\ 7.7.7.7.7.7.7.7.7.563\\ 7.7.7.563\\ 7.7.563\\ 7.7.563\\ 7.7.563\\ 7.7.563\\ 7.7.562\\ 7.7.562\\ 7.7.7.56$

7. 5.3. 7. 5.3. 7. 5.3. 7. 5.4. 7. 5.5. 7.

 $\begin{array}{c} 7.491\\ 7.477\\ 7.477\\ 7.477\\ 7.477\\ 7.477\\ 7.477\\ 7.475\\ 7.475\\ 7.475\\ 7.47\\ 7.456\\ 7.735\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7356\\ 7.7326\\ 7.722$

-55 -60 f1 (ppm) -65

-70

-75

-80

-85

-90

-95

-100

50

-10

-15

-20

-25

-30

-35

-40

-45

-50

$\begin{array}{c} 7.497\\ 7.7497\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7576\\ 7.7576\\ 7.7576\\ 7.7576\\ 7.7576\\ 7.7536\\ 7.7536\\ 7.7566\\$

$\begin{array}{c} 7.504\\ 7.754\\ 7.7485\\ 7$

6.5

5.5

8.5

-20 -35 -40 -45 -55 -60 f1 (ppm) -75 -15 -50 -1 -25 -30 -65 -70 -80 -85 -90 -95

8.184 8.184 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.187 8.110 19.127 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.121 10.122 10.122 10.123 10.123 10.123 10.123 11.123 11.123

---58.105

2.5

2.0

1.5

0.5

0.0

-0.5 -1.

6.5

. 0 8.5 5.5 5.0

8.181 8.181 8.156 8.156 8.156 8.156 7.7.887 7.7.887 7.7.887 7.7.887 7.7.887 7.7.649 7.7.649 7.7.629 7.7.649 7.7.198 7.7.198 7.7.198 7.7.198 7.7.198 7.7.198 7.7.198 7.7.198 7.7.198 7.7.103 7.7.104 7.7.104 7.7.104 7.7.104 7.7.104 7.7.104 7.7.104 7.7.104 7.7.105 7.

10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm)

$\begin{array}{c} 7.7_{1,2,2,5}\\ 7.7_{1,2,2,3}\\ 7.7_{1,2,3,2,5}\\ 7.7_{1,2,3,3}\\ 7.7_{1,2,3,4,4}\\ 7.7_{1,2,4$

$7_{7,2,5,2}$ $7_{7,5,5,2}$ 7_{7

90 80 f1 (ppm)

HPLC Spectra

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.090 BB	0.3864	3259.53906	129.16458	50.0615
2	23.194 BB	0.4327	3251.53198	116.12693	49.9385
Total	s :		6511.07104	245.29151	
			75		

Totolo .	1700 00570	CO 03503
TOLAIS :	1/88.905/0	68.03502

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.862	BB	0.2771	2.35805e4	1266.96582	50.0008
2	20.664	BB	0.4256	2.35798e4	839.69714	49.9992

Totals :

4.71603e4 2106.66296

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 13.061 BB	0.2937	5750.91309	289.52655	89.4448
2 21.025 BB	0.4408	678.65222	23 . 09534	10.5552
Totals :		6429.56531	312.62189	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.493	BB	0.2263	2.98231e4	1973.36804	50.0948
2	24.426	BB	0.5349	2.97102e4	839.45703	49.9052
Total	ls :			5.95333e4	2812.82507	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.642	BB	0.2191	1.30605e4	890.34204	90.8867
2	21.459	BB	0.4067	1309.59412	48.85733	9.1133
Total	s :			1.43701e4	939.19937	

Peak Recrime Type width Area Height Ar	ea
# [min] [min] [mAU*s] [mAU]	%
	·
1 13.691 BB 0.3144 2.17141e4 1028.22021 49.	7315
2 24.289 BBA 0.5209 2.19485e4 632.44281 50.	2685
Totals : 4.36626e4 1660.66302	

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.103	MM	0.2109	1.13913e4	900.19263	91.4364
2	15.985	BB	0.2965	1066.86987	54.47313	8.5636
Tota]	s :			1.24581e4	954.66575	

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.225	BB	0.2552	3264.77686	191.24953	50.1430
2	23.230	BB	0.4795	3246.15796	103.61681	49.8570
Tota]	ls :			6510.93481	294.86634	

Signal 6: DAD1 F, Sig=260,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	12.878 24.192	BB BB	0.2448 0.4904	1.57251e4 1040.20898	961.27435 32.41763	93.7955 6.2045

Totals :

1.67653e4 993.69198

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.254	BV R	0.2773	1.73082e4	887.30377	50.4429
2	20.036	BV R	0.3862	1.70042e4	604.43463	49.5571
Total	.s :			3.43124e4	1491.73840	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.541	BB	0.2833	2413.95898	124.97690	87.4197
2	20.343	BB	0.4591	347.38412	11.22356	12.5803
Tota]	ls:			2761.34311	136.20045	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak Ret # [m	Time Type in]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
		.			
1 12	.321 BB	0.2681	1.00506e4	558.22528	86.1408
2 28	.391 BB	0.5908	1617.03821	41.66123	13.8592
Totals :			1.16676e4	599.88651	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.494	BB	0.2257	2251.16577	149.50638	49.2368
2	27.294	BB	0.5219	2320.95581	68.38902	50.7632
Total	.s :			4572.12158	217.89539	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime [·]	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.841	BV R	0.1636	3121.02075	280.85043	78.6333
2	10.246	VB	0.1985	848.06427	63.20127	21.3667
Total	s :			3969.08502	344.05170	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.444	BB	0.2305	6481.04541	433.35587	49.9188
2	14.995	BB	0.3160	6502.13818	318.67941	50.0812
Tota]	ls :			1.29832e4	752.03528	

Signal 4: DAD1 D, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.540	BB	0.1847	742.17566	62.41515	15.4298
2	17.683	BB	0.2771	4067.83521	229.16956	84.5702

4810.01086 291.58471

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.224	BB	0.2545	1241.09839	75.21783	49.9338
2	20.806	BB	0.3248	1244.38745	59.30152	50.0662

Totals :

2485.48584 134.51934

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.596 BB	0.3166	4406.24365	211.92793	49.9793
2	24.040 BB	0.4162	4409.89941	162.73108	50.0207
Total	s :		8816.14307	374.65901	

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	23.336 BV	0.3697	1053.92578	43.64122	49.0319
2	24.350 VB	0.4001	1095.54468	41.21569	50.9681
Total	s :		2149.47046	84.85691	