Supplementary information

Enantioconvergent Cu-catalysed *N*-alkylation of aliphatic amines

In the format provided by the authors and unedited

Supplementary Information for

Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines

Ji-Jun Chen^{1,3}, Jia-Heng Fang^{1,3}, Xuan-Yi Du^{1,3}, Jia-Yong Zhang¹, Jun-Qian Bian¹, Fu-Li Wang¹, Cheng Luan², Wei-Long Liu¹, Ji-Ren Liu¹, Xiao-Yang Dong¹, Zhong-Liang Li², Qiang-Shuai Gu², Zhe Dong¹, and Xin-Yuan Liu¹ Correspondence to: <u>liuxy3@sustech.edu.cn</u>

Table of contents

1. Supplementary tables for experiments	S1
2. Supplementary figures for experiments	S26
3. General information	S48
4. Synthesis of ligand	S49
5. Synthesis of α-carbonyl alkyl chloride substrates	
6. Enantioconvergent N-alkylation of aliphatic amines and ammonia	
7. Procedure for synthetic applications	S145
8. Mechanistic studies	S171
9. References	S204
10. NMR spectra	S206
11. HPLC spectra	

1. Supplementary tables for experiments

Brief summary of condition optimizations

Benzylic primary amine A1 with α -methyl secondary alkyl chloride E1: We started the condition optimization using Cu(CH₃CN)₄PF₆ and L*1 as the catalyst in CH₃CN at 45 °C. The initial screening of inorganic base additives indicated Cs₂CO₃ as the best (Supplementary Table 1). Next, the copper salt was varied and CuI performed the best (Supplementary Table 2). The subsequent solvent screening revealed 1,4-dioxane as the optimal one (Supplementary Table 3). Then a series of ligands were strategically tested and L*4 stood out to provide the highest yield with the best enantioselectivity (Supplementary Table 4). Further investigations on the amine-to-alkyl chloride ratio (Supplementary Table 5), copper-to-ligand ratio (Supplementary Table 6), and the stoichiometry of base additives (Supplementary Table 7) led to the optimal conditions. Additional control experiments indicated the significant formation of side products 1' or 1'' in the absence of CuI or L*4 or both (Supplementary Table 8). In addition, the base-promoted non-enantioselective N-alkylation was observed, which was promoted by copper catalysts in the absence of L*4 (Supplementary Table 8).

Non-benzylic primary amine A13 with α -methyl secondary alkyl chloride E1: This reaction in a single solvent generally gave low to moderate yield with moderate to excellent enantioselectivity (Supplementary Table 9). Thus, mixed solvents composed of NMP and EtOAc, of which the former gave the highest yield and the latter the highest enantioselectivity, were investigated (Supplementary Table 10). An NMP-to-EtOAc ratio of 3:2 was found to deliver good yield with suboptimal enantioselectivity. Further ligand screening identified L*5 as the best ligand (Supplementary Table 11), providing the N-alkylation product in good yield with excellent enantioselectivity.

Cyclic secondary amine A55 with α -methyl secondary alkyl chloride E1: In this case, L*5 performed better than L*4 (Supplementary Table 12) and CuBH₄(PPh₃)₂ outperformed CuI (Supplementary Table 13). The use of mixed solvents of DMF and cyclohexane led to slightly enhanced yield with almost the same enantioselectivity as those obtained in DMF only (Supplementary Table 14).

Acyclic secondary amine A51 with α -alkyl secondary alkyl chloride E7: Due to the increased steric bulkiness of alkyl chlorides, sterically less congested N,N,N-ligand L*7 became superior for this reaction (Supplementary Table 16). Among common solvents, benzene delivered slightly better enantioselectivity than 1,4-dioxane while the yield remained comparable (Supplementary Table 17).

Cyclic secondary amine A89 with α -alkyl secondary alkyl chloride E7: In this reaction, L*10 afforded slightly higher enantioselectivity than L*7 (Supplementary Table 18).

Benzylic primary amine A1 with α -aryl secondary alkyl chloride E18: Various copper salts generally provided moderate yield with good enantioselectivity and CuSCN performed the best (Supplementary Table 19). Switching the solvent from 1,4-dioxane to THF marginally enhanced the enantioselectivity albeit with slightly diminished yield (Supplementary Table 20). Replacing the tridentate ligand L*4 with the sterically less congested bidentate ligand L*8 boosted the reaction efficiency with almost the same enantioselectivity (Supplementary Table 21).

Benzylic primary amine A1 with tertiary alkyl chloride E22: The planar tridentate N,N,Nligand L*9 with a sterically more opened catalyst pocket delivered moderate enantioselectivity while the sterically congested ligand L*4 failed to induce enantioselectivity under otherwise the same conditions (Supplementary Table 22). Further changing the solvent from 1,4-dioxane to MTBE greatly enhanced the enantioselectivity. The use of K₃PO₄ in place of Cs₂CO₃ provided slightly superior enantioselectivity but with greatly diminished yield. Interestingly, the addition of an additional catalytic amount of Cs_2CO_3 rescued the reaction while slightly boosting the enantioselectivity.

Ph NH ₂ +	Cl Me NHPh O Cu(CH ₃ CN) ₄ PF ₆ (10 mol%) L*1 (15 mol%) base (3.0 equiv.) CH ₃ CN (1.0 mL), 45 °C	→	Ph N, NHPh	+ O NHPh	+ Ph Me Me
A1	E1		1	1'	1"
Entry	Base		Yield (%)		E.e. (%)
Enuy	Base	1	1'	1"	E.e. (70)
1	Na_2CO_3	7	trace	trace	2
2	K_2CO_3	10	trace	trace	13
3	Cs_2CO_3	44	44	24	67
4	Na ₃ PO ₄	8	trace	trace	1
5	LiOH	10	trace	trace	19
6	LiOMe	16	trace	trace	47
7	NaOMe	33	7	8	38
8	KOMe	28	22	11	61
9	LiO'Bu	10	trace	trace	22
10	NaO'Bu	13	trace	5	0
11	KO'Bu	9	trace	5	2
12	КОН	17	trace	trace	3
13	NaOH	37	trace	trace	0

Supplementary Table 1 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: screening of different bases

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), L*1 (15 mol%), and base (3.0 equiv.) in CH₃CN (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

	Cl [Cu] (10 mol%) 		o N.↓	0	Me N-Ph
Ph NH ₂ +	Me Cs ₂ CO ₃ (3.0 equiv.) CH ₃ CN (1.0 mL), 45 °C		Me	+ NHPh	+ I Ph Me
A1	E1		1	1'	1"
Entry	[Cu] —		Yield (%)		E.e. (%)
	[Cu]	1	1'	1"	L:C: (70)
1	Cu(CH ₃ CN) ₄ PF ₆	44	44	24	67
2	CuBH ₄ (PPh ₃) ₂	63	34	15	84
3	CuBr SMe ₂	58	37	21	82
4	CuI	69	47	13	85
5	CuCN	53	24	30	75
6	CuTc	52	38	22	80
7	IMesCuCl	23	trace	56	3
8	CuOAc	40	39	22	73
9	CuMes	68	47	10	85
10	$CuBr_2$	56	26	29	78
11	CuCl ₂	58	32	25	79
12	CuF_2	55	31	25	78
13	$Cu(acac)_2$	37	41	19	71
14	Cu(OTf) ₂	67	38	22	77
15	$Cu(OAc)_2$	47	37	19	82
16	$Cu_3(PO_4)_2$	34	18	42	49

Supplementary Table 2 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: screening of different copper salts

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), [Cu] (10 mol%), L*1 (15 mol%), and Cs₂CO₃ (3.0 equiv.) in CH₃CN (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 3 Reaction condition optimization with benzylic primary amine A1 and
α -methyl secondary alkyl chloride E1: screening of different solvents

Ph	∕_ _{NH2} +	Me NHPh -	Cul (10 mol? L*1 (15 mol? Cs ₂ CO ₃ (3.0 ec solvent (1.0 mL), rt	5) 	I	Ph H N/, Me NHPh	+ >	O NHPh	+ Ph	
	A1	E1				1		1'		1"
	Entry	Sc	olvent			Yield (%)			E.e. (%	() ()
	Linuy	50	Jivent	1		1'		1"	E.e. (7	0)
	1	Cl	H ₃ CN	69	9	47		13	85	
	2ª	Ι	DMF	9		44		25	80	
	3 ^a	Γ	OMA	10)	60		16	77	
	4 ^a	D	MSO	10)	67		6	56	
	5	Γ	DCM	16	5	trace	t	race	72	
	6	Ι	DCE	33	3	5	t	race	84	
	7	E	tOAc	38	8	13		8	75	
	8	<i>n</i> -h	nexane	64	4	8		10	62	
	9	P	hCF3	26	5	trace	tı	race	79	
	10	Γ	DME	53	3	33		9	81	
	11	ⁱ]	Pr ₂ O	25	5	7		7	79	
	12	- -	ГНF	44	4	6		6	86	
	13	1,4-	dioxane	68	8	9	tı	race	87	

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L*1 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in anhydrous solvent (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis. ^aAt room temperature.

Supplementary Table 4 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: screening of different ligands

Ph NH ₂ + Me	NHPh	ul (10 mol%), L* (15 mol%) Cs ₂ CO ₃ (3.0 equiv.) ,4-dioxane (1.0 mL), 45 °C	Ph N,, Me	NHPh +	HPh + Ph N He O III'
		NH X L*3 NH L*4 L*5	ning Me R X R N	Me R,R	
Entry	L*	1	Yield (%	%) 1"	— E.e. (%)
1	L*1	68	9	trace	87
2	L*2	69	15	trace	86
3	L*3	62	15	trace	81
4	L*4	98	trace	trace	92
5	L*5	97	trace	trace	84
6	L*6	77	trace	trace	74
7	L*7	92	19	7	85
8	L*8	74	trace	trace	88
9	L*10	92	22	trace	92
10	L*12	95	trace	trace	91

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L* (15 mol%), and Cs_2CO_3 (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 5 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: screening of starting materials loading

Ph NH ₂ +		Me NHPh	Cul (10 mol%) L*4 (15 mol%) Cs₂CO ₃ (3.0 equiv.) 1,4-dioxane (1.0 mL), 45 °C	Ph, H, Me	IPh ⁺	O NHPh	+ Ne Ne He
1	A1	E1		1		1'	1''
-	Enter	$\mathbf{A1}$ (aquin)		Yield (%)			E = (0/)
-	Entry	A1 (equiv.)	E1 (equiv.)	1	1'	1"	– E.e. (%)
	1	1.0	1.5	98	trace	trace	92
	2	1.0	1.2	85	trace	trace	92
	3	1.0	1.0	70	trace	trace	92
	4	1.2	1.0	70	trace	trace	92
_	5	1.5	1.0	75	trace	trace	91

Reaction conditions: A1, E1, CuI (10 mol%), L*4 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 6 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: screening of catalyst loading

Ph-	^ _{NH₂} +	Me NHPh -	Cul (x mol%) L*4 (y mol%) Cs ₂ CO ₃ (3.0 equiv.) 1,4-dioxane (1.0 mL), 45 °C		Ph +	O NHPh	+ Me N Ph Ph Me Me	
1	A1	E1		1		1'	1"	
	Enters	$C_{\rm PM}$ (w mol θ)	$\mathbf{L} \star \mathbf{I} (\mathbf{x} = a \cdot 10/)$		Yield (%)	$\mathbf{E} = (0/1)$	
	Entry	CuI (x mol %)	L*4 (y mol %)	1 1		1"	E.e. (%)	
-	1	10	15	98	trace	trace	92	
	2	10	12	95	trace	trace	92	
	3	10	10	95	trace	trace	91	
	4	7	10.5	84	trace	trace	92	
	5	5	7.5	80	trace	trace	87	
_	6	2	3	77	trace	trace	83	

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), CuI, L*4, and Cs₂CO₃ (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 7 Reaction condition optimization with benzylic primary ami	ne A1 and
α-methyl secondary alkyl chloride E1: screening of Cs2CO3 loading	0

Ph NH ₂	+	Me NHPh -	Cul (10 mol%) L*4 (15 mol%) Cs ₂ CO ₃ (x equiv.) 1,4-dioxane (1.0 mL), 45 °C	>	Ph H NHPh +	NHPh	+ Ph Me Me
A1		E1			1	1'	1"
	Eutore Cu ((Yield (%)		$E_{2}(0/)$
1	Intry	Cs_2CO_2	3 (x equiv.)	1	1'	1"	E.e. (%)
	1		1.0	60	trace	trace	89
	2		2.0	80	trace	trace	92
	3		3.0	98	trace	trace	92
	4		4.0	97	trace	trace	92

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L*4 (15 mol%), and Cs_2CO_3 (x equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 8 | Reaction condition optimization with benzylic primary amine A1 and α -methyl secondary alkyl chloride E1: variation of reaction parameters

Ph	∕	Me NHPh	Cul (10 mol%) L*4 (15 mol%) Cs ₂ CO ₃ (3.0 equiv.) 1,4-dioxane (1.0 mL), 45 °C	► ^{Ph} √ ^H /,, ∫	NHPh -		+ `NHPh	Me N Ph Ph N Me
	A1	E1		1		1		1"
	Entry	CuI	L*4	Cs ₂ CO ₃		Yield (%	/	E.e. (%)
	Lindy	Cui	2 .	052003	1	1'	1"	Ele: (70)
	1	\checkmark	\checkmark	\checkmark	98	trace	trace	92
	2	\checkmark	×	\checkmark	98	35	trace	0
	3	×	\checkmark	\checkmark	39	trace	27	0
	4	×	×	\checkmark	40	trace	20	0
	5	×	×	×	trace	trace	trace	_

Reaction conditions: A1 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L*4 (15 mol%), and Cs₂CO₃ (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

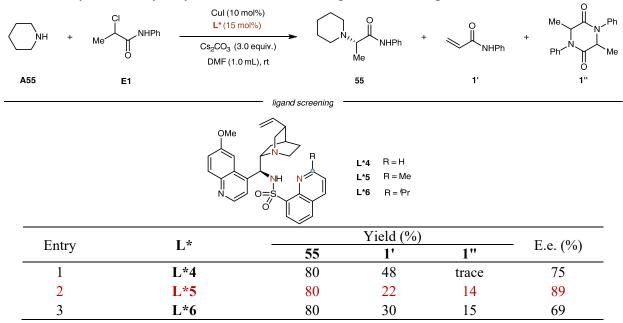
Supplementary Table 9 | Reaction condition optimization with non-benzylic primary amine A13 with α -methyl secondary alkyl chloride E1: screening of different solvents

Ph NH ₂ +	CI Me NHPh _	Cul (10 mol%) L*4 (15 mol%)	► Ph~		+	Me N ^{Ph}
	0	Cs ₂ CO ₃ (3.0 equiv.) solvent (1.0 mL), rt		Me	NH	Ph Ph Me
A13	E1			13	1'	1"
Entry	Solve	ent —		Yield (%)		E.e. (%)
	30170	t	13	1'	1"	L.C. (70)
1	DM	F	40	45	20	81
2	DM	A	38	52	15	82
3	NM	Р	52	47	9	85
4	DMS	0	19	5	14	36
5	MTB	BE	28	trace	6	76
6	^{<i>i</i>} Pr ₂ C	C	19	trace	8	52
7	THI	7	28	trace	8	80
8	1,4-dio2	xane	45	trace	5	89
9	DM	Е	46	9	13	85
10	PhH	I	27	trace	10	83
11	PhM	le	28	trace	11	85
12	PhCl	F ₃	17	trace	14	67
13	DCM	Ν	21	trace	14	72
14	DCI	E	12	trace	5	62
15	CH ₃ C	CN	30	trace	36	64
16	EtOA	Ac	19	trace	15	91
17	<i>n</i> -hexa	ane	55	trace	16	59
18	cyclohe	xane	33	trace	10	53
19	AcO ⁱ	Pr	13	trace	8	43
20	^{<i>i</i>} PrCO	₂ Et	9	trace	7	36

Reaction conditions: A13 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L*4 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in anhydrous solvent (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 10 | Reaction condition optimization with non-benzylic primary amine A13 with α -methyl secondary alkyl chloride E1: screening of cosolvents

Ph-	NH ₂	+ Me HPh -	Cul (10 mol%) L*4 (15 mol%) Ph Cs ₂ CO ₃ (3.0 equiv.) cosolvent (1.0 mL), rt	H,,, Me	NHPh ⁺ :	O NHPh	+ Nr ^{Ph} Ph ^r Me
	A13	E1		13		1'	1"
	Entry NMP (mL)		$E_{4}O_{4} = (mI)$	Yield (%)			$\mathbf{F} = (0/1)$
Entry		NMP (mL)	EtOAc (mL)	13	1'	1"	– E.e. (%)
	1	1.0	0	52	47	9	85
	2	0	1.0	19	trace	15	91
	3	0.7	0.35	71	30	9	89
	4	0.6	0.4	75	25	11	89
	5	0.5	0.5	65	8	5	90
	6	0.4	0.6	62	10	7	90


Reaction conditions: A13 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L*4 (15 mol%), and Cs₂CO₃ (3.0 equiv.) in cosolvent (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 11 | Reaction condition optimization with non-benzylic primary amine A13 with α -methyl secondary alkyl chloride E1: screening of different ligands

Ph NH ₂ + M	Cl Cl Cul (10 mc L*(15 mo Cs ₂ CO ₃ (3 e NMP/EtOAc (0.6)	Ph equiv.)		+ , NHI	Ph Ph Ph Ph Ph Ph Ph Me Me
A13	E1		13	1'	1"
	R L*4 R=H L*5 R=Me L*6 R=Pr L*13 R='Bu	- ligand screening Me	le ↓↓7	Ph,	Me N Me VNH N L*10
Entry	L*	13	Yield (%) 1'	1"	- E.e. (%)
1	L*4	75	25	11	89
2	L*5	85	18	5	92
3	L*6	50	25	11	85
4	L*13	18	12	25	30
5	L*7	87	31	5	62
6	L*10	88	39	6	86

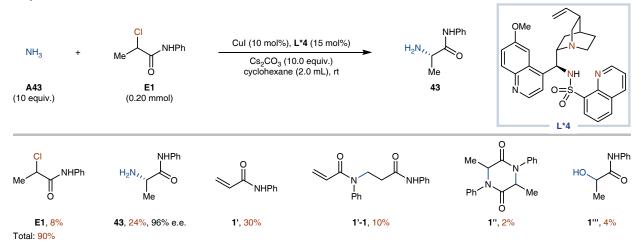
Reaction conditions: A13 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L* (15 mol%), and Cs₂CO₃ (3.0 equiv.) in NMP/EtOAc (0.6/0.4 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 12 | Reaction condition optimization with cyclic secondary amine A55 with α -methyl secondary alkyl chloride E1: screening of different ligands

Reaction conditions: A55 (0.050 mmol), E1 (1.5 equiv.), CuI (10 mol%), L* (15 mol%), and Cs_2CO_3 (3.0 equiv.) in DMF (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 13 | Reaction condition optimization with cyclic secondary amine A55 with α -methyl secondary alkyl chloride E1: screening of different copper salts

NH +		[Cu] (10 mol%) L*5 (15 mol%) Cs ₂ CO ₃ (3.0 equiv. DMF (1.0 mL), rt		0	+ O NHPh	+ Me V Ph Ph Me Me
A55	E1			55	1'	1"
Enter		[C_1]		Yield (%)		$\mathbf{E} = (0/\mathbf{)}$
Entry		[Cu]	55	1'	1"	E.e. (%)
1		CuI	80	22	14	89
2		CuSCN	80	27	10	90
3		CuTc	70	14	22	78
4	C	uBr SMe ₂	79	23	17	87
5	Cu(C	CH ₃ CN) ₄ PF ₆	81	36	9	88
6	Cul	3H ₄ (PPh ₃) ₂	81	12	16	92
7	Cu	(PPh ₃) ₃ CF ₃	68	13	24	81


Reaction conditions: A55 (0.050 mmol), E1 (1.5 equiv.), [Cu] (10 mol%), L*5 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in DMF (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 14 Reaction condition optimization with cyclic second	ndary amine A55
with α -methyl secondary alkyl chloride E1: screening of cosolvents	0

\langle	NH +	Me NHPh –	CuBH ₄ (PPh ₃) ₂ (10 mol%) L*5 (15 mol%) Cs ₂ CO ₃ (3.0 equiv.) cosolvent (1.0 mL), rt	N ₁ , NHPh Me	+	O NHPh	+ Me N Ph Ph Me
A5	5	E1		55		1'	1"
_	Enter	DME (mI)	avalahavana (mI)	Yield (%)			$\mathbf{E} = (0/)$
	Entry	DMF (mL)	cyclohexane (mL)	55	1'	1"	— E.e. (%)
	1	1.0	0	81	12	16	92
	2	0.8	0.2	85	14	15	93
	3	0.7	0.35	84	15	15	93
4		0.6	0.4	84	16	16	93
	5 ^a	0.8	0.2	84	15	15	93

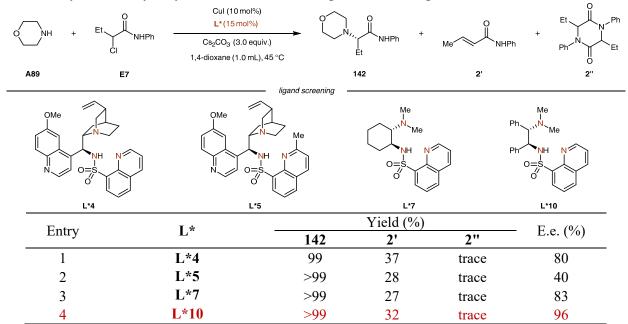
Reaction conditions: A55 (0.050 mmol), E1 (1.5 equiv.), [Cu] (10 mol%), L*5 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in cosolvent (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis. ^aDMF/THF (0.8/0.2 mL) are used.

Supplementary Table 15 | Product distribution in the N-alkylation of ammonia with secondary alkyl chlorides

Reaction conditions: A43 (10.0 equiv.), E1 (0.20 mmol), CuI (10 mol%), L*4 (15 mol%), and Cs_2CO_3 (10.0 equiv.) in cyclohexane (2.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 16 | Reaction condition optimization with acyclic secondary amine A51 with α -alkyl secondary alkyl chloride E7: screening of different ligands

	Cul (10 mol%) L*(15 mol%) Ph Cs ₂ CO ₃ (3.0 eq 1,4-dioxane (1.0 mL	uiv.)	NHPh +	Me	Ph Ph Ph Ph Ph Ph Ph Ph
A51 E7			104	2'	2"
		- ligand screening -		le N	Me Ph,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L*4	L*!	5	L*7		L*10
Entry	L^*		Yield (%)		– E.e. (%)
End y	L	104	2'	2"	L.c. (70)
1	L*4	50	75	trace	70
2	L*5	54	68	trace	36
3	L*7	84	46	trace	88
4	L*10	70	65	trace	81


Reaction conditions: A51 (0.050 mmol), E7 (0.075 mmol), CuI (10 mol%), L* (15 mol%), and Cs₂CO₃ (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 50 °C for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

et ^{-N} _Et +	O Cul (10 mol%) L*7 (15 mol%) Cs2CO3 (3.0 equiv.) solvent (1.0 mL), 50 °C Solvent (1.0 mL), 50 °C	Et I ► Et ^N ,		Me NHPh	+ Et N Ph Ph Et O
A5 <u>1</u>	E7		104	2'	2''
Entry	Solvent —		Yield (%)		E.e. (%)
Entry	Sorvent	104	2'	2"	L.C. (70)
1	1,4-dixoane	84	46	trace	88
2	MTBE	52	48	trace	91
3	^{<i>i</i>} Pr ₂ O	29	50	trace	84
4	Et ₂ O	58	65	trace	90
5	DME	62	50	trace	78
6	THF	78	49	trace	93
7	PhH	82	39	trace	96
8	PhMe	17	10	trace	88
9	PhCF ₃	68	23	trace	88
10	PhF	44	15	trace	84
11	EtOAc	51	29	trace	66
12	DCM	63	24	trace	88

Supplementary Table 17 | Reaction condition optimization with acyclic secondary amine A51 with α -alkyl secondary alkyl chloride E7: screening of different solvents

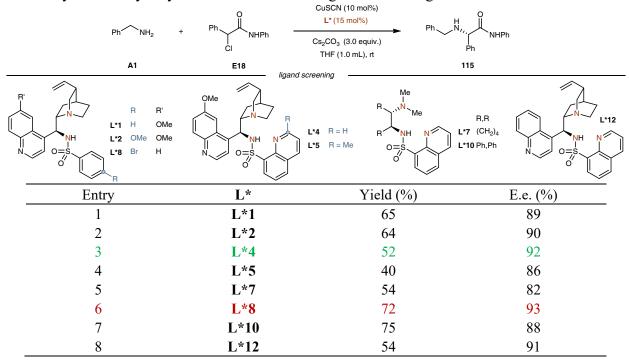
Reaction conditions: A51 (0.050 mmol), E7 (0.075 mmol), CuI (10 mol%), L*7 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in solvent (1.0 mL) at 50 °C for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 18 | Reaction condition optimization with cyclic secondary amine A89 with α -alkyl secondary alkyl chloride E7: screening of different ligands

Reaction conditions: A89 (0.050 mmol), E7 (0.075 mmol), CuI (10 mol%), L* (15 mol%), and Cs_2CO_3 (3.0 equiv.) in 1,4-dioxane (1.0 mL) at 45 °C for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 19 | Reaction condition optimization with benzylic primary amine A1 with α -aryl secondary alkyl chloride E18: screening of different copper salts

	Ph,	[Cu] (10 mol%) L*4 (15 mol%)	
Ph NH ₂	+ FII NHPh CI	Cs ₂ CO ₃ (3.0 equiv.) 1,4-dioxane (1.0 mL), rt	Ph
A1	E18		115
Entry	[Cu]	Yield (%)	E.e. (%)
1	CuBH ₄ (PPh ₃) ₂	60	88
2	Cu(PPh ₃) ₃ CF ₃	58	86
3	CuSCN	62	90
4	CuCN	52	82
5	Cu(OTf) ₂	62	86
6	CuI	61	84
7	CuBr	65	87

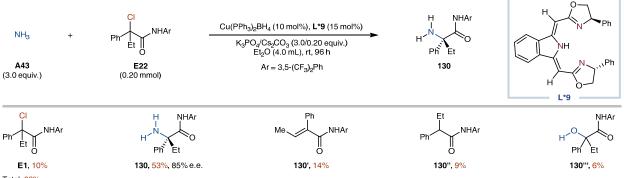

Reaction conditions: A1 (0.050 mmol), E18 (0.075 mmol), [Cu] (10 mol%), L*4 (15 mol%), and Cs_2CO_3 (3.0 equiv.) in 1.4-dioxane (1.0 mL) at rt for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 20 | Reaction condition optimization with benzylic primary amine A1 with α -aryl secondary alkyl chloride E18: screening of different solvents

^	O Ph、↓	CuSCN (10 mol%) L*4 (15 mol%)	
Ph NH ₂	+ FII NHPh Cl	Cs ₂ CO ₃ (3.0 equiv.) solvent (1.0 mL), rt	Ph
A1	E18		115
Entry	Solvent	Yield (%)	E.e. (%)
1	1,4-dioxane	62	90
2	CH ₃ CN	80	80
3	DMF	85	31
4	DCM	72	89
5	^{<i>i</i>} Pr ₂ O	10	4
6	THF	52	92
7	cyclohexane	14	0
8	PhH	36	64

Reaction conditions: A1 (0.050 mmol), E18 (0.075 mmol), CuSCN (10 mol%), L*4 (15 mol%), and Cs₂CO₃ (3.0 equiv.) in solvent (1.0 mL) at rt for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

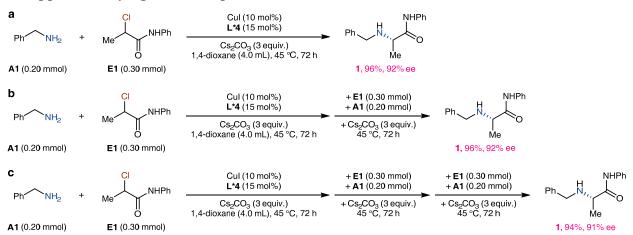
Supplementary Table 21 | Reaction condition optimization with benzylic primary amine A1 with α -aryl secondary alkyl chloride E18: screening of different ligands

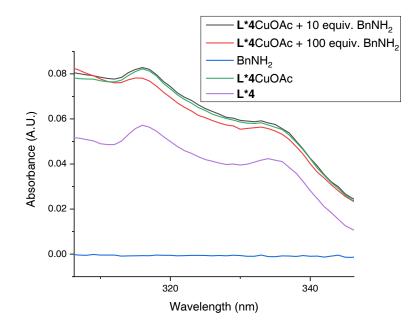

Reaction conditions: A1 (0.050 mmol), E18 (0.075 mmol), CuSCN (10 mol%), L* (15 mol%), and Cs₂CO₃ (3.0 equiv.) in THF (1.0 mL) at rt for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

Supplementary Table 22 | Reaction condition optimization with benzylic primary amine A1 with tertiary alkyl chloride E22: screening of different ligands

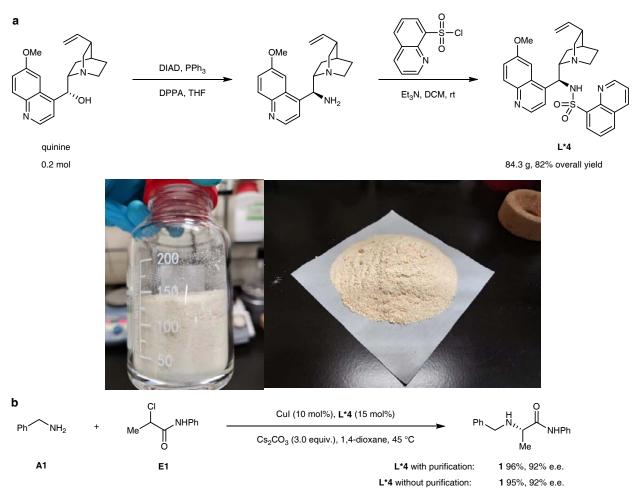
Ph NH ₂	+ CI		[Cu] (10 L*(15 n base (3.0 3 solvent (1.	mol%) nol%) Dequiv.)	Ph H H H	CF3 CF3
A1	Phí E	E22	— ligand screening ——	<i>P</i>	Ph Et 120	
	OMe N	NH N NH N NH N NH N NH N NH N NH N NH N	L*4		L*9	
Entry	[Cu]	L*	Base	Solvent	Yield (%)	E.e. (%)
1	CuI	L*4	Cs ₂ CO ₃	1,4-dioxane	65	1
2	CuI	L*9	Cs_2CO_3	1,4-dioxane	78	41
3	CuI	L*9	Cs_2CO_3	MTBE	75	70
4	CuI	L*9	K ₃ PO ₄	MTBE	40	81
5	CuBr·SMe ₂	L*9	K ₃ PO ₄	MTBE	45	86
6 ^a	$CuBr \cdot SMe_2$	L*9	K_3PO_4/Cs_2CO_3	MTBE	70	91

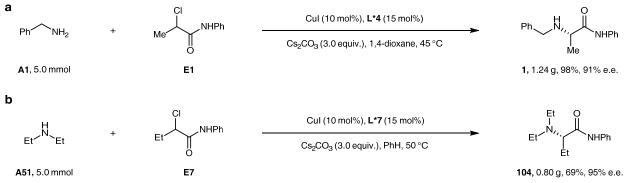
Reaction conditions: A1 (0.060 mmol), E22 (0.050 mmol), [Cu] (10 mol%), L* (15 mol%), and base (3.0 equiv.) in solvent (1.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis. $^{8}K_{3}PO_{4}/Cs_{2}CO_{3}$ (3.0/0.20 equiv.) are used.

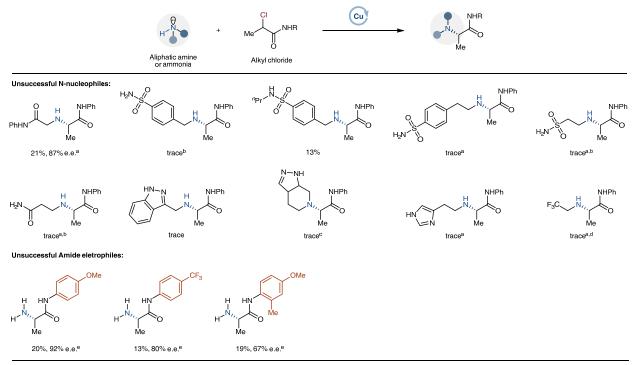

Supplementary Table 23 | Product distribution in the N-alkylation of ammonia with tertiary alkyl chlorides

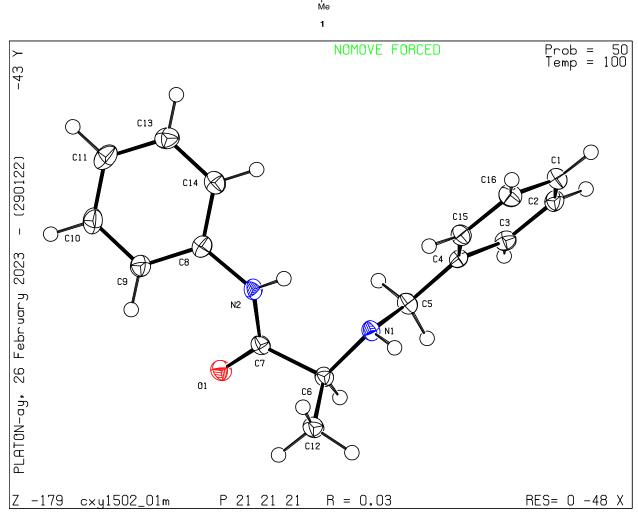

Total: <mark>92%</mark>

Reaction conditions: A43 (3.0 equiv.), E22 (0.20 mmol), CuBH₄(PPh₃)₂ (10 mol%), L*9 (15 mol%), and K₃PO₄/Cs₂CO₃ (3.0/0.20 equiv.) in Et₂O (4.0 mL) at rt for 96 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The E.e. values are based on HPLC analysis.

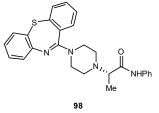

2. Supplementary figures for experiments

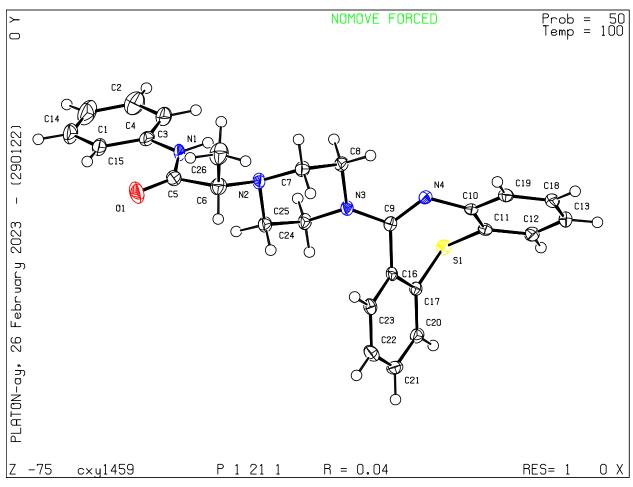

Supplementary Fig. 1 | Catalytic activity of the in situ formed catalyst in reactions with repeated addition of additional substrates. Almost the same reaction yield and enantioselectivity were obtained even after three runs of consecutive reactions over more than one week.


Supplementary Fig. 2 | UV spectroscopic analysis on the stability of L*4CuOAc in the presence of benzylamine. The ligand displacement hardly occurred in the presence of 10 equiv. of benzylamine and only slightly occurred (ca. 16%) when the amount of benzylamine was increased to 100 equiv.

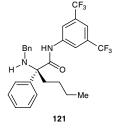

Supplementary Fig. 3 + a, Synthesis of ligand L*4, b, Cross-coupling reaction with the crude ligand L*4.

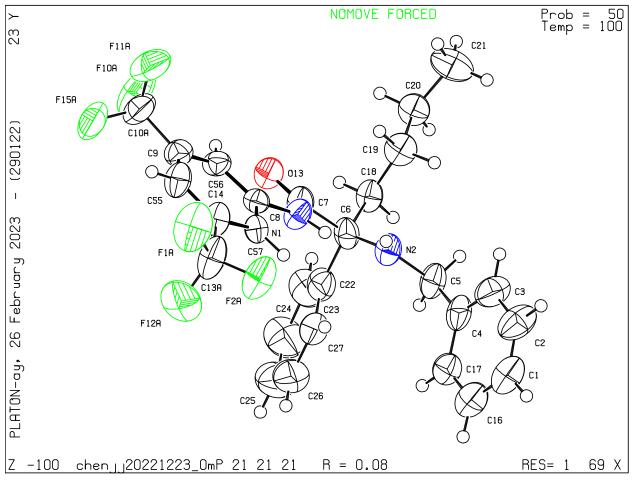
Supplementary Fig. 4 | Gram-scale experiments.

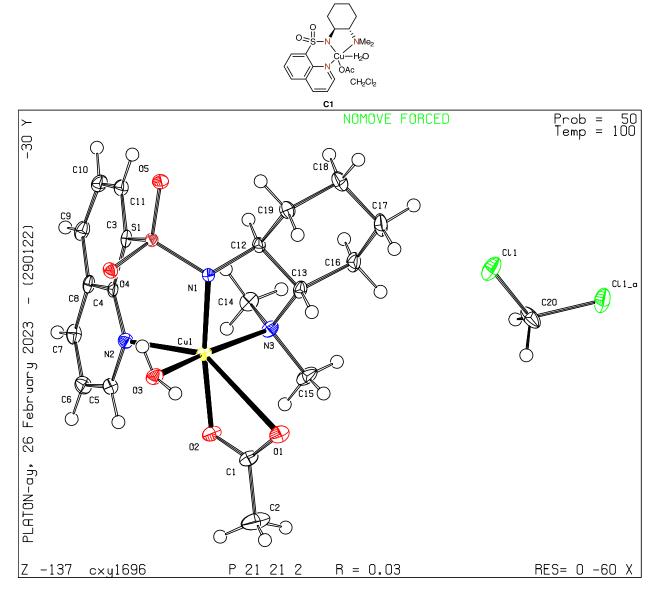

Supplementary Fig. 5 | Unsuccessful examples. Standard reaction conditions: aliphatic amine (0.20 mmol), racemic alkyl chloride (1.5 equiv.), CuI (10 mol%), L*4 (15 mol%), and Cs₂CO₃ (4.0 equiv.) in 1,4-dioxane (4.0 mL) under argon at 45 °C. The yields are isolated. The e.e. values are based on chiral HPLC analysis. ^aL*5 (15 mol%) in NMP/EtOAc (2.4/1.6 mL) at rt. ^bAmine hydrochloride (0.20 mmol) and Cs₂CO₃ (5.0 equiv.) were used. ^cCuBH₄(PPh₃)₂ (10 mol%), L*5 (15 mol%) in DMF/cyclohexane (3.2/0.8 mL) at rt. ^dCs₂CO₃ (3.0 equiv.). ^eAmmonia (10.0 equiv.), racemic alkyl chloride (0.2 mmol.), CuI (10 mol%), L*10 (15 mol%) and Cs₂CO₃ (10.0 equiv.) in cyclohexane (2.0 mL) under argon at rt.



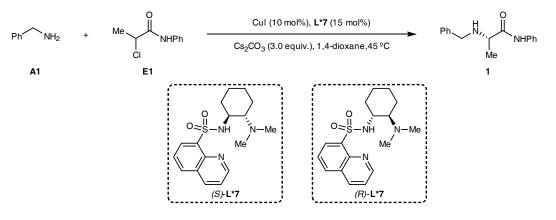
Ph.

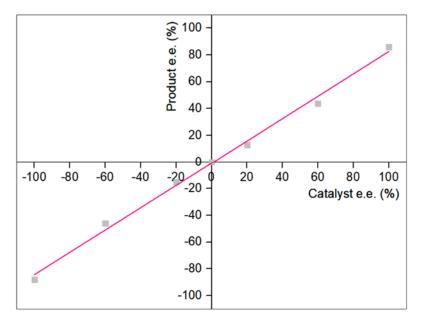

NHPh

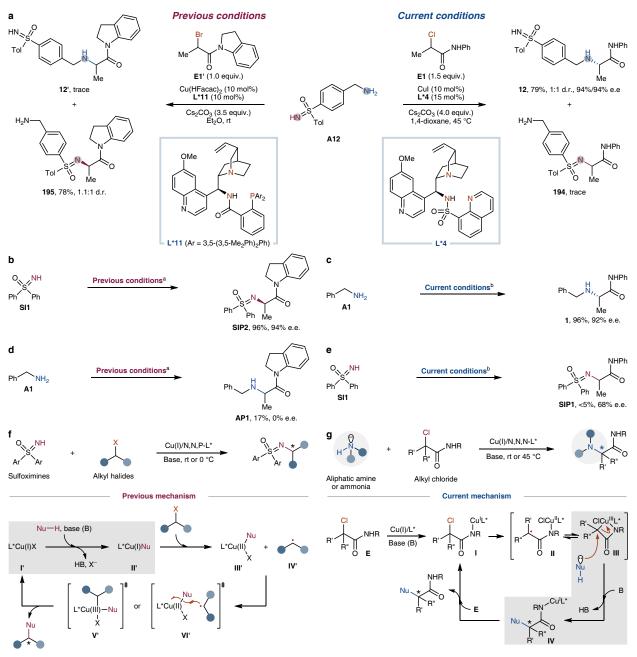

Supplementary Fig. 6 | The X-ray structure of 1.



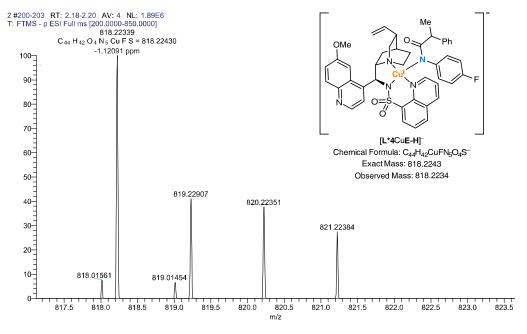
Supplementary Fig. 7 | The X-ray structure of 98.

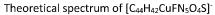



Supplementary Fig. 8 | The X-ray structure of 121.

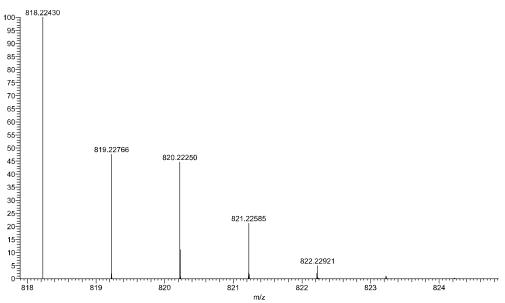

Supplementary Fig. 9 | The X-ray structure of C1.

Entry	Catalyst e.e. (%)	Product e.e. (%)
1	99	86
2	60	44
3	20	13
4	0	0
5	-20	-15
6	-60	-46
7	-99	-88

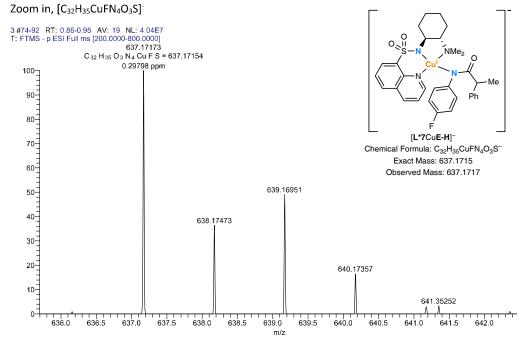

Supplementary Fig. 10 | The non-linear effect of catalyst

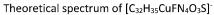


Supplementary Fig. 11 | Mechanistic difference of the current N-alkylation with our previous C–N cross-coupling. a, Substrate A12 bearing aliphatic amine and sulfoximine functionalities displayed excellent orthogonal chemoselectivity under our current and previously reported conditions. b and c, The enantioselective C–N cross-coupling of sulfoximine SI1 and N-alkylation of amine A1 under the corresponding optimal conditions, respectively. d, Amine A1 delivered the corresponding N-alkylation product AP1 in low yield with no enantioselectivity under our previous C–N cross-coupling conditions. e, Sulfoximine SI1 hardly participated in the current N-alkylation reaction, delivering the corresponding product SIP1 in marginal yield with moderate enantioselectivity. f, Our previous enantioselective C–N cross-coupling of sulfoximines starts with sulfoximine pronucleophile deprotonation and subsequent coordination to the copper center. g, The current enantioselective N-alkylation reaction involves direct outer-

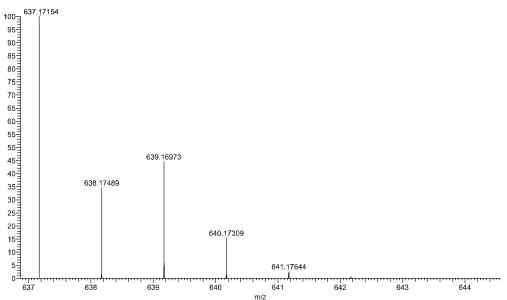

sphere attack of the catalyst-activated alkyl electrophile by amine nucleophiles. ${}^{a}Cs_{2}CO_{3}$ (2.5 equiv.). ${}^{b}Cs_{2}CO_{3}$ (3.0 equiv.).

Zoom in, [C44H42CuFN5O4S]⁻ weak

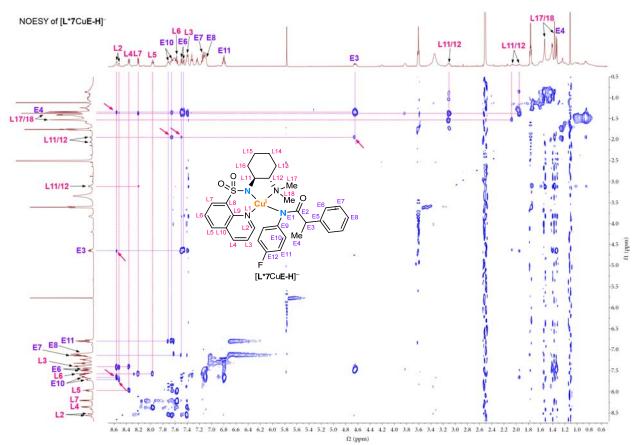


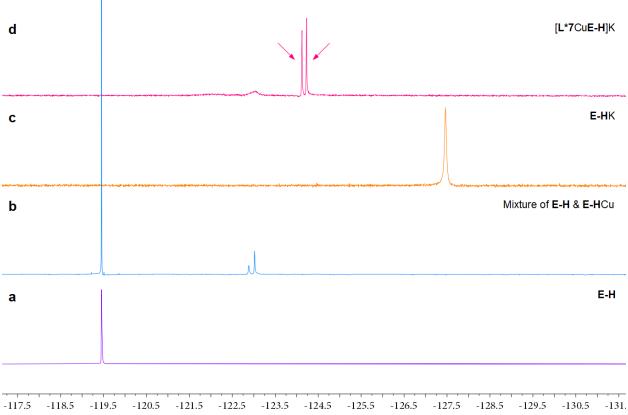


C44H42CuFN5O4S: C44 H42 Cu1 F1 N5 O4 S1 pa Chrg -1

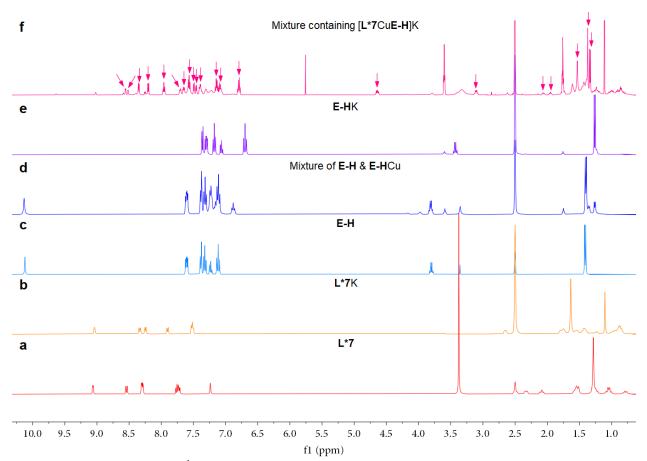


Supplementary Fig. 12 | High resolution mass spectrum of [L*4CuE-H]⁻.

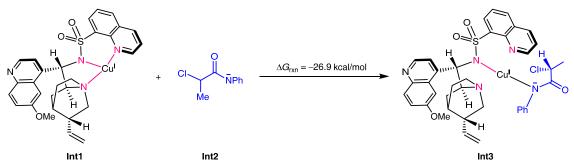




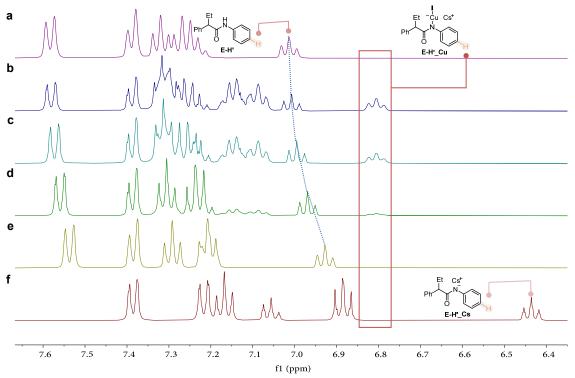
Supplementary Fig. 13 | High resolution mass spectrum of [L*7CuE-H]⁻.

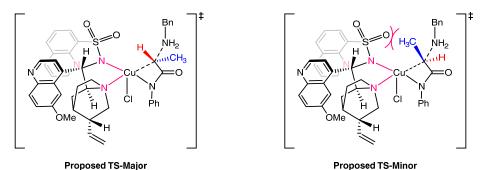


Supplementary Fig. 14 | NOESY spectrum supporting the formation of [L*7CuE-H]K. A series of cross-peaks (indicated by pink arrows) corresponding to hydrogen atoms of L*7 and E-H, respectively, were identified in this spectrum, which indicated the coexistence of these two fragments within one complex molecule.

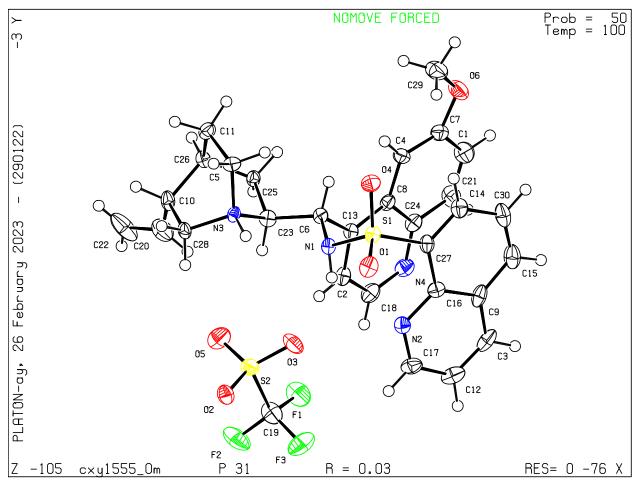


f1 (ppm)

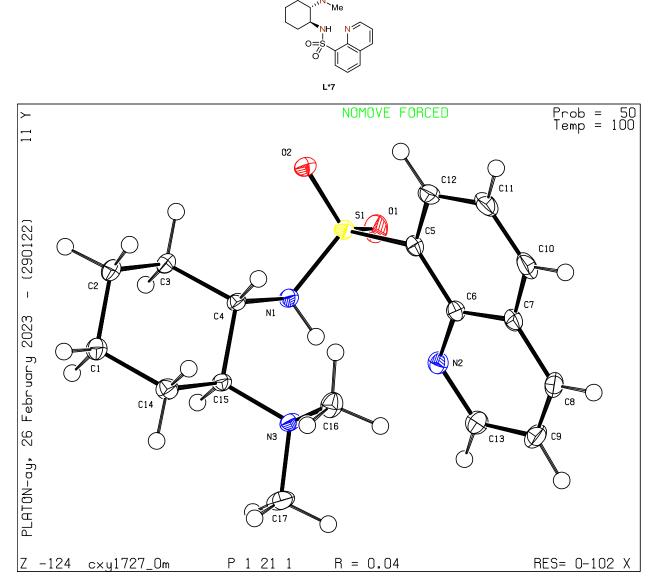

Supplementary Fig. 15 + ¹⁹F NMR spectra supporting the formation of [L*7CuE-H]K. The two peaks (indicated by pink arrows) corresponding to the proposed [L*7CuE-H]K appeared downfield relative to that of E-HK and upfield relative to that of E-H and E-HCu, respectively, which were consistent with the corresponding electron densities of the phenyl rings attached to the amide N. a, ¹⁹F NMR spectrum of E-H in DMSO-*d*6. b, ¹⁹F NMR spectrum of the crude reaction mixture in DMSO-*d*6, which was prepared by stirring E-H, CuI (1.0 equiv.), and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. c, ¹⁹F NMR spectrum of E-HK in DMSO-*d*6, which was prepared by stirring E-H and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. d, ¹⁹F NMR spectrum of [L*7CuE-H]K in DMSO-*d*6, which was prepared by stirring E-H, L*7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF at rt under argon for 1 h.


Supplementary Fig. 16 + ¹H NMR spectra supporting the formation of [L*7CuE-H]K. The two sets of peaks (indicated by pink arrows) corresponding to the proposed [L*7CuE-H]K were identified by comparing the ¹H NMR spectrum of the mixture with that of others. **a**, ¹H NMR spectrum of L*7 in DMSO-*d*6. **b**, ¹H NMR spectrum of L*7K in DMSO-*d*6, which was prepared by stirring L*7 and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **c**, ¹H NMR spectrum of **E**-**H** in DMSO-*d*6. **d**, ¹H NMR spectrum of the crude reaction mixture in DMSO-*d*6, which was prepared by stirring **E**-**H**, CuI (1.0 equiv.), and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **e**, ¹H NMR spectrum of **E**-**H**K in DMSO-*d*6, which was prepared by stirring **E**-**H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-**H**]K in DMSO-*d*6, which was prepared by stirring **E**-**H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-**H**]K in DMSO-*d*6, which was prepared by stirring **E**-**H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-**H**]K in DMSO-*d*6, which was prepared by stirring **E**-**H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **e**, ¹H NMR spectrum of [L*7CuE-**H**]K in DMSO-*d*6, which was prepared by stirring **E**-**H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h.

Supplementary Fig. 17 | Computational study on the complexation of L*4Cu(I) with the deprotonated amide substrate. Calculations were carried out at the B3LYP-D3(BJ)/6-311+G(d, p)-SDD-SMD(1,4-dioxane)// B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

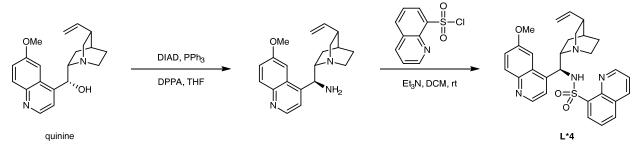


Supplementary Fig. 18 | Deprotometalation of model amide in presence of CuI and Cs₂CO₃. a, ¹H-NMR spectrum of E-H' (25 mM) in DMSO- d_6 . b, ¹H-NMR spectrum of E-H' (25 mM), CuI (1.0 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO- d_6 . c, ¹H-NMR spectrum of E-H' (25 mM), CuI (0.50 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO- d_6 . d, ¹H-NMR spectrum of E-H' (25 mM), CuI (0.25 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO- d_6 . e, ¹H-NMR spectrum of E-H' (25 mM), CuI (0.25 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO- d_6 . e, ¹H-NMR spectrum of E-H' (25 mM) and Cs₂CO₃ (2.0 equiv.) in DMSO- d_6 . f, ¹H-NMR spectrum of E-H' (25 mM) in DMSO- d_6 .



Supplementary Fig. 19 | Proposed enantiodiscrimination transition states. The steric clash between the sulfonyl group in L*4 and the α -methyl group in E1 likely renders the transition state TS-Minor unfavorable. In this case, the favorable transition state TS-Major gives rise to product 1 of an S absolute configuration, which is consistent with the experimental results.

Supplementary Fig. 20 | The X-ray structure of L*4.

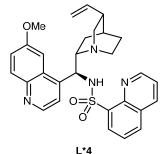

Me | ,N,

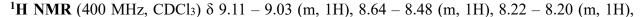
Supplementary Fig. 21 | The X-ray structure of L*7.

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CH₂Cl₂, THF and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. CuBH₄(PPh₃)₂ was purchased from TCI. CuSCN was purchased from aladdin. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 300 to 400 °C) for 2 minutes in vacuum. Anhydrous 1,4-dioxane, NMP, EtOAc, PhH, and cyclohexane was purchased from J&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), EtOAc, CH₂Cl₂ and CH₃OH were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO₄ indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃, CD₃OD or DMSO-*d*₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using Agilent highperformance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka or Mo-Ka radiation.

4. Synthesis of ligand




General procedure for preparation of L*4:

According to the literature reported procedure¹ with slightly modification. Under an argon atmosphere, to a solution of quinine (16.2 g, 50.0 mmol, 1.0 equiv.) and triphenylphosphine (PPh₃) (17.0 g, 65.0 mmol, 1.3 equiv.) in THF (150 mL) was added diisopropyl azodicarboxylate (DIAD) (13.1 g, 65.0 mmol, 1.3 equiv.) at once and stirred for 15 min at 0 °C. Then the reaction mixture was added diphenyl phosphoryl azide (DPPA) (15.8 g, 65.0 mmol, 1.3 equiv.) dropwise over 15 min at 0 °C. The reaction was allowed to warm to room temperature and stirred for 20 h. Next the reaction was heated to 50 °C for 4 h. Another portion of PPh₃ (18.3 g, 70.0 mmol, 1.4 equiv.) was then added and the reaction stirred at 50 °C for an additional 4 h. After cooling the solution to room temperature, H2O (20 mL) was added and the solution stirred overnight at room temperature. The mixture was concentrated under reduced pressure, dissolved in CH₂Cl₂ (50 mL) and diluted with HCl aqueous solution (3.0 M, 50 mL) The aqueous layer was washed with CH_2Cl_2 (50 mL \times 3), alkalinized with ammonium hydroxide and washed with CH_2Cl_2 (50 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 100/1 to 10/1) to afford the product quinine-derived chiral amine as a yellowish oil (14.9 g, 92% yield). All spectral data matched that reported in the literature.¹

According to the literature reported procedure² with slightly modification. Under an argon atmosphere, to a solution of quinine-derived chiral amine (1.29 g, 4.0 mmol, 1.0 equiv.) and quinoline-8-sulfonyl chloride (0.95 g, 4.2 mmol, 1.05 equiv.) in CH₂Cl₂ (20 mL) was added Et₃N (0.49 g, 4.8 mmol, 1.2 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched by water and extracted with CH₂Cl₂ (10 mL × 3) three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 100/1 to 10/1) to afford the product L*4 as a white solid (1.98 g, 96% yield).

N-((*S*)-(6-Methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)quinoline-8-sulfonamide (L*4)

8.13 – 8.11 (m, 1H), 8.00 – 7.92 (m, 2H), 7.70 – 7.02 (m, 6H), 5.70 – 5.49 (m, 1H), 4.91 – 4.80 (m, 3H), 3.89 (s, 3H), 3.38 – 2.88 (m, 2H), 2.67 – 2.53 (m, 1H), 2.22 – 2.04 (m, 2H), 1.87 – 1.80 (m, 1H), 1.55 – 1.42 (m, 1H), 1.30 – 1.08 (m, 3H), 0.67 – 0.59 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.6, 156.7, 150.8, 147.4, 146.6, 145.0, 144.2, 143.2, 141.2, 136.5, 136.2, 135.9, 135.2, 133.2, 132.9, 131.6, 131.3, 130.8, 128.4, 128.2, 126.9, 124.9, 123.1, 122.0, 121.2, 120.8, 119.6, 114.4, 103.2, 100.9, 63.0, 61.0, 56.4, 55.7, 55.4, 53.0, 39.6, 39.3, 39.0, 27.6, 27.0, 25.9, 25.0.

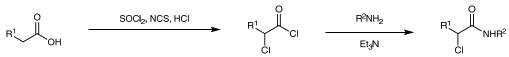
HRMS (ESI) m/z calcd. for $C_{29}H_{31}N_4O_3S [M + H]^+ 515.2111$, found 515.2112.

Preparation of L*4 (without column chromatography purification)

According to the **General procedure for preparation of L*4** with slightly modification. Under an argon atmosphere, to a solution of quinine (64.8 g, 200.0 mmol, 1.0 equiv.) and triphenylphosphine (PPh₃) (68.1 g, 260.0 mmol, 1.3 equiv.) in THF (600 mL) was added diisopropyl azodicarboxylate (DIAD) (52.5 g, 160.0 mmol, 1.3 equiv.) at once and stirred for 15 min at 0 °C. Then the reaction mixture was added diphenyl phosphoryl azide (DPPA) (63.2 g, 260.0 mmol, 1.3 equiv.) dropwise over 15 min at 0 °C. The reaction was allowed to warm to room temperature and stirred for 20 h. Next the reaction was heated to 50 °C for 4 h. Another portion of PPh₃ (73.4 g, 280.0 mmol, 1.4 equiv.) was then added and the reaction stirred at 50 °C for an additional 4 h. After cooling the solution to room temperature, H₂O (80 mL) was added and the solution stirred overnight at room temperature. The mixture was concentrated under reduced pressure, dissolved in CH₂Cl₂ (200 mL) and diluted with HCl aqueous solution (3.0 M, 200 mL) The aqueous layer was washed with CH₂Cl₂ (200 mL × 3), alkalinized with ammonium hydroxide and washed with CH₂Cl₂ (200 mL × 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude quinine-derived chiral amine, which was used in the next step without further purification.

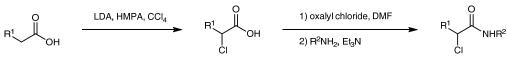
Under an argon atmosphere, to a solution of the above quinine-derived chiral amine and quinoline-8-sulfonyl chloride (45.4 g, 200.0 mmol, 1.0 equiv.) in CH₂Cl₂ (500 mL) was added Et₃N (24.3 g, 240.0 mmol, 1.2 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was diluted with HCl aqueous solution (3.0 M, 300 mL) The aqueous layer was washed with CH₂Cl₂ (200 mL × 3), alkalinized with ammonium hydroxide and washed with CH₂Cl₂ (200 mL × 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford L*4 as a white solid (84.3 g, 82% yield), which can be directly used in the coupling reactions without purification.

Test L*4 (without column chromatography purification)


According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.), and **L*4** (without column chromatography purification) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **1** as a white solid (48.4 mg, 95% yield, 92% e.e.).

5. Synthesis of α-carbonyl alkyl chloride substrates

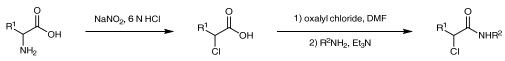
General procedure 1:


According to the literature reported procedure³ with slightly modification. To a solution of Et₃N (1.21 g, 12.0 mmol, 1.2 equiv.) and amine (10.0 mmol, 1.0 equiv.) in THF (20 mL) was added α chloro acid chloride (12.0 mmol, 1.2 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 20 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 2:

According to the literature reported procedure⁴ with slightly modification. The carboxylic acid (25 mmol) was dissolved in SOCl₂ (7.25 mL, 100 mmol), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then *N*-chlorosuccinimide (8.34 g, 63 mmol), SOCl₂ (5 mL), and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at 90 °C for 2.5 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl₄, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.

To a solution of amine (25.0 mmol, 1.0 equiv.) and Et₃N (3.03 g, 30.0 mmol, 1.2 equiv.) in CH₂Cl₂ (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

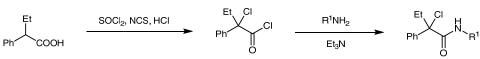

General procedure 3:

According to the literature reported procedure.³ To a solution of carboxylic acid (10.0 mmol, 1.0 equiv.) in anhydrous THF (20 mL) was added hexamethylphosphoramide (HMPA) (3 mL) and lithium diisopropylamide (LDA) (22.0 mmol, 2.2 equiv., 1.0 M in THF) via syringe at -78 °C under argon. The reaction was slowly warmed up to 0 °C and stirred for another 1 h. Then the reaction mixture was cooled down to -78 °C again and treated with a solution of CCl₄ (6.08 g, 40.0 mmol, 4.0 equiv.) in THF (3 mL). After being stirred at -78 °C for 2 h, the reaction mixture

was warmed up to room temperature over 1 h and stirred overnight. Then, the reaction was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude α -chloro acid, which was used in the next step without further purification.

To a solution of the above α -chloro acid in CH₂Cl₂ (20 mL) was added oxalyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and a drop of DMF at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. Then the solvent was removed under reduced pressure to afford the α -chloro acid chloride, which was used in the next step without further purification.

To a solution of amine (10.0 mmol, 1.0 equiv.) and Et₃N (1.21 g, 12.0 mmol, 1.2 equiv.) in CH₂Cl₂ (20 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 20 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

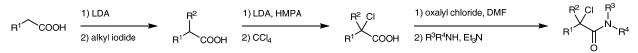


General procedure 4:

According to the literature reported procedure⁵ with slightly modification. To a solution of amino acid (20 mmol, 1.0 equiv.) in HCl (6 N, 20 mL) was added sodium nitrite (4.14 g, 60 mmol, 3.0 equiv.) in small portions at 0 °C. Then the reaction mixture was stirred at 0 °C for 6 h. After completion, the reaction was diluted with brine and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude α -chloro acid, which was used in the next step without further purification.

To a solution of the above α -chloro acid in CH₂Cl₂ (50 mL) was added oxalyl chloride (3.02 g, 24.0 mmol, 1.2 equiv.) and a drop of DMF 0 °C. The reaction mixture was stirred at 40 °C for 3 h. Then the solvent was removed under reduced pressure to afford the α -chloro acid chloride, which was used in the next step without further purification.

To a solution of amine (20.0 mmol, 1.0 equiv.) and Et₃N (2.43 g, 24.0 mmol, 1.2 equiv.) in CH₂Cl₂ (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.



General procedure 5:

According to the literature reported procedure.⁴ The carboxylic acid (25 mmol) was dissolved in SOCl₂ (7.25 mL, 100 mmol), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then *N*-chlorosuccinimide (8.34 g, 63 mmol), SOCl₂ (5 mL), and HCl (concentrated, 4 drops) were added. The resulting mixture was

heated at 90 °C for 2.5 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl₄, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.

To a solution of amine (25.0 mmol, 1.0 equiv.) and Et_3N (3.03 g, 30.0 mmol, 1.2 equiv.) in CH_2Cl_2 (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH_2Cl_2 three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 6:

According to the literature reported procedure⁶ with slightly modification. To a solution of carboxylic acid (20.0 mmol, 1.0 equiv.) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv., 1.0 M in THF) via syringe at -78 °C under argon. After being stirred at -78 °C for 30 min, the reaction mixture was warmed up to 0 °C and stirred for another 1 h. The solution was then cooled to -78 °C again and alkyl iodide (21.0 mmol, 1.05 equiv.) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.

To a solution of the above acid in THF (40 mL) was added hexamethylphosphoramide (HMPA, 6 mL) and lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv., 1.0 M in THF) via syringe at -78 °C under argon. The reaction was slowly warmed up to 0 °C and stirred for another 1 h. Then the reaction mixture was cooled down to -78 °C again and treated with a solution of CCl₄ (80.0 mmol, 4.0 equiv.) in THF (3 mL). After being stirred at -78 °C for 2 h, the reaction mixture was warmed up to room temperature over 1 h and stirred overnight. Then, the reaction was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude α -chloro acid, which was used directly in the next step without further purification.

To a solution of the above α -chloro acid in CH₂Cl₂ (50 mL) was added oxalyl chloride (24.0 mmol, 1.2 equiv.) and a drop of DMF at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. Then, the solvent was removed under reduced pressure to afford the α -chloro acid chloride, which was used directly in the next step without further purification.

To a solution of amine (20.0 mmol, 1.0 equiv.) and Et₃N (2.43 g, 24.0 mmol, 1.2 equiv.) in CH₂Cl₂ (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

$$R^{1} \frown COOH \qquad \frac{1) LDA}{2) alkyl iodide} \qquad R^{2} \frown COOH \qquad \frac{1) SOCl_{2}}{2) NCS, HCl} \qquad R^{2} \frown Cl \qquad R^{1}R^{2}NH \qquad R^{2} \frown I \qquad R^{1}R^{2}NH \qquad R^{2} \frown I \qquad R^{1}R^{2}NH \qquad R^{2} \frown I \qquad R^{1}H^{2}NH \qquad R^{2} \frown I \qquad R^{2} \frown I$$

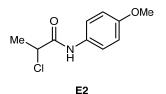
General procedure 7:

According to the literature reported procedure^{4,6} with slightly modification. To a solution of carboxylic acid (20.0 mmol, 1.0 equiv.) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv., 1.0 M in THF) via syringe at -78 °C under argon. After being stirred at -78 °C for 30 min, the reaction mixture was warmed up to 0 °C and stirred for another 1 h. The solution was then cooled to -78 °C again and alkyl iodide (21.0 mmol, 1.05 equiv.) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.

The above acid was dissolved in $SOCl_2$ (5.8 mL, 80 mmol), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then *N*chlorosuccinimide (6.65 g, 50 mmol), $SOCl_2$ (4.0 mL), and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at 90 °C for 2.5 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl₄, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.

To a solution of amine (20.0 mmol, 1.0 equiv.) and Et₃N (2.43 g, 24.0 mmol, 1.2 equiv.) in CH_2Cl_2 (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 30 mL) and extracted with CH_2Cl_2 three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

2-Chloro-*N*-phenylpropanamide (E1)

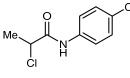

According to **General procedure 1** with 2-chloropropionyl chloride (15.12 g, 120.0 mmol, 1.2 equiv.) and aniline (9.31 g, 100.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E1** as a white solid (16.01 g, 87% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.55 – 7.53 (m, 2H), 7.37 – 7.33 (m, 2H), 7.17 – 7.14 (m, 1H), 4.54 (q, *J* = 7.0 Hz, 1H), 1.82 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 136.9, 129.0, 125.0, 120.0, 56.1, 22.6.

HRMS (ESI) m/z calcd. for C₉H₁₁ClNO $[M + H]^+$ 184.0524, found 184.0523.

2-Chloro-*N*-(4-methoxyphenyl)propanamide (E2)


According to **General procedure 1** with 2-chloropropionyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and 4-methoxyaniline (1.23 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E2** as a white solid (2.09 g, 98% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.45 – 7.41 (m, 2H), 6.89 – 6.85 (m, 2H), 4.54 (q, J = 7.0 Hz, 1H), 3.79 (s, 3H), 1.95 (d, J = 7.0 Hz, 3H).

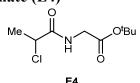
¹³C NMR (100 MHz, CDCl₃) δ 167.2, 156.9, 130.1, 121.9, 114.2, 55.5, 45.4, 23.0.

HRMS (ESI) m/z calcd. for $C_{10}H_{13}CINO_2 [M + H]^+ 214.0629$, found 214.0627.

2-Chloro-N-(4-(trifluoromethyl)phenyl)propanamide (E3)

E3

According to **General procedure 1** with 2-chloropropionyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E3** as a white solid (2.50 g, 100% yield).


¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.70 – 7.68 (m, 2H), 7.61 – 7.59 (m, 2H), 4.56 (q, *J* = 7.1 Hz, 1H), 1.83 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 140.0, 126.8 (q, *J* = 32.7 Hz), 126.3 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 270.0 Hz), 119.7, 56.9, 22.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.24 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{10}H_{10}ClF_3NO [M + H]^+ 252.0398$, found 252.0395.

tert-Butyl (2-chloropropanoyl)glycinate (E4)

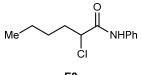
According to **General procedure 1** with 2-chloropropionyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and *tert*-butyl glycinate (1.31 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E4** as a white solid (1.23 g, 56% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.11 (s, 1H), 4.46 (q, *J* = 7.0 Hz, 1H), 3.96 (d, *J* = 5.1 Hz, 2H), 1.75 (d, *J* = 7.0 Hz, 3H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 168.4, 82.7, 55.4, 42.3, 28.0, 22.5.

HRMS (ESI) m/z calcd. for C₉H₁₆ClNNaO₃ $[M + Na]^+$ 244.0711, found 244.0708.

2-Chloro-N-phenylbutanamide (E7)

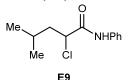

According to **General procedure 1** with 2-chlorobutanoyl chloride (5.00 g, 35.7 mmol, 1.2 equiv.) and aniline (2.77 g, 29.8 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product E7 as a white solid (5.75 g, 98% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.56 – 7.53 (m, 2H), 7.38 – 7.33 (m, 2H), 7.18 – 7.14 (m, 1H), 4.45 (dd, *J* = 7.7, 4.3 Hz, 1H), 2.28 – 2.18 (m, 1H), 2.15 – 2.04 (m, 1H), 1.11 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 166.8, 136.9, 129.1, 125.0, 120.0, 63.0, 29.0, 10.3.

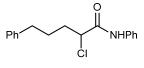
HRMS (ESI) m/z calcd. for $C_{10}H_{13}CINO [M + H]^+$ 198.0680, found 198.0679.

2-Chloro-N-phenylhexanamide (E8)


E8

According to **General procedure 2** with hexanoic acid (1.16 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E8** as a yellowish oil (1.36 g, 60% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.56 – 7.53 (m, 2H), 7.37 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 4.46 (dd, J = 8.3, 4.4 Hz, 1H), 2.23 – 2.15 (m, 1H), 2.06 – 1.97 (m, 1H), 1.57 – 1.45 (m, 2H), 1.44 – 1.32 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).

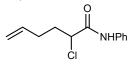

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 136.9, 129.0, 125.0, 120.0, 61.6, 35.4, 28.0, 22.0, 13.8. HRMS (ESI) m/z calcd. for C₁₂H₁₇ClNO [M + H]⁺ 226.0993, found 226.0990.

2-Chloro-4-methyl-N-phenylpentanamide (E9)

According to **General procedure 2** with 4-methylpentanoic acid (2.32 g, 20.0 mmol, 1.0 equiv.) and aniline (1.86 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E9** as a white solid (3.51 g, 78% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.56 – 7.53 (m, 2H), 7.37 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 4.47 (dd, J = 10.1, 4.1 Hz, 1H), 2.07 – 1.85 (m, 3H), 1.01 – 0.96 (m, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.4, 137.0, 129.1, 125.0, 120.0, 60.1, 44.4, 25.3, 22.9, 20.8. HRMS (ESI) m/z calcd. for C₁₂H₁₇ClNO [M + H]⁺ 226.0993, found 226.0990. 2-Chloro-N,5-diphenylpentanamide (E10)

E10

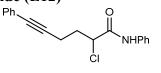

According to **General procedure 3** with 5-phenylpentanoic acid (1.78 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E10** as a white solid (1.21 g, 42% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.54 – 7.51 (m, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.25 (m, 2H), 7.20 – 7.12 (m, 4H), 4.46 (dd, *J* = 8.3, 4.4 Hz, 1H), 2.72 – 2.60 (m, 2H), 2.27 – 2.18 (m, 1H), 2.10 – 2.01 (m, 1H), 1.94 – 1.77 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 141.4, 136.8, 129.0, 128.4, 128.3, 126.0, 125.0, 120.0, 61.3, 35.1, 35.0, 27.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}CINO [M + H]^+ 288.1150$, found 288.1146.

2-Chloro-*N*-phenylhex-5-enamide (E11)


E11

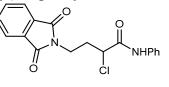
According to **General procedure 3** with hex-5-enoic acid (1.14 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E11** as a white solid (0.98 g, 44% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.56 – 7.53 (m, 2H), 7.38 – 7.33 (m, 2H), 7.18 – 7.14 (m, 1H), 5.85 – 5.75 (m, 1H), 5.14 – 5.04 (m, 2H), 4.48 (dd, J = 8.8, 3.3 Hz, 1H), 2.37 – 2.27 (m, 3H), 2.16 – 2.05 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 136.9, 136.2, 129.1, 125.1, 120.0, 116.4, 60.8, 34.6, 30.0. HRMS (ESI) m/z calcd. for C₁₂H₁₅ClNO [M + H]⁺ 224.0837, found 224.0834.

2-Chloro-N,6-diphenylhex-5-ynamide (E12)

E12


According to **General procedure 3** with 6-phenylhex-5-ynoic acid (0.86 g, 4.6 mmol, 1.0 equiv.) and aniline (0.43 g, 4.6 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E12** as a white solid (0.86 g, 63% overall yield).

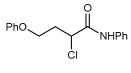
¹**H** NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.56 – 7.53 (m, 2H), 7.39 – 7.32 (m, 4H), 7.29 – 7.25 (m, 3H), 7.18 – 7.14 (m, 1H), 4.70 (dd, J = 9.1, 4.1 Hz, 1H), 2.73 – 2.69 (m, 2H), 2.62 – 2.53 (m, 1H), 2.30 – 2.21 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 136.8, 131.6, 129.1, 128.2, 127.9, 125.1, 123.3, 120.0,

87.2, 82.1, 60.0, 34.3, 16.6. **HRMS** (ESI) m/z calcd. for C₁₈H₁₇ClNO [M + H]⁺ 298.0993, found 298.0990.

2-Chloro-4-(1,3-dioxoisoindolin-2-yl)-N-phenylbutanamide (E13)

E13


According to **General procedure 2** with 4-(1,3-dioxoisoindolin-2-yl)butanoic acid (2.33 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **E13** as a yellowish solid (2.31 g, 68% overall yield).

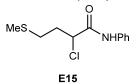
¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.82 – 7.78 (m, 2H), 7.71 – 7.66 (m, 2H), 7.53 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.14 – 7.10 (m, 1H), 4.52 (dd, J = 7.3, 5.2 Hz, 1H), 4.01 – 3.89 (m, 2H), 2.66 – 2.58 (m, 1H), 2.51 – 2.42 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 165.8, 136.8, 134.1, 131.9, 129.0, 125.0, 123.3, 119.9, 58.3, 34.8, 34.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{16}ClN_2O_3$ [M + H]⁺ 343.0844, found 343.0838.

2-Chloro-4-phenoxy-*N*-phenylbutanamide (E14)

E14

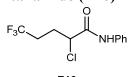

According to **General procedure 3** with 4-phenoxybutanoic acid (1.80 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E14** as a white solid (1.13 g, 39% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.55 – 7.52 (m, 2H), 7.36 – 7.31 (m, 2H), 7.29 – 7.23 (m, 2H), 7.17 – 7.13 (m, 1H), 6.96 – 6.93 (m, 1H), 6.89 – 6.86 (m, 2H), 4.77 (dd, J = 8.6, 4.5 Hz, 1H), 4.20 – 4.17 (m, 2H), 2.78 – 2.70 (m, 1H), 2.45 – 2.37 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 158.4, 136.9, 129.5, 129.1, 125.1, 121.0, 120.1, 114.5, 63.5, 57.7, 34.9.

HRMS (ESI) m/z calcd. for $C_{16}H_{17}CINO_2 [M + H]^+ 290.0942$, found 290.0939.

2-Chloro-4-(methylthio)-N-phenylbutanamide (E15)


According to General procedure 4 with DL-methionine (1.49 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product E15 as a white

solid (0.83 g, 34% overall yield).

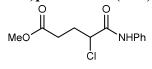
¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.56 – 7.53 (m, 2H), 7.38 – 7.33 (m, 2H), 7.19 – 7.15 (m, 1H), 4.69 (dd, J = 8.8, 4.0 Hz, 1H), 2.79 – 2.66 (m, 2H), 2.57 – 2.48 (m, 1H), 2.31 – 2.22 (m, 1H), 2.12 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 136.8, 129.1, 125.1, 120.0, 59.6, 34.4, 30.4, 15.2. HRMS (ESI) m/z calcd. for C₁₁H₁₅ClNOS [M + H]⁺ 224.0557, found 244.0555.

2-Chloro-5,5,5-trifluoro-N-phenylpentanamide (E16)

E16

According to **General procedure 2** with 5,5,5-trifluoropentanoic acid (1.00 g, 6.41 mmol, 1.0 equiv.) and aniline (1.86 g, 6.41 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E16** as a yellowish solid (0.82 g, 48% overall yield).

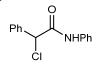

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.54 – 7.51 (m, 2H), 7.38 – 7.33 (m, 2H), 7.20 – 7.15 (m, 1H), 4.54 – 4.47 (m, 1H), 2.54 – 2.25 (m, 4H).

¹³**C** NMR (100 MHz, CDCl₃) δ 165.6, 136.5, 129.1, 126.5 (q, *J* = 274.5 Hz), 125.4, 120.2, 59.0, 30.5 (q, *J* = 29.4 Hz), 28.1 (q, *J* = 3.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -66.09 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{11}H_{12}ClF_{3}NO [M + H]^{+} 266.0554$, found 266.0550.

Methyl 4-chloro-5-oxo-5-(phenylamino)pentanoate (E17)



E17

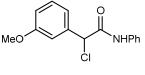
According to General procedure 2 with 5-methoxy-5-oxopentanoic acid (1.46 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product E17 as a yellowish solid (1.21 g, 47% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.56 – 7.52 (m, 2H), 7.37 – 7.32 (m, 2H), 7.18 – 7.14 (m, 1H), 4.60 – 4.57 (m, 1H), 3.69 (s, 3H), 2.61 – 2.50 (m, 3H), 2.41 – 2.29 (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 172.6, 166.1, 136.8, 129.1, 125.1, 120.1, 59.9, 51.8, 30.6, 30.3. HRMS (ESI) m/z calcd. for C₁₂H₁₅ClNO₃ [M + H]⁺ 256.0735, found 256.0733.

2-Chloro-N,2-diphenylacetamide (E18)

E18

According to **General procedure 1** with 2-chloro-2-phenylacetyl chloride (1.88 g, 10.0 mmol, 1.0 equiv.) and aniline (1.12 g, 12.0 mmol, 1.2 equiv.), the reaction mixture was purified by


column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E18** as a white solid (2.02 g, 82% yield).

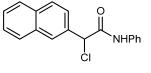
¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.56 – 7.54 (m, 2H), 7.50 – 7.47 (m, 2H), 7.41 – 7.31 (m, 5H), 7.18 – 7.13 (m, 1H), 5.49 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.3, 136.8, 136.6, 129.3, 129.1, 129.0, 127.8, 125.2, 120.0, 62.0.

HRMS (ESI) m/z calcd. for $C_{14}H_{13}CINO [M + H]^+ 246.0680$, found 246.0681.

2-Chloro-2-(3-methoxyphenyl)-*N*-phenylacetamide (E19)

E19


According to **General procedure 3** with 2-(3-methoxyphenyl)acetic acid (1.66 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E19** as a white solid (0.80 g, 29% overall yield).

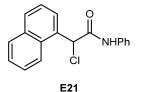
¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.56 – 7.54 (m, 2H), 7.37 – 7.29 (m, 3H), 7.18 – 7.14 (m, 1H), 7.10 – 7.07 (m, 1H), 7.04 – 7.03 (m, 1H), 6.92 – 6.89 (m, 1H), 5.46 (s, 1H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 159.9, 138.0, 136.8, 130.1, 129.1, 125.2, 120.00, 119.98, 114.8, 113.5, 62.0, 55.3.

HRMS (ESI) m/z calcd. for $C_{15}H_{15}CINO_2 [M + H]^+ 276.0786$, found 276.0787.

2-Chloro-2-(naphthalen-2-yl)-*N*-phenylacetamide (E20)

E20

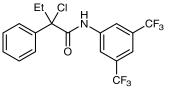

According to **General procedure 3** with 2-(naphthalen-2-yl)acetic acid (0.93 g, 5.0 mmol, 1.0 equiv.) and aniline (0.47 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E20** as a white solid (0.35 g, 24% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.96 (s, 1H), 7.88 – 7.82 (m, 3H), 7.59 – 7.56 (m, 3H), 7.54 – 7.49 (m, 2H), 7.37 – 7.33 (m, 2H), 7.19 – 7.14 (m, 1H), 5.67 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 136.8, 133.8, 133.4, 133.0, 129.2, 129.1, 128.2, 127.7, 127.6, 127.0, 126.7, 125.2, 124.6, 120.0, 62.4.

HRMS (ESI) m/z calcd. for $C_{18}H_{15}CINO [M + H]^+$ 296.0837, found 296.0838.

2-Chloro-2-(naphthalen-1-yl)-*N*-phenylacetamide (E21)


According to **General procedure 3** with 2-(naphthalen-1-yl)acetic acid (0.93 g, 5.0 mmol, 1.0 equiv.) and aniline (0.47 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E21** as a white solid (0.25 g, 17% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.14 – 8.12 (m, 1H), 7.92 – 7.89 (m, 2H), 7.68 – 7.66 (m, 1H), 7.62 – 7.52 (m, 4H), 7.49 – 7.45 (m, 1H), 7.38 – 7.34 (m, 2H), 7.20 – 7.16 (m, 1H), 6.22 (s, 1H).

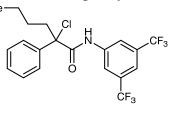
¹³C NMR (100 MHz, CDCl₃) δ 165.5, 136.9, 134.1, 132.5, 130.7, 130.5, 129.14, 129.11, 127.2, 126.6, 126.3, 125.3, 125.2, 123.1, 120.0, 59.8.

HRMS (ESI) m/z calcd. for $C_{18}H_{15}CINO [M + H]^+ 296.0837$, found 296.0838.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-2-phenylbutanamide (E22)

E22

According to **General procedure 5** with 2-phenylbutanoic acid (4.92 g, 30.0 mmol, 1.0 equiv.) and 3,5-bis(trifluoromethyl)aniline (6.87 g, 30.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E22** as a white solid (8.22 g, 67% overall yield).

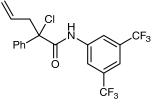

¹**H** NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.05 (s, 2H), 7.62 – 7.58 (m, 3H), 7.41 – 7.32 (m, 3H), 2.68 – 2.59 (m, 1H), 2.48 – 2.39 (m, 1H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 139.3, 138.6, 132.4 (q, J = 33.4 Hz), 128.78, 128.75, 126.2, 122.9 (q, J = 271.3 Hz), 119.58 – 119.55 (m), 118.2 – 118.0 (m), 79.1, 34.9, 9.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.02 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{18}H_{15}ClF_6NO [M + H]^+ 410.0741$, found 410.0738.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-2-phenylhexanamide (E23)


E23

According to **General procedure 6** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv.), 1iodobutane (1.93 g, 10.5 mmol, 1.05 equiv.), and 3,5-bis(trifluoromethyl)aniline (2.29 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E23** as a white solid (2.63 g, 60% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.05 (s, 2H), 7.63 – 7.58 (m, 3H), 7.42 – 7.33 (m, 3H), 2.62 – 2.55 (m, 1H), 2.42 – 2.35 (m, 1H), 1.50 – 1.31 (m, 4H), 0.91 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.8, 139.6, 138.6, 132.5 (q, *J* = 33.5 Hz), 128.8, 126.1, 123.0 (q, *J* = 271.2 Hz), 119.6 – 119.5 (m), 118.2 – 118.1 (m), 78.4, 41.5, 27.0, 22.5, 13.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.04 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{20}H_{17}ClF_6NO [M - H]^- 436.0908$, found 436.0904.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-2-phenylpent-4-enamide (E24)

E24

According to **General procedure 6** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv.), 3bromoprop-1-ene (1.26 g, 10.5 mmol, 1.05 equiv.) and 3,5-bis(trifluoromethyl)aniline (2.29 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E24** as a white solid (1.31 g, 31% overall yield).

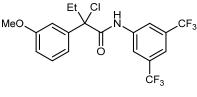
¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.05 (s, 2H), 7.64 (s, 1H), 7.61 – 7.58 (m, 2H), 7.44 – 7.35 (m, 3H), 5.84 – 5.74 (m, 1H), 5.24 – 5.17 (m, 2H), 3.39 – 3.33 (m, 1H), 3.18 – 3.12 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 138.9, 138.5, 132.5 (q, J = 33.4 Hz), 131.5, 128.9, 128.8, 126.2, 122.9 (q, J = 271.3 Hz), 120.6, 119.61 – 119.56 (m), 118.3 – 118.2 (m), 76.8, 45.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.00 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{19}H_{13}ClF_6NO [M - H]^2 420.0595$, found 420.0594.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-(4-(*tert*-butyl)phenyl)-2-chlorobutanamide (E25)

E25


According to **General procedure 6** with 2-(4-(*tert*-butyl)phenyl)acetic acid (1.92 g, 10.0 mmol, 1.0 equiv.), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv.), and 3,5-bis(trifluoromethyl)aniline (2.29 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E25** as a white solid (2.51 g, 54% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.07 (s, 2H), 7.63 (s, 1H), 7.52 – 7.49 (m, 2H), 7.42 – 7.39 (m, 2H), 2.65 (dq, J = 14.3, 7.1 Hz, 1H), 2.42 (dq, J = 14.5, 7.2 Hz, 1H), 1.31 (s, 9H), 1.07 (t, J = 7.2 Hz, 3H).

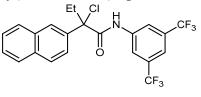
¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 151.9, 138.7, 136.4, 132.4 (q, *J* = 33.4 Hz), 125.9, 125.7, 123.0 (q, *J* = 271.3 Hz), 119.6 – 119.5 (m), 118.2 – 118.0 (m), 79.2, 34.8, 34.6, 31.2, 9.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.99 (s, 6F). **HRMS** (ESI) m/z calcd. for C₂₂H₂₁ClF₆NO [M – H]⁻ 464.1221, found 464.1216.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-2-(3-methoxyphenyl)butanamide (E26)

E26

According to **General procedure 6** with 2-(3-methoxyphenyl)acetic acid (1.66 g, 10.0 mmol, 1.0 equiv.), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv.), and 3,5-bis(trifluoromethyl)aniline (2.29 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E26** as a white solid (1.02 g, 23% overall yield).


¹**H** NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.05 (s, 2H), 7.63 (s, 1H), 7.34 – 7.30 (m, 1H), 7.17 – 7.14 (m, 2H), 6.91 – 6.88 (m, 1H), 3.83 (s, 3H), 2.62 (dq, *J* = 13.9, 7.1 Hz, 1H), 2.43 (dq, *J* = 14.0, 7.1 Hz, 1H), 1.04 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 159.8, 140.7, 138.6, 132.4 (q, *J* = 33.4 Hz), 129.9, 123.0 (q, *J* = 271.2 Hz), 119.53 – 119.49 (m), 118.4, 118.2 – 118.0 (m), 113.6, 112.8, 78.8, 55.4, 34.8, 9.3.

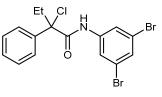
¹⁹F NMR (376 MHz, CDCl₃) δ -63.00 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{19}H_{15}ClF_6NO_2 [M - H]^- 438.0701$, found 438.0698.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloro-2-(naphthalen-2-yl)butanamide (E27)

E27

According to **General procedure 6** with 2-(naphthalen-2-yl)acetic acid (1.86 g, 10.0 mmol, 1.0 equiv.), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv.), and 3,5-bis(trifluoromethyl)aniline (2.29 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E27** as a white solid (1.67 g, 36% overall yield).


¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.10 (d, J = 1.5 Hz, 1H), 8.05 (s, 2H), 7.90 – 7.81 (m, 3H), 7.63 – 7.60 (m, 2H), 7.55 – 7.51 (m, 2H), 2.73 (dq, J = 14.3, 7.1 Hz, 1H), 2.56 (dq, J = 14.5, 7.2 Hz, 1H), 1.08 (t, J = 7.2 Hz, 3H).

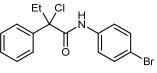
¹³**C NMR** (100 MHz, CDCl₃) δ 168.8, 138.6, 136.3, 133.0, 132.8, 132.4 (q, *J* = 33.4 Hz), 128.8, 128.5, 127.5, 127.1, 126.8, 125.7, 123.6, 122.9 (q, *J* = 271.1 Hz), 119.6 – 119.5 (m), 118.2 – 118.1 (m), 79.2, 34.7, 9.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.99 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{22}H_{15}ClF_6NO [M - H]^- 458.0752$, found 458.0750.

2-Chloro-N-(3,5-dibromophenyl)-2-phenylbutanamide (E28)

E28


According to **General procedure 5** with 2-phenylbutanoic acid (1.36 g, 10.0 mmol, 1.0 equiv.) and 3,5-dibromoaniline (2.49 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E28** as a white solid (3.12 g, 73% overall yield).

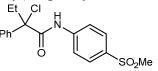
¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.68 (s, 2H), 7.56 – 7.54 (m, 2H), 7.39 – 7.31 (m, 4H), 2.60 (dq, J = 14.3, 7.1 Hz, 1H), 2.39 (dq, J = 14.3, 7.1 Hz, 1H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.5, 139.1, 130.2, 128.6, 126.1, 123.0, 121.3, 79.1, 34.8, 9.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{13}Br_2CINO [M - H]^- 427.9058$, found 427.9053.

N-(4-Bromophenyl)-2-chloro-2-phenylbutanamide (E29)

E29


According to **General procedure 5** with 2-phenylbutanoic acid (1.36 g, 10.0 mmol, 1.0 equiv.) and 4-bromoaniline (1.71 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E29** as a white solid (2.39 g, 68% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.59 – 7.56 (m, 2H), 7.45 – 7.40 (m, 4H), 7.39 – 7.30 (m, 3H), 2.63 (dq, *J* = 14.2, 7.1 Hz, 1H), 2.40 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.05 (t, *J* = 7.2 Hz, 3H).

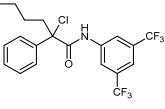
¹³C NMR (100 MHz, CDCl₃) δ 168.0, 140.0, 136.2, 131.9, 128.6, 128.5, 126.2, 121.4, 117.5, 79.3, 34.9, 9.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{16}BrClNO [M + H]^+$ 352.0098, found 352.0104.

2-Chloro-N-(4-(methylsulfonyl)phenyl)-2-phenylbutanamide (E30)

E30

According to **General procedure 5** with 2-phenylbutanoic acid (3.28 g, 20.0 mmol, 1.0 equiv.) and 4-(methylsulfonyl)aniline (3.42 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **E30** as a white solid (3.90 g, 56% overall yield).


¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.90 – 7.87 (m, 2H), 7.77 – 7.73 (m, 2H), 7.60 – 7.57 (m, 2H), 7.42 – 7.32 (m, 3H), 3.02 (s, 3H), 2.63 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.43 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.0, 139.5, 136.0, 128.7, 126.2, 119.8, 79.1, 44.6, 34.9, 9.3.

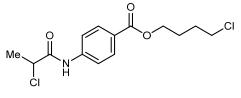
HRMS (ESI) m/z calcd. for $C_{17}H_{19}CINO_3S [M + H]^+ 352.0769$, found 352.0771.

N-(3,5-Bis(trifluoromethyl)phenyl)-2,5-dichloro-2-phenylpentanamide (E31)

CI

E31

According to **General procedure 7** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv.), 1bromo-3-chloropropane (1.64 g, 10.5 mmol, 1.05 equiv.), and 3,5-bis(trifluoromethyl)aniline (1.71 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **E31** as a white solid (1.83 g, 40% overall yield).


¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.04 (s, 2H), 7.64 – 7.60 (m, 3H), 7.45 – 7.36 (m, 3H), 3.62 – 3.52 (m, 2H), 2.73 – 2.66 (m, 1H), 2.63 – 2.55 (m, 1H), 2.05 – 1.84 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 138.7, 138.5, 132.5 (q, *J* = 33.4 Hz), 129.1, 129.0, 126.0, 122.9 (q, *J* = 271.2 Hz), 119.6 – 119.5 (m), 118.3 – 118.2 (m), 77.4, 44.3, 39.5, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.00 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{19}H_{14}Cl_2F_6NO [M - H]^+ 456.0362$, found 456.0362.

4-Chlorobutyl 4-(2-chloropropanamido)benzoate (E32)

According to the literature reported procedure⁷ with slightly modification. To a solution of 4aminobenzoic acid (4.93 g, 36.0 mmol, 1.2 equiv.) in THF (50 mL) was added 2chloropropanoyl chloride (3.78 g, 30.0 mmol, 1.0 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product (6.53 g, 96%), which was used directly in the next step without further purification.

To a solution of the above 4-(2-chloropropanamido)benzoic acid (2.27 g, 10.0 mmol, 1.0 equiv.), 1,1'-carbonyldiimidazole (CDI) (1.78 g, 11.0 mmol, 1.1 equiv.), and DMAP (0.12 g, 1.0 mmol, 0.1 equiv.) in CH₂Cl₂ (20 mL) was added Et₃N (1.52 g, 15.0 mmol, 1.5 equiv.) dropwise at room temperature. Then the reaction mixture was stirred for 3 h at room temperature. To the resulting solution was added 4-chlorobutan-1-ol (2.16 g, 20.0 mmol, 2.0 equiv.) via syringe at room temperature under argon and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 20 mL) and extracted with CH₂Cl₂

three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to afford the desired product **E32** as a white solid (2.66 g, 84% yield).

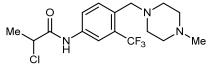
¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.04 – 8.01 (m, 2H), 7.68 – 7.65 (m, 2H), 4.56 (q, *J* = 7.0 Hz, 1H), 4.38 – 4.32 (m, 2H), 3.65 – 3.58 (m, 2H), 1.98 – 1.91 (m, 4H), 1.82 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 165.8, 141.1, 130.7, 126.3, 119.1, 64.1, 55.8, 44.4, 29.2, 26.1, 22.3.

HRMS (ESI) m/z calcd. for $C_{14}H_{18}Cl_2NO_3 [M + H]^+ 318.0658$, found 318.0658.

N-Benzyl-2-chloropropanamide (E33)

E33


According to **General procedure 1** with 2-chloropropionyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and benzylamine (1.07 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E33** as a white solid (1.97 g, 100% yield).

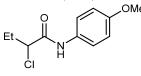
¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 3H), 6.91 (s, 1H), 4.48 – 4.43 (m, 3H), 1.76 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 137.4, 128.8, 127.7, 127.6, 55.9, 43.8, 22.7.

HRMS (ESI) m/z calcd. for $C_{10}H_{13}CINO [M + H]^+$ 198.0680, found 198.0678.

2-Chloro-*N*-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)propanamide (E34)

According to **General procedure 1** with 2-chloropropanoyl chloride (0.40 g, 3.2 mmol, 1.2 equiv.) and 4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)aniline (Ponatinib fragment) (0.74 g, 2.7 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/CH₃OH = 20/1) to yield the product **E34** as a colorless liquid (0.43 g, 44% yield).

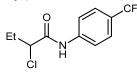

¹**H** NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.86 – 7.82 (m, 1H), 7.80 – 7.77 (m, 1H), 7.74 – 7.72 (m, 1H), 4.59 (q, *J* = 7.0 Hz, 1H), 3.61 (s, 2H), 2.78 – 2.37 (m, 8H), 2.33 (s, 3H), 1.80 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.9, 135.8, 133.8 (q, *J* = 0.8 Hz), 131.2, 129.0 (q, *J* = 30.4 Hz), 123.8 (q, *J* = 272.6 Hz), 123.1, 117.5 (q, *J* = 6.0 Hz), 57.5 (q, *J* = 1.7 Hz), 55.4, 54.9, 52.6, 45.6, 22.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.45 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{16}H_{22}ClF_3N_3O [M + H]^+$ 364.1398, found 364.1398.

2-Chloro-*N*-(4-methoxyphenyl)butanamide (E35)


E35

According to **General procedure 1** with 2-chlorobutanoyl chloride (1.68 g, 12.0 mmol, 1.2 equiv.) and 4-methoxyaniline (1.23 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E35** as a white solid (2.27 g, 100% yield).

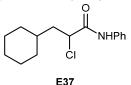
¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.46 – 7.42 (m, 2H), 6.89 – 6.85 (m, 2H), 4.43 (dd, *J* = 7.7, 4.3 Hz, 1H), 3.79 (s, 3H), 2.27 – 2.17 (m, 1H), 2.13 – 2.02 (m, 1H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 156.9, 129.9, 122.0, 114.2, 62.9, 55.4, 29.0, 10.3. HRMS (ESI) m/z calcd. for C₁₁H₁₅ClNO₂ [M + H]⁺ 228.0786, found 228.0788.

2-Chloro-N-(4-(trifluoromethyl)phenyl)butanamide (E36)

E36

According to **General procedure 1** with 2-chlorobutanoyl chloride (1.68 g, 12.0 mmol, 1.2 equiv.) and 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E36** as a white solid (2.61 g, 98% yield).

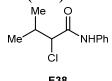

¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.70 – 7.68 (m, 2H), 7.62 – 7.59 (m, 2H), 4.46 (dd, *J* = 7.8, 4.4 Hz, 1H), 2.29 – 2.18 (m, 1H), 2.15 – 2.04 (m, 1H), 1.11 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 139.9, 126.8 (q, *J* = 32.8 Hz), 126.3 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 270.0 Hz), 119.7, 62.8, 29.0, 10.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.25 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{11}H_{12}ClF_{3}NO [M + H]^{+} 266.0554$, found 266.0556.

2-Chloro-3-cyclohexyl-N-phenylpropanamide (E37)



According to **General procedure 2** with 3-cyclohexylpropanoic acid (3.12 g, 20.0 mmol, 1.0 equiv.) and aniline (1.86 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E37** as a white solid (4.09 g, 77% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.56 – 7.53 (m, 2H), 7.37 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 4.50 (dd, *J* = 10.3, 4.2 Hz, 1H), 2.11 – 2.04 (m, 1H), 1.89 – 1.57 (m, 7H), 1.34 – 1.11 (m, 3H), 1.08 – 0.88 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 137.0, 129.1, 124.9, 120.0, 59.5, 43.0, 34.4, 33.5, 31.5, 26.3, 26.1, 25.9. HRMS (ESI) m/z calcd. for C₁₅H₂₁ClNO [M + H]⁺ 266.1306, found 266.1304.

2-Chloro-3-methyl-N-phenylbutanamide (E38)

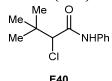
According to **General procedure 2** with 3-methylbutanoic acid (2.04 g, 20.0 mmol, 1.0 equiv.) and aniline (1.86 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E38** as a white solid (2.10 g, 50% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.56 – 7.53 (m, 2H), 7.37 – 7.32 (m, 2H), 7.18 – 7.14 (m, 1H), 4.43 (d, J = 3.7 Hz, 1H), 2.72 – 2.61 (m, 1H), 1.13 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 136.8, 129.0, 125.0, 120.1, 68.6, 32.5, 20.1, 16.6. HRMS (ESI) m/z calcd. for C₁₁H₁₅ClNO [M + H]⁺ 212.0837, found 212.0835.

2-Chloro-2-cyclopentyl-*N*-phenylacetamide (E39)

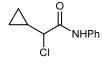
E39


According to **General procedure 2** with 2-cyclopentylacetic acid (2.56 g, 20.0 mmol, 1.0 equiv.) and aniline (1.86 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E39** as a white solid (3.43 g, 72% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.55 – 7.52 (m, 2H), 7.36 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 4.46 (d, *J* = 5.8 Hz, 1H), 2.75 – 2.65 (m, 1H), 1.88 – 1.77 (m, 2H), 1.75 – 1.46 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 137.0, 129.0, 125.0, 120.1, 65.8, 44.2, 30.0, 28.3, 25.6, 25.3.

HRMS (ESI) m/z calcd. for $C_{13}H_{17}CINO [M + H]^+ 238.0993$, found 238.0989.

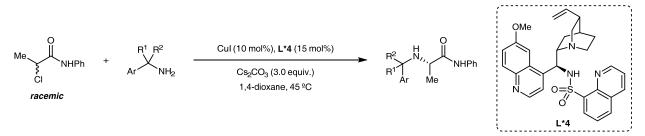

2-Chloro-3,3-dimethyl-N-phenylbutanamide (E40)

According to **General procedure 2** with 3,3-dimethylbutanoic acid (1.16 g, 10.0 mmol, 1.0 equiv.) and aniline (0.93 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E40** as a yellowish solid (0.68 g, 30% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.53 – 7.50 (m, 2H), 7.36 – 7.31 (m, 2H), 7.17 – 7.12 (m, 1H), 4.23 (s, 1H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 136.9, 129.0, 124.9, 120.1, 71.5, 35.9, 27.0. HRMS (ESI) m/z calcd. For C₁₂H₁₇ClNO [M + H]⁺ 226.0993, found 226.0991.

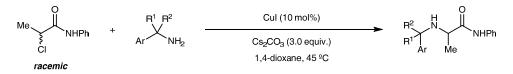
2-Chloro-2-cyclopropyl-N-phenylacetamide (E46)

E46

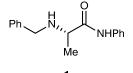

According to **General procedure 2** with 2-cyclopropylacetic acid (1.00 g, 25.0 mmol, 1.0 equiv.) and aniline (2.33 g, 25.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E46** as a white solid (2.19 g, 42% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.57 – 7.54 (m, 2H), 7.37 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 3.93 (d, J = 8.9 Hz, 1H), 1.51 – 1.43 (m, 1H), 0.87 – 0.72 (m, 3H), 0.58 – 0.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 137.0, 129.0, 125.0, 120.0, 65.9, 16.9, 6.3, 4.8.


HRMS (ESI) m/z calcd. for $C_{11}H_{13}CINO [M + H]^+ 210.0680$, found 210.0680.

6. Enantioconvergent N-alkylation of aliphatic amines and ammonia


General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl chloride (0.30 mmol, 1.5 equiv.), benzylic primary amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

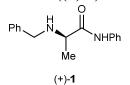
The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv.), alkyl chloride (0.30 mmol, 1.5 equiv.), benzylic primary amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Benzylamino)-N-phenylpropanamide (1)

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **1** as a white solid (48.6 mg, 96% yield, 92% e.e.). $[\alpha]_D^{20} = -8.6$ (*c* 1.0, CHCl₃).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R

 $(major) = 12.37 min, t_R (minor) = 18.59 min.$

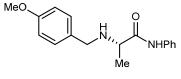

A gram-scale experiment: According to General Procedure A with 2-chloro-*N*-phenylpropanamide E1 (1372.8 mg, 7.5 mmol, 1.5 equiv.) and benzylamine A1 (535.4 mg, 5.0 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 1 as a white solid (1240.6 mg, 98% yield, 91% e.e.).

¹**H NMR** (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.59 – 7.57 (m, 2H), 7.37 – 7.26 (m, 7H), 7.11 – 7.08 (m, 1H), 3.81 (s, 2H), 3.36 (q, *J* = 7.0 Hz, 1H), 1.80 (s, 1H), 1.40 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 139.1, 137.7, 128.9, 128.7, 128.0, 127.4, 124.0, 119.3, 58.4, 52.7, 19.6.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O [M + H]^+ 255.1492$, found 255.1490.

(*R*)-2-(Benzylamino)-*N*-phenylpropanamide ((+)-1)



According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.), and (8R,9R)-L*4 (15.4 mg, 0.03 mmol, 15 mol%) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product (+)-1 as a white solid (47.7 mg, 94% yield, 92% e.e.).

 $[\alpha]_{D}^{20} = 5.7 (c \ 1.0, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.88 min, t_R (major) = 20.72 min.

(S)-2-((4-Methoxybenzyl)amino)-*N*-phenylpropanamide (2)

2

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (4-methoxyphenyl)methanamine **A2** (27.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/3) to yield the product **2** as a white solid (44.4 mg, 78% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 16.84 min, *t*_R (minor) = 26.73 min.

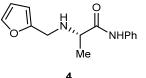
¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.59 – 7.57 (m, 2H), 7.34 – 7.31 (m, 2H), 7.25 – 7.21 (m, 2H), 7.11 – 7.07 (m, 1H), 6.90 – 6.86 (m, 2H), 3.79 (s, 3H), 3.74 (s, 2H), 3.34 (q, J = 7.0 Hz, 1H), 1.75 (s, 1H), 1.39 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 158.9, 137.8, 131.3, 129.2, 128.9, 124.0, 119.3, 114.1, 58.3, 55.2, 52.2, 19.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O_2 [M + H]^+$ 285.1598, found 285.1594.

(S)-N-Phenyl-2-((pyridin-3-ylmethyl)amino)propanamide (3)

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and pyridin-3-ylmethanamine **A3** (21.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **3** as a white solid (35.7 mg, 70% yield, 91% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (major) = 62.10 min, *t*_R (minor) = 70.80 min.

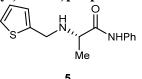
¹**H** NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.62 – 8.55 (m, 2H), 7.67 – 7.64 (m, 1H), 7.59 – 7.55 (m, 2H), 7.36 – 7.28 (m, 3H), 7.13 – 7.09 (m, 1H), 3.84 (s, 2H), 3.37 (q, *J* = 7.0 Hz, 1H), 1.86 (s, 1H), 1.43 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 149.5, 148.9, 137.6, 135.7, 134.6, 129.0, 124.2, 123.6, 119.3, 58.6, 50.1, 19.6.

HRMS (ESI) m/z calcd. for $C_{15}H_{18}N_{3}O [M + H]^+ 256.1444$, found 256.1441.

(S)-2-((Furan-2-ylmethyl)amino)-N-phenylpropanamide (4)

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and furan-2-ylmethanamine **A4** (19.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/2) to yield the product **4** as a colorless oil (38.6 mg, 79% yield, 94% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 13.09 min, *t*_R (minor) = 18.07 min.

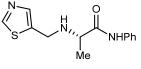
¹**H** NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.60 – 7.58 (m, 2H), 7.36 – 7.30 (m, 3H), 7.11 – 7.07 (m, 1H), 6.31 – 6.29 (m, 1H), 6.20 – 6.19 (m, 1H), 3.80 (s, 2H), 3.33 (q, *J* = 7.0 Hz, 1H), 1.86 (s, 1H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 152.5, 142.3, 137.8, 128.9, 124.0, 119.3, 110.2, 107.5, 58.0, 44.9, 19.7.

HRMS (ESI) m/z calcd. for $C_{14}H_{17}N_2O_2 [M + H]^+ 245.1285$, found 245.1281.

(S)-N-Phenyl-2-((thiophen-2-ylmethyl)amino)propanamide (5)

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and thiophen-2-ylmethanamine **A5** (22.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/2) to yield the product **5** as a colorless oil (41.7 mg, 80% yield, 93% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.31 min, t_R (minor) = 19.21 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.62 – 7.60 (m, 2H), 7.35 – 7.31 (m, 2H), 7.25 – 7.23 (m, 1H), 7.11 – 7.08 (m, 1H), 6.97 – 6.95 (m, 2H), 4.10 – 3.95 (m, 2H), 3.40 (q, *J* = 7.0 Hz, 1H), 1.96 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

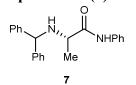
¹³C NMR (100 MHz, CDCl₃)δ 172.6, 142.6, 137.7, 128.9, 126.9, 125.4, 124.8, 124.0, 119.3, 58.0, 47.1, 19.4.

HRMS (ESI) m/z calcd. for $C_{14}H_{17}N_2OS [M + H]^+ 261.1056$, found 261.1053.

(S)-N-Phenyl-2-((thiazol-5-ylmethyl)amino)propanamide (6)

6

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and thiazol-5-ylmethanamine **A6** (22.8 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **6** as a colorless oil (28.7 mg, 55% yield, 94% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 16.57 min, *t*_R (minor) = 18.34 min.

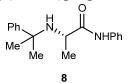
¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.77 (s, 1H), 7.77 (s, 1H), 7.60 – 7.58 (m, 2H), 7.36 – 7.34 (m, 2H), 7.14 – 7.09 (m, 1H), 4.17 – 4.01 (m, 2H), 3.40 (q, *J* = 7.0 Hz, 1H), 1.94 (s, 1H), 1.43 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 153.1, 141.3, 137.6, 137.1, 129.0, 124.2, 119.3, 58.2, 44.2, 19.4.

HRMS (ESI) m/z calcd. For $C_{13}H_{16}N_3OS [M + H]^+ 262.1009$, found 262.1009.

(S)-2-(Benzhydrylamino)-*N*-phenylpropanamide (7)

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and dibenzylamine **A7** (36.6 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 7 as a white solid (50.2 mg, 76% yield, 94% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 15.40 min, *t*_R (minor) = 16.71 min.

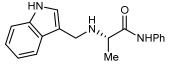
¹**H** NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 7.54 – 7.51 (m, 2H), 7.37 – 7.20 (m, 12H), 7.11 – 7.06 (m, 1H), 4.87 (s, 1H), 3.32 (q, J = 7.0 Hz, 1H), 1.98 (s, 1H), 1.40 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 142.8, 142.6, 137.7, 128.9, 128.8, 128.6, 127.5, 127.4, 127.22, 127.17, 124.0, 119.3, 65.5, 56.6, 19.5.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}N_2O [M + H]^+ 331.1805$, found 331.1803.

(S)-N-Phenyl-2-((2-phenylpropan-2-yl)amino)propanamide (8)

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-phenylpropan-2-amine **A8** (27.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **8** as a white solid (50.8 mg, 90% yield, 96% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 8.23 min, t_R (major) = 9.85 min.

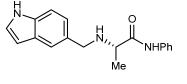
¹**H** NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.60 – 7.56 (m, 2H), 7.43 – 7.40 (m, 2H), 7.37 – 7.32 (m, 4H), 7.27 – 7.22 (m, 1H), 7.12 – 7.08 (m, 1H), 3.07 (q, *J* = 7.1 Hz, 1H), 1.68 (s, 1H), 1.50 (s, 3H), 1.49 (s, 3H), 1.26 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 146.7, 137.8, 129.0, 128.4, 126.9, 125.4, 124.0, 119.2, 56.8, 53.7, 31.2, 26.6, 21.3.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M + H]^+ 283.1805$, found 283.1802.

(S)-2-(((1H-Indol-3-yl)methyl)amino)-N-phenylpropanamide (9)

a


According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (1*H*-indol-3-yl)methanamine **A9** (29.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **9** as a white solid (40.1 mg, 68% yield, 93% e.e.). **HPLC** analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 19.62 min, t_R (minor) = 21.86 min.

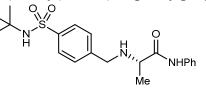
¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.29 (s, 1H), 7.71 – 7.69 (m, 1H), 7.40 – 7.37 (m, 2H), 7.34 – 7.32 (m, 1H), 7.28 – 7.24 (m, 2H), 7.22 – 7.15 (m, 2H), 7.08 – 7.02 (m, 2H), 4.07 – 3.97 (m, 2H), 3.38 (q, J = 7.0 Hz, 1H), 1.83 (s, 1H), 1.38 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 137.7, 136.5, 128.8, 126.7, 123.8, 123.0, 122.3, 119.8, 119.3, 118.4, 113.6, 111.6, 58.6, 44.0, 19.8.

HRMS (ESI) m/z calcd. for $C_{18}H_{20}N_{3}O [M + H]^+ 294.1601$, found 294.1604.

(S)-2-(((1H-Indol-5-yl)methyl)amino)-N-phenylpropanamide (10)

According to General procedure A with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and (1*H*-indol-5-yl)methanamine A10 (29.2 mg, 0.20 mmol, 1.0 equiv.) for 72


h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **10** as a colorless oil (52.2 mg, 89% yield, 91% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 10.54 min, *t*_R (minor) = 13.40 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.58 (s, 1H), 7.61 – 7.59 (m, 2H), 7.56 (d, J = 1.6 Hz, 1H), 7.34 – 7.30 (m, 3H), 7.18 – 7.16 (m, 1H), 7.12 – 7.08 (m, 2H), 6.51 – 6.50 (m, 1H), 3.91 – 3.82 (m, 2H), 3.42 (q, J = 7.0 Hz, 1H), 2.41 (s, 1H), 1.38 (d, J = 7.0 Hz, 3H).

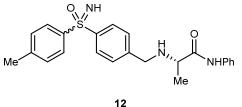
¹³C NMR (100 MHz, CDCl₃) δ 173.3, 137.7, 135.2, 130.1, 128.9, 128.0, 124.9, 124.0, 122.3, 120.1, 119.4, 111.4, 102.2, 58.1, 53.2, 19.6.

HRMS (ESI) m/z calcd. for $C_{18}H_{20}N_{3}O [M + H]^+ 294.1601$, found 294.1602.

(S)-2-((4-(N-(tert-Butyl)sulfamoyl)benzyl)amino)-N-phenylpropanamide (11)

11

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 4-(aminomethyl)-*N*-(*tert*-butyl)benzenesulfonamide **A11** (48.4 mg, 0.20 mmol, 1.0 equiv.) and Cs_2CO_3 (260.6 mg, 0.80 mmol, 4.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 40/1) to yield the product **11** as a colorless oil (53.9 mg, 69% yield, 90% e.e.).

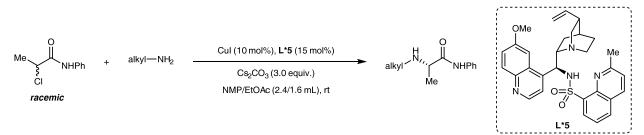

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 23.28 min, t_R (minor) = 51.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.88 – 7.86 (m, 2H), 7.58 – 7.55 (m, 2H), 7.45 – 7.43 (m, 2H), 7.35 – 7.30 (m, 2H), 7.13 – 7.09 (m, 1H), 5.08 (s, 1H), 3.88 (s, 2H), 3.36 (q, J = 6.9 Hz, 1H), 1.89 (s, 1H), 1.42 (d, J = 6.9 Hz, 3H), 1.20 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 143.7, 142.4, 137.5, 129.0, 128.2, 127.2, 124.2, 119.3, 58.4, 54.6, 52.0, 30.0, 19.6.

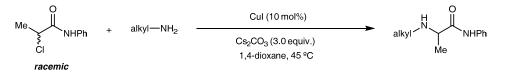
HRMS (ESI) m/z calcd. for $C_{20}H_{28}N_3O_3S [M + H]^+ 390.1846$, found 390.1849.

(S)-2-((4-(4-Methylphenylsulfonimidoyl)benzyl)amino)-N-phenylpropanamide (12)

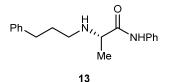

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), (4-(aminomethyl)phenyl)(imino)(*p*-tolyl)- λ^6 -sulfanone **A12** (52.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **12** as a colorless oil (64.7 mg, 79% yield, 1:1 d.r., 94% e.e., 94% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 30.42 min, t_R (minor) = 78.32 min, 94% e.e.; t_R (major) = 37.21 min, t_R (minor) =

49.51 min, 94% e.e.; 1:1 d.r.. ¹**H** NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 7.99 – 7.97 (m, 2H), 7.90 – 7.88 (m, 2H), 7.54 – 7.52 (m, 2H), 7.43 – 7.41 (m, 2H), 7.32 – 7.25 (m, 4H), 7.11 – 7.07 (m, 1H), 3.82 (s, 2H), 3.30 (q, J = 6.9 Hz, 1H), 2.88 (s, 1H), 2.37 (s, 3H), 2.02 (s, 1H), 1.38 (d, J = 6.9 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 172.6, 144.1, 143.4, 142.6, 140.1, 137.5, 129.7, 128.9, 128.5,


128.1, 127.8, 124.1, 119.2, 58.3, 51.8, 21.4, 19.5.

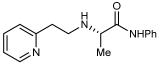
HRMS (ESI) m/z calcd. for $C_{23}H_{26}N_3O_2S [M + H]^+ 408.1740$, found 408.1743.


General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*5 (15.8 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous NMP (2.4 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl chloride (0.30 mmol, 1.5 equiv.), nonbenzylic primary amine (0.20 mmol, 1.0 equiv.), and anhydrous EtOAc (1.6 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv.), alkyl chloride (0.30 mmol, 1.5 equiv.), non-benzylic primary amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-N-Phenyl-2-((3-phenylpropyl)amino)propanamide (13)


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 3-phenylpropan-1-amine **A13** (27.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **13** as a colorless oil (47.4 mg, 84% yield, 92% e.e.). **HPLC** analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 13.04 min, t_R (major) = 18.26 min.

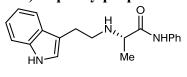
¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 7.58 – 7.56 (m, 2H), 7.34 – 7.25 (m, 4H), 7.20 – 7.17 (m, 3H), 7.11 – 7.07 (m, 1H), 3.24 (q, *J* = 7.0 Hz, 1H), 2.78 – 2.60 (m, 4H), 1.89 – 1.81 (m, 2H), 1.55 (s, 1H), 1.36 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 141.5, 137.8, 129.0, 128.4, 128.2, 126.0, 124.0, 119.3, 59.0, 48.4, 33.6, 31.8, 19.7.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M + H]^+ 283.1805$, found 283.1804.

(S)-N-Phenyl-2-((2-(pyridin-2-yl)ethyl)amino)propanamide (14)

14

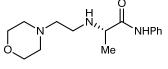

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(pyridin-2-yl)ethan-1-amine **A14** (24.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **14** as a colorless oil (41.0 mg, 76% yield, 96% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.09 min, *t*_R (minor) = 18.84 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 8.56 – 8.54 (m, 1H), 7.66 – 7.61 (m, 1H), 7.53 – 7.51 (m, 2H), 7.31 – 7.27 (m, 2H), 7.20 – 7.16 (m, 2H), 7.10 – 7.06 (m, 1H), 3.42 (q, *J* = 7.0 Hz, 1H), 3.17 – 3.01 (m, 4H), 2.77 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl3) δ 172.7, 159.6, 149.2, 137.8, 136.8, 128.8, 123.9, 123.4, 121.6, 119.5, 58.7, 47.5, 36.3, 19.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{20}N_{3}O [M + H]^+ 270.1601$, found 270.1598.

(S)-2-((2-(1H-Indol-3-yl)ethyl)amino)-N-phenylpropanamide (15)


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(1*H*-indol-3-yl)ethan-1-amine **A15** (32.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **15** as a colorless oil (31.4 mg, 51% yield, 95% e.e.).

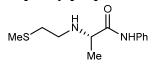
HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.96 min, t_R (minor) = 10.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.09 (s, 1H), 7.64 – 7.61 (m, 1H), 7.40 – 7.38 (m, 1H), 7.32 – 7.29 (m, 2H), 7.27 – 7.19 (m, 3H), 7.14 – 7.10 (m, 1H), 7.07 – 7.03 (m, 2H), 3.29 (q, J = 7.0 Hz, 1H), 3.10 – 3.05 (m, 1H), 3.01 – 2.90 (m, 3H), 1.68 (s, 1H), 1.33 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.2, 137.8, 136.4, 128.8, 127.4, 123.8, 122.2, 122.0, 119.6, 119.3, 118.8, 113.6, 111.3, 58.7, 48.8, 25.9, 19.7.

HRMS (ESI) m/z calcd. For $C_{19}H_{22}N_{3}O [M + H]^+ 308.1757$, found 308.1754.

(S)-2-((2-Morpholinoethyl)amino)-N-phenylpropanamide (16)

16

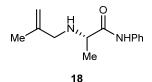

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-morpholinoethan-1-amine **A16** (26.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **16** as a colorless oil (28.3 mg, 51% yield, 89% e.e.). **HPLC** analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.49 min, *t*_R (minor) = 9.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.61 – 7.59 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.75 – 3.67 (m, 4H), 3.28 (q, *J* = 7.0 Hz, 1H), 2.84 – 2.68 (m, 2H), 2.57 – 2.40 (m, 6H), 1.87 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 173.2, 137.9, 129.0, 124.0, 119.4, 66.9, 59.1, 58.1, 53.6, 44.9, 19.7.

HRMS (ESI) m/z calcd. For $C_{15}H_{24}N_3O_2 [M + H]^+ 278.1863$, found 278.1861.

(S)-2-((2-(Methylthio)ethyl)amino)-N-phenylpropanamide (17)


17

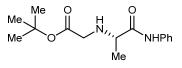
According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(methylthio)ethan-1-amine **A17** (18.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **17** as a colorless oil (30.0 mg, 63% yield, 93% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.53 min, *t*_R (minor) = 20.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.66 – 7.63 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.30 (q, *J* = 7.0 Hz, 1H), 3.00 – 2.94 (m, 1H), 2.81 – 2.75 (m, 1H), 2.72 – 2.62 (m, 2H), 2.10 (s, 3H), 1.73 (s, 1H), 1.42 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 137.9, 128.9, 123.9, 119.2, 58.6, 46.4, 34.9, 19.8, 15.4. HRMS (ESI) *m/z* calcd. for C₁₂H₁₉N₂OS [M + H]⁺ 239.1213, found 239.1208.

(S)-2-((2-Methylallyl)amino)-N-phenylpropanamide (18)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-methylprop-2-en-1-amine **A18** (14.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **18** as a colorless oil (33.7 mg, 77% yield, 93% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.81 min, t_R (minor) = 9.22 min.

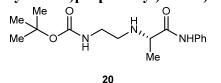
¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.60 – 7.56 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 4.96 – 4.95 (m, 1H), 4.90 – 4.89 (m, 1H), 3.30 (q, *J* = 7.0 Hz, 1H), 3.26 – 3.12 (m, 2H), 1.79 (s, 3H), 1.66 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 143.0, 137.8, 128.9, 123.9, 119.2, 111.4, 58.2, 54.4, 20.8, 19.6.

HRMS (ESI) m/z calcd. for $C_{13}H_{19}N_2O [M + H]^+ 219.1492$, found 219.1491.

tert-Butyl (S)-(1-oxo-1-(phenylamino)propan-2-yl)glycinate (19)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl glycinate **A19** (26.2mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **19** as a colorless oil (30.6 mg, 55% yield, 95% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.97 min, *t*_R (minor) = 10.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.63 – 7.60 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.42 – 3.25 (m, 3H), 1.88 (s, 1H), 1.47 (s, 9H), 1.44 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 171.3, 137.8, 128.9, 124.0, 119.4, 81.9, 59.2, 50.4, 28.1, 19.8.

HRMS (ESI) m/z calcd. for $C_{15}H_{23}N_2O_3 [M + H]^+ 279.1703$, found 279.1700.

tert-Butyl (S)-(2-((1-oxo-1-(phenylamino)propan-2-yl)amino)ethyl)carbamate (20)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl (2-aminoethyl)carbamate **A20** (32.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **20** as a colorless oil (46.1 mg, 75% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.49 min, t_R (minor) = 9.55 min.

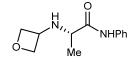
¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.63 – 7.60 (m, 2H), 7.33 – 7.29 (m, 2H), 7.11 – 7.07 (m, 1H), 4.98 (s, 1H), 3.37 (q, *J* = 7.0 Hz, 1H), 3.30 – 3.26 (m, 2H), 2.89 – 2.83 (m, 1H), 2.73 – 2.67 (m, 1H), 2.59 (s, 1H), 1.45 (s, 9H), 1.41 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 156.3, 137.7, 128.9, 124.0, 119.4, 79.6, 58.6, 48.6, 40.3, 28.3, 19.4.

HRMS (ESI) m/z calcd. For $C_{16}H_{26}N_3O_3 [M + H]^+$ 308.1969, found 308.1964.

(S)-2-((6-Hydroxyhexyl)amino)-*N*-phenylpropanamide (21)

21

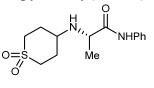

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 6-aminohexan-1-ol **A21** (23.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **21** as a colorless oil (34.4 mg, 65% yield, 92% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.57 min, *t*_R (minor) = 20.59 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.60 – 7.57 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.62 (t, *J* = 6.5 Hz, 2H), 3.25 (q, *J* = 7.0 Hz, 1H), 2.73 – 2.67 (m, 1H), 2.61 – 2.54 (m, 1H), 1.72 (s, 2H), 1.62 – 1.49 (m, 4H), 1.44 – 1.35 (m, 7H).

¹³C NMR (100 MHz, CDCl₃) δ 173.4, 137.8, 128.9, 123.9, 119.2, 62.6, 59.0, 48.7, 32.6, 30.1, 27.0, 25.6, 19.7.

HRMS (ESI) m/z calcd. For $C_{15}H_{25}N_2O_2 [M + H]^+ 265.1911$, found 265.1907.

(S)-2-(Oxetan-3-ylamino)-*N*-phenylpropanamide (22)



22

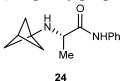
According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and oxetan-3-amine **A22** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **22** as a colorless oil (22.9 mg, 52% yield, 89% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 19.53 min, *t*_R (minor) = 27.31 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 7.58 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.13 – 7.09 (m, 1H), 4.85 (q, *J* = 6.8 Hz, 2H), 4.50 – 4.43 (m, 2H), 4.02 – 3.96 (m, 1H), 3.25 (q, *J* = 7.0 Hz, 1H), 1.88 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 137.5, 129.0, 124.3, 119.4, 80.0, 78.6, 56.7, 52.5, 19.9. HRMS (ESI) m/z calcd. For C₁₂H₁₇N₂O₂ [M + H]⁺ 221.1285, found 221.1282. (S)-2-((1,1-Dioxidotetrahydro-2*H*-thiopyran-4-yl)amino)-*N*-phenylpropanamide (23)

23

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 4-Aminotetrahydro-2*H*-thiopyran 1,1-dioxide hydrochloride **A23** (37.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography (EtOAc) on silica gel to yield the product **23** as a yellowish oil (32.0 mg, 54% yield, 93% e.e.).

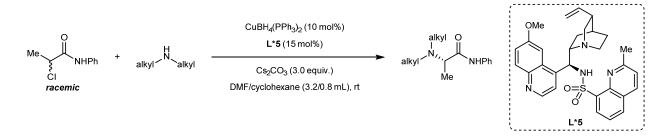

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 22.59 min, *t*_R (minor) = 31.08 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 7.57 – 7.55 (m, 2H), 7.36 – 7.32 (m, 2H), 7.15 – 7.11 (m, 1H), 3.33 (q, *J* = 7.0 Hz, 1H), 3.18 – 3.07 (m, 2H), 3.02 – 2.93 (m, 2H), 2.86 – 2.80 (m, 1H), 2.32 – 2.19 (m, 2H), 2.11 – 2.01 (m, 2H), 1.69 (s, 1H) 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 137.3, 129.1, 124.4, 119.4, 57.0, 52.7, 49.0, 48.9, 30.4, 30.0, 20.3.

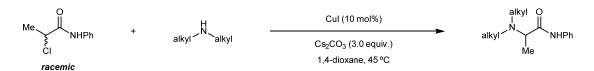
HRMS (ESI) m/z calcd. for C₁₄H₂₁N₂O₃S [M + H]⁺ 297.1267, found 297.1263.

(S)-2-(Bicyclo[1.1.1]pentan-1-ylamino)-*N*-phenylpropanamide (24)

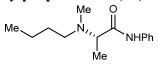


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), bicyclo[1.1.1]pentan-1-amine hydrochloride **A24** (23.8 mg, 0.20 mmol, 1.0 equiv.), **L*4** (15.4 mg, 0.03 mmol, 15 mol%), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **24** as a colorless oil (39.0 mg, 85% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 9.05 min, *t*_R (minor) = 11.15 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 7.59 – 7.56 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.38 (q, *J* = 7.0 Hz, 1H), 2.38 (s, 1H), 1.87 – 1.83 (m, 4H), 1.77 – 1.74 (m, 3H), 1.37 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 137.7, 128.9, 124.0, 119.3, 55.3, 55.2, 51.0, 22.6, 20.0. HRMS (ESI) *m/z* calcd. for C₁₄H₁₉N₂O [M + H]⁺ 231.1492, found 231.1494.


General procedure C:

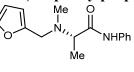
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol%), L*5 (15.8 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous DMF (3.2 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl chloride (0.30 mmol, 1.5 equiv.), secondary alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous cyclohexane (0.8 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 3). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), alkyl chloride (0.30 mmol, 1.5 equiv.), secondary alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Butyl(methyl)amino)-N-phenylpropanamide (25)

25

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *N*-methylbutan-1-amine **A25** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **25** as a colorless oil (36.1 mg, 77% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 9.39 min, *t*_R (minor) = 11.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 7.58 – 7.56 (m, 2H), 7.34 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.32 (q, *J* = 7.0 Hz, 1H), 2.45 (t, *J* = 7.2 Hz, 2H), 2.28 (s, 3H), 1.55 – 1.47 (m, 2H), 1.42 – 1.33 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H).

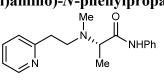
¹³C NMR (100 MHz, CDCl₃) δ 172.4, 138.0, 128.9, 123.7, 119.1, 63.6, 54.2, 38.0, 30.0, 20.4, 14.0, 9.2.

HRMS (ESI) m/z calcd. for C₁₄H₂₃N₂O [M + H]⁺ 235.1805, found 235.1809.

(S)-2-((Furan-2-ylmethyl)(methyl)amino)-N-phenylpropanamide (26)

26

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1-(furan-2-yl)-*N*-methylmethanamine **A26** (22.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **26** as a colorless oil (24.8 mg, 48% yield, 91% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 8.93 min, t_R (minor) = 10.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.65 – 7.61 (m, 2H), 7.423 – 7.416 (m, 1H), 7.36 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 6.34– 6.33 (m, 1H), 6.24 – 6.23 (m, 1H), 3.59 (q, *J* = 14.3 Hz, 2H), 3.38 (q, *J* = 7.0 Hz, 1H), 2.33 (s, 3H), 1.33 (d, *J* = 7.0 Hz, 3H).

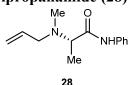
¹³C NMR (100 MHz, CDCl₃) δ 172.0, 151.8, 142.4, 138.1, 128.9, 123.8, 119.2, 110.2, 108.7, 62.8, 50.8, 38.5, 9.8.

HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂O₂ [M + H]⁺ 259.1441, found 259.1445.

(S)-2-(Methyl(2-(pyridin-2-yl)ethyl)amino)-*N*-phenylpropanamide (27)

27

According to **General Procedure** C with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), *N*-methyl-2-(pyridin-2-yl)ethan-1-amine dihydrochloride A27 (41.6 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (325.6 mg, 1.0 mmol, 5.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 27 as a colorless oil (38.8 mg, 69% yield, 94% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 19.90 min, *t*_R (minor) = 22.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.54 – 8.52 (m, 1H), 7.63 – 7.58 (m, 1H), 7.42 – 7.40 (m, 2H), 7.31 – 7.26 (m, 2H), 7.20 – 7.17 (m, 1H), 7.15 – 7.12 (m, 1H), 7.08 – 7.04 (m, 1H), 3.40 (q, J = 7.0 Hz, 1H), 3.04 – 2.94 (m, 4H), 2.31 (s, 3H), 1.28 (d, J = 7.0 Hz, 3H).

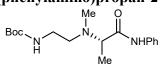
¹³C NMR (100 MHz, CDCl₃) δ 172.0, 160.0, 149.4, 138.0, 136.5, 128.8, 123.7, 123.2, 121.4, 119.3, 63.2, 54.4, 37.6, 36.5, 9.0.

HRMS (ESI) m/z calcd. for C₁₇H₂₂N₃O [M + H]⁺ 284.1757, found 284.1761.

(S)-2-(Allyl(methyl)amino)-*N*-phenylpropanamide (28)

According to General Procedure C with 2-chloro-N-phenylpropanamide E1 (54.9 mg, 0.30

mmol, 1.5 equiv.) and *N*-methylprop-2-en-1-amine **A28** (14.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **28** as a colorless oil (25.6 mg, 59% yield, 92% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 8.11 min, t_R (minor) = 9.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.58 – 7.55 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.06 (m, 1H), 5.92 – 5.82 (m, 1H), 5.29 – 5.19 (m, 2H), 3.38 (q, *J* = 7.0 Hz, 1H), 3.16 – 3.04 (m, 2H), 2.30 (s, 3H), 1.29 (d, *J* = 7.0 Hz, 3H).

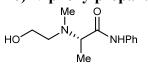
¹³C NMR (100 MHz, CDCl₃) δ 172.1, 138.0, 135.1, 129.0, 123.8, 119.2, 117.9, 62.8, 57.4, 38.2, 9.5.

HRMS (ESI) m/z calcd. for C₁₃H₁₉N₂O [M + H]⁺ 219.1492, found 219.1496.

tert-Butyl (S)-(2-(methyl(1-oxo-1-(phenylamino)propan-2-yl)amino)ethyl)carbamate (29)

29

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl (2-(methylamino)ethyl)carbamate **A29** (34.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **29** as a colorless oil (42.4 mg, 66% yield, 92% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH =95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 14.11 min, *t*_R (major) = 17.36 min.

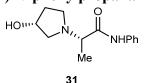
¹**H** NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.64 – 7.61 (m, 2H), 7.34 – 7.29 (m, 2H), 7.11 – 7.06 (m, 1H), 4.75 (s, 1H), 3.39 – 3.29 (m, 3H), 2.56 (t, *J* = 6.1 Hz, 2H), 2.35 (s, 3H), 1.43 (s, 9H), 1.29 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 156.0, 138.0, 128.9, 123.9, 119.3, 79.6, 64.0, 54.1, 38.5, 38.2, 28.3, 9.3.

HRMS (ESI) m/z calcd. for C₁₇H₂₈N₃O₃ [M + H]⁺ 322.2125, found 322.2130.

(S)-2-((2-Hydroxyethyl)(methyl)amino)-*N*-phenylpropanamide (30)

30

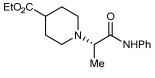

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(methylamino)ethan-1-ol **A30** (15.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **30** as a colorless oil (36.0 mg, 81% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.88 min, *t*_R (minor) = 12.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.63 – 7.60 (m, 2H), 7.32 – 7.28 (m, 2H), 7.09 – 7.05 (m, 1H), 3.82 – 3.72 (m, 2H), 3.49 (q, *J* = 7.0 Hz, 1H), 2.75 – 2.69 (m, 1H), 2.64 – 2.58 (m, 2H), 2.44 (s, 3H), 1.34 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 138.0, 128.8, 123.9, 119.5, 63.9, 59.1, 55.7, 38.5, 10.1. HRMS (ESI) m/z calcd. for C₁₂H₁₉N₂O₂ [M + H]⁺ 223.1441, found 223.1442.

(S)-2-((R)-3-Hydroxypyrrolidin-1-yl)-N-phenylpropanamide (31)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (*R*)-pyrrolidin-3-ol **A31** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 30/1) to yield the product **31** as a colorless oil (25.3 mg, 54% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 7.60 – 7.56 (m, 2H), 7.34 – 7.29 (m, 2H), 7.12 – 7.08 (m, 1H), 4.47 – 4.43 (m, 1H), 3.27 (q, *J* = 6.9 Hz, 1H), 3.12 – 3.06 (m, 1H), 2.89 – 2.78 (m, 3H), 2.65 – 2.59 (m, 1H), 2.24 – 2.15 (m, 1H), 1.90 – 1.82 (m, 1H), 1.41 (d, *J* = 6.9 Hz, 3H).

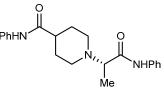
¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.8, 128.9, 124.2, 119.7, 70.6, 63.7, 59.3, 50.3, 34.4, 16.0.

HRMS (ESI) m/z calcd. for $C_{13}H_{19}N_2O_2$ [M + H]⁺ 235.1441, found 235.1441.

Ethyl (S)-1-(1-oxo-1-(phenylamino)propan-2-yl)piperidine-4-carboxylate (32)

32

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and ethyl piperidine-4-carboxylate **A32** (31.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **32** as a colorless oil (44.4 mg, 73% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 10.15 min, *t*_R (minor) = 14.84 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.58 – 7.54 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.23 (q, *J* = 7.0 Hz, 1H), 2.88 – 2.80 (m, 2H), 2.48 – 2.42 (m, 1H), 2.37 – 2.29 (m, 1H), 2.27 – 2.21 (m, 1H), 2.03 – 1.97 (m, 2H), 1.89 – 1.71 (m, 2H), 1.30 – 1.26 (m, 6H).

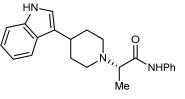
¹³C NMR (100 MHz, CDCl₃) δ 174.8, 171.8, 137.8, 128.9, 123.9, 119.2, 64.6, 60.4, 51.7, 47.2, 40.7, 28.9, 28.7, 14.2, 10.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}N_2O_3$ [M + H]⁺ 305.1860, found 305.1861.

(S)-1-(1-Oxo-1-(phenylamino)propan-2-yl)-N-phenylpiperidine-4-carboxamide (33)

33

According to **General procedure** C with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), *N*-phenylpiperidine-4-carboxamide **A33** (40.8 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **33** as a white solid (42.0 mg, 60% yield, 86% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 11.19 min, *t*_R (major) = 14.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.07 (s, 1H), 7.59 – 7.53 (m, 4H), 7.33 – 7.28 (m, 4H), 7.11 – 7.07 (m, 2H), 3.19 (q, J = 7.0 Hz, 1H), 2.90 – 2.80 (m, 2H), 2.37 – 2.22 (m, 2H), 2.15 – 2.08 (m, 1H), 2.02 – 1.83 (m, 4H), 1.26 (d, J = 7.0 Hz, 3H).

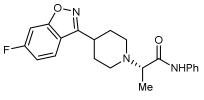
¹³C NMR (100 MHz, CDCl₃) δ 173.3, 172.0, 138.0, 137.5, 129.0, 128.8, 124.2, 124.1, 119.8, 119.3, 64.5, 52.1, 46.8, 43.6, 29.4, 29.2, 10.8.

HRMS (ESI) m/z calcd. for $C_{21}H_{26}N_3O_2$ [M + H]⁺ 352.2020, found 352.2022.

(S)-2-(4-(1*H*-Indol-3-yl)piperidin-1-yl)-*N*-phenylpropanamide (34)

34

According to **General procedure** C with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 3-(piperidin-4-yl)-1*H*-indole **A34** (40.0 mg, 0.20 mmol, 1.0 equiv.) and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **34** as a white solid (61.4 mg, 88% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 16.58 min, *t*_R (major) = 19.53 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 8.23 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.36 – 7.31 (m, 3H), 7.21 – 7.17 (m, 1H), 7.14 – 7.07 (m, 2H), 6.97 (d, *J* = 2.3 Hz, 1H), 3.29 (q, *J* = 7.0 Hz, 1H), 2.97 – 2.84 (m, 3H), 2.66 – 2.59 (m, 1H), 2.42 – 2.36 (m, 1H), 2.19 – 2.12 (m, 2H), 1.92 – 1.72 (m, 2H), 1.35 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 137.9, 136.4, 129.0, 126.4, 123.9, 121.9, 120.7, 119.6, 119.3, 119.03, 118.95, 111.3, 64.7, 53.4, 47.9, 33.5, 33.4, 33.2, 10.8.

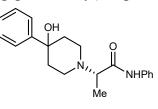
HRMS (ESI) m/z calcd. for $C_{22}H_{26}N_{3}O [M + H]^+ 348.2070$, found 348.2072.

(S)-2-(4-(6-Fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)-N-phenylpropanamide (35)

35

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 6-fluoro-3-(piperidin-4-yl)benzo[*d*]isoxazole **A35** (44.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **35** as a colorless oil (70.6 mg, 96% yield, 96% e.e.).

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.62 min, *t*_R (minor) = 17.57 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.68 – 7.64 (m, 1H), 7.60 – 7.57 (m, 2H), 7.35 – 7.31 (m, 2H), 7.27 (dd, J = 8.5, 2.1 Hz, 1H), 7.12 – 7.06 (m, 2H), 3.33 (q, J = 7.0 Hz, 1H), 3.15 – 2.99 (m, 3H), 2.69 – 2.63 (m, 1H), 2.47 – 2.41 (m, 1H), 2.25 – 2.02 (m, 4H), 1.37 (d, J = 7.0 Hz, 3H).

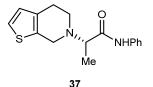
¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 164.1 (d, *J* = 249.3 Hz), 163.8 (d, *J* = 13.5 Hz), 160.7, 137.8, 129.0, 124.0, 122.1 (d, *J* = 11.0 Hz), 119.3, 117.3 (d, *J* = 1.2 Hz), 112.5 (d, *J* = 25.3 Hz), 97.5 (d, *J* = 26.6 Hz), 64.7, 52.4, 47.6, 33.9, 31.1, 30.9, 10.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -109.24 (s, 1F).

HRMS (ESI) m/z calcd. for C₂₁H₂₃FN₃O₂ [M + H]⁺ 368.1769, found 368.1775.

(S)-2-(4-(4-Chlorophenyl)-4-hydroxypiperidin-1-yl)-N-phenylpropanamide (36)

36


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 4-(4-chlorophenyl)piperidin-4-ol **A36** (42.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc /CH₃OH = 20/1) to yield the product **36** as a colorless oil (61.0 mg, 85% yield, 91% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.22 min, *t*_R (minor) = 11.27 min.

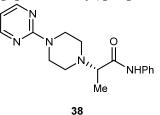
¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 7.56 – 7.53 (m, 2H), 7.48 – 7.44 (m, 2H), 7.35 – 7.30 (m, 4H), 7.12 – 7.08 (m, 1H), 3.28 (q, *J* = 7.0 Hz, 1H), 2.96 – 2.90 (m, 1H), 2.76 – 2.70 (m, 3H), 2.20 – 2.04 (m, 3H), 1.88 – 1.81 (m, 2H), 1.35 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 146.5, 137.8, 133.0, 129.0, 128.5, 126.1, 124.1, 119.4, 70.4, 64.6, 48.6, 43.4, 38.7, 38.6, 11.2.

HRMS (ESI) m/z calcd. for $C_{20}H_{24}CIN_2O_2 [M + H]^+$ 359.1521, found 359.1522.

(S)-2-(4,7-Dihydrothieno[2,3-c]pyridin-6(5H)-yl)-N-phenylpropanamide (37)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 4,5,6,7-tetrahydrothieno[2,3-*c*]pyridine **A37** (27.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **37** as a colorless oil (40.0 mg, 70% yield, 88% e.e.).

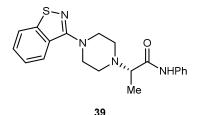

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (major) = 11.28 min, *t*_R (minor) = 13.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 7.57 – 7.54 (m, 2H), 7.34 – 7.29 (m, 2H), 7.14 (d, *J* = 5.1 Hz, 1H), 7.11 – 7.06 (m, 1H), 6.77 (d, *J* = 5.1 Hz, 1H), 3.86 – 3.82 (m, 1H), 3.71 – 3.67 (m, 1H), 3.44 (q, *J* = 7.0 Hz, 1H), 2.96 – 2.83 (m, 4H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.8, 133.5, 133.1, 129.0, 125.2, 124.0, 123.2, 119.3, 64.0, 49.8, 47.7, 26.0, 11.3.

HRMS (ESI) m/z calcd. for C₁₆H₁₉N₂OS [M + H]⁺ 287.1213, found 287.1217.

(S)-N-Phenyl-2-(4-(pyrimidin-2-yl)piperazin-1-yl)propanamide (38)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(piperazin-1-yl)pyrimidine **A38** (32.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **38** as a colorless oil (52.9 mg, 85% yield, 91% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.70 min, *t*_R (minor) = 22.77 min.

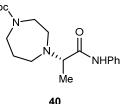
¹**H** NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.33 – 8.32 (m, 2H), 7.60 – 7.57 (m, 2H), 7.36 – 7.31 (m, 2H), 7.13 – 7.08 (m, 1H), 6.53 – 6.51 (m, 1H), 3.97 – 3.85 (m, 4H), 3.27 (q, *J* = 7.0 Hz, 1H), 2.73 – 2.68 (m, 2H), 2.65 – 2.59 (m, 2H), 1.33 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 161.5, 157.7, 137.8, 129.0, 124.0, 119.2, 110.2, 64.6, 49.7, 44.0, 11.2.

HRMS (ESI) m/z calcd. for $C_{17}H_{22}N_5O [M + H]^+ 312.1819$, found 312.1819.

(S)-2-(4-(Benzo[d]isothiazol-3-yl)piperazin-1-yl)-N-phenylpropanamide (39)

According to **General Procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 3-(piperazin-1-yl)benzo[*d*]isothiazole **A39** (43.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **39** as a colorless oil (57.9 mg, 79% yield, 90% e.e.).

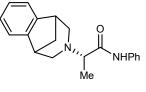

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 17.30 min, *t*_R (minor) = 22.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.92 – 7.89 (m, 1H), 7.83 – 7.81 (m, 1H), 7.59 – 7.57 (m, 2H), 7.50 – 7.46 (m, 1H), 7.39 – 7.30 (m, 3H), 7.12 – 7.08 (m, 1H), 3.67 – 3.56 (m, 4H), 3.32 (q, *J* = 7.0 Hz, 1H), 2.91 – 2.77 (m, 4H), 1.39 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 163.7, 152.7, 137.7, 129.0, 127.9, 127.6, 124.02, 124.00, 123.7, 120.6, 119.2, 64.6, 50.5, 49.6, 11.3.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}N_4OS [M + H]^+$ 367.1587, found 367.1588.

tert-Butyl (S)-4-(1-oxo-1-(phenylamino)propan-2-yl)-1,4-diazepane-1-carboxylate (40)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl 1,4-diazepane-1-carboxylate **A40** (40.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **40** as a colorless oil (52.1 mg, 75% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.25 min, *t*_R (minor) = 24.08 min.

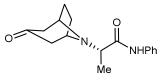
¹**H** NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.60 – 7.58 (m, 2H), 7.35 – 7.31 (m, 2H), 7.11 – 7.07 (m, 1H), 3.65 – 3.41 (m, 5H), 2.86 – 2.69 (m, 3H), 2.66 – 2.56 (m, 1H), 1.89 – 1.81 (m, 2H), 1.48 (d, J = 5.6 Hz, 9H), 1.31 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 155.6, 155.5, 137.8, 129.01, 128.96, 123.9, 119.2, 119.0, 79.6, 65.7, 65.3, 53.4, 53.2, 52.6, 51.6, 47.4, 46.8, 45.82, 45.78, 28.8, 28.6, 28.4, 9.6. HRMS (ESI) m/z calcd. for C₁₉H₃₀N₃O₃ [M + H]⁺ 348.2282, found 348.2283.

(2S)-N-Phenyl-2-(1,2,4,5-tetrahydro-3*H*-1,5-methanobenzo[*d*]azepin-3-yl)propanamide (41)

41

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 2,3,4,5-tetrahydro-1*H*-1,5-methanobenzo[*d*]azepine hydrochloride **A41** (39.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **41** as a colorless oil (51.5 mg, 84% yield, 93% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 11.88 min, *t*_R (major) = 13.96 min.

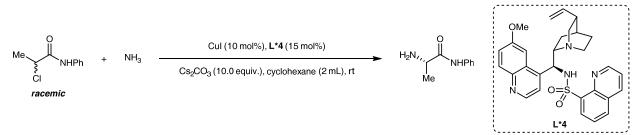
¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.32 –7.14 (m, 8H), 7.02 – 6.98 (m, 1H), 3.20 – 3.10 (m, 3H), 2.91 – 2.87 (m, 1H), 2.78 – 2.75 (m, 1H), 2.71 – 2.62 (m, 2H), 2.34 – 2.28 (m, 1H), 1.73 (d, J = 10.6 Hz, 1H), 1.27 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 146.0, 145.7, 137.8, 128.5, 126.94, 126.91, 123.4, 122.0, 121.8, 119.0, 62.8, 56.3, 50.0, 43.4, 41.2, 40.6, 10.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}N_2O [M + H]^+ 307.1805$, found 307.1805.

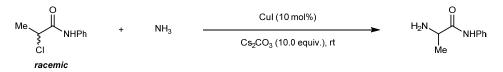
(2*S*)-2-(3-Oxo-8-azabicyclo[3.2.1]octan-8-yl)-*N*-phenylpropanamide (42)

42


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), nortropinone hydrochloride **A42** (32.2 mg, 0.20 mmol, 1.0 equiv.), and Cs_2CO_3 (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **42** as a colorless oil (35.9 mg, 66% yield, 94% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 21.72 min, *t*_R (major) = 24.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 7.58 – 7.55 (m, 2H), 7.36 – 7.32 (m, 2H), 7.14 – 7.10 (m, 1H), 3.76 – 3.73 (m, 1H), 3.65 – 3.62 (m, 1H), 3.32 (q, *J* = 6.8 Hz, 1H), 2.80 – 2.74 (m, 1H), 2.63 – 2.58 (m, 1H), 2.33 – 2.32 (m, 1H), 2.29 – 2.28 (m, 1H), 2.20 – 2.10 (m, 1H), 2.04 – 1.94 (m, 1H), 1.78 – 1.72 (m, 1H), 1.68 – 1.61 (m, 1H), 1.46 (d, *J* = 6.9 Hz, 3H).

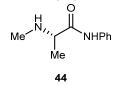

¹³C NMR (100 MHz, CDCl₃) δ 208.5, 172.5, 137.5, 129.0, 124.2, 119.4, 59.6, 58.1, 55.7, 48.2, 47.6, 28.8, 27.3, 18.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}N_2O_2$ [M + H]⁺ 273.1598, found 273.1598.

General procedure D:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (651.6 mg, 2.0 mmol, 10.0 equiv.), and anhydrous cyclohexane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl chloride (0.20 mmol, 1.0 equiv.), NH₃ (5.0 mL, 2.0 mmol, 10.0 equiv., 0.4 M in 1,4-dioxane) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (651.6 mg, 2.0 mmol, 10.0 equiv.), alkyl chloride (0.20 mmol, 1.0 equiv.), and NH₃ (5.0 mL, 2.0 mmol, 10.0 equiv., 0.4 M in 1,4-dioxane) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by preparative thin-layer chromatography on silica gel to afford the desired product.

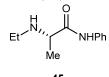

(S)-2-Amino-N-phenylpropanamide (43)

According to **General Procedure D** with 2-chloro-*N*-phenylpropanamide **E1** (36.6 mg, 0.20 mmol, 1.0 equiv.), ammonia **A43** (5.0 mL, 2.0 mmol, 10.0 equiv., 0.4 M in 1,4-dioxane) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 10/1) to yield the product **43** as a colorless oil (7.2 mg, 22% yield, 96% e.e.). **HPLC** analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 15.86 min, t_R (minor) = 24.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.60 – 7.58 (m, 2H), 7.33 – 7.29 (m, 2H), 7.10 – 7.07 (m, 1H), 3.60 (q, *J* = 7.0 Hz, 1H), 1.76 (s, 2H), 1.41 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.7, 137.8, 128.9, 123.9, 119.3, 51.1, 21.5. **HRMS** (ESI) m/z calcd. for C₉H₁₃N₂O $[M + H]^+$ 165.1022, found 165.1022.

(S)-2-(Methylamino)-N-phenylpropanamide (44)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), methylamine hydrochloride **A44** (13.4 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 4/1) to yield the product **44** as a colorless oil (21.7 mg, 61% yield, 92% e.e.).

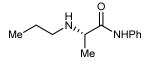

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 20.36 min, t_R (minor) = 23.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.63 – 7.60 (m, 2H), 7.35 – 7.30 (m, 2H), 7.13 – 7.08 (m, 1H), 3.38 (q, *J* = 7.0 Hz, 1H), 2.70 (s, 1H), 2.50 (s, 3H), 1.44 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 137.7, 129.0, 124.2, 119.5, 60.6, 34.9, 19.1.

HRMS (ESI) m/z calcd. for $C_{10}H_{15}N_2O [M + H]^+$ 179.1179, found 179.1178.

(S)-2-(Ethylamino)-N-phenylpropanamide (45)


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), ethylamine hydrochloride **A45** (16.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 4/1) to yield the product **45** as a colorless oil (27.3 mg, 71% yield, 96% e.e.).

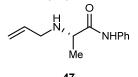
HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 16.84 min, t_R (minor) = 22.10 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.62 – 7.59 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 3.40 (q, *J* = 7.0 Hz, 1H), 2.82 – 2.64 (m, 2H), 2.45 (s, 1H), 1.42 (d, *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 137.7, 128.9, 124.0, 119.4, 58.6, 43.0, 19.5, 15.1. HRMS (ESI) m/z calcd. for C₁₁H₁₇N₂O [M + H]⁺ 193.1335, found 193.1335.

(S)-N-Phenyl-2-(propylamino)propanamide (46)

46

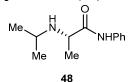

According to General Procedure B with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and propan-1-amine A46 (11.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the

reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **46** as a colorless oil (36.1 mg, 88% yield, 94% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.42 min, *t*_R (minor) = 11.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 7.63 – 7.59 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.39 (q, *J* = 7.0 Hz, 1H), 2.77 – 2.70 (m, 1H), 2.61 – 2.51 (m, 2H), 1.62 – 1.53 (m, 2H), 1.43 (d, *J* = 7.0 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 137.8, 129.0, 124.0, 119.3, 58.8, 50.4, 23.0, 19.4, 11.6. HRMS (ESI) m/z calcd. for C₁₂H₁₉N₂O [M + H]⁺ 207.1492, found 207.1491.

(S)-2-(Allylamino)-N-phenylpropanamide (47)

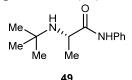

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and prop-2-en-1-amine **A47** (11.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/3) to yield the product **47** as a colorless oil (26.6 mg, 65% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.17 min, t_R (minor) = 6.99 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.60 – 7.57 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 5.95 – 5.85 (m, 1H), 5.27 – 5.14 (m, 2H), 3.34 – 3.28 (m, 3H), 1,64 (s, 1H), 1.40 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 137.8, 135.7, 129.0, 124.0, 119.4, 116.6, 58.2, 51.0, 19.7. HRMS (ESI) m/z calcd. For C₁₂H₁₇N₂O [M + H]⁺ 205.1335, found 205.1334.

(S)-2-(Isopropylamino)-N-phenylpropanamide (48)

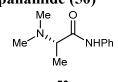

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), propan-2-amine **A48** (11.8 mg, 0.20 mmol, 1.0 equiv.), and **L*4** (15.4 mg, 0.03 mmol, 15 mol%) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **48** as a colorless oil (32.3 mg, 78% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 15.15 min, t_R (minor) = 19.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.60 – 7.57 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.31 (q, *J* = 7.0 Hz, 1H), 2.91 – 2.81 (m, 1H), 1.47 (s, 1H), 1.39 (d, *J* = 7.1 Hz, 3H), 1.12 (d, *J* = 6.2 Hz, 3H), 1.08 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 137.8, 128.9, 123.9, 119.2, 56.7, 48.7, 23.4, 23.0, 20.3. **HRMS** (ESI) m/z calcd. for C₁₂H₁₉N₂O [M + H]⁺ 207.1492, found 207.1492.

(S)-2-(*tert*-Butylamino)-*N*-phenylpropanamide (49)



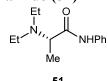
According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 2-methylpropan-2-amine **A49** (14.6 mg, 0.20 mmol, 1.0 equiv.), and **L*4** (15.4 mg, 0.03 mmol, 15 mol%) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **49** as a colorless oil (40.7 mg, 92% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.75 min, t_R (minor) = 11.99 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.60 – 7.56 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.06 (m, 1H), 3.37 (q, J = 7.1 Hz, 1H), 1.38 (d, J = 7.1 Hz, 3H), 1.30 (s, 1H), 1.12 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 137.8, 128.9, 123.8, 119.1, 52.6, 51.4, 29.1, 21.5. HRMS (ESI) m/z calcd. for C₁₃H₂₁N₂O [M + H]⁺ 221.1648, found 221.1647.

(S)-2-(Dimethylamino)-N-phenylpropanamide (50)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and dimethylamine hydrochloride **A50** (16.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **50** as a colorless oil (33.2 mg, 86% yield, 88% e.e.).


HPLC analysis: Chiralcel OJH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 11.98 min, *t*_R (major) = 13.94 min.

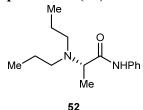
¹**H** NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 7.61 – 7.58 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.19 (q, J = 7.0 Hz, 1H), 2.34 (s, 6H), 1.30 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 138.0, 128.9, 123.9, 119.3, 65.0, 42.1, 11.0.

HRMS (ESI) m/z calcd. for $C_{11}H_{17}N_2O [M + H]^+$ 193.1335, found 193.1335.

(S)-2-(Diethylamino)-N-phenylpropanamide (51)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **51** as a colorless oil (35.7 mg, 81% yield, 90% e.e.).

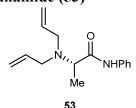

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R

 $(major) = 9.21 \text{ min}, t_{R} (minor) = 10.30 \text{ min}.$

¹**H** NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.58 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.48 (q, *J* = 7.0 Hz, 1H), 2.68 – 2.59 (m, 2H), 2.54 – 2.45 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 138.0, 129.0, 123.7, 119.0, 59.8, 44.3, 13.6, 9.0. HRMS (ESI) m/z calcd. for C₁₃H₂₁N₂O [M + H]⁺ 221.1648, found 221.1647.

(S)-2-(Dipropylamino)-N-phenylpropanamide (52)

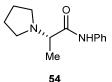

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and dipropylamine **A52** (20.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **52** as a colorless oil (35.8 mg, 72% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.01 min, t_R (minor) = 14.26 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 7.59 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.47 (q, *J* = 7.0 Hz, 1H), 2.49 – 2.38 (m, 4H), 1.62 – 1.43 (m, 4H), 1.27 (d, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 138.1, 129.0, 123.6, 118.8, 60.1, 52.5, 21.3, 11.9, 8.2. HRMS (ESI) m/z calcd. for C₁₅H₂₅N₂O [M + H]⁺ 249.1961, found 249.1959.

(S)-2-(Diallylamino)-N-phenylpropanamide (53)

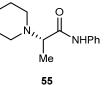

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and diallylamine **A53** (19.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **53** as a colorless oil (29.8 mg, 61% yield, 88% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.15 min, t_R (minor) = 11.99 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 7.57 – 7.53 (m, 2H), 7.34 – 7.29 (m, 2H), 7.11 – 7.06 (m, 1H), 5.91 – 5.81 (m, 2H), 5.30 – 5.20 (m, 4H), 3.61 (q, *J* = 7.0 Hz, 1H), 3.31 – 3.25 (m, 2H), 3.03 – 2.98 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 137.9, 135.3, 129.0, 123.8, 119.1, 117.9, 59.0, 53.3, 8.2. HRMS (ESI) m/z calcd. for C₁₅H₂₁N₂O [M + H]⁺ 245.1648, found 245.1647.

(S)-N-Phenyl-2-(pyrrolidin-1-yl)propanamide (54)

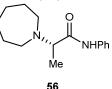

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and pyrrolidine **A54** (14.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **54** as a colorless oil (42.8 mg, 98% yield, 90% e.e.).

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 18.12 min, *t*_R (minor) = 19.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 7.59 – 7.56 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.07 (q, *J* = 7.0 Hz, 1H), 2.71 – 2.60 (m, 4H), 1.87 – 1.80 (m, 4H), 1.39 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 138.0, 128.9, 123.9, 119.4, 64.3, 51.2, 23.5, 16.6. HRMS (ESI) *m/z* calcd. for C₁₃H₁₉N₂O [M + H]⁺ 219.1492, found 219.1495.

(S)-N-Phenyl-2-(piperidin-1-yl)propanamide (55)

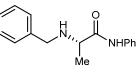

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and piperidine **A55** (17.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **55** as a colorless oil (37.1 mg, 80% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 14.58 min, *t*_R (minor) = 18.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.59 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.18 (q, *J* = 7.1 Hz, 1H), 2.60 – 2.54 (m, 2H), 2.49 – 2.45 (m, 2H), 1.72 – 1.57 (m, 4H), 1.52 – 1.45 (m, 2H), 1.28 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 138.0, 128.9, 123.7, 119.1, 64.9, 50.9, 26.6, 24.1, 10.4. HRMS (ESI) m/z calcd. for C₁₄H₂₁N₂O [M + H]⁺ 233.1648, found 233.1647.

(S)-2-(Azepan-1-yl)-N-phenylpropanamide (56)


According to General Procedure C with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and azepane A56 (19.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 56 as a colorless oil (40.3 mg, 82% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.44 min, *t*_R (minor) = 15.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.59 – 7.56 (m, 2H), 7.35 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.41 (q, *J* = 6.9 Hz, 1H), 2.75 – 2.62 (m, 4H), 1.78 – 1.66 (m, 8H), 1.30 (d, *J* = 6.9 Hz, 3H).

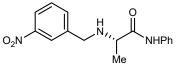
¹³C NMR (100 MHz, CDCl₃) δ 172.3, 138.0, 129.0, 123.7, 118.9, 65.7, 53.0, 29.3, 26.8, 9.4. HRMS (ESI) *m/z* calcd. for C₁₅H₂₃N₂O [M + H]⁺ 247.1805, found 247.1808.

(S)-N-Phenyl-2-((4-(trifluoromethyl)benzyl)amino)propanamide (57)

57

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (4-(trifluoromethyl)phenyl)methanamine **A57** (35.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **57** as a colorless oil (49.6 mg, 77% yield, 95% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 7.50 min, *t*_R (minor) = 10.83 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.62 – 7.60 (m, 2H), 7.56 – 7.54 (m, 2H), 7.46 – 7.44 (m, 2H), 7.34 – 7.30 (m, 2H), 7.12 – 7.09 (m, 1H), 3.88 (s, 2H), 3.36 (q, *J* = 7.0 Hz, 1H), 1.95 (s, 1H), 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 172.6, 143.2, 137.6, 129.8 (q, *J* = 32.2 Hz), 129.0, 128.2, 125.7 (q, *J* = 3.8 Hz), 124.2, 124.0 (q, *J* = 270.4 Hz), 119.3, 58.6, 52.2, 19.7.

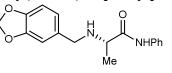
¹⁹F NMR (376 MHz, CDCl₃) δ -62.50 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{17}H_{18}F_{3}N_{2}O [M + H]^{+} 323.1366$, found 323.1361.

(S)-2-((3-Nitrobenzyl)amino)-N-phenylpropanamide (58)

58

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), (3-nitrophenyl)methanamine hydrochloride **A58** (37.6 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **58** as a white solid (41.3 mg, 69% yield, 95% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 28.26 min, *t*_R (minor) = 30.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.26 – 8.25 (m, 1H), 8.15 – 8.12 (m, 1H), 7.66 – 7.64 (m, 1H), 7.58 – 7.55 (m, 2H), 7.54 – 7.50 (m, 1H), 7.35 – 7.30 (m, 2H), 7.13 – 7.09 (m, 1H), 3.99 – 3.90 (m, 2H), 3.37 (q, *J* = 7.0 Hz, 1H), 1.88 (s, 1H), 1.45 (d, *J* = 6.9 Hz, 3H).

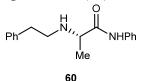
¹³C NMR (100 MHz, CDCl₃) δ 172.4, 148.5, 141.3, 137.5, 134.1, 129.6, 129.0, 124.2, 122.7, 122.5, 119.3, 58.6, 51.8, 19.6.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}N_3O_3 [M + H]^+ 300.1343$, found 300.1339.

(S)-2-((Benzo[d][1,3]dioxol-5-ylmethyl)amino)-N-phenylpropanamide (59)

59

According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and benzo[d][1,3]dioxol-5-ylmethanamine **A59** (30.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **59** as a white solid (49.5 mg, 83% yield, 93% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 19.76 min, *t*_R (minor) = 34.00 min.

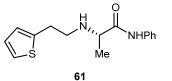
¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.58 – 7.56 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.08(m, 1H), 6.81 (s, 1H), 6.76 (s, 2H), 5.93 – 5.91 (m, 2H), 3.72 (s, 2H), 3.36 (q, *J* = 7.0 Hz, 1H), 2.11 (s, 1H), 1.40 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 147.9, 146.9, 137.7, 132.8, 128.9, 124.0, 121.4, 119.3, 108.5, 108.3, 101.0, 58.2, 52.5, 19.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}N_2O_3$ [M + H]⁺ 299.1390, found 299.1387.

(S)-2-(Phenethylamino)-N-phenylpropanamide (60)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 2-phenylethan-1-amine **A60** (24.2 mg, 0.20 mmol, 1.0 equiv.), anhydrous NMP (2.8 mL) and anhydrous EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **60** as a colorless oil (38.1 mg, 71% yield, 91% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.96 min, t_R (minor) = 19.20 min.

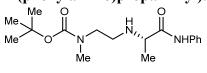
¹**H** NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 7.39 – 7.35 (m, 2H), 7.34 – 7.20 (m, 7H), 7.08 – 7.04 (m, 1H), 3.25 (q, *J* = 7.0 Hz, 1H), 3.04 – 2.98 (m, 1H), 2.87 – 2.73 (m, 3H), 1.47 (s, 1H), 1.34 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 139.6, 137.7, 128.762, 128.757, 128.6, 126.3, 123.8, 119.2, 58.7, 49.6, 36.4, 19.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M + H]^+ 269.1648$, found 269.1647.

(S)-N-Phenyl-2-((2-(thiophen-2-yl)ethyl)amino)propenamide (61)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-(thiophen-2-yl)ethan-1-amine **A61** (25.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **61** as a colorless oil (25.0 mg, 46% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 14.36 min, *t*_R (minor) = 20.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.47 – 7.44 (m, 2H), 7.31 – 7.26 (m, 2H), 7.19 – 7.18 (m, 1H), 7.09 – 7.05 (m, 1H), 6.98 – 6.96 (m, 1H), 6.87 – 6.85 (m, 1H), 3.28 (q, *J* = 7.0 Hz, 1H), 3.10 – 2.95 (m, 3H), 2.89 – 2.82 (m, 1H), 1.58 (s, 1H), 1.37 (d, *J* = 7.0 Hz, 3H).

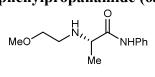
¹³C NMR (100 MHz, CDCl₃) δ 173.0, 141.9, 137.7, 128.8, 127.0, 125.4, 123.9, 123.8, 119.3, 58.7, 49.7, 30.5, 19.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂OS [M + H]⁺ 275.1213, found 275.1208.

tert-Butyl (S)-methyl(2-((1-oxo-1-(phenylamino)propan-2-yl)amino)ethyl)carbamate (62)

62

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl (2-aminoethyl)(methyl)carbamate **A62** (34.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **62** as a colorless oil (48.2 mg, 75% yield, 94% e.e.).

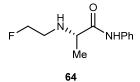

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 24.36 min, *t*_R (major) = 26.00 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.35 (d, J = 40.3 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.49 – 3.26 (m, 3H), 2.90 (s, 3H), 2.86 – 2.74 (m, 2H), 1.75 (s, 1H), 1.47 (s, 9H), 1.39 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 156.2, 137.8, 128.9, 123.9, 119.2, 79.8, 58.8, 48.4, 46.5, 34.6, 28.4, 19.7.

HRMS (ESI) m/z calcd. For $C_{17}H_{28}N_3O_3 [M + H]^+$ 322.2125, found 322.2122.

(S)-2-((2-Methoxyethyl)amino)-*N*-phenylpropanamide (63)


63

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-methoxyethan-1-amine **A63** (15.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **63** as a colorless oil (33.8 mg, 76% yield, 89% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.88 min, *t*_R (minor) = 10.48 min.

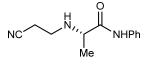
¹**H** NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.64 – 7.61 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.57 – 3.44 (m, 3H), 3.39 (s, 3H), 3.01 – 2.96 (m, 1H), 2.83 – 2.78 (m, 1H), 2.30 (s, 1H), 1.45 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 137.9, 128.9, 124.0, 119.4, 71.0, 58.9, 58.6, 47.9, 19.4. HRMS (ESI) m/z calcd. for C₁₂H₁₉N₂O₂ [M + H]⁺ 223.1441, found 223.1439.

(S)-2-((2-Fluoroethyl)amino)-N-phenylpropanamide (64)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 2-fluoroethan-1-amine hydrochloride **A64** (19.8 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **64** as a colorless oil (26.9 mg, 64% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.44 min, *t*_R (minor) = 12.87 min.

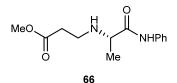

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.61 – 7.57 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 4.65 – 4.57 (m, 1H), 4.53 – 4.45 (m, 1H), 3.33 (q, *J* = 7.0 Hz, 1H), 3.14 – 3.01 (m, 1H), 2.94 – 2.81 (m, 1H), 1.67 (s, 1H), 1.43 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 137.7, 129.0, 124.1, 119.4, 82.9 (d, *J* = 165.6 Hz), 58.6, 48.5 (d, *J* = 19.3 Hz), 19.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -223.98 (s, 1F).

HRMS (ESI) m/z calcd. For $C_{11}H_{16}FN_2O[M + H]^+ 211.1241$, found 211.1239.

(S)-2-((2-Cyanoethyl)amino)-N-phenylpropanamide (65)


65

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 3-aminopropanenitrile **A65** (14.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **65** as a colorless oil (21.7 mg, 50% yield, 90% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.89 min, *t*_R (minor) = 12.51 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 7.68 – 7.64 (m, 2H), 7.35 – 7.30 (m, 2H), 7.13 – 7.08 (m, 1H), 3.32 (q, *J* = 7.0 Hz, 1H), 3.09 – 3.03 (m, 1H), 2.89 – 2.82 (m, 1H), 2.61 – 2.49 (m, 2H), 1.65 (s, 1H), 1.44 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 137.6, 129.0, 124.2, 119.4, 118.6, 58.5, 43.9, 19.6, 19.2. **HRMS** (ESI) m/z calcd. For C₁₂H₁₆N₃O [M + H]⁺ 218.1288, found 218.1285.

Methyl (S)-3-((1-oxo-1-(phenylamino)propan-2-yl)amino)propanoate (66)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), methyl 3-aminopropionate hydrochloride **A66** (27.8 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **66** as a colorless oil (30.3 mg, 61% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.18 min, *t*_R (minor) = 18.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.70 – 7.66 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.73 (s, 3H), 3.28 (q, J = 7.0 Hz, 1H), 3.00 – 2.86 (m, 2H), 2.59 – 2.47 (m, 2H), 1.65 (s, 1H), 1.40 (d, J = 7.0 Hz, 3H).

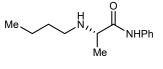
¹³C NMR (100 MHz, CDCl₃) δ 173.0, 172.9, 138.1, 128.9, 124.0, 119.6, 58.8, 51.8, 43.7, 34.2, 19.8.

HRMS (ESI) m/z calcd. For $C_{13}H_{19}N_2O_3 [M + H]^+ 251.1390$, found 251.1387.

(S)-2-((3-Morpholino-3-oxopropyl)amino)-N-phenylpropanamide (67)

67

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 3-amino-1-morpholinopropan-1-one hydrochloride **A67** (38.8 mg, 0.20 mmol, 1.0 equiv.), and Cs_2CO_3 (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **67** as a colorless oil (31.1 mg, 51% yield, 95% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (major) = 36.88 min, *t*_R (minor) = 42.92 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 7.73 – 7.70 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.06 (m, 1H), 3.73 – 3.60 (m, 6H), 3.46 – 3.43 (m, 2H), 3.36 (q, *J* = 7.0 Hz, 1H), 3.06 – 3.00 (m, 1H), 2.95 – 2.90 (m, 1H), 2.58 – 2.46 (m, 2H), 2.29 (s, 1H), 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.1, 138.2, 128.8, 123.8, 119.5, 66.8, 66.4, 58.8, 45.6, 43.5, 41.9, 32.4, 19.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{24}N_3O_3 [M + H]^+$ 306.1812, found 306.1810.

(S)-2-(Butylamino)-*N*-phenylpropanamide (68)

68

According to General Procedure B with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and butan-1-amine A68 (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction

mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **68** as a colorless oil (30.8 mg, 70% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 5.86 min, *t*_R (minor) = 6.67 min.

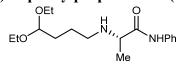
¹**H** NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.64 – 7.61 (m, 2H), 7.34 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.64 – 3.51 (m, 2H), 2.82 – 2.75 (m, 1H), 2.70 – 2.63 (m, 1H), 1.61 – 1.53 (m, 2H), 1.47 (d, J = 7.0 Hz, 3H), 1.44 – 1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.8, 128.9, 124.1, 119.4, 58.7, 48.0, 31.4, 20.2, 19.0, 13.8

HRMS (ESI) m/z calcd. For $C_{13}H_{21}N_2O [M + H]^+ 221.1648$, found 221.1646.

(S)-2-((3-Chloropropyl)amino)-N-phenylpropanamide (69)

69


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 3-chloropropan-1-amine hydrochloride **A69** (25.8 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **69** as a colorless oil (25.0 mg, 52% yield, 97% e.e.).

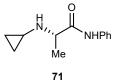
HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 6.74 min, *t*_R (minor) = 8.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.62 – 7.58 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 3.74 – 3.63 (m, 2H), 3.28 (q, *J* = 7.0 Hz, 1H), 2.91 – 2.77 (m, 2H), 2.02 – 1.96 (m, 2H), 1.52 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 137.7, 129.0, 124.0, 119.4, 59.1, 45.6, 42.5, 32.5, 19.8. HRMS (ESI) m/z calcd. For C₁₂H₁₈ClN₂O [M + H]⁺ 241.1102, found 241.1098.

(S)-2-((4,4-Diethoxybutyl)amino)-*N*-phenylpropanamide (70)

70

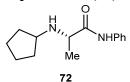

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 4,4-diethoxybutan-1-amine **A70** (32.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **70** as a colorless oil (47.6 mg, 77% yield, 91% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.28 min, *t*_R (minor) = 10.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.61 – 7.57 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 4.49 (t, *J* = 5.4 Hz, 1H), 3.69 – 3.61 (m, 2H), 3.53 – 3.44 (m, 2H), 3.25 (q, *J* = 7.0 Hz, 1H), 2.73 (dt, *J* = 11.5, 6.5 Hz, 1H), 2.60 (dt, *J* = 11.7, 7.2 Hz, 1H), 1.76 – 1.58 (m, 5H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.20 (td, *J* = 7.1, 3.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 137.8, 128.9, 123.9, 119.2, 102.6, 61.25, 61.21, 59.0, 48.5,

31.3, 25.4, 19.7, 15.3, 15.2. **HRMS** (ESI) m/z calcd. for C₁₇H₂₉N₂O₃ [M + H]⁺ 309.2173, found 309.2171.

(S)-2-(Cyclopropylamino)-N-phenylpropanamide (71)


According to General Procedure B with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and cyclopropanamine A71 (11.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product 71 as a colorless oil (26.1 mg, 64% yield, 91% e.e.).

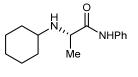
HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 6.11 min, *t*_R (minor) = 7.10 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 7.58 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 3.44 (q, *J* = 7.0 Hz, 1H), 2.30 – 2.25 (m, 1H), 1.96 (s, 1H), 1.42 (d, *J* = 7.0 Hz, 3H), 0.59 – 0.38 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 173.4, 137.7, 129.0, 124.0, 119.3, 59.2, 30.2, 19.4, 6.5, 6.2. HRMS (ESI) m/z calcd. for C₁₂H₁₇N₂O [M + H]⁺ 205.1335, found 205.1333.

(S)-2-(Cyclopentylamino)-N-phenylpropanamide (72)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), cyclopentanamine A72 (17.0 mg, 0.20 mmol, 1.0 equiv.), and L*2 (14.8 mg, 0.03 mmol, 15 mol%) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product 72 as a colorless oil (37.4 mg, 81% yield, 95% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 22.18 min, *t*_R (minor) = 26.53 min.

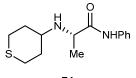
¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.61 – 7.58 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.30 (q, *J* = 7.0 Hz, 1H), 3.17 – 3.11 (m, 1H), 1.95 – 1.87 (m, 1H), 1.83 – 1.64 (m, 3H), 1.63 – 1.49 (m, 2H), 1.42 – 1.29 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 137.8, 128.9, 123.8, 119.2, 59.4, 57.7, 33.2, 33.0, 23.6, 23.5, 20.1.

HRMS (ESI) m/z calcd. for $C_{14}H_{21}N_2O [M + H]^+ 233.1648$, found 233.1646.

(S)-2-(Cyclohexylamino)-N-phenylpropanamide (73)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), cyclohexanamine A73 (19.8 mg, 0.20 mmol, 1.0 equiv.), L*2 (14.8 mg, 0.03 mmol, 15 mol%), anhydrous NMP (2.8 mL) and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product 73 as a colorless oil (26.8 mg, 54% yield, 91% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.64 min, t_R (minor) = 14.01 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.61 – 7.59 (m, 2H), 7.35 – 7.31 (m, 2H), 7.11 – 7.07 (m, 1H), 3.35 (q, *J* = 7.0 Hz, 1H), 2.49 – 2.42 (m, 1H), 1.96 – 1.92 (m, 1H), 1.89 – 1.84 (m, 1H), 1.76 – 1.68 (m, 2H), 1.63 – 1.59 (m, 1H), 1.51 (s, 1H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.31 – 1.24 (m, 2H), 1.17 – 1.04 (m, 3H).

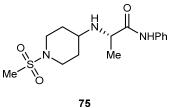
¹³C NMR (100 MHz, CDCl₃) δ 174.0, 137.9, 129.0, 123.8, 119.2, 56.6, 56.5, 34.3, 33.8, 25.8, 24.983, 24.979, 20.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{23}N_2O [M + H]^+ 247.1805$, found 247.1804.

(S)-N-Phenyl-2-((tetrahydro-2H-thiopyran-4-yl)amino)propanamide (74)

74

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), tetrahydro-2*H*-thiopyran-4-amine hydrochloride A74 (30.6 mg, 0.20 mmol, 1.0 equiv.), L*2 (14.8 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product 74 as a yellowish oil (23.9 mg, 45% yield, 95% e.e.).


HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 11.57 min, *t*_R (minor) = 15.67 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.60 – 7.56 (m, 2H), 7.36 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.35 (q, *J* = 7.0 Hz, 1H), 2.67 – 2.62 (m, 4H), 2.51 – 2.43 (m, 1H), 2.27 – 2.13 (m, 2H), 1.58 – 1.48 (m, 2H), 1.43 – 1.38 (m, 4H).

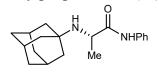
¹³C NMR (100 MHz, CDCl₃) δ 173.6, 137.6, 129.0, 124.0, 119.2, 56.4, 56.0, 35.4, 34.9, 27.7, 20.4.

HRMS (ESI) m/z calcd. for $C_{14}H_{21}N_2OS [M + H]^+$ 265.1369, found 265.1368.

(S)-2-((1-(Methylsulfonyl)piperidin-4-yl)amino)-N-phenylpropanamide (75)

According to General Procedure B with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), 1-(methylsulfonyl)piperidin-4-amine A75 (35.6 mg, 0.20 mmol, 1.0 equiv.), L*2 (14.8 mg, 0.03 mmol, 15 mol%), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h,

the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **75** as a yellowish oil (22.7 mg, 35% yield, 96% e.e.).


HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 20.75 min, t_R (minor) = 23.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 7.59 – 7.56 (m, 2H), 7.36 – 7.31 (m, 2H), 7.13 – 7.09 (m, 1H), 3.82 – 3.72 (m, 2H), 3.37 (q, *J* = 7.0 Hz, 1H), 2.76 (s, 3H), 2.73 – 2.66 (m, 2H), 2.63 – 2.56 (m, 1H), 2.08 – 2.02 (m, 1H), 1.97 – 1.91 (m, 1H), 1.57 – 1.46 (m, 3H), 1.40 (d, *J* = 7.0 Hz, 3H).

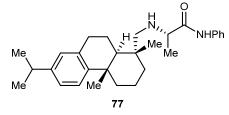
¹³**C NMR** (100 MHz, CDCl₃) δ 173.3, 137.5, 129.0, 124.1, 119.2, 56.6, 54.1, 44.92, 44.89, 34.8, 32.8, 32.2, 20.3.

HRMS (ESI) m/z calcd. for $C_{15}H_{24}N_3O_3S [M + H]^+ 326.1533$, found 326.1533.

(S)-2-(Adamantan-1-ylamino)-N-phenylpropanamide (76)

76

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), amantadine A76 (30.2 mg, 0.20 mmol, 1.0 equiv.), L*4 (15.4 mg, 0.03 mmol, 15 mol%), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 76 as a colorless oil (50.0 mg, 84% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 11.50 min, *t*_R (minor) = 16.23 min.

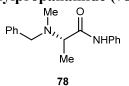
¹**H** NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.61 – 7.58 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.06 (m, 1H), 3.51 (q, *J* = 7.1 Hz, 1H), 2.07 – 2.04 (m, 3H), 1.71 – 1.63 (m, 6H), 1.60 – 1.54 (m, 6H), 1.36 (d, *J* = 7.1 Hz, 3H), 1.30 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 137.8, 128.9, 123.8, 119.0, 51.5, 50.5, 42.9, 36.4, 29.3, 21.6.

HRMS (ESI) m/z calcd. for $C_{19}H_{27}N_2O [M + H]^+$ 299.2118, found 299.2115.

(S)-2-((((1R,4aS,10aR)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1-yl)methyl)amino)-N-phenylpropanamide (77)

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), dehydroabietylamine A77 (57.0 mg, 0.20 mmol, 1.0 equiv.), L*4 (15.4 mg, 0.03 mmol, 15 mol%), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 77 as a white solid (61.6 mg, 71% yield, >20:1 d.r.). The diastereomeric ratio

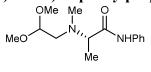

was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 7.54 – 7.50 (m, 2H), 7.34 – 7.29 (m, 2H), 7.19 – 7.17 (m, 1H), 7.11 – 7.07 (m, 1H), 7.02 – 6.99 (m, 1H), 6.88 (d, *J* = 2.0 Hz, 1H), 3.19 (q, *J* = 7.0 Hz, 1H), 2.95 – 2.78 (m, 3H), 2.54 – 2.43 (m, 2H), 2.34 – 2.29 (m, 1H), 1.88 – 1.69 (m, 5H), 1.58 – 1.53 (m, 1H), 1.46 – 1.33 (m, 5H), 1.24 (s, 3H), 1.22 (s, 6H), 0.95 (s, 3H), 0.90 – 0.79 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 147.4, 145.7, 137.8, 134.4, 129.0, 126.8, 124.0, 123.94, 123.88, 119.2, 60.5, 59.8, 45.2, 38.5, 37.4, 36.9, 36.7, 33.4, 29.9, 25.1, 24.0, 19.7, 19.4, 18.9, 18.7.

HRMS (ESI) m/z calcd. for C₂₉H₄₁N₂O $[M + H]^+$ 433.3213, found 433.3213.

(S)-2-(Benzyl(methyl)amino)-N-phenylpropanamide (78)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *N*-methyl-1-benzylamine **A78** (24.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **78** as a colorless oil (46.3 mg, 86% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.04 min, t_R (minor) = 10.95 min.

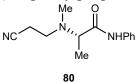
¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.58 – 7.56 (m, 2H), 7.39 – 7.27 (m, 7H), 7.11 – 7.07 (m, 1H), 3.70 – 3.56 (m, 2H), 3.41 (q, *J* = 7.0 Hz, 1H), 2.28 (s, 3H), 1.34 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 172.0, 138.3, 138.0, 129.0, 128.65, 128.62, 127.5, 123.9, 119.2, 62.6, 59.1, 38.0, 8.9.

HRMS (ESI) m/z calcd. for C₁₇H₂₁N₂O [M + H]⁺ 269.1648, found 269.1651.

(S)-2-((2,2-Dimethoxyethyl)(methyl)amino)-*N*-phenylpropanamide (79)

79

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2,2-dimethoxy-*N*-methylethan-1-amine **A79** (23.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **79** as a colorless oil (30.7 mg, 58% yield, 91% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.88 min, t_R (minor) = 11.57 min.

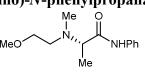
¹**H** NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.62 – 7.59 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.06 (m, 1H), 4.56 – 4.53 (m, 1H), 3.44 (s, 3H), 3.39 – 3.34 (m, 4H), 2.67 – 2.62 (m, 1H), 2.57 – 2.52 (m, 1H), 2.42 (s, 3H), 1.30 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 138.3, 128.8, 123.7, 119.3, 102.6, 64.2, 55.4, 54.2, 53.6, 40.1, 9.4.

HRMS (ESI) m/z calcd. for C₁₄H₂₃N₂O₃ [M + H]⁺ 267.1703, found 267.1707.

(S)-2-((2-Cyanoethyl)(methyl)amino)-*N*-phenylpropanamide (80)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 3-(methylamino)propanenitrile **A80** (16.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **80** as a colorless oil (23.6 mg, 51% yield, 93% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 22.25 min, *t*_R (minor) = 29.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.69 – 7.65 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.06 (m, 1H), 3.41 (q, *J* = 7.0 Hz, 1H), 2.83 – 2.73 (m, 2H), 2.61 (t, *J* = 6.4 Hz, 2H), 2.36 (s, 3H), 1.32 (d, *J* = 7.0 Hz, 3H).

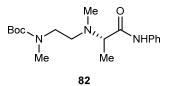
¹³C NMR (100 MHz, CDCl₃) δ 171.0, 137.9, 128.9, 123.9, 119.3, 118.5, 63.8, 49.5, 37.4, 17.4, 9.4.

HRMS (ESI) m/z calcd. for $C_{13}H_{18}N_{3}O [M + H]^+ 232.1444$, found 232.1445.

(S)-2-((2-Methoxyethyl)(methyl)amino)-*N*-phenylpropanamide (81)

81

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2-methoxy-*N*-methylethan-1-amine **A81** (17.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **81** as a colorless oil (24.6 mg, 52% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.55 min, t_R (minor) = 9.38 min.

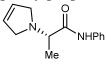
¹**H** NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.63 – 7.61 (m, 2H), 7.33 – 7.29 (m, 2H), 7.09 – 7.05 (m, 1H), 3.58 – 3.52 (m, 1H), 3.49 – 3.45 (m, 1H), 3.41 (s, 3H), 3.37 (q, *J* = 7.0 Hz, 1H), 2.74 – 2.68 (m, 1H), 2.57 – 2.51 (m, 1H), 2.40 (s, 3H), 1.31 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 138.4, 128.8, 123.6, 119.2, 69.8, 63.9, 58.9, 53.2, 39.0, 9.6.

HRMS (ESI) m/z calcd. for $C_{13}H_{21}N_2O_2$ [M + H]⁺ 237.1598, found 237.1598.

tert-Butyl (S)-methyl(2-(methyl(1-oxo-1-(phenylamino)propan-2-yl)amino)ethyl)carbamate (82)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl methyl(2-(methylamino)ethyl)carbamate **A82** (37.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **82** as a colorless oil (36.9 mg, 55% yield, 91% e.e.).


HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH =80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 9.36 min, *t*_R (major) = 11.74 min.

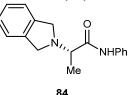
¹**H** NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 93.2 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.33 – 7.29 (m, 2H), 7.10 – 7.05 (m, 1H), 3.45 – 3.32 (m, 3H), 2.87 (s, 3H), 2.66 – 2.53 (m, 2H), 2.36 (s, 3H), 1.43 (s, 9H), 1.29 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 156.0, 138.0, 128.8, 123.8, 119.2, 79.7, 64.0, 52.0, 46.7, 38.4, 34.4, 28.3, 9.2.

HRMS (ESI) m/z calcd. for C₁₈H₃₀N₃O₃ [M + H]⁺ 336.2282, found 336.2285.

(S)-2-(2,5-Dihydro-1*H*-pyrrol-1-yl)-*N*-phenylpropanamide (83)

83


According to **General Procedure** C with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 2,5-dihydro-1*H*-pyrrole **A83** (13.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **83** as a colorless oil (33.7 mg, 78% yield, 93% e.e.).

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 8.69 min, t_R (minor) = 10.00 min.

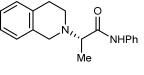
¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.60 – 7.58 (m, 2H), 7.34 – 7.30 (m, 2H), 7.12 – 7.07 (m, 1H), 5.83 (s, 2H), 3.72 – 3.64 (m, 2H), 3.58 – 3.51 (m, 2H), 3.36 (q, *J* = 6.9 Hz, 1H), 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.9, 128.9, 127.1, 124.1, 119.5, 63.8, 57.1, 16.1. HRMS (ESI) *m/z* calcd. for C₁₃H₁₇N₂O [M + H]⁺ 217.1335, found 217.1339.

(S)-2-(Isoindolin-2-yl)-N-phenylpropanamide (84)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), isoindoline hydrochloride **A84** (31.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column

chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **84** as a colorless oil (41.0 mg, 77% yield, 96% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.64 min, *t*_R (minor) = 16.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 7.60 – 7.56 (m, 2H), 7.34 – 7.29 (m, 2H), 7.27 – 7.22 (m, 4H), 7.12 – 7.07 (m, 1H), 4.15 – 4.10 (m, 2H), 4.03 – 3.99 (m, 2H), 3.43 (q, *J* = 6.9 Hz, 1H), 1.50 (d, *J* = 6.9 Hz, 3H).

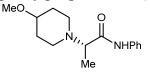
¹³C NMR (100 MHz, CDCl₃) δ 172.3, 139.2, 137.9, 129.0, 127.1, 124.0, 122.4, 119.4, 64.1, 56.4, 16.5.

HRMS (ESI) m/z calcd. for C₁₇H₁₉N₂O [M + H]⁺ 267.1492, found 267.1494.

(S)-2-(3,4-Dihydroisoquinolin-2(1*H*)-yl)-*N*-phenylpropanamide (85)

85

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1,2,3,4-tetrahydroisoquinoline **A85** (26.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **85** as a colorless oil (43.9 mg, 78% yield, 90% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 9.54 min, t_R (minor) = 11.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.56 – 7.53 (m, 2H), 7.33 – 7.28 (m, 2H), 7.21 – 7.14 (m, 3H), 7.10 – 7.05 (m, 2H), 3.94 – 3.90 (m, 1H), 3.78 – 3.75 (m, 1H), 3.42 (q, *J* = 7.0 Hz, 1H), 2.98 – 2.95 (m, 2H), 2.89 – 2.77 (m, 2H), 1.42 (d, *J* = 7.0 Hz, 3H).

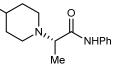
¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.8, 134.3, 133.8, 128.9, 128.8, 126.6, 126.4, 125.9, 123.9, 119.3, 64.2, 52.6, 47.6, 29.7, 11.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₁N₂O [M + H]⁺ 281.1648, found 281.1652.

(S)-2-(4-Methoxypiperidin-1-yl)-*N*-phenylpropanamide (86)

86

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 4-methoxypiperidine **A86** (23.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **86** as a colorless oil (48.0 mg, 92% yield, 94% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 19.52 min, *t*_R (major) = 21.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.58 – 7.55 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.36 (s, 3H), 3.30 – 3.23 (m, 2H), 2.84 – 2.76 (m, 2H), 2.51 – 2.45 (m, 1H), 2.36 – 2.31 (m, 1H), 2.04 – 1.96 (m, 2H), 1.73 – 1.58 (m, 2H), 1.31 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.9, 129.0, 123.9, 119.1, 75.6, 64.4, 55.6, 48.6, 46.3, 31.4, 31.3, 10.9. HRMS (ESI) *m/z* calcd. for C₁₅H₂₃N₂O₂ [M + H]⁺ 263.1754, found 263.1757.

(S)-2-(4-Hydroxypiperidin-1-yl)-*N*-phenylpropanamide (87)

HO.

87

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and piperidin-4-ol **A87** (20.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **87** as a colorless oil (28.4 mg, 57% yield, 92% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 33.62 min, *t*_R (major) = 38.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.58 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 3.81 – 3.73 (m, 1H), 3.27 (q, *J* = 7.0 Hz, 1H), 2.86 – 2.79 (m, 2H), 2.54 – 2.48 (m, 1H), 2.38 – 2.32 (m, 1H), 2.04 – 1.94 (m, 3H), 1.74 – 1.57 (m, 2H), 1.31 (d, *J* = 7.1 Hz, 3H).

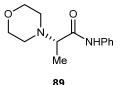
¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.8, 129.0, 124.0, 119.2, 67.2, 64.4, 48.8, 46.1, 34.9, 34.7, 10.9.

HRMS (ESI) m/z calcd. for C₁₄H₂₁N₂O₂ [M + H]⁺ 249.1598, found 249.1601.

(S)-N-Phenyl-2-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)propanamide (88)

88

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1,4-dioxa-8-azaspiro[4.5]decane **A88** (28.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **88** as a colorless oil (52.6 mg, 91% yield, 93% e.e.).

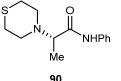

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.76 min, *t*_R (minor) = 23.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.58 – 7.54 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.97 (s, 4H), 3.28 (q, *J* = 7.0 Hz, 1H), 2.75 – 2.60 (m, 4H), 1.87 – 1.75 (m, 4H), 1.31 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.9, 129.0, 123.8, 119.1, 106.5, 64.3, 64.1, 47.9, 35.4, 10.8.

HRMS (ESI) m/z calcd. for C₁₆H₂₃N₂O₃ [M + H]⁺ 291.1703, found 291.1706.

(S)-2-Morpholino-N-phenylpropanamide (89)

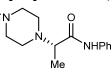

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **89** as a colorless oil (46.3 mg, 99% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 13.55 min, *t*_R (minor) = 16.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.57 – 7.54 (m, 2H), 7.35 – 7.31 (m, 2H), 7.13 – 7.08 (m, 1H), 3.83 – 3.74 (m, 4H), 3.17 (q, *J* = 7.1 Hz, 1H), 2.67 – 2.54 (m, 4H), 1.33 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 137.7, 129.0, 124.1, 119.2, 67.2, 65.0, 50.3, 11.7. HRMS (ESI) *m/z* calcd. for C₁₃H₁₉N₂O₂ [M + H]⁺ 235.1441, found 235.1444.

(S)-N-Phenyl-2-thiomorpholinopropanamide (90)

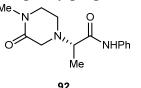

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and thiomorpholine **A90** (20.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **90** as a colorless oil (33.1 mg, 66% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 15.23 min, *t*_R (minor) = 16.54 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 7.57 – 7.54 (m, 2H), 7.36 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.28 (q, *J* = 7.0 Hz, 1H), 2.93 – 2.88 (m, 2H), 2.84 – 2.69 (m, 6H), 1.30 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 137.7, 129.0, 124.0, 119.1, 65.5, 51.9, 28.6, 9.5. HRMS (ESI) *m/z* calcd. for C₁₃H₁₉N₂OS [M + H]⁺ 251.1213, found 251.1217

(S)-2-(4-Methylpiperazin-1-yl)-*N*-phenylpropanamide (91)

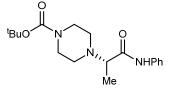

91

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1-methylpiperazine **A91** (20.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **91** as a colorless oil (48.0 mg, 97% yield, 95% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH =90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 7.93 min, t_R (major) = 9.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.59 – 7.56 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.24 (q, *J* = 7.0 Hz, 1H), 2.78 – 2.57 (m, 8H), 2.41 (s, 3H), 1.32 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 171.5, 137.8, 128.9, 124.0, 119.2, 64.2, 55.2, 49.1, 45.4, 11.5. HRMS (ESI) *m/z* calcd. for C₁₄H₂₂N₃O [M + H]⁺ 248.1757, found 248.1761.

(S)-2-(4-Methyl-3-oxopiperazin-1-yl)-*N*-phenylpropanamide (92)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1-methylpiperazin-2-one **A92** (22.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **92** as a colorless oil (28.2 mg, 54% yield, 90% e.e.). **HPLC** analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.89 min, t_R (major) = 9.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.56 – 7.54 (m, 2H), 7.35 – 7.31 (m, 2H), 7.14 – 7.09 (m, 1H), 3.47 – 3.32 (m, 3H), 3.28 – 3.23 (m, 2H), 3.00 (s, 3H), 2.85 – 2.75 (m, 2H), 1.35 (d, J = 7.0 Hz, 3H).

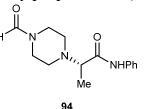
¹³C NMR (100 MHz, CDCl₃) δ 170.7, 166.4, 137.5, 129.0, 124.3, 119.4, 63.7, 54.1, 48.7, 46.8, 33.8, 11.6.

HRMS (ESI) m/z calcd. for $C_{14}H_{20}N_3O_2 [M + H]^+ 262.1550$, found 262.1550.

tert-Butyl (S)-4-(1-oxo-1-(phenylamino)propan-2-yl)piperazine-1-carboxylate (93)

93

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and *tert*-butyl piperazine-1-carboxylate **A93** (37.2 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **93** as a colorless oil (54.7 mg, 82% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.89 min, *t*_R (minor) =28.83 min.

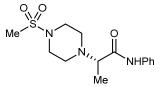
¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.57 – 7.54 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 3.57 – 3.45 (m, 4H), 3.24 (q, *J* = 7.0 Hz, 1H), 2.62 – 2.57 (m, 2H), 2.54 – 2.48 (m, 2H), 1.47 (s, 9H), 1.31 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 171.4, 154.6, 137.7, 129.0, 124.0, 119.2, 79.9, 64.6, 49.6, 44.0, 28.3, 11.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{28}N_3O_3 [M + H]^+ 334.2125$, found 334.2125.

(S)-2-(4-Formylpiperazin-1-yl)-*N*-phenylpropanamide (94)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and piperazine-1-carbaldehyde **A94** (22.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **94** as a colorless oil (29.8 mg, 57% yield, 93% e.e.).

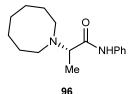

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 18.21 min, t_R (minor) = 29.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.06 (s, 1H), 7.57 – 7.55 (m, 2H), 7.36 – 7.32 (m, 2H), 7.14 – 7.10 (m, 1H), 3.70 – 3.60 (m, 2H), 3.53 – 3.42 (m, 2H), 3.29 (q, *J* = 7.0 Hz, 1H), 2.69 – 2.52 (m, 4H), 1.33 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 160.7, 137.6, 129.1, 124.3, 119.3, 64.7, 50.3, 49.2, 45.8, 40.2, 11.1.

HRMS (ESI) m/z calcd. for C₁₄H₂₀N₃O₂ [M + H]⁺ 262.1550, found 262.1553.

(S)-2-(4-(Methylsulfonyl)piperazin-1-yl)-N-phenylpropanamide (95)


95

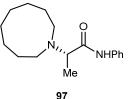
According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and 1-(methylsulfonyl)piperazine **A95** (32.8 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **95** as a colorless oil (46.7 mg, 75% yield, 93% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 20.94 min, *t*_R (minor) = 44.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 7.56 – 7.53 (m, 2H), 7.36 – 7.31 (m, 2H), 7.13 – 7.09 (m, 1H), 3.37 – 3.26 (m, 5H), 2.83 (s, 3H), 2.77 – 2.72 (m, 2H), 2.69 – 2.64 (m, 2H), 1.33 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 137.5, 129.0, 124.2, 119.3, 64.4, 49.2, 46.0, 34.9, 11.2. HRMS (ESI) m/z calcd. for C₁₄H₂₂N₃O₃S [M + H]⁺ 312.1376, found 312.1375.

(S)-2-(Azocan-1-yl)-*N*-phenylpropanamide (96)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and azocane **A96** (22.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **96** as a colorless oil (37.0 mg, 71% yield, 94% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.72 min, *t*_R (minor) = 11.96 min.

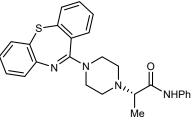
¹**H** NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 7.60 – 7.58 (m, 2H), 7.35 – 7.31 (m, 2H), 7.10 – 7.07 (m, 1H), 3.40 (q, *J* = 7.0 Hz, 1H), 2.65 – 2.62 (m, 4H), 1.78 – 1.61 (m, 10H), 1.30 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 138.1, 129.0, 123.7, 118.8, 65.5, 51.3, 28.0, 27.9, 25.7, 9.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{25}N_2O [M + H]^+ 261.1961$, found 261.1962.

(S)-2-(Azonan-1-yl)-N-phenylpropanamide (97)

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and azonane **A97** (25.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **97** as a colorless oil (31.0 mg, 57% yield, 95% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.75 min, *t*_R (minor) = 10.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.60 – 7.58 (m, 2H), 7.35 – 7.31 (m, 2H), 7.11 – 7.06 (m, 1H), 3.39 (q, *J* = 6.9 Hz, 1H), 2.62 – 2.52 (m, 4H), 1.73 – 1.47 (m, 12H), 1.31 (d, *J* = 7.0 Hz, 3H).

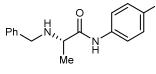
¹³C NMR (100 MHz, CDCl₃) δ 172.6, 138.1, 129.0, 123.7, 118.7, 63.7, 49.4, 26.1, 25.3, 22.6, 9.1.

HRMS (ESI) m/z calcd. for C₁₇H₂₇N₂O [M + H]⁺ 275.2118, found 275.2123.

(S)-2-(4-(Dibenzo[*b*,*f*][1,4]thiazepin-11-yl)piperazin-1-yl)-*N*-phenylpropanamide (98)

98

According to **General Procedure** C with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), 11-(piperazin-1-yl)dibenzo[*b*,*f*][1,4]thiazepine dihydrochloride **A98** (73.4 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (325.8 mg, 1.00 mmol, 5.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **98** as a white solid (75.2 mg, 85% yield, 93% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 15.86 min, *t*_R (major) = 18.63 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.57 – 7.50 (m, 3H), 7.41 – 7.39 (m, 1H), 7.35 – 7.27 (m, 5H), 7.20 – 7.16 (m, 1H), 7.10 – 7.06 (m, 2H), 6.92 – 6.88 (m, 1H), 3.69 – 3.42 (m, 4H), 3.26 (q, J = 7.0 Hz, 1H), 2.75 – 2.56 (m, 4H), 1.34 (dd, J = 7.0, 3.0 Hz, 3H).

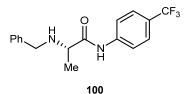
¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.4, 160.9, 148.5, 139.9, 137.7, 133.89, 133.87, 132.1, 130.9, 129.1, 129.0, 128.90, 128.88, 128.3, 127.9, 125.3, 124.0, 123.1, 119.19, 119.18, 64.52, 64.49, 49.6, 47.1, 11.3, 11.2.

HRMS (ESI) m/z calcd. for $C_{26}H_{27}N_4OS [M + H]^+ 443.1900$, found 443.1901.

(S)-2-(Benzylamino)-N-(4-methoxyphenyl)propanamide (99)

99

According to **General Procedure A** with 2-chloro-*N*-(4-methoxyphenyl)propanamide **E2** (63.9 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **99** as a white solid (54.5 mg, 96% yield, 93% e.e.).

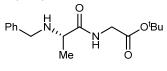

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 21.65 min, *t*_R (major) = 23.65 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 7.50 – 7.46 (m, 2H), 7.37 – 7.25 (m, 5H), 6.88 – 6.84 (m, 2H), 3.81 (s, 2H), 3.78 (s, 3H), 3.38 (q, *J* = 7.0 Hz, 1H), 2.20 (s, 1H), 1.40 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 156.1, 138.9, 130.9, 128.6, 128.0, 127.4, 121.0 114.0, 58.3, 55.4, 52.6, 19.6.

HRMS (ESI) m/z calcd. for C₁₇H₂₁N₂O₂ [M + H]⁺ 285.1598, found 285.1592.

(S)-2-(Benzylamino)-N-(4-(trifluoromethyl)phenyl)propanamide (100)


According to **General Procedure A** with 2-chloro-*N*-(4-(trifluoromethyl)phenyl)propanamide **E3** (75.3 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **100** as a colorless oil (43.6 mg, 68% yield, 90% e.e.). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 11.29 min, *t*_R (major) = 12.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.70 – 7.68 (m, 2H), 7.58 – 7.56 (m, 2H), 7.38 – 7.27 (m, 5H), 3.87 – 3.79 (m, 2H), 3.42 (q, *J* = 7.0 Hz, 1H), 2.09 (s, 1H), 1.42 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 173.2, 140.7 (d, *J* = 1.2 Hz), 138.7, 128.8, 128.0, 127.6, 126.2 (q, *J* = 3.8 Hz), 125.8 (q, *J* = 31.6 Hz), 124.1 (q, *J* = 269.8 Hz), 118.9, 58.4, 52.8, 19.5.

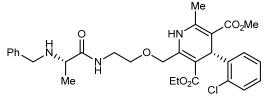
¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.02 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₇H₁₈F₃N₂O [M + H]⁺ 323.1366, found 323.1361.

tert-Butyl benzyl-*L*-alanylglycinate (101)

101

According to **General Procedure A** with *tert*-butyl (2-chloropropanoyl)glycinate **E4** (66.3 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 15/1) to yield the product **101** as a colorless oil (42.7 mg, 73% yield, 92% e.e.).


HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 33.21 min, t_R (minor) = 40.35 min.

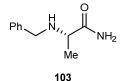
¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.35 – 7.32 (m, 4H), 7.30 – 7.24 (m, 1H), 4.01 – 3.87 (m, 2H), 3.86 – 3.71 (m, 2H), 3.28 (q, *J* = 6.9 Hz, 1H), 1.78 (s, 1H), 1.48 (s, 9H), 1.33 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.0, 168.9, 139.5, 128.5, 128.1, 127.2, 82.0, 57.6, 52.5, 41.5, 28.0, 19.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{25}N_2O_3 [M + H]^+$ 293.1860, found 293.1854.

3-Ethyl 5-methyl (S)-2-((2-((S)-2-(benzylamino)propanamido)ethoxy)methyl)-4-(2chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (102)

According to **General Procedure A** with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate **E5** (149.4 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **102** as a yellowish oil (95.8 mg, 84% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.


According to **General Procedure A** with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate **E5** (99.6 mg, 0.20 mmol, 1.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **102** as a yellowish oil (78.2 mg, 69% yield, 18:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 1H), 7.38 – 7.26 (m, 7H), 7.23 – 7.21 (m, 1H), 7.10 – 7.06 (m, 1H), 7.04 – 7.00 (m, 1H), 5.41 (s, 1H), 4.78 – 4.65 (m, 2H), 4.09 – 3.96 (m, 2H), 3.75 (s, 2H), 3.68 – 3.58 (m, 5H), 3.56 – 3.51 (m, 2H), 3.29 (q, *J* = 6.8 Hz, 1H), 2.34 (s, 3H), 1.73 (s, 1H), 1.34 (d, *J* = 7.0 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 168.0, 167.1, 145.8, 145.0, 144.3, 139.2, 132.2, 131.4, 129.1, 128.6, 127.8, 127.3, 127.2, 126.8, 103.6, 101.3, 70.6, 67.9, 59.7, 58.0, 52.6, 50.7, 38.5, 36.9, 19.7, 19.2, 14.2.

HRMS (ESI) m/z calcd. for $C_{30}H_{37}CIN_3O_6 [M + H]^+ 570.2365$, found 570.2360.

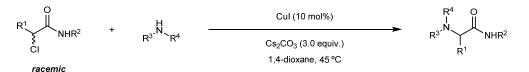
(S)-2-(Benzylamino)propanamide (103)

According to **General Procedure A** with 2-chloropropanamide **E6** (21.4 mg, 0.20 mmol, 1.0 equiv.) and benzylamine **A1** (32.1 mg, 0.30 mmol, 1.5 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **103** as a white solid (23.3 mg, 65% yield, 95% e.e.).

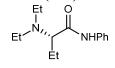
HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 214 nm), $t_{\rm R}$ (major) = 9.78 min, $t_{\rm R}$ (minor) = 14.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 7.10 (s, 1H), 5.95 (s, 1H), 3.77 (q, *J* = 13.1 Hz, 2H), 3.26 (q, *J* = 7.0 Hz, 1H), 1.77 (s, 1H), 1.35 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.1, 139.4, 128.5, 128.0, 127.3, 57.7, 52.5, 19.6.


HRMS (ESI) m/z calcd. for $C_{10}H_{15}N_2O [M + H]^+$ 179.1179, found 179.1178.

General procedure E:


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir

bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*7 (10.0 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous PhH (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, α -alkyl secondary alkyl chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous PhH (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 50 °C for 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), α -alkyl secondary alkyl chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Diethylamino)-N-phenylbutanamide (104)

104

According to **General Procedure E** with 2-chloro-*N*-phenylbutanamide E7 (59.1 mg, 0.30 mmol, 1.5 equiv.) and diethylamine A51 (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 104 as a colorless oil (32.3 mg, 69% yield, 96% e.e.).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.30 min, t_R (minor) = 14.58 min.

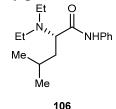
A gram-scale experiment: According to General Procedure E with 2-chloro-*N*-phenylbutanamide E7 (1478.0 mg, 7.5 mmol, 1.5 equiv.) and diethylamine A51 (365.4 mg, 5.0 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 104 as a colorless oil (804.8 mg, 69% yield, 95% e.e.).

¹**H** NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 7.57 – 7.55 (m, 2H), 7.34 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 3.22 (dd, *J* = 7.7, 4.9 Hz, 1H), 2.75 – 2.67 (m, 2H), 2.65 – 2.56 (m, 2H), 1.96 – 1.85 (m, 1H), 1.76 – 1.66 (m, 1H), 1.12 – 1.07 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 138.0, 128.9, 123.7, 119.1, 66.6, 44.3, 19.6, 13.3, 12.8. HRMS (ESI) m/z calcd. for C₁₄H₂₃N₂O [M + H]⁺ 235.1805, found 235.1801.

(S)-2-(Diethylamino)-N-phenylhexanamide (105)

According to **General Procedure E** with 2-chloro-*N*-phenylhexanamide **E8** (67.5 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **105** as a colorless oil (41.4 mg, 79% yield, 95% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 20.56 min, t_R (minor) = 31.66 min.

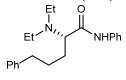
¹**H** NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.58 – 7.54 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.06 (m, 1H), 3.28 – 3.25 (m, 1H), 2.72 – 2.63 (m, 2H), 2.61 – 2.52 (m, 2H), 1.91 – 1.81 (m, 1H), 1.66 – 1.54 (m, 2H), 1.42 – 1.31 (m, 3H), 1.13 (t, *J* = 7.1 Hz, 6H), 0.95 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 138.1, 129.0, 123.6, 119.0, 64.8, 44.4, 30.6, 25.9, 23.0, 14.0, 13.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{27}N_2O[M + H]^+$ 263.2118, found 263.2114.

(S)-2-(Diethylamino)-4-methyl-N-phenylpentanamide (106)

According to **General Procedure E** with 2-chloro-4-methyl-*N*-phenylpentanamide **E9** (67.5 mg, 0.30 mmol, 1.5 equiv.), diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **106** (35.7 mg, 68% yield, 93% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 15.21 min, t_R (minor) = 21.10 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.57 – 7.54 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.05 (m, 1H), 3.37 – 3.34 (m, 1H), 2.68 – 2.59 (m, 2H), 2.55 – 2.46 (m, 2H), 1.96 – 1.79 (m, 2H), 1.35 – 1.28 (m, 1H), 1.11 (t, *J* = 7.1 Hz, 6H), 0.99 (d, *J* = 6.6 Hz, 3H), 0.94 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 138.1, 129.0, 123.6, 119.0, 62.0, 44.4, 34.3, 26.5, 23.5, 22.0, 13.9.

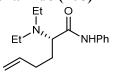
HRMS (ESI) m/z calcd. for $C_{16}H_{27}N_2O [M + H]^+ 263.2118$, found 263.2114.

(S)-2-(Diethylamino)-N,5-diphenylpentanamide (107)

107

According to General Procedure E with 2-chloro-N,5-diphenylpentanamide E10 (86.1 mg, 0.30

mmol, 1.5 equiv.) and diethylamine A51 (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 107 as a colorless oil (55.2 mg, 85% yield, 94% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.57 min, t_R (minor) = 12.38 min.

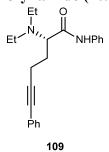
¹**H** NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.57 – 7.54 (m, 2H), 7.33 – 7.25 (m, 4H), 7.21 – 7.14 (m, 3H), 7.10 – 7.05 (m, 1H), 3.32 – 3.29 (m, 1H), 2.73 – 2.61 (m, 4H), 2.58 – 2.49 (m, 2H), 2.04 – 1.89 (m, 2H), 1.77 – 1.63 (m, 2H), 1.08 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 142.0, 138.0, 128.9, 128.4, 128.2, 125.7, 123.7, 119.1, 64.8, 44.4, 36.1, 30.0, 25.8, 13.4.

HRMS (ESI) m/z calcd. for $C_{21}H_{29}N_2O [M + H]^+ 325.2274$, found 325.2270.

(S)-2-(Diethylamino)-*N*-phenylhex-5-enamide (108)

According to **General Procedure E** with 2-chloro-*N*-phenylhex-5-enamide **E11** (66.9 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **108** as a colorless oil (37.0 mg, 71% yield, 95% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.02 min, t_R (minor) = 7.48 min.

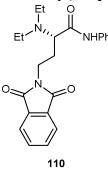
¹**H** NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.57 – 7.55 (m, 2H), 7.34 – 7.30 (m, 2H), 7.10 – 7.06 (m, 1H), 5.88 – 5.78 (m, 1H), 5.10 – 4.99 (m, 2H), 3.34 – 3.31 (m, 1H), 2.72 – 2.63 (m, 2H), 2.59 – 2.51 (m, 2H), 2.46 – 2.37 (m, 1H), 2.25 – 2.16 (m, 1H), 2.05 – 1.96 (m, 1H), 1.71 – 1.63 (m, 1H), 1.11 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 138.2, 138.0, 129.0, 123.8, 119.1, 115.3, 63.5, 44.5, 32.4, 24.8, 13.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{25}N_2O [M + H]^+ 261.1961$, found 261.1958.

(S)-2-(Diethylamino)-*N*,6-diphenylhex-5-ynamide (109)

According to **General Procedure E** with 2-chloro-*N*,6-diphenylhex-5-ynamide **E12** (89.1 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **109** as a colorless oil (37.4 mg, 56% yield, 93% e.e.). **HPLC** analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R


 $(major) = 12.39 min, t_R (minor) = 16.51 min.$

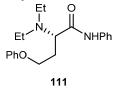
¹**H** NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.57 – 7.55 (m, 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 3H), 7.11 – 7.07 (m, 1H), 3.66 (dd, *J* = 8.9, 3.0 Hz, 1H), 2.79 – 2.76 (m, 2H), 2.70 – 2.61 (m, 2H), 2.60 – 2.52 (m, 2H), 2.21 – 2.13 (m, 1H), 1.88 – 1.79 (m, 1H), 1.15 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 137.9, 131.5, 129.0, 128.2, 127.6, 123.79, 123.77, 119.1, 89.7, 81.4, 62.0, 44.6, 23.8, 18.7, 14.1.

HRMS (ESI) m/z calcd. for $C_{22}H_{27}N_2O [M + H]^+$ 335.2118, found 335.2112.

(S)-2-(Diethylamino)-4-(1,3-dioxoisoindolin-2-yl)-N-phenylbutanamide (110)

According to **General Procedure E** with 2-chloro-4-(1,3-dioxoisoindolin-2-yl)-*N*-phenylbutanamide **E13** (102.6 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **110** as a colorless oil (46.3 mg, 61% yield, 94% e.e.).

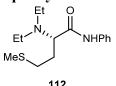

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 34.79 min, *t*_R (major) = 38.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.87 – 7.82 (m, 2H), 7.74 – 7.69 (m, 2H), 7.57 – 7.53 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.06 (m, 1H), 4.11 – 4.04 (m, 1H), 3.93 – 3.86 (m, 1H), 3.47 (dd, J = 8.9, 3.2 Hz, 1H), 2.67 – 2.58 (m, 2H), 2.52 – 2.44 (m, 2H), 2.31 – 2.23 (m, 1H), 1.96 – 1.89 (m, 1H), 1.08 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 168.4, 137.8, 133.9, 132.1, 128.9, 123.8, 123.2, 119.1, 62.1, 44.6, 37.3, 24.4, 13.9.

HRMS (ESI) m/z calcd. for $C_{22}H_{26}N_3O_3 [M + H]^+$ 380.1969, found 380.1963.

(S)-2-(Diethylamino)-4-phenoxy-N-phenylbutanamide (111)


According to **General Procedure E** with 2-chloro-4-phenoxy-*N*-phenylbutanamide **E14** (86.7 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **111** as a colorless oil (42.4 mg, 65% yield, 89% e.e.). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.82 min, *t*_R (minor) = 26.45 min.

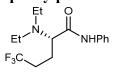
¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.56 – 7.54 (m, 2H), 7.35 – 7.25 (m, 4H), 7.11 – 7.07 (m, 1H), 6.95 – 6.90 (m, 3H), 4.34 – 4.29 (m, 1H), 4.23 – 4.17 (m, 1H), 3.70 – 3.67 (m, 1H), 2.70 – 2.61 (m, 2H), 2.57 – 2.48 (m, 2H), 2.36 – 2.28 (m, 1H), 2.08 – 2.00 (m, 1H), 1.16 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 158.8, 137.9, 129.4, 129.0, 123.9, 120.6, 119.1, 114.4, 66.4, 60.0, 44.8, 24.2, 14.1.

HRMS (ESI) m/z calcd. for $C_{20}H_{27}N_2O_2 [M + H]^+ 327.2067$, found 327.2062.

(S)-2-(Diethylamino)-4-(methylthio)-N-phenylbutanamide (112)

According to **General Procedure E** with 2-chloro-4-(methylthio)-*N*-phenylbutanamide **E15** (72.9 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **112** as a colorless oil (38.7 mg, 69% yield, 92% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.28 min, t_R (minor) = 12.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.56 – 7.53 (m, 2H), 7.35 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.58 – 3.55 (m, 1H), 2.93 – 2.86 (m, 1H), 2.74 – 2.69 (m, 1H), 2.68 – 2.61 (m, 2H), 2.56 – 2.47 (m, 2H), 2.25 – 2.16 (m, 1H), 2.14 (s, 3H), 1.83 – 1.75 (m, 1H), 1.14 (t, *J* = 7.1 Hz, 6H).

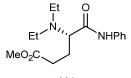
¹³C NMR (100 MHz, CDCl₃) δ 172.6, 137.9, 129.0, 123.8, 119.1, 62.3, 44.7, 33.2, 24.2, 15.4, 14.0.

HRMS (ESI) m/z calcd. for $C_{15}H_{25}N_2OS [M + H]^+ 281.1682$, found 281.1678.

(S)-2-(Diethylamino)-5,5,5-trifluoro-*N*-phenylpentanamide (113)

113

According to **General Procedure E** with 2-chloro-5,5,5-trifluoro-*N*-phenylpentanamide **E16** (79.5 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **113** as a colorless oil (31.4 mg, 52% yield, 93% e.e.).

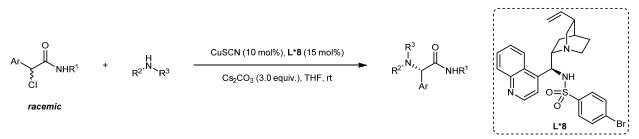

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 7.73 min, t_R (minor) = 11.65 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.55 – 7.52 (m, 2H), 7.36 – 7.31 (m, 2H), 7.13 – 7.08 (m, 1H), 3.36 (dd, J = 9.7, 3.1 Hz, 1H), 2.77 – 2.61 (m, 3H), 2.56 – 2.48 (m, 2H), 2.30 – 2.14 (m, 1H), 2.10 – 2.00 (m, 1H), 1.86 – 1.78 (m, 1H), 1.13 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 137.6, 129.1, 127.1 (q, *J* = 273.2 Hz), 124.1, 119.2, 62.8, 44.5, 32.8 (q, *J* = 28.2 Hz), 17.6 (q, *J* = 2.8 Hz), 13.8.

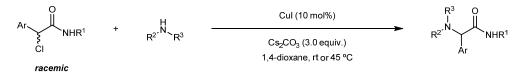
¹⁹F NMR (376 MHz, CDCl₃) δ -66.56 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{15}H_{22}F_{3}N_{2}O[M + H]^{+} 303.1679$, found 303.1675.


According to **General Procedure E** with methyl 3-chloro-4-oxo-4-(phenylamino)butanoate **E17** (76.5 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **114** as a colorless oil (34.6 mg, 59% yield, 97% e.e.).

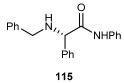
HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.08 min, t_R (minor) = 12.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.55 – 7.53 (m, 2H), 7.34 – 7.30 (m, 2H), 7.11 – 7.07 (m, 1H), 3.68 (s, 3H), 3.39 – 3.35 (m, 1H), 2.81 – 2.73 (m, 1H), 2.70 – 2.52 (m, 5H), 2.10 – 1.92 (m, 2H), 1.12 (t, *J* = 7.1 Hz, 6H).


¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.5, 137.8, 129.0, 123.8, 119.1, 62.9, 51.6, 44.4, 32.4, 20.3, 13.8.

HRMS (ESI) m/z calcd. for C₁₆H₂₅N₂O₃ [M + H]⁺ 293.1860, found 293.1857.

General procedure F:

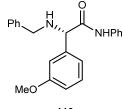

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuSCN (2.4 mg, 0.02 mmol, 10 mol%), L*8 (15.3 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous THF (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, α -aryl secondary alkyl chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous THF (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), α -aryl secondary alkyl

chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt or 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel to afford the desired product.

(S)-2-(Benzylamino)-N,2-diphenylacetamide (115)

According to **General Procedure F** with 2-chloro-*N*,2-diphenylacetamide **E18** (73.5 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **115** as a white solid (44.0 mg, 70% yield, 94% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 9.54 min, *t*_R (major) = 11.78 min.

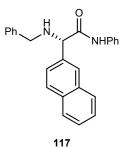
¹**H NMR** (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.59 – 7.57 (m, 2H), 7.41 – 7.38 (m, 2H), 7.36 – 7.27 (m, 10H), 7.11 – 7.08 (m, 1H), 4.34 (s, 1H), 3.87 (s, 2H), 2.05 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 138.85, 138.83, 137.6, 129.0, 128.9, 128.7, 128.3, 128.1, 127.5, 127.2, 124.2, 119.4, 67.6, 52.8.

HRMS (ESI) m/z calcd. for C₂₁H₂₁N₂O [M + H]⁺ 317.1648, found 317.1653.

(S)-2-(Benzylamino)-2-(3-methoxyphenyl)-N-phenylacetamide (116)

According to **General Procedure F** with 2-chloro-2-(3-methoxyphenyl)-*N*-phenylacetamide **E19** (82.5 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **116** as a white solid (53.8 mg, 78% yield, 94% e.e.).

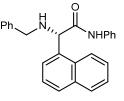

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.18 min, t_R (major) = 12.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.58 – 7.55 (m, 2H), 7.38 – 7.28 (m, 7H), 7.24 – 7.22 (m, 1H) 7.11 – 7.07 (m, 1H), 6.98 (d, *J* = 7.7 Hz, 1H), 6.94 (t, *J* = 2.1 Hz, 1H), 6.84 – 6.81 (m, 1H), 4.30 (s, 1H), 3.85 (s, 2H), 3.76 (s, 3H), 2.07 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 159.9, 140.3, 138.8, 137.6, 129.9, 128.9, 128.7, 128.1, 127.5, 124.2, 119.41, 119.35, 113.6, 113.0, 67.5, 55.2, 52.7.

HRMS (ESI) m/z calcd. for C₂₂H₂₃N₂O₂ [M + H]⁺ 347.1754, found 347.1760.

(S)-2-(Benzylamino)-2-(naphthalen-2-yl)-N-phenylacetamide (117)


According to **General Procedure F** with 2-chloro-2-(naphthalen-2-yl)-*N*-phenylacetamide **E20** (88.5 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **117** as a white solid (60.0 mg, 82% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.78 min, t_R (major) = 16.18 min.

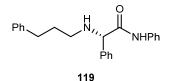
¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.86 – 7.78 (m, 4H), 7.60 – 7.57 (m, 2H), 7.53 – 7.50 (m, 1H), 7.49 – 7.44 (m, 2H), 7.40 – 7.28 (m, 7H), 7.12 – 7.08 (m, 1H), 4.51 (s, 1H), 3.91 (s, 2H), 2.01 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 138.9, 137.6, 136.2, 133.3, 133.2, 129.0, 128.9, 128.8, 128.2, 128.0, 127.65, 127.58, 126.45, 126.38, 126.3, 124.8, 124.2, 119.5, 67.7, 52.8. **HRMS** (ESI) *m/z* calcd. for C₂₅H₂₃N₂O [M + H]⁺ 367.1805, found 367.1811.

(S)-2-(Benzylamino)-2-(naphthalen-1-yl)-N-phenylacetamide (118)

118

According to **General Procedure F** with 2-chloro-2-(naphthalen-1-yl)-*N*-phenylacetamide **E21** (88.5 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **118** as a white solid (43.5 mg, 59% yield, 97% e.e.).

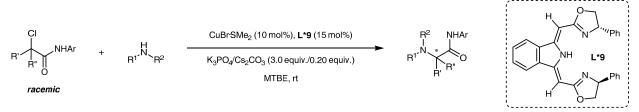

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 21.38 min, *t*_R (minor) = 28.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 8.05 – 8.01 (m, 1H), 7.88 – 7.83 (m, 1H), 7.82 – 7.80 (m, 1H), 7.63 – 7.60 (m, 2H), 7.56 – 7.47 (m, 3H), 7.44 – 7.40 (m, 1H), 7.39 – 7.28 (m, 7H), 7.14 – 7.09 (m, 1H), 5.07 (s, 1H), 3.97 (s, 2H), 2.01 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 138.8, 137.7, 135.1, 134.2, 131.2, 129.02, 129.00, 128.98, 128.8, 128.4, 127.6, 126.8, 125.9, 125.4, 125.2, 124.2, 123.2, 119.4, 63.8, 53.2.

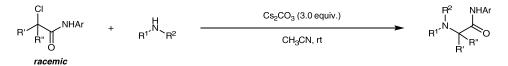
HRMS (ESI) m/z calcd. for C₂₅H₂₃N₂O [M + H]⁺ 367.1805, found 367.1810.

(S)-N,2-Diphenyl-2-((3-phenylpropyl)amino)acetamide (119)


According to **General Procedure F** with 2-chloro-*N*,2-diphenylacetamide **E18** (73.5 mg, 0.30 mmol, 1.5 equiv.) and 3-phenylpropan-1-amine **A13** (27.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **119** as a colorless oil (45.4 mg, 66% yield, 95% e.e.).

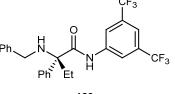
HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 10.14 min, *t*_R (minor) = 14.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.46 (s, 1H), 7.58 – 7.55 (m, 2H), 7.42 – 7.39 (m, 2H), 7.35 – 7.24 (m, 7H), 7.20 – 7.15 (m, 3H), 7.11 – 7.07 (m, 1H), 4.32 (s, 1H), 2.83 – 2.62 (m, 4H), 2.47 (s, 1H), 1.94 – 1.87 (m, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 170.1, 141.4, 137.6, 129.0, 128.9, 128.4, 128.3, 128.2, 127.2, 126.0, 124.2, 119.5, 68.2, 48.4, 33.5, 31.5.

HRMS (ESI) m/z calcd. for C₂₃H₂₅N₂O [M + H]⁺ 345.1961, found 345.1966.

General procedure G:


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBrSMe₂ (4.1 mg, 0.02 mmol, 10 mol%), L*9 (13.0 mg, 0.03 mmol, 15 mol%), K₃PO₄ (127.1 mg, 0.60 mmol, 3.0 equiv.), Cs₂CO₃ (13.0 mg, 0.04 mmol, 0.2 equiv.), and anhydrous MTBE (1.0 mL). Then, the mixture was stirred at room temperature for 3 h. After that, racemic tertiary alkyl chloride (0.20 mmol, 1.0 equiv.), alkyl amine (0.24 mmol, 1.2 equiv.), and anhydrous MTBE (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 7d. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv.), racemic tertiary alkyl chloride (0.20 mmol, 1.0 equiv.), amine (0.24 mmol, 1.2 equiv.), and anhydrous CH₃CN (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was

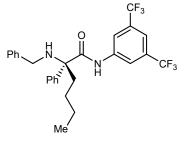
evaporated and the residue was purified by flash column chromatography or preparative thinlayer chromatography on silica gel on silica gel to afford the desired product.

(S)-2-(benzylamino)-N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylbutanamide (120)

120

According to **General Procedure G** with *N*-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2phenylbutanamide **E22** (82.0 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **120** as a yellowish solid (68.2 mg, 71% yield, 91% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 6.95 min, $t_{\rm R}$ (minor) = 11.39 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.94 (s, 2H), 7.61 – 7.59 (m, 2H), 7.53 (s, 1H), 7.43 – 7.37 (m, 6H), 7.35 – 7.28 (m, 2H), 3.76 (d, *J* = 12.9 Hz, 1H), 3.55 (d, *J* = 12.9 Hz, 1H), 2.57 – 2.41 (m, 2H), 2.25 (s, 1H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 140.0, 139.4, 139.2, 132.2 (q, J = 33.2 Hz), 128.93, 128.87, 127.9, 127.8, 127.7, 125.8, 123.0 (q, J = 271.3 Hz), 118.83 – 118.80 (m), 117.2 – 117.0 (m), 68.8, 47.3, 24.9, 7.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.97 (s, 6F).

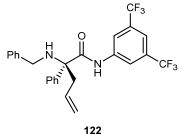
HRMS (ESI) m/z calcd. for $C_{25}H_{23}F_6N_2O [M + H]^+ 481.1709$, found 481.1716.

(S)-2-(Benzylamino)-N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylhexanamide (121)

121

According to **General Procedure G** with N-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2phenylhexanamide **E23** (87.6 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **121** as a white solid (54.9 mg, 54% yield, 90% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 4.68 min, $t_{\rm R}$ (minor) = 6.72 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.94 (s, 2H), 7.62 – 7.59 (m, 2H), 7.53 (s, 1H), 7.43 – 7.28 (m, 8H), 3.76 (d, *J* = 12.9 Hz, 1H), 3.56 (d, *J* = 12.9 Hz, 1H), 2.51 – 2.36 (m, 2H), 2.24(s, 1H), 1.50 – 1.37 (m, 2H), 1.22 – 1.07 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 140.3, 139.4, 139.2, 132.2 (q, J = 33.3 Hz), 128.93, 128.87, 127.9, 127.8, 127.7, 125.8, 123.0 (q, J = 271.2 Hz), 118.84 – 118.80 (m), 117.2 – 117.0 (m), 68.4, 47.4, 32.0, 25.3, 22.9, 14.0.

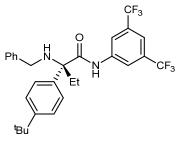
¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.99 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{27}H_{27}F_6N_2O [M + H]^+$ 509.2022, found 509.2028.

(S)-2-(Benzylamino)-N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylpent-4-enamide (122)

According to **General Procedure G** with *N*-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2phenylpent-4-enamide **E24** (84.2 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **122** as a white solid (61.1 mg, 62% yield, 82% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 5.36 min, t_R (minor) = 7.72 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.93 (s, 2H), 7.63 – 7.60 (m, 2H), 7.54 (s, 1H), 7.43 – 7.38 (m, 4H), 7.36 – 7.30 (m, 4H), 5.65 – 5.54 (m, 1H), 5.35 – 5.30 (m, 1H), 7.24 – 7.21 (m, 1H), 3.78 (d, *J* = 12.7 Hz, 1H), 3.56 (d, *J* = 12.7 Hz, 1H), 3.36 – 3.31 (m, 1H), 3.24 – 3.18 (m, 1H), 2.33 (s, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 172.2, 139.6, 139.4, 139.0, 132.4, 132.2 (q, *J* = 33.3 Hz), 129.0, 128.9, 128.04, 128.03, 127.7, 125.9, 123.0 (q, *J* = 271.2 Hz), 120.4, 119.0 – 118.9 (m), 117.3 – 117.2 (m), 67.8, 47.1, 36.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.99 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{26}H_{23}F_6N_2O [M + H]^+ 493.1709$, found 493.1714.

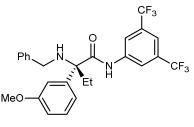
(S)-2-(Benzylamino)-*N*-(3,5-bis(trifluoromethyl)phenyl)-2-(4-(*tert*-butyl)phenyl)butanamide (123)

123

According to **General Procedure G** with N-(3,5-bis(trifluoromethyl)phenyl)-2-(4-(*tert*-butyl)phenyl)-2-chlorobutanamide **E25** (93.0 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **123** as a

yellowish oil (71.9 mg, 67% yield, 87% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 5.73 min, $t_{\rm R}$ (minor) = 8.15 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.95 (s, 2H), 7.52 – 7.49 (m, 3H), 7.43 – 7.31 (m, 7H), 3.77 (d, *J* = 12.9 Hz, 1H), 3.54 (d, *J* = 12.9 Hz, 1H), 2.56 – 2.40 (m, 2H), 2.04 (s, 1H), 1.30 (s, 9H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 173.0, 150.7, 139.5, 139.3, 136.8, 132.2 (q, *J* = 33.2 Hz), 128.9, 127.9, 127.6, 125.8, 125.5, 123.1 (q, *J* = 271.1 Hz), 118.81 – 118.77 (m), 117.1 – 117.0 (m), 68.5, 47.2, 34.4, 31.2, 24.7, 7.5.

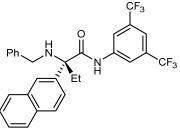
¹⁹F NMR (376 MHz, CDCl₃) δ -62.98 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{29}H_{31}F_6N_2O [M + H]^+ 537.2335$, found 537.2341.

(S)-2-(Benzylamino)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(3-methoxyphenyl)butanamide (124)

According to **General Procedure G** with N-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2-(3methoxyphenyl)butanamide **E26** (87.8 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **124** as a yellowish oil (80.7 mg, 79% yield, 92% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 6.26 min, $t_{\rm R}$ (minor) = 10.43 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.94 (s, 2H), 7.53 (s, 1H), 7.43 – 7.30 (m, 6H), 7.19 – 7.15 (m, 2H), 6.85 – 6.82 (m, 1H), 3.81 (s, 3H), 3.77 (d, *J* = 12.9 Hz, 1H), 3.55 (d, *J* = 12.9 Hz, 1H), 2.55 – 2.38 (m, 2H), 2.07 (s, 1H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.6, 159.9, 141.7, 139.4, 139.2, 132.2 (q, *J* = 33.3 Hz), 129.9, 128.9, 127.9, 127.7, 123.0 (q, *J* = 271.1 Hz), 118.84 – 118.76 (m), 118.2, 117.2 – 117.0 (m), 112.7, 112.2, 68.7, 55.3, 47.2, 24.9, 7.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.99 (s, 6F).

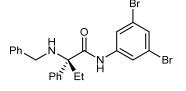
HRMS (ESI) m/z calcd. for $C_{26}H_{25}F_6N_2O_2$ [M + H]⁺ 511.1815, found 511.1823.

(S)-2-(Benzylamino)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(naphthalen-2-yl)butanamide (125)

125

According to **General Procedure G** with *N*-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2-(naphthalen-2-yl)butanamide **E27** (92.0 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **125** as a yellowish oil (70.0 mg, 66% yield, 87% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 7.27 min, $t_{\rm R}$ (minor) = 8.99 min.


¹**H NMR** (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.05 (s, 1H), 7.94 (s, 2H), 7.88 – 7.86 (m, 2H), 7.83 – 7.80 (m, 1H), 7.71 – 7.68 (m, 1H), 7.52 (s, 1H), 7.51 – 7.46 (m, 2H), 7.45 – 7.39 (m, 4H), 7.38 – 7.33 (m, 1H), 3.80 (d, *J* = 12.9 Hz, 1H), 3.60 (d, *J* = 12.8 Hz, 1H), 2.69 – 2.42 (m, 3H), 0.87 (t, *J* = 7.4 Hz, 3H).

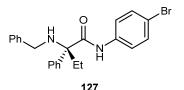
¹³**C** NMR (100 MHz, CDCl₃) δ 172.6, 139.4, 139.2, 137.4, 133.2, 132.6, 132.2 (q, *J* = 33.3 Hz), 129.0, 128.8, 128.2, 128.0, 127.8, 127.5, 126.48, 126.46, 125.0, 123.6, 123.0 (q, *J* = 271.2 Hz), 119.0 - 118.8 (m), 117.2 - 117.1 (m), 69.0, 47.4, 25.0, 7.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.97 (s, 6F).

HRMS (ESI) m/z calcd. for C₂₉H₂₅F₆N₂O $[M + H]^+$ 531.1866, found 531.1872.

(S)-2-(Benzylamino)-N-(3,5-dibromophenyl)-2-phenylbutanamide (126)

According to **General Procedure G** with 2-chloro-*N*-(3,5-dibromophenyl)-2-phenylbutanamide **E28** (86.3 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **126** as a yellowish oil (54.2 mg, 54% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 7.70 min, t_R (minor) = 8.91 min.

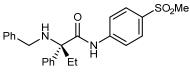
¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.62 (d, J = 1.7 Hz, 2H), 7.57 – 7.54 (m, 2H), 7.44 – 7.27 (m, 9H), 3.71 (d, J = 12.7 Hz, 1H), 3.52 (d, J = 12.8 Hz, 1H), 2.53 – 2.38 (m, 2H), 2.18 (s, 1H), 0.82 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 140.1, 139.9, 139.4, 129.3, 128.9, 128.8, 128.0, 127.7, 127.6, 125.8, 122.9, 120.7, 68.6, 47.2, 24.9, 7.4.

HRMS (ESI) m/z calcd. for $C_{23}H_{23}Br_2N_2O [M + H]^+$ 501.0172, found 501.0177.

(S)-2-(Benzylamino)-N-(4-bromophenyl)-2-phenylbutanamide (127)

According to General Procedure G with N-(4-bromophenyl)-2-chloro-2-phenylbutanamide E29 (70.5 mg, 0.2 mmol, 1.0 equiv.) and benzylamine A1 (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **127** as a yellowish oil (43.2 mg, 51% yield, 90% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.21 min, t_{R} (minor) = 14.97 min.

¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.59 – 7.57 (m, 2H), 7.43 – 7.31 (m, 11H), 7.29 – 7.25 (m, 1H), 3.69 (d, J = 12.7 Hz, 1H), 3.53 (d, J = 12.7 Hz, 1H), 2.53 – 2.37 (m, 2H), 2.15 (s, 1H), 0.83 (t, J = 7.4 Hz, 3H).

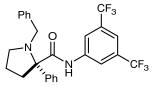
¹³C NMR (100 MHz, CDCl₃) δ 172.0, 140.5, 139.6, 136.9, 131.8, 128.8, 128.7, 128.0, 127.5, 125.9, 120.8, 116.4, 68.5, 47.2, 25.0, 7.4.

HRMS (ESI) m/z calcd. for C₂₃H₂₄BrN₂O [M + H]⁺ 423.1067, found 423.1070.

(S)-2-(Benzylamino)-N-(4-(methylsulfonyl)phenyl)-2-phenylbutanamide (128)

128

to General Procedure G with 2-chloro-N-(4-(methylsulfonyl)phenyl)-2-According phenylbutanamide E30 (70.2 mg, 0.2 mmol, 1.0 equiv.) and benzylamine A1 (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (DCM/EtOAc = 20/1) to yield the product 128 as a yellowish solid (46.5 mg, 55% yield, 91% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ $(major) = 29.13 \text{ min}, t_{R} (minor) = 45.94 \text{ min}.$

¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.83 – 7.81 (m, 2H), 7.68 – 7.65 (m, 2H), 7.59 – 7.58 (m, 2H), 7.44 - 7.26 (m, 8H), 3.74 (d, J = 12.8 Hz, 1H), 3.54 (d, J = 12.8 Hz, 1H), 2.98 (s, 3H), 2.55 - 2.38 (m, 2H), 2.23 (s, 1H), 0.84 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 142.6, 140.0, 139.3, 134.9, 128.8, 128.7, 128.6, 127.9, 127.7, 127.6, 125.8, 119.1, 68.7, 47.3, 44.6, 25.0, 7.3.

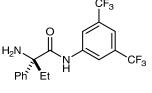
HRMS (ESI) m/z calcd. for C₂₄H₂₇N₂O₃S [M + H]⁺ 423.1737, found 423.1738.

(S)-N-(3,5-Bis(trifluoromethyl)phenyl)-1-ethyl-2-phenylpyrrolidine-2-carboxamide (129)

According to General Procedure G with N-(3,5-bis(trifluoromethyl)phenyl)-2,5-dichloro-2-

phenylpentanamide **E31** (91.6 mg, 0.2 mmol, 1.0 equiv.) and benzylamine **A1** (25.7 mg, 0.24 mmol, 1.2 equiv.) for 7 d, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **129** as a yellowish oil (51.2 mg, 52% yield, 87% e.e.).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, $\lambda = 254$ nm), *t*_R (major) = 9.55 min, *t*_R (minor) = 11.07 min.


¹**H** NMR (400 MHz, CDCl₃) δ 10.57 (s, 1H), 8.11 (s, 2H), 7.61 (s, 1H), 7.45 – 7.30 (m, 8H), 7.24 – 7.23 (m, 2H), 3.57 (d, J = 13.7 Hz, 1H), 3.27 (t, J = 8.3 Hz, 1H), 2.87 (d, J = 13.7 Hz, 1H), 2.81 – 2.70 (m, 3H), 2.10 – 2.04 (m, 1H), 1.98 – 1.86 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 174.2, 139.3, 138.3, 132.4 (q, J = 33.1 Hz), 128.9, 128.43, 128.36, 128.3, 127.8, 127.6, 123.1 (q, J = 271.1 Hz), 118.70 –118.67 (m), 117.3 – 117.1 (m), 76.8, 55.9, 53.0, 39.3, 23.2.

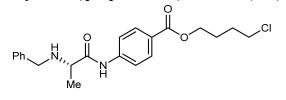
¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.94 (s, 6F).

HRMS (ESI) m/z calcd. for $C_{26}H_{23}F_6N_2O [M + H]^+ 493.1709$, found 493.1715.

(S)-2-Amino-N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylbutanamide (130)

According to **General Procedure G** with *N*-(3,5-bis(trifluoromethyl)phenyl)-2-chloro-2-phenylbutanamide **E22** (82.0 mg, 0.20 mmol, 1.0 equiv.), Ammonia **A43** (1.50 mL, 0.60 mmol, 3.0 equiv., 0.4 M in 1,4-dioxane), CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol%), and anhydrous Et₂O (4.0 mL). for 96 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **130** (39.5 mg, 51% yield, 85% e.e.).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 5.04 min, t_R (minor) = 8.38 min.


¹**H** NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.11 (s, 2H), 7.58 – 7.55 (m, 3H), 7.40 – 7.36 (m, 2H), 7.32 – 7.28 (m, 1H), 2.37 (dq, *J* = 14.8, 7.4 Hz, 1H), 2.27 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.94 (s, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 173.7, 141.9, 139.2, 132.2 (q, *J* = 33.2 Hz), 128.8, 127.8, 125.3, 123.1 (q, *J* = 271.1 Hz), 118.93 – 118.90 (m), 117.2 – 117.1 (m), 64.1, 32.3, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.98 (s, 6F).

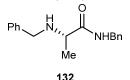
HRMS (ESI) m/z calcd. for C₁₈H₁₇F₆N₂O [M + H]⁺ 391.1240, found 391.1243.

4-Chlorobutyl (S)-4-(2-(benzylamino)propanamido)benzoate (131)

131

According to General Procedure A with 4-chlorobutyl 4-(2-chloropropanamido)benzoate E32

(95.1 mg, 0.30 mmol, 1.5 equiv.) and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 131 (69.2 mg, 89% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.98 min, t_R (minor) = 15.05 min.

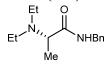
¹**H** NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.02 – 7.99 (m, 2H), 7.66 – 7.63 (m, 2H), 7.38 – 7.26 (m, 5H), 4.35 – 4.30 (m, 2H), 3.82 (s, 2H), 3.62 – 3.59 (m, 2H), 3.37 (q, *J* = 7.0 Hz, 1H), 1.95 – 1.92 (m, 4H), 1.80 (s, 1H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 166.0, 141.9, 139.0, 130.7, 128.7, 127.9, 127.5, 125.3, 118.4, 63.9, 58.4, 52.8, 44.4, 29.2, 26.1, 19.5.

HRMS (ESI) m/z calcd. for $C_{21}H_{26}CIN_2O_3 [M + H]^+$ 389.1626, found 389.1626.

(S)-N-Benzyl-2-(benzylamino)propanamide (132)

According to **General Procedure A** with *N*-benzyl-2-chloropropanamide **E33** (59.1 mg, 0.30 mmol, 1.5 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **132** as a colorless oil (30.1 mg, 56% yield, 82% e.e.).

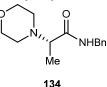

HPLC analysis: Chiralcel OD (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), *t*_R (minor) = 18.12 min, *t*_R (major) = 20.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.36 – 7.20 (m, 10H), 4.45 (d, *J* = 5.9 Hz, 2H), 3.73 (s, 2H), 3.31 (q, *J* = 6.9 Hz, 1H), 1.71 (s, 1H), 1.36 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 139.3, 138.5, 128.7, 128.6, 128.0, 127.6, 127.4, 127.3, 57.9, 52.7, 43.0, 19.8.

HRMS (ESI) m/z calcd. for C₁₇H₂₁N₂O [M + H]⁺ 269.1648, found 269.1642.

(S)-N-Benzyl-2-(diethylamino)propanamide (133)

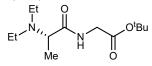

133

According to **General Procedure** C with *N*-benzyl-2-chloropropanamide **E33** (59.1 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **133** as a colorless oil (29.7 mg, 63% yield, 84% e.e.).

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 8.84 min, *t*_R (minor) = 13.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.36 – 7.31 (m, 2H), 7.28 – 7.24 (m, 3H), 4.53 – 4.48 (m, 1H), 4.41 – 4.36 (m, 1H), 3.42 (q, *J* = 6.7 Hz, 1H), 2.59 – 2.50 (m, 2H), 2.47 – 2.38 (m, 2H), 1.24 (d, *J* = 7.1 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 138.7, 128.6, 127.5, 127.2, 59.3, 44.0, 43.1, 13.2, 9.5. HRMS (ESI) *m/z* calcd. for C₁₄H₂₃N₂O [M + H]⁺ 235.1805, found 235.1801. (S)-N-Benzyl-2-morpholinopropanamide (134)


According to **General Procedure C** with *N*-benzyl-2-chloropropanamide **E33** (59.1 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **134** as a colorless oil (33.2 mg, 67% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (minor) = 29.14 min, *t*_R (major) = 30.37 min.

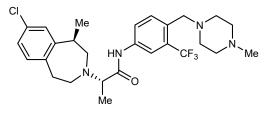
¹**H** NMR (400 MHz, CDCl₃) δ 7.69 – 7.44 (m, 1H), 7.36 – 7.32 (m, 2H), 7.30 – 7.25 (m, 3H), 4.51 – 4.41 (m, 2H), 3.73 – 3.64 (m, 4H), 3.11 (q, *J* = 7.3 Hz, 1H), 2.61 – 2.48 (m, 4H), 1.29 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 138.4, 128.6, 127.5, 127.4, 66.8, 64.4, 50.2, 43.0, 12.3. **HRMS** (ESI) m/z calcd. for C₁₄H₂₁N₂O₂ [M + H]⁺ 249.1598, found 249.1595.

tert-Butyl diethyl-L-alanylglycinate (135)

135

According to **General Procedure E** with *tert*-butyl (2-chloropropanoyl)glycinate **E4** (66.3 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 15/1) to yield the product **135** as a colorless oil (40.3 mg, 78% yield, 98% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), *t*_R (major) = 51.08 min, *t*_R (minor) = 55.26 min.

According to **General Procedure E** with *tert*-butyl (2-chloropropanoyl)glycinate **E4** (44.2 mg, 0.20 mmol, 1.0 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 15/1) to yield the product **135** as a colorless oil (49.9 mg, 97% yield, 92% e.e.).

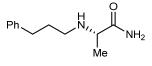
¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 4.03 – 3.85 (m, 2H), 3.39 (q, J = 7.0 Hz, 1H), 2.58 (dq, J = 12.8, 7.3 Hz, 2H), 2.44 (dq, J = 13.6, 6.9 Hz, 2H), 1.48 (s, 9H), 1.20 (d, J = 7.0 Hz, 3H), 1.07 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 175.1, 169.0, 81.8, 59.0, 43.9, 41.7, 28.0, 13.3, 9.2. HRMS (ESI) m/z calcd. for C₁₃H₂₇N₂O₃ [M + H]⁺ 259.2016, found 259.2011.

(S)-2-((R)-8-Chloro-1-methyl-1,2,4,5-tetrahydro-3*H*-benzo[d]azepin-3-yl)-*N*-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)propanamide (136)

136

According to **General Procedure** C with 2-chloro-*N*-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)propanamide **E34** (108.9 mg, 0.30 mmol, 1.5 equiv.), lorcaserin hydrochloride **A99** (46.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 15/1) to yield the product **136** as a colorless oil (79.6 mg, 76% yield, >20:1 d.r.).


¹**H** NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.80 (d, J = 2.3 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.55 – 7.52 (m, 1H), 7.19 – 7.15 (m, 2H), 7.08 – 7.05 (m, 1H), 3.66 (s, 2H), 3.46 (q, J = 7.0 Hz, 1H), 3.20 – 3.12 (m, 1H), 3.04 – 3.03 (m, 1H), 2.99 – 2.91 (m, 1H), 2.89 – 2.68 (m, 11H), 2.54 – 2.47 (m, 4H), 1.39 (d, J = 7.1 Hz, 3H), 1.26 (d, J = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 145.9, 138.2, 136.8, 132.3, 131.8, 131.4, 130.6, 129.3 (q, *J* = 30.3 Hz), 126.5, 126.2, 123.9 (q, *J* = 272.7 Hz), 121.7, 116.3 (q, *J* = 6.0 Hz), 65.6, 57.5, 57.4, 54.5, 51.3, 44.8, 38.7, 35.1, 29.2, 17.8, 9.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.29 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{27}H_{35}ClF_{3}N_{4}O [M + H]^+ 523.2446$, found 523.2450.

(S)-2-((3-Phenylpropyl)amino)propanamide (137)

137

According to **General Procedure A** with 2-chloropropanamide **E6** (21.4 mg, 0.20 mmol, 1.0 equiv.), 3-phenylpropan-1-amine **A13** (40.5 mg, 0.30 mmol, 1.5 equiv.), and **L*5** (15.8 mg, 0.03 mmol, 15 mol%), for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **137** as a white solid (16.8 mg, 41% yield, 93% e.e.).

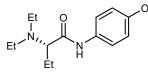
HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 214 nm), $t_{\rm R}$ (minor) = 9.67 min, $t_{\rm R}$ (major) = 14.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.21 – 7.16 (m, 3H), 7.04 (s, 1H), 5.49 (s, 1H), 3.14 (q, *J* = 7.0 Hz, 1H), 2.73 – 2.56 (m, 4H), 1.85 – 1.77 (m, 2H), 1.58 (s, 1H), 1.31 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.2, 141.7, 128.4, 128.3, 125.9, 58.4, 48.2, 33.5, 31.7, 19.7. HRMS (ESI) m/z calcd. for C₁₂H₁₉N₂O [M + H]⁺ 207.1492, found 207.1491.

(S)-2-(Diethylamino)propanamide (138)

According to **General Procedure E** with 2-chloropropanamide **E6** (32.1 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 10/1) to yield the product **138** as a white solid (25.1 mg, 87% yield, 88% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.9 mL/min, λ = 214 nm), *t*_R (major) = 39.92 min, *t*_R (minor) = 49.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.03 (s, 1H), 3.37 (q, *J* = 7.0 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.46 – 2.38 (m, 2H), 1.19 (d, *J* = 7.0 Hz, 3H), 1.04 (t, *J* = 7.1 Hz, 6H).

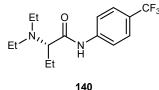
¹³C NMR (100 MHz, CDCl₃) δ 178.4, 59.0, 44.0, 13.4, 8.9.

HRMS (ESI) m/z calcd. for $C_7H_{17}N_2O[M + H]^+$ 145.1335, found 145.1334.

(S)-2-(Diethylamino)-N-(4-methoxyphenyl)butanamide (139)

139

According to **General Procedure E** with 2-chloro-*N*-(4-methoxyphenyl)butanamide **E35** (68.1 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **139** as a colorless oil (38.3 mg, 72% yield, 97% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.28 min, *t*_R (minor) = 15.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.50 – 7.46 (m, 2H), 6.88 – 6.84 (m, 2H), 3.79 (s, 3H), 3.23 (dd, *J* = 7.8, 4.9 Hz, 1H), 2.76 – 2.68 (m, 2H), 2.66 – 2.57 (m, 2H), 1.97 – 1.86 (m, 1H), 1.76 – 1.66 (m, 1H), 1.12 – 1.07 (m, 9H).

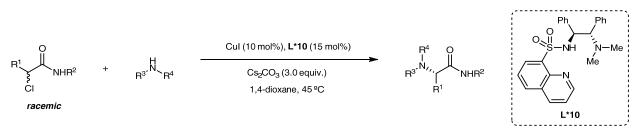
¹³C NMR (100 MHz, CDCl₃) δ 172.0, 156.0, 131.3, 120.7, 114.1, 66.5, 55.4, 44.3, 19.6, 13.1, 12.7.

HRMS (ESI) m/z calcd. for $C_{15}H_{25}N_2O_2 [M + H]^+$ 265.1911, found 265.1907.

(S)-2-(Diethylamino)-N-(4-(trifluoromethyl)phenyl)butanamide (140)

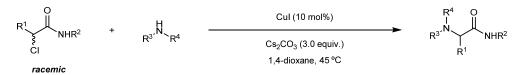
According to General Procedure E with 2-chloro-*N*-(4-(trifluoromethyl)phenyl)butanamide E36 (79.5 mg, 0.30 mmol, 1.5 equiv.) and diethylamine A51 (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 140 as a colorless oil (33.6 mg, 56% yield, 95%)

e.e.).

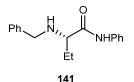

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.20 min, t_R (minor) = 9.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 7.69 – 7.67 (m, 2H), 7.58 – 7.56 (m, 2H), 3.22 (dd, *J* = 7.7, 4.9 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.64 – 2.55 (m, 2H), 1.96 – 1.85 (m, 1H), 1.77 – 1.66 (m, 1H), 1.13 – 1.08 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 141.0, 126.2 (q, *J* = 3.8 Hz), 125.4 (q, *J* = 32.7 Hz), 124.2 (q, *J* = 269.7 Hz), 118.6, 66.6, 44.4, 19.4, 13.4, 12.9.


¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.02 (s, 3F).

HRMS (ESI) m/z calcd. for $C_{15}H_{22}F_{3}N_{2}O [M + H]^{+} 303.1679$, found 303.1675.

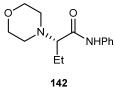

General procedure H:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*10 (12.9 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, α -alkyl secondary alkyl chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), α -alkyl secondary alkyl chloride (0.30 mmol, 1.5 equiv.), alkyl amine (0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Benzylamino)-N-phenylbutanamide (141)

According to General Procedure H with 2-chloro-*N*-phenylbutanamide E7 (78.8 mg, 0.40 mmol, 2.0 equiv.) and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 141 as a colorless oil (45.6 mg, 85% yield, 92% e.e.).

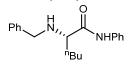

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.27 min, *t*_R (minor) = 16.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 7.60 – 7.56 (m, 2H), 7.38 – 7.26 (m, 7H), 7.12 – 7.07 (m, 1H), 3.79 (q, *J* = 13.1 Hz, 2H), 3.21 (dd, *J* = 7.4, 5.0 Hz, 1H), 1.92 – 1.65 (m, 3H), 0.98 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 139.2, 137.7, 128.9, 128.7, 128.0, 127.4, 124.0, 119.3, 64.3, 53.0, 26.6, 10.2.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M + H]^+ 269.1648$, found 269.1646.

(S)-2-morpholino-N-phenylbutanamide (142)


According to **General Procedure H** with 2-chloro-*N*-phenylbutanamide **E7** (59.1 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **142** as a colorless oil (49.5 mg, 99% yield, 96% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 18.62 min, t_R (minor) = 20.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.57 – 7.54 (m, 2H), 7.35 – 7.30 (m, 2H), 7.13 – 7.08 (m, 1H), 3.81 – 3.72 (m, 4H), 2.90 (dd, *J* = 7.5, 5.0 Hz, 1H), 2.69 – 2.55 (m, 4H), 1.90 – 1.72 (m, 2H), 1.03 (t, *J* = 7.5 Hz, 3H).

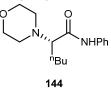
¹³C NMR (100 MHz, CDCl₃) δ 170.9, 137.6, 129.0, 124.1, 119.3, 71.4, 67.2, 50.9, 21.2, 10.8. **HRMS** (ESI) m/z calcd. for C₁₄H₂₁N₂O₂ [M + H]⁺ 249.1598, found 249.1596.

(S)-2-(Benzylamino)-N-phenylhexanamide (143)

143

According to **General Procedure H** with 2-chloro-*N*-phenylhexanamide **E8** (90.0 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **143** as a colorless oil (57.8 mg, 98% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R


 $(major) = 8.61 \text{ min}, t_{\mathbb{R}} (minor) = 11.40 \text{ min}.$

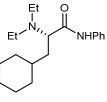
¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.60 – 7.57 (m, 2H), 7.38 – 7.26 (m, 7H), 7.12 – 7.07 (m, 1H), 3.84 – 3.73 (m, 2H), 3.26 (dd, *J* = 7.8, 4.9 Hz, 1H), 2.05 (s, 1H), 1.88 – 1.79 (m, 1H), 1.69 – 1.60 (m, 1H), 1.40 – 1.25 (m, 4H), 0.88 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 139.0, 137.7, 128.9, 128.6, 128.1, 127.4, 123.9, 119.3, 63.1, 53.0, 33.3, 27.9, 22.5, 13.8.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O[M + H]^+$ 297.1961, found 297.1957.

(S)-2-Morpholino-N-phenylhexanamide (144)

According to **General Procedure H** with 2-chloro-*N*-phenylhexanamide **E8** (67.5 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **144** as a colorless oil (54.6 mg, 99% yield, 95% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 15.43 min, *t*_R (major) = 17.46 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 7.57 – 7.55 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.09 (m, 1H), 3.81 – 3.72 (m, 4H), 2.96 (dd, J = 7.2, 5.4 Hz, 1H), 2.69 – 2.55 (m, 4H), 1.82 – 1.68 (m, 2H), 1.50 – 1.29 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H).

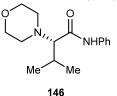
¹³C NMR (100 MHz, CDCl₃) δ 171.0, 137.6, 129.0, 124.0, 119.3, 70.1, 67.2, 50.8, 28.6, 27.7, 22.8, 13.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{25}N_2O_2 [M + H]^+ 277.1911$, found 277.1907.

(S)-3-Cyclohexyl-2-(diethylamino)-N-phenylpropanamide (145)

145

According to **General Procedure E** with 2-chloro-3-cyclohexyl-*N*-phenylpropanamide **E37** (79.5 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **145** as a colorless oil (53.5 mg, 89% yield, 95% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 6.14 min, t_R (minor) = 9.09 min.

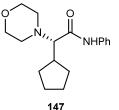
¹**H** NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.58 – 7.55 (m, 2H), 7.34 – 7.29 (m, 2H), 7.09 – 7.05 (m, 1H), 3.41 (dd, *J* = 8.8, 3.6 Hz, 1H), 2.67 – 2.58 (m, 2H), 2.53 – 2.45 (m, 2H), 1.86 – 1.77 (m, 3H), 1.73 – 1.63 (m, 3H), 1.62 – 1.51 (m, 1H), 1.35 – 1.16 (m, 4H), 1.11 (t, *J* = 7.1 Hz, 6H), 1.02 – 0.92 (m, 1H), 0.89 – 0.79 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 138.1, 128.9, 123.6, 119.0, 61.1, 44.5, 35.8, 34.2, 32.8, 32.6, 26.6, 26.3, 26.2, 13.9.

HRMS (ESI) m/z calcd. for C₁₉H₃₁N₂O [M + H]⁺ 303.2431, found 303.2428.

(S)-3-Methyl-2-morpholino-N-phenylbutanamide (146)

According to **General Procedure H** with 2-chloro-3-methyl-*N*-phenylbutanamide **E38** (63.3 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **146** as a colorless oil (18.9 mg, 36% yield, 87% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 15.16 min, *t*_R (minor) = 16.98 min.

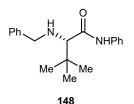
¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.56 – 7.53 (m, 2H), 7.36 – 7.31 (m, 2H), 7.13 – 7.09 (m, 1H), 3.80 – 3.72 (m, 4H), 2.74 (d, *J* = 5.0 Hz, 1H), 2.66 – 2.54 (m, 4H), 2.29 – 2.18 (m, 1H), 1.09 (d, *J* = 6.9 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 137.4, 129.0, 124.2, 119.6, 76.0, 67.2, 51.4, 26.4, 20.2, 17.0.

HRMS (ESI) m/z calcd. for C₁₅H₂₃N₂O₂ [M + H]⁺ 263.1754, found 263.1749.

(S)-2-Cyclopentyl-2-morpholino-*N*-phenylacetamide (147)

According to **General Procedure H** with 2-chloro-2-cyclopentyl-*N*-phenylacetamide **E39** (71.1 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **147** as a colorless oil (32.8 mg, 57% yield, 81% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (major) = 23.92 min, t_R (minor) = 26.42 min.

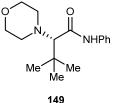
¹**H** NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.55 – 7.52 (m, 2H), 7.35 – 7.30 (m, 2H), 7.12 – 7.08 (m, 1H), 3.78 – 3.70 (m, 4H), 2.91 (d, *J* = 6.8 Hz, 1H), 2.72 – 2.60 (m, 4H), 2.32 – 2.22 (m, 1H), 1.89 – 1.81 (m, 1H), 1.72 – 1.58 (m, 4H), 1.56 – 1.39 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 137.5, 129.0, 124.1, 119.6, 74.5, 67.3, 51.3, 38.8, 30.8, 28.9, 25.3, 25.0.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}N_2O_2 [M + H]^+$ 289.1911, found 289.1905.

(S)-2-(Benzylamino)-3,3-dimethyl-N-phenylbutanamide (148)

According to General Procedure H with 2-chloro-3,3-dimethyl-*N*-phenylbutanamide E40 (90.0 mg, 0.40 mmol, 2.0 equiv.) and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 148 as a colorless oil (46.9 mg, 79% yield, 87% e.e.).

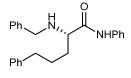

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 12.55 min, t_R (minor) = 14.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 7.60 – 7.56 (m, 2H), 7.38 – 7.27 (m, 7H), 7.12 – 7.08 (m, 1H), 3.82 (d, J = 13.1 Hz, 1H), 3.66 (d, J = 13.1 Hz, 1H), 2.95 (s, 1H), 1.85 (s, 1H), 1.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 170.8, 139.3, 137.7, 129.0, 128.6, 128.2, 127.4, 124.0, 119.4, 72.6, 53.4, 34.1, 27.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₅N₂O [M + H]⁺297.1961, found 297.1957.

(S)-3,3-Dimethyl-2-morpholino-N-phenylbutanamide (149)


According to **General Procedure H** with 2-chloro-3,3-dimethyl-*N*-phenylbutanamide **E40** (67.5 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **149** as a colorless oil (40.8 mg, 74% yield, 87% e.e.). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R

 $(minor) = 7.50 min, t_R (major) = 10.48 min.$

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.53 – 7.50 (m, 2H), 7.35 – 7.30 (m, 2H), 7.14 – 7.09 (m, 1H), 3.76 – 3.68 (m, 4H), 2.91 – 2.86 (m, 2H), 2.71 – 2.66 (m, 2H), 2.64 (s, 1H), 1.12 (s, 9H).

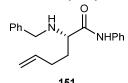
¹³C NMR (100 MHz, CDCl₃) δ 169.1, 137.4, 129.0, 124.4, 120.0, 79.0, 67.6, 53.2, 35.3, 27.9. HRMS (ESI) *m/z* calcd. for C₁₆H₂₅N₂O₂ [M + H]⁺277.1911, found 277.1907.

(S)-2-(Benzylamino)-N,5-diphenylpentanamide (150)

150

According to General Procedure H with 2-chloro-N,5-diphenylpentanamide E10 (114.8 mg, 0.40 mmol, 2.0 equiv.) and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the

reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **150** as a colorless oil (63.1 mg, 88% yield, 85% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 17.07 min, *t*_R (minor) = 26.52 min.

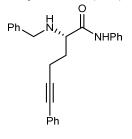
¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.58 – 7.56 (m, 2H), 7.36 – 7.22 (m, 9H), 7.18 – 7.16 (m, 1H), 7.15 – 7.07 (m, 3H), 3.81 – 3.70 (m, 2H), 3.30 – 3.27 (m, 1H), 2.73 (s, 1H), 2.59 (t, J = 7.1 Hz, 2H), 1.89 – 1.81 (m, 1H), 1.75 – 1.63 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 141.6, 138.9, 137.6, 129.0, 128.7, 128.34, 128.32, 128.1, 127.5, 125.9, 124.0, 119.3, 62.9, 52.9, 35.5, 33.2, 27.6.

HRMS (ESI) m/z calcd. for C₂₄H₂₇N₂O $[M + H]^+$ 359.2118, found 359.2112.

(S)-2-(Benzylamino)-*N*-phenylhex-5-enamide (151)

According to **General Procedure H** with 2-chloro-*N*-phenylhex-5-enamide **E11** (89.2 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **151** as a colorless oil (45.9 mg, 78% yield, 92% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.24 min, t_R (minor) = 18.63 min.

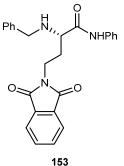
¹**H** NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.59 – 7.57 (m, 2H), 7.39 – 7.27 (m, 7H), 7.13 – 7.08 (m, 1H), 5.84 – 5.74 (m, 1H), 5.06 – 4.98 (m, 2H), 3.84 – 3.74 (m, 2H), 3.28 (dd, *J* = 8.0, 4.7 Hz, 1H), 2.26 – 2.11 (m, 2H), 2.01 – 1.92 (m, 1H), 1.78 – 1.71 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 139.2, 137.7, 137.3, 129.0, 128.7, 128.1, 127.5, 124.0, 119.3, 115.7, 62.7, 53.0, 32.8, 30.3.

HRMS (ESI) m/z calcd. for $C_{19}H_{23}N_2O [M + H]^+ 295.1805$, found 295.1801.

(S)-2-(Benzylamino)-*N*,6-diphenylhex-5-ynamide (152)

152


According to **General Procedure H** with 2-chloro-*N*,6-diphenylhex-5-ynamide **E12** (118.8 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **152** as a colorless oil (37.6 mg, 51% yield, 94% e.e.).

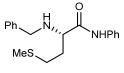
HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 28.83 min, *t*_R (minor) = 33.14 min.

¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.60 – 7.57 (m, 2H), 7.35 – 7.22 (m, 12H), 7.13 –

7.08 (m, 1H), 3.84 (s, 2H), 3.46 (dd, J = 8.0, 4.6 Hz, 1H), 2.67 – 2.53 (m, 2H), 2.31 (s, 1H), 2.23 – 2.15 (m, 1H), 1.99 – 1.90 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.8, 139.0, 137.6, 131.5, 129.0, 128.7, 128.2, 128.1, 127.8, 127.4, 124.1, 123.2, 119.4, 88.7, 82.0, 63.0, 53.0, 31.8, 16.8. **HRMS** (ESI) m/z calcd. for C₂₅H₂₅N₂O [M + H]⁺ 369.1961, found 369.1955.

(S)-2-(Benzylamino)-4-(1,3-dioxoisoindolin-2-yl)-N-phenylbutanamide (153)

According to **General Procedure H** with 2-chloro-4-(1,3-dioxoisoindolin-2-yl)-*N*-phenylbutanamide **E13** (136.8 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **153** as a colorless oil (47.9 mg, 58% yield, 88% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 214 nm), *t*_R (major) = 114.44 min, *t*_R (minor) = 131.36 min.

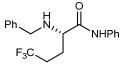
¹**H** NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 7.82 – 7.77 (m, 2H), 7.71 – 7.65 (m, 2H), 7.55 – 7.52 (m, 2H), 7.36 – 7.22 (m, 7H), 7.09 – 7.05 (m, 1H), 3.87 – 3.75 (m, 4H), 3.27 (t, *J* = 6.3 Hz, 1H), 2.26 – 2.17 (m, 1H), 2.14 – 2.06 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.4, 139.1, 137.6, 134.0, 131.8, 128.9, 128.6, 128.1, 127.4, 124.0, 123.3, 119.3, 60.4, 52.4, 34.3, 31.4.

HRMS (ESI) m/z calcd. for $C_{25}H_{24}N_3O_3 [M + H]^+ 414.1812$, found 414.1806.

(S)-2-(Benzylamino)-4-(methylthio)-N-phenylbutanamide (154)

154


According to **General Procedure H** with 2-chloro-4-(methylthio)-*N*-phenylbutanamide **E15** (97.2 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **154** as a colorless oil (47.2 mg, 75% yield, 85% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 23.29 min, t_R (minor) = 28.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.59 – 7.56 (m, 2H), 7.39 – 7.27 (m, 7H), 7.14 – 7.09 (m, 1H), 3.86 – 3.77 (m, 2H), 3.41 (dd, *J* = 7.6, 5.1 Hz, 1H), 2.67 – 2.56 (m, 2H), 2.22 – 2.12 (m, 1H), 2.11 (s, 3H), 1.98 – 1.89 (m, 1H), 1.31 (s, 1H).

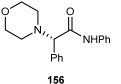
¹³C NMR (100 MHz, CDCl₃) δ 171.8, 139.1, 137.6, 129.0, 128.8, 128.1, 127.6, 124.2, 119.4, 62.4, 52.9, 32.5, 30.9, 15.4. HRMS (ESI) m/z calcd. for C₁₈H₂₃N₂OS [M + H]⁺ 315.1526, found 315.1520.

(S)-2-(Benzylamino)-5,5,5-trifluoro-N-phenylpentanamide (155)

155

According to **General Procedure H** with 2-chloro-5,5,5-trifluoro-*N*-phenylpentanamide **E16** (106.0 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **155** as a colorless oil (52.8 mg, 79% yield, 97% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (major) = 9.55 min, *t*_R (minor) = 10.57 min.


¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.57 – 7.54 (m, 2H), 7.40 – 7.28 (m, 7H), 7.15 – 7.11 (m, 1H), 3.87 – 3.76 (m, 2H), 3.30 (t, *J* = 6.5 Hz, 1H), 2.33 – 2.16 (m, 2H), 2.07 – 1.90 (m, 2H), 1.73 (s, 1H).

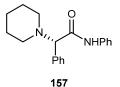
¹³C NMR (100 MHz, CDCl₃) δ 170.9, 138.7, 137.4 129.1, 128.9, 128.1, 127.8, 126.8 (q, *J* = 274.6 Hz), 124.5, 119.5, 61.4, 52.7, 30.5 (q, *J* = 29.0 Hz), 26.1 (q, *J* = 2.8 Hz)

¹⁹**F NMR** (376 MHz, CDCl3) δ -66.43 (s, 3F).

HRMS (ESI) m/z calcd. for C₁₈H₂₀F₃N₂O [M + H]⁺ 337.1522, found 337.1517.

(S)-2-Morpholino-N,2-diphenylacetamide (156)

According to **General Procedure F** with 2-chloro-*N*,2-diphenylacetamide **E18** (73.5 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **156** as a white solid (52.6 mg, 89% yield, 94% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 7.73 min, *t*_R (major) = 9.89 min.

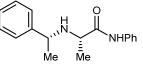
¹**H NMR** (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.58 – 7.55 (m, 2H), 7.37 – 7.30 (m, 7H), 7.13 – 7.09 (m, 1H), 3.96 (s, 1H), 3.79 – 3.73 (m, 4H), 2.55 – 2.47 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 137.5, 134.7, 129.0, 128.83, 128.77, 128.5, 124.3, 119.5, 76.7, 67.0, 52.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₁N₂O₂ [M + H]⁺ 297.1598, found 297.1602.

(S)-N,2-Diphenyl-2-(piperidin-1-yl)acetamide (157)

According to **General Procedure F** with 2-chloro-*N*,2-diphenylacetamide **E18** (73.5 mg, 0.30 mmol, 1.5 equiv.) and piperidine **A55** (17.0 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **156** as a white solid (50.3 mg, 85% yield, 94% e.e.).


HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.35 min, t_R (minor) = 11.44 min.

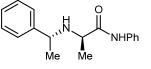
¹**H** NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.61 – 7.57 (m, 2H), 7.34 – 7.29 (m, 7H), 7.11 – 7.07 (m, 1H), 4.05 (s, 1H), 2.51 – 2.42 (m, 4H), 1.66 – 1.61 (m, 4H), 1.48 – 1.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 137.8, 135.0, 129.2, 129.0, 128.4, 128.1, 124.0, 119.4, 76.3, 52.6, 26.3, 24.0.

HRMS (ESI) m/z calcd. for C₁₉H₂₃N₂O [M + H]⁺ 295.1805, found 295.1810.

7. Procedure for synthetic applications

Catalyst-controlled stereoselectivity in the N-alkylation of chiral aliphatic amines (S)-N-Phenyl-2-(((R)-1-phenylethyl)amino)propanamide (158)

158


According to **General procedure A** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (*R*)-1-phenylethan-1-amine **A100** (24.2 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **158** as a colorless oil (47.0 mg, 88% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.45 – 7.42 (m, 2H), 7.34 – 7.19 (m, 7H), 7.08 – 7.03 (m, 1H), 3.86 (q, *J* = 6.6 Hz, 1H), 3.27 (q, *J* = 7.0 Hz, 1H), 1.59 (s, 1H), 1.45 (d, *J* = 6.6 Hz, 3H), 1.41 (d, *J* = 7.0 Hz, 3H).

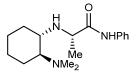
¹³C NMR (100 MHz, CDCl₃) δ 173.0, 144.2, 137.7, 128.8, 128.7, 127.4, 126.5, 123.8, 119.2, 57.2, 56.6, 23.6, 19.1.

HRMS (ESI) m/z calcd. For $C_{17}H_{21}N_{2}O [M + H]^+ 269.1648$, found 269.1651.

(R)-N-Phenyl-2-(((R)-1-phenylethyl)amino)propanamide ((R)-158)

(R)-**158**

According to General procedure A with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), (*R*)-1-phenylethan-1-amine A100 (24.2 mg, 0.20 mmol, 1.0 equiv.), and (8R,9R)-L*4 (15.4 mg, 0.03 mmol, 15 mol%) for 72 h, the reaction mixture was purified by flash


column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product (*R*)-**158** as a white solid (45.8 mg, 85% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

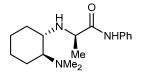
¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.62 – 7.61 (m, 2H), 7.36 – 7.32 (m, 4H), 7.28 – 7.24 (m, 3H), 7.13 – 7.09 (m, 1H), 3.75 (q, *J* = 6.7 Hz, 1H), 3.13 (q, *J* = 7.0 Hz, 1H), 1.79 (s, 1H), 1.40 (d, *J* = 6.7 Hz, 3H), 1.28 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 144.4, 137.8, 129.0, 128.7, 127.4, 126.2, 124.0, 119.3, 57.4, 56.6, 24.1, 20.2.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M + H]^+ 269.1648$, found 269.1650.

(S)-2-(((1S,2S)-2-(Dimethylamino)cyclohexyl)amino)-N-phenylpropanamide (159)

159

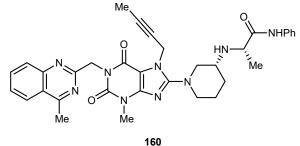

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and $(1S,2S)-N^1$, N^1 -dimethylcyclohexane-1,2-diamine **A101** (28.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **159** as a colorless oil (42.5 mg, 73% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.68 – 7.65 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.05 (m, 1H), 3.25 (q, *J* = 7.0 Hz, 1H), 3.01 (s, 1H), 2.50 – 2.38 (m, 2H), 2.33 (s, 6H), 2.02 – 1.97 (m, 1H), 1.87 – 1.79 (m, 2H), 1.67 – 1.62 (m, 1H), 1.41 (d, *J* = 7.0 Hz, 3H), 1.23 – 1.02 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 138.1, 128.8, 123.8, 119.5, 67.0, 58.5, 57.4, 39.8, 32.6, 25.1, 24.4, 20.9, 19.6.

HRMS (ESI) m/z calcd. For $C_{17}H_{28}N_{3}O[M + H]^+$ 290.2227, found 290.2228.

(R)-2-(((1S,2S)-2-(Dimethylamino)cyclohexyl)amino)-N-phenylpropanamide ((R)-159)

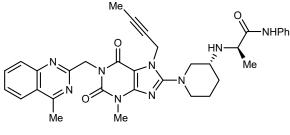

(R)-**159**

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), $(1S,2S)-N^1$, N^1 -dimethylcyclohexane-1,2-diamine **A101** (28.4 mg, 0.20 mmol, 1.0 equiv.), and (8R,9R)-L*5 (15.8 mg, 0.03 mmol, 15 mol%) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product (*R*)-159 as a colorless oil (43.6 mg, 75% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 7.97 – 7.95 (m, 2H), 7.31 – 7.27 (m, 2H), 7.08 – 7.04 (m, 1H), 5.34 (s, 1H), 3.92 (q, *J* = 6.8 Hz, 1H), 3.11 – 3.05 (m, 1H), 2.64 – 2.40 (m, 8H), 1.99 – 1.95 (m, 1H), 1.89 – 1.85 (m, 1H), 1.81 – 1.77 (m, 1H), 1.56 (d, *J* = 6.8 Hz, 3H), 1.38 – 1.16 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 138.5, 128.6, 123.8, 119.9, 67.6, 56.1, 55.8, 40.0, 30.2, 24.19, 24.16, 22.6, 20.0. HRMS (ESI) m/z calcd. For C₁₇H₂₈N₃O [M + H]⁺ 290.2227, found 290.2230.

(S)-2-(((R)-1-(7-(But-2-yn-1-yl)-3-methyl-1-((4-methylquinazolin-2-yl)methyl)-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-8-yl)piperidin-3-yl)amino)-*N*-phenylpropanamide (160)


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), linagliptin **A102** (94.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 20/1) to yield the product **160** as a white solid (115.3 mg, 93% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.99 – 7.97 (m, 1H), 7.86 – 7.84 (m, 1H), 7.75 – 7.71 (m, 1H), 7.57 – 7.54 (m, 2H), 7.52 – 7.47 (m, 1H), 7.31 – 7.27 (m, 2H), 7.08 – 7.04 (m, 1H), 5.54 (s, 2H), 4.86 – 4.84 (m, 2H), 3.68 – 3.64 (m, 1H), 3.53 – 3.42 (m, 5H), 3.26 – 3.19 (m, 1H), 3.14 – 3.08 (m, 1H), 2.97 – 2.92 (m, 1H), 2.86 (s, 3H), 2.04 – 1.97 (m, 1H), 1.94 – 1.87 (m, 1H), 1.80 – 1.67 (m, 4H), 1.55 – 1.49 (m, 1H), 1.44 (d, *J* = 6.9 Hz, 3H), 1.26 (s, 1H).

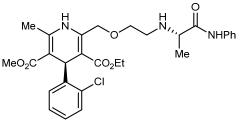
¹³C NMR (100 MHz, CDCl₃) δ 173.0, 168.3, 161.0, 155.6, 154.1, 151.6, 149.7, 147.6, 137.4, 133.1, 128.8, 128.6, 126.5, 124.7, 124.0, 122.9, 119.3, 104.4, 81.5, 73.0, 56.5, 55.7, 52.8, 50.4, 46.1, 35.5, 30.2, 29.4, 22.8, 21.6, 20.1, 3.5.

HRMS (ESI) m/z calcd. for C₃₄H₃₈N₉O₃ [M + H]⁺ 620.3092, found 620.3094.

(*R*)-2-(((*R*)-1-(7-(But-2-yn-1-yl)-3-methyl-1-((4-methylquinazolin-2-yl)methyl)-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-8-yl)piperidin-3-yl)amino)-*N*-phenylpropanamide ((*R*)-160)

(*R*)-**160**

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), linagliptin **A102** (94.4 mg, 0.20 mmol, 1.0 equiv.), and (8R,9R)-L*5 (15.8 mg, 0.03 mmol, 15 mol%) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 20/1) to yield the product (*R*)-**160** as a white solid (119.1 mg, 96% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.


¹**H** NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.99 – 7.97 (m, 1H), 7.85 – 7.83 (m, 1H), 7.75 – 7.71 (m, 1H), 7.60 – 7.54 (m, 2H), 7.52 – 7.48 (m, 1H), 7.33 – 7.29 (m, 2H), 7.10 – 7.07 (m, 1H), 5.57 (s, 2H), 4.90 – 4.80 (m, 2H), 3.81 – 3.77 (m, 1H), 3.59 – 3.44 (m, 5H), 3.22 – 3.12 (m, 1H), 3.04 – 2.99 (m, 1H), 2.88 – 2.82 (m, 4H), 2.03 – 1.97 (m, 1H), 1.93 – 1.88 (m, 1H), 1.81 – 1.68 (m, 4H), 1.53 – 1.46 (m, 1H), 1.39 (d, *J* = 6.9 Hz, 3H), 1.26 (s, 1H).

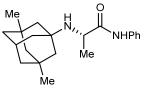
¹³C NMR (100 MHz, CDCl₃) δ 173.1, 168.3, 160.9, 155.8, 154.2, 151.6, 149.7, 147.7, 137.6, 133.1, 128.8, 128.6, 126.5, 124.7, 123.9, 122.9, 119.0, 104.4, 81.5, 73.1, 56.3, 54.9, 52.7, 50.4, 46.1, 35.5, 31.6, 29.6, 23.0, 21.6, 20.1, 3.5.

HRMS (ESI) m/z calcd. for C₃₄H₃₈N₉O₃ [M + H]⁺ 620.3092, found 620.3096.

Late-stage N-alkylation of amine drug molecules

3-Ethyl 5-methyl (S)-4-(2-chlorophenyl)-6-methyl-2-((2-(((S)-1-oxo-1-(phenylamino)propan-2-yl)amino)ethoxy)methyl)-1,4-dihydropyridine-3,5-dicarboxylate (161)

161


According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and (*S*)-amlodipine **A103** (81.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc /CH₃OH = 50/1) to yield the product **161** as a yellowish oil (84.6 mg, 76% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 7.59 – 7.57 (m, 2H), 7.38 – 7.36 (m, 1H), 7.32 – 7.28 (m, 2H), 7.25 – 7.22 (m, 1H), 7.14 – 7.02 (m, 4H), 5.41 (s, 1H), 4.81 – 4.70 (m, 2H), 4.10 – 3.98 (m, 2H), 3.73 – 3.66 (m, 2H), 3.62 (s, 3H), 3.39 – 3.33 (m, 1H), 3.06 – 3.00 (m, 1H), 2.89 – 2.83 (m, 1H), 2.30 (s, 3H), 1.89 (s, 1H), 1.43 (d, *J* = 7.0 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 167.9, 167.0, 145.6, 144.8, 143.9, 137.7, 132.3, 131.4, 129.2, 129.0, 127.3, 126.8, 124.1, 119.2, 103.9, 101.8, 71.0, 68.0, 59.8, 59.0, 50.7, 47.9, 37.2, 19.8, 19.3, 14.2.

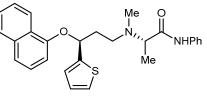
HRMS (ESI) m/z calcd. for $C_{29}H_{35}CIN_3O_6 [M + H]^+$ 556.2209, found 556.2206.

(2*S*)-2-((3,5-Dimethyladamantan-1-yl)amino)-*N*-phenylpropanamide (162)

162

According to **General Procedure B** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), memantine hydrochloride **A104** (43.0 mg, 0.20 mmol, 1.0 equiv.), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.), anhydrous NMP (2.8 mL),

and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **162** as a colorless oil (59.7 mg, 91% yield, 94% e.e.).

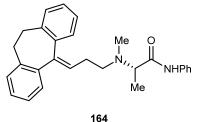

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.39 min, t_R (minor) = 17.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.60 – 7.58 (m, 2H), 7.35 – 7.31 (m, 2H), 7.11 – 7.07 (m, 1H), 3.49 (q, *J* = 7.1 Hz, 1H), 2.13 – 2.10 (m, 1H), 1.54 – 1.49 (m, 1H), 1.43 – 1.33 (m, 6H), 1.28 – 1.21 (m, 6H), 1.18 – 1.06 (m, 3H), 0.83 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.7, 137.8, 128.9, 123.8, 119.1, 53.3, 50.7, 49.2, 49.0, 42.7, 42.6, 41.4, 32.33, 32.30, 30.1, 30.0, 21.6.

HRMS (ESI) m/z calcd. for $C_{21}H_{31}N_2O [M + H]^+ 327.2431$, found 327.2429.

(S)-2-(Methyl((S)-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)amino)-*N*-phenylpropanamide (163)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), duloxetine hydrochloride **A105** (66.6 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **163** as a colorless oil (60.5 mg, 68% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.27 – 8.25 (m, 1H), 7.76 – 7.74 (m, 1H), 7.47 – 7.36 (m, 5H), 7.30 – 7.26 (m, 2H), 7.24 – 7.19 (m, 2H), 7.09 – 7.04 (m, 2H), 6.93 – 6.91 (m, 1H), 6.82 – 6.80 (m, 1H), 5.74 – 5.71 (m, 1H), 3.39 – 3.33 (m, 1H), 2.94 – 2.81 (m, 2H), 2.54 – 2.26 (m, 5H), 1.28 (d, *J* = 7.0 Hz, 3H).

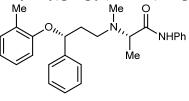
¹³C NMR (100 MHz, CDCl₃) δ 171.8, 153.2, 144.7, 137.8, 134.6, 128.9, 127.5, 126.7, 126.4, 126.0, 125.6, 125.4, 124.9, 124.7, 123.9, 121.8, 120.9, 119.4, 106.8, 74.5, 63.8, 51.1, 37.9, 37.3, 9.2.

HRMS (ESI) m/z calcd. for $C_{27}H_{29}N_2O_2S [M + H]^+ 445.1944$, found 445.1944.

(S)-2-((3-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)propyl)(methyl)amino)-*N*-phenylpropanamide (164)

According to General Procedure C with 2-chloro-N-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), nortriptyline hydrochloride A106 (59.8 mg, 0.20 mmol, 1.0 equiv.), and

 Cs_2CO_3 (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product **164** as a colorless oil (41.3 mg, 50% yield, 92% e.e.).

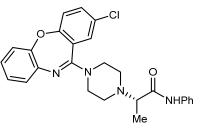

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 26.35 min, t_R (major) = 27.84 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.32 – 9.28 (m, 1H), 7.30 – 7.05 (m, 12H), 7.02 – 6.96 (m, 1H), 5.93 – 5.87 (m, 1H), 3.38 (q, *J* = 12.8 Hz, 1H), 3.28 – 3.22 (m, 2H), 2.99 – 2.72 (m, 2H), 2.57 – 2.28 (m, 4H), 2.10 (s, 3H), 1.22 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.8, 144.7, 144.5, 140.8, 139.8, 139.4, 137.8, 137.0, 130.2, 128.9, 128.8, 128.6, 128.2, 128.0, 127.6, 127.3, 126.2, 125.7, 123.5, 118.7, 64.4, 63.6, 54.8, 52.4, 38.5, 36.7, 33.7, 32.0, 27.7, 10.6, 8.3.

HRMS (ESI) m/z calcd. for C₂₈H₃₁N₂O [M + H]⁺ 411.2431, found 411.2435.

(S)-2-(Methyl((R)-3-phenyl-3-(o-tolyloxy)propyl)amino)-N-phenylpropanamide (165)


165

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), atomoxetine hydrochloride **A107** (58.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography (petroleum ether/EtOAc = 1/2) to yield the product **165** as a colorless oil (66.0 mg, 82% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

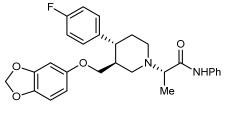
¹**H** NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 7.47 – 7.45 (m, 2H), 7.33 – 7.21 (m, 7H), 7.10 – 7.05 (m, 2H), 6.96 – 6.91 (m, 1H), 6.79 – 6.75 (m, 1H), 6.58 – 6.56 (m, 1H), 5.21 (dd, *J* = 8.6, 4.1 Hz, 1H), 3.56 – 3.24 (m, 1H), 2.92 – 2.65 (m, 2H), 2.33 (s, 3H), 2.27 (s, 3H), 2.25 – 2.11 (m, 2H), 1.29 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 155.8, 141.7, 137.8, 130.7, 128.9, 128.7, 127.6, 126.9, 126.6, 125.6, 123.9, 120.4, 119.2, 112.6, 77.6, 63.2, 51.0, 38.3, 37.0, 16.4, 9.7. **HRMS** (ESI) m/z calcd. for C₂₆H₃₁N₂O₂ [M + H]⁺ 403.2380, found 403.2381.

(S)-2-(4-(2-Chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazin-1-yl)-*N*-phenylpropanamide (166)

166

According to General Procedure C with 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.) and amoxapine A108 (62.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction


mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/3) to yield the product **166** as a colorless oil (88.3 mg, 96% yield, 92% e.e.). **HPLC** analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R

(minor) = 15.23 min, $t_{\rm R}$ (major) = 17.76 min. ¹**H NMR** (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.57 – 7.55 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.30 (m, 3H), 7.19 – 7.15 (m, 2H), 7.11 – 7.07 (m, 3H), 7.02 – 6.98 (m, 1H), 3.60 – 3.58 (m, 4H), 3.28 (q, J = 7.0 Hz, 1H), 2.77 – 2.68 (m, 4H), 1.36 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 159.2, 158.9, 151.7, 139.8, 137.6, 132.6, 130.2, 129.0, 128.9, 127.1, 125.8, 124.8, 124.0, 122.7, 120.1, 119.2, 64.5, 49.6, 47.8, 11.4.

HRMS (ESI) m/z calcd. for $C_{26}H_{26}CIN_4O_2 [M + H]^+ 461.1739$, found 461.1736.

(S)-2-((3S,4R)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidin-1-yl)-N-phenylpropanamide (167)

167

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), paroxetine hydrochloride **A109** (73.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **167** as a colorless oil (90.5 mg, 95% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.59 – 7.56 (m, 2H), 7.36 – 7.32 (m, 2H), 7.22 – 7.17 (m, 2H), 7.13 – 7.09 (m, 1H), 7.03 – 6.97 (m, 2H), 6.58 (d, *J* = 8.4 Hz, 1H), 6.29 (d, *J* = 2.5 Hz, 1H), 6.09 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.86 – 5.85 (m, 2H), 3.61 – 3.58 (m, 1H), 3.49 – 3.44 (m, 1H), 3.33 – 3.31 (m, 1H), 3.21 – 3.18 (m, 1H), 3.00 – 2.97 (m, 1H), 2.60 – 2.49 (m, 2H), 2.34 – 2.17 (m, 2H), 1.95 – 1.89 (m, 2H), 1.38 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 1621.6 (d, J = 243.3 Hz), 154.0, 148.1, 141.6, 139.0, 137.8, 129.0, 128.7 (d, J = 7.7 Hz), 124.0, 119.5, 115.5 (d, J = 21.3 Hz), 107.8, 105.5, 101.0, 97.9, 69.2, 64.8, 53.4, 51.4, 43.8, 42.7, 34.8, 11.2.

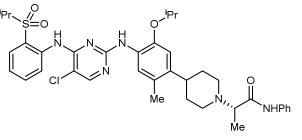
¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.04 (s, 1F).

HRMS (ESI) m/z calcd. for C₂₈H₃₀FN₂O₄ [M + H]⁺ 477.2184, found 477.2190.

(S)-2-(4-(2-((2,4-Dimethylphenyl)thio)phenyl)piperazin-1-yl)-N-phenylpropanamide (168)

168

According to General Procedure C with 2-chloro-N-phenylpropanamide E1 (54.9 mg, 0.30


mmol, 1.5 equiv.) and vortioxetine A110 (59.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/2) to yield the product 168 as a colorless oil (74.9 mg, 84% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.36 min, *t*_R (minor) = 12.64 min.

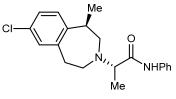
¹**H** NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.62 – 7.59 (m, 2H), 7.38 – 7.31 (m, 3H), 7.16 – 7.13 (m, 1H), 7.12 – 7.06 (m, 3H), 7.03 – 7.01 (m, 1H), 6.91 – 6.85 (m, 1H), 6.55 – 6.53 (m, 1H), 3.29 (q, *J* = 7.0 Hz, 1H), 3.23 – 3.11 (m, 4H), 2.86 – 2.81 (m, 2H), 2.78 – 2.73 (m, 2H), 2.35 (s, 3H), 2.31 (s, 3H), 1.37 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 148.7, 142.3, 139.2, 137.9, 136.0, 134.5, 131.6, 129.0, 127.8, 126.3, 125.4, 124.5, 123.9, 119.7, 119.2, 64.5, 52.0, 50.1, 21.1, 20.5, 11.4. **HRMS** (ESI) m/z calcd. for C₂₇H₃₂N₃OS [M + H]⁺ 446.2261, found 446.2261.

(S)-2-(4-(4-((5-Chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-5isopropoxy-2-methylphenyl)piperidin-1-yl)-*N*-phenylpropanamide (169)

169

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and ceritinib **A111** (111.4 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **169** as a colorless oil (125.5 mg, 89% yield, 93% e.e.).

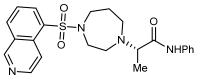

HPLC analysis: Chiralcel AD (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 16.40 min, *t*_R (minor) = 18.99 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 9.36 (s, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.16 (s, 1H), 8.03 (s, 1H), 7.94 – 7.91 (m, 1H), 7.65 – 7.58 (m 4H), 7.36 – 7.32 (m 2H), 7.28 – 7.24 (m 1H), 7.12 – 7.08 (m 1H), 6.83 (s, 1H), 4.64 – 4.58 (m 1H), 3.31 – 3.23 (m, 2H), 3.02 – 2.93 (m, 2H), 2.75 – 2.67 (m, 1H), 2.62 – 2.56 (m, 1H), 2.40 – 2.34 (m, 1H), 2.18 (s, 3H), 1.90 – 1.65 (m, 4H), 1.41 (d, J = 6.1 Hz, 6H), 1.36 (d, J = 7.0 Hz, 3H), 1.31 (d, J = 6.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 157.3, 155.21, 155.16, 144.6, 138.3, 137.8, 137.1, 134.5, 131.1, 128.9, 127.7, 127.2, 124.7, 123.8, 123.5, 123.0, 120.7, 119.3, 111.0, 105.6, 71.7, 64.7, 55.3, 53.7, 48.1, 37.9, 33.3, 33.2, 22.2, 18.8, 15.2, 10.9.

HRMS (ESI) m/z calcd. for $C_{37}H_{46}CIN_6O_4S [M + H]^+$ 705.2984, found 705.2982.

(S)-2-((R)-8-Chloro-1-methyl-1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)-N-phenylpropanamide (170)


170

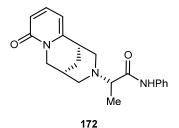
According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), lorcaserin hydrochloride **A99** (46.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **170** as a colorless oil (58.0 mg, 85% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 7.47 – 7.45 (m, 2H), 7.33 – 7.29 (m, 2H), 7.16 – 7.14 (m, 2H), 7.09 – 7.03 (m, 2H), 3.44 (q, J = 7.1 Hz, 1H), 3.18 – 3.10 (m, 1H), 3.07 – 2.91 (m, 2H), 2.86 – 2.68 (m, 3H), 2.53 – 2.48 (m, 1H), 1.39 (d, J = 7.2 Hz, 3H), 1.25 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 171.4, 146.1, 138.4, 137.8, 132.4, 130.6, 129.0, 126.6, 126.2, 123.8, 118.8, 65.7, 57.5, 52.1, 38.9, 35.3, 17.9, 9.2.

HRMS (ESI) m/z calcd. for C₂₀H₂₄ClN₂O [M + H]⁺ 343.1572, found 343.1576.

(S)-2-(4-(Isoquinolin-5-ylsulfonyl)-1,4-diazepan-1-yl)-N-phenylpropanamide (171)

171

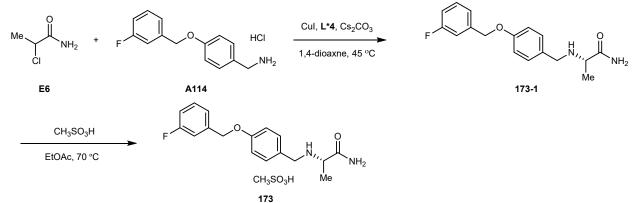

According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), fasudil dihydrochloride **A112** (72.6 mg, 0.20 mmol, 1.0 equiv.), and Cs_2CO_3 (325.8 mg, 1.00 mmol, 5.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **171** as a colorless oil (64.5 mg, 74% yield, 92% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 18.06 min, t_R (major) = 21.00 min.

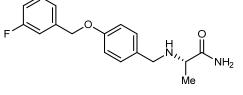
¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 9.36 (d, J = 1.0 Hz, 1H), 8.72 – 8.68 (m, 1H), 8.41 – 8.37 (m, 2H), 8.22 – 8.19 (m, 1H), 7.71 – 7.65 (m, 3H), 7.36 – 7.31 (m, 2H), 7.11 – 7.07 (m, 1H), 3.58 – 3.38 (m, 5H), 2.95 – 2.78 (m, 3H), 2.74 – 2.67 (m, 1H), 2.01 – 1.90 (m, 2H), 1.31 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 153.3, 145.1, 138.0, 134.1, 133.6, 133.5, 131.5, 129.1, 128.9, 125.8, 123.8, 119.3, 117.3, 65.5, 53.4, 51.7, 48.2, 47.2, 29.9, 9.5. HRMS (ESI) m/z calcd. for C₂₃H₂₇N₄O₃S [M + H]⁺ 439.1798, found 439.1800.

(*S*)-2-((1*R*,5*S*)-8-Oxo-1,5,6,8-tetrahydro-2*H*-1,5-methanopyrido[1,2-*a*][1,5]diazocin-3(4*H*)-yl)-*N*-phenylpropanamide (172)


According to **General Procedure C** with 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.) and cytisine **A113** (38.0 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **172** as a colorless oil (43.9 mg, 65% yield, >20:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.28 – 7.17 (m, 5H), 7.06 – 7.00 (m, 1H), 6.57 – 6.54 (m, 1H), 5.99 – 5.97 (m, 1H), 4.28 – 4.24 (m, 1H), 4.03 – 3.97 (m, 1H), 3.26 (q, *J* = 7.0 Hz, 1H), 3.07 – 3.04 (m, 1H), 2.97 – 2.93 (m, 1H), 2.88 – 2.85 (m, 1H), 2.79 – 2.74 (m, 1H), 2.63 – 2.55 (m, 2H), 1.99 – 1.93 (m, 1H), 1.88 – 1.82 (m, 1H), 1.25 (d, *J* = 7.1 Hz, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 170.4, 163.4, 150.6, 139.2, 137.2, 128.6, 123.9, 119.4, 117.1, 105.0, 63.8, 59.2, 54.1, 50.1, 34.9, 28.0, 25.5, 8.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{24}N_3O_2$ [M + H]⁺ 338.1863, found 338.1863.

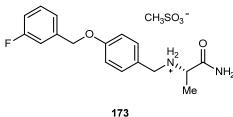
Catalytic enantioselective synthesis of Xadago

(S)-2-((4-((3-Fluorobenzyl)oxy)benzyl)amino)propanamide (173-1)

173-1

According to **General Procedure A** with 2-chloropropanamide **E6** (32.1 mg, 0.30 mmol, 1.5 equiv.), (4-((3-fluorobenzyl)oxy)phenyl)methanamine hydrochloride **A114** (53.4 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 72 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc/CH₃OH = 25/1) to yield the product **173-1** as a white solid (44.4 mg, 73% yield, 94% e.e.).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 214 nm), t_R (major) = 13.55 min, t_R (minor) = 23.90 min.

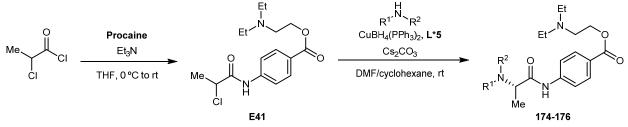

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 1H), 7.23 – 7.09 (m, 5H), 7.03 – 6.98 (m, 1H), 6.94 – 6.90 (m, 2H), 6.06 (s, 1H), 5.04 (s, 2H), 3.70 (q, *J* = 13.0 Hz, 2H), 3.23 (q, *J* = 6.9 Hz, 1H), 1.89 (s, 1H), 1.33 (d, *J* = 6.9 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 178.2, 162.9 (d, J = 244.8 Hz), 157.7, 139.5 (d, J = 7.2 Hz), 132.1, 130.1 (d, J = 8.1 Hz), 129.2, 122.6 (d, J = 3.0 Hz), 114.8, 114.7 (d, J = 20.3 Hz), 114.1 (d, J = 22.0 Hz), 69.1 (d, J = 1.8 Hz), 57.5, 51.8, 19.6.

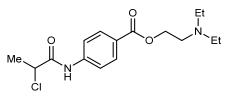
¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.76 (s, 1F).

HRMS (ESI) m/z calcd. for $C_{17}H_{20}FN_2O_2 [M + H]^+$ 303.1503, found 303.1504.

(S)-1-Amino-N-(4-((3-fluorobenzyl)oxy)benzyl)-1-oxopropan-2-aminium methanesulfonate (173)


To a solution of **173-1** (30.2 mg, 0.1 mmol, 1.0 equiv.) in EtOAc (1.0 mL) was added methanesulfonic acid (8.0 μ L, 0.12 mmol, 1.2 equiv.) at 70 °C. After being stirred for 2 h at 70 °C, the reaction mixture was cooled down to room temperature and filtered. The solid was washed with EtOAc (5 mL) and dried in vacuo to yield **173** as a white solid (33.9 mg, 85% yield).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.02 (s, 2H), 7.93 (s, 1H), 7.63 (s, 1H), 7.47 – 7.40 (m, 3H), 7.30 – 7.26 (m, 2H), 7.18 – 7.13 (m, 1H), 7.08 – 7.06 (m, 2H), 5.17 (s, 2H), 4.06 – 3.95 (m, 2H), 3.79 – 3.74 (m, 1H), 2.33 (s, 3H), 1.42 (d, *J* = 6.9 Hz, 3H).

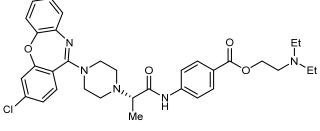

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 171.0, 162.7 (d, *J* = 242.0 Hz), 159.0, 140.4 (d, *J* = 7.2 Hz), 132.2, 131.0 (d, *J* = 8.2 Hz), 124.4, 124.0 (d, *J* = 2.8 Hz), 115.4, 115.1 (d, *J* = 20.5 Hz), 114.7 (d, *J* = 21.7 Hz), 68.8 (d, *J* = 21.3 Hz), 54.6, 48.4, 40.2, 16.4. ¹⁹**E NMP** (376 MHz, DMSO, *d*₂) δ 113.11 (c, 1E)

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -113.11 (s, 1F).

Modular construction of hybrid chiral amine-containing drug molecules The synthesis of 174-176

2-(Diethylamino)ethyl 4-(2-chloropropanamido)benzoate (E41)

E41


According to **General procedure 1** with 2-chloropropanoyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and procaine (2.36 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **E41** as a yellowish oil (3.07 g, 94% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.00 – 7.97 (m, 2H), 7.73 – 7.71 (m, 2H), 4.67 (q, J = 7.0 Hz, 1H), 4.56 – 4.52 (m, 2H), 3.13 – 3.10 (m, 2H), 2.90 (q, J = 7.1 Hz, 4H), 1.79 (d, J = 6.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 6H).

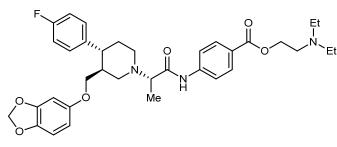
¹³C NMR (100 MHz, CDCl₃) δ 168.1 165.5, 142.0, 130.6, 125.1, 119.2, 67.8, 61.1, 50.1, 47.2, 25.4, 10.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{24}CIN_2O_3$ [M + H]⁺ 327.1470, found 327.1469.

2-(Diethylamino)ethyl (S)-4-(2-(4-(3-chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazin-1-yl)propanamido)benzoate (174)

174

According to **General Procedure C** with 2-(diethylamino)ethyl 4-(2-chloropropanamido)benzoate **E41** (97.8 mg, 0.30 mmol, 1.5 equiv.), amoxapine **A108** (62.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **174** as a colorless oil (99.1 mg, 82% yield, 86% e.e.).


HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 19.87 min, t_R (major) = 23.74 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 8.03 – 7.99 (m, 2H), 7.65 – 7.62 (m, 2H), 7.41 – 7.39 (m, 1H), 7.33 – 7.32 (m, 1H), 7.21 – 7.14 (m, 2H), 7.12 – 7.07 (m, 2H), 7.04 – 6.99 (m, 1H), 4.38 (t, *J* = 6.2 Hz, 2H), 3.74 – 3.45 (m, 4H), 3.33 (q, *J* = 7.0 Hz, 1H), 2.87 – 2.71 (m, 6H), 2.62 (q, *J* = 7.1 Hz, 4H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 6H).

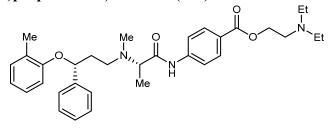
¹³C NMR (100 MHz, CDCl₃) δ 171.7, 166.0, 159.3, 159.0, 151.8, 141.8, 139.8, 132.7, 130.9, 130.3, 128.9, 127.1, 125.8, 125.6, 124.9, 124.8, 122.8, 120.1, 118.4, 64.6, 63.3, 51.0, 49.6, 47.9, 47.8, 12.0, 11.1.

HRMS (ESI) m/z calcd. for C₃₃H₃₉ClN₅O₄ [M + H]+ 604.2685, found 604.2684.

2-(Diethylamino)ethyl 4-((*S*)-2-((*3S*,*4R*)-3-((benzo[*d*][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidin-1-yl)propanamido)benzoate (175)

175

According to **General Procedure C** with 2-(diethylamino)ethyl 4-(2-chloropropanamido)benzoate **E41** (97.8 mg, 0.30 mmol, 1.5 equiv.), paroxetine hydrochloride **A109** (73.0 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **175** as a colorless oil (93.0 mg, 75% yield, 13:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.


¹**H** NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 8.05 – 8.01 (m, 2H), 7.66 – 7.62 (m, 2H), 7.22 – 7.18 (m, 2H), 7.05 – 6.99 (m, 2H), 6.60 – 6.58 (m, 1H), 6.31 (d, J = 2.5 Hz, 0.07H), 6.28 (d, J = 2.5 Hz, 0.93H), 6.09 – 6.06 (m, 1H), 5.87 (s, 2H), 4.42 (t, J = 6.2 Hz, 2H), 3.62 – 3.59 (m, 1H), 3.49 – 3.45 (m, 1H), 3.33 (q, J = 7.0 Hz, 1H), 3.17 – 3.13 (m, 1H), 2.98 – 2.95 (m, 1H), 2.90 (t, J = 6.2 Hz, 2H), 2.68 (q, J = 7.2 Hz, 4H), 2.62 – 2.49 (m, 2H), 2.29 (t, J = 11.0 Hz, 1H), 2.22 – 2.15 (m, 1H), 1.95 – 1.89 (m, 2H), 1.37 (d, J = 7.0 Hz, 3H), 1.10 (t, J = 7.1 Hz, 6H).

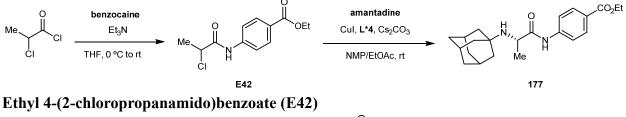
¹³**C** NMR (100 MHz, CDCl₃) δ 172.3, 165.9, 161.6 (d, J = 243.3 Hz), 153.8, 148.1, 142.0, 141.6, 138.9 (d, J = 3.3 Hz), 130.8, 128.7 (d, J = 7.8 Hz), 125.2, 118.6, 114.0 (d, J = 20.9 Hz), 107.7, 105.4, 101.0, 97.8, 69.1, 64.8, 62.5, 53.4, 51.2, 50.7, 47.6, 43.8, 42.6, 34.9, 11.4, 10.7.

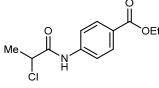
¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.94 (s, 0.07F), -115.96 (s, 0.93F).

HRMS (ESI) m/z calcd. for C₃₅H₄₃FN₃O₆ [M + H]+ 620.3130, found 620.3131.

2-(Diethylamino)ethyl 4-((S)-2-(methyl((R)-3-phenyl-3-(o-tolyloxy)propyl)amino)propanamido)benzoate (176)

176

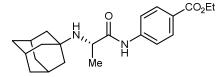

According to **General Procedure C** with 2-(diethylamino)ethyl 4-(2-chloropropanamido)benzoate **E41** (97.8 mg, 0.30 mmol, 1.5 equiv.), atomoxetine hydrochloride **A107** (58.2 mg, 0.20 mmol, 1.0 equiv.), and Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **176** as a colorless oil (85.1 mg, 78% yield, 15:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.


¹**H** NMR (400 MHz, CDCl₃) δ 9.43 (s, 0.94H), 9.34 (s, 0.06H), 7.96 – 7.92 (m, 2H), 7.50 – 7.43 (m, 2H), 7.33 – 7.30 (m, 4H), 7.25 – 7.21 (m, 1H), 7.09 – 7.04 (m, 1H), 6.96 – 6.91 (m, 1H), 6.79 – 6.76 (m, 1H), 6.59 – 6.55 (m, 1H), 5.22 – 5.20 (m, 1H), 4.51 (t, *J* = 6.0 Hz, 2H), 3.40 –

3.35 (m, 1H), 3.02 (t, J = 6.0 Hz, 2H), 2.81 (q, J = 7.2 Hz, 4H), 2.76 – 2.69 (m, 2H), 2.31 (s, 3H), 2.25 (s, 3H), 2.21 – 2.04 (m, 2H), 1.27 (d, J = 7.0 Hz, 3H), 1.17 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 165.9, 155.8, 142.1, 141.7, 130.8, 130.7, 128.7, 127.6, 126.9, 126.6, 125.5, 124.8, 120.4, 118.4, 112.5, 77.5, 63.3, 61.9, 50.8, 50.5, 47.5, 38.3, 37.1, 16.4, 11.0, 9.2.

HRMS (ESI) m/z calcd. for C₃₃H₄₄N₃O₄ [M + H]+ 546.3326, found 546.3328.

The synthesis of 177


E42

According to **General procedure 1** with 2-chloropropanoyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and benzocaine (1.65 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E42** as a white solid (2.43 g, 95% yield).

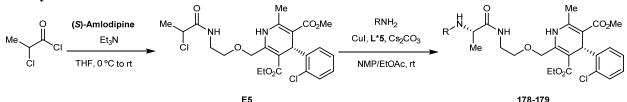
¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.05 – 8.03 (m, 2H), 7.67 – 7.64 (m, 2H), 4.56 (q, J = 7.0 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.83 (d, J = 7.1, 3H), 1.39 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 166.0, 141.0, 130.8, 126.7, 119.0, 61.0, 56.0, 22.4, 14.3. HRMS (ESI) m/z calcd. for C₁₂H₁₅ClNO₃ [M + H]⁺ 256.0735, found 256.0735.

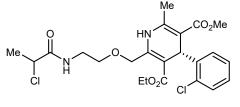
Ethyl 4-((S)-2-((adamantan-1-yl)amino)propanamido)benzoate (177)

177

According to **General Procedure B** with ethyl 4-(2-chloropropanamido)benzoate **E42** (76.5 mg, 0.30 mmol, 1.5 equiv.), amantadine **A76** (30.2 mg, 0.20 mmol, 1.0 equiv.), **L*4** (15.4 mg, 0.03 mmol, 15 mol%), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **177** as a white solid (66.7 mg, 90% yield, 88% e.e.).


HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 11.68 min, t_R (major) = 19.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 8.03 – 8.01 (m, 2H), 7.68 – 7.66 (m, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.55 (q, *J* = 7.3 Hz, 1H), 2.09 – 2.06 (m, 3H), 1.71 – 1.65 (m, 6H), 1.60 – 1.57 (m, 6H), 1.41 – 1.37 (m, 7H).

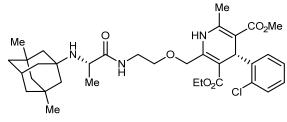

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 166.2, 141.8, 130.8, 125.5, 118.2, 60.7, 51.6, 50.6, 42.9,

36.3, 29.3, 21.5, 14.3. **HRMS** (ESI) m/z calcd. for C₂₂H₃₁N₂O₃ [M + H]⁺ 371.2329, found 371.2329.

The synthesis of 178-179

3-Ethyl 5-methyl (4S)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (E5)

E5


According to **General procedure 1** with 2-chloropropanoyl chloride (1.51 g, 12.0 mmol, 1.2 equiv.) and (S)-amlodipine (4.08 g, 10.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **E5** as a yellowish oil (4.83 g, 97% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 1H), 7.24 – 7.22 (m, 1H), 7.19 – 7.11 (m, 2H), 7.06 – 7.02 (m, 1H), 6.93 (s, 1H), 5.41 (s, 1H), 4.80 – 4.75 (m, 1H), 4.71 – 4.66 (m, 1H), 4.45 (q, J = 7.1 Hz, 1H), 4.09 – 3.99 (m, 2H), 3.72 – 3.65 (m, 2H), 3.62 (s, 3H), 3.60 – 3.53 (m, 2H), 2.37 (s, 3H), 1.76 (dd, J = 7.0, 3.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 170.0, 168.0, 167.1, 145.673, 145.667, 144.81, 144.78, 144.2, 144.1, 132.2, 131.40, 131.38, 129.2, 127.3, 126.82, 126.80, 103.81, 103.78, 101.6, 101.5, 70.0, 68.0, 59.8, 56.0, 50.7, 39.6, 37.0, 22.6, 19.34, 19.28, 14.2.

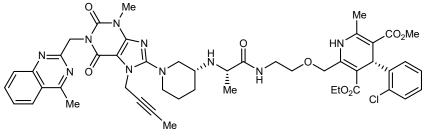
HRMS (ESI) m/z calcd. for $C_{23}H_{28}Cl_2N_2NaO_6$ [M + Na]⁺ 521.1217, found 521.1220.

3-Ethyl 5-methyl (S)-4-(2-chlorophenyl)-2-((2-((S)-2-((3,5-dimethyladamantan-1-yl)amino)propanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (178)

178

According to General Procedure B with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate E5 (149.4 mg, 0.30 mmol, 1.5 equiv.), memantine hydrochloride A104 (43.0 mg, 0.20 mmol, 1.0 equiv.), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs_2CO_3 (260.6 mg, 0.80 mmol, 4.0 equiv.), anhydrous

NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **178** as a yellowish oil (120.3 mg, 94% yield, 14:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.


According to **General Procedure B** with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate **E5** (99.6 mg, 0.20 mmol, 1.0 equiv.), memantine hydrochloride **A104** (43.0 mg, 0.20 mmol, 1.0 equiv.), **L*4** (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (260.6 mg, 0.80 mmol, 4.0 equiv.), anhydrous NMP (2.8 mL), and EtOAc (1.2 mL) for 96 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (EtOAc) to yield the product **178** as a yellowish oil (99.8 mg, 78% yield, 10:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 – 8.08 (m, 1H), 7.43 – 7.36 (m, 2H), 7.23 – 7.21 (m, 1H), 7.14 – 7.09 (m, 1H), 7.05 – 7.00 (m, 1H), 5.41 (s, 1H), 4.78 – 4.63 (m, 2H), 4.09 – 3.98 (m, 2H), 3.69 – 3.36 (m, 9H), 2.42 (s, 0.20H), 2.40 (s, 2.80H), 2.14 – 2.09 (m, 1H), 1.50 – 1.46 (m, 1H), 1.37 – 1.24 (m, 10H), 1.19 – 1.04 (m, 7H), 0.82 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.3, 167.9, 167.0, 145.8, 145.0, 144.2, 132.2, 131.4, 129.0, 127.2, 126.7, 103.6, 101.2, 70.6, 67.9, 59.6, 53.1, 50.6, 50.2, 49.2, 49.0, 42.6, 41.3, 38.4, 37.0, 32.23, 32.21, 30.1, 30.0, 21.7, 19.4, 14.2.

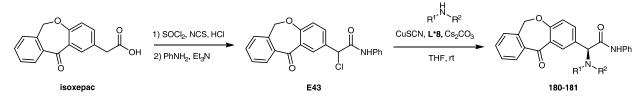
HRMS (ESI) m/z calcd. for $C_{35}H_{49}ClN_3O_6 [M + H]^+ 642.3304$, found 1642.3308.

3-Ethyl 5-methyl (S)-2-((2-((S)-2-(((R)-1-(7-(but-2-yn-1-yl)-3-methyl-1-((4-methylquinazolin-2-yl)methyl)-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)piperidin-3-yl)amino)propanamido)ethoxy)methyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate (179)

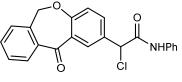
179

According to **General Procedure B** with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate **E5** (149.4 mg, 0.30 mmol, 1.5 equiv.), linagliptin **A102** (94.4 mg, 0.20 mmol, 1.0 equiv.), and **L***4 (15.4 mg, 0.03 mmol, 15 mol%), the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **179** as a colorless oil (179.3 mg, 96% yield, 13:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

According to **General Procedure B** with 3-ethyl 5-methyl (4*S*)-4-(2-chlorophenyl)-2-((2-(2-chloropropanamido)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate **E5** (99.6 mg, 0.20 mmol, 1.0 equiv.), linagliptin **A102** (94.4 mg, 0.20 mmol, 1.0 equiv.), and **L*4** (15.4 mg, 0.03 mmol, 15 mol%), the reaction mixture was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **179** as a colorless oil (124.3 mg, 67% yield, 13:1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR


spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.98 (m, 1H), 7.86 – 7.83 (m, 1H), 7.76 – 7.65 (m, 2H), 7.52 – 7.48 (m, 1H), 7.40 – 7.35 (m, 2H), 7.23 – 7.20 (m, 1H), 7.13 – 7.08 (m, 1H), 7.04 – 7.00 (m, 1H), 5.57 (s, 2H), 5.39 (s, 0.07H), 5.38 (s, 0.93H), 4.89 – 4.84 (m, 2H), 4.77 – 4.62 (m, 2H), 4.07 – 3.99 (m, 2H), 3.71 – 3.53 (m, 11H), 3.45 – 3.36 (m, 2H), 3.15 – 3.08 (m, 1H), 2.98 – 2.93 (m, 1H), 2.89 – 2.83 (m, 4H), 2.37 (s, 3H), 2.03 – 1.69 (m, 7H), 1.49 – 1.41 (m, 1H), 1.38 – 1.32 (m, 3H), 1.16 (t, *J* = 7.1 Hz, 3H).

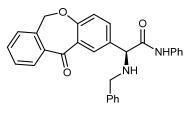

¹³C NMR (100 MHz, CDCl₃) δ 175.6, 168.3, 167.8, 166.8, 160.8, 155.7, 154.1, 151.6, 149.6, 147.6, 145.6, 144.8, 144.2, 133.0, 132.0, 131.2, 129.0, 128.5, 127.1, 126.6, 126.5, 124.6, 122.8, 104.3, 103.4, 101.2, 81.2, 73.0, 70.5, 67.8, 59.5, 56.0, 55.7, 52.7, 50.51, 50.46, 46.0, 38.5, 36.9, 35.4, 30.2, 29.5, 23.0, 21.5, 20.0, 19.1, 14.0, 3.4.

HRMS (ESI) m/z calcd. for C₄₈H₅₆ClN₁₀O₈ $[M + H]^+$ 935.3966, found 935.3967.

Synthesis of chiral unnatural α-amino carboxamide via late-stage C(sp³)–H functionalization of bioactive carboxylic acid molecules. The synthesis of 180-181

2-Chloro-2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)-N-phenylacetamide (E43)

E43


According to **General procedure 4** with isoxepac (6.70 g, 25.0 mmol, 1.0 equiv.) and aniline (2.33 g, 25.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E43** as a white solid (2.42 g, 26% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.35 (d, J = 2.5 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.64 (dd, J = 8.6, 2.5 Hz, 1H), 7.57 – 7.53 (m, 3H), 7.48 – 7.44 (m, 1H), 7.36 – 7.30 (m, 3H), 7.16 – 7.12 (m, 1H), 7.07 (d, J = 8.6 Hz, 1H), 5.54 (s, 1H), 5.17 (s, 2H).

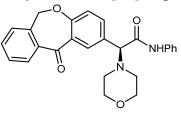
¹³C NMR (100 MHz, CDCl₃) δ 190.4, 165.2, 161.8, 140.2, 136.8, 135.2, 134.5, 132.9, 131.8, 130.5, 129.5, 129.4, 129.0, 127.9, 125.2, 125.0, 121.9, 120.2, 73.5, 61.0.

HRMS (ESI) m/z calcd. for $C_{22}H_{17}CINO_3 [M + H]^+ 378.0891$, found 378.0891.

(S)-2-(Benzylamino)-2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)-*N*-phenylacetamide (180)

180

According to General Procedure F with 2-chloro-2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2yl)-*N*-phenylacetamide E43 (113.1 mg, 0.30 mmol, 1.5 equiv.) and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 180 as a yellowish solid (40.0 mg, 45% yield, 90% e.e.).


HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 21.37 min, t_R (minor) = 30.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 8.28 (d, J = 2.4 Hz, 1H), 7.85 (dd, J = 7.7, 1.4 Hz, 1H), 7.58 – 7.55 (m, 2H), 7.54 – 7.50 (m, 2H), 7.45 – 7.41 (m, 1H), 7.37 – 7.26 (m, 8H), 7.10 – 7.06 (m, 1H), 7.01 (d, J = 8.5 Hz, 1H), 5.13 (s, 2H), 4.37 (s, 1H), 3.86 (s, 2H), 2.31 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 169.8, 161.1, 140.2, 138.7, 137.5, 135.3, 134.3, 132.8, 132.6, 130.2, 129.4, 129.2, 128.9, 128.7, 128.1, 127.8, 127.5, 125.2, 124.2, 121.4, 119.5, 73.5, 66.6, 52.6.

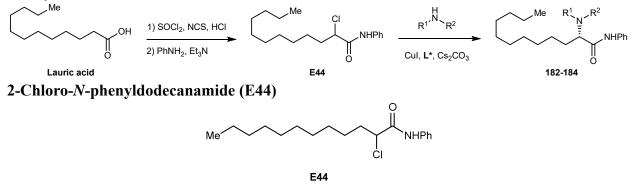
HRMS (ESI) m/z calcd. for $C_{29}H_{25}N_2O_3 [M + H]^+ 449.1860$, found 449.1861.

(S)-2-Morpholino-2-(11-oxo-6,11-dihydrodibenzo[*b*,*e*]oxepin-2-yl)-*N*-phenylacetamide (181)

181

According to General Procedure F with 2-chloro-2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)-*N*-phenylacetamide E43 (113.1 mg, 0.30 mmol, 1.5 equiv.) and morpholine A89 (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 181 as a colorless oil (70.7 mg, 83% yield, 88% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 14.50 min, *t*_R (major) = 25.18 min.

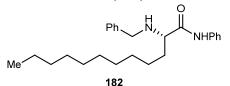

According to General Procedure F with 2-chloro-2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)-N-phenylacetamide E43 (75.4 mg, 0.20 mmol, 1.0 equiv.) and morpholine A89 (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 181 as a colorless oil (53.2 mg, 62% yield, 89% e.e.).

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.23 (d, J = 2.4 Hz, 1H), 7.87 (dd, J = 7.7, 1.4 Hz, 1H), 7.59 – 7.43 (m, 5H), 7.35 – 7.30 (m, 3H), 7.12 – 7.08 (m, 1H), 7.04 (d, J = 8.5 Hz, 1H), 5.16 (s, 2H), 4.06 (s, 1H), 3.78 – 3.75 (m, 4H), 2.53 – 2.51 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 168.7, 161.3, 140.2, 137.4, 135.5, 135.3, 132.8, 132.5,

129.4, 129.2, 129.0, 128.2, 127.8, 125.1, 124.4, 121.3, 119.6, 75.4, 73.5, 66.9, 51.8. **HRMS** (ESI) m/z calcd. for C₂₆H₂₅N₂O₄ [M + H]⁺ 429.1809, found 429.1809.

The synthesis of 182-184


According to **General procedure 4** with lauric acid (5.00 g, 25.0 mmol, 1.0 equiv.) and aniline (2.33 g, 25.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E44** as a white solid (5.40 g, 70% overall yield).

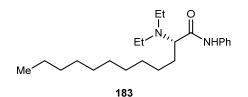
¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.56 – 7.53 (m, 2H), 7.37 – 7.31 (m, 2H), 7.17 – 7.13 (m, 1H), 4.45 (dd, J = 8.3, 4.4 Hz, 1H), 2.22 – 2.13 (m, 1H), 2.05 – 1.96 (m, 1H), 1.58 – 1.45 (m, 2H), 1.37 – 1.26 (m, 14H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 136.9, 129.0, 125.0, 120.0, 61.6, 35.6, 31.8, 29.51, 29.47, 29.32, 29.26, 28.8, 25.9, 22.6, 14.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{29}CINO [M + H]^+ 310.1932$, found 310.1930.

(S)-2-(Benzylamino)-*N*-phenyldodecanamide (182)

According to **General Procedure H** with 2-chloro-*N*-phenyldodecanamide **E44** (123.7 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **182** as a colorless oil (67.4 mg, 89% yield,86% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 13.54 min, t_R (minor) = 19.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.60 – 7.57 (m, 2H), 7.38 – 7.27 (m, 7H), 7.12 – 7.08 (m, 1H), 3.85 – 3.74 (m, 2H), 3.26 (dd, J = 7.9, 4.7 Hz, 1H), 1.87 – 1.79 (m, 2H), 1.68 – 1.59 (m, 1H), 1.40 – 1.34 (m, 2H), 1.31 – 1.24 (m, 14H), 0.87 (t, J = 6.9 Hz, 3H).

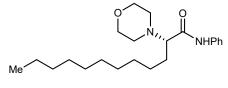
¹³C NMR (100 MHz, CDCl₃) δ 172.5, 139.1, 137.8, 129.0, 128.7, 128.1, 127.5, 124.0, 119.3, 63.2, 53.1, 33.7, 31.9, 29.52, 29.51, 29.40, 29.39, 29.3, 25.9, 22.6, 14.1.

HRMS (ESI) m/z calcd. for C₂₅H₃₇N₂O [M + H]⁺ 381.2900, found 381.2897.

(S)-2-(Diethylamino)-N-phenyldodecanamide (183)

According to **General Procedure E** with 2-chloro-*N*-phenyldodecanamide **E44** (92.8 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **183** as a colorless oil (50.7 mg, 73% yield, 95% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 4.42 min, *t*_R (minor) = 5.33 min.


According to **General Procedure E** with 2-chloro-*N*-phenyldodecanamide **E44** (61.8 mg, 0.20 mmol, 1.0 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **183** as a colorless oil (47.9 mg, 69% yield, 94% e.e.).

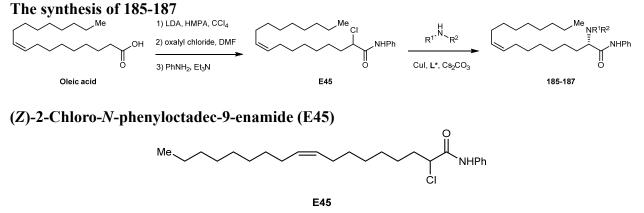
¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.58 – 7.55 (m, 2H), 7.34 – 7.29 (m, 2H), 7.10 – 7.06 (m, 1H), 3.31 – 3.28 (m, 1H), 2.74 – 2.66 (m, 2H), 2.63 – 2.54 (m, 2H), 1.91 – 1.82 (m, 1H), 1.66 – 1.55 (m, 2H), 1.43 – 1.26 (m, 15H), 1.11 (t, *J* = 7.1 Hz, 6H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 138.0, 128.9, 123.7, 119.1, 64.9, 44.4, 31.9, 29.9, 29.61, 29.58, 29.5, 29.3, 28.3, 26.2, 22.6, 14.1, 13.4.

HRMS (ESI) m/z calcd. for C₂₂H₃₉N₂O [M + H]⁺ 347.3057, found 347.3053.

(S)-2-Morpholino-N-phenyldodecanamide (184)

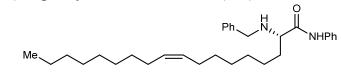
According to **General Procedure H** with 2-chloro-*N*-phenyldodecanamide **E44** (92.8 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **184** as a white solid (71.4 mg, 99% yield, 92% e.e.).


HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 22.17 min, t_R (major) = 23.73 min.

According to **General Procedure H** with 2-chloro-*N*-phenyldodecanamide **E44** (61.8 mg, 0.20 mmol, 1.0 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **184** as a white solid (64.1 mg, 89% yield, 92% e.e.).

¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.57 – 7.55 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 3.80 – 3.71 (m, 4H), 2.95 (dd, *J* = 7.1, 5.5 Hz, 1H), 2.68 – 2.63 (m, 2H), 2.60 – 2.55 (m, 2H), 1.81 – 1.67 (m, 2H), 1.51 – 1.37 (m, 2H), 1.34 – 1.25 (m, 14H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 137.6, 129.0, 124.0, 119.3, 70.2, 67.2, 50.8, 31.8, 29.8, 29.51, 29.48, 29.4, 29.2, 28.0, 26.5, 22.6, 14.0.


HRMS (ESI) m/z calcd. for $C_{22}H_{37}N_2O_2 [M + H]^+$ 361.2850, found 361.2848.

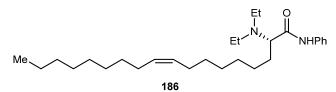
According to **General procedure 6** with oleic acid (5.65 g, 20.0 mmol, 1.0 equiv.) and aniline (1.86 g, 20.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E45** as a yellowish oil (3.67 g, 47% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.56 – 7.53 (m, 2H), 7.36 – 7.31 (m, 2H), 7.17 – 7.12 (m, 1H), 5.44 – 5.24 (m, 2H), 4.45 (dd, J = 8.3, 4.4 Hz, 1H), 2.22 – 2.14 (m, 1H), 2.10 – 1.94 (m, 5H), 1.58 – 1.46 (m, 2H), 1.36 – 1.25 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.0, 136.9, 130.0, 129.6, 129.0, 125.0, 120.0, 61.6, 35.6, 31.9, 29.7, 29.6, 29.5, 29.31, 29.27, 28.9, 28.7, 27.2, 27.1, 25.9, 22.6, 14.1. **HRMS** (ESI) m/z calcd. for C₂₄H₃₉ClNO [M + H]⁺ 392.2715, found 392.2712.

(S,Z)-2-(Benzylamino)-N-phenyloctadec-9-enamide (185)

185

According to **General Procedure H** with (*Z*)-2-chloro-*N*-phenyloctadec-9-enamide **E45** (156.5 mg, 0.40 mmol, 2.0 equiv.) and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **185** as a colorless oil (68.6 mg, 74% yield, 90% e.e.).


HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 6.29 min, *t*_R (minor) = 7.94 min.

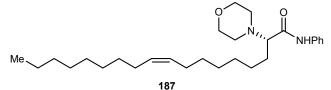
¹**H** NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.59 – 7.57 (m, 2H), 7.38 – 7.27 (m, 7H), 7.12 – 7.08 (m, 1H), 5.38 – 5.28 (m, 2H), 3.85 – 3.74 (m, 2H), 3.29 – 3.25 (m, 1H), 2.33 (s, 1H), 2.03 – 1.97 (m, 4H), 1.88 – 1.79 (m, 1H), 1.69 – 1.59 (m, 1H), 1.42 – 1.23 (m, 20H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 139.1, 137.8, 130.0, 129.6, 129.0, 128.7, 128.1, 127.5, 124.0, 119.3, 63.1, 53.1, 33.7, 31.9, 29.7, 29.6, 29.5, 29.32, 29.29, 29.0, 27.2, 27.1, 25.9, 22.7, 14.1.

HRMS (ESI) m/z calcd. for C₃₁H₄₇N₂O [M + H]⁺ 463.3683, found 463.3679.

(S,Z)-2-(Diethylamino)-N-phenyloctadec-9-enamide (186)

According to **General Procedure E** with (Z)-2-chloro-N-phenyloctadec-9-enamide **E45** (117.4 mg, 0.30 mmol, 1.5 equiv.) and diethylamine **A51** (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **186** as a colorless oil (80.0 mg, 93% yield, 95% e.e.).


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), *t*_R (major) = 5.70 min, *t*_R (minor) = 6.89 min.

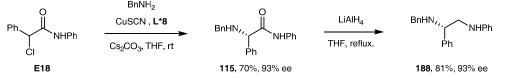
According to General Procedure E with (Z)-2-chloro-N-phenyloctadec-9-enamide E45 (78.3 mg, 0.20 mmol, 1.0 equiv.) and diethylamine A51 (14.6 mg, 0.20 mmol, 1.0 equiv.) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 186 as a colorless oil (70.1 mg, 82% yield, 95% e.e.).

¹**H** NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.58 –7.56 (m, 2H), 7.34 –7.29 (m, 2H), 7.10 –7.05 (m, 1H), 5.39 – 5.30 (m, 2H), 3.30 – 3.27 (m, 1H), 2.74 – 2.65 (m, 2H), 2.62 – 2.54 (m, 2H), 2.03 – 1.98 (m, 3H), 1.91 – 1.84 (m, 1H), 1.66 – 1.55 (m, 2H), 1.41 – 1.25 (m, 20H), 1.11 (t, *J* = 7.2 Hz, 6H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 138.0, 129.9, 129.7, 128.9, 123.7, 119.0, 64.9, 44.4, 31.9, 29.8, 29.73, 29.71, 29.6, 29.5, 29.3, 29.1, 28.3, 27.18, 27.15, 26.2, 22.6, 14.1, 13.4. **HRMS** (ESI) *m/z* calcd. for C₂₈H₄₉N₂O [M + H]⁺ 429.3839, found 429.3837.

(*S*,*Z*)-2-Morpholino-*N*-phenyloctadec-9-enamide (187)

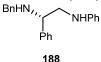
According to **General Procedure H** with (*Z*)-2-chloro-*N*-phenyloctadec-9-enamide **E45** (117.4 mg, 0.30 mmol, 1.5 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **187** as a colorless oil (80.2 mg, 91% yield, 91% e.e.).


HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 19.52 min, t_R (major) = 21.22 min.

According to **General Procedure H** with (*Z*)-2-chloro-*N*-phenyloctadec-9-enamide **E45** (78.3 mg, 0.20 mmol, 1.0 equiv.) and morpholine **A89** (17.4 mg, 0.20 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **187** as a colorless oil (68.4 mg, 77% yield, 91% e.e.).

¹**H** NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 7.56 – 7.54 (m, 2H), 7.35 – 7.31 (m, 2H), 7.12 – 7.08 (m, 1H), 5.41 – 5.25 (m, 2H), 3.80 – 3.71 (m, 4H), 2.97 – 2.93 (m, 1H), 2.68 – 2.63 (m, 2H), 2.60 – 2.55 (m, 2H), 2.06 – 1.94 (m, 4H), 1.81 – 1.68 (m, 2H), 1.50 – 1.24 (m, 20H), 0.88 (t, *J* = 6.8 Hz, 3H).

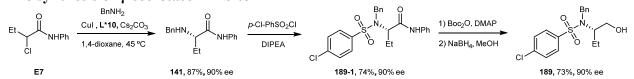
¹³C NMR (100 MHz, CDCl₃) δ 171.0, 137.6, 129.9, 129.6, 129.0, 124.0, 119.3, 70.1, 67.2, 50.8, 31.8, 29.7, 29.62, 29.56, 29.4, 29.3, 29.2, 29.0, 28.0, 27.1, 27.0, 26.5, 22.6, 14.0. **HRMS** (ESI) m/z calcd. for C₂₈H₄₇N₂O₂ [M + H]⁺ 443.3632, found 443.3632.


The synthesis of vicinal diamine 188

According to General Procedure F with 2-chloro-N,2-diphenylacetamide E18 (367.6 mg, 1.5 mmol, 1.5 equiv.) and benzylamine A1 (107.1 mg, 1.0 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 115 as a white solid (222.0 mg, 70% yield, 93% e.e.).

To a solution of **115** (63.2 mg, 0.20 mmol, 1.0 equiv.) in anhydrous THF (4.0 mL) was added LiAlH₄ (0.32 mL, 0.80 mmol, 4.0 equiv., 2.5 M in THF) dropwise at 0 °C. Then the reaction mixture was heated at reflux for 12 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **188** as a yellowish oil (49.0 mg, 81% yield, 93% e.e.).

(S)-N¹-Benzyl-N²,1-diphenylethane-1,2-diamine (188)


HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.01 min, t_R (minor) = 10.35 min.

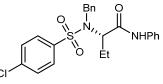
¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 4H), 7.33 – 7.21 (m, 6H), 7.18 – 7.13 (m, 2H), 6.72 – 6.68 (m, 1H), 6.62 – 6.59 (m, 2H), 3.94 – 3.91 (m, 1H), 3.73 (d, *J* = 13.2 Hz, 1H), 3.57 (d, *J* = 13.1 Hz, 1H), 3.34 – 3.24 (m, 2H), 2.19 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 148.0, 141.7, 140.1, 129.2, 128.7, 128.4, 128.1, 127.6, 127.2, 127.0, 117.6, 113.1, 61.3, 51.2, 50.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂ [M + H]⁺ 303.1856, found 303.1851.

The synthesis of γ -secretase inhibitor

According to General Procedure H with 2-chloro-*N*-phenylbutanamide E7 (394.1 mg, 2.0 mmol, 2.0 equiv.) and benzylamine A1 (107.1 mg, 1.0 mmol, 1.0 equiv.) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 141 as a colorless oil (234.5 mg, 87% yield, 90% e.e.).


To a solution of **141** (26.8 mg, 0.1 mmol, 1.0 equiv.) and 4-chlorobenzenesulfonyl chloride (84.0 mg, 0.4 mmol, 4.0 equiv.) in CH₃CN (2.0 mL) was added DIPEA (25.8 mg, 0.2 mmol, 2.0 equiv.) at 0 $^{\circ}$ C. Then the reaction mixture was warmed up to room temperature and stirred for 48 h. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution

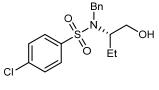
(1.0 M, 5 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **189-1** as a white solid (32.9 mg, 74% yield, 90% e.e.).

To a solution of **189-1** (32.9 mg, 0.0744 mmol, 1.0 equiv.) in CH₃CN (2.0 mL) was added Boc₂O (81.1 mg, 0.372 mmol, 5.0 equiv.) and DMAP (19.2 mg, 0.1488 mmol, 2.0 equiv.) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 5 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was used in the next step without further purification.

To a solution of the above crude product in CH₃OH (2.0 mL) was added NaBH₄ (11.3 mg, 0.2976 mmol, 4.0 equiv.) slowly at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **189** as a yellowish oil (19.3 mg, 73% yield, 90% e.e.).

(S)-2-((N-Benzyl-4-chlorophenyl)sulfonamido)-N-phenylbutanamide (189-1)

189-1


HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (minor) = 11.56 min, *t*_R (major) = 16.11 min.

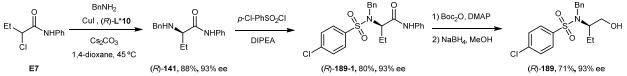
¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.75 – 7.71 (m, 2H), 7.48 – 7.45 (m, 2H), 7.36 – 7.34 (m, 2H), 7.27 – 7.16 (m, 7H), 7.09 – 7.05 (m, 1H), 4.79 (d, *J* = 15.2 Hz, 1H), 4.26 – 4.18 (m, 2H), 2.11 – 2.00 (m, 1H), 1.55 – 1.44 (m, 1H), 0.63 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 139.6, 138.4, 137.3, 135.6, 129.5, 128.9, 128.7, 128.53, 128.51, 127.9, 124.2, 119.6, 62.0, 48.5, 21.3, 11.0.

HRMS (ESI) m/z calcd. for C₂₃H₂₄ClN₂O₃S [M + H]⁺ 443.1191, found 443.1192.

(S)-N-Benzyl-4-chloro-N-(1-hydroxybutan-2-yl)benzenesulfonamide (189)

189

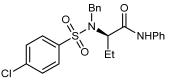

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.18 min, t_R (major) = 13.93 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 2H), 7.46 – 7.44 (m, 2H), 7.39 – 7.37 (m, 2H), 7.34 – 7.28 (m, 3H), 4.60 (d, *J* = 15.5 Hz, 1H), 4.21 (d, *J* = 15.6 Hz, 1H), 3.81 – 3.74 (m, 1H), 3.44 – 3.31 (m, 2H), 1.50 – 1.39 (m, 1H), 1.37 – 1.26 (m, 2H), 0.68 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.5, 138.9, 137.4, 129.2, 128.7, 128.6, 128.2, 127.9, 63.3, 62.5, 47.8, 22.2, 11.2.

HRMS (ESI) m/z calcd. for C₁₇H₂₁ClNO₃S [M + H]⁺ 354.0925, found 354.0918.

The synthesis of (R)- γ -secretase inhibitor

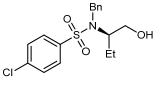

According to **General Procedure H** with 2-chloro-*N*-phenylbutanamide **E7** (788.2 mg, 4.0 mmol, 2.0 equiv.), benzylamine **A1** (214.1 mg, 2.0 mmol, 1.0 equiv.), and (*R*)-**L***10 (129.4 mg, 0.3 mmol, 15 mol%) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product (*R*)-141 as a colorless oil (473.5 mg, 88% yield, 93% e.e.).

To a solution of (*R*)-141 (53.6 mg, 0.2 mmol, 1.0 equiv.) and 4-chlorobenzenesulfonyl chloride (167.9 mg, 0.8 mmol, 4.0 equiv.) in CH₃CN (4.0 mL) was added DIPEA (51.7 mg, 0.4 mmol, 2.0 equiv.) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 48 h. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 10 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*R*)-189-1 as a white solid (70.8 mg, 80% yield, 93% e.e.).

To a solution of (*R*)-**189-1** (53.1 mg, 0.12 mmol, 1.0 equiv.) in CH₃CN (2.0 mL) was added Boc₂O (130.9 mg, 0.6 mmol, 5.0 equiv.) and DMAP (29.3 mg, 0.24 mmol, 2.0 equiv.) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 10 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was used in the next step without further purification.

To a solution of the above crude product in CH₃OH (2.0 mL) was added NaBH₄ (18.3 mg, 0.48 mmol, 4.0 equiv.) slowly at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product (*R*)-**189** as a yellowish oil (30.0 mg, 71% yield, 93% e.e.).

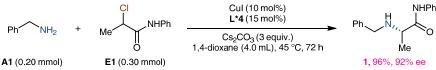
(R)-2-((N-Benzyl-4-chlorophenyl)sulfonamido)-N-phenylbutanamide ((R)-189-1)



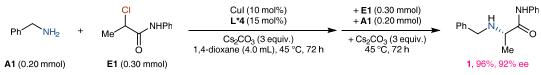
HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R

 $(minor) = 11.59 min, t_R (major) = 15.97 min.$

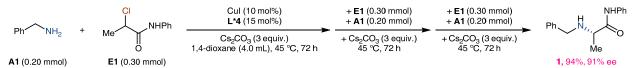
(R)-N-Benzyl-4-chloro-N-(1-hydroxybutan-2-yl)benzenesulfonamide ((R)-189)



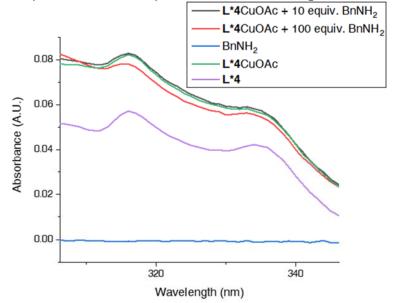
(R)-**189**


HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 12.07 min, *t*_R (major) = 14.00 min.

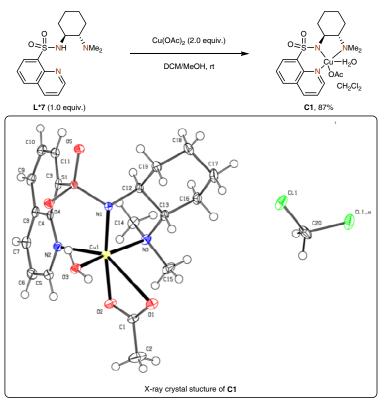
8. Mechanistic studies


Catalytic activity of the in situ formed catalyst in reactions with repeated addition of additional substrates

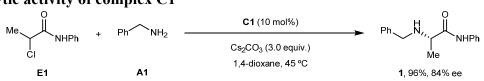
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 1 as a white solid (48.6 mg, 96% yield, 92% e.e.).


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Next, Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), and benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.), were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 1 as a white solid (97.6 mg, 96% yield, 92% e.e.).

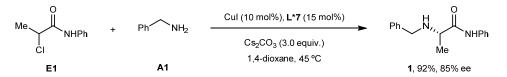
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction


mixture was stirred at 45 °C for 72 h. Next, Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.), were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Then, Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), and benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.), were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **1** as a white solid (142.9 mg, 94% yield, 91% e.e.).

UV spectroscopic analysis on the stability of L*4CuOAc in the presence of benzylamine

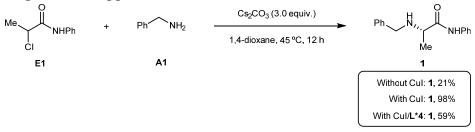

A solution of L*4CuOAc and benzylamine A1 (10 or 100 equiv.) in acetonitrile was stirred at 80 °C for 0.5 h under argon and then, was evacuated under reduced pressure. The residue was dissolved in dichloromethane to make a 0.01 mM solution for UV–vis spectroscopic analysis. The ligand displacement hardly occurred in the presence of 10 equiv. of benzylamine and only slightly occurred (ca. 16%) when the amount of benzylamine was increased to 100 equiv.

Preparation and characterization of complex C1



To a solution of $Cu(OAc)_2$ (36.2 mg, 0.20 mmol) in methanol (4 mL), L*7 (33.3 mg, 0.10 mmol) was added and stirred overnight. Then the solution was concentrated in vacuo, the residue dissolved in CH₂Cl₂ (10 mL) and filtered. The crude reaction product was recrystallized from dichloromethane/hexane to obtain pure product C1 (48.6 mg, 87% yield).

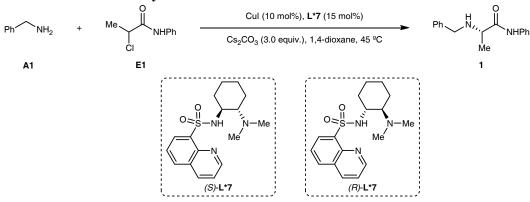
The catalytic activity of complex C1


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with C1 (2.8 mg, 0.005 mmol, 10 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv.), 2-chloro-*N*-phenylpropanamide E1 (13.73, 0.075 mmol, 1.5 equiv.), benzylamine A1 (5.4 mg, 0.05 mmol, 1.0 equiv.) and anhydrous 1,4-dioxane (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product 1 (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, 96%, 84% e.e.).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir

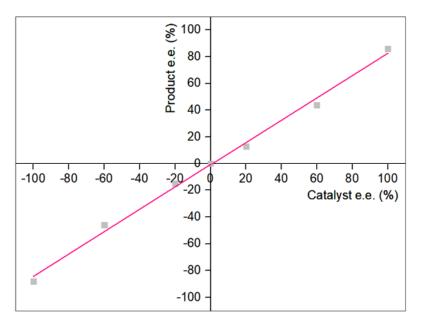
bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol%), L*7 (2.5 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide **E1** (13.7, 0.075 mmol, 1.5 equiv.), benzylamine **A1** (5.4 mg, 0.05 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product **1** (yield of **1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, 92%, 85% e.e.).

The effect of ligand and copper salt on the reaction

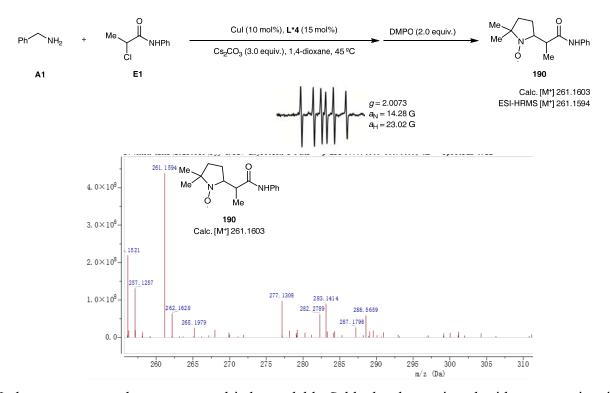


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol%), L*4 (3.9 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (13.73, 0.075 mmol, 1.5 equiv.), benzylamine A1 (5.4 mg, 0.05 mmol, 1.0 equiv.) and anhydrous 1,4-dioxane (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 12 h. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product 1 (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, 59%, 92% e.e.).

The procedure for the reaction without CuI and L*4 was the same with that described above except that CuI and L*4 was not added. The desired product 1 (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, 21%).


The procedure for the reaction without L*4 was the same with that described above except that L*4 was not added. The desired product 1 (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, 98%).

The non-linear effect of catalyst



Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol%), L*7 (2.5 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (13.7, 0.075 mmol, 1.5 equiv.), benzylamine A1 (5.4 mg, 0.05 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the products were separated by preparative thin-layer chromatography on silica gel. The e.e. values of products were then determined by HPLC, which indicated a linear relationship between e.e. values of products and corresponding catalysts. The catalyst L*7 with different e.e. values were prepared by mixing (S)-L*7 (99% e.e.) and (*R*)-L*7 (99% e.e.) in appropriate ratios.

Entry	Catalyst e.e. (%)	Product e.e. (%)
1	99	86
2	60	44
3	20	13
4	0	0
5	-20	-15
6	-60	-46
7	-99	-88



EPR and HRMS Experiments for the detection of intermediate during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol%), L*4 (3.9 mg, 0.0075 mmol, 15 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (13.7, 0.075 mmol, 1.5 equiv.), benzylamine A1 (5.4 mg, 0.05 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 4 h. Next, 5,5-dimethyl-1-pyrroline *N*-oxide DMPO (2.0 equiv.) was added and the reaction mixture was stirred at 45 °C for another 1 h. The resulting reaction mixture was analyzed by EPR. Spin trapping experiments support the intermediacy of carboncentered radicals in the alkylation reaction. Persistent nitroxyl radical 190 was formed. Meanwhile, the proposed radical adducts 190 were consistent with the results of ESI-HRMS. Therefore, we can conclude the formation of carbon center radical in this system.

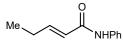
Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred for at room temperature 1 h. After that, 2-chloro-2-cyclopropyl-*N*phenylacetamide **E46** (62.7 mg, 0.30 mmol, 1.5 equiv.), benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1 to 2/1) to yield the product **191** as a colorless oil (46.2 mg, 82% yield, 89% e.e.) and **192** as a colorless oil (7.6 mg, 22% yield).

$$\underbrace{\mathsf{Cl}}_{\mathsf{Cl}}^{\mathsf{O}} \mathsf{NHPh} + \mathsf{Ph} \mathsf{NH}_{2} \xrightarrow{\mathsf{Cul}\,(10\,\mathsf{mol}\%),\,\mathsf{L}^{\star4}\,(15\,\mathsf{mol}\%)}_{\mathsf{Cs}_{2}\mathsf{CO}_{3}\,(3.0\,\mathsf{equiv.}),\,\mathsf{THF}\text{-}d_{\mathcal{B}},\,45\,^{\circ}\mathsf{C}} \xrightarrow{\mathsf{O}}_{\mathsf{NHPh}} + \underbrace{\mathsf{D}}_{\mathsf{NHPh}}^{\mathsf{O}} \overset{\mathsf{O}}{\mathsf{HPh}}_{\mathsf{NHPh}} + \underbrace{\mathsf{D}}_{\mathsf{NHPh}}^{\mathsf{O}}_{\mathsf{NHPh}} + \underbrace{\mathsf{D}}_{\mathsf{NHPh}}^{\mathsf{O}}_{\mathsf{$$

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and THF- d_8 (1.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-2-cyclopropyl-*N*-phenylacetamide **E46** (62.7 mg, 0.30 mmol, 1.5 equiv.), benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.) and THF- d_8 (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1 to 2/1) to yield the product **191** as a colorless oil (44.2 mg, 79% yield, 84% e.e.) and **192**- d_1 as a colorless oil (4.1 mg, 12% yield).

(S)-2-(Benzylamino)-2-cyclopropyl-N-phenylacetamide (191)

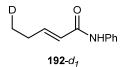

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.89 min, t_R (minor) = 23.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.62 – 7.59 (m, 2H), 7.37 – 7.26 (m, 7H), 7.12 – 7.07 (m, 1H), 3.81 (d, *J* = 13.3 Hz, 1H), 3.70 (d, *J* = 13.3 Hz, 1H), 2.50 (d, *J* = 9.1 Hz, 1H), 2.10 (s, 1H), 1.06 – 0.97 (m, 1H), 0.72 – 0.49 (m, 3H), 0.24 – 0.18 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 139.1, 137.8, 128.9, 128.6, 128.0, 127.4, 123.9, 119.3, 67.9, 52.7, 15.8, 3.7, 3.4.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_2O [M + H]^+ 281.1648$, found 281.1647.

(E)-N-Phenylpent-2-enamide (192)

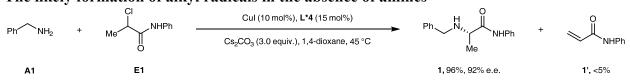


192

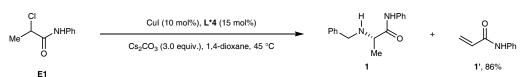
¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 2H), 7.35 – 7.30 (m, 2H), 7.23 (s, 1H), 7.13 – 7.09 (m, 1H), 7.04 (dt, *J* = 15.2, 6.4 Hz, 1H), 5.92 (dt, *J* = 15.2, 1.7 Hz, 1H), 2.30 – 2.22 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 147.9, 138.0, 129.0, 124.2, 122.9, 119.8, 25.2, 12.4. HRMS (ESI) m/z calcd. for C₁₁H₁₄NO [M + H]⁺ 176.1070, found 176.1069.

(E)-5-d-N-Phenylpent-2-enamide (192-d₁)



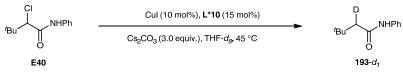
¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.35 – 7.30 (m, 2H), 7.17 (s, 1H), 7.13 – 7.09 (m, 1H), 7.04 (dt, *J* = 15.2, 6.4 Hz, 1H), 5.91 (dt, *J* = 15.3, 1.8 Hz, 1H), 2.31 – 2.20 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 164.1, 147.9, 138.0, 129.0, 124.2, 122.9, 119.9, 25.2, 12.4. ²H NMR (92 MHz, CHCl₃) δ 1.11 (s, 1H).

HRMS (ESI) m/z calcd. for $C_{11}H_{13}DNO [M + H]^+ 177.1133$, found 177.1135.

The likely formation of alkyl radicals in the absence of amines

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide **E1** (54.9 mg, 0.30 mmol, 1.5 equiv.), benzylamine **A1** (21.4 mg, 0.20 mmol, 1.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **1** as a white solid (48.6 mg, 96% yield, 92% e.e.).



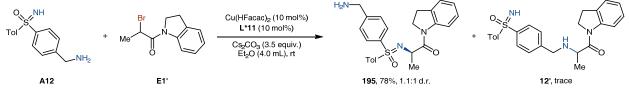
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1 (36.6 mg, 0.20 mmol, 1.0 equiv.) and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 24 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 1' as a white solid (25.4 mg, 86% yield).

N-Phenylacrylamide (1')

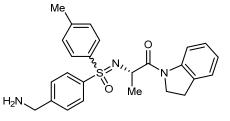
¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.60 – 7.58 (m, 2H), 7.34 – 7.30 (m, 2H), 7.14 – 7.10 (m, 1H), 6.45 – 6.40 (m, 1H), 6.31 – 6.25 (m, 1H), 5.76 – 5.73 (m, 1H). ¹³C NMR (100MHz, CDCl₃) δ 163.7, 137.7, 131.2, 129.0, 127.8, 124.5, 120.0. HRMS (ESI) m/z calcd. for C₉H₁₀NO [M + H]⁺ 148.0757, found 148.0759.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*10 (12.9 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and THF- d_8 (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-3,3-dimethyl-*N*-phenylbutanamide E40 (45.0 mg, 0.20 mmol, 1.0 equiv.) and THF- d_8 (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 193- d_1 as a white solid (2.6 mg, 7% yield).

2-d-3,3-Dimethyl-N-phenylbutanamide (193-d1)


193-d₁

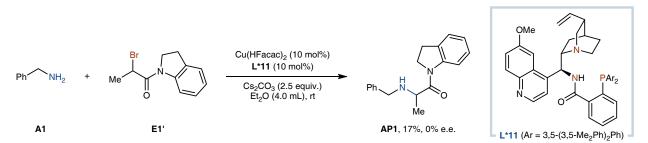
¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 2H), 7.34 – 7.30 (m, 2H), 7.12 – 7.04 (m, 2H), 2.23 (s, 1H), 1.11 (s, 9H).


¹³C NMR (100 MHz, CDCl₃) δ 170.0, 137.8, 129.0, 124.2, 119.8, 51.7, 31.3, 29.8. ²H NMR (61 MHz, CHCl₃) δ 2.23 (s, 1H).

HRMS (ESI) m/z calcd. for $C_{12}H_{17}DNO [M + H]^+$ 193.1446, found 193.1450.

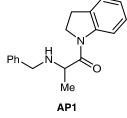
Mechanistic difference of the current N-alkylation with our previous C-N coupling

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with (4-(aminomethyl)phenyl)(imino)(*p*-tolyl)- λ^6 -sulfanone A12 (52.0 mg, 0.20 mmol, 1.0 equiv.), Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), L*11 (20.5 mg, 0.020 mmol, 10 mol%), Cs₂CO₃ (228.1 mg, 0.70 mmol, 3.5 equiv.) and anhydrous Et₂O (4.0 mL). Then, 2bromo-1-(indolin-1-yl)propan-1-one E1' (50.6 mg, 0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed with EtOAc. The filtrate was concentrated and the residue was purified by preparative thin-layer chromatography on silica gel (CH₂Cl₂/CH₃OH = 10/1) to yield the product 195 as a yellowish oil (68.0 mg, 78% yield, 1:1.1 d.r.). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy. (S)-(4-(Aminomethyl)phenyl)((1-(indolin-1-yl)-1-oxopropan-2-yl)imino)(p-tolyl)- λ^6 -sulfanone (195)



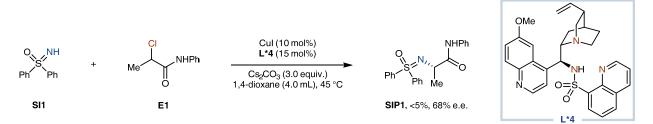
195

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 – 8.19 (m, 1H), 7.95 – 7.93 (m, 1H), 7.86 – 7.84 (m, 2H), 7.78 – 7.76 (m, 1H), 7.47 – 7.45 (m, 1H), 7.38 – 7.36 (m, 1H), 7.24 – 7.22 (m, 1H), 7.17 – 7.10 (m, 3H), 7.00 – 6.95 (m, 1H), 4.27 – 4.19 (m, 1H), 4.08 – 3.87 (m, 6H), 3.10 – 2.94 (m, 2H), 2.35 (s, 1.43H), 2.26 (s, 1.57H), 1.44 – 1.40 (m, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 172.2, 172.1, 143.4, 143.3, 143.0, 140.3, 139.6, 138.0, 137.8, 131.32, 131.27, 129.8, 129.7, 128.5, 128.39, 128.35, 128.31, 128.26, 127.22, 127.20, 124.2, 123.6, 117.5, 51.9, 51.7, 47.6, 44.9, 44.7, 28.04, 28.01, 21.4, 21.3, 21.0, 20.9.

HRMS (ESI) m/z calcd. for $C_{25}H_{28}N_3O_2S [M + H]^+ 434.1897$, found 434.1904.

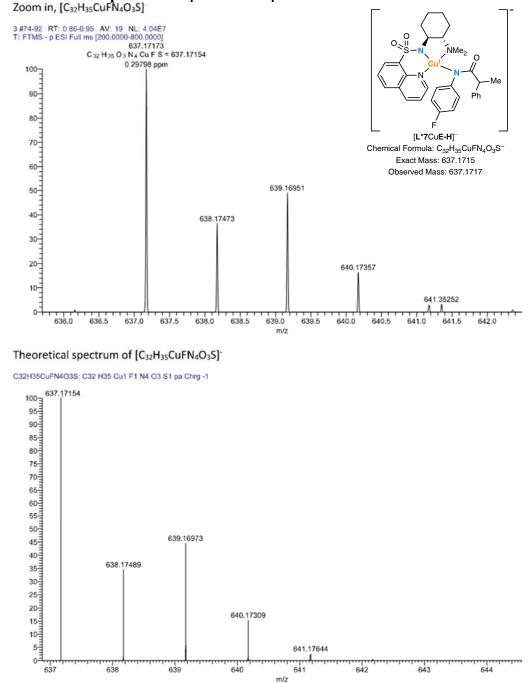
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with 2-bromo-1-(indolin-1-yl)propan-1-one E1' (50.6 mg, 0.20 mmol, 1.0 equiv.) Cu(HFacac)₂ (8.8 mg, 0.020 mmol, 10 mol%), L*11 (20.5 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (163.0 mg, 0.50 mmol, 2.5 equiv.) and anhydrous Et₂O (4.0 mL). Then, benzylamine A1 (21.4 mg, 0.20 mmol, 1.0 equiv.) was added into the mixture and stirred at room temperature for 36 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed with EtOAc. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/2) to afford the desired product AP1 as a colorless oil (9.7 mg, 17% yield, 0% e.e.).


2-(Benzylamino)-1-(indolin-1-yl)propan-1-one (AP1)

HPLC analysis: Chiralcel IG (*n*-hexane /*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 14.22 min, *t*_R (major) = 18.91 min.

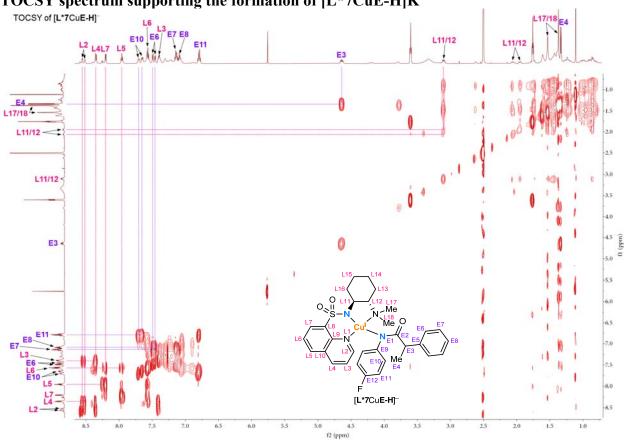
¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.0 Hz, 1H), 7.37 – 7.29 (m, 4H), 7.26 – 7.19 (m, 3H), 7.07 – 7.03 (m, 1H), 3.98 – 3.93 (m, 2H), 3.88 (d, J = 12.8 Hz, 1H), 3.62 (d, J = 12.8 Hz, 1H), 3.51 (q, J = 6.8 Hz, 1H), 3.18 (t, J = 8.5 Hz, 2H), 2.16 (s, 1H), 1.33 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 142.8, 139.7, 131.1, 128.4, 128.3, 127.6, 127.0, 124.6, 124.0, 117.3, 54.8, 51.9, 47.3, 28.0, 19.0.

HRMS (ESI) m/z calcd. for C₁₈H₂₀N₂O [M + H]⁺ 281.1648, found 281.1651.

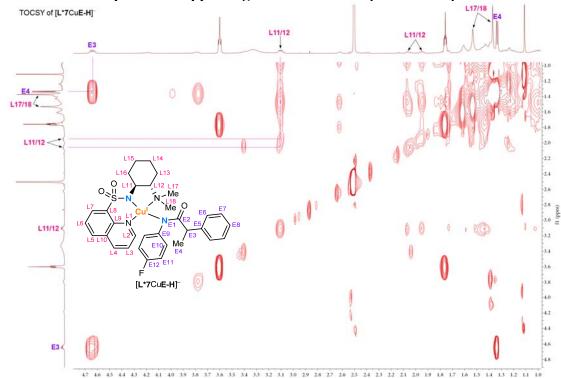


Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L*4 (15.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv.), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide **E1** (754.9 mg, 0.30 mmol, 1.5 equiv.), iminodiphenyl- λ^6 -sulfanone **SI1** (43.4 mg, 0.20 mmol, 1.0 equiv.) and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 45 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product **SIP1** (yield of **SIP1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, <5%, 68% e.e.)³.

High resolution mass spectrum of [L*4CuE-H]⁻

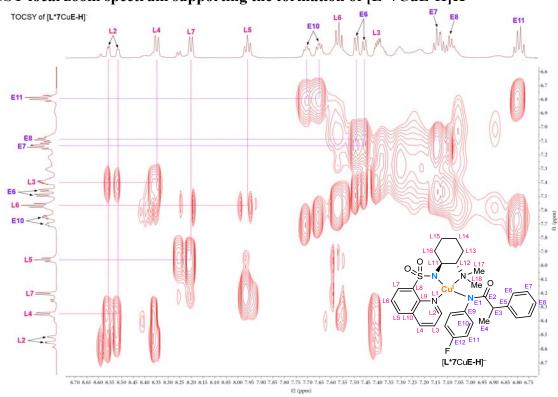


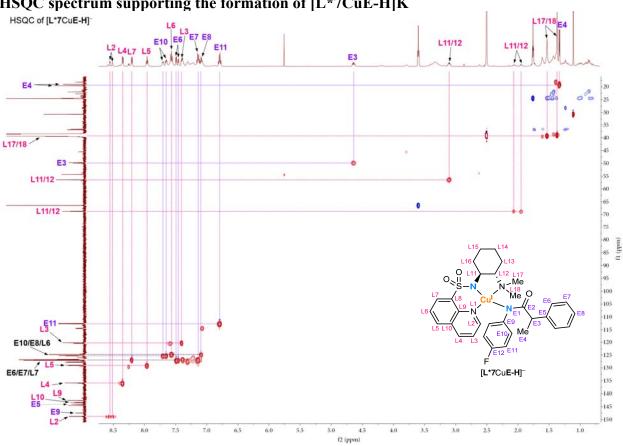
A solution of CuI (10 mol%), L*4 (15 mol%), and Cs₂CO₃ (2.1 equiv.) in MeCN (2.0 mL) was stirred overnight at rt under argon and then, *N*-(4-fluorophenyl)-2-phenylpropanamide **E-H** (0.050 mmol) was added. The resulting mixture was stirred under the same conditions for 1 h before direct high-resolution mass spectroscopic analysis.


High resolution mass spectrum of [L*7CuE-H]⁻

A solution of CuI (10 mol%), L*7 (15 mol%), and Cs₂CO₃ (2.1 equiv.) in MeCN (2.0 mL) was stirred overnight at rt under argon and then, N-(4-fluorophenyl)-2-phenylpropanamide **E-H** (0.050 mmol) was added. The resulting mixture was stirred under the same conditions for 1 h before direct high-resolution mass spectroscopic analysis.

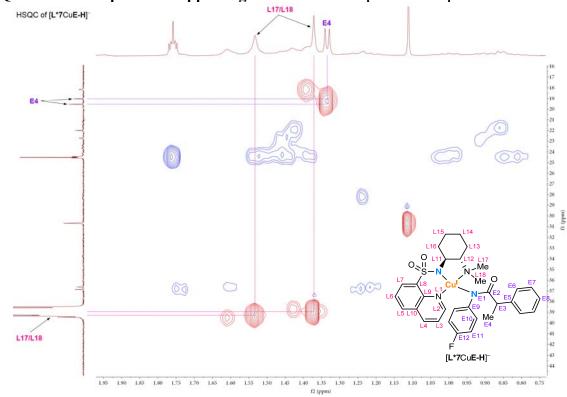
Spectra supporting the formation of [L*7CuE-H]K TOCSY spectrum supporting the formation of [L*7CuE-H]K

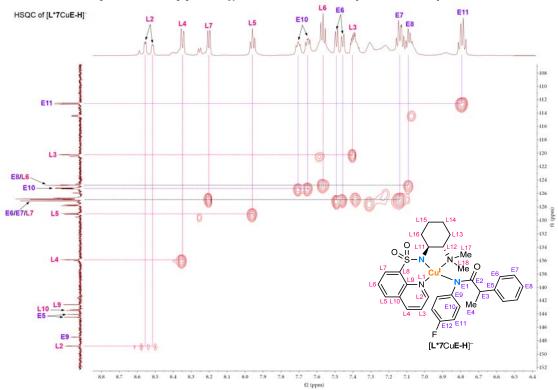

Protocol: A mixture of *N*-(4-fluorophenyl)-2-phenylpropanamide **E-H**, **L***7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF was stirred at rt for 1 h under argon. Upon completion, the mixture was concentrated under reduced pressure and the residue was dissolved in DMSO- d_6 for further NMR spectroscopic characterization.

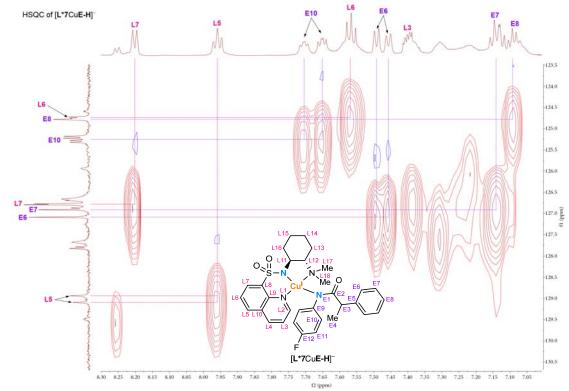


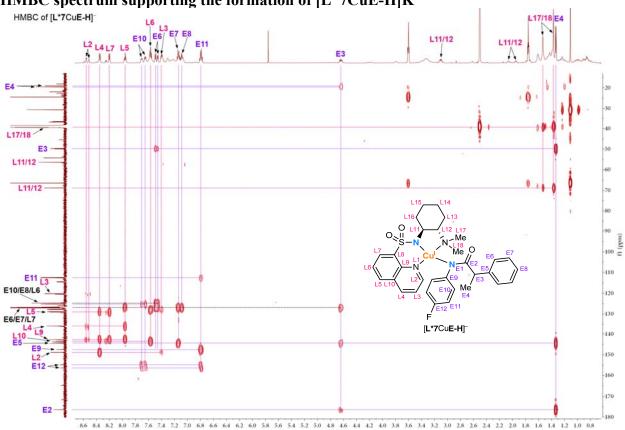
f2 (ppm)

TOCSY local zoom spectrum supporting the formation of [L*7CuE-H]K

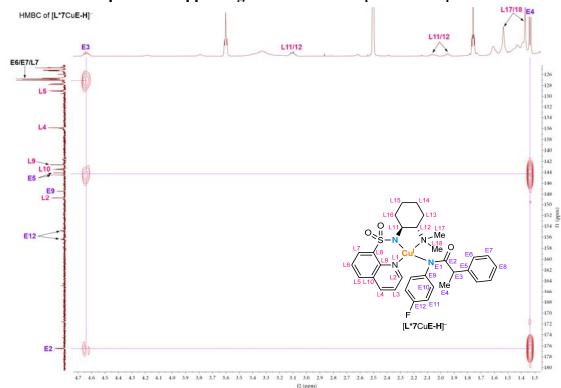

TOCSY local zoom spectrum supporting the formation of [L*7CuE-H]K


HSQC spectrum supporting the formation of [L*7CuE-H]K

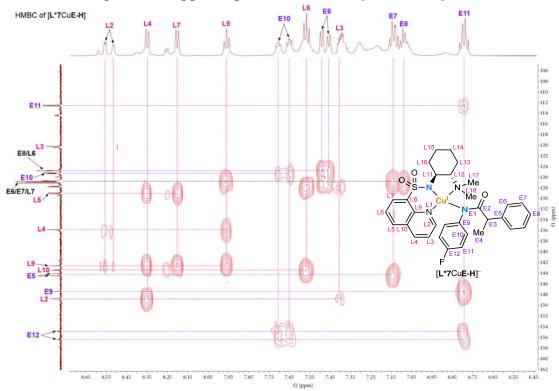

Protocol: A mixture of N-(4-fluorophenyl)-2-phenylpropanamide E-H, L*7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF was stirred at rt for 1 h under argon. Upon completion, the mixture was concentrated under reduced pressure and the residue was dissolved in DMSO-d₆ for further NMR spectroscopic characterization.

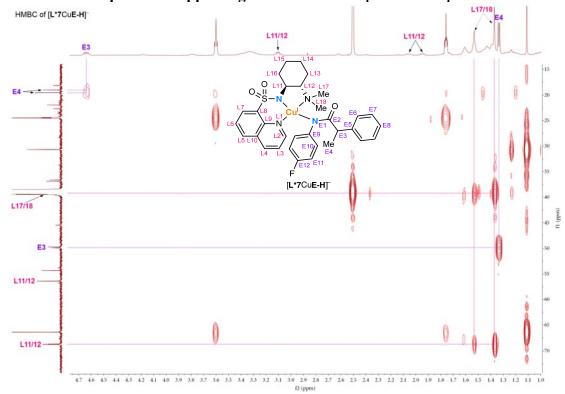

HSQC local zoom spectrum supporting the formation of [L*7CuE-H]K

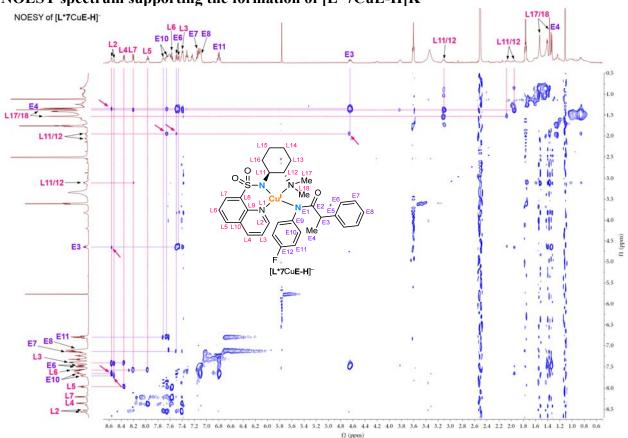
HSQC local zoom spectrum supporting the formation of [L*7CuE-H]K


HSQC local zoom spectrum supporting the formation of [L*7CuE-H]K

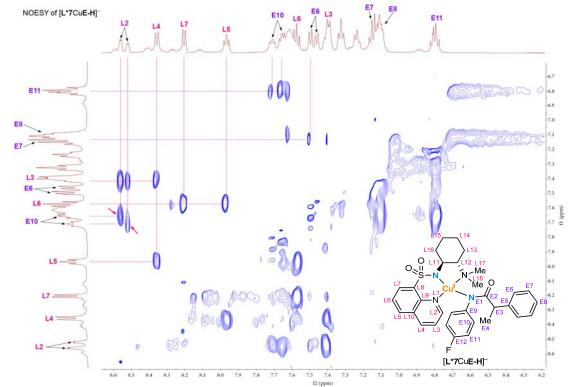
HMBC spectrum supporting the formation of [L*7CuE-H]K


Protocol: A mixture of *N*-(4-fluorophenyl)-2-phenylpropanamide **E-H**, **L***7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF was stirred at rt for 1 h under argon. Upon completion, the mixture was concentrated under reduced pressure and the residue was dissolved in DMSO- d_6 for further NMR spectroscopic characterization.

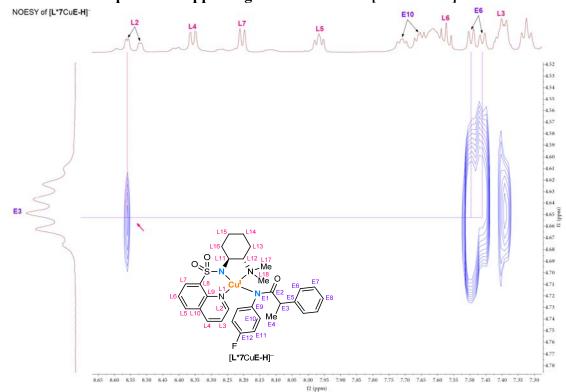

f2 (ppm)

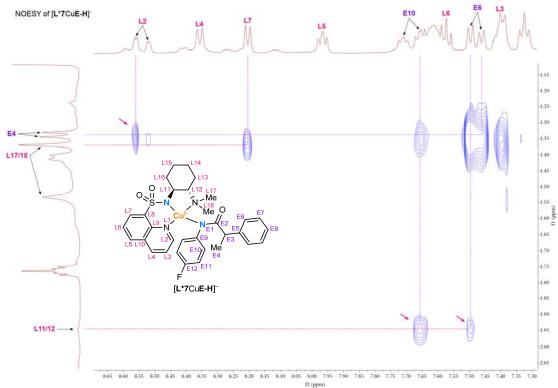

HMBC local zoom spectrum supporting the formation of [L*7CuE-H]K

HMBC local zoom spectrum supporting the formation of [L*7CuE-H]K

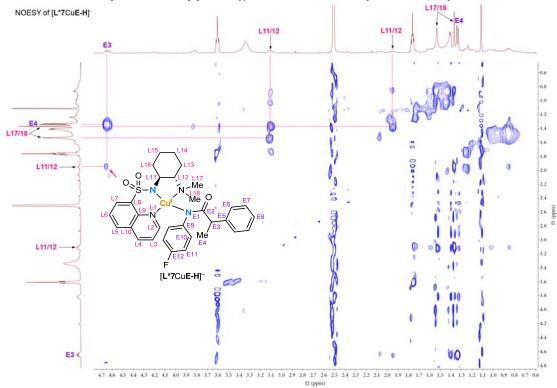

HMBC local zoom spectrum supporting the formation of [L*7CuE-H]K

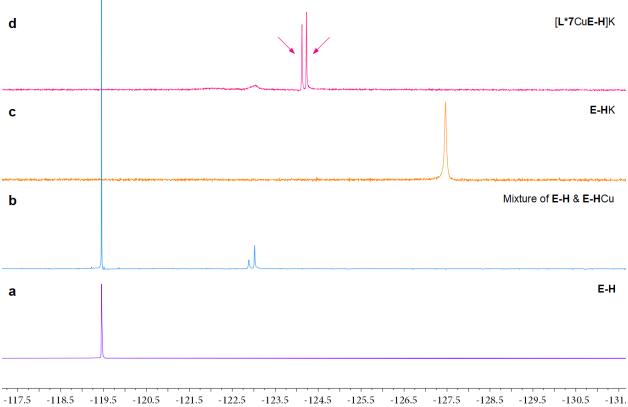
NOESY spectrum supporting the formation of [L*7CuE-H]K


A series of cross-peaks (indicated by pink arrows) corresponding to hydrogen atoms of L*7 and **E-H**, respectively, were identified in this spectrum, which indicated the coexistence of these two fragments within one complex molecule.


Protocol: A mixture of *N*-(4-fluorophenyl)-2-phenylpropanamide **E-H**, **L***7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF was stirred at rt for 1 h under argon. Upon completion, the mixture was concentrated under reduced pressure and the residue was dissolved in DMSO- d_6 for further NMR spectroscopic characterization.

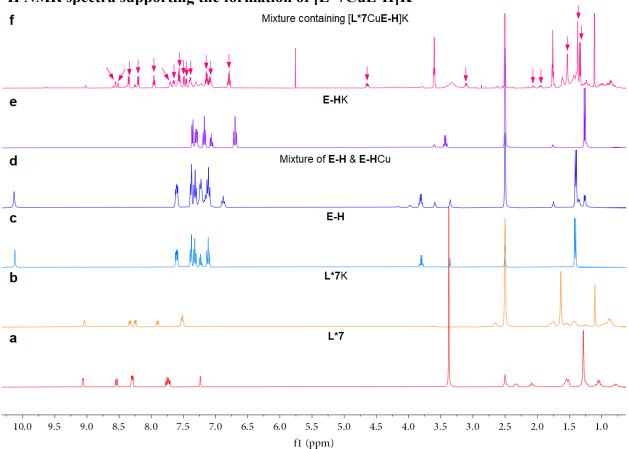
NOESY local zoom spectrum supporting the formation of [L*7CuE-H]K


NOESY local zoom spectrum supporting the formation of [L*7CuE-H]K

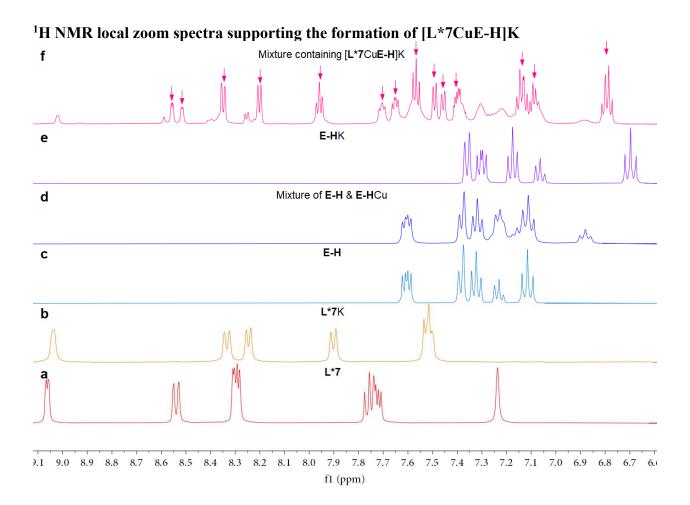


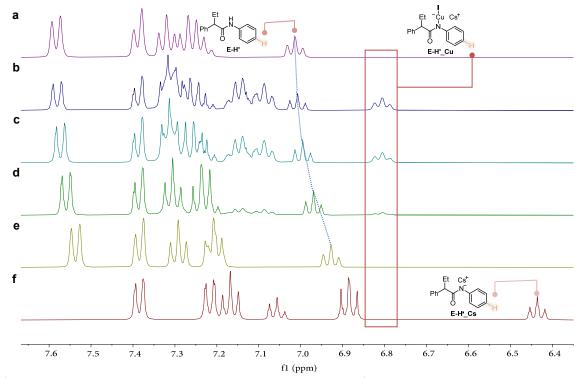
NOESY local zoom spectrum supporting the formation of [L*7CuE-H]K

NOESY local zoom spectrum supporting the formation of [L*7CuE-H]K



¹⁹F NMR spectra supporting the formation of [L*7CuE-H]K


f1 (ppm)

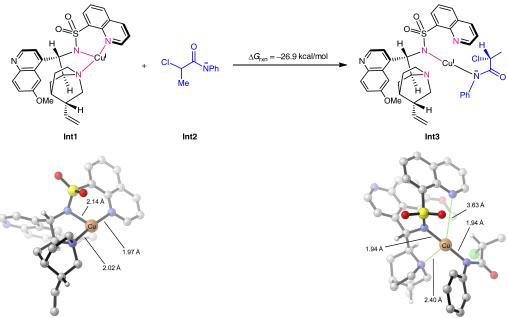

The two peaks (indicated by pink arrows) corresponding to the proposed [L*7CuE-H]K appeared downfield relative to that of E-HK and upfield relative to that of E-H and E-HCu, respectively, which were consistent with the corresponding electron densities of the phenyl rings attached to the amide N. **a**, ¹⁹F NMR spectrum of E-H in DMSO-*d*6. **b**, ¹⁹F NMR spectrum of the crude reaction mixture in DMSO-*d*6, which was prepared by stirring E-H, CuI (1.0 equiv.), and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **c**, ¹⁹F NMR spectrum of E-HK in DMSO-*d*6, which was prepared by stirring E-H and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **c**, ¹⁹F NMR spectrum of THF at rt under argon for 2 h. **d**, ¹⁹F NMR spectrum of [L*7CuE-H]K in DMSO-*d*6, which was prepared by stirring E-H, L*7 (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF at rt under argon for 1 h.

¹H NMR spectra supporting the formation of [L*7CuE-H]K

The two sets of peaks (indicated by pink arrows) corresponding to the proposed [L*7CuE-H]K were identified by comparing the ¹H NMR spectrum of the mixture with that of others. **a**, ¹H NMR spectrum of L*7 in DMSO-d6. **b**, ¹H NMR spectrum of L*7K in DMSO-d6, which was prepared by stirring L*7 and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **c**, ¹H NMR spectrum of **E-H** in DMSO-d6. **d**, ¹H NMR spectrum of the crude reaction mixture in DMSO-d6, which was prepared by stirring **E-H**, CuI (1.0 equiv.), and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 1 h. **e**, ¹H NMR spectrum of **E-HK** in DMSO-d6, which was prepared by stirring **E-H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-H]K in DMSO-d6, which was prepared by stirring **E-H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-H]K in DMSO-d6, which was prepared by stirring **E-H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-H]K in DMSO-d6, which was prepared by stirring **E-H** and KO'Bu (1.0 equiv.) in anhydrous THF at rt under argon for 2 h. **f**, ¹H NMR spectrum of [L*7CuE-H]K in DMSO-d6, which was prepared by stirring **E-H**, L*7 (1.0 equiv.), CuI (1.0 equiv.), and KO'Bu (2.0 equiv.) in anhydrous THF at rt under argon for 1 h.

Deprotometalation of model amide in presence of CuI and Cs₂CO₃

a, ¹H-NMR spectrum of **E-H'** (25 mM) in DMSO-*d*₆. **b**, ¹H-NMR spectrum of **E-H'** (25 mM), CuI (1.0 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆. **c**, ¹H-NMR spectrum of **E-H'** (25 mM), CuI (0.50 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆. **d**, ¹H-NMR spectrum of **E-H'** (25 mM), CuI (0.25 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆. **e**, ¹H-NMR spectrum of **E-H'** (25 mM) and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆. **e**, ¹H-NMR spectrum of **E-H'** (25 mM) and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆. **f**, ¹H-NMR spectrum of **E-H'** (25 mM) in DMSO-*d*₆. **f**, ¹H-NMR spectrum of **E-H'** (25 mM) in DMSO-*d*₆. Procedure for panels **b**–**d**: A mixture of **E-H'** (6.0 mg, 0.025 mmol), CuI (0.25–1.0 equiv.), and Cs₂CO₃ (2.0 equiv.) in DMSO-*d*₆ (1.0 mL) was stirred at rt for 2 h under argon atmosphere. Upon completion, the mixture was filtered through a 0.22 µm filter and the filtrate was transferred into an NMR tube in a glove box for ¹H NMR spectroscopic analysis.


Computational study Computational Details

All density functional theory (DFT) calculations were performed using Gaussian 16 program⁸ with default parameters. Geometry optimizations were conducted with B3LYP functional,⁹ employing the D3 version of Grimme's dispersion corrections¹⁰ with Becke-Johnson damping¹¹. LANL2DZ basis set¹² was used for copper and 6-31G(d) basis set was used for all other atoms. (5d,7f) keyword in Gaussian 16 software is used. Single-point energies and solvent effects at 1,4-dioxane were evaluated with B3LYP functional and D3 version of Grimme's dispersion corrections with Becke-Johnson damping. SDD basis set¹³ was used for copper and 6-311+G(d,p) basis set was used for all other atoms. The solvation energies were calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model¹⁴. Frequency analysis was also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT\ln(c_s/c_g)$ is added to energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.040876 mol/L), and *R* is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol was used.

The 3D diagrams of optimized structures shown in the main text and below here in supplementary information for computations were generated with CYLview software¹⁵.

Computational study on the complexation of L*4Cu(I) with the deprotonated amide substrate

Computational study of complexation of LCu(I) and deprotonated amide substrate. Trivial hydrogen atoms are omitted for clarity in 3D diagrams. The complexation process of LCu(I) species **Int1** and deprotonated amide species **Int2** has an exergonic free energy change of 26.9 kcal/mol.

Table of Energies

Supplementary Fig. 17 Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(1,4-Dioxane)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	Ε	Н	G	Imaginary Frequency
Int1	0.541692	0.574744	0.477100	-2163.356067	-2162.781323	-2162.878967	
Int2	0.161531	0.173485	0.122866	-938.868764	-938.695279	-938.745898	
Int3	0.704427	0.750284	0.622882	-3102.287592	-3101.537308	-3101.664710	

Coordinates of Computed Species Int1

Charge = 0. Multiplicity = 1

Charge = 0 , Multiplicity = 1					
С	1.06297600	0.29645200	-1.27288000		
Н	1.31397700	-0.05341200	-2.28365500		
С	1.43475800	1.77188100	-1.20238700		
С	1.09158800	2.58641600	-0.07659600		
С	2.18386700	2.35139300	-2.20408400		
С	0.27083400	2.13736600	0.99387500		
С	1.60666400	3.92075100	-0.04368900		
С	2.62158700	3.69073800	-2.08273000		
Η	2.44594200	1.78153900	-3.09121800		
С	-0.01083500	2.96987400	2.05539300		
Η	-0.18300000	1.16330900	0.90978300		
С	1.31062200	4.74142800	1.08113100		
Η	3.21556700	4.13605100	-2.88022700		
С	0.52750900	4.28308500	2.10951000		
Η	1.72040300	5.74614900	1.08547500		
Η	0.28628800	4.90587300	2.96506900		
Ν	2.36831900	4.45614300	-1.04056200		
Ν	-0.33785000	0.06647700	-0.93641100		
С	1.97896500	-0.46466900	-0.26632900		
С	3.47074800	-0.44543000	-0.68185000		
Ν	1.52193600	-1.87828000	-0.02082700		
Η	1.86080300	0.02670900	0.70312600		
С	4.05518600	-1.85673600	-0.52532400		
Η	4.02198000	0.28770500	-0.08659100		
Н	3.57158100	-0.13204400	-1.72698700		
С	2.27386000	-2.40561200	1.14753100		
С	1.80510300	-2.74233000	-1.20602900		
С	3.81877000	-2.38896700	0.91075800		
Η	5.12968900	-1.84723100	-0.73351400		
С	3.32531800	-2.78271100	-1.51194300		
Η	1.91728100	-3.42184200	1.33671500		
Η	2.00595100	-1.79422700	2.01425300		
Н	1.41416500	-3.73578100	-0.97034600		
Н	1.21152000	-2.36599600	-2.03930800		
Н	3.71028400	-3.80526500	-1.42471000		
Н	3.51685700	-2.45267500	-2.53903000		
Η	4.19702400	-3.41795900	0.94930600		

S	-1.30714600	-0.46472400	-2.08589300
0	-1.19730500	-1.94256500	-2.30543100
0	-1.33347700	0.34565300	-3.32083900
Cu	-0.47405700	-1.71076600	0.24211300
С	4.53461500	-1.58914500	1.96233500
С	5.52222700	-2.05336500	2.72816900
Н	4.20098400	-0.55881900	2.09352300
Н	6.01011900	-1.43190500	3.47371700
Н	5.88197400	-3.07624200	2.63496300
С	-2.88564500	-0.20835200	-1.22877600
С	-3.24149600	-0.79853200	0.02570300
С	-3.78538600	0.59719300	-1.89303800
С	-4.54200700	-0.50396100	0.55753800
С	-5.06472700	0.87382100	-1.36326500
Н	-3.47478500	1.02272800	-2.84104400
С	-2.78094200	-2.13834200	1.88826400
С	-4.90885000	-1.06229900	1.80520000
Н	-5.74499400	1.51566200	-1.91411300
С	-4.03309300	-1.88202000	2.47496800
Н	-5.88926400	-0.83410400	2.21451900
Н	-4.28347100	-2.33312900	3.42878500
С	-5.43590800	0.33484200	-0.15710500
Н	-6.41311300	0.53706800	0.27229300
Ν	-2.38481000	-1.61987800	0.72941400
0	-0.81754900	2.62292700	3.10212300
С	-1.44704600	1.35405100	3.03884100
Н	-0.71072000	0.53818100	3.02702000
Н	-2.06168600	1.27607600	3.93754300
Н	-2.08113100	1.26304800	2.14724100
Н	-2.07032100	-2.79193000	2.38311200

Int2

Int2					
Charge = -1, Multiplicity = 1					
С	0.96445900	0.28151700	0.16367700		
0	0.95337100	1.50431000	-0.10905300		
Ν	-0.00899100	-0.62463300	0.28922400		
С	2.33594600	-0.34918600	0.49356600		
Н	2.20231700	-1.37784200	0.82263300		
С	3.12565700	0.49750800	1.47307100		
Н	2.58362700	0.52231900	2.42801500		
Н	4.13180000	0.10160300	1.64762600		
Н	3.18247900	1.51873300	1.08816400		
С	-1.33564100	-0.27993500	0.11236400		
С	-2.28218500	-1.31943500	0.30972700		
С	-1.86047000	0.99351800	-0.24401400		
С	-3.64920400	-1.11446400	0.16687600		
Н	-1.88845800	-2.29612300	0.58038100		
С	-3.23365700	1.18691000	-0.38486900		
Н	-1.15817200	1.80110800	-0.40035300		
С	-4.14613100	0.14683500	-0.18344800		
Н	-4.33685600	-1.94443700	0.32889800		
Н	-3.60030300	2.17631000	-0.65963600		
Н	-5.21573300	0.31269300	-0.29709100		

Int3

Charge $= -1$, Multiplicity =	= 1	
С	-0.46104600	1.75233900	-0.58690800
Н	-0.18419900	2.49161200	-1.35018700
С	-1.89417000	2.08942500	-0.19135400
С	-2.67392800	1.31294500	0.72483200
С	-2.51141500	3.16811700	-0.79132400
С	-2.18180200	0.15977900	1.39418000
C	-4.02747800	1.72403500	0.95402600
C	-3.85508200	3.48289800	-0.49662700
H	-1.97058500	3.75476200	-1.52724900
C	-2.98533200	-0.52854900	2.28185500
H	-1.19794800	-0.20330000	1.13915400
C	-4.83104900	0.97101700	1.85296700
Н	-4.32773900	4.33493600	-0.98642000
C	-4.32665000	-0.12177400	2.50736700
Н	-5.85479200	1.30070900	1.99930300
Н	-4.92629300	-0.70227500	3.20169600
N	-4.60499500	2.79972800	0.34537000
N	-0.31681100	0.39949700	-1.12030300
C	0.51702000	1.93242600	0.59528400
C C	0.56660900	3.39254900	1.12128200
N	1.87009300	1.46776000	0.23242200
H	0.19897200	1.27277100	1.40609600
C	2.04367200	3.77202400	1.33631500
Н	-0.01448000	3.49282800	2.04386800
H	0.12027300	4.08308700	0.39462000
C	2.67772600	1.34528400	1.44898100
C C	2.53462100	2.39338200	-0.69993500
C C	2.76173900	2.71180600	2.21867700
H	2.11829800	4.75346100	1.81817100
C	2.73030900	3.79138800	-0.04171000
H	3.67142500	0.99515600	1.15498500
H	2.23732200	0.56294800	2.07531500
H	3.48767900	1.94150600	-0.98295900
H	1.93248800	2.45199100	-1.60974200
H	3.79647800	4.02398500	0.07337800
H	2.29155400	4.58260300	-0.66241000
H	3.81261100	3.01630200	2.31019800
S	-1.01656100	0.13109000	-2.55198200
0	-0.36582600	-1.01333100	-3.20977400
0	-0.30382000	1.38573800	-3.33116800
Cu	1.28286600	-0.63120400	-0.76804300
	2.18298700	2.61537200	
C C	2.18298700	2.95952500	3.59998600 4.72349400
		2.93932300	
Н	1.16957900		3.66732000
Н	2.34763800	2.85847700	5.69989900 4.70679300
H C	3.83099600 -2.70859900	3.34884100	
		-0.35903000	-2.13342000
C C	-2.96456200	-1.47978700	-1.28732900
C	-3.73918300	0.46551800	-2.52806500

a	4.00(00000	1 (0505200	0.00000500
C	-4.30639300	-1.68787300	-0.82922500
C	-5.06218600	0.23989400	-2.08519300
Н	-3.50117300	1.31734500	-3.15339700
С	-2.20861600	-3.30316700	-0.10713100
С	-4.53710200	-2.76939700	0.05588500
Н	-5.84957000	0.92351300	-2.38819700
С	-3.49193300	-3.58169300	0.42261300
Н	-5.54150400	-2.93366800	0.43897600
Н	-3.62906200	-4.41194700	1.10829600
С	-5.33998600	-0.80851800	-1.24085900
Н	-6.34650800	-0.97098700	-0.86338400
Ν	-1.94226500	-2.29846200	-0.91417000
0	-2.59325400	-1.62219800	2.99277800
С	-1.21182700	-1.95903500	2.94345600
Н	-0.58888900	-1.11965200	3.27138700
Н	-1.07607800	-2.80210200	3.62161800
Н	-0.90531300	-2.25003900	1.93539000
Н	-1.36483300	-3.93984400	0.15926400
С	3.19813900	-2.63956500	0.26287100
0	4.27864900	-3.20179100	0.49447800
Ν	2.93618200	-1.62949000	-0.58934700
С	1.85892600	-4.65123700	1.03383200
Н	2.79839500	-5.05709000	1.41601700
Н	1.02152600	-4.99543400	1.64904300
Н	1.71712900	-5.01433000	0.00786100
С	3.98226100	-0.98457900	-1.27331500
С	3.69377200	-0.41943600	-2.53243600
С	5.26514000	-0.77266900	-0.72820800
С	4.63581500	0.35476000	-3.20525400
Н	2.70806800	-0.58678200	-2.96066600
С	6.19840900	0.00992500	-1.40711300
Н	5.50975400	-1.22871400	0.22205300
С	5.89537800	0.58466400	-2.64453700
Н	4.37933200	0.78488400	-4.17075900
Н	7.17722100	0.17321300	-0.95999800
Н	6.62997400	1.19376300	-3.16562400
C	1.94135700	-3.14000500	0.99700000
H	1.03994600	-2.68130500	0.58635300
Cl	2.02982600	-2.49808300	2.73769400

9. References

1. Line, N. J., Witherspoon, B. P., Hancock, E. N. & Brown, M. K. Synthesis of *ent*-[3]-ladderanol: Development and application of intramolecular chirality transfer [2+2] cycloadditions of allenic ketones and alkenes. *J. Am. Chem. Soc.* **139**, 14392–14395 (2017).

2. Wang, P.-F., Yu, J., Guo, K.-X., Jiang, S.-P., Chen, J.-J., Gu, Q.-S., Liu, J.-R., Hong, X., Li, Z. -L. & Liu, X.-Y. Design of hemilabile N,N,N-Ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters. *J. Am. Chem. Soc.* **144**, 6442–6452 (2022).

3. Zhang, Y.-F., Dong, X.-Y., Cheng, J.-T., Yang, N.-Y., Wang, L.-L., Wang, F.-L., Luan, C., Liu, J., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Enantioconvergent Cu-catalyzed radical C–N coupling of racemic secondary alkyl halides to access α -chiral primary amines. *J. Am. Chem. Soc.* 143, 15413–15419 (2021).

4. Kainz, Q. M., Matier, C. D., Bartoszewicz, A., Zultanski, S. L., Peters, J. C. & Fu, G. C. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. *Science* **351**, 681–684 (2016).

5. Tanasova, M., Yang, Q., Olmsted, C. C., Vasileiou, C., Li, X., Anyika, M. & Borhan, B. An unusual conformation of α-haloamides due to cooperative binding with zincated porphyrins. *Eur. J. Org. Chem.* **2009**, 4242–4253 (2009).

6. Wang, F.-L., Yang, C.-J., Liu, J.-R., Yang, N.-Y., Dong, X.-Y., Jiang, R.-Q., Chang, X.-Y., Li, Z.-L., Xu. G.-X., Yuan, D.-L., Zhang, Y.-S., Gu, Q.-S., Hong, X.; Liu, X.-Y. Mechanism-based ligand design for copper-catalysed enantioconvergent $C(sp^3) - C(sp)$ cross-coupling of tertiary electrophiles with alkynes. *Nat. Chem.* 14, 949–957 (2022).

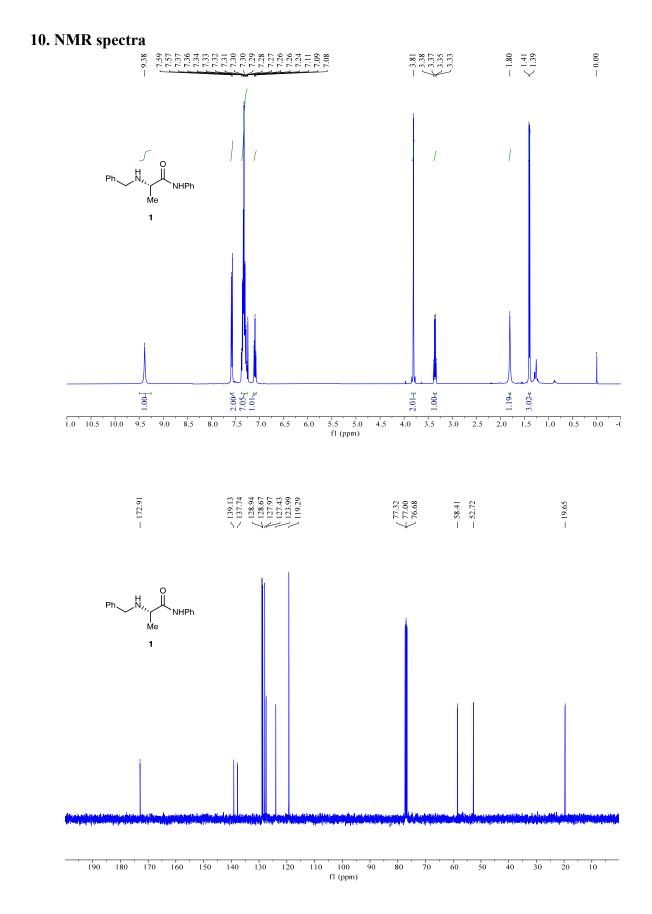
7. Murata, Y., Takeuchi, K. & Nishikata, T. The synthetic protocol for α -bromocarbonyl compounds via brominations. *Tetrahedron* **75**, 2726–2736 (2019).

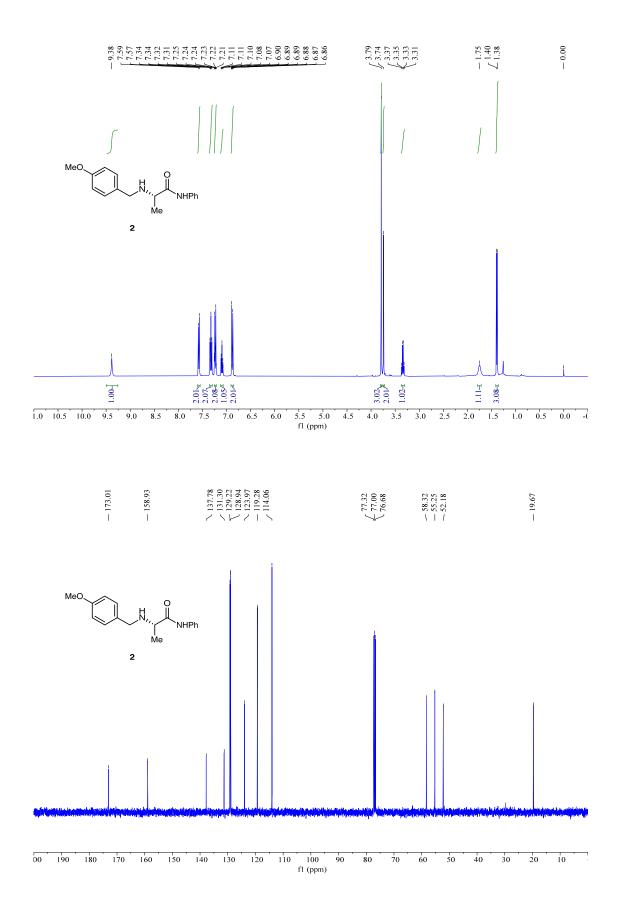
 Gaussian 16, Revision A.03, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J., Gaussian, Inc., Wallingford CT, 2016.

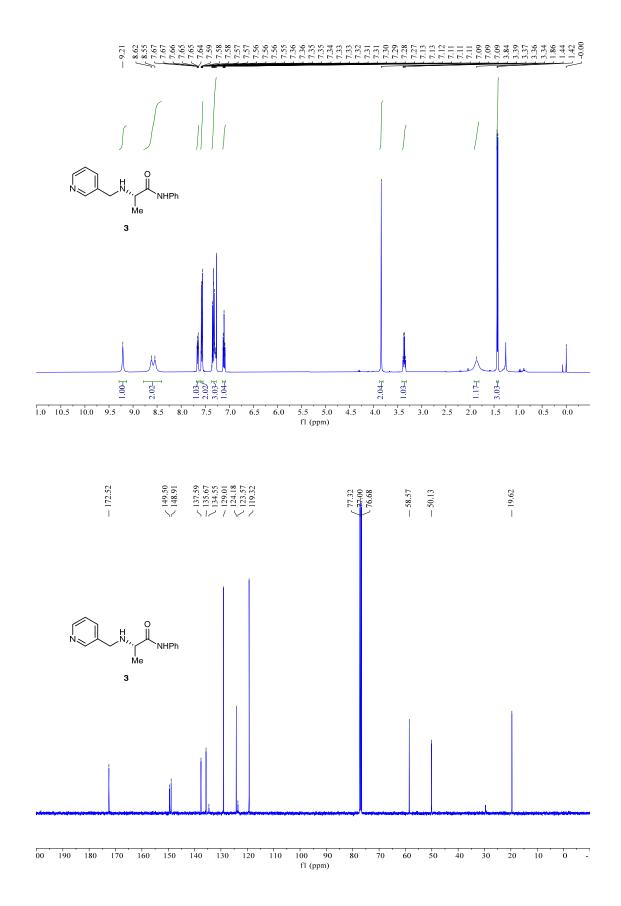
9. (a) Lee, C., Yang, W. & Parr, R. G. Development of the colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **37**, 785–789 (1988). (b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).

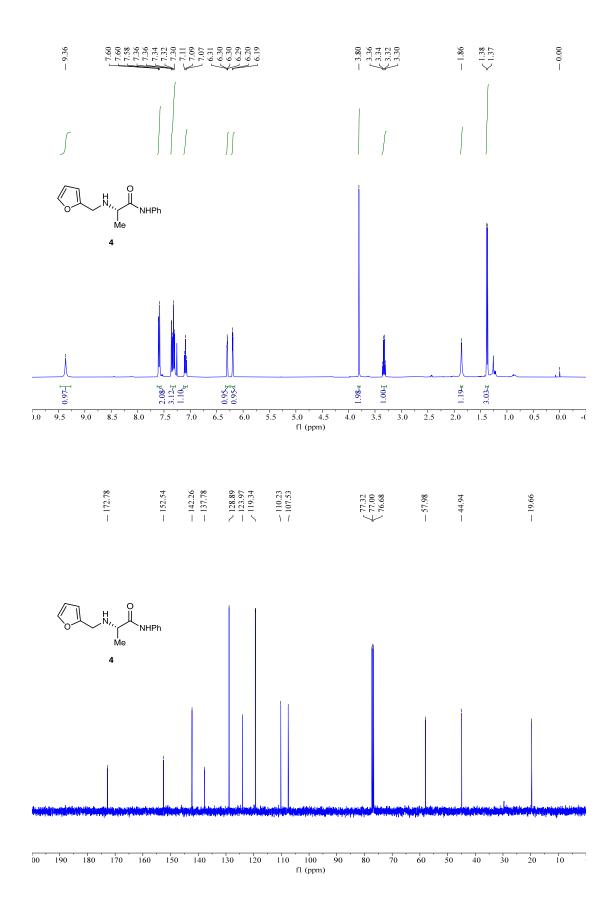
10. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

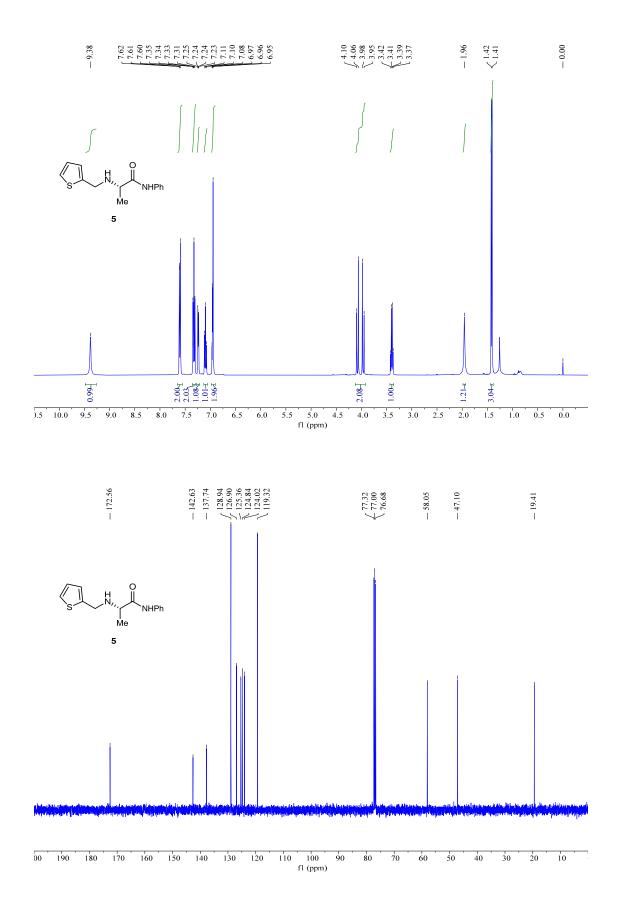
11. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comp. Chem.* **32**, 1456–1465 (2011).

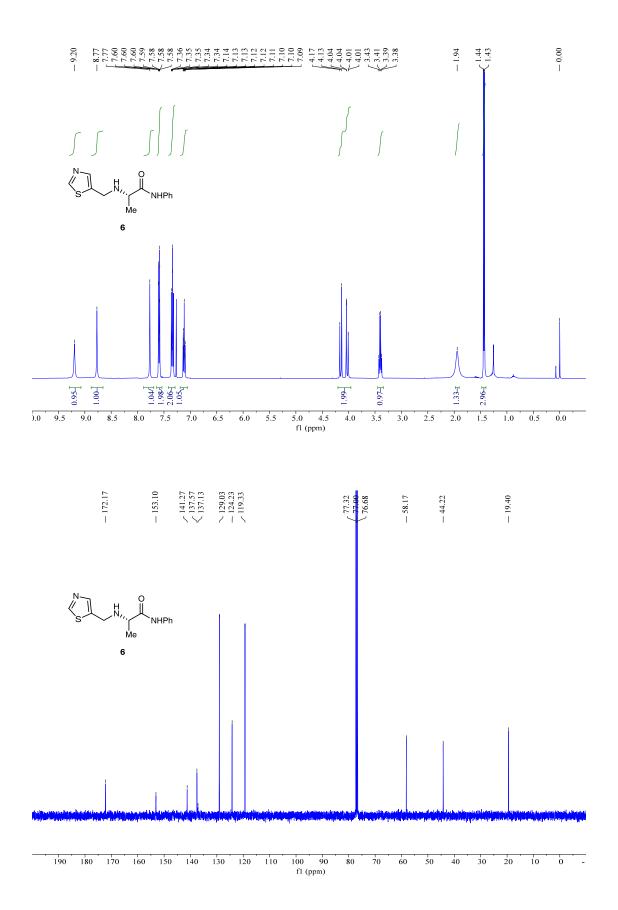

12. (a) Hay, P. J. & Wadt, W. R. Ab initio effective core ootentials for molecular calculations.

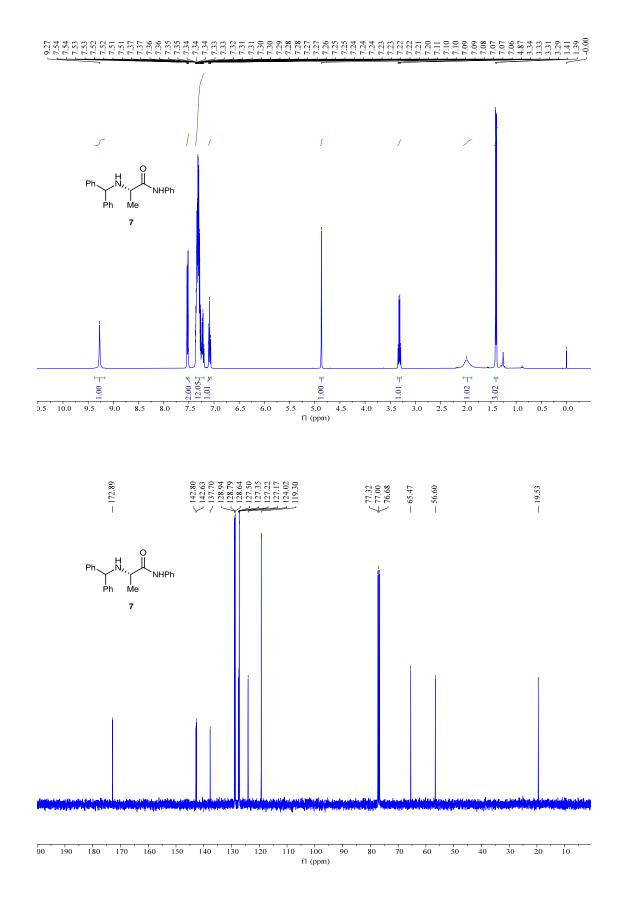

Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985). (b) Wadt, W. R. & Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985). (c) Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

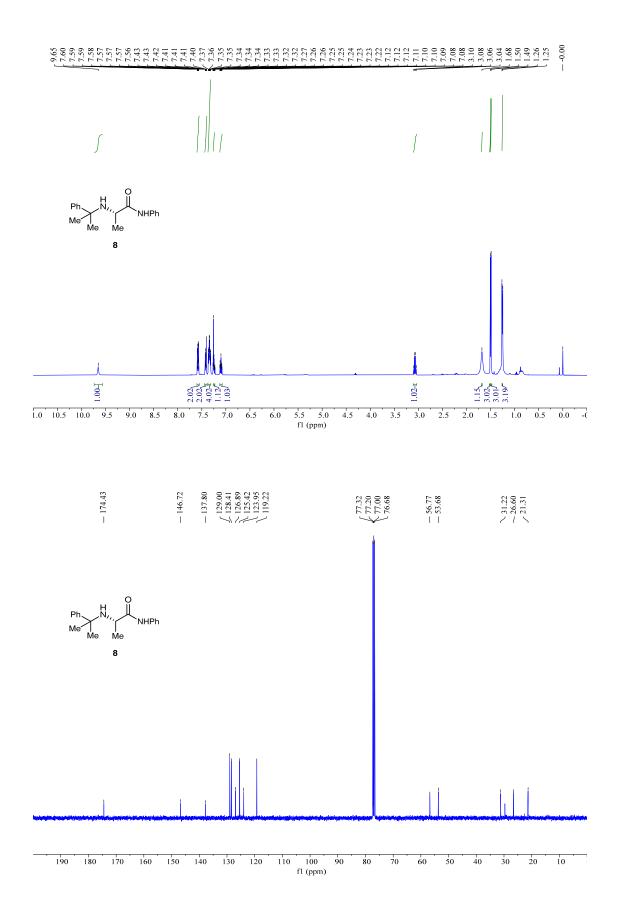

13. (a) Dunning Jr., T. H. & Hay, P. J. *Modern Theoretical Chemistry*, Ed. Schaefer III, H. F. Vol. 3 (Plenum, New York, 1977) 1–28. (b) Stoll, H., Fuentealba, P., Schwerdtfeger, P., Flad, J., Szentpály, L. V. & Preuss, H. Cu and Ag as one-valence-electron atoms: CI results and quadrupole corrections for Cu₂, Ag₂, CuH, and AgH. *J. Chem. Phys.* **81**, 2732–2736 (1984). (c) Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted *ab initio* pseudopotentials for the first-row transition elements. *J. Chem. Phys.* **86**, 866–872 (1987). (d) Häussermann, U. et al. Accuracy of energy-adjusted quasirelativistic *ab initio* pseudopotentials. *Mole. Phys.* **78**, 1211–1224 (1993). (e) Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuss, H. *Ab initio* energy-adjusted pseudopotentials for elements of groups 13–17. *Mole. Phys.* **80**, 1431–1441 (2006).

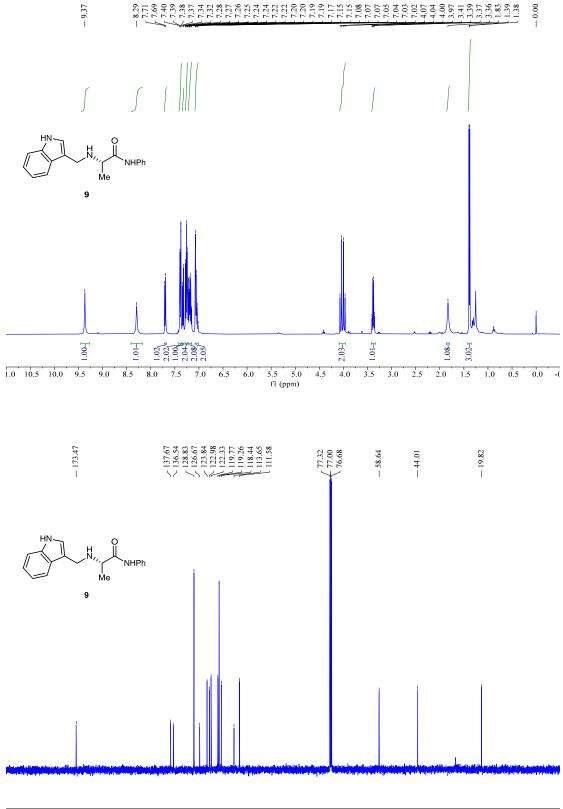

14. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378–6396 (2009).

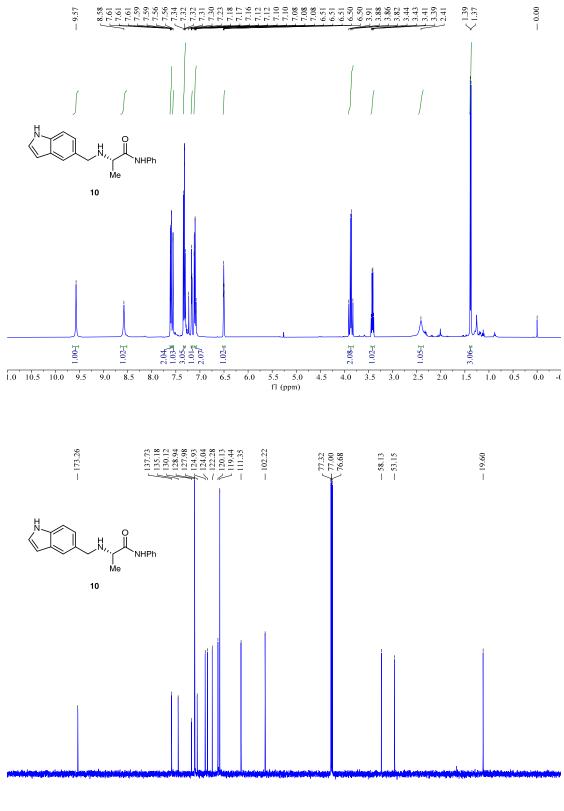

15. Legault, C. Y. *CYLView, 1.0b*; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; (http://www.cylview.org).



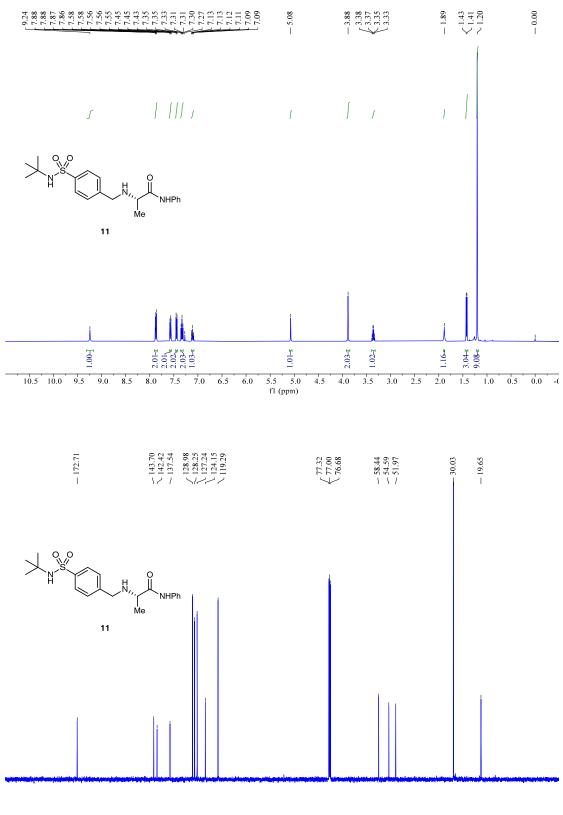


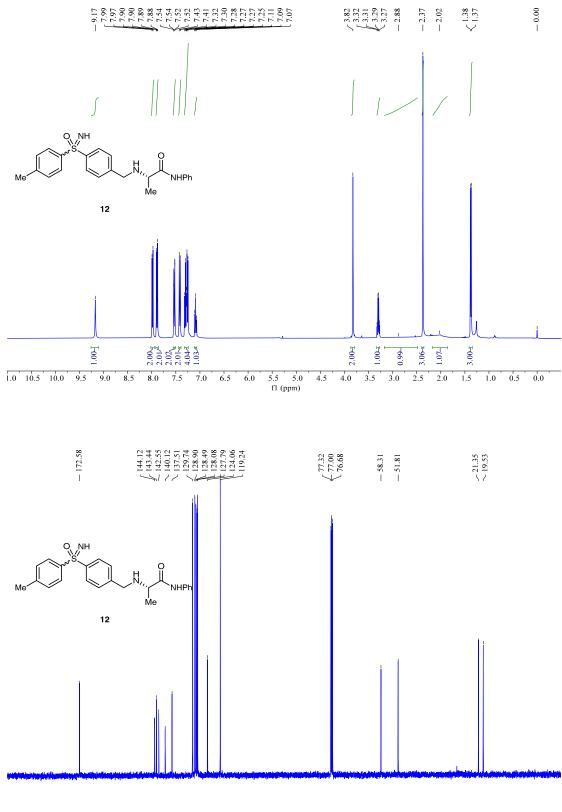


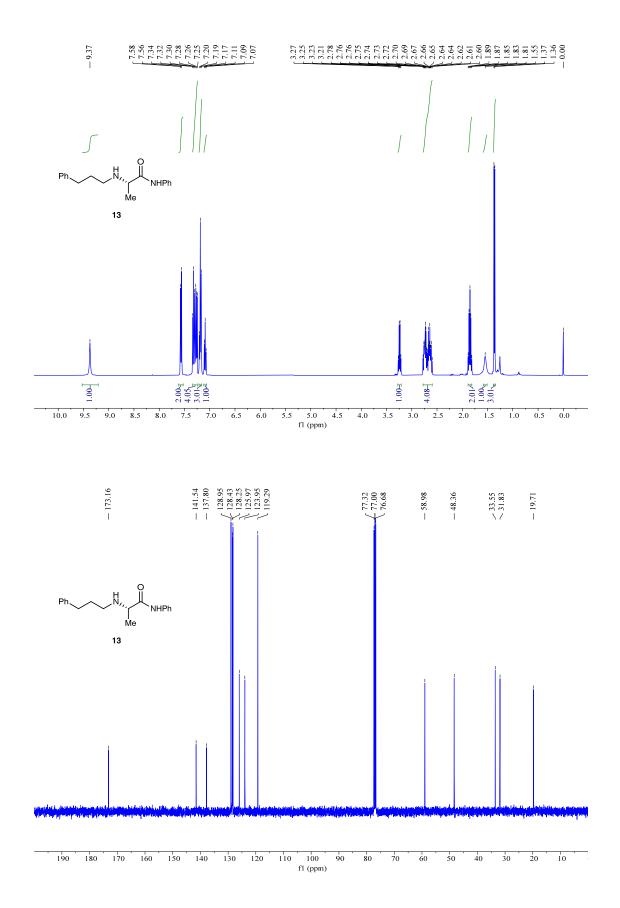


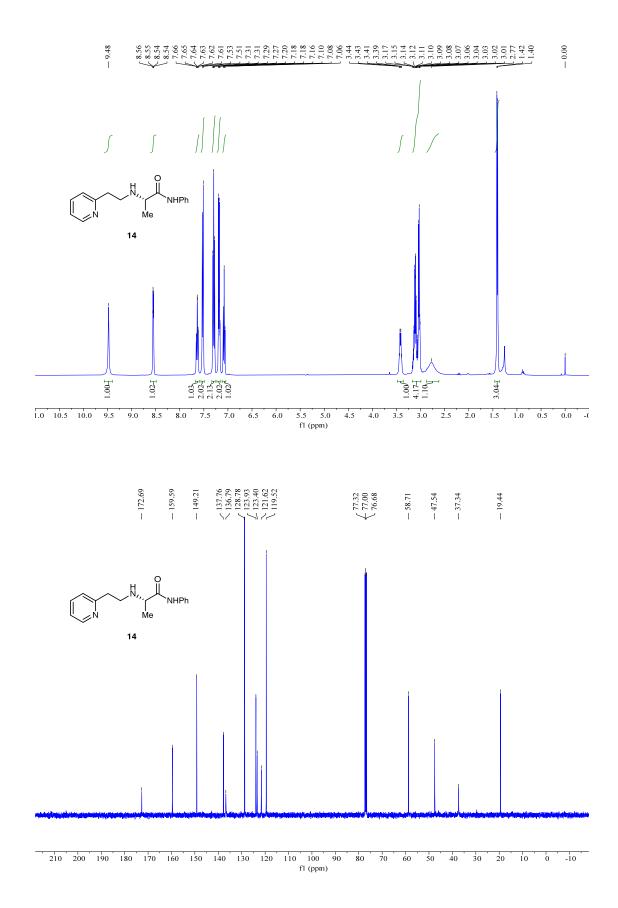


S212

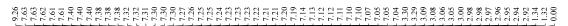


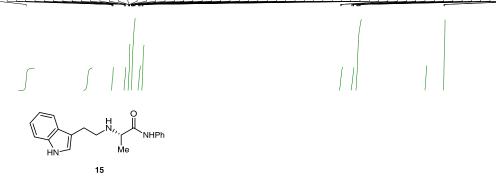

100 90 f1 (ppm) 00 190 140 130 120 ò -

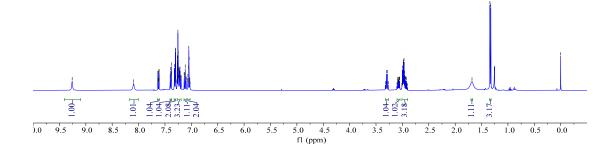

100 90 f1 (ppm) 00 190 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10 ò -

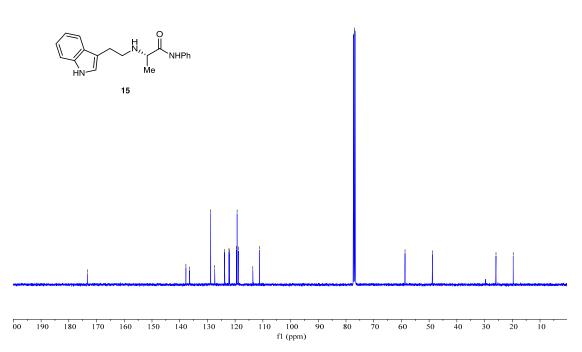


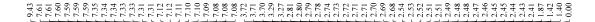
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

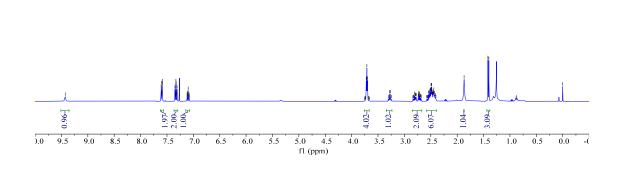


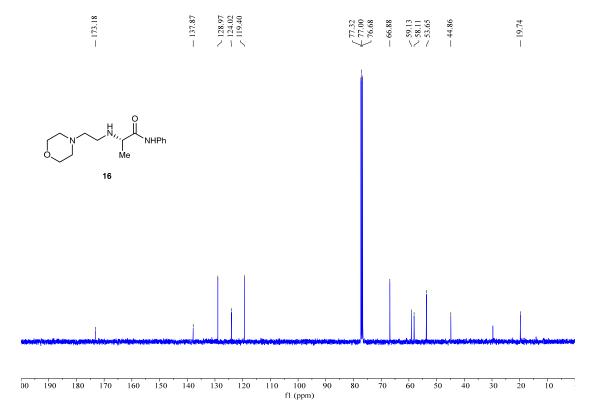

100 90 f1 (ppm) 170 160 ò -

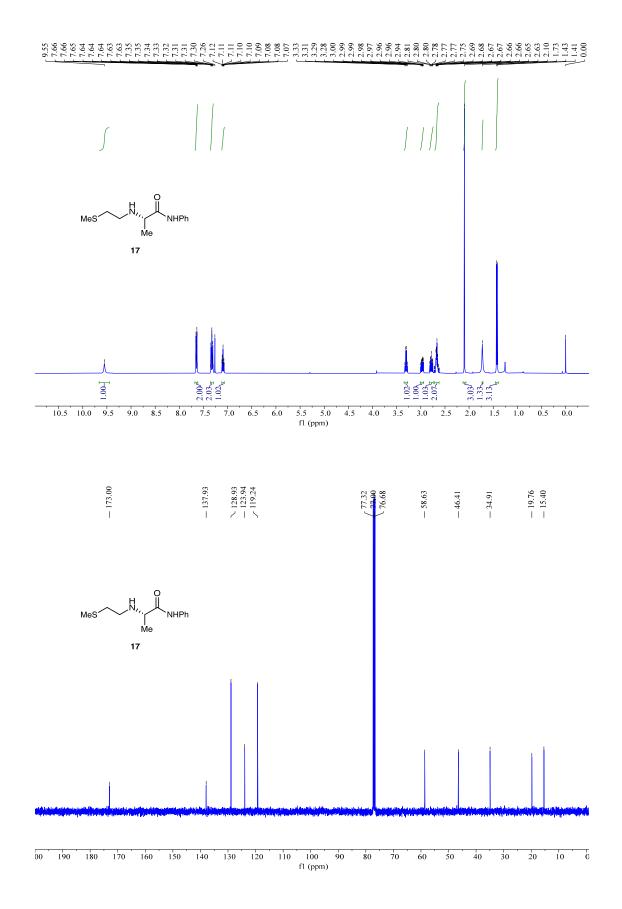



S219

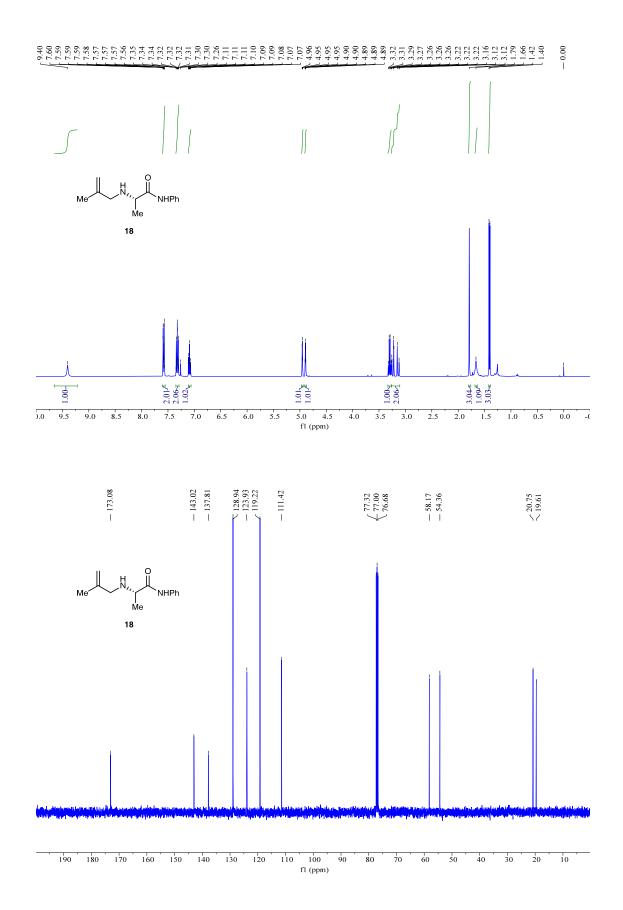


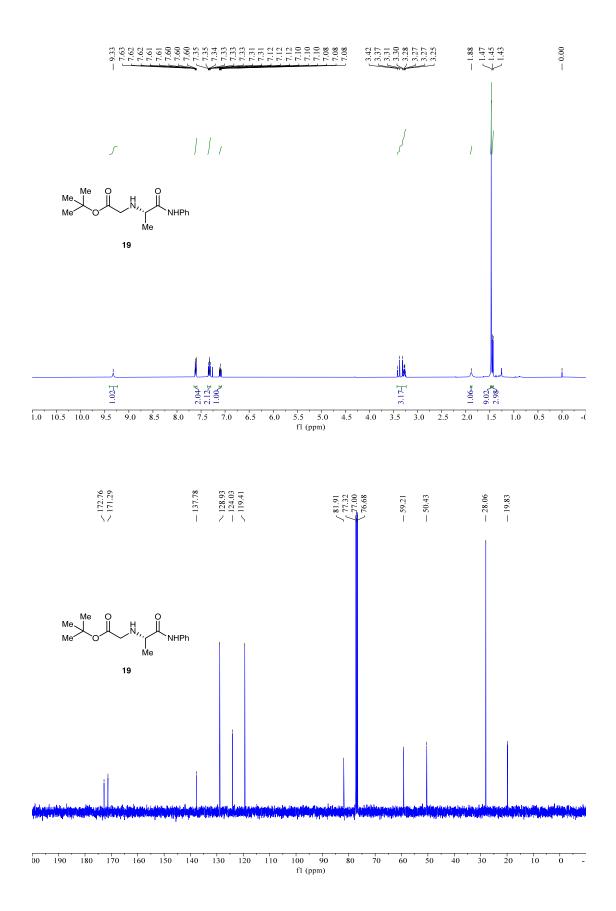


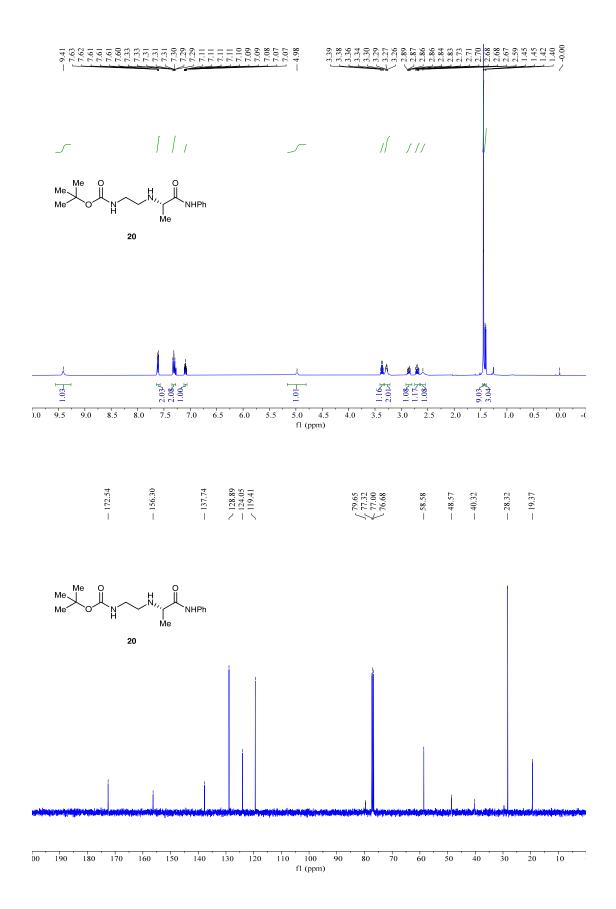


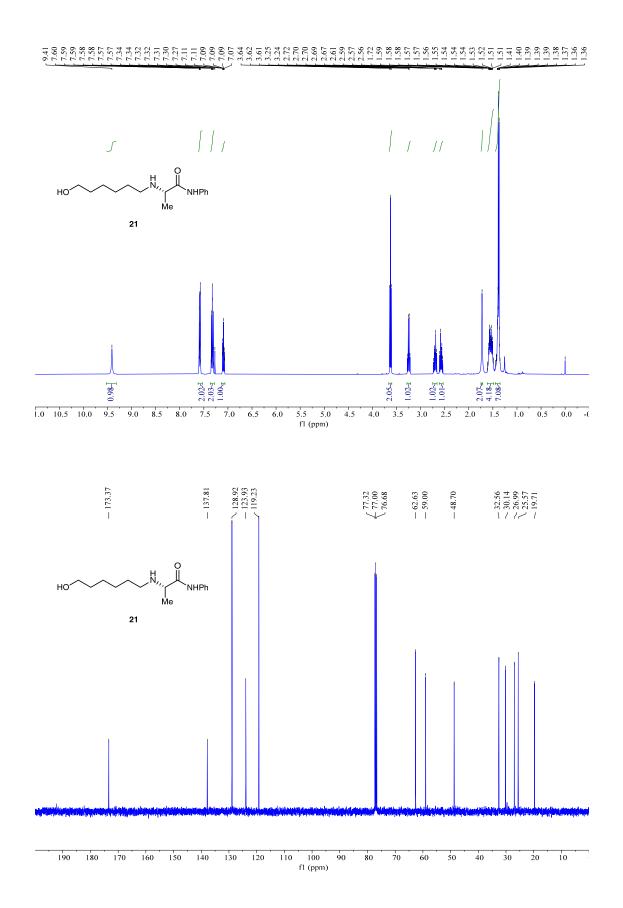


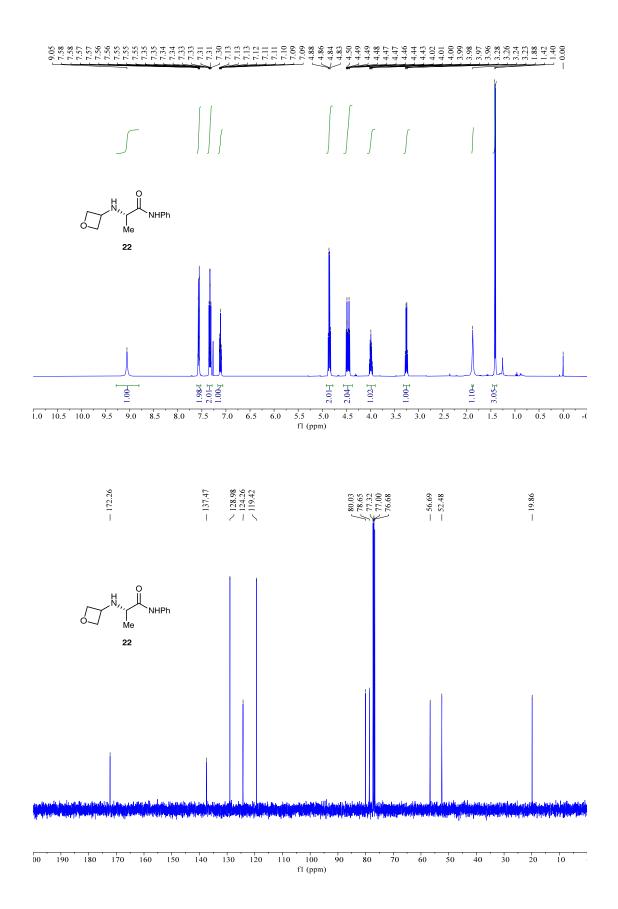
| Me

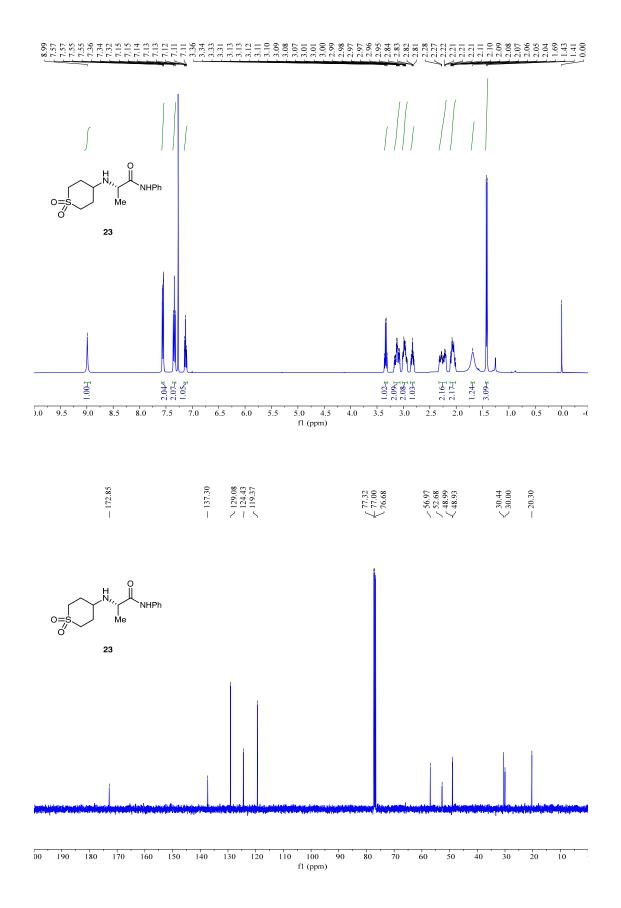

16

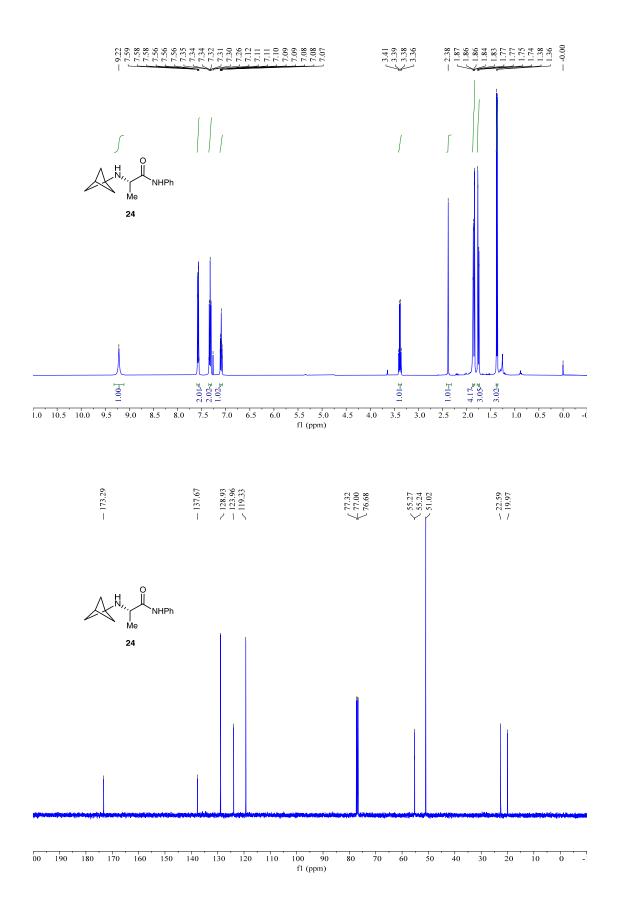


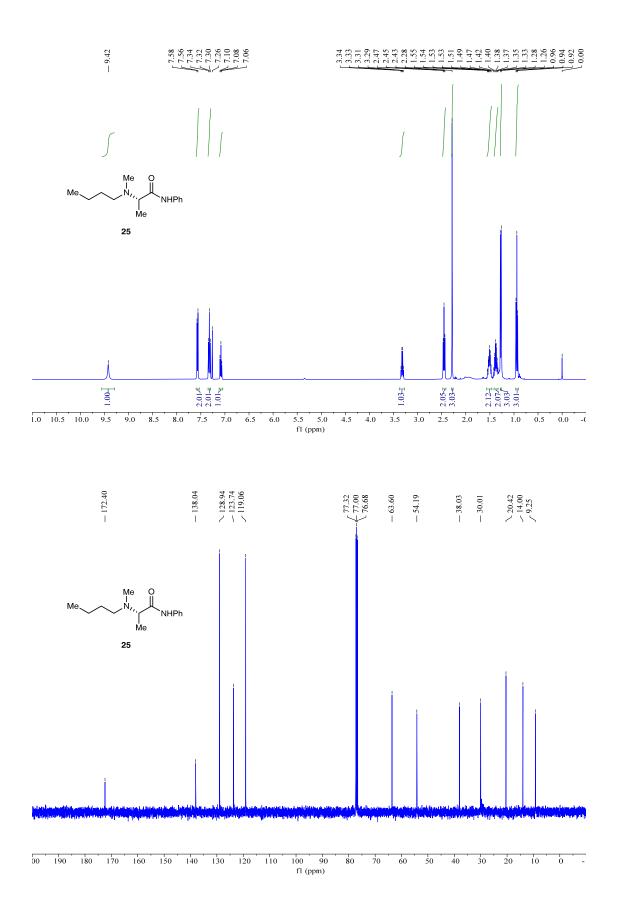


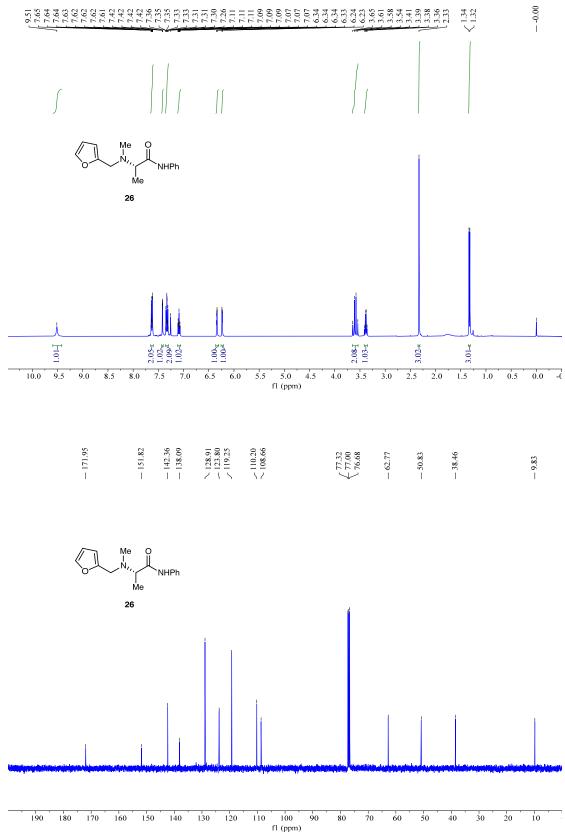

S222

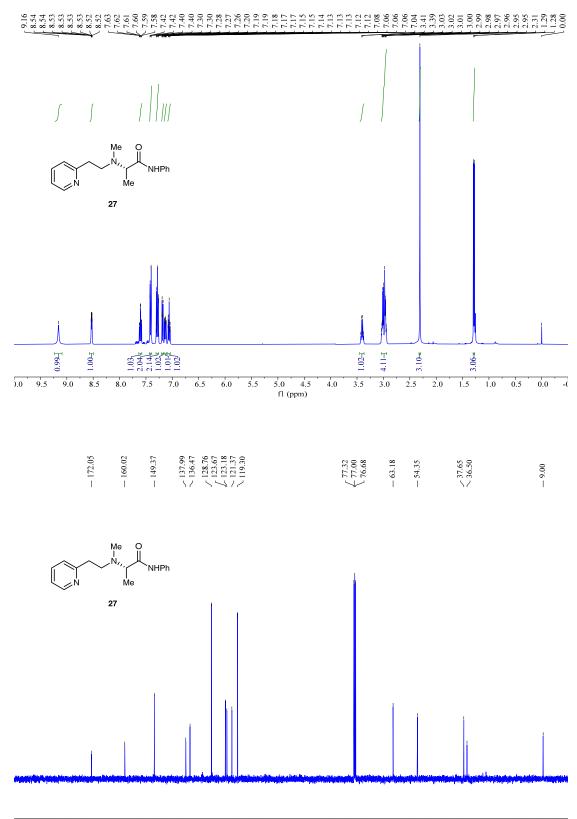

S223



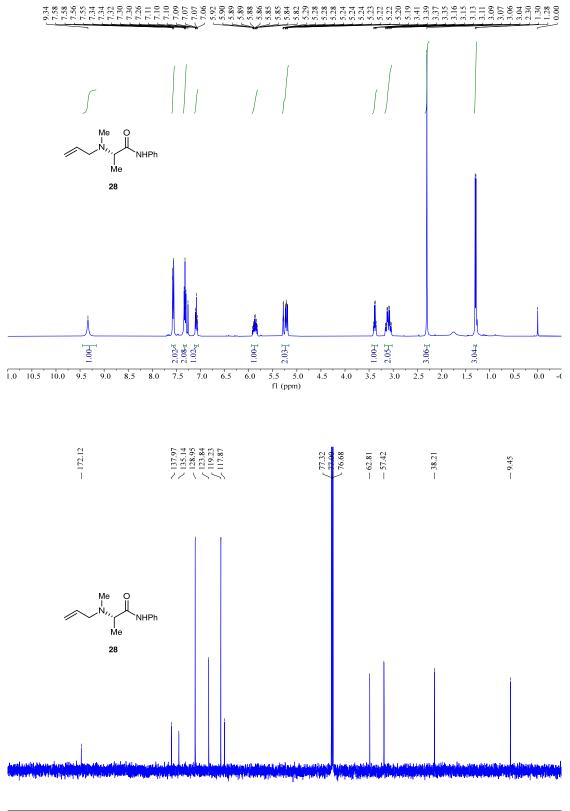


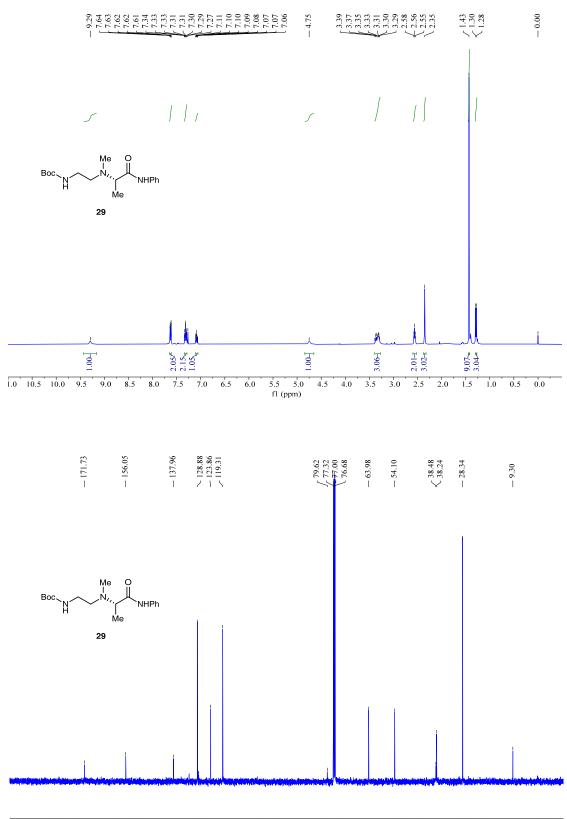

S226

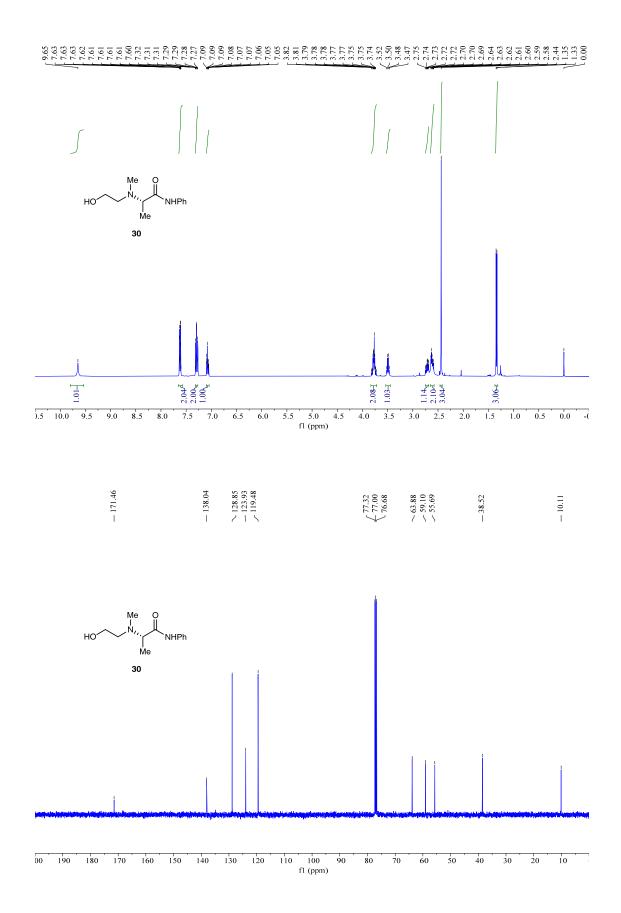


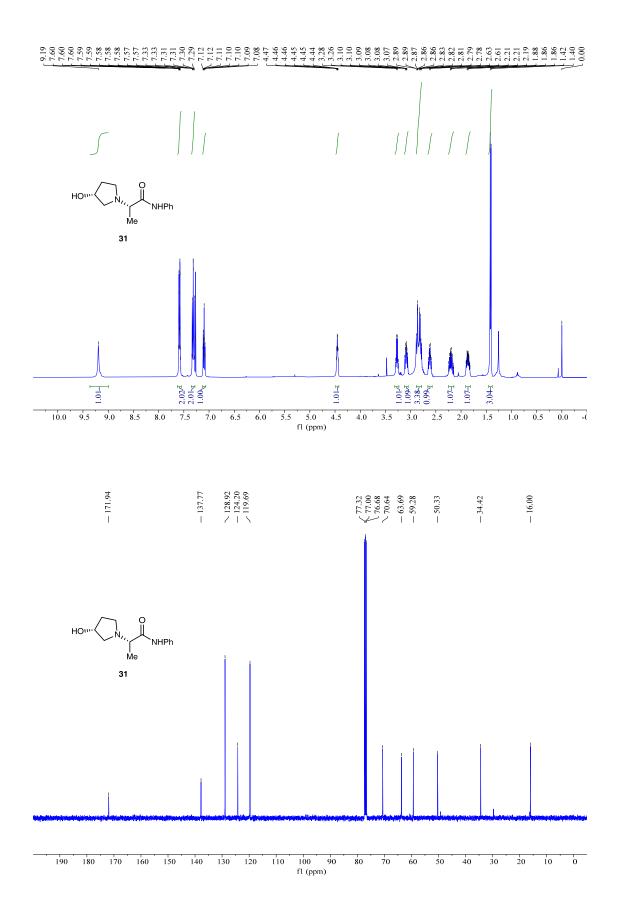


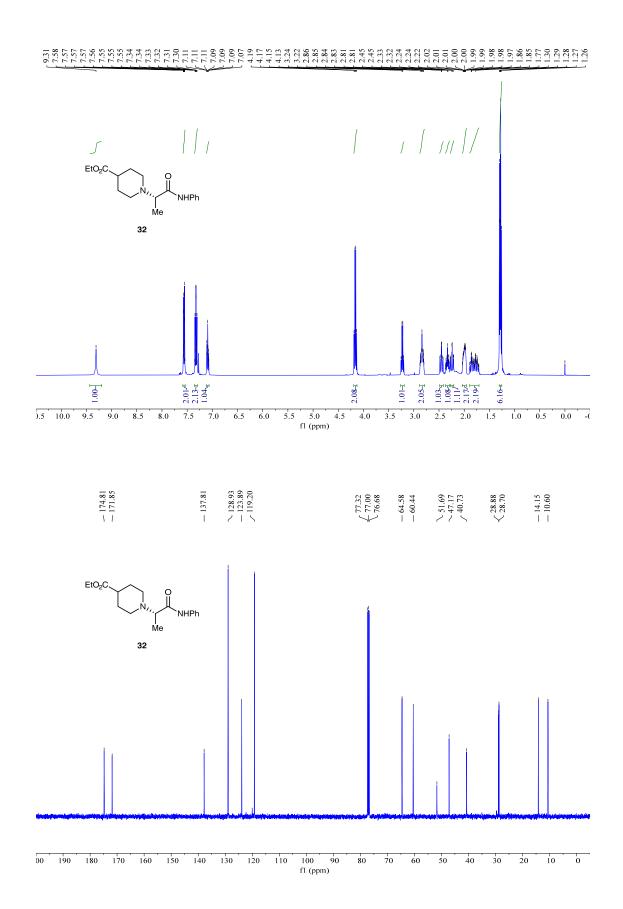
S228

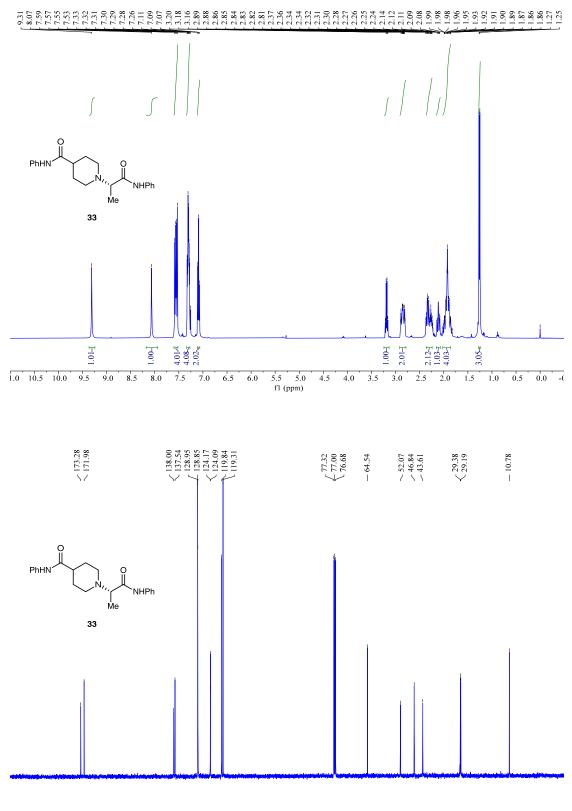


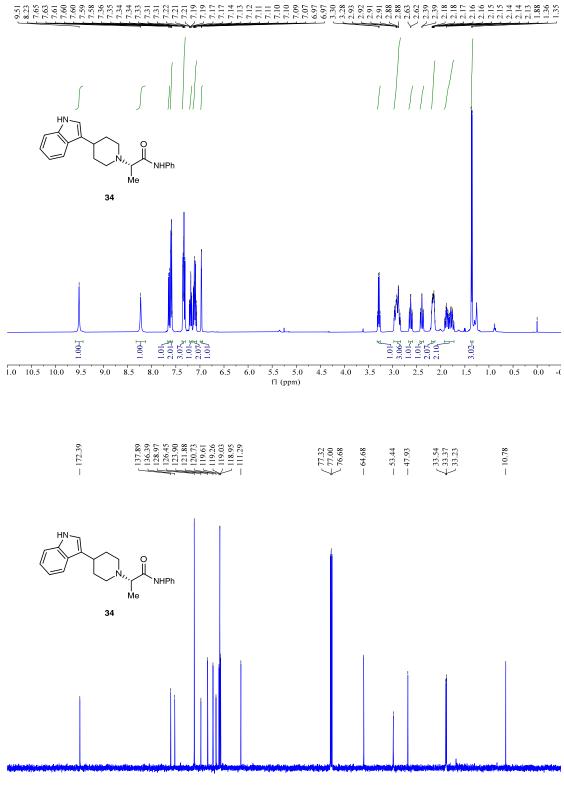


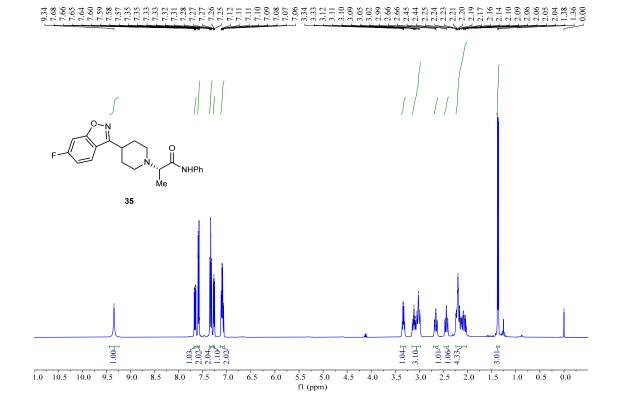

110 100 f1 (ppm)

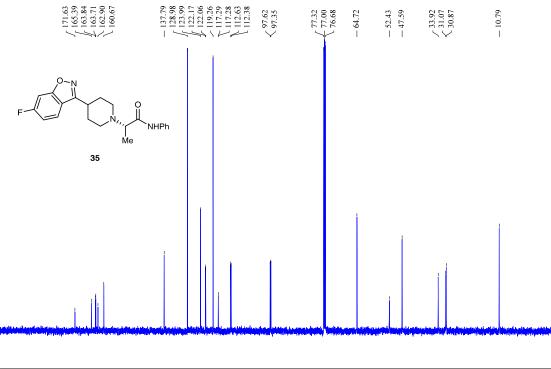



100 90 f1 (ppm) -

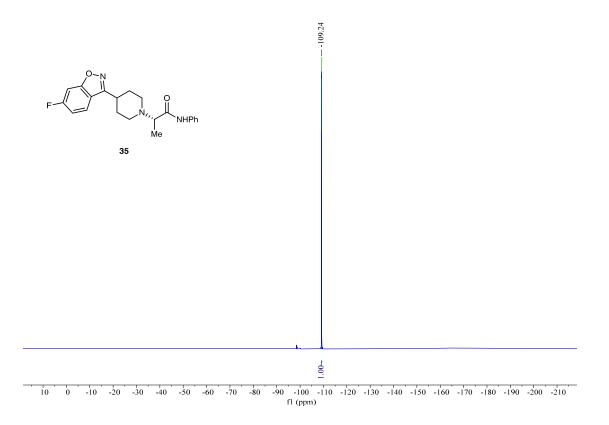

100 90 fl (ppm) -150 140 130 120 110 00 190

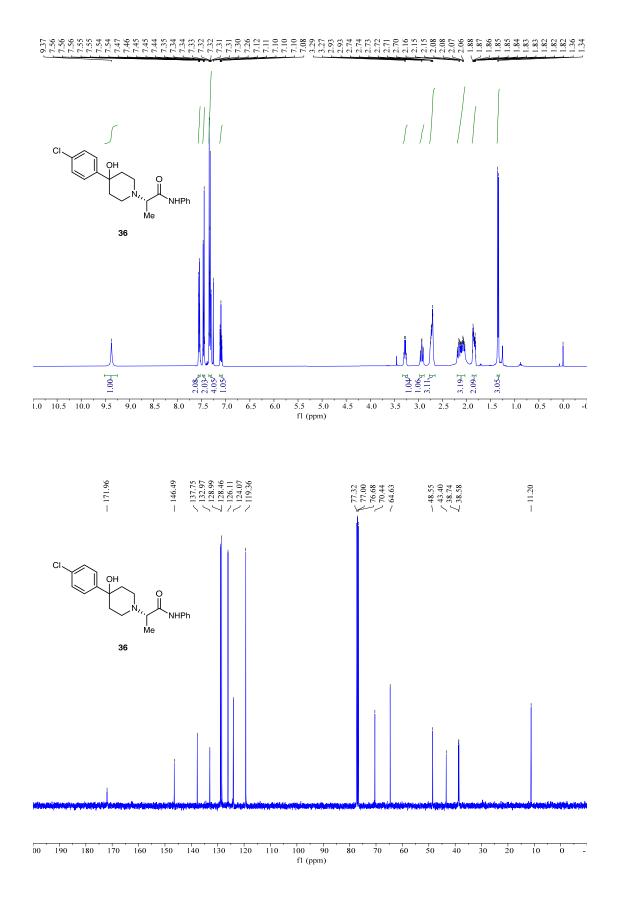


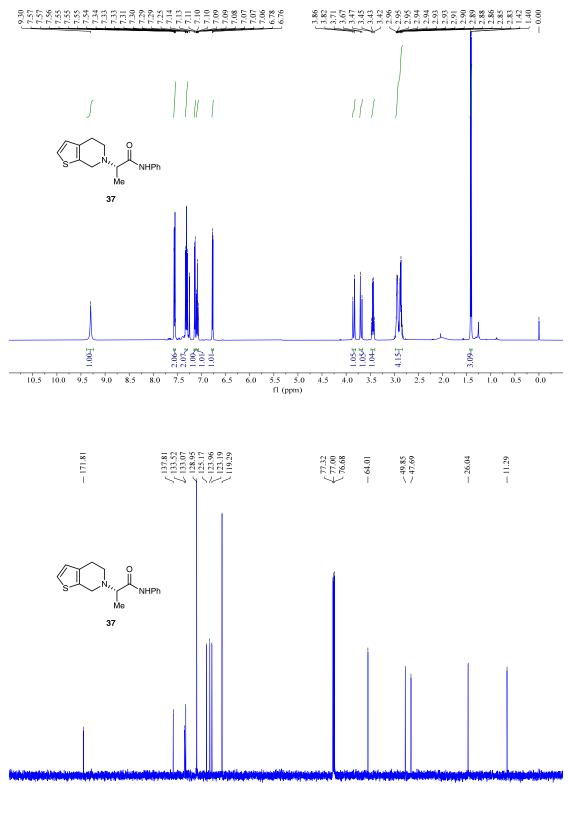

S237



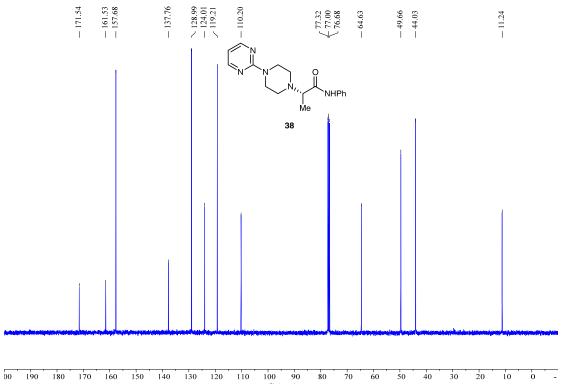
100 90 f1 (ppm) ò -

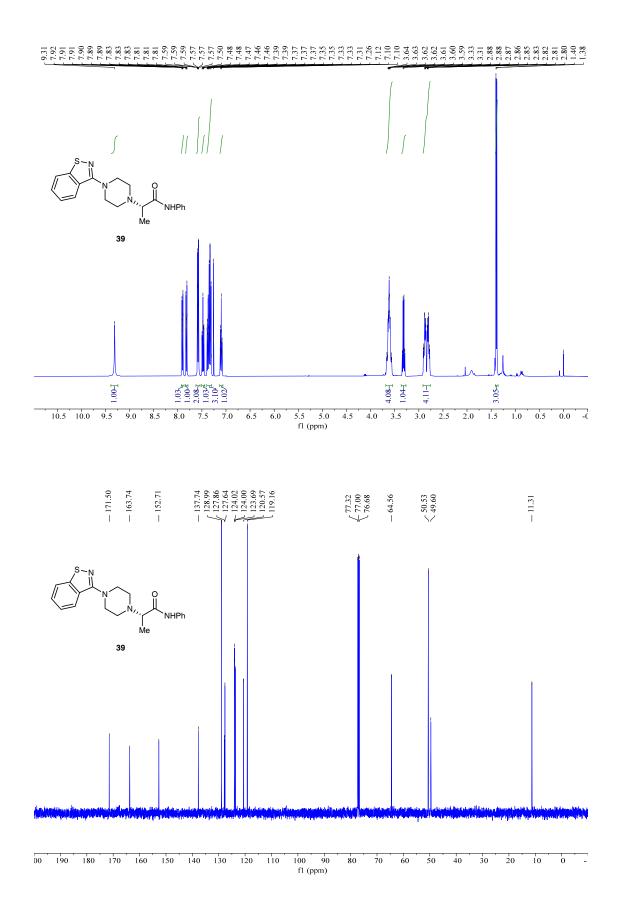


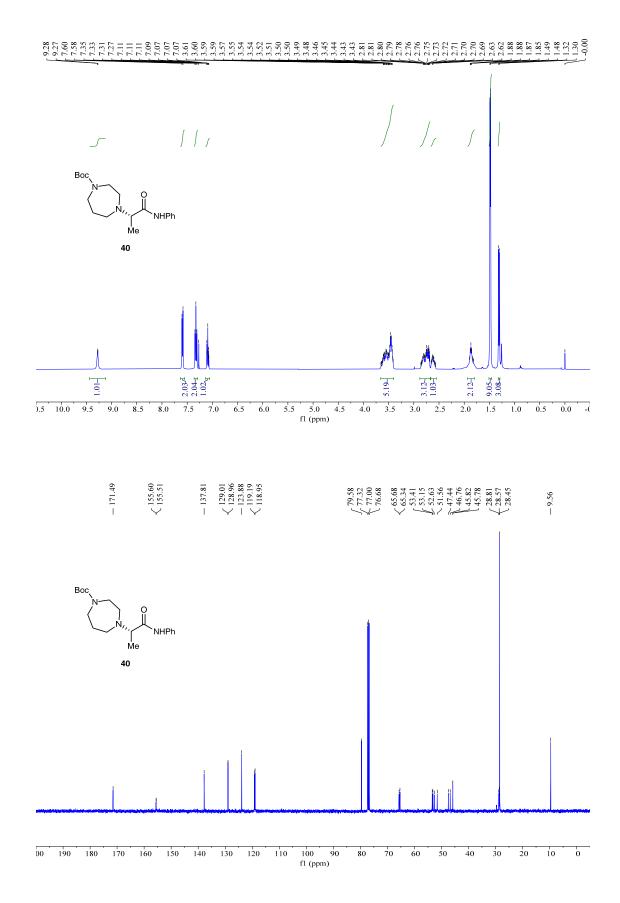

100 90 f1 (ppm) -)



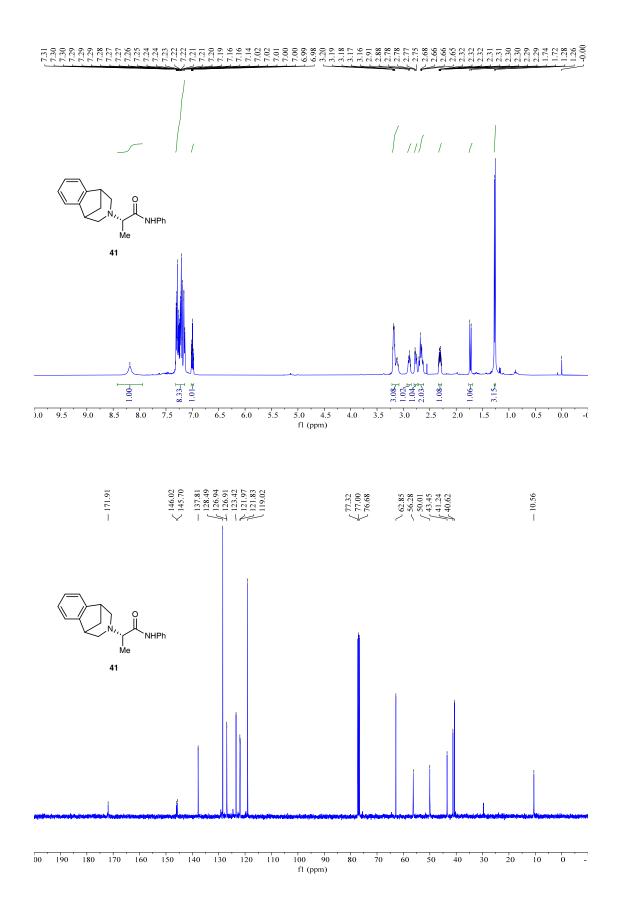
100 90 f1 (ppm) -



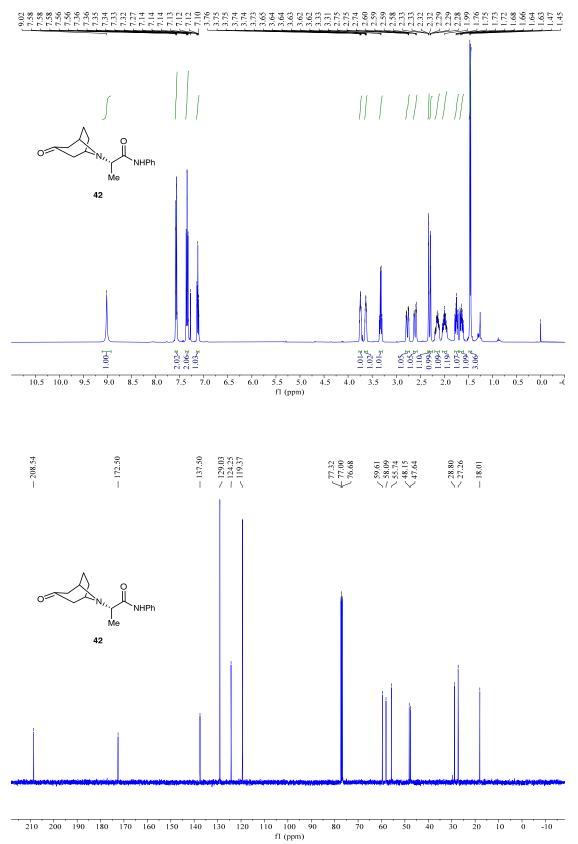


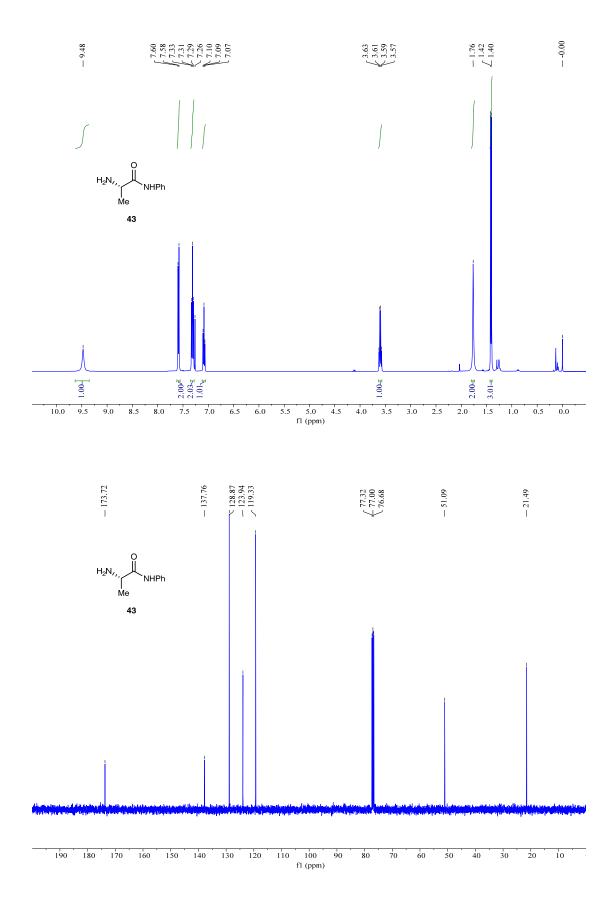

100 90 f1 (ppm) ò -

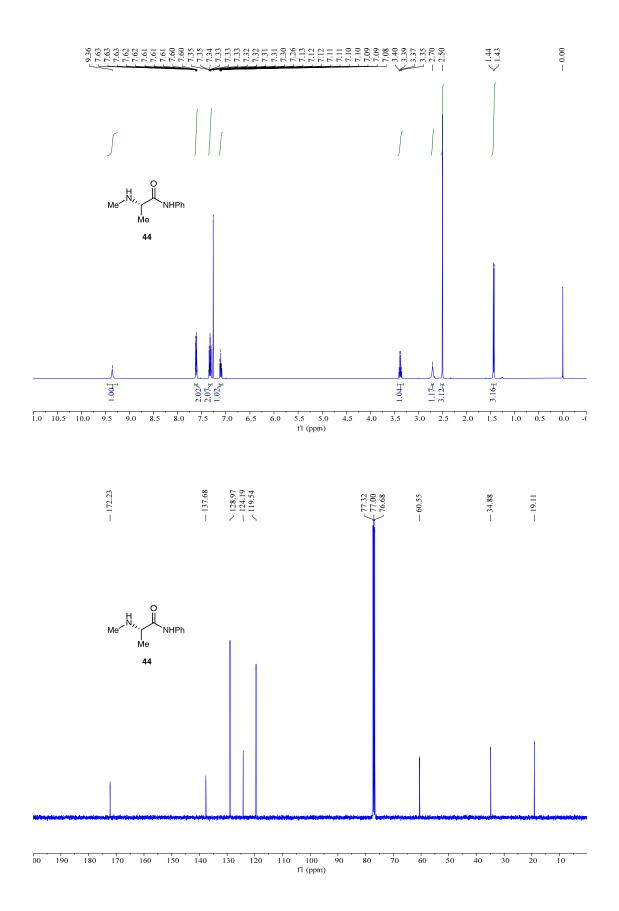
9.32 ſ 0 `NHPh Me 38 2.06J 2.07<u>-</u> 1.00₋₁ F70.0 H80.1 1.00H 4.08 H00. 2.02¥ 3.07≖ 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(fl (ppm) 1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

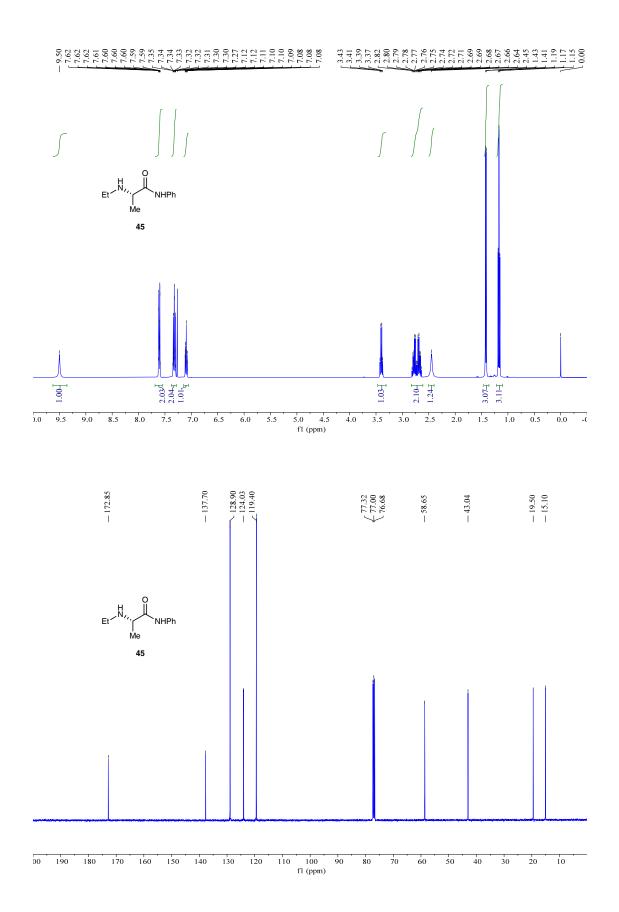


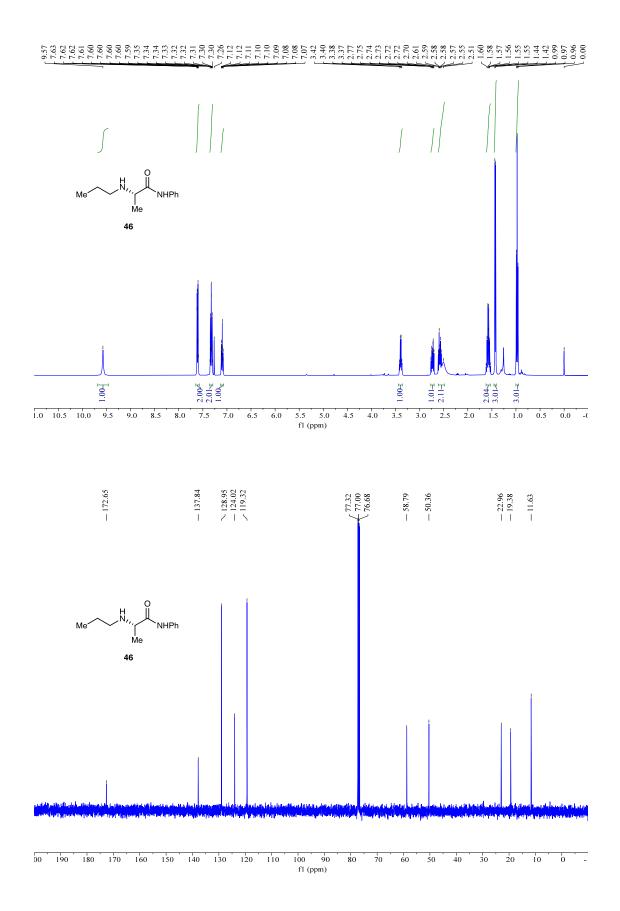
fl (ppm)

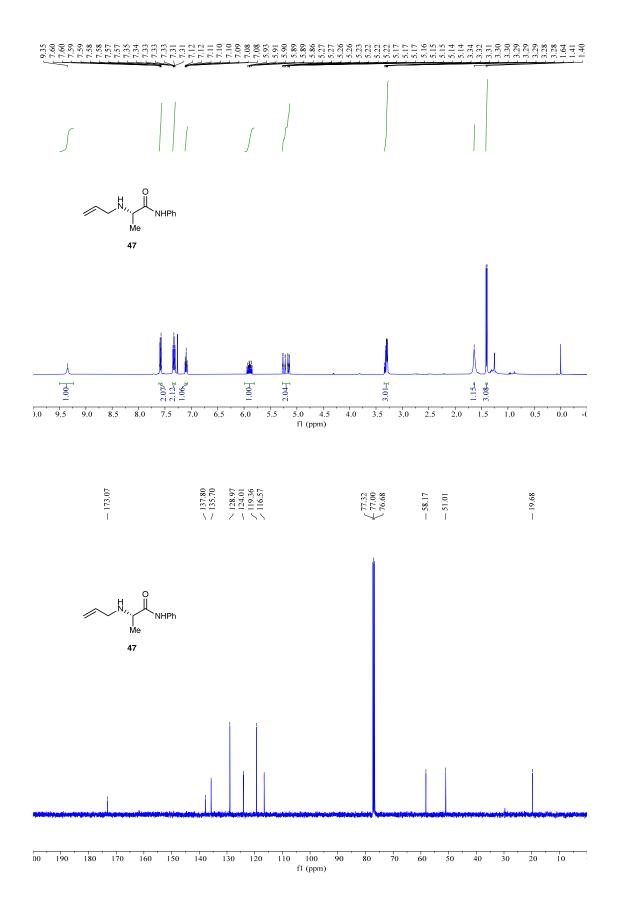


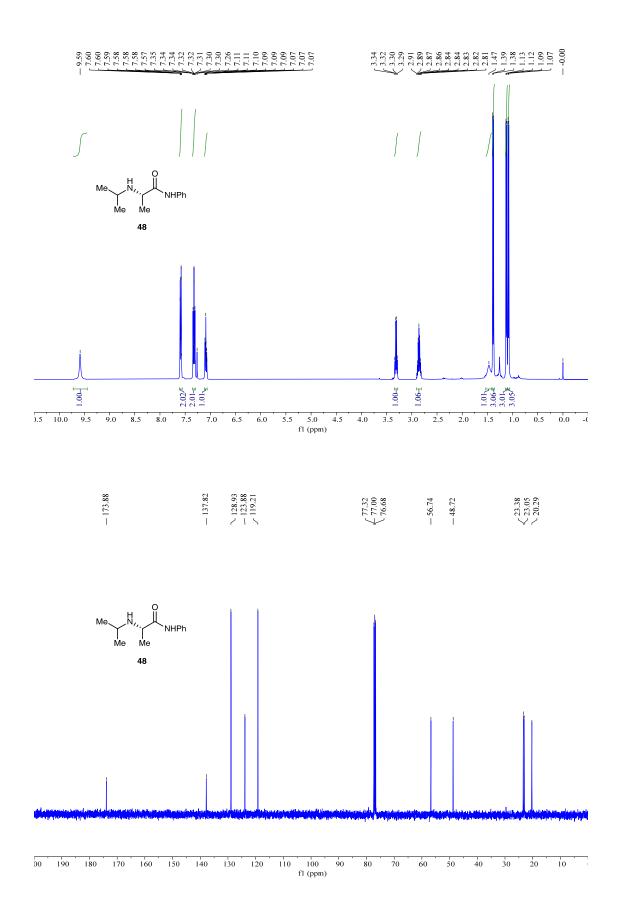

S246

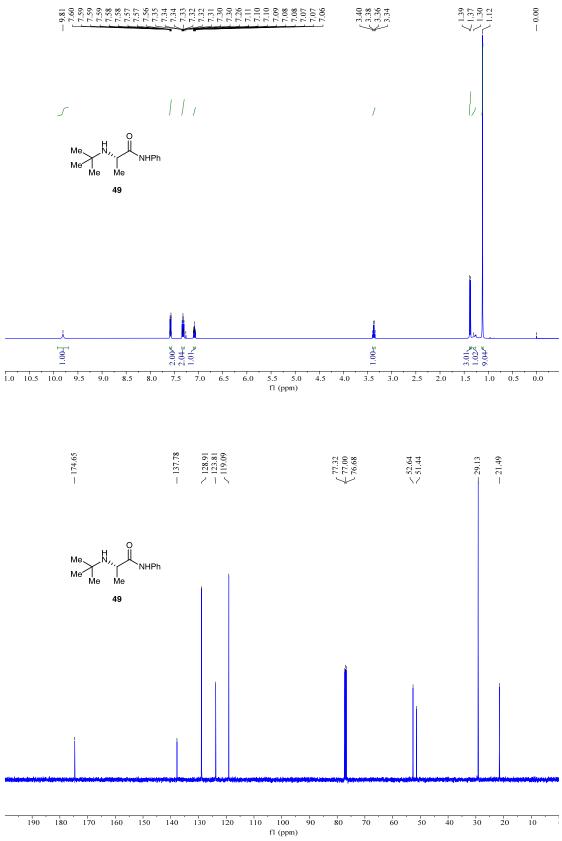

S247

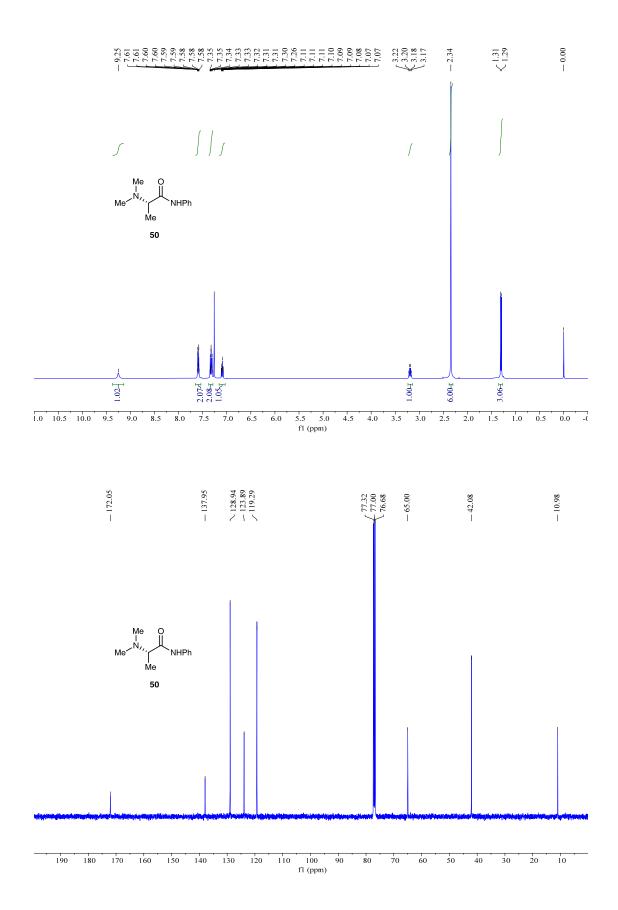


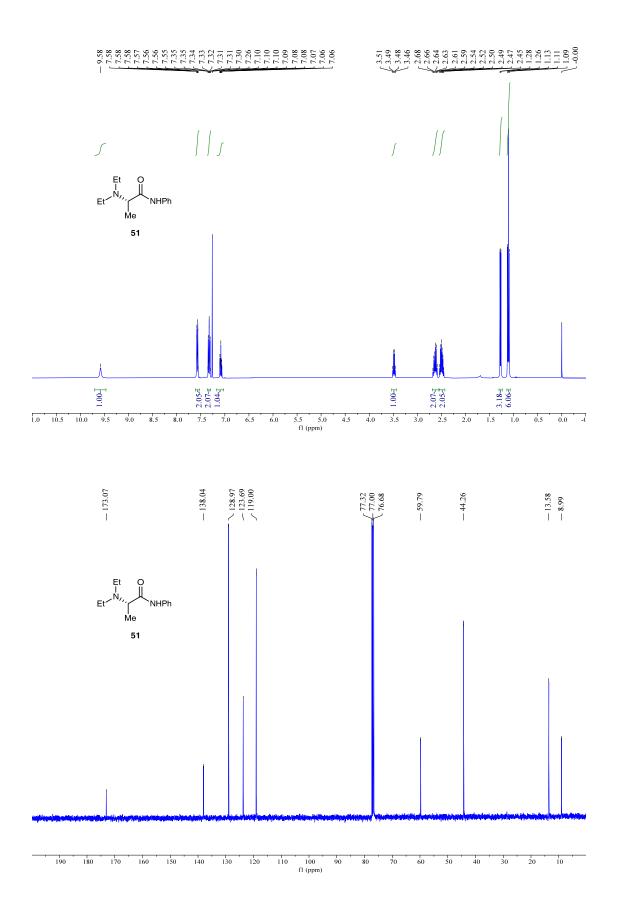

.....

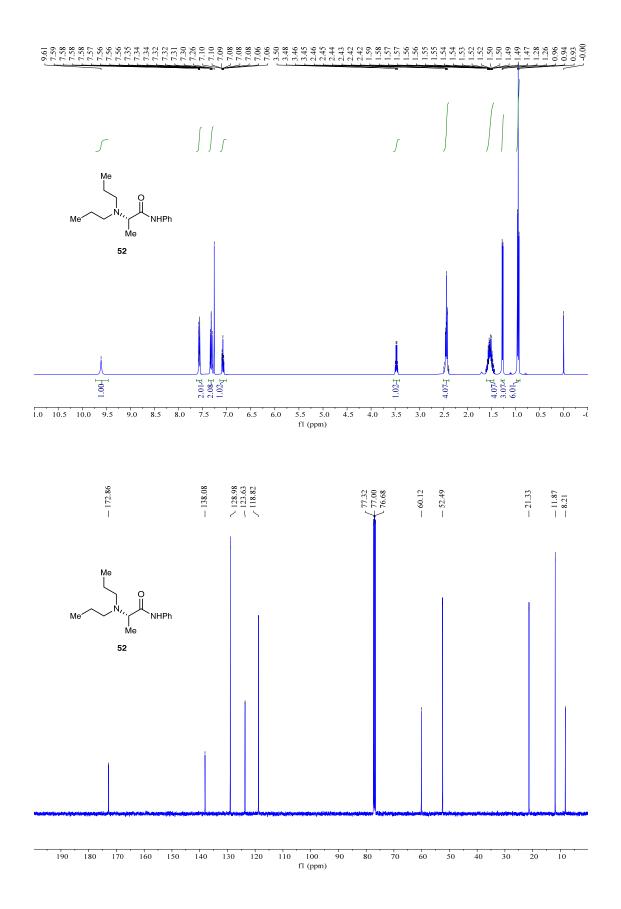


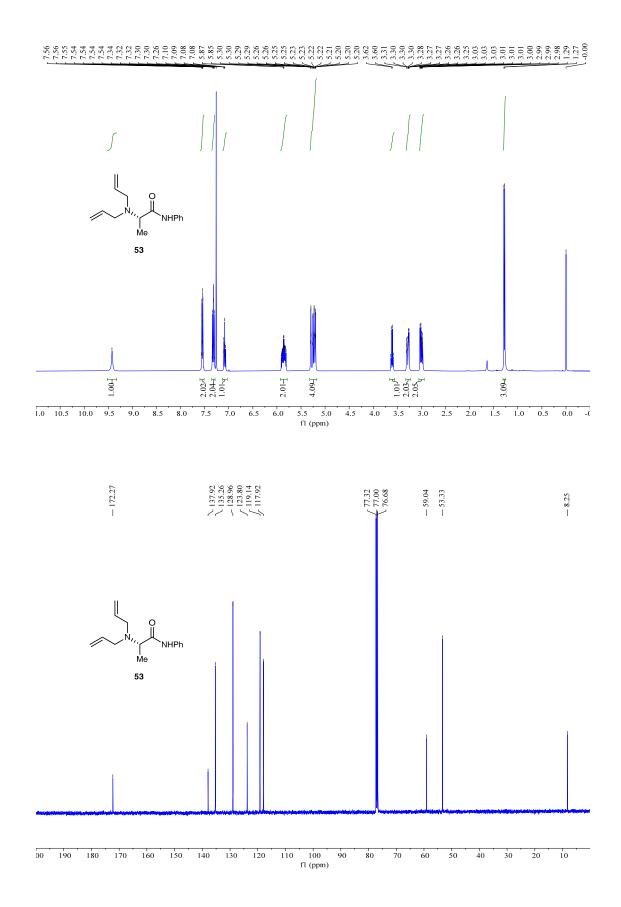

S249

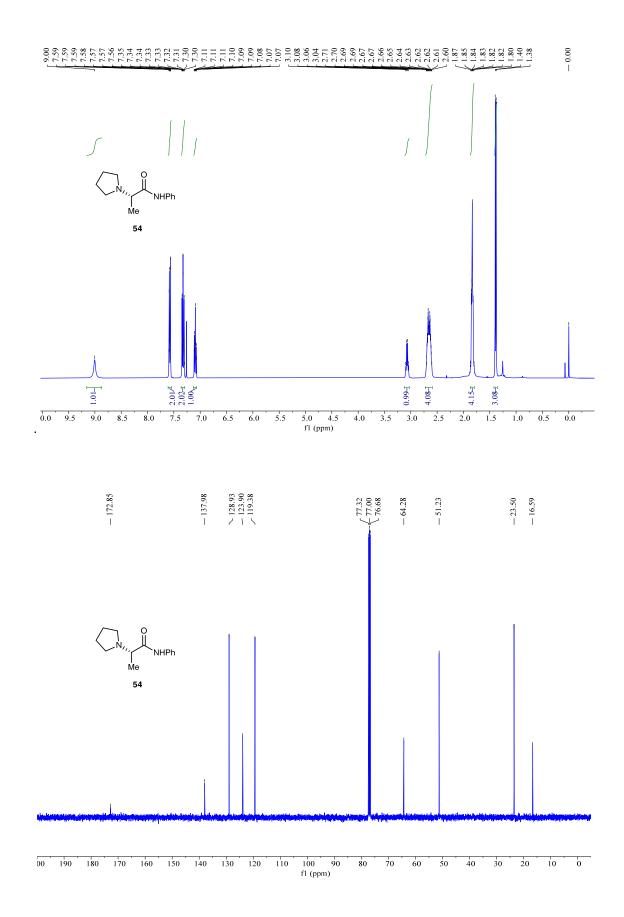


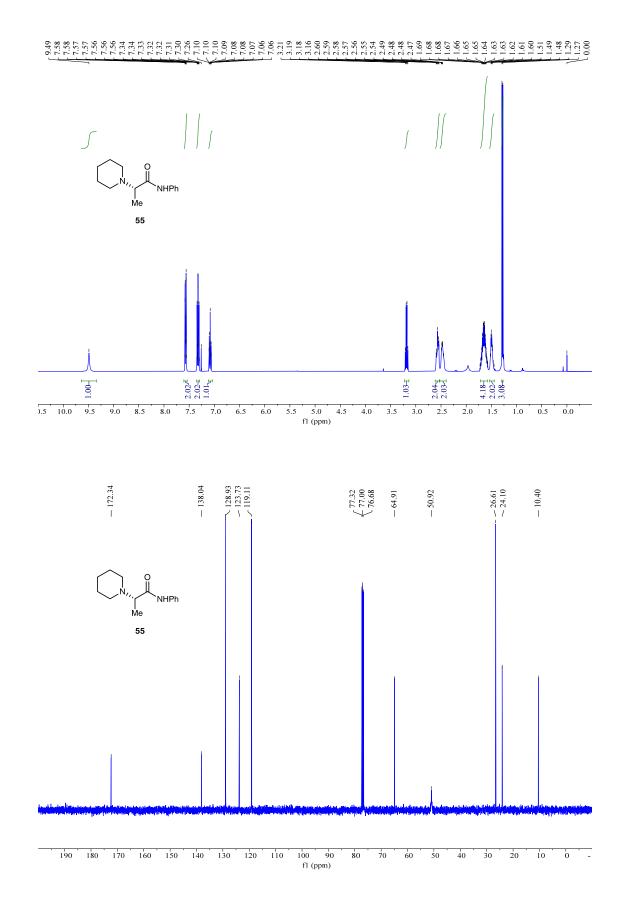


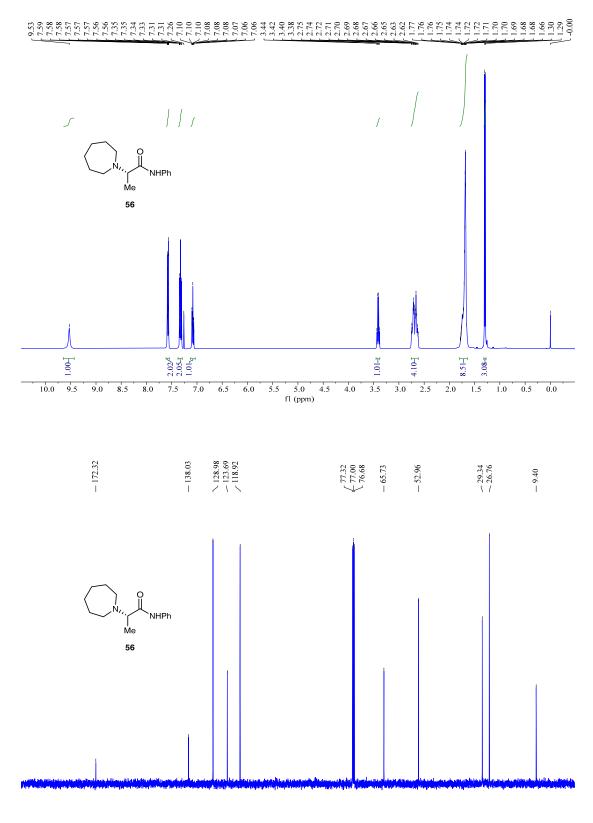


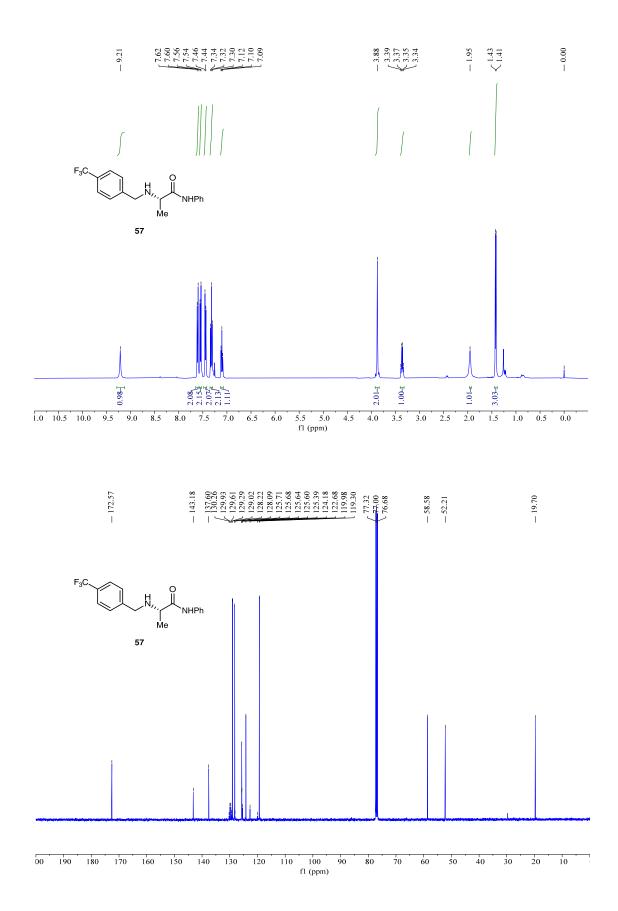


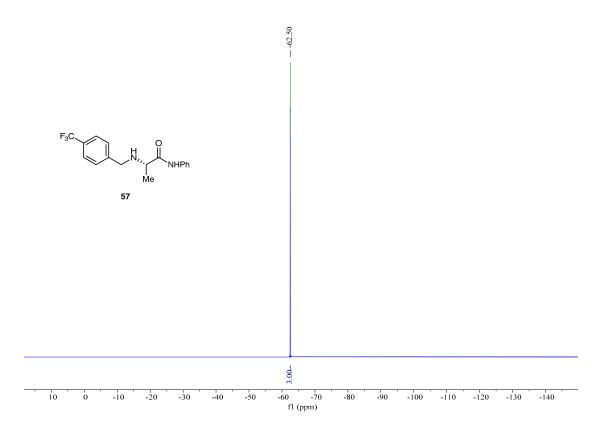


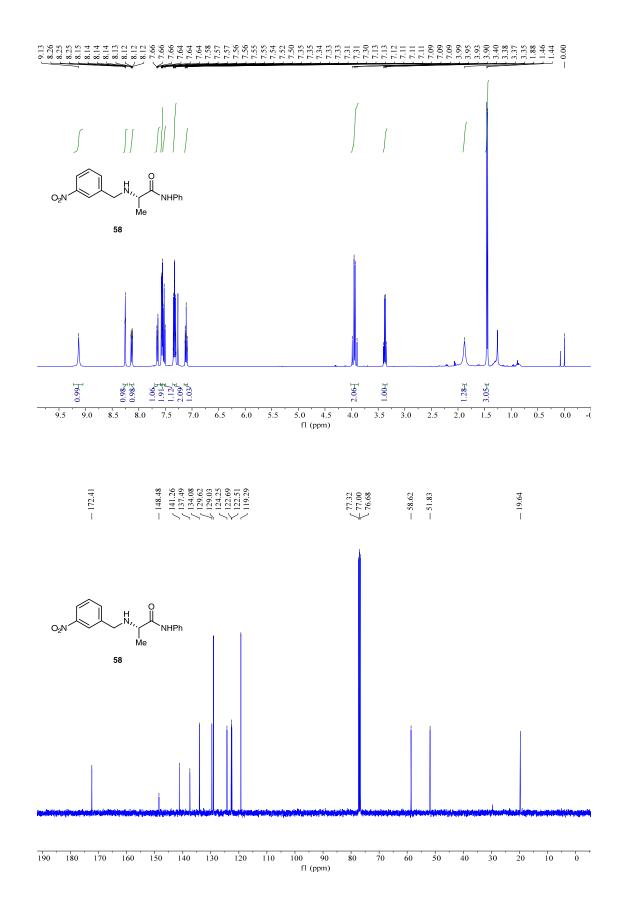


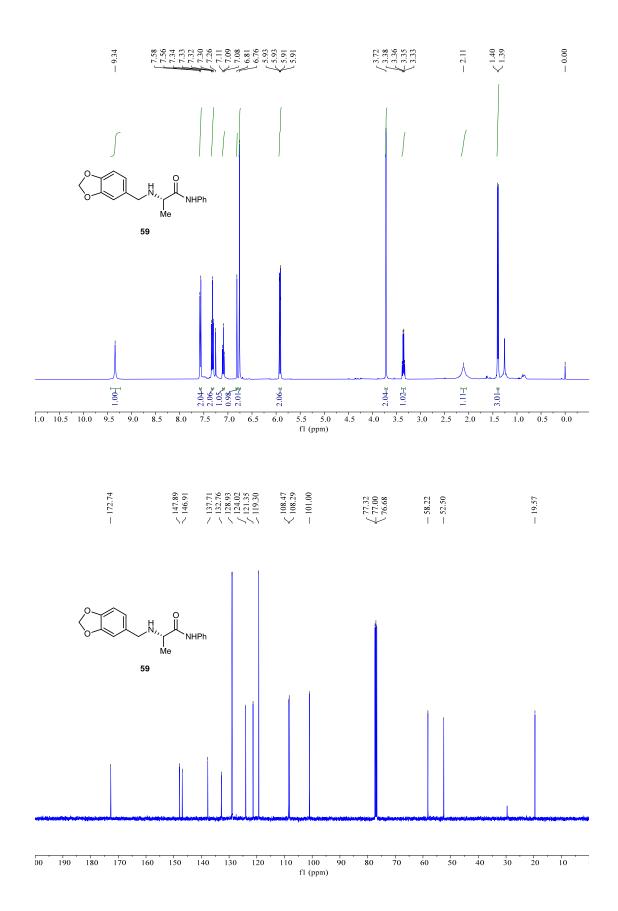


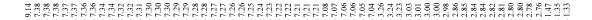


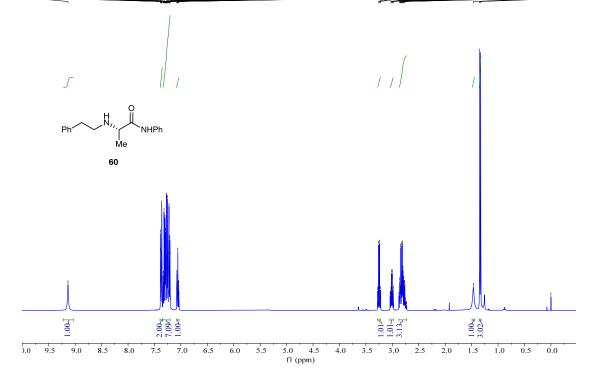


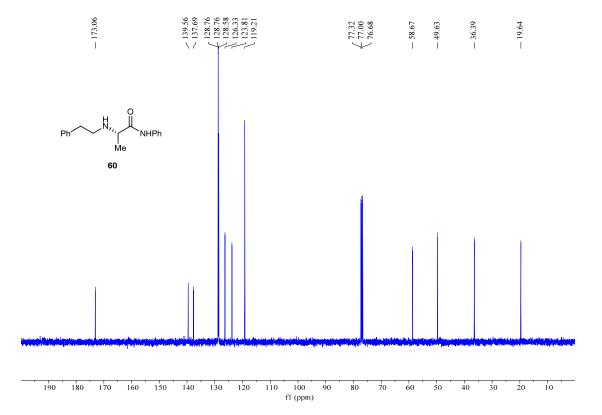


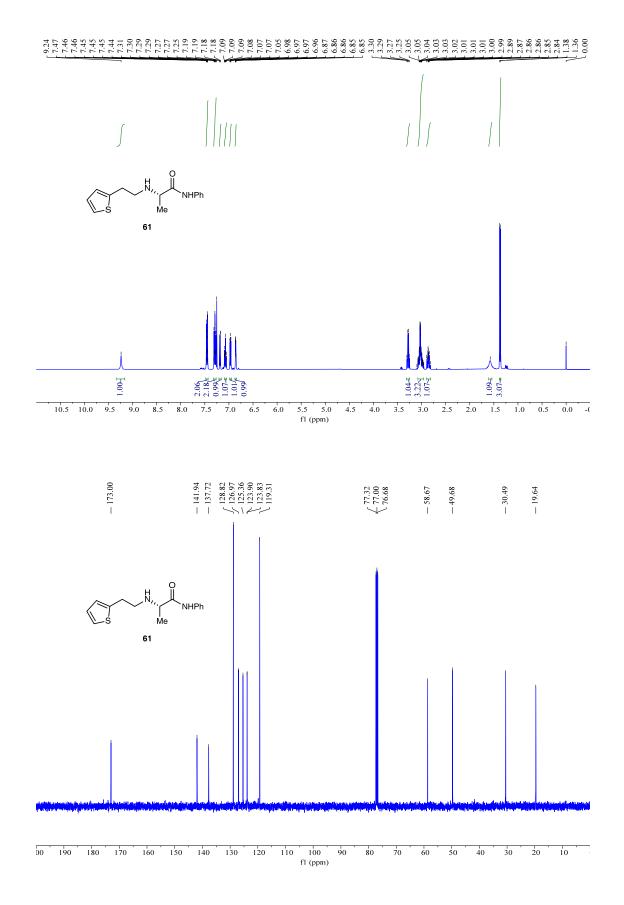


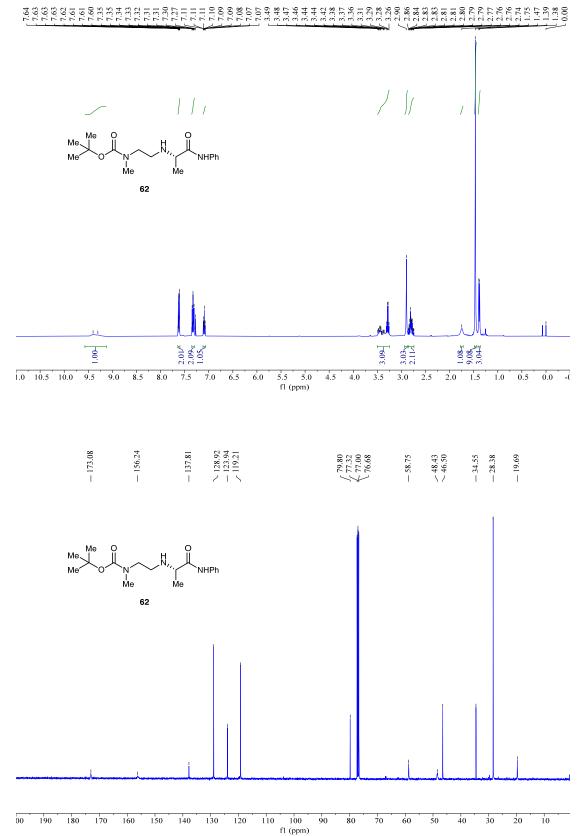


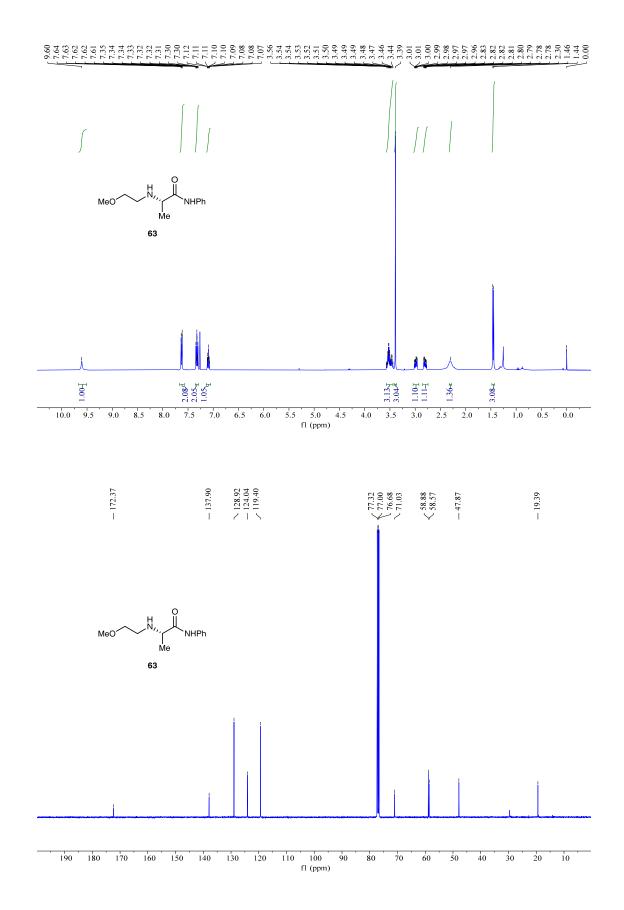

100 9 f1 (ppm)

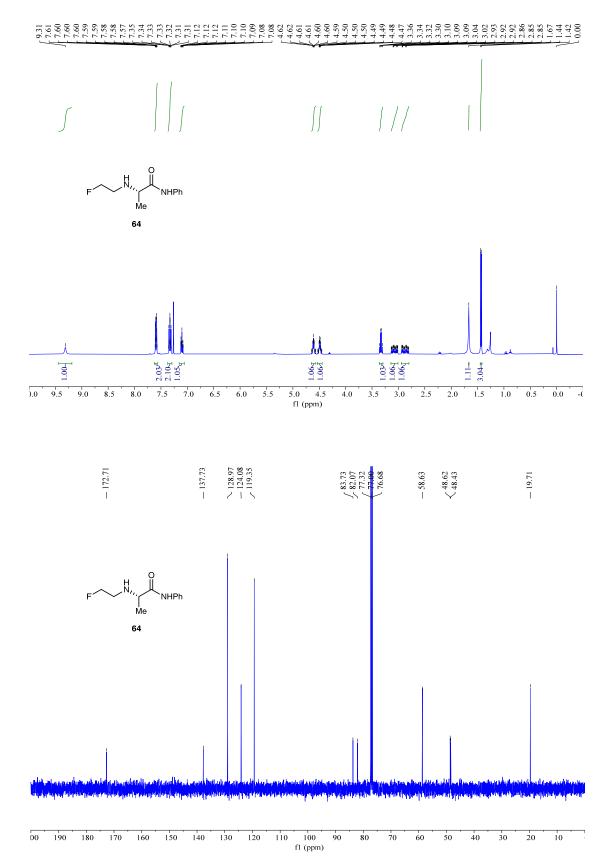


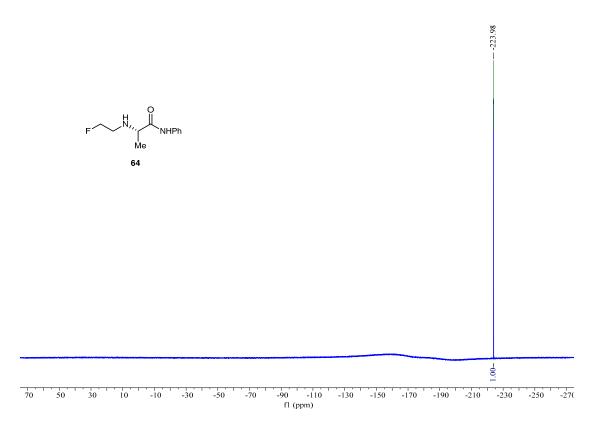


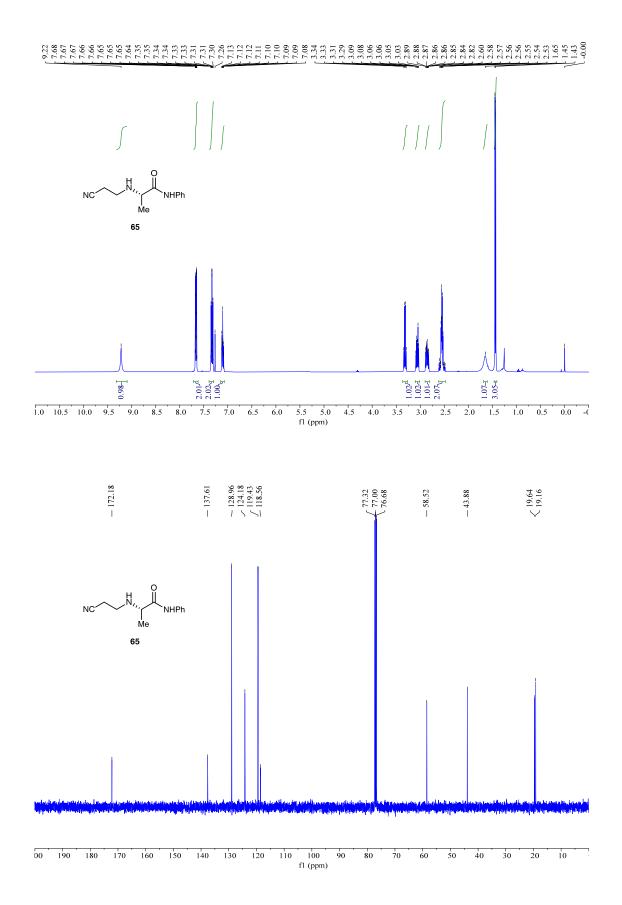


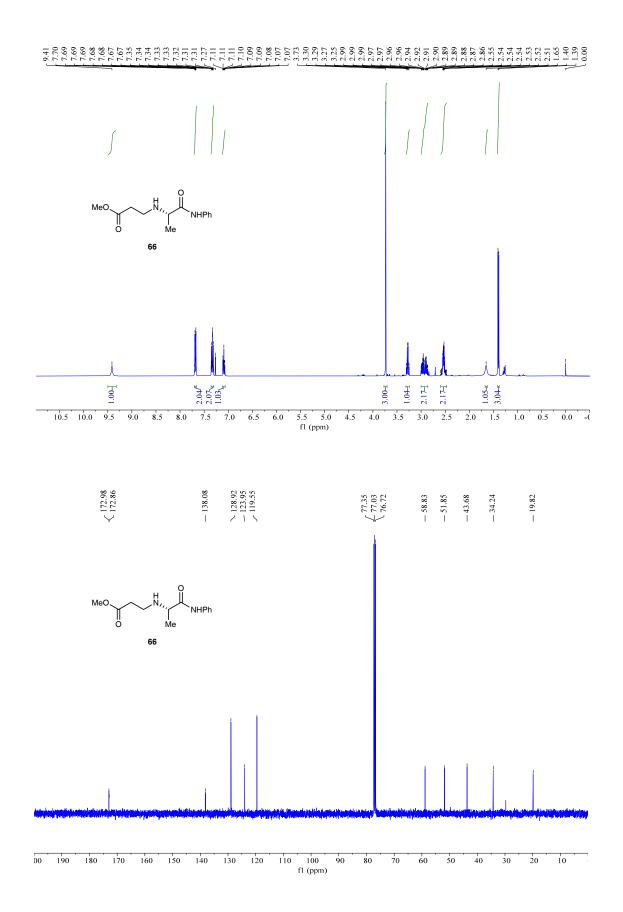


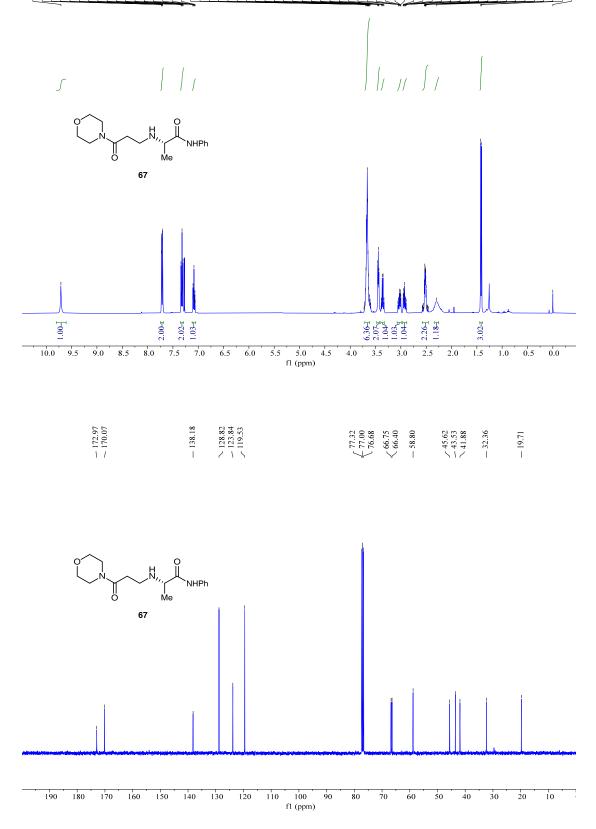


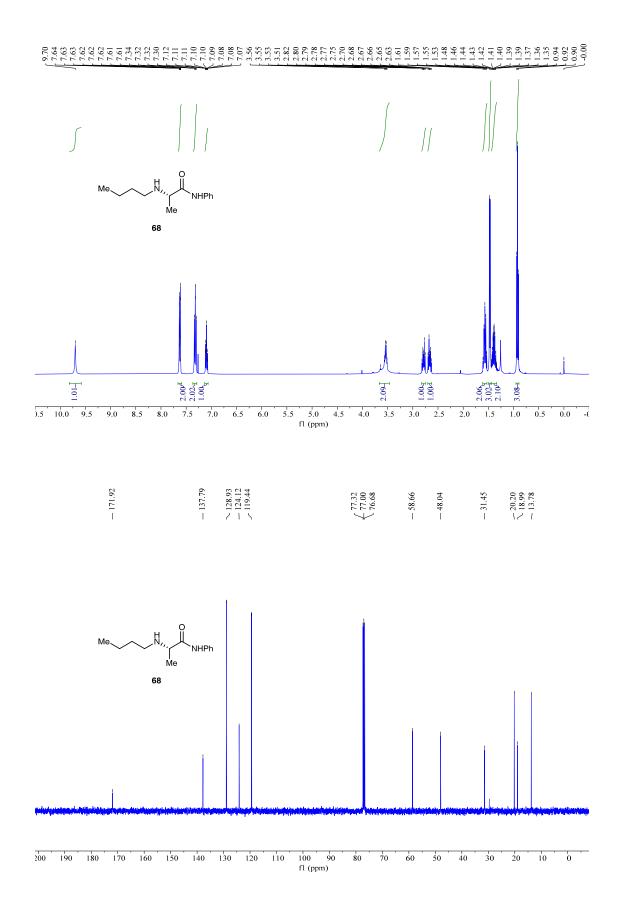


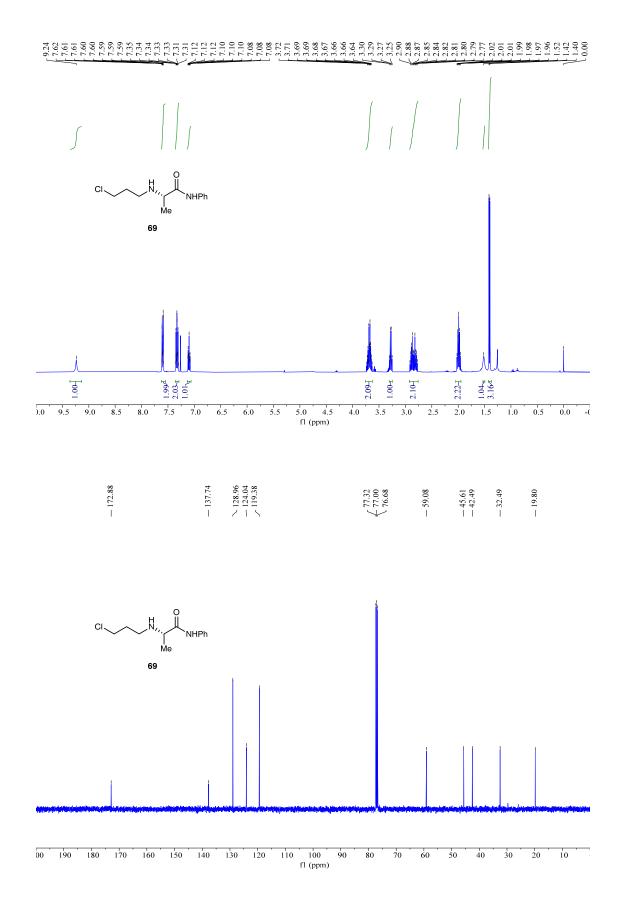


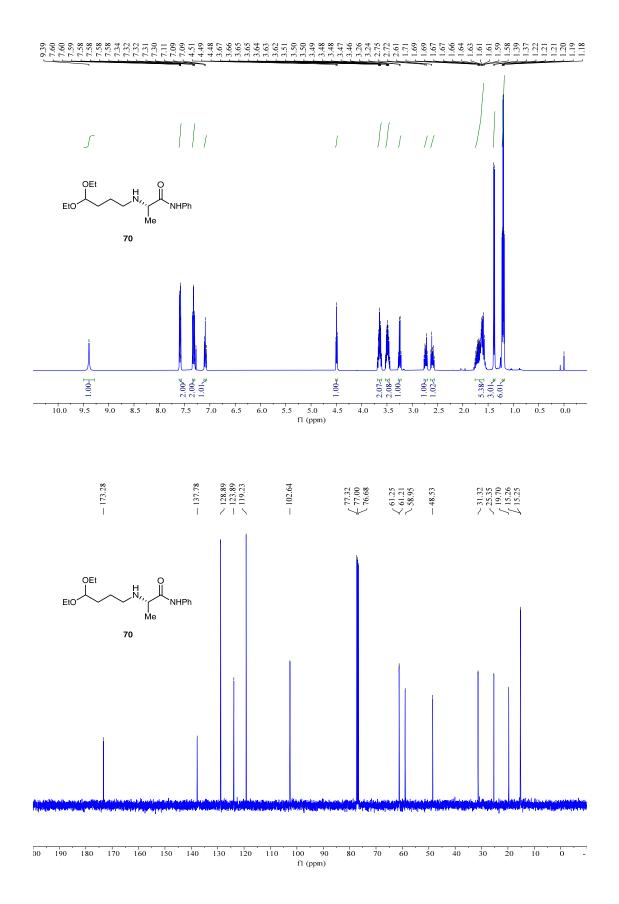


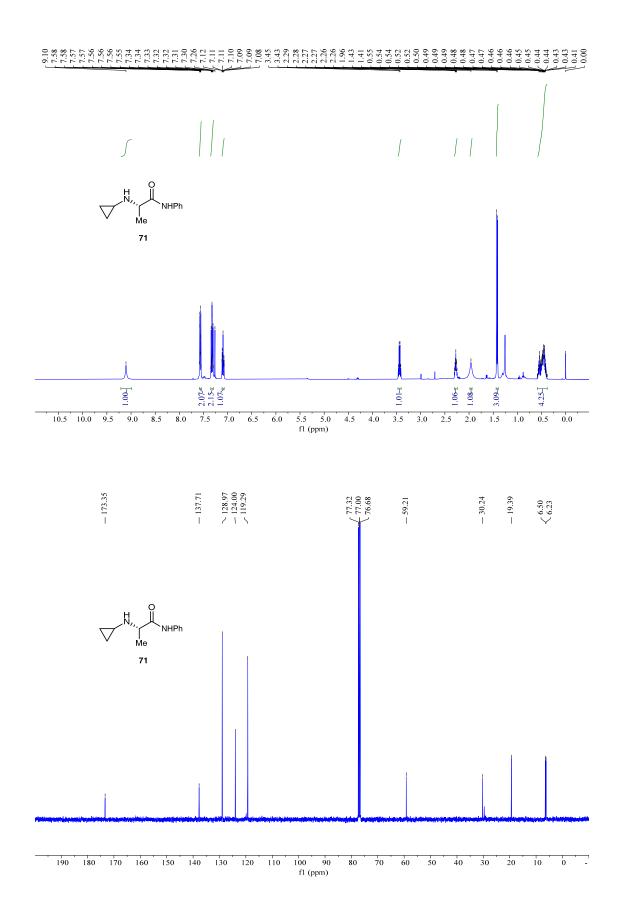


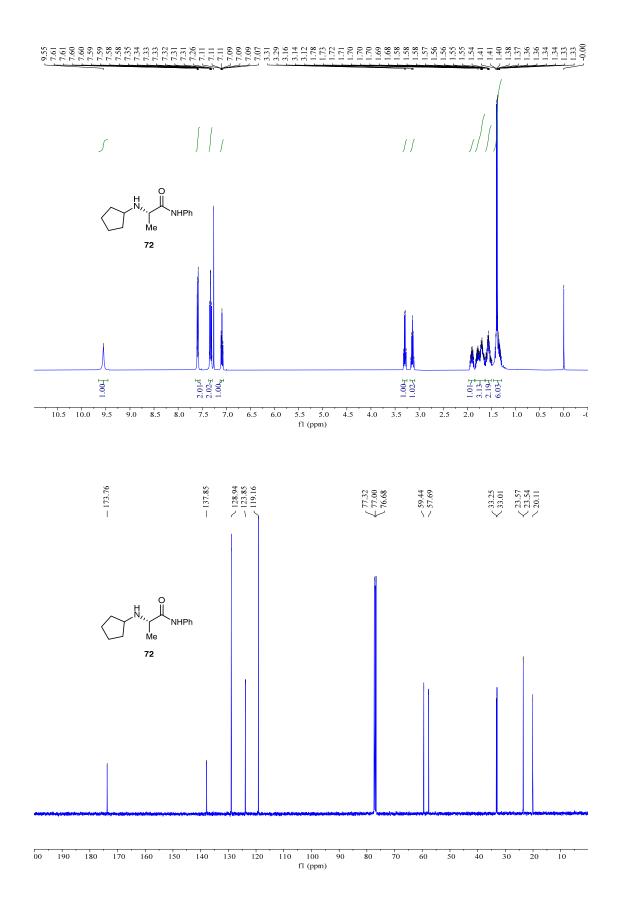


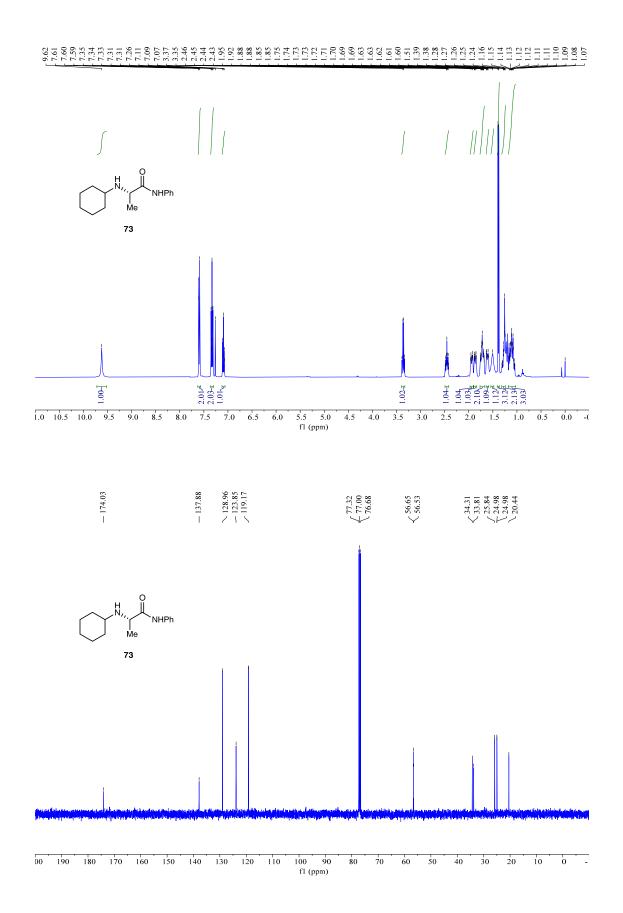


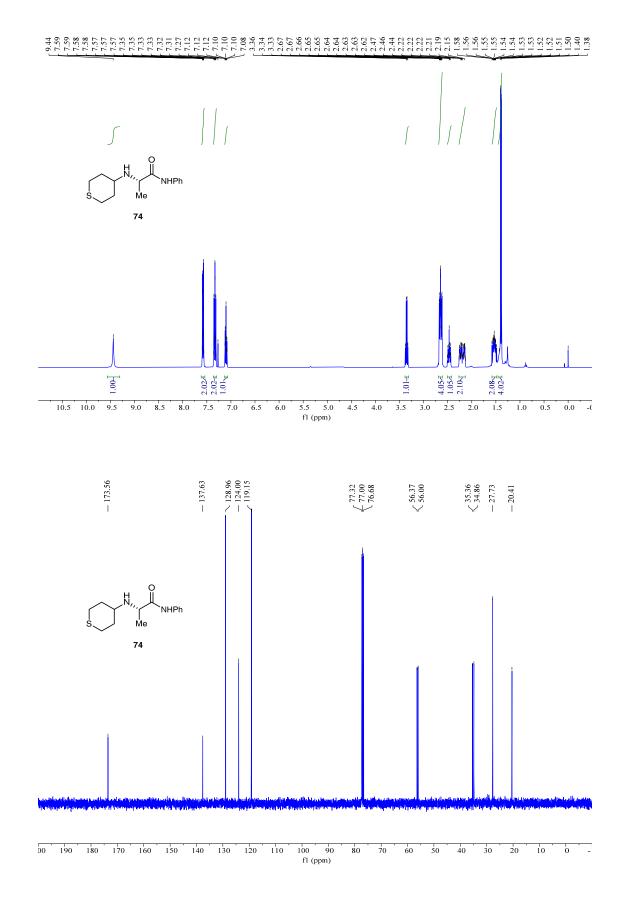


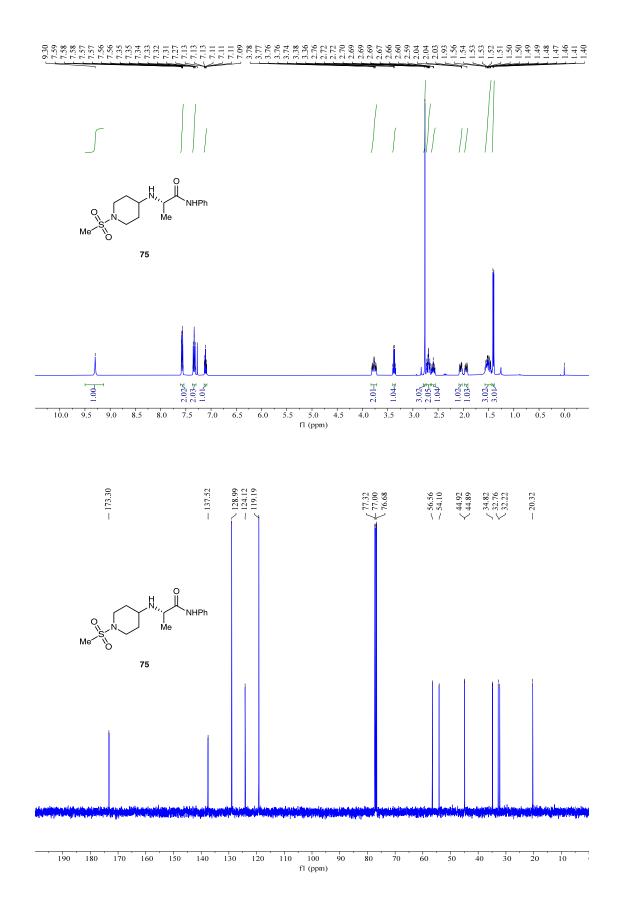


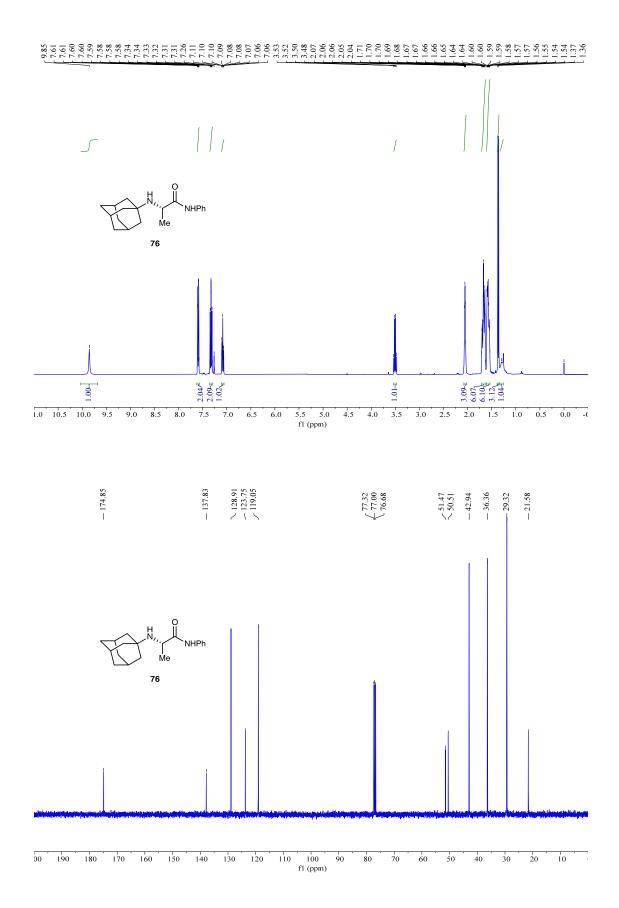


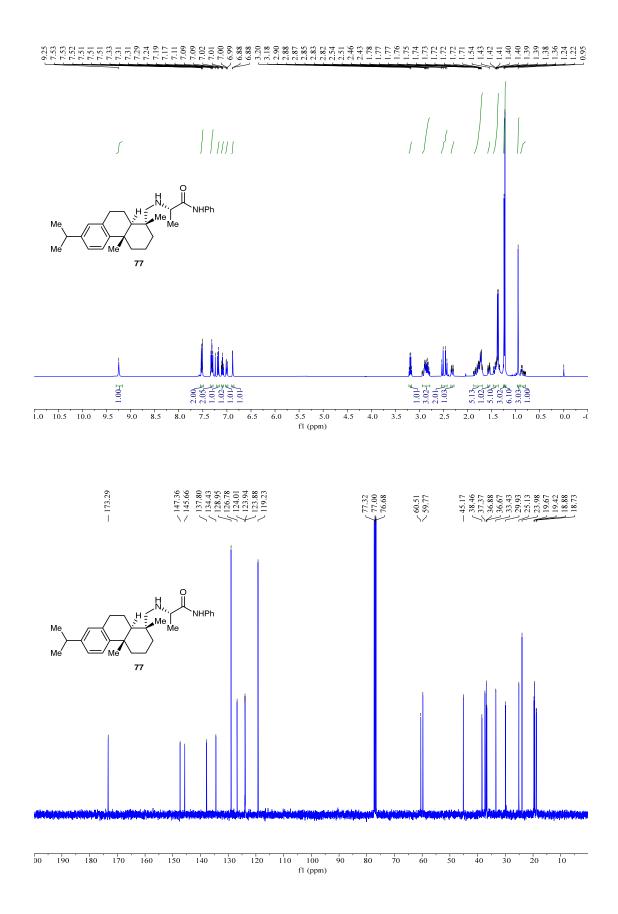


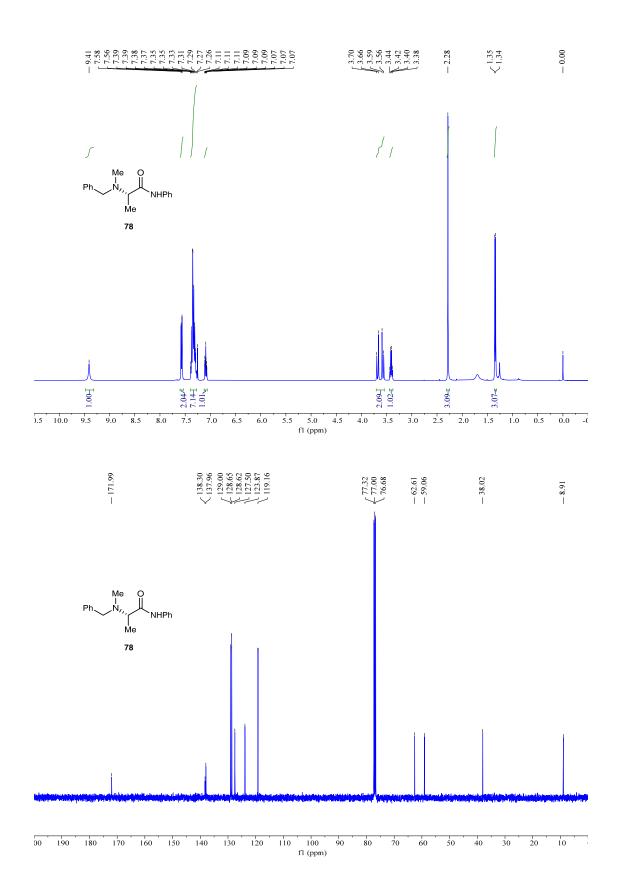


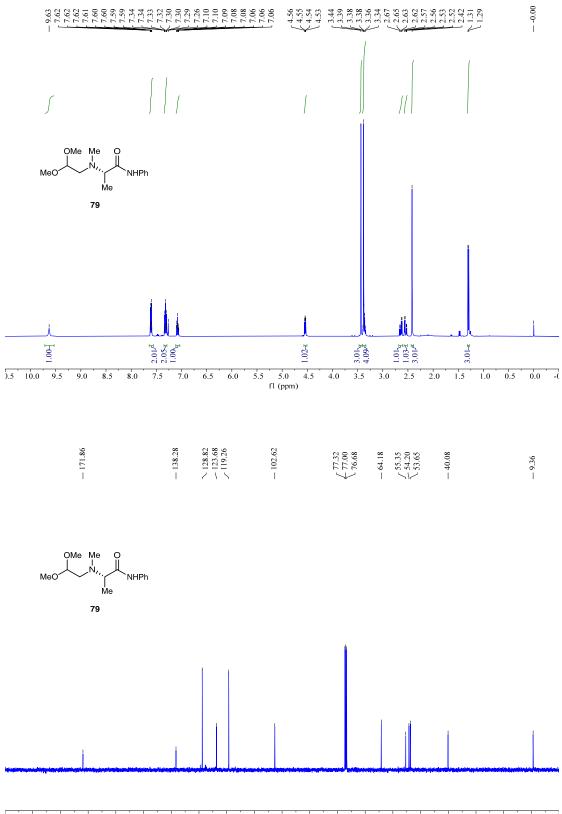


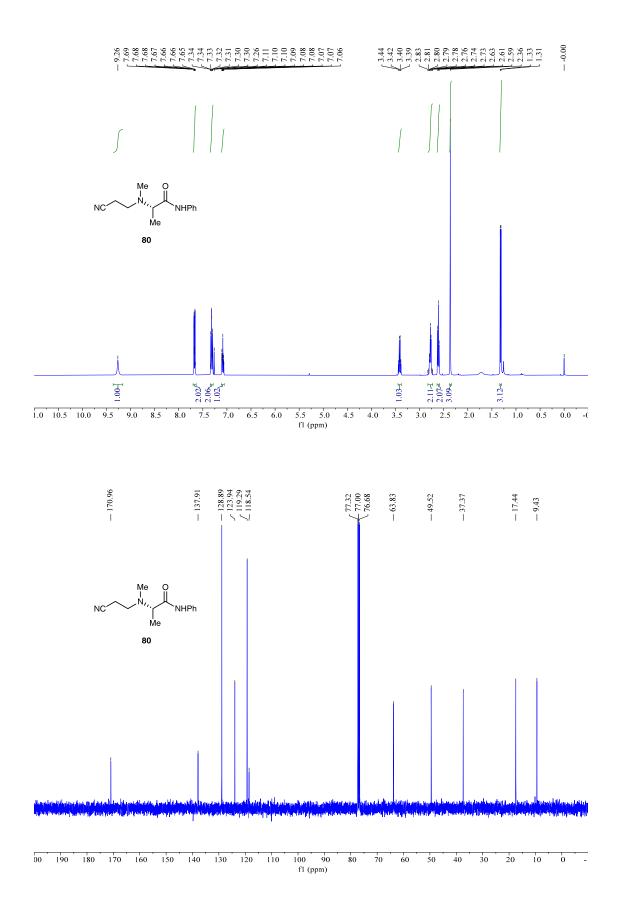


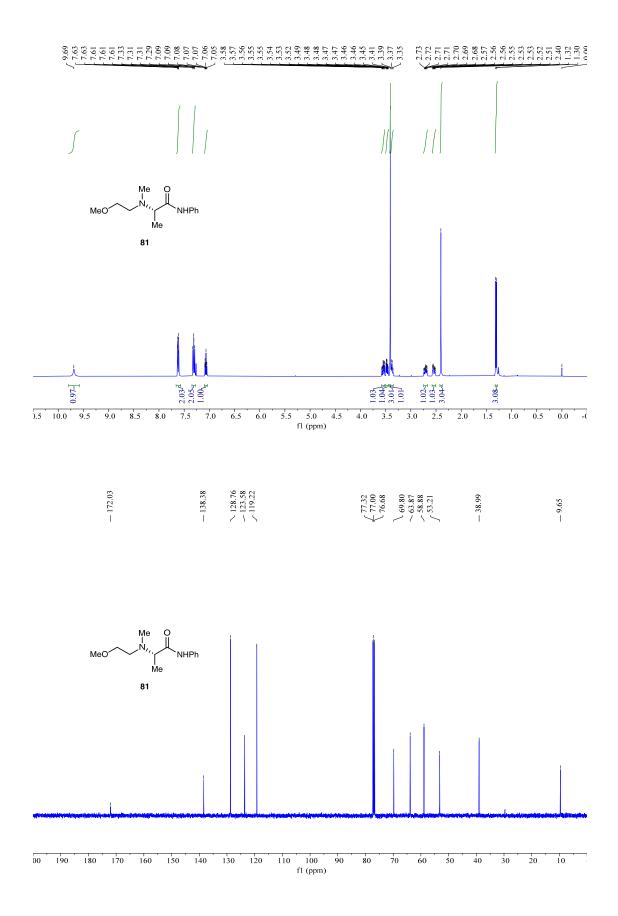


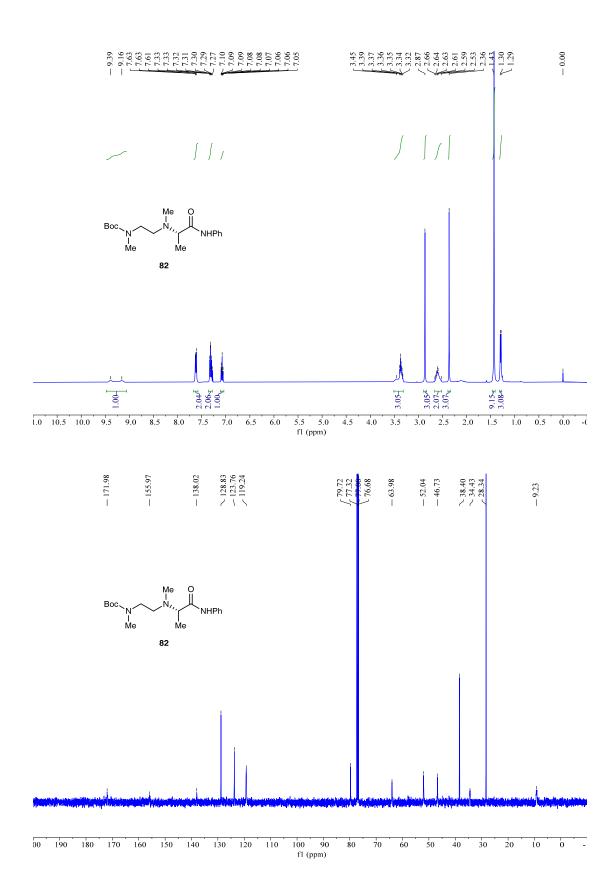


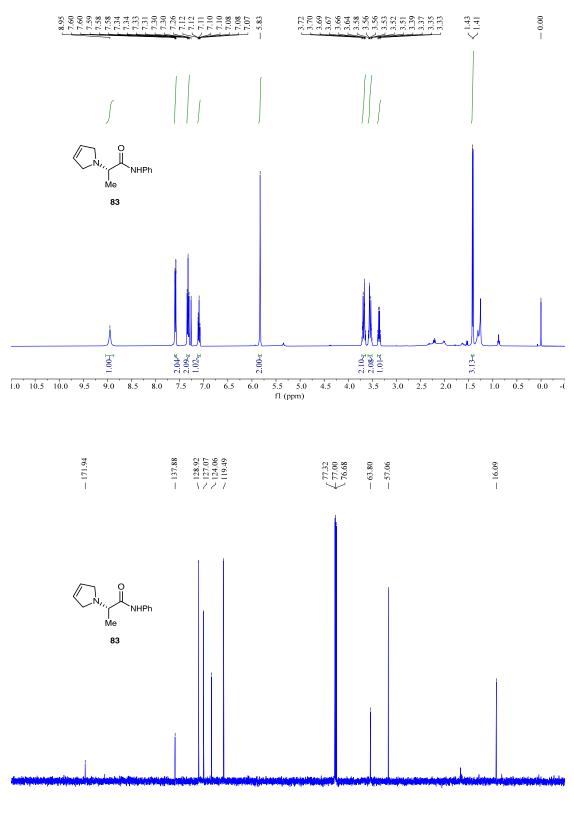




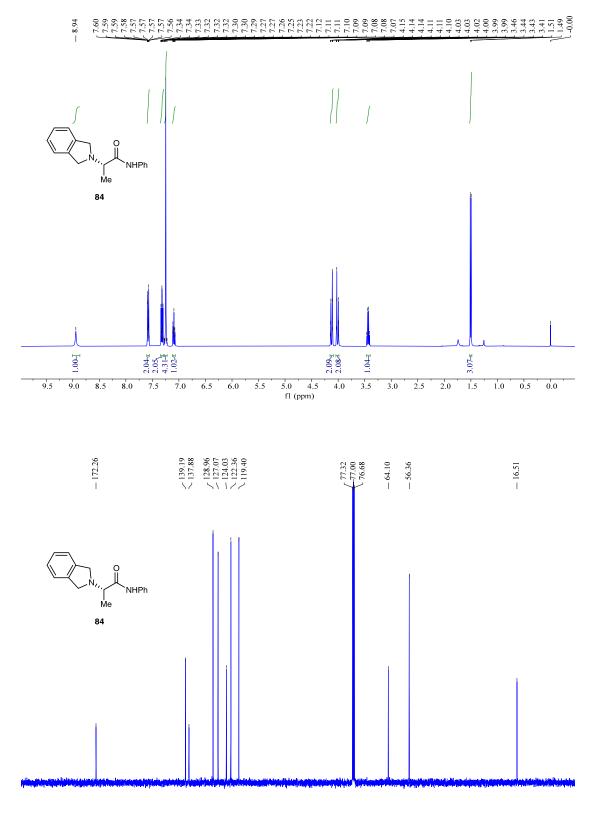

S284

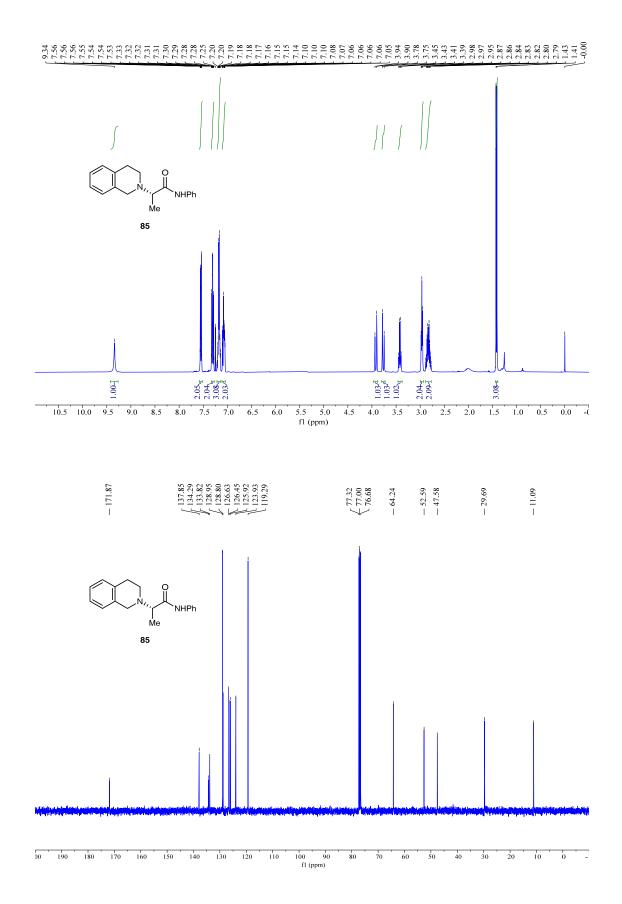


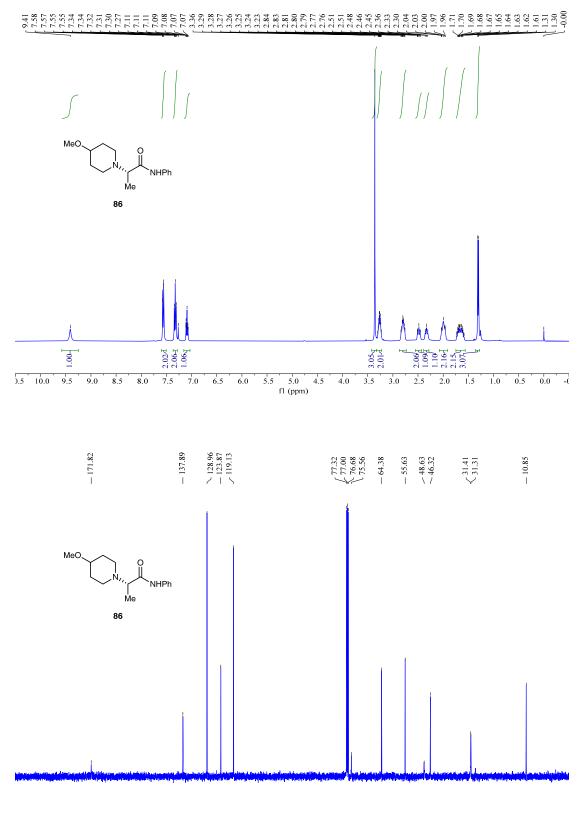




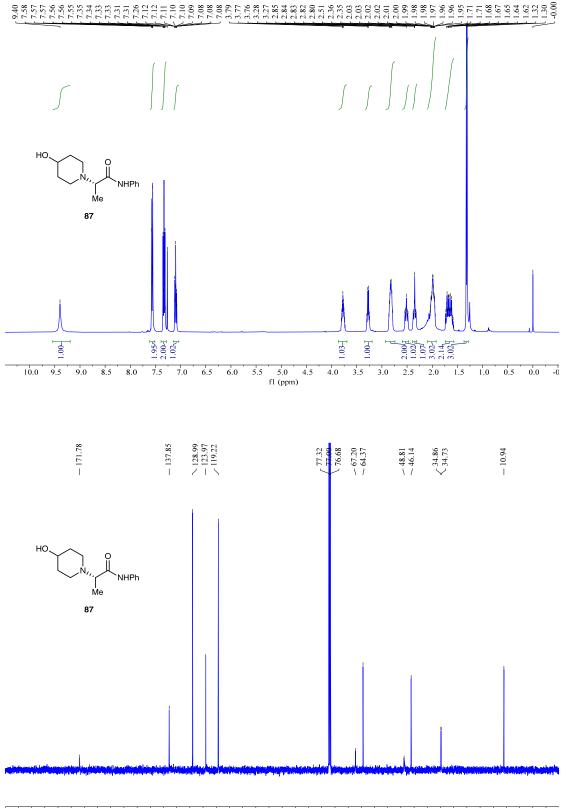
110 100 fl (ppm)



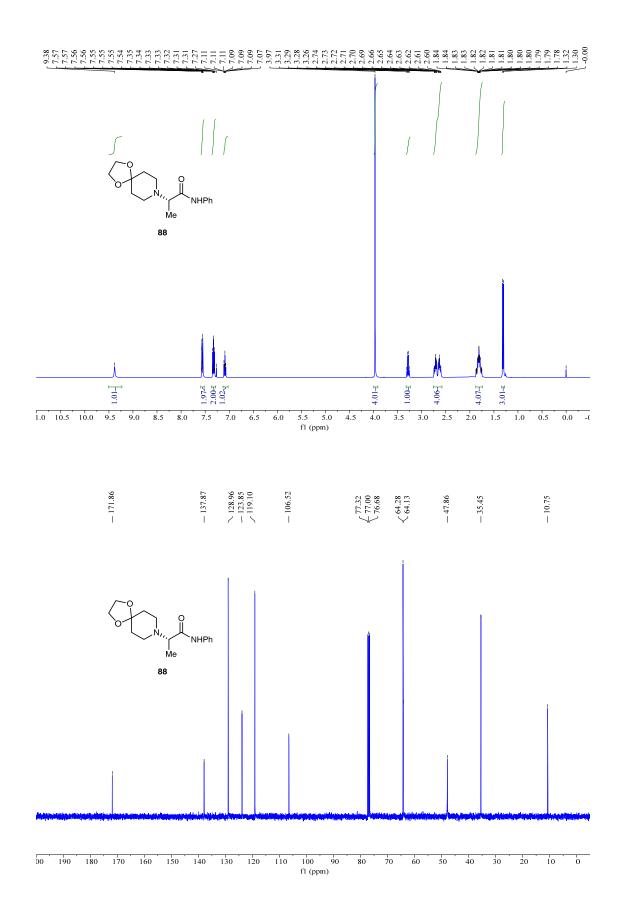


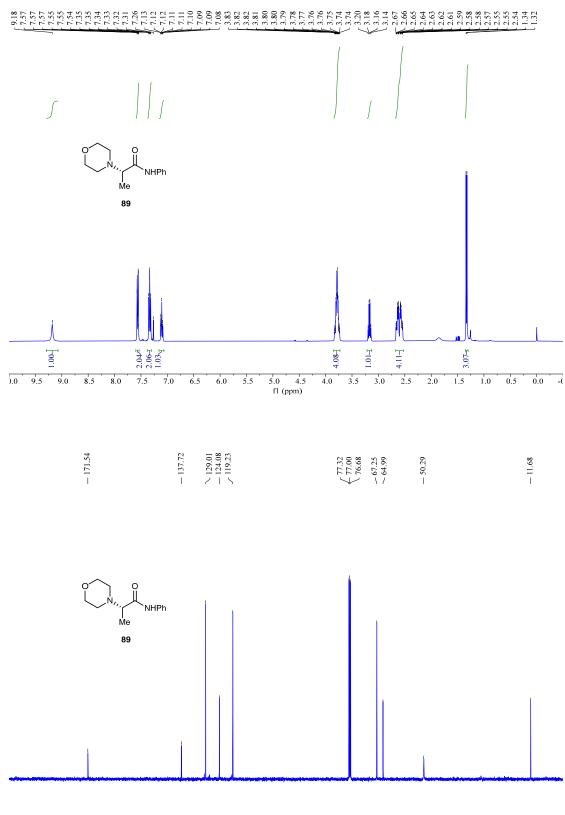


00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

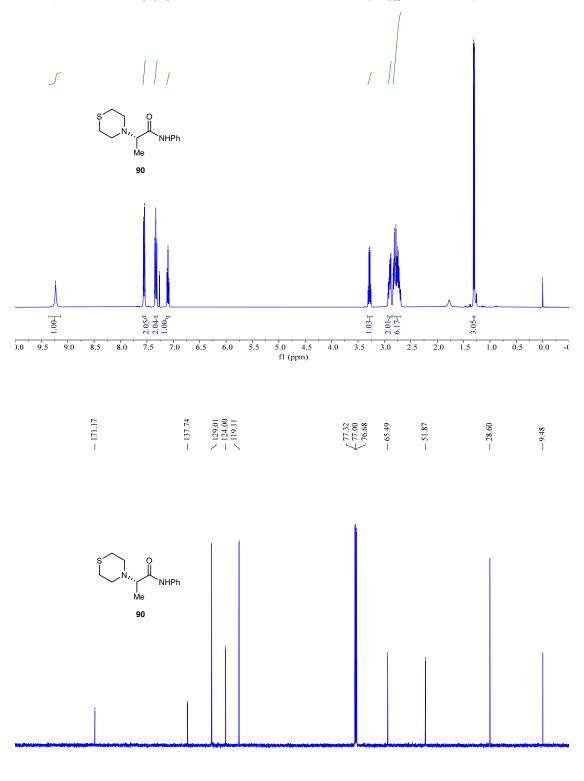


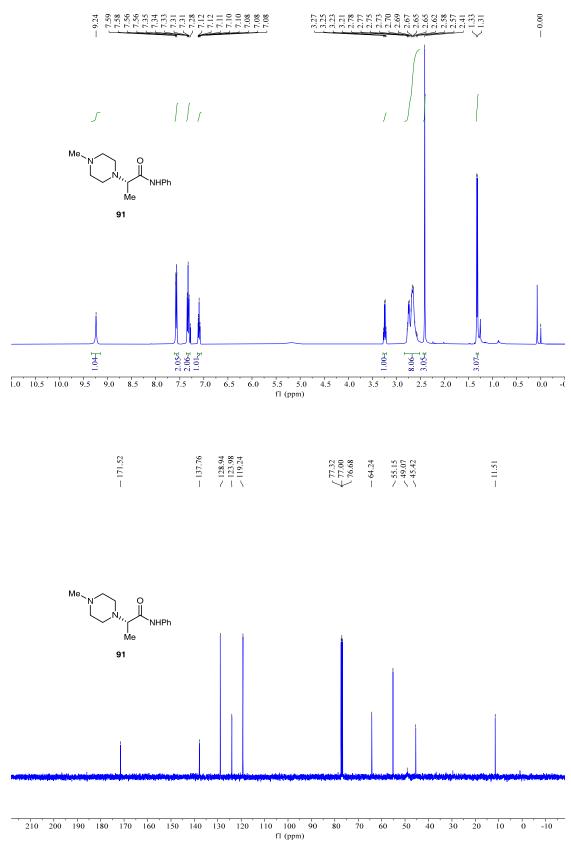
100 9 f1 (ppm)

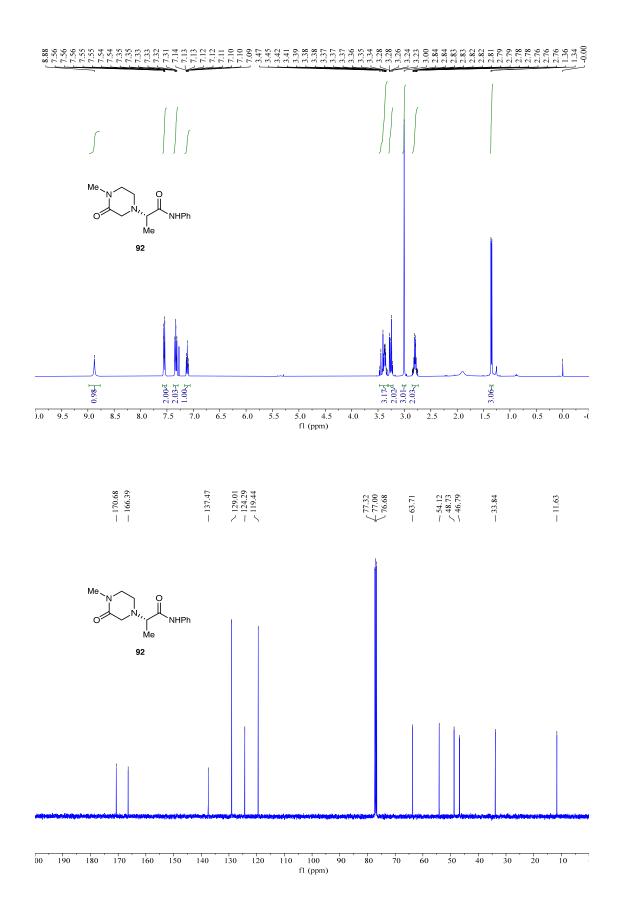




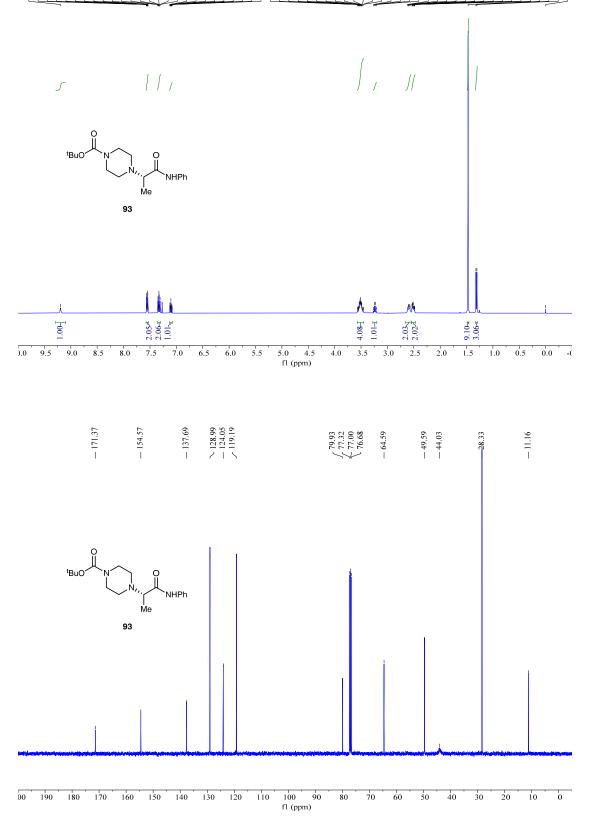
100 g f1 (ppm)

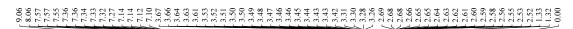

100 90 f1 (ppm) 00 190 ò -

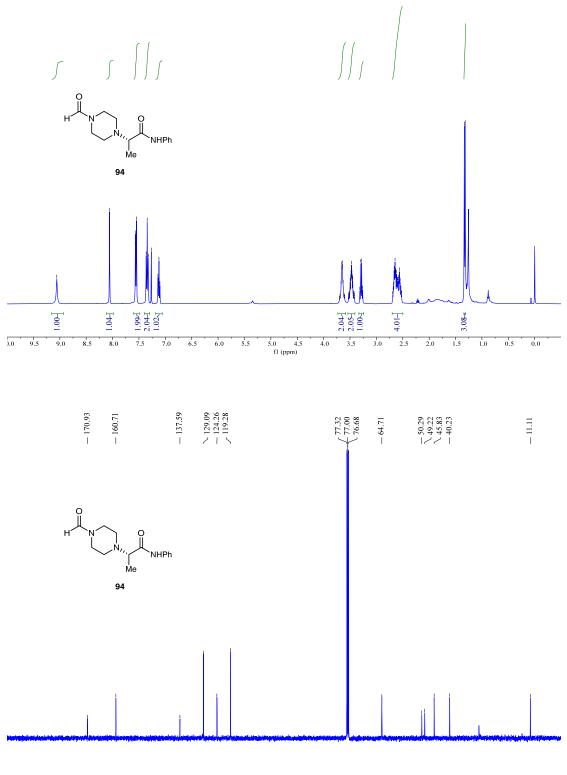



110 100 f1 (ppm)

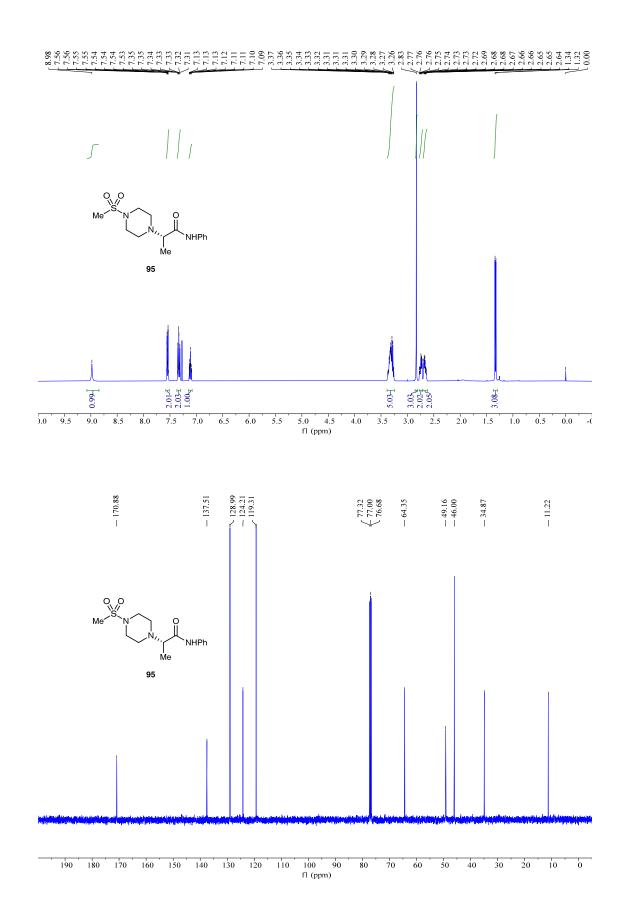
. 9.23 . 7.75

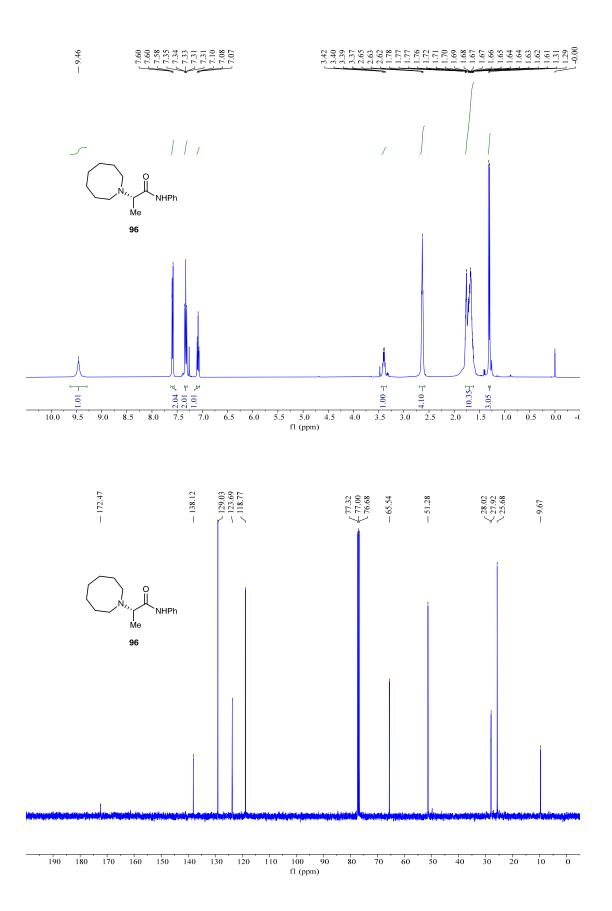

110 100 f1 (ppm) 00 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10

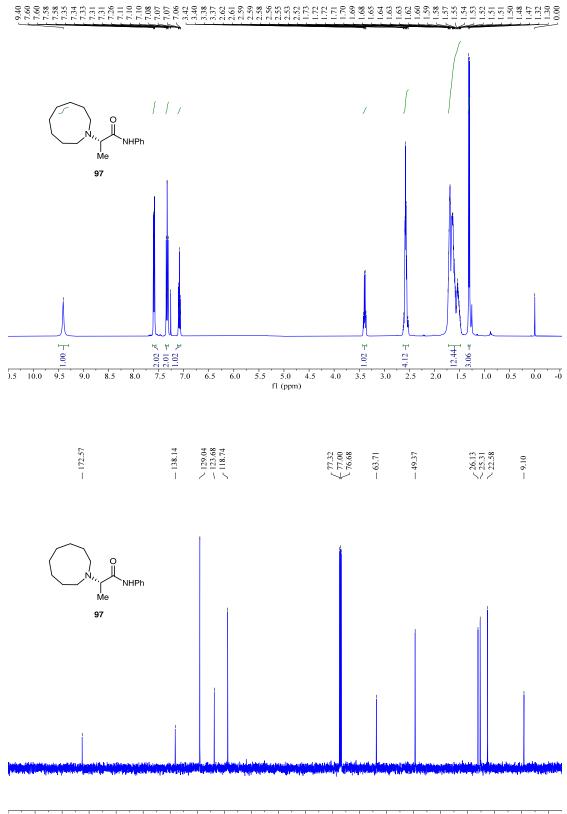


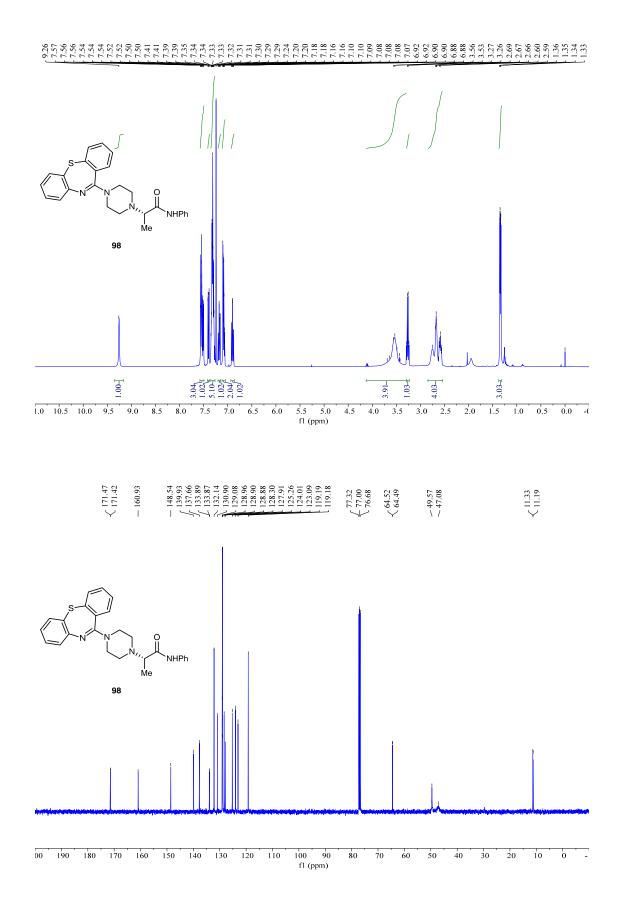


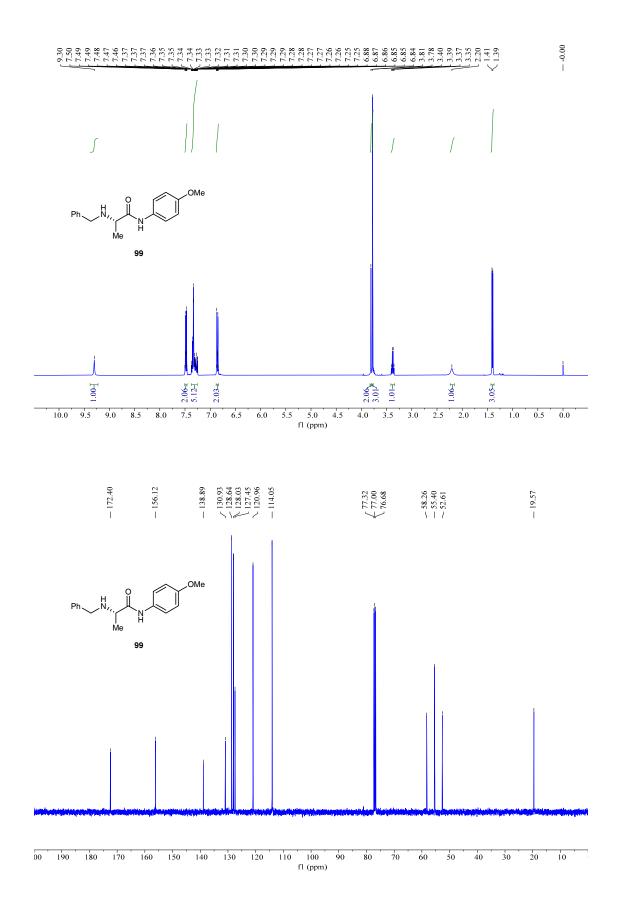
S300

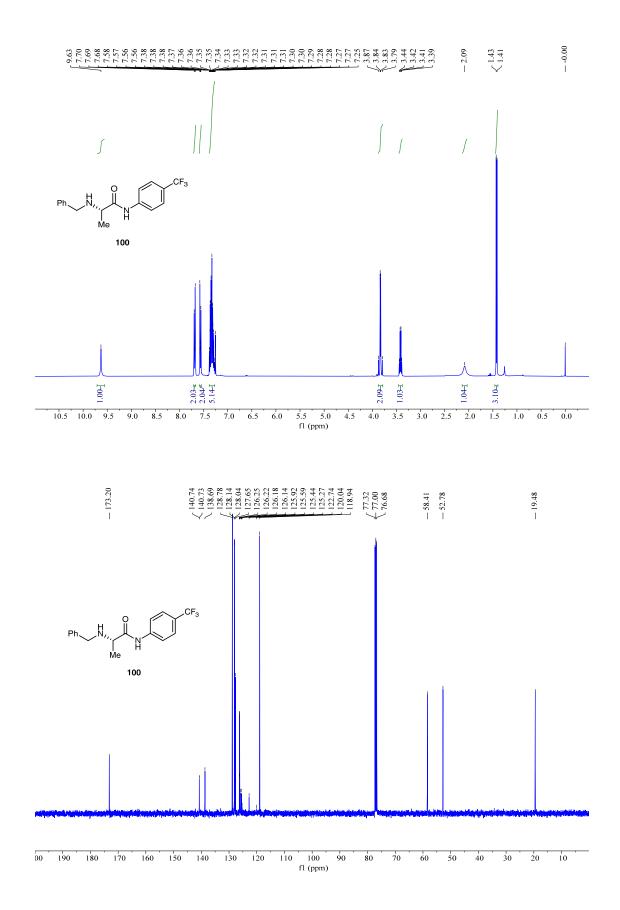

9.020 9.20

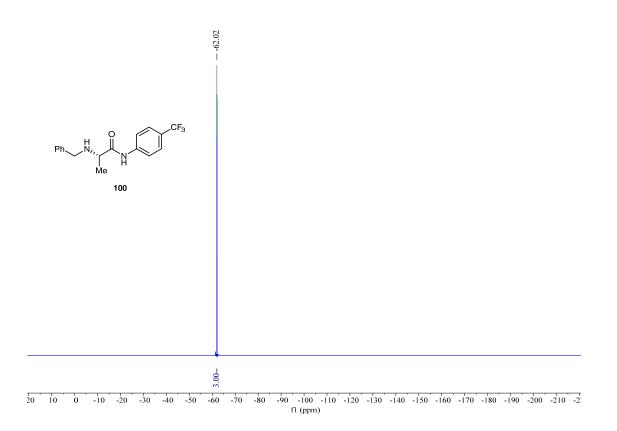


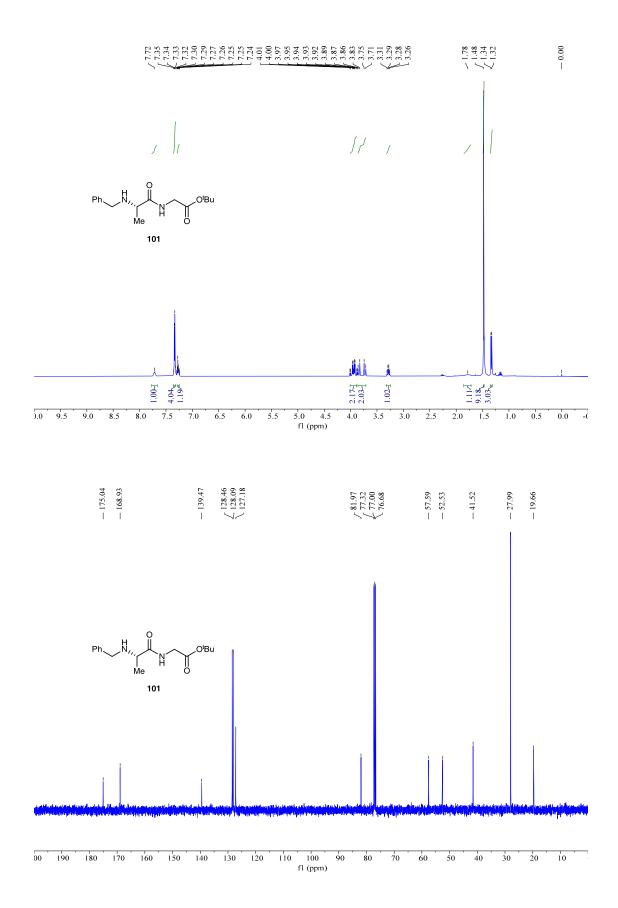


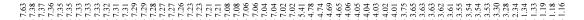

00 190 110 100 f1 (ppm)

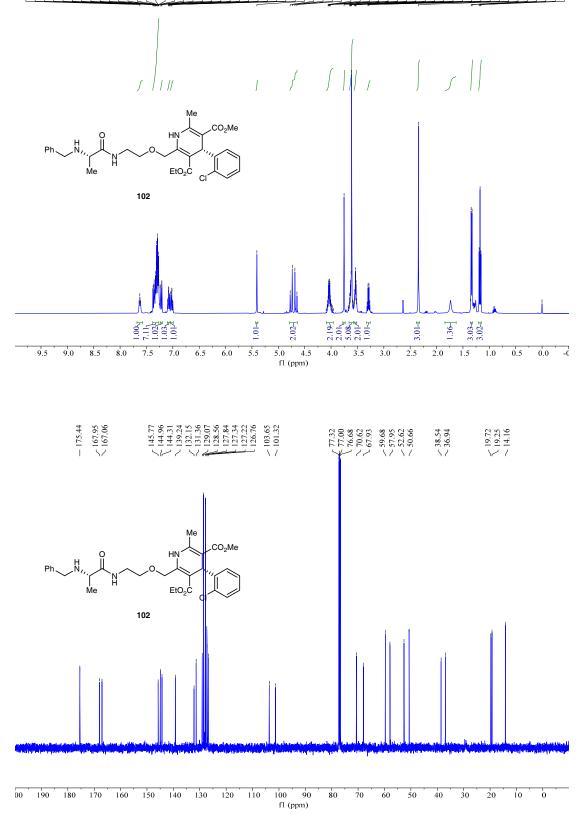


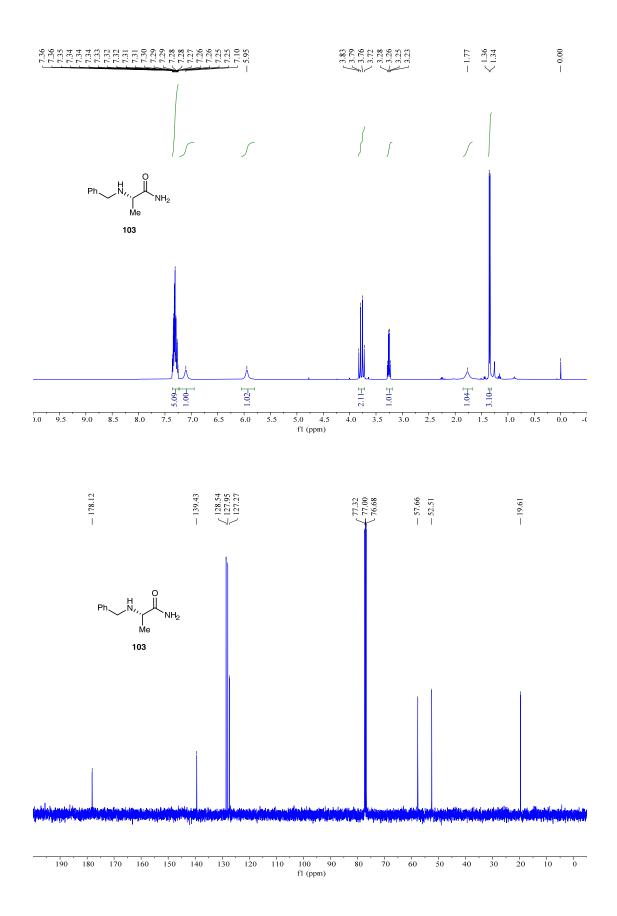


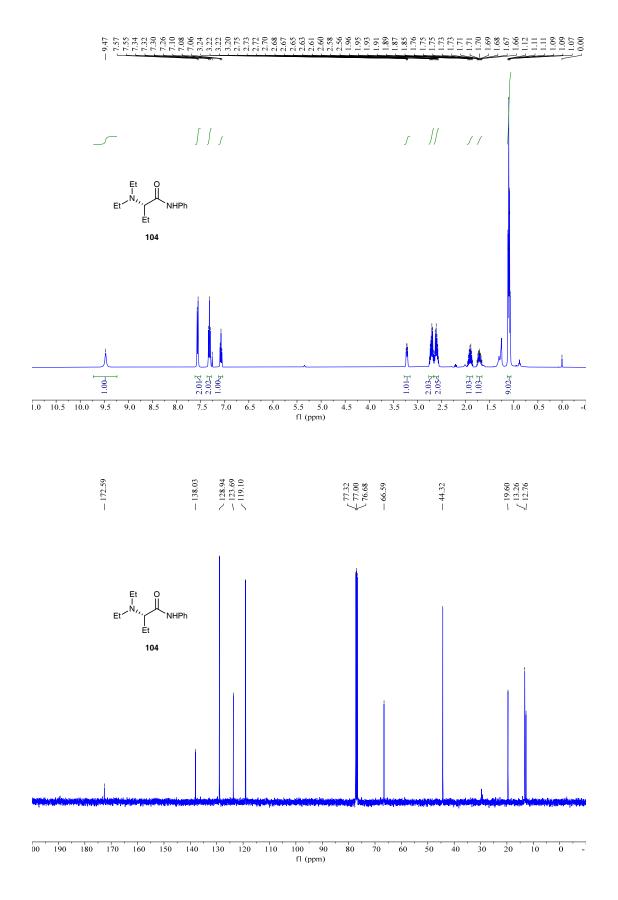

100 9 f1 (ppm)

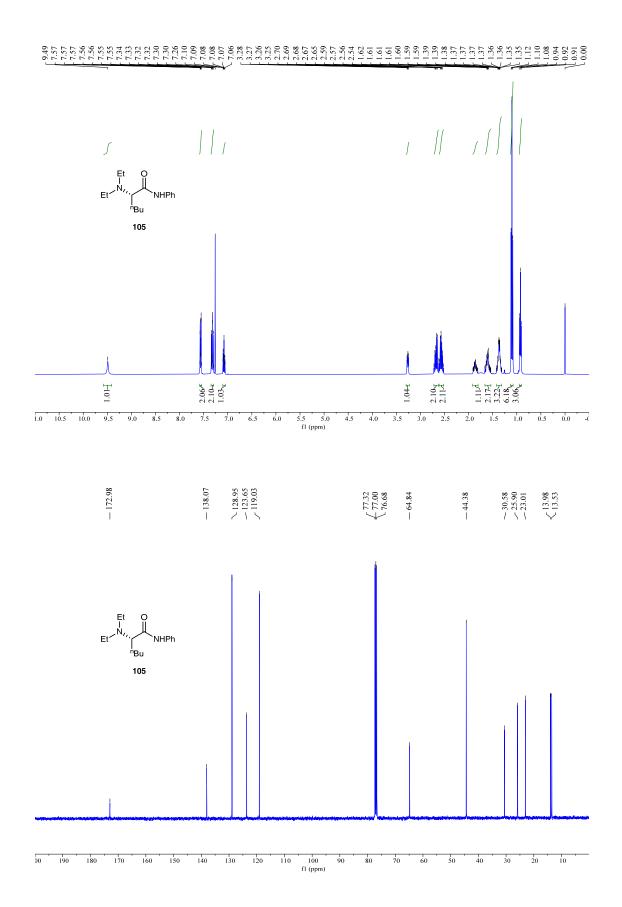


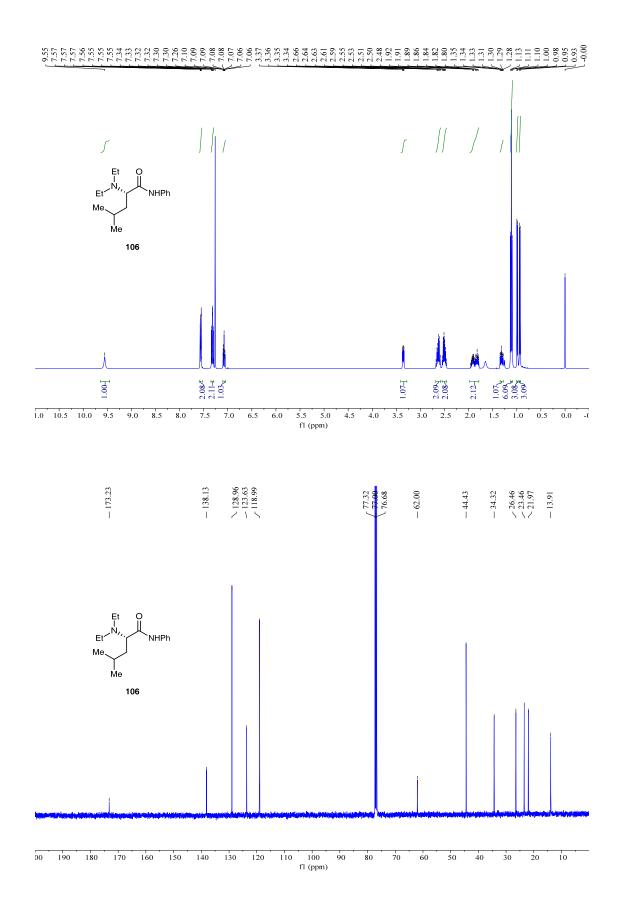


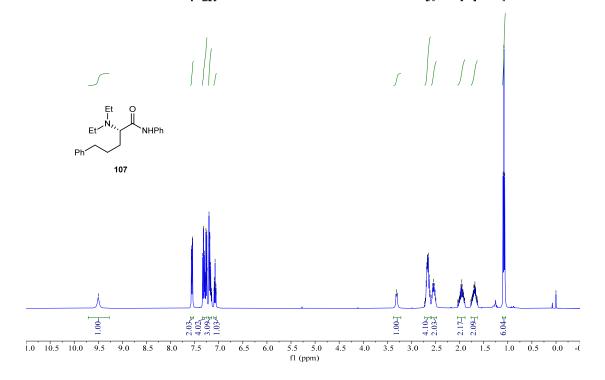


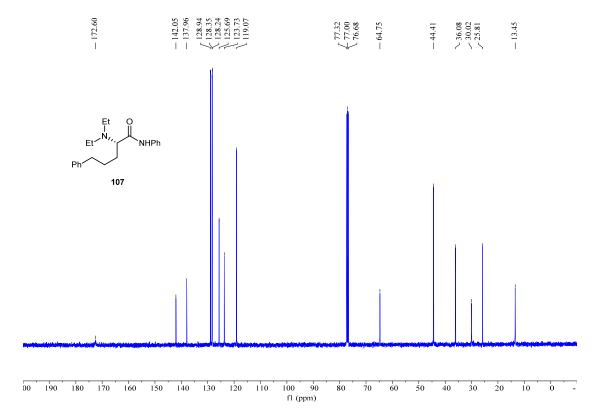

S308

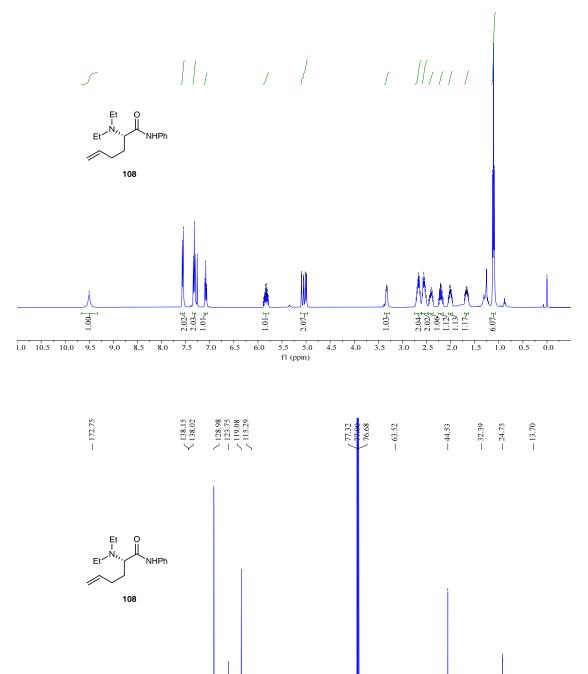


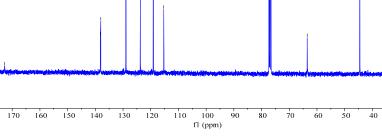


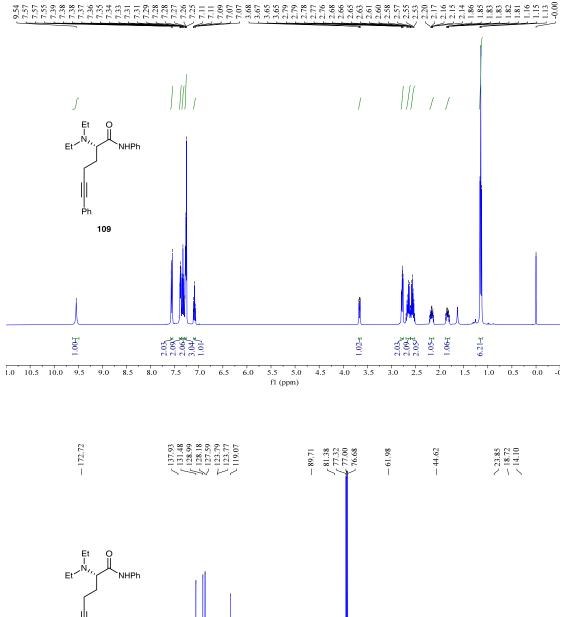


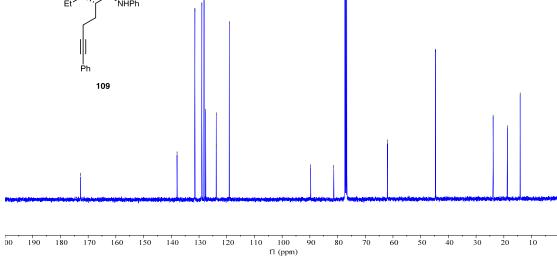


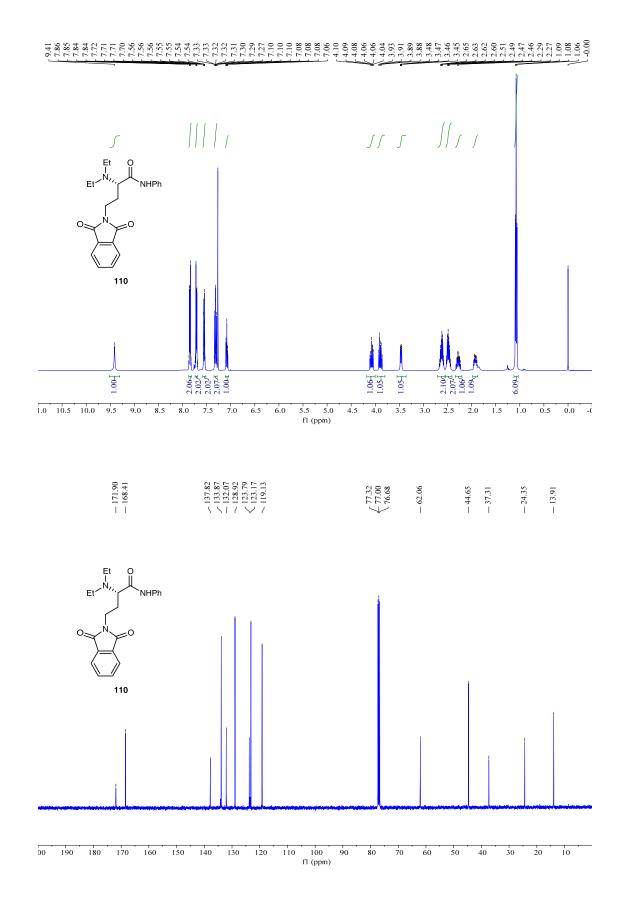

S314

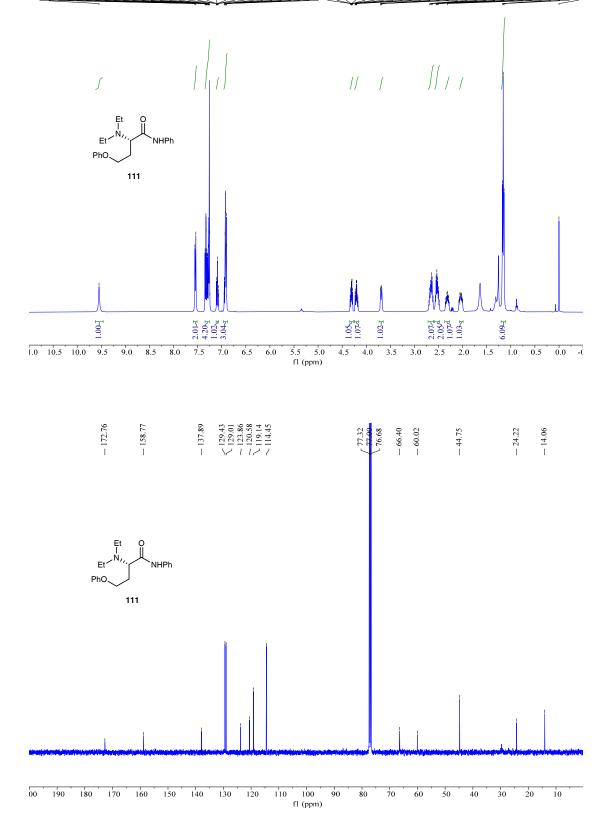


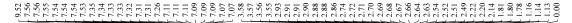

S315

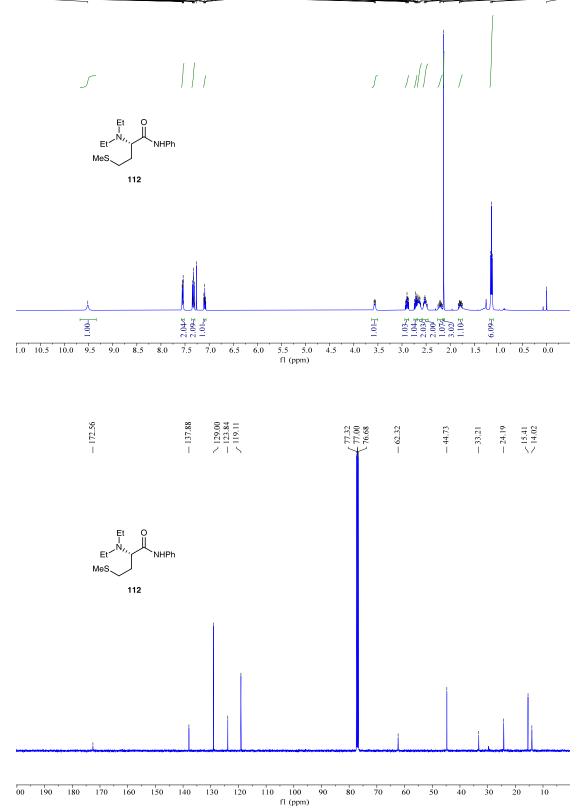


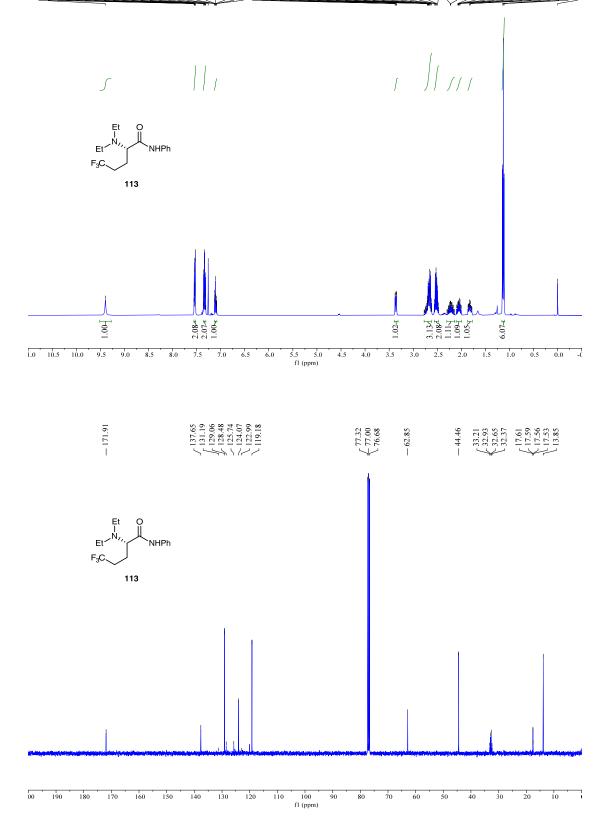


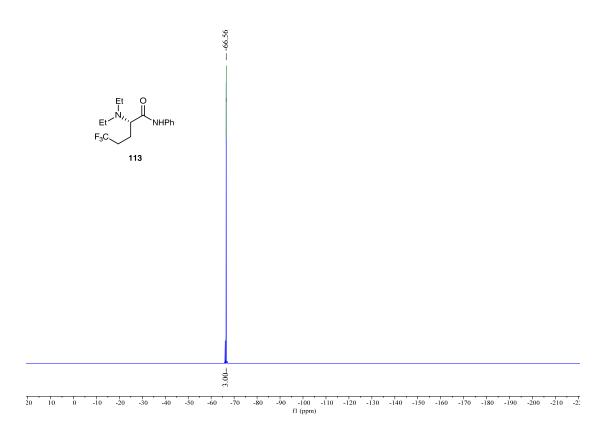


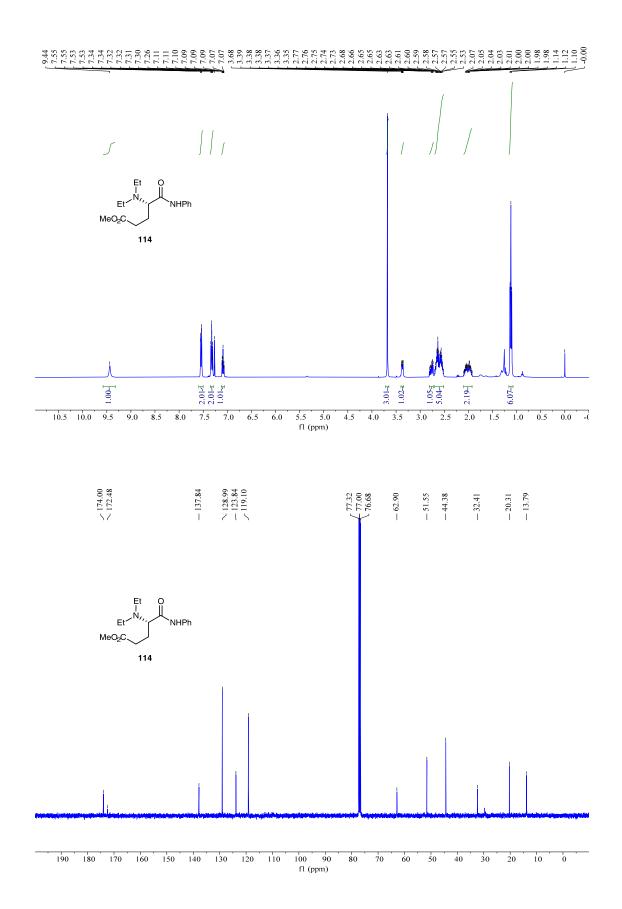


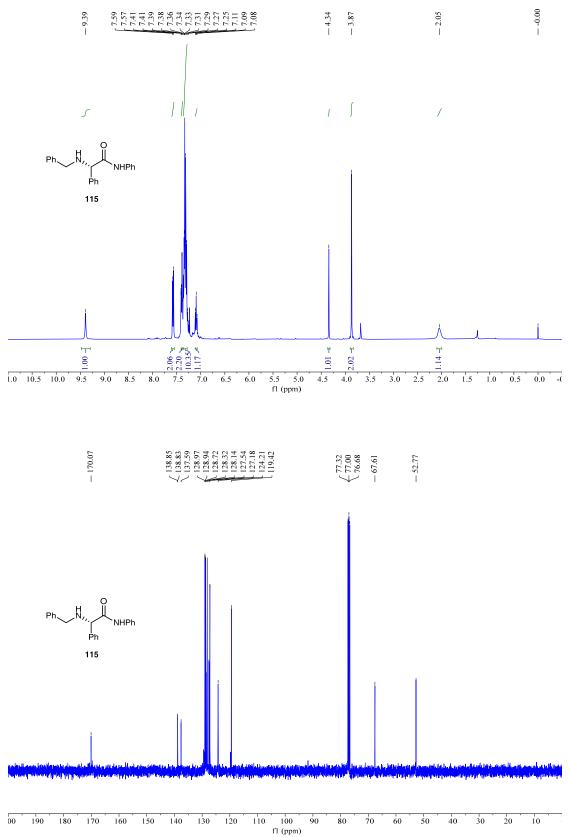


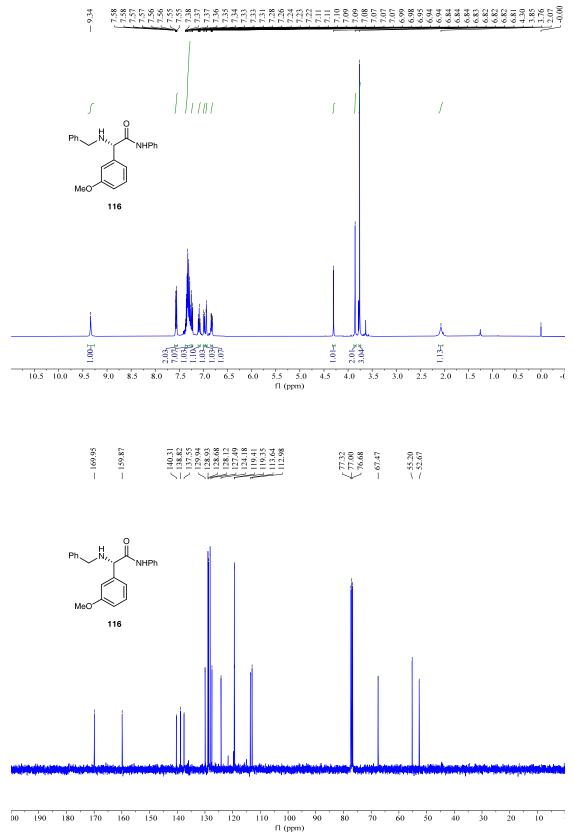


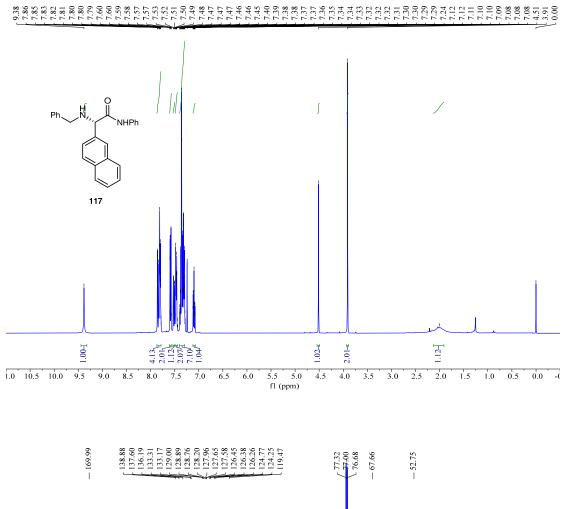


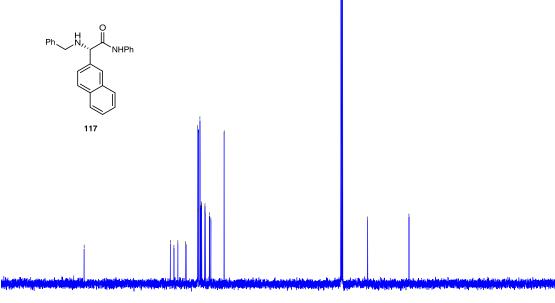

9.55 7.73 7.74 7.73 7.74 7.75

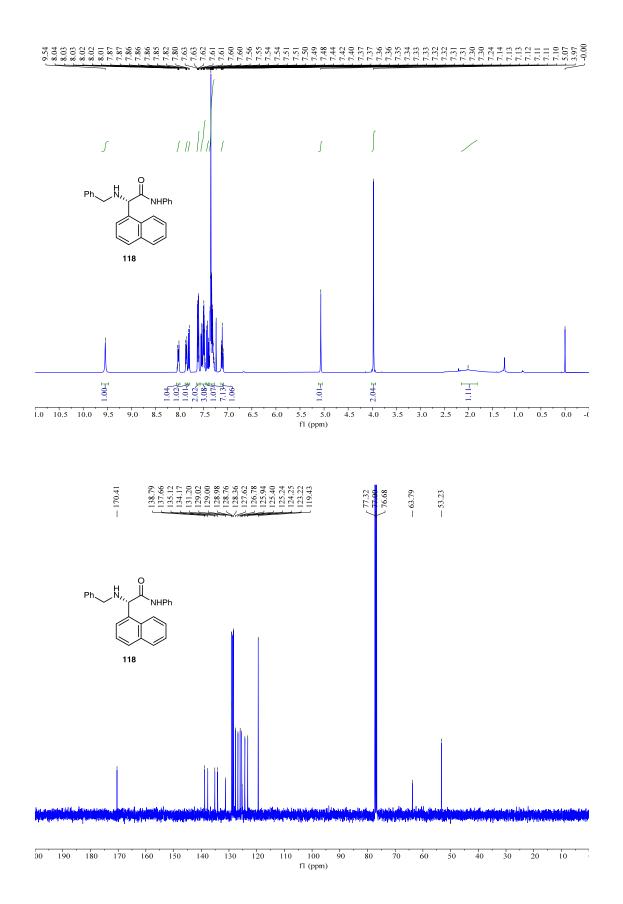


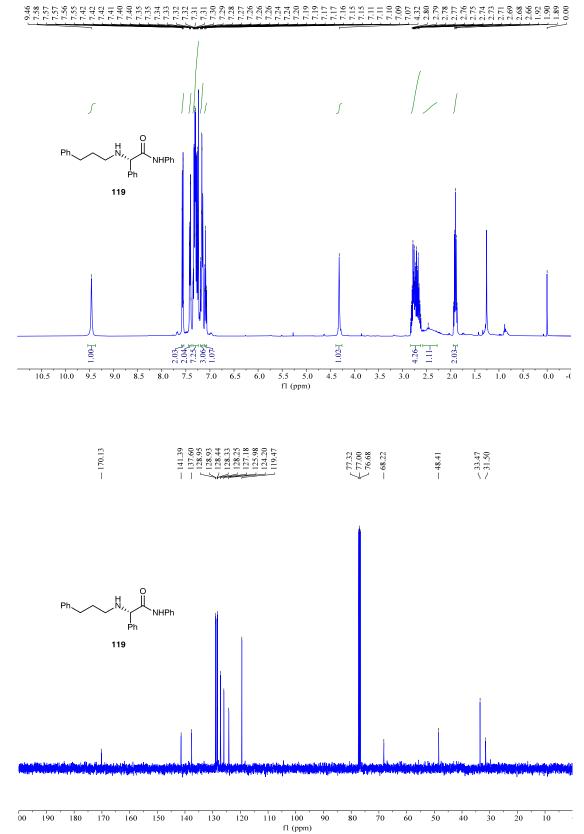


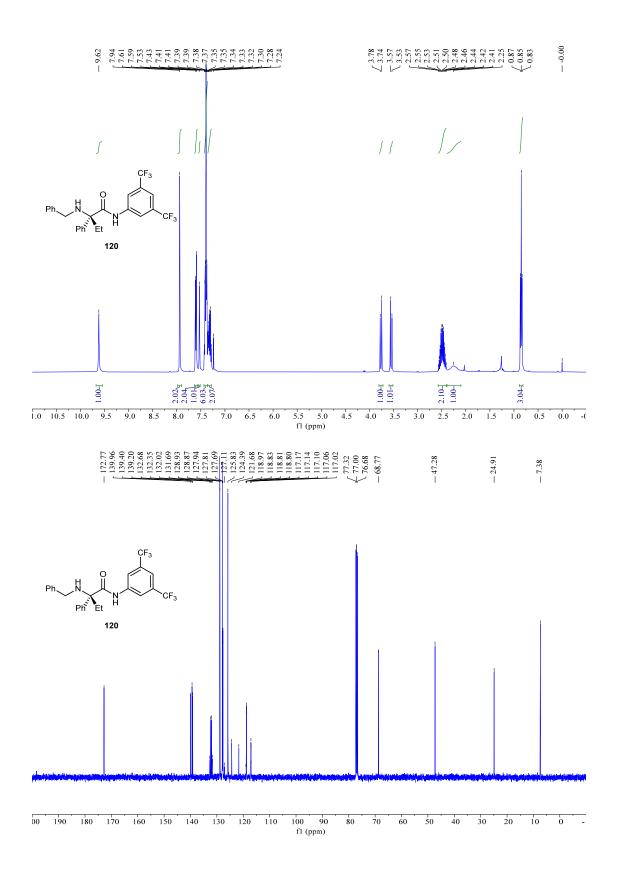


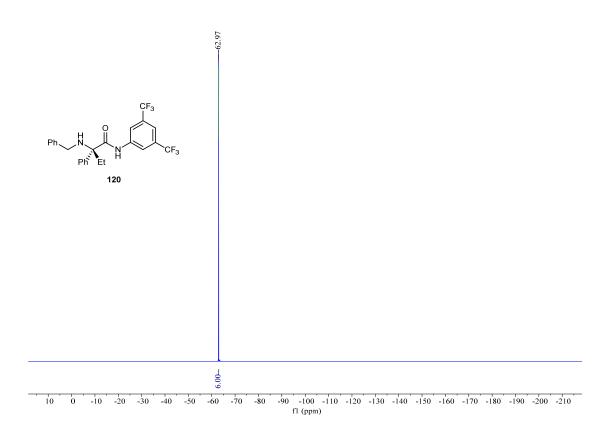


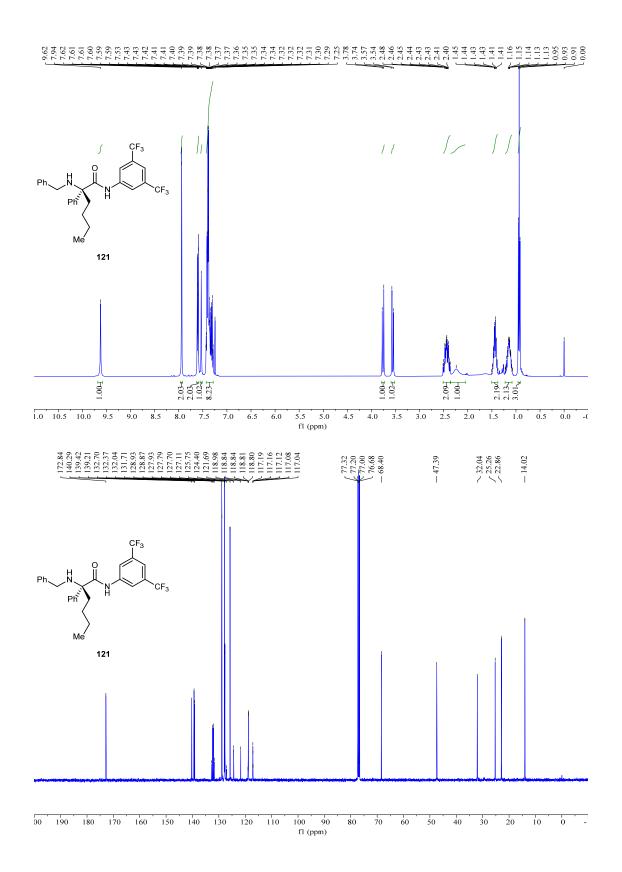


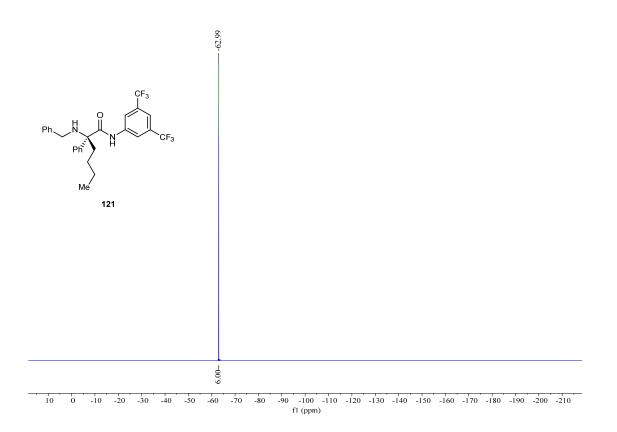


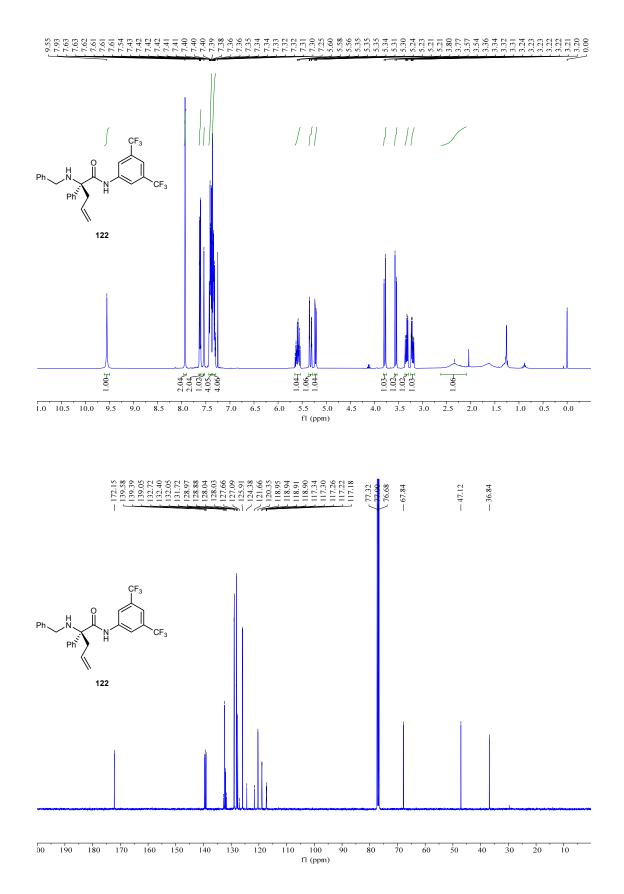


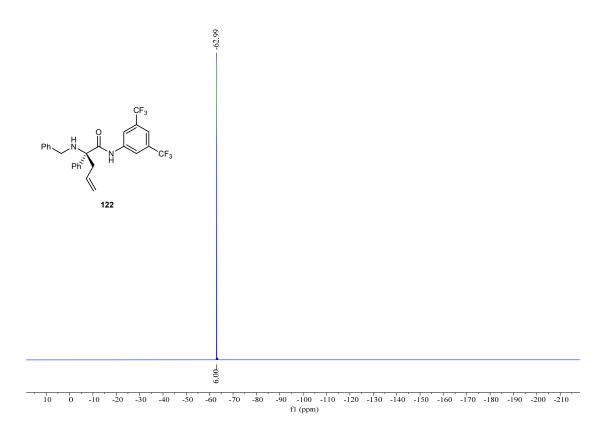


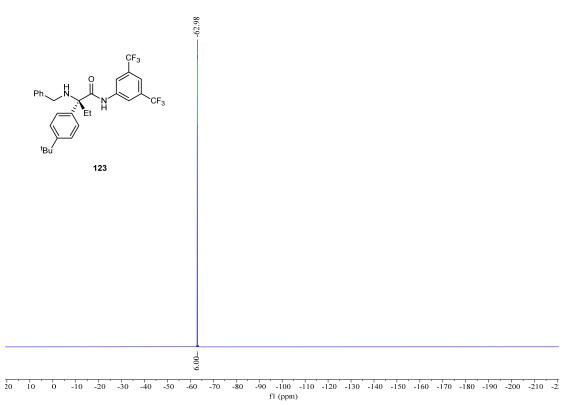


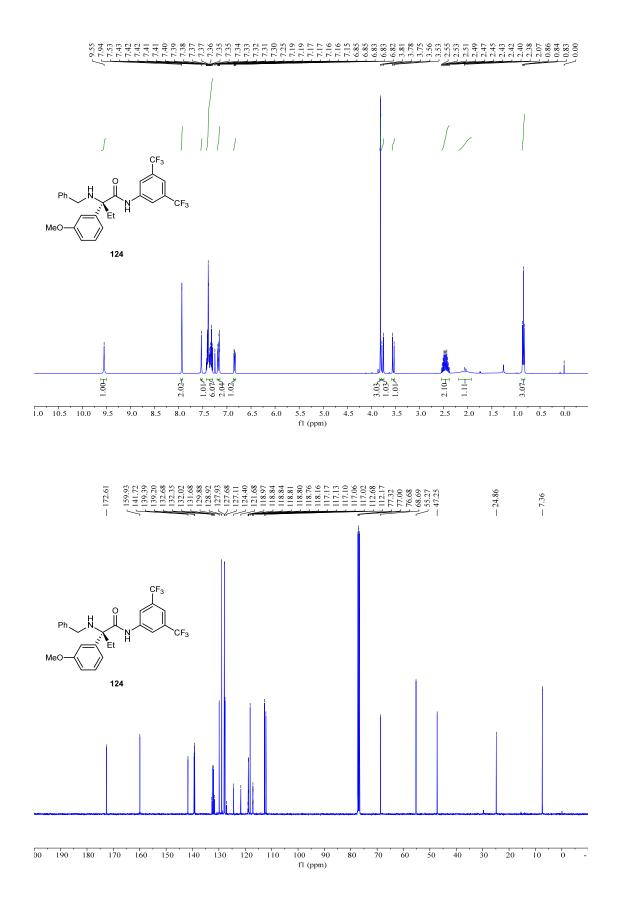

110 100 f1 (ppm)

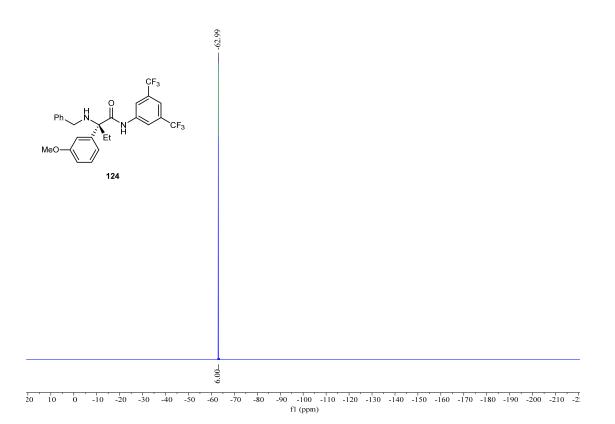




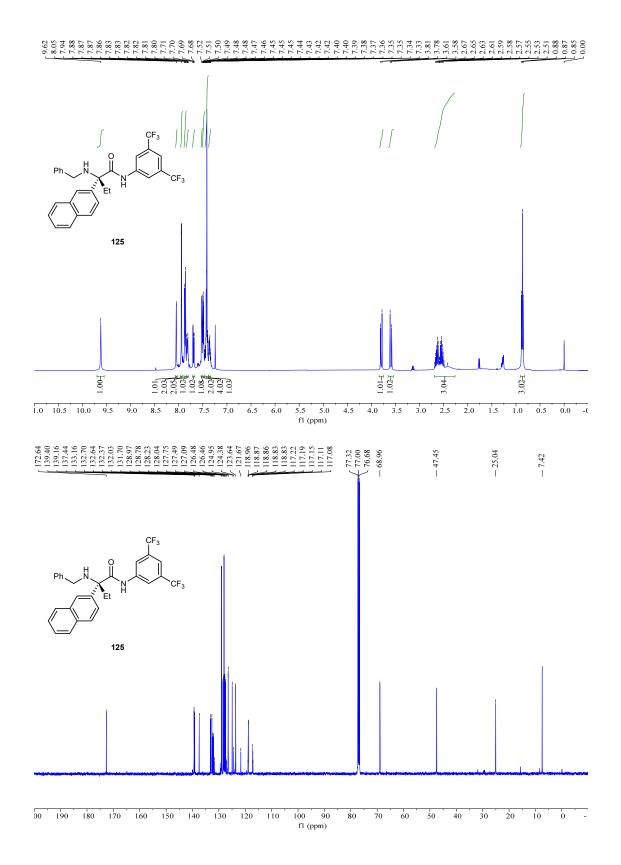


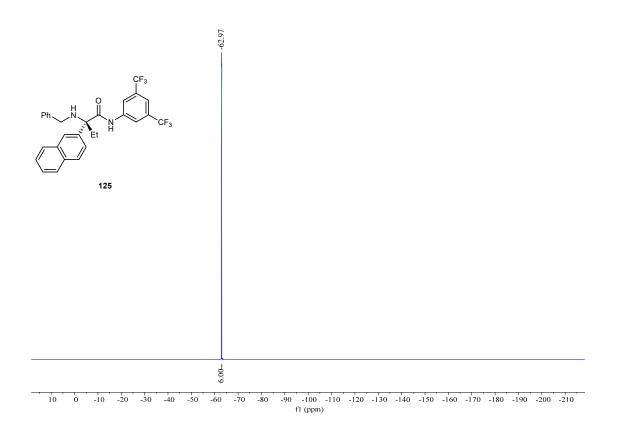


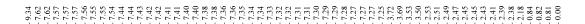


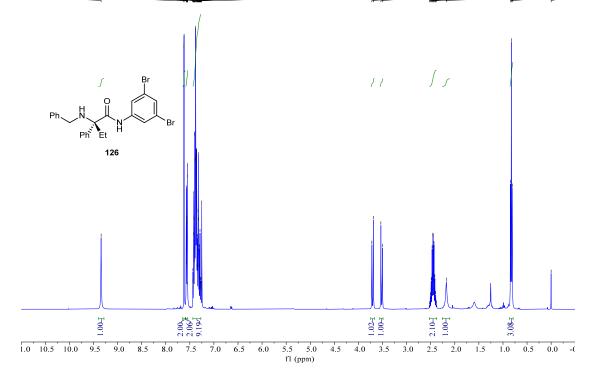


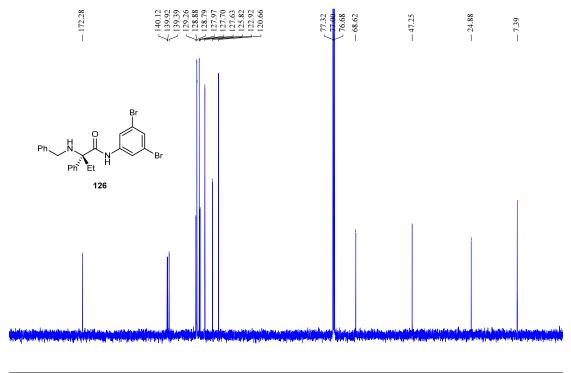
S336

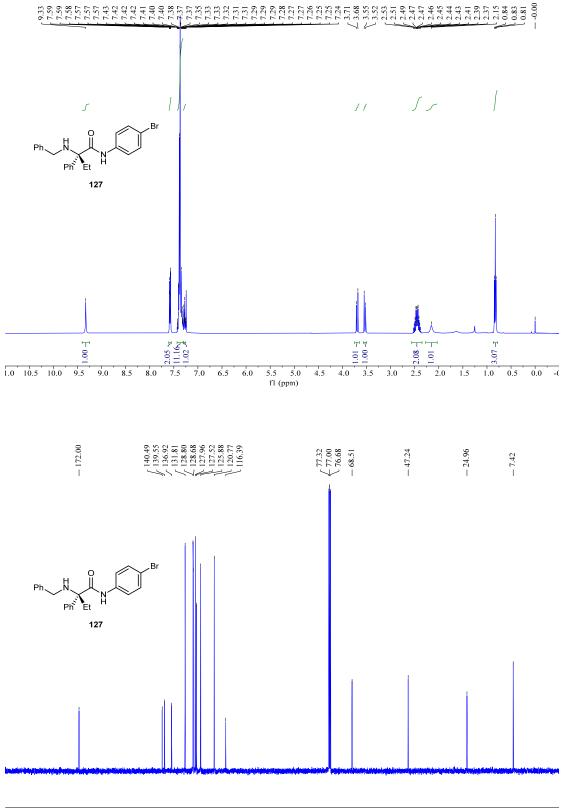


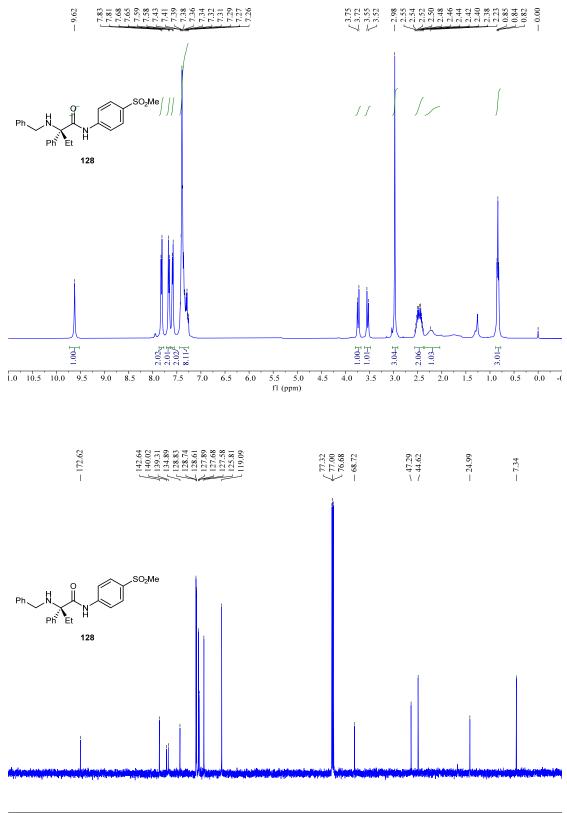


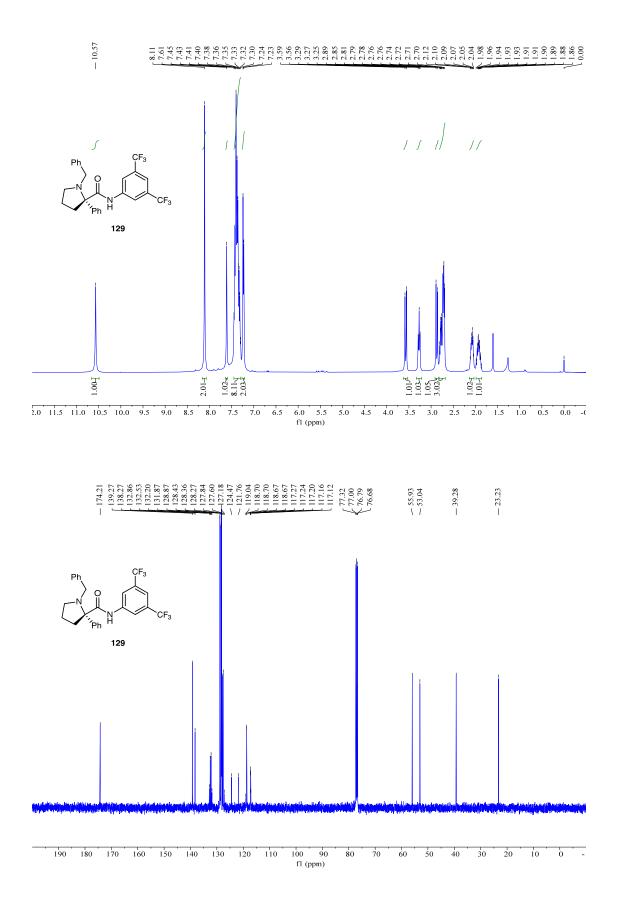


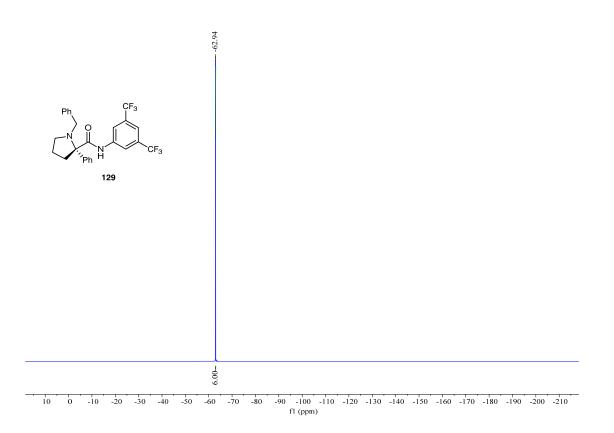


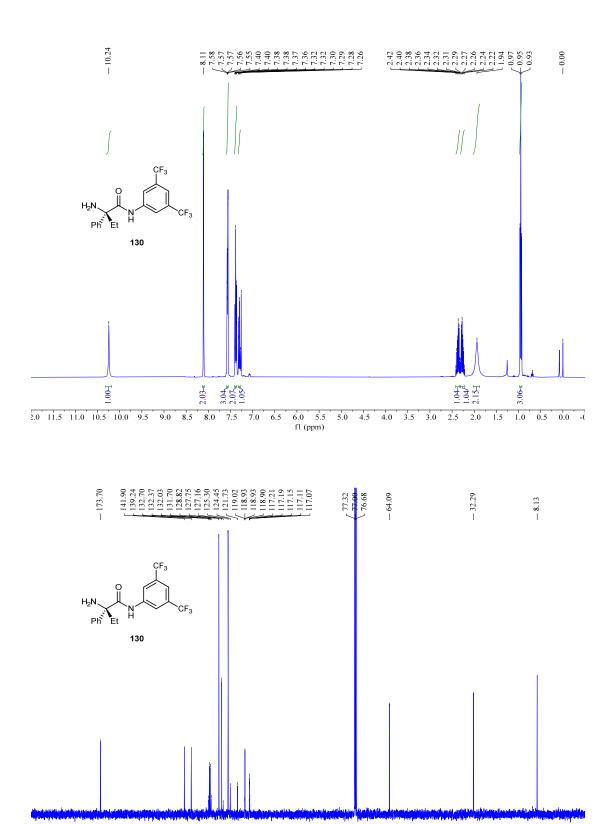

S339



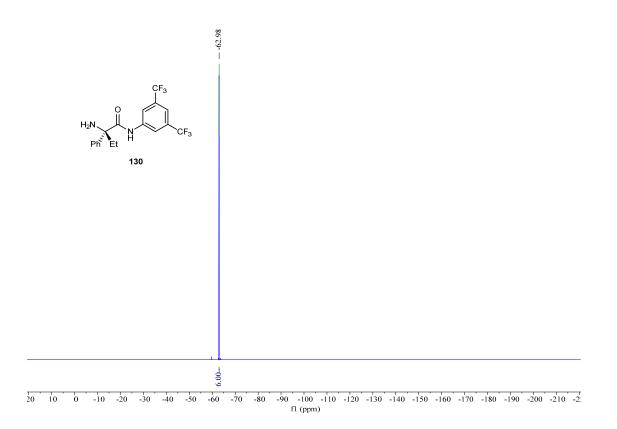


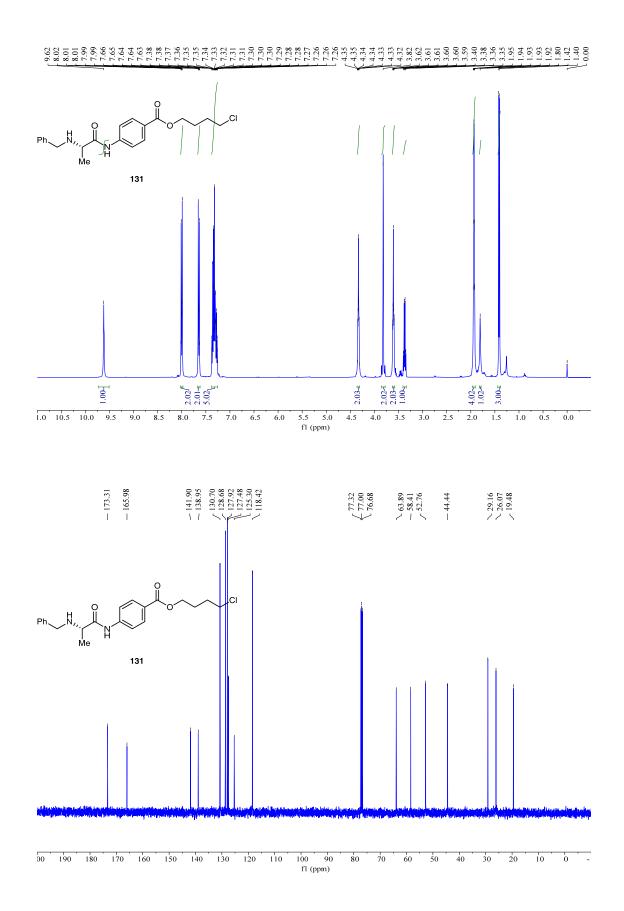

100 90 f1 (ppm) -

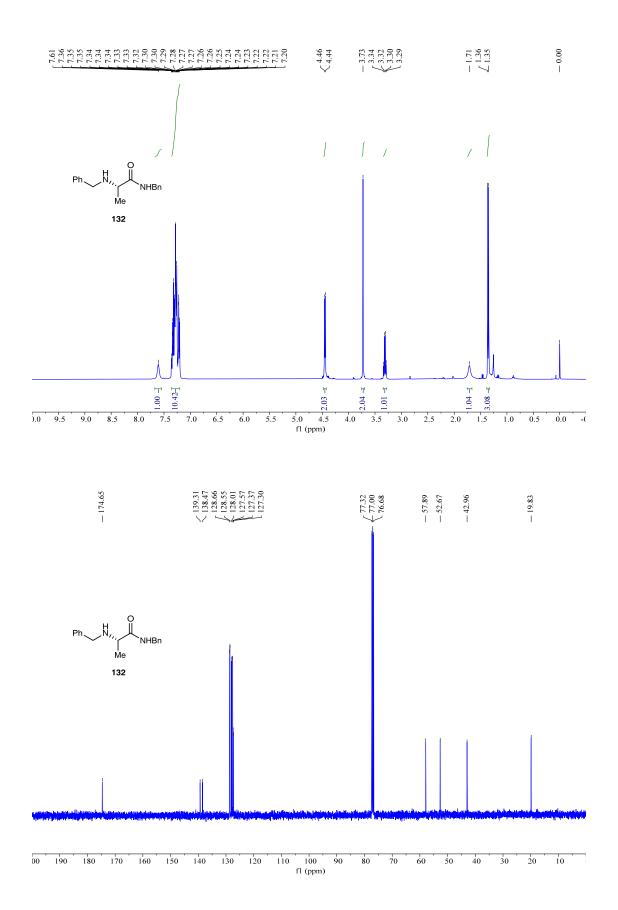

100 90 f1 (ppm) -

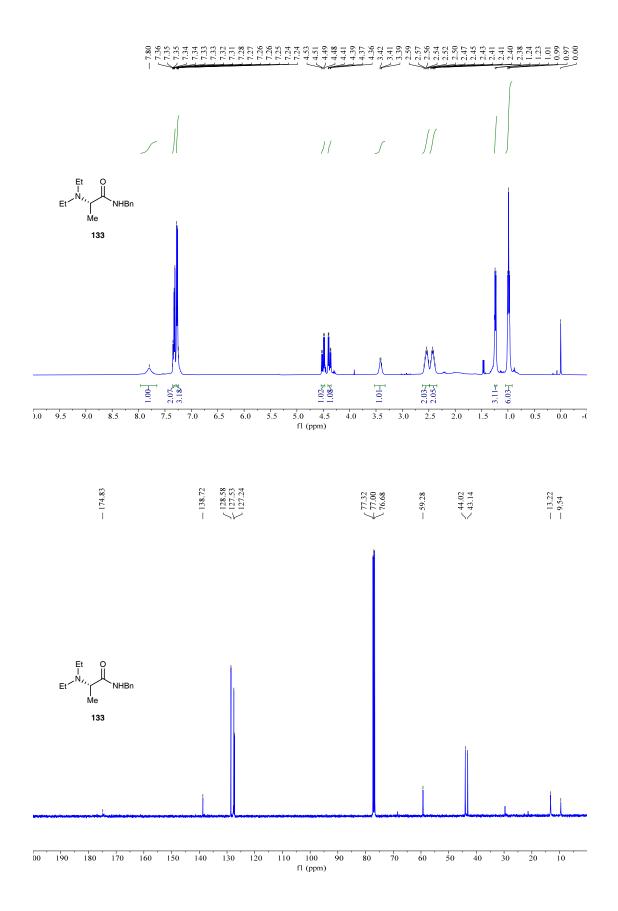


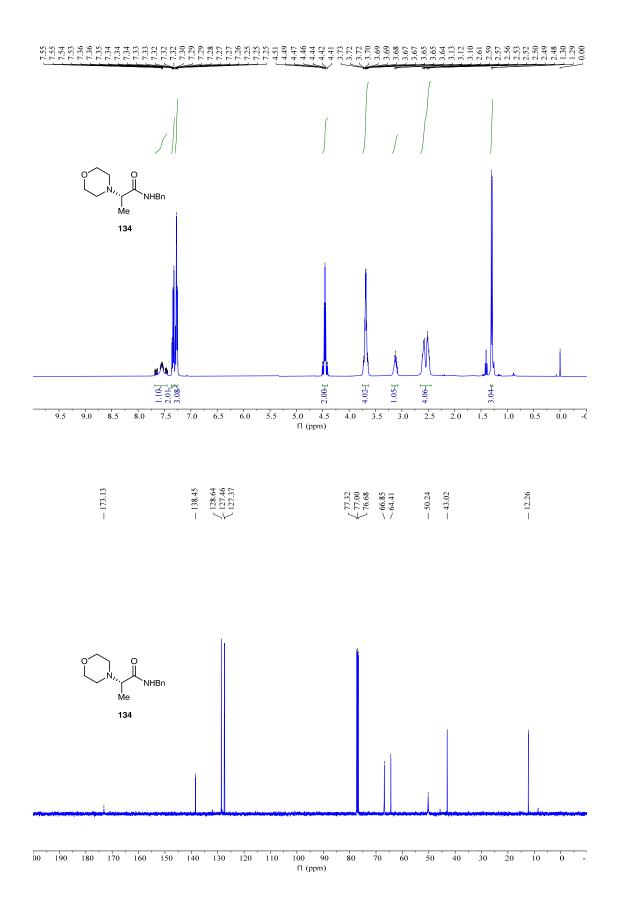
00 190 100 90 f1 (ppm) ò -

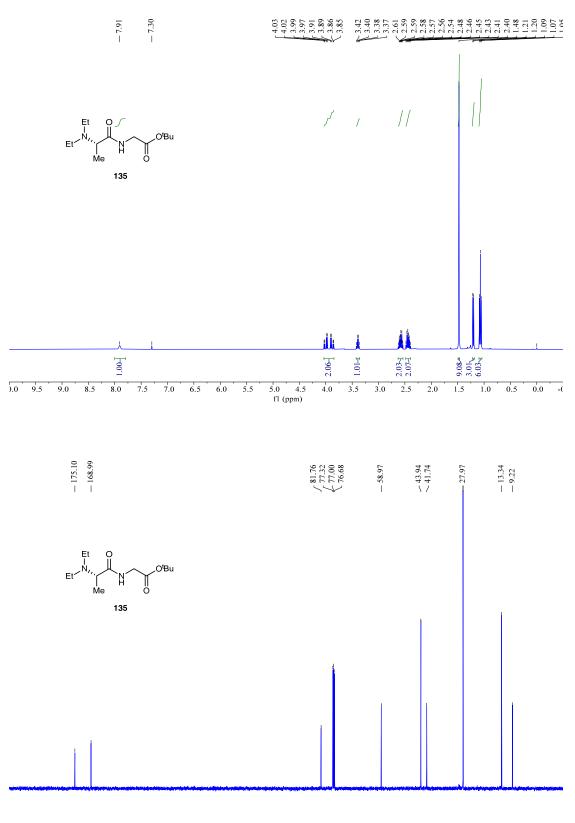


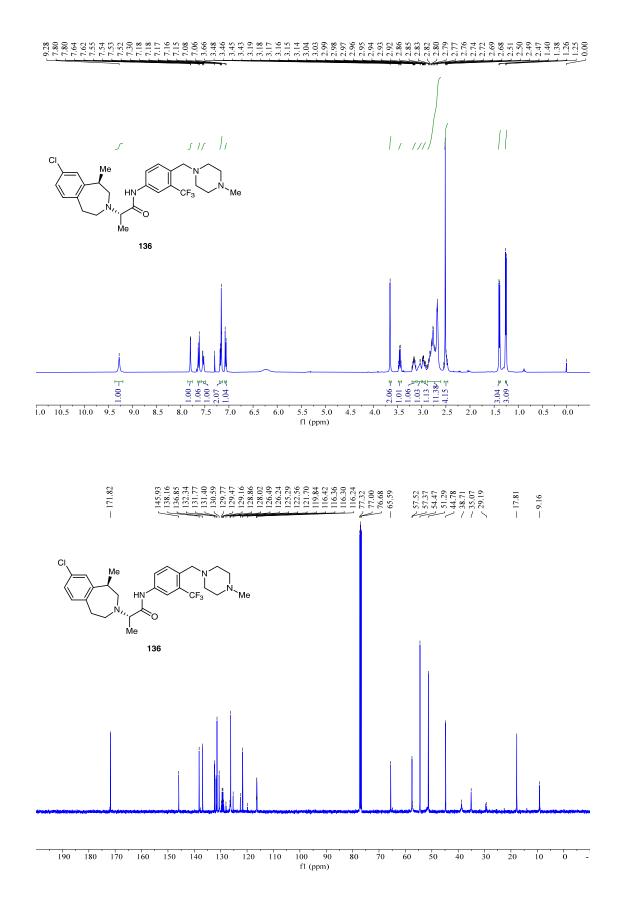

S345

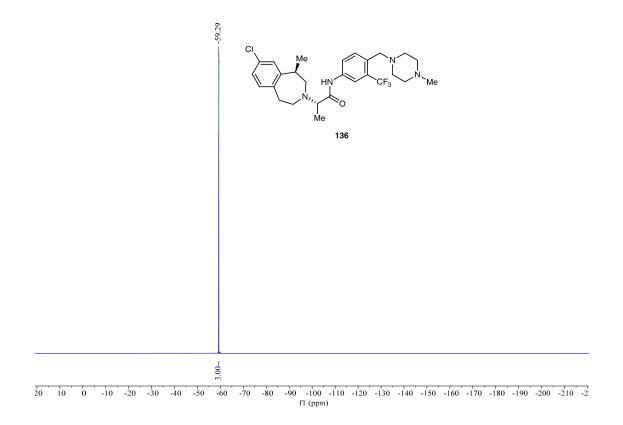


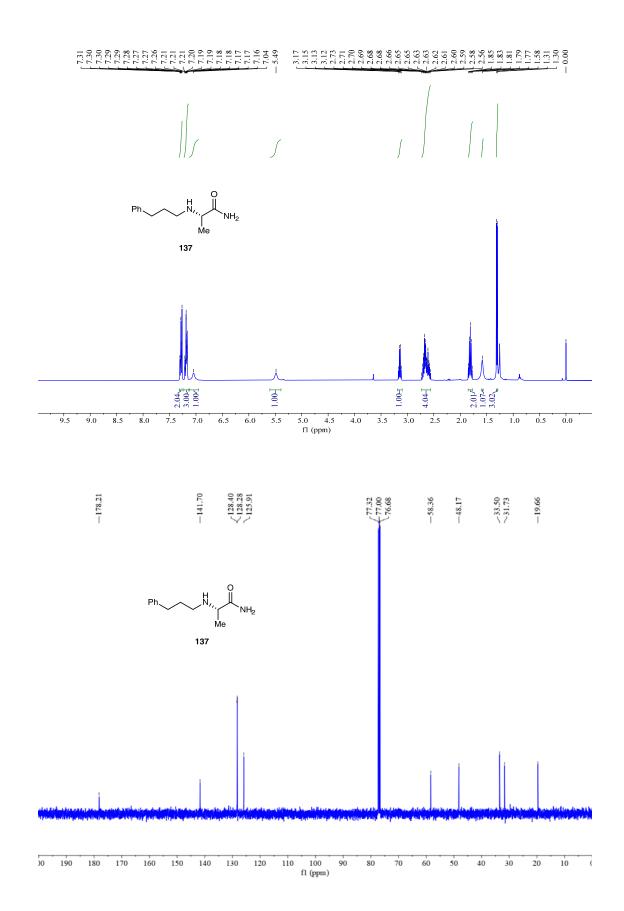


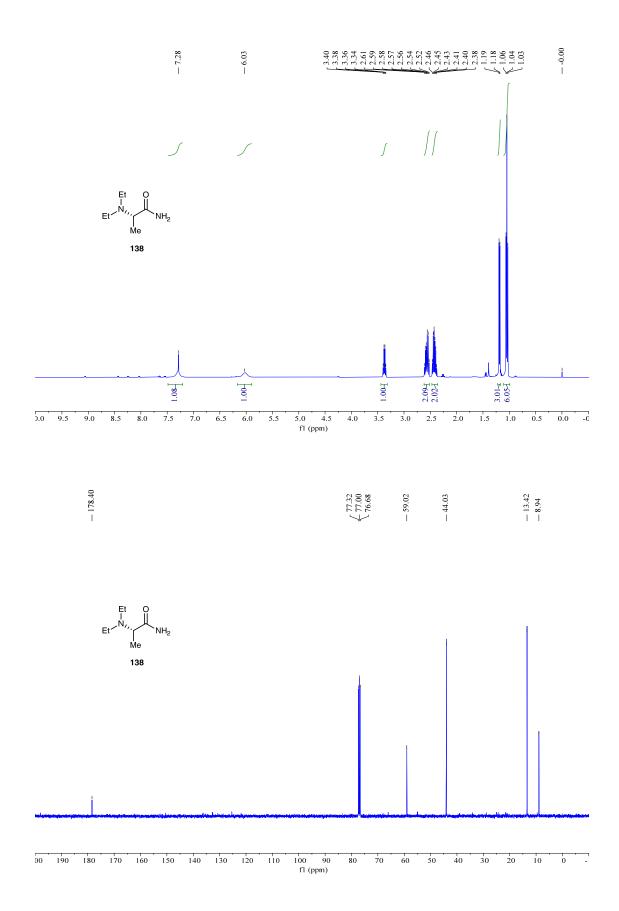

100 90 f1 (ppm) -00 190 180 140 130 ò

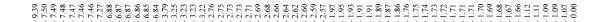


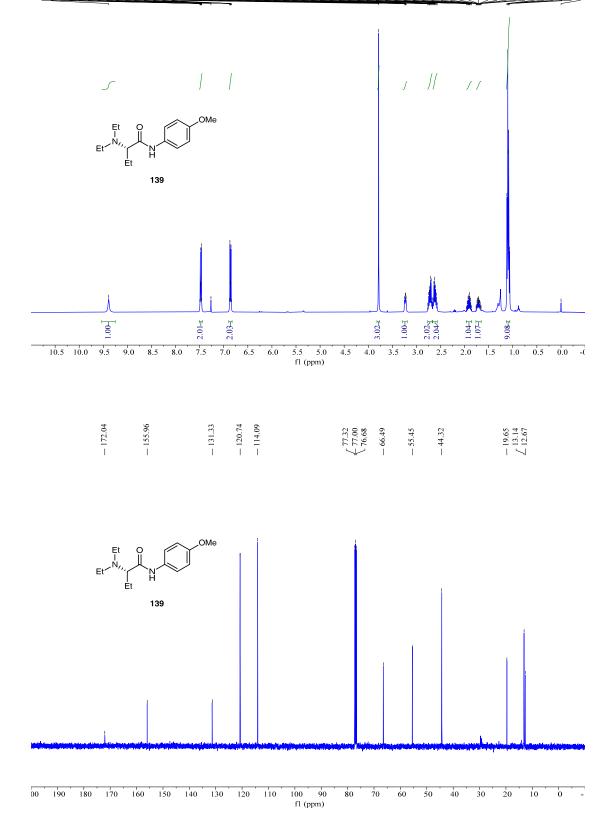


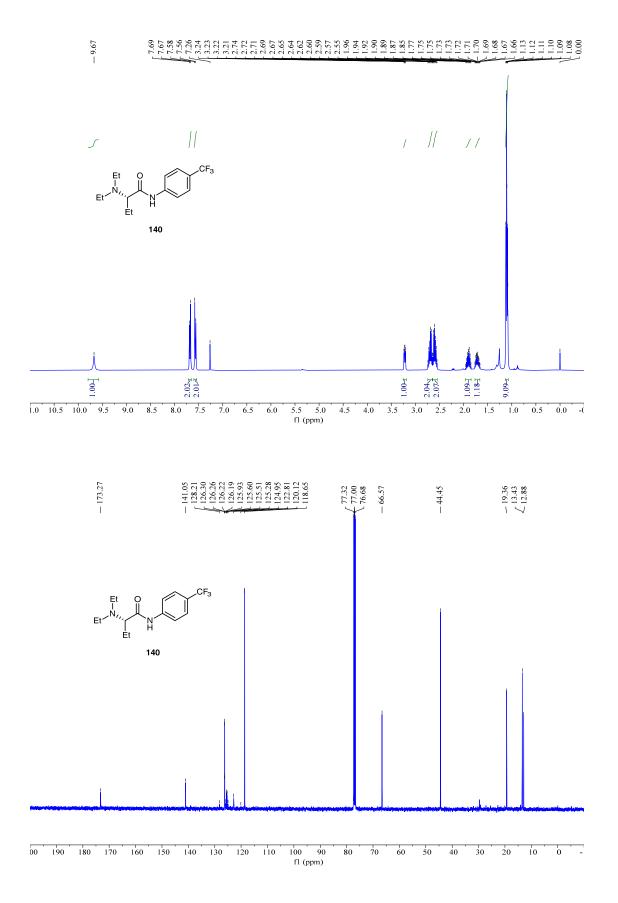


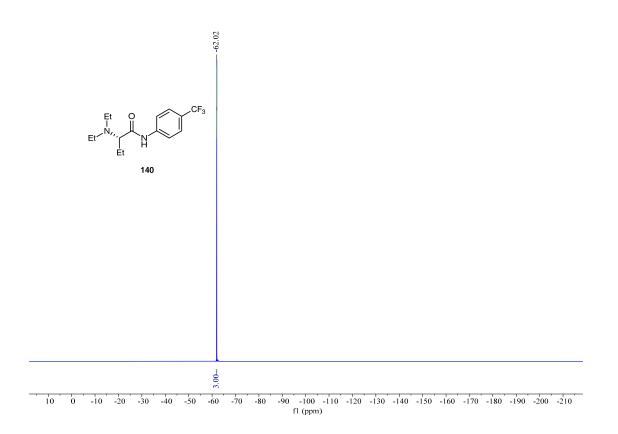


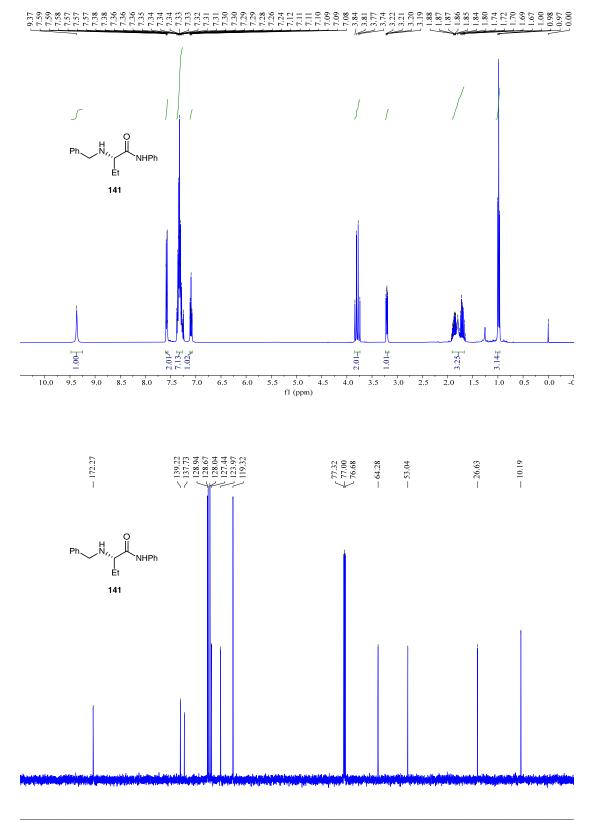

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

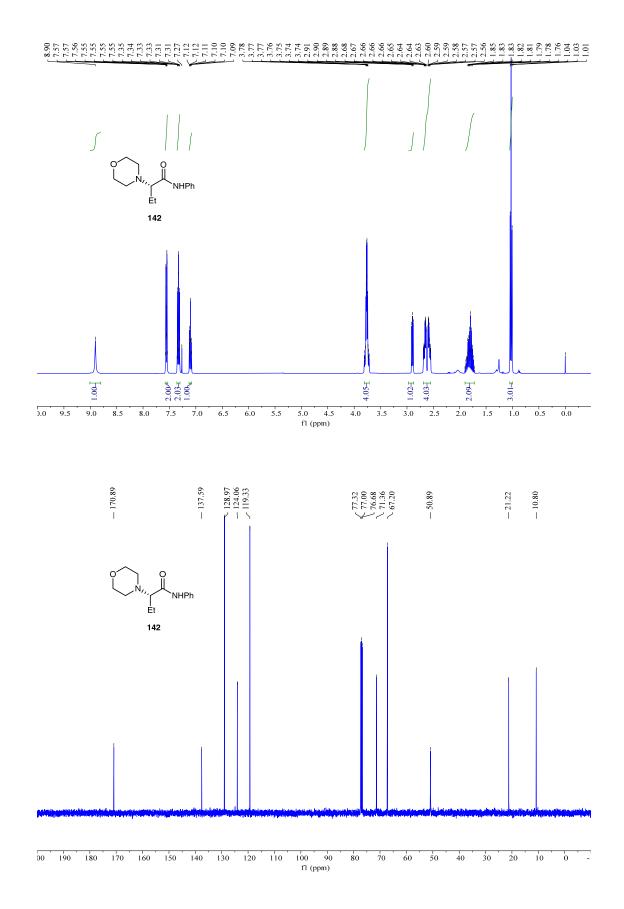


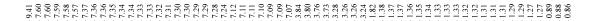

S354

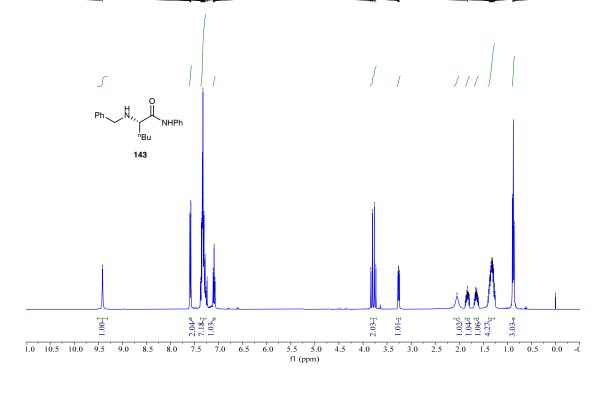


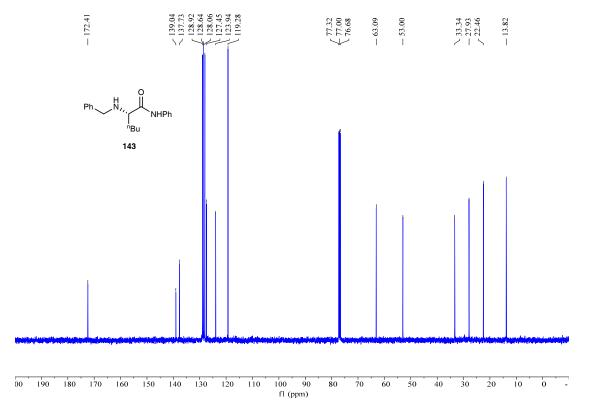


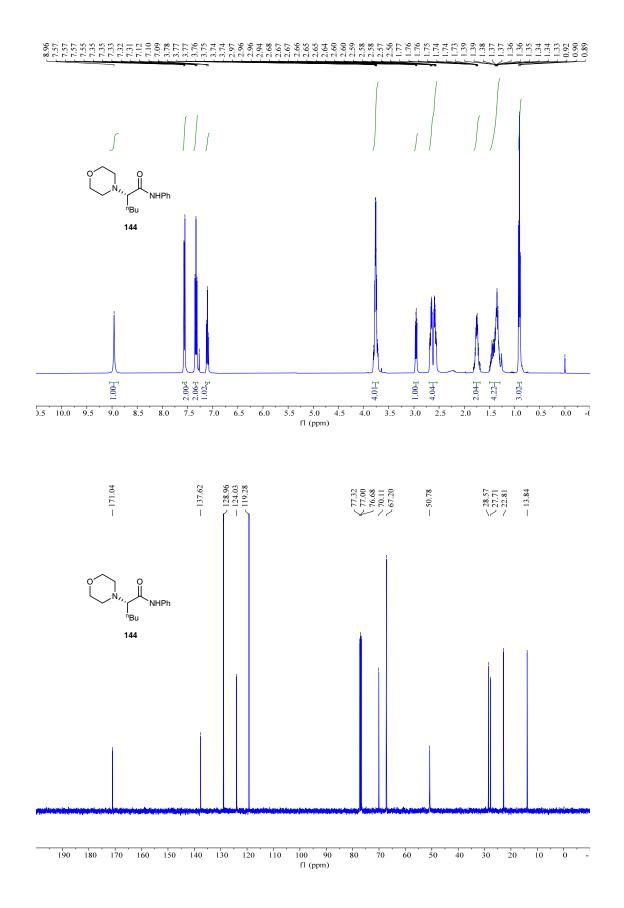


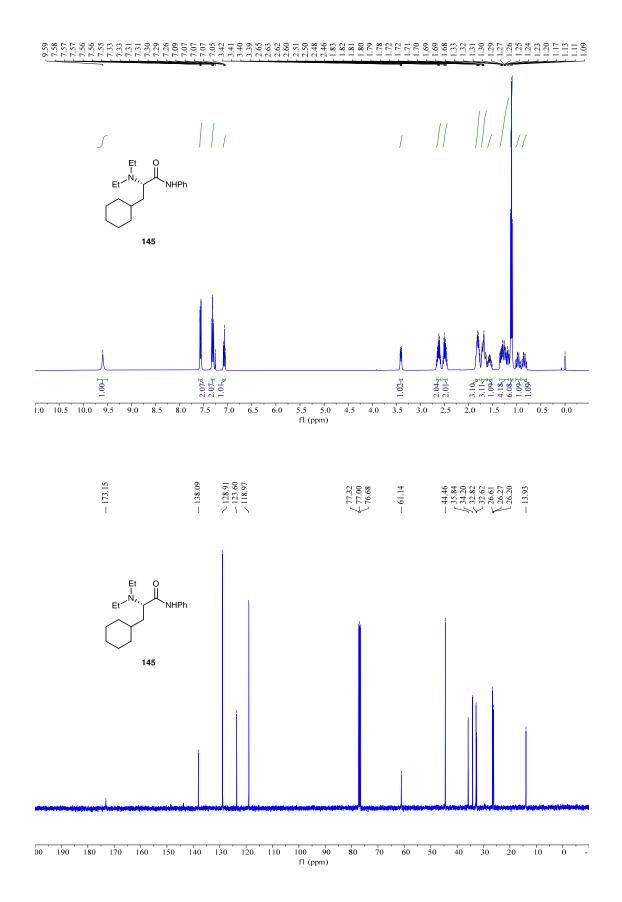


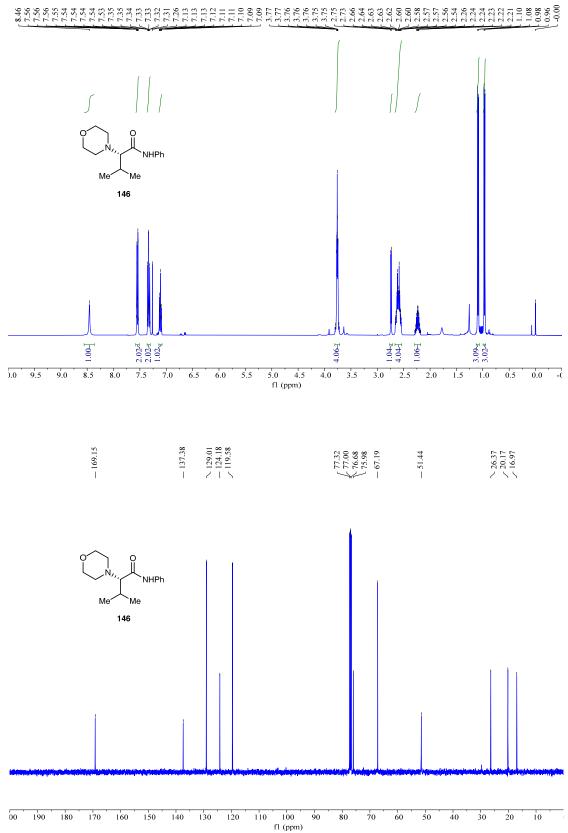


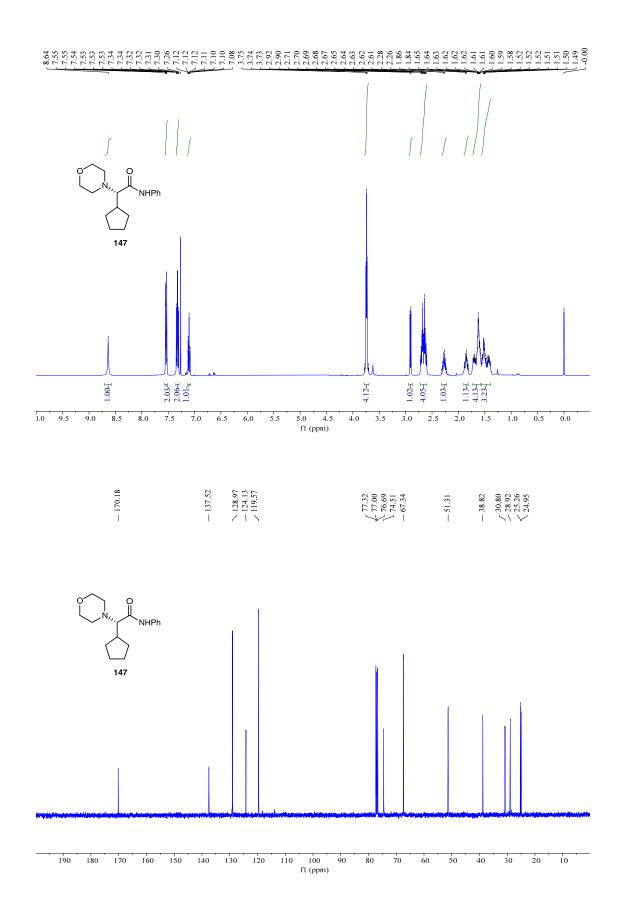


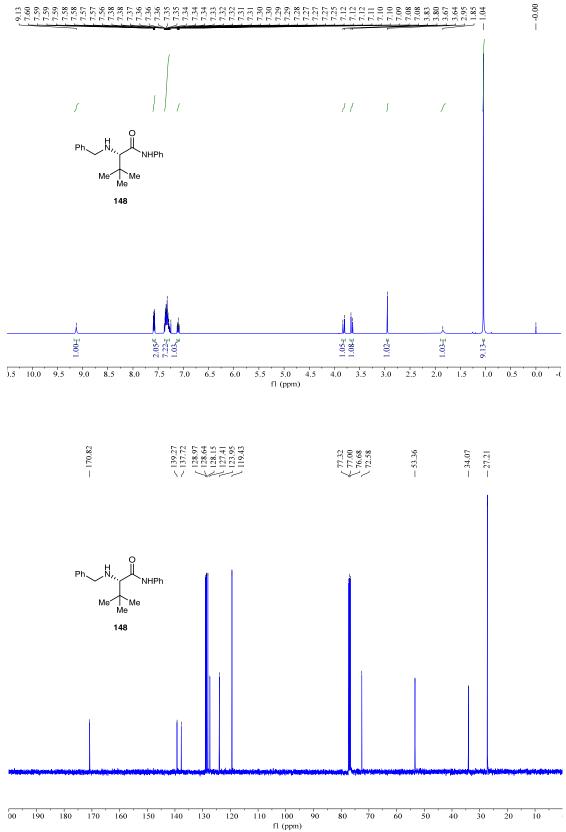


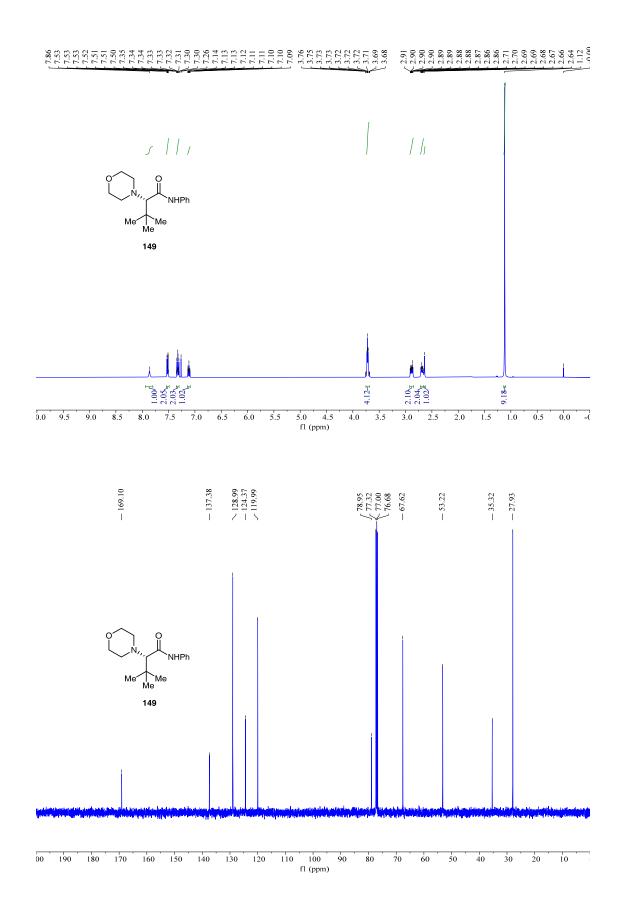

00 190 100 90 fl (ppm) 0 -140 130

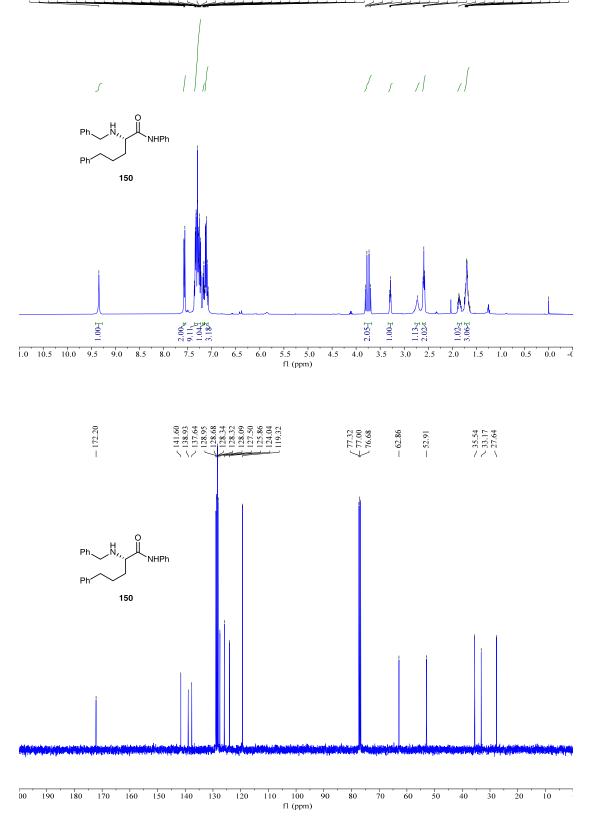


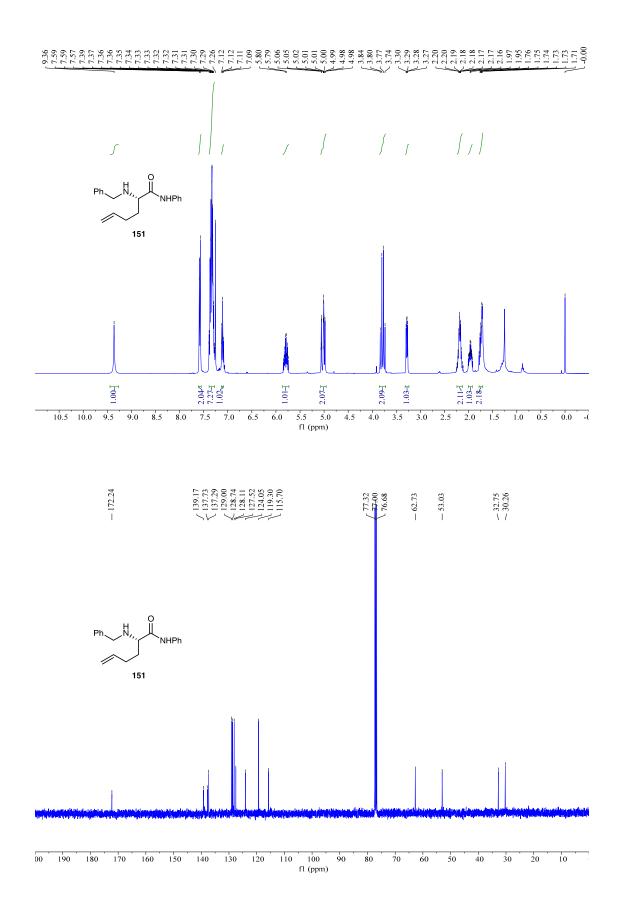


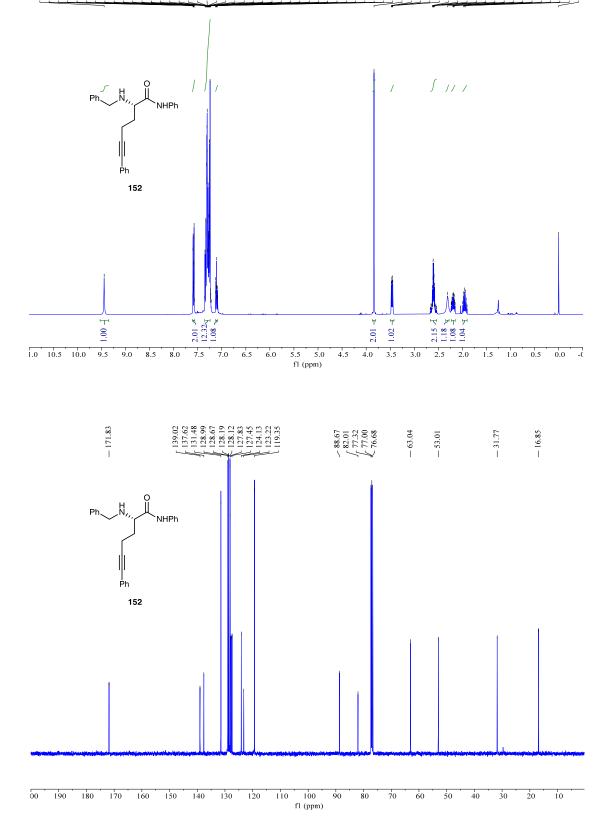


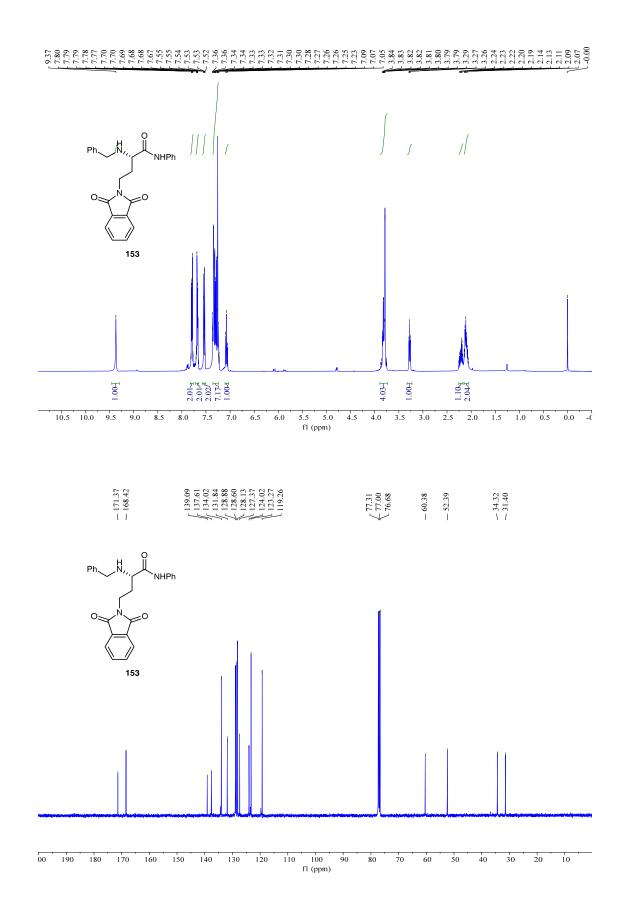


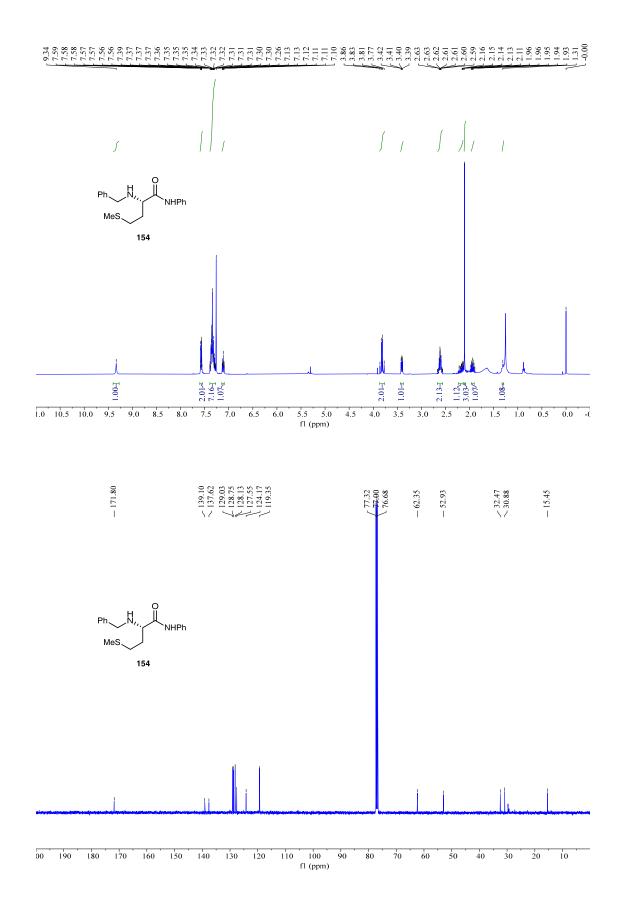


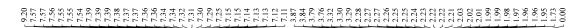


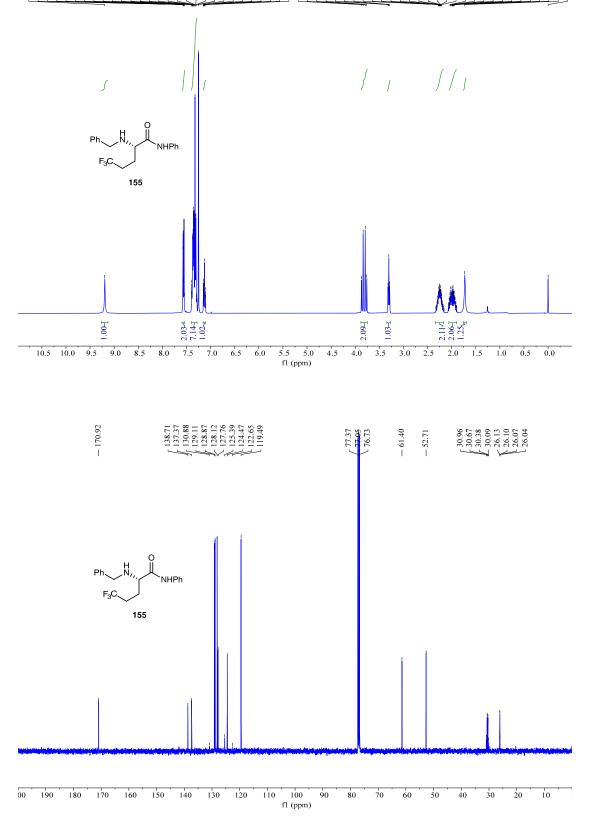


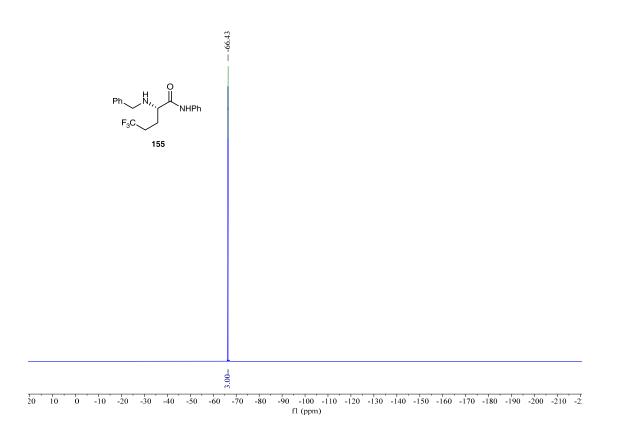


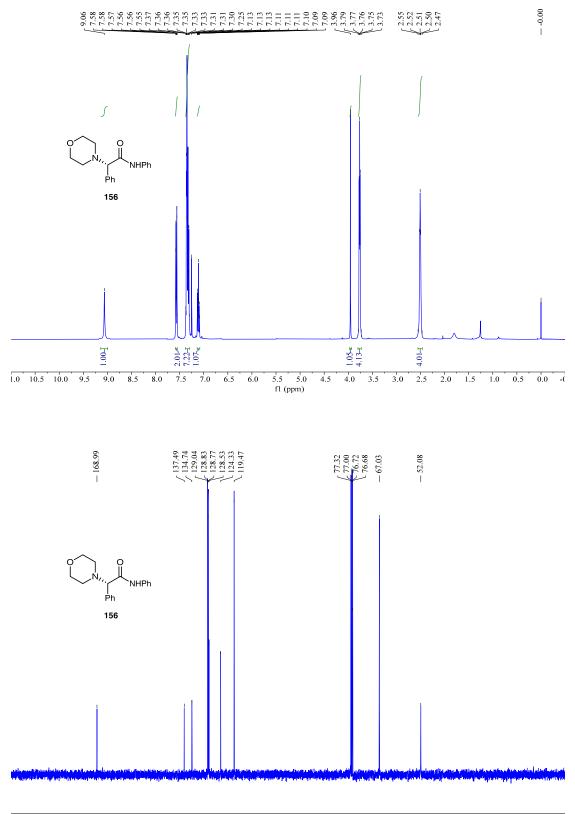


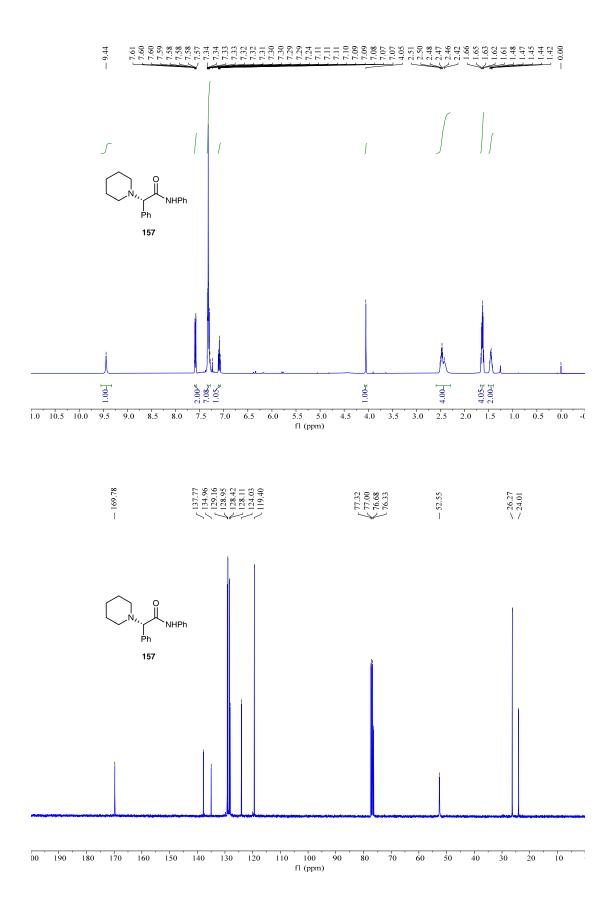


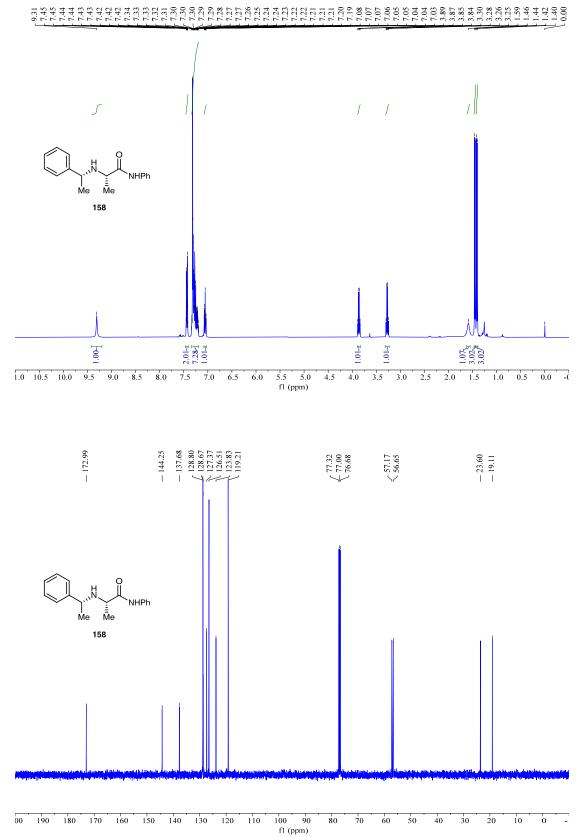


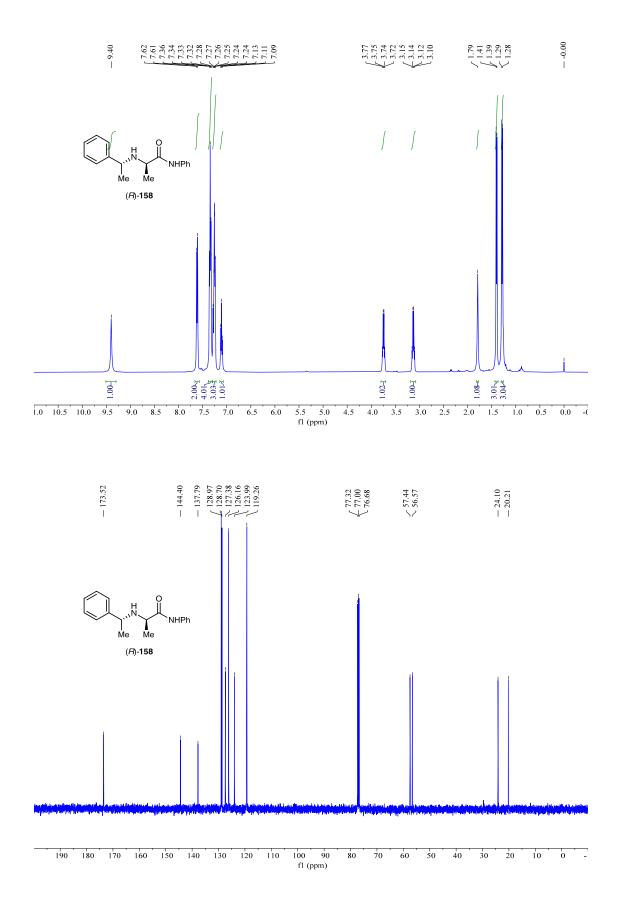


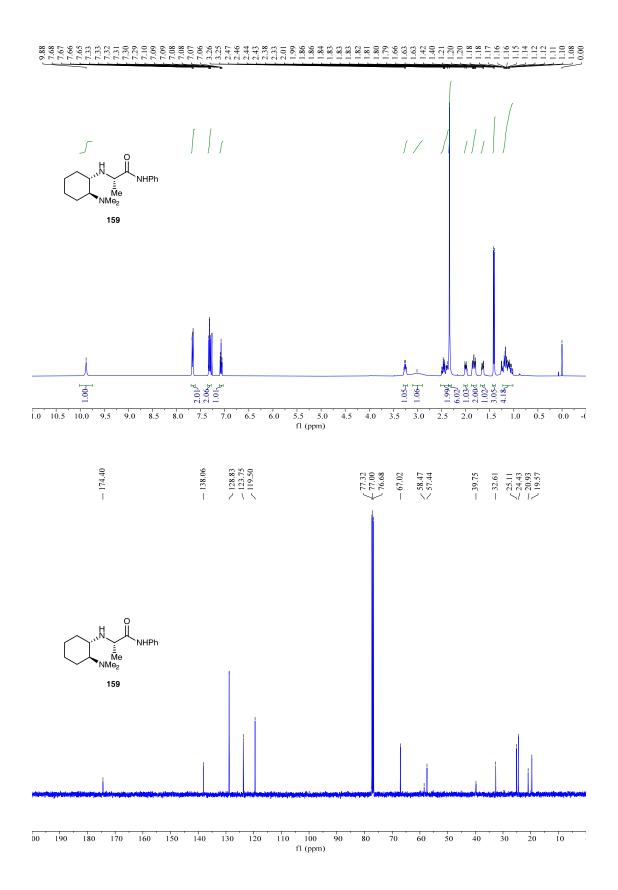


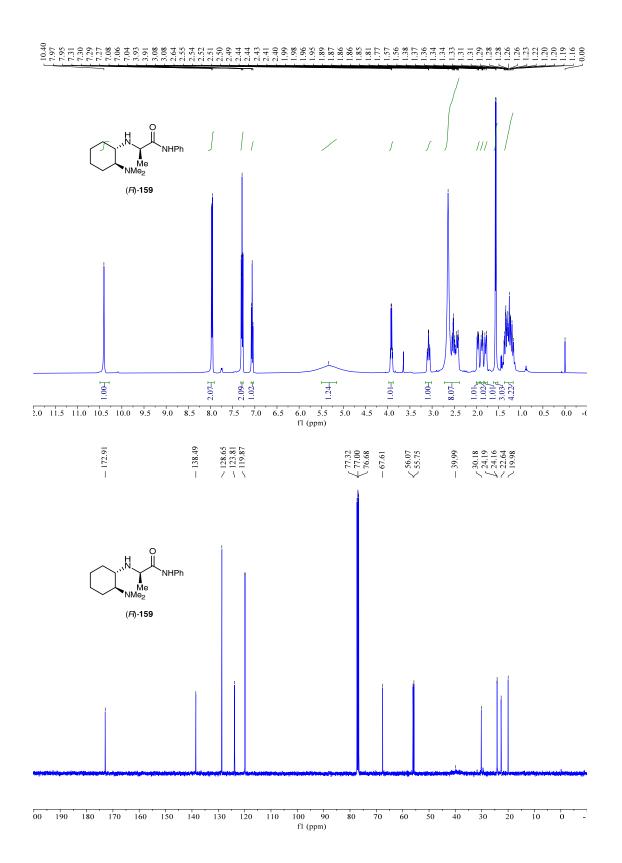


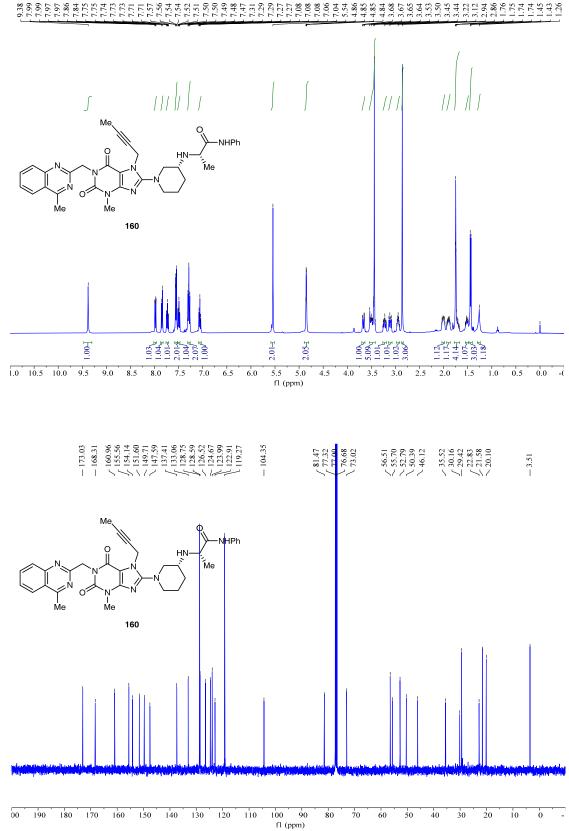


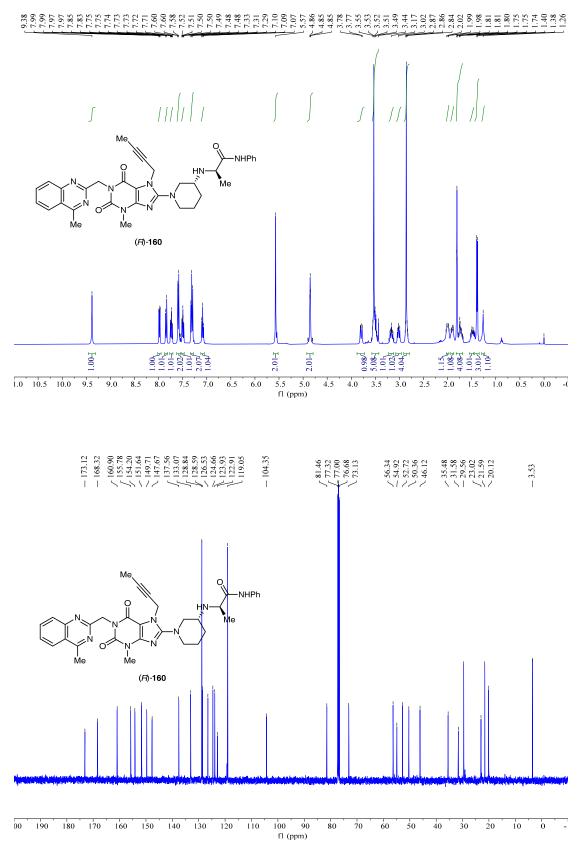


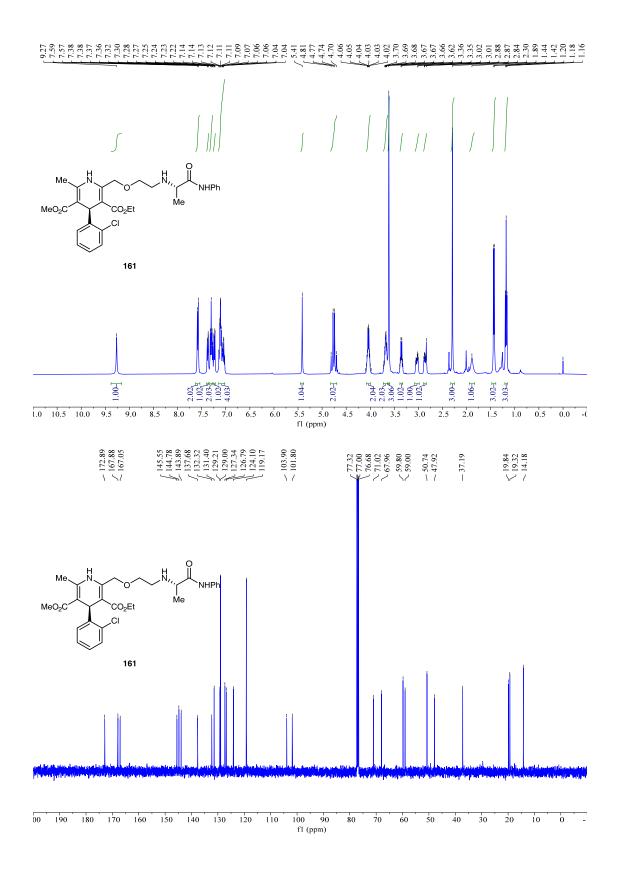


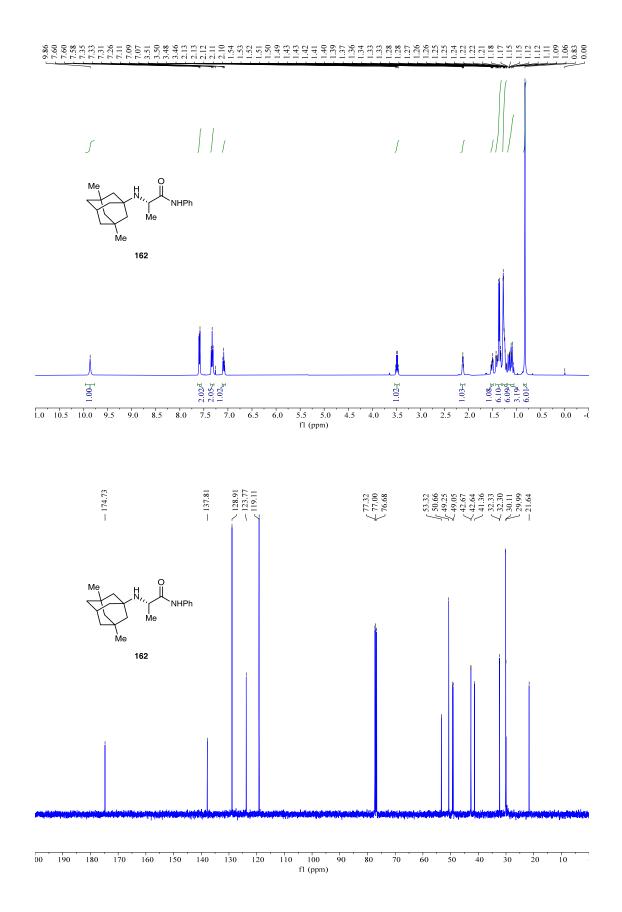

110 100 f1 (ppm)

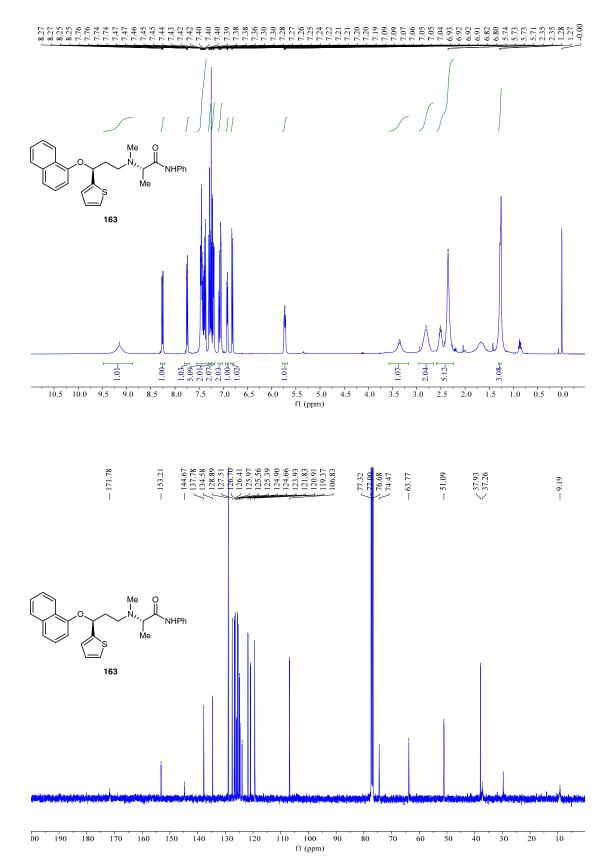


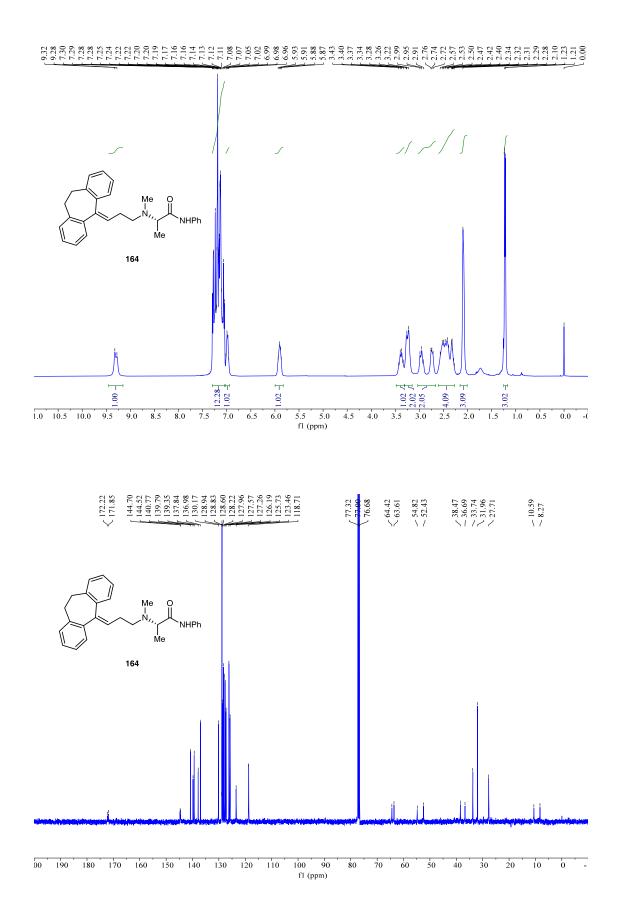

· · (Phur)

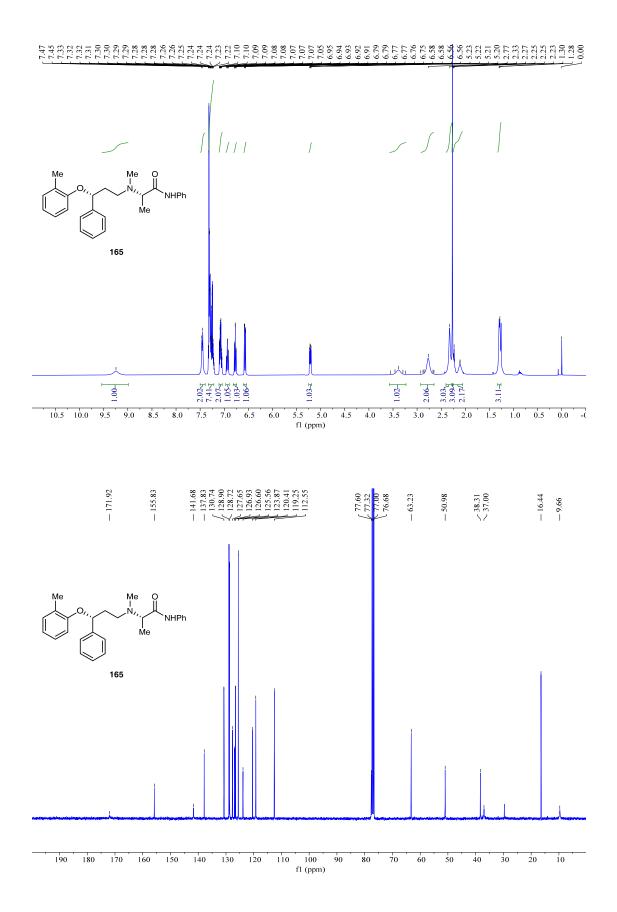


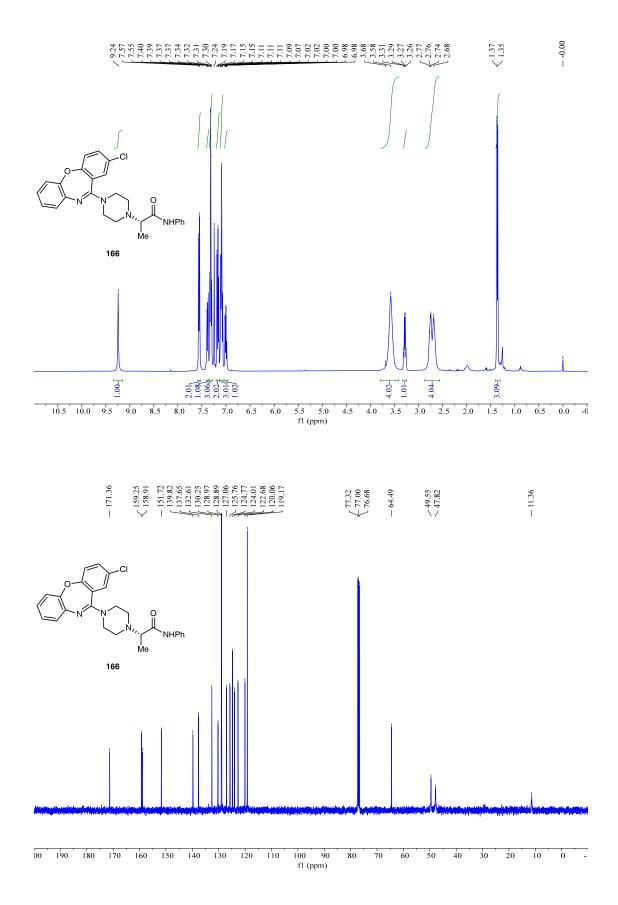


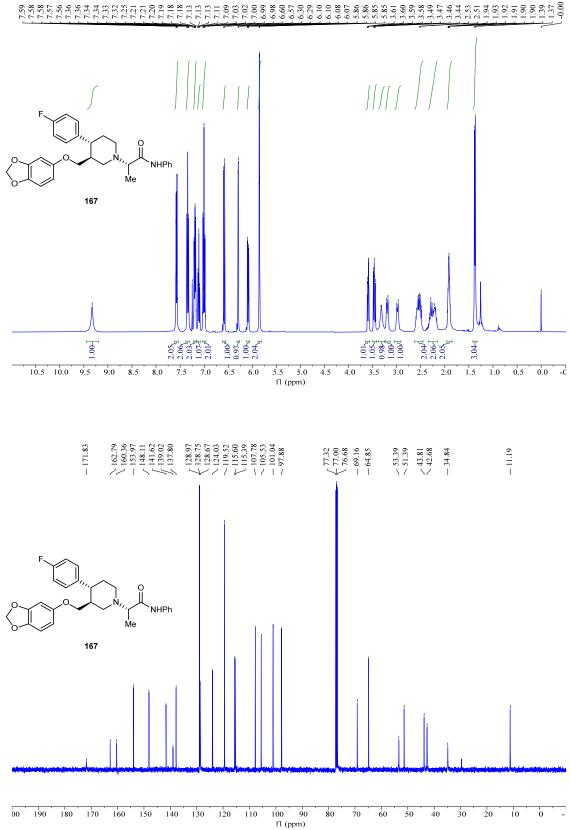


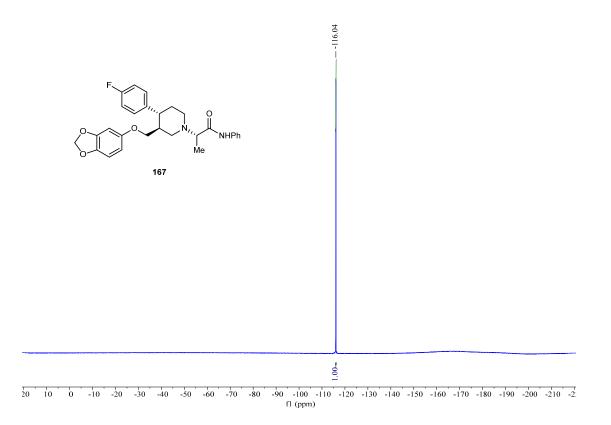

S382

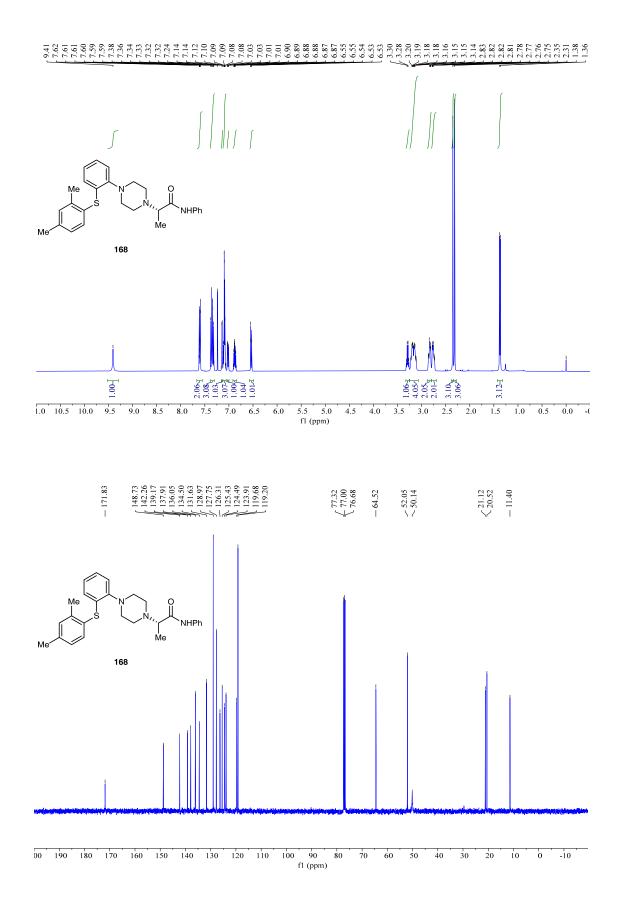


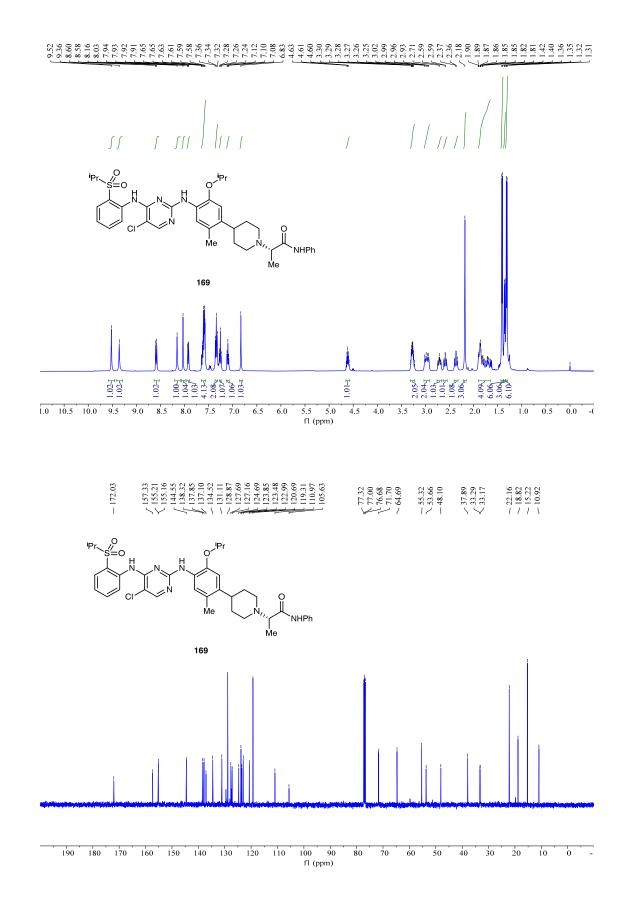


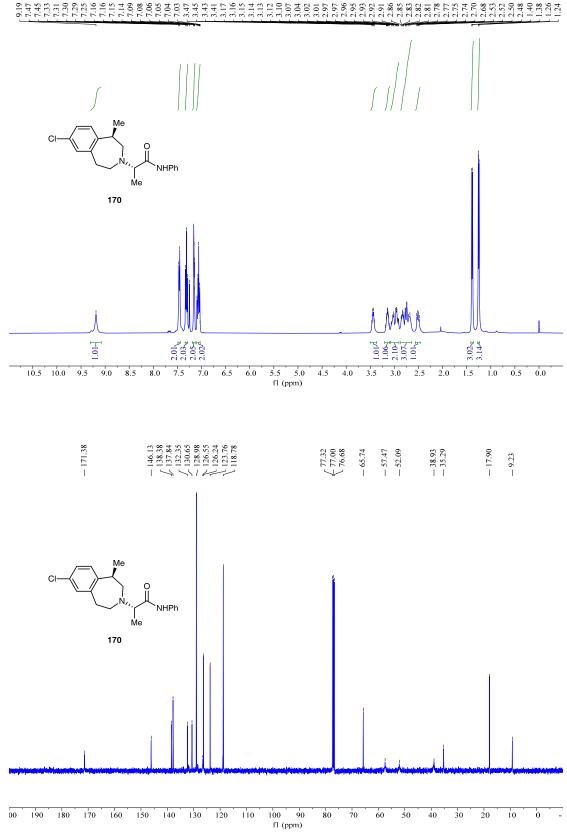


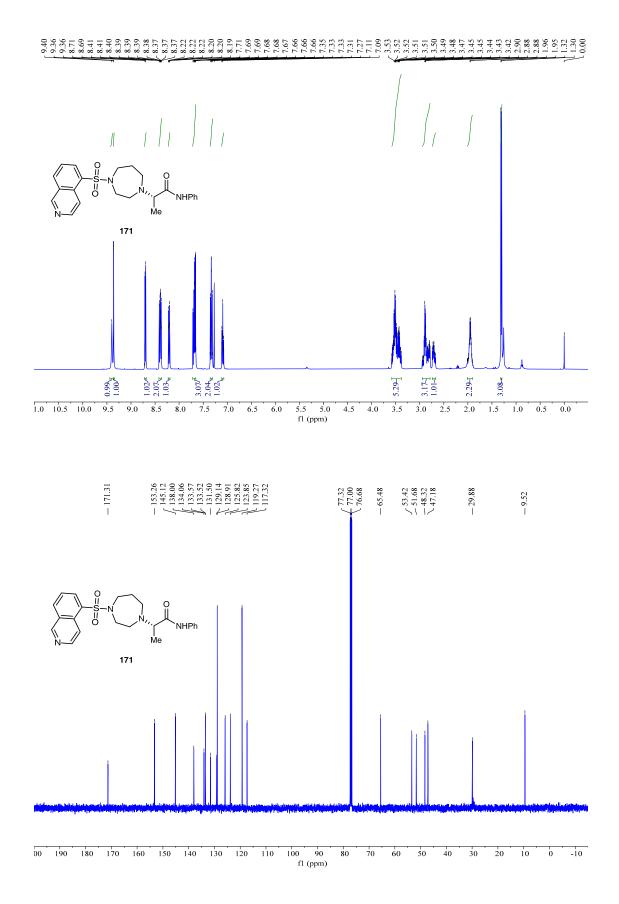


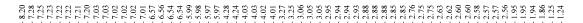


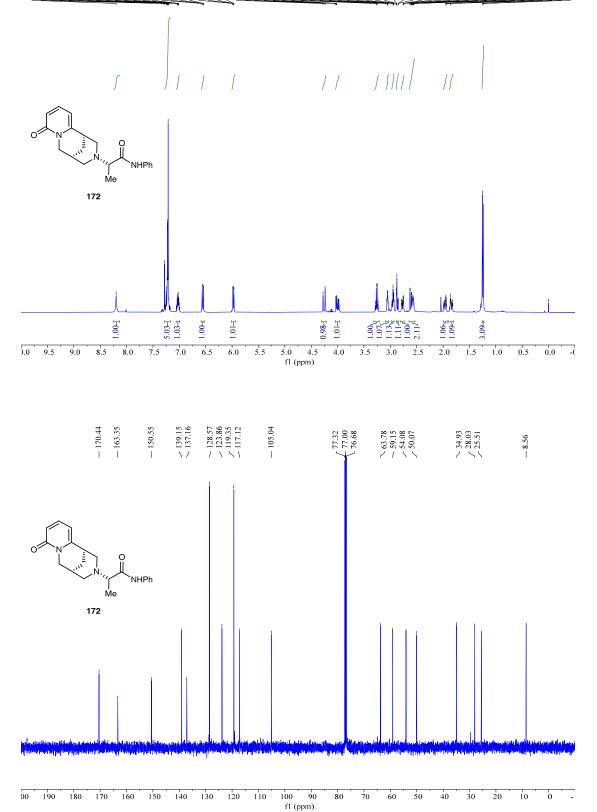


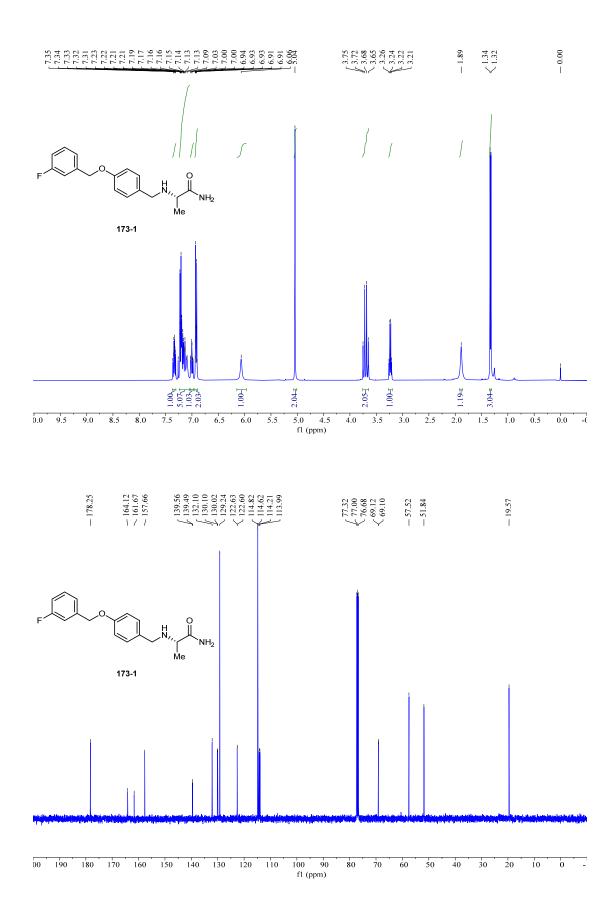


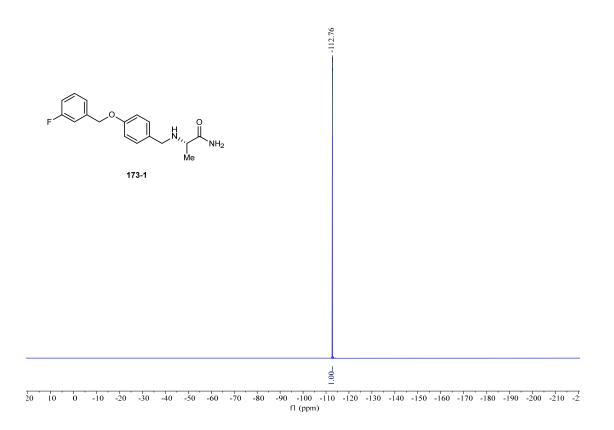


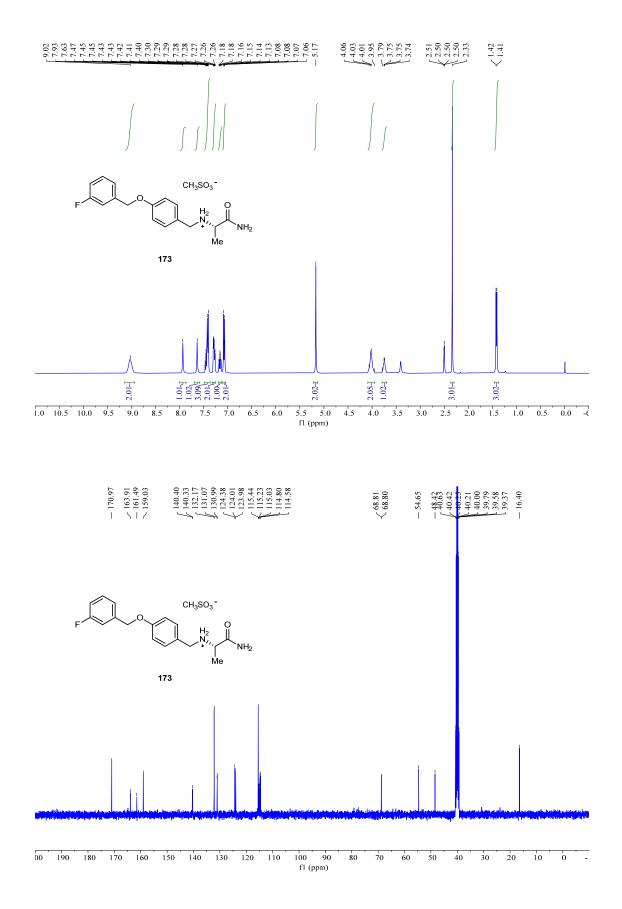


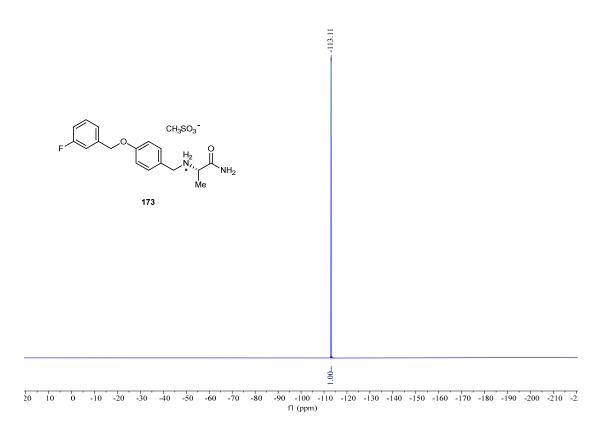


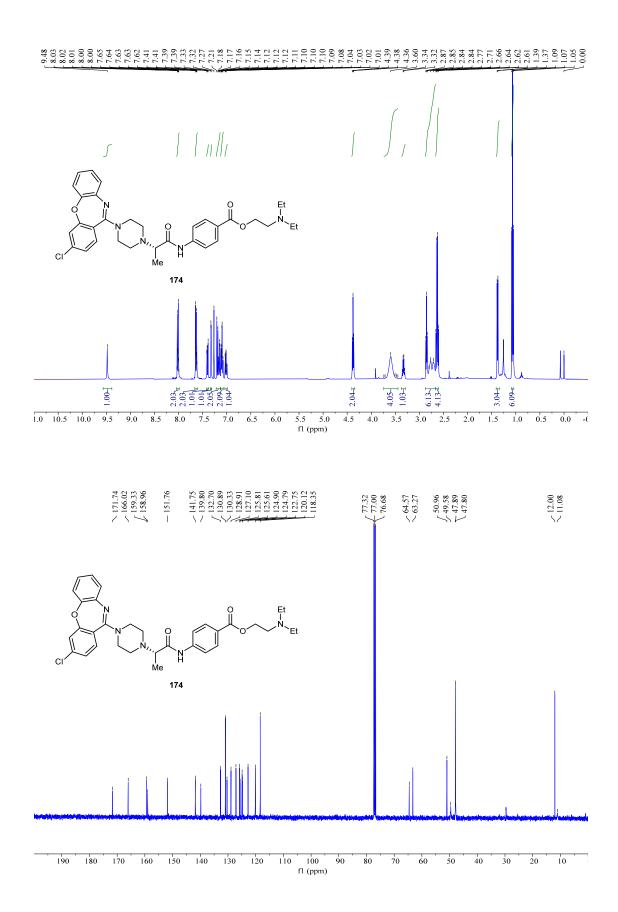

S393

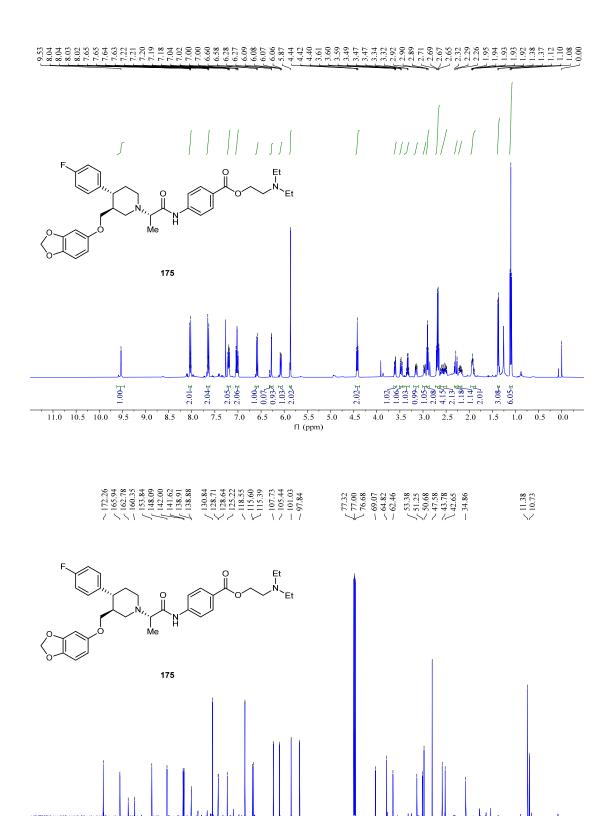


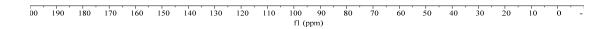


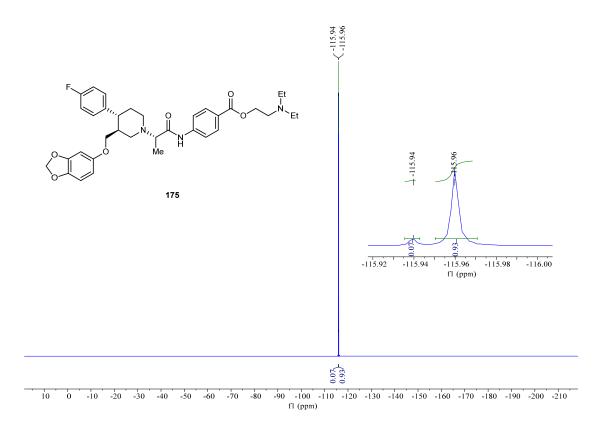


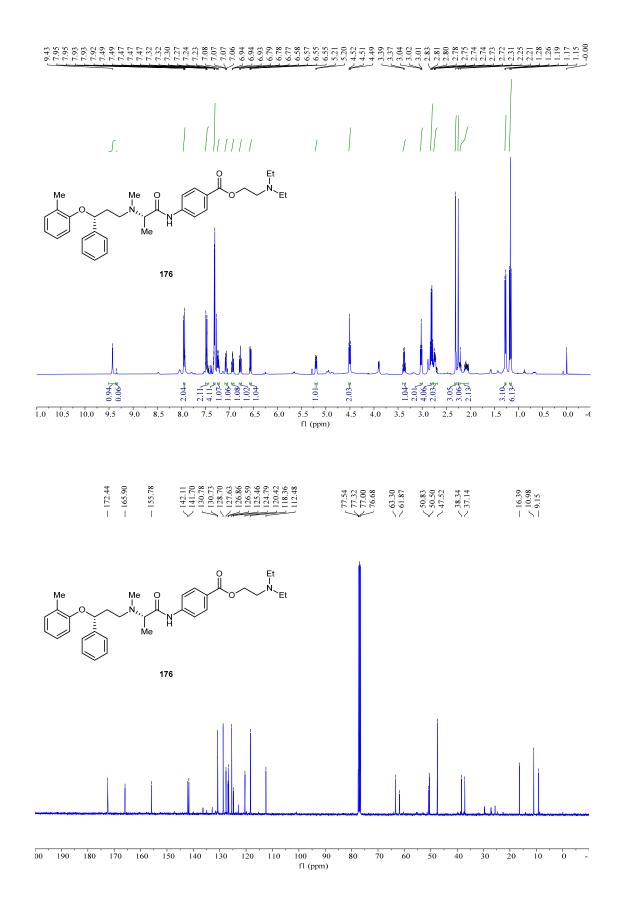


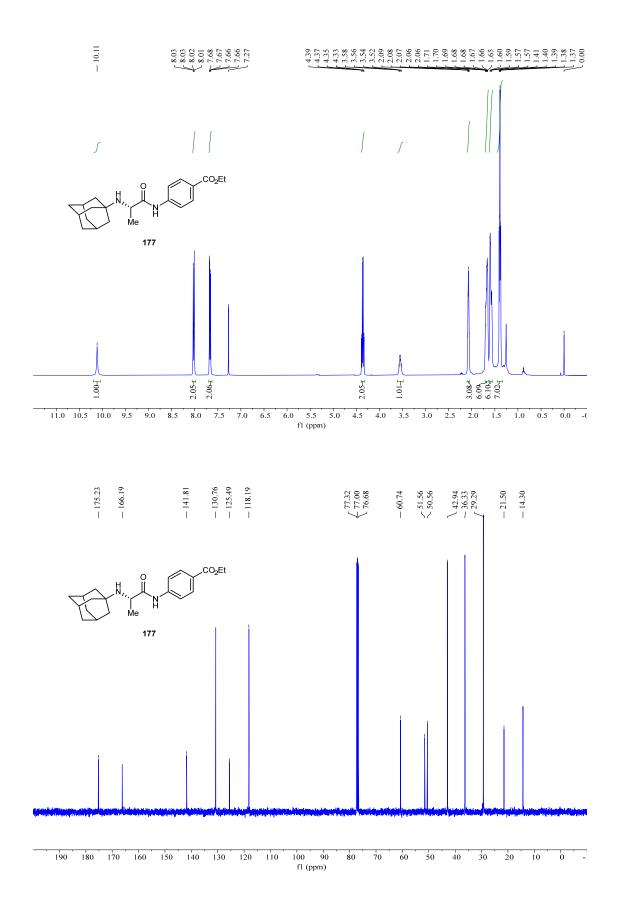


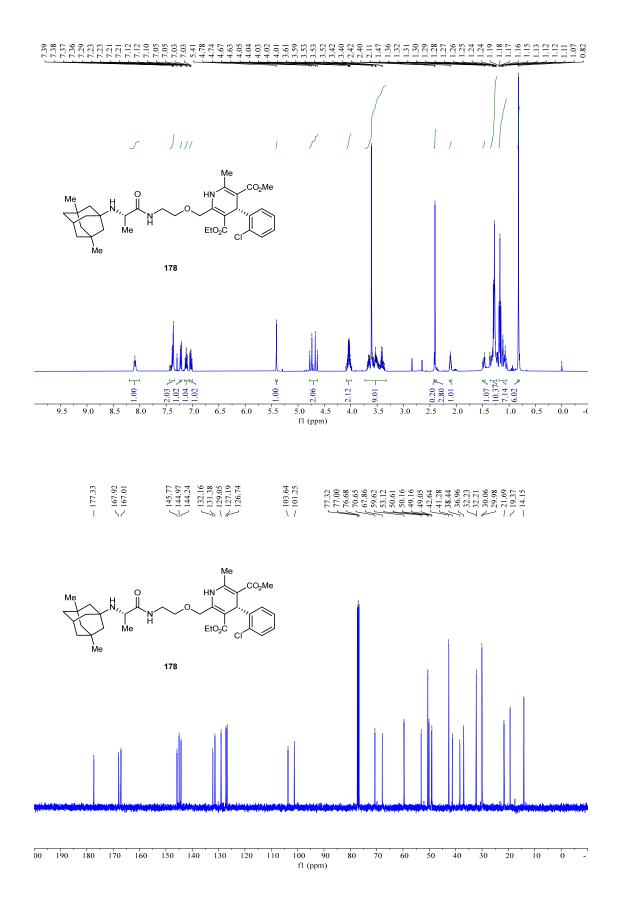


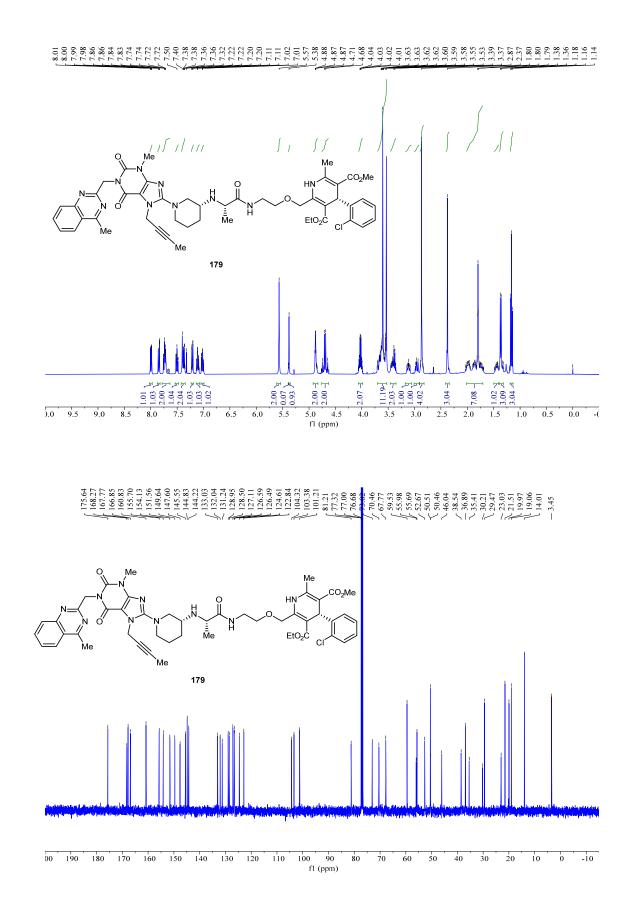


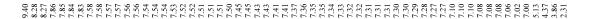


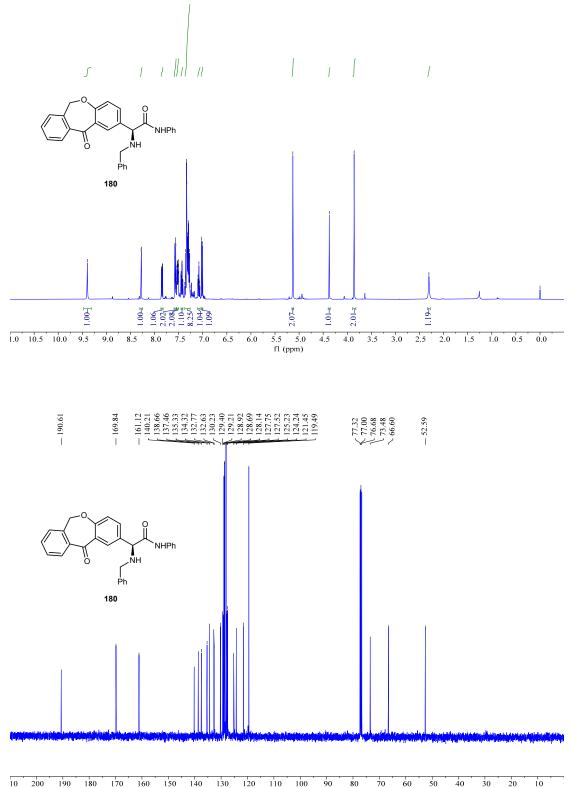


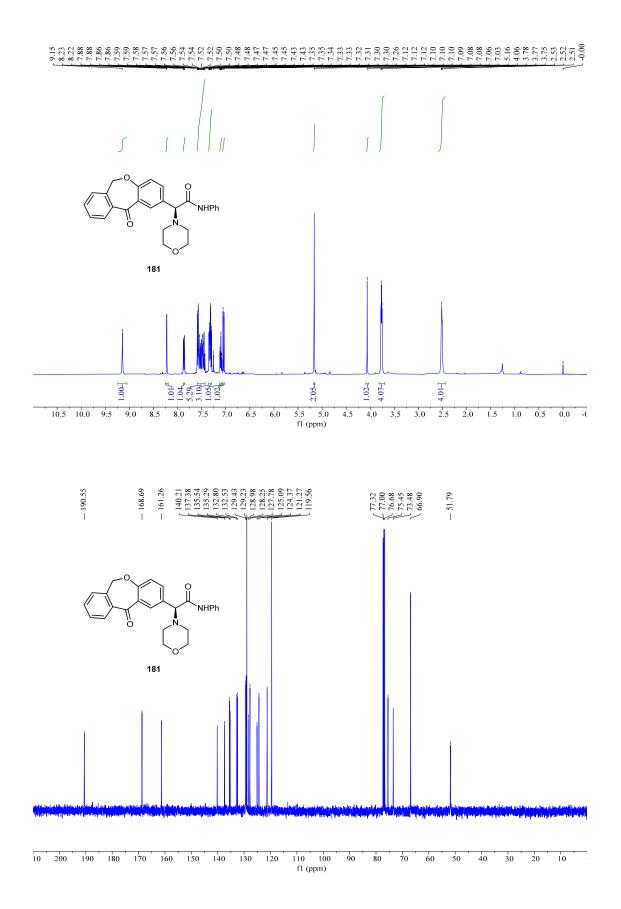


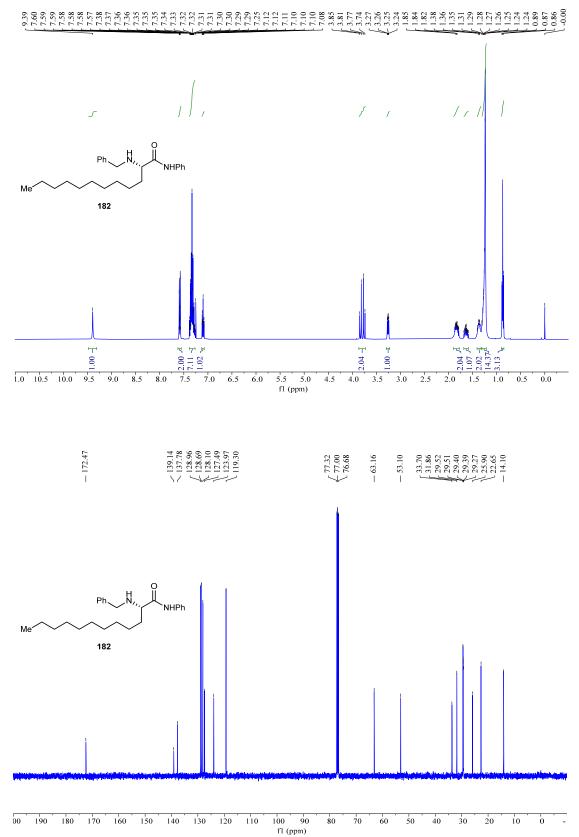


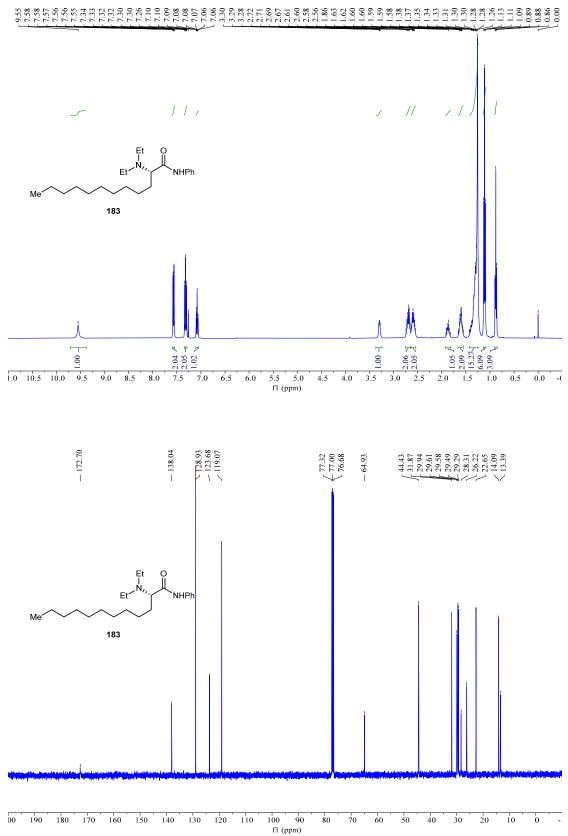

S405

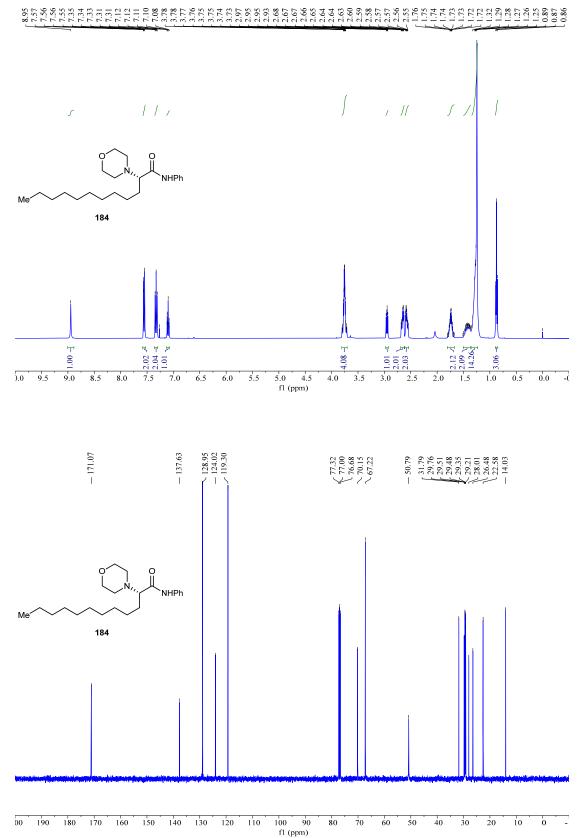


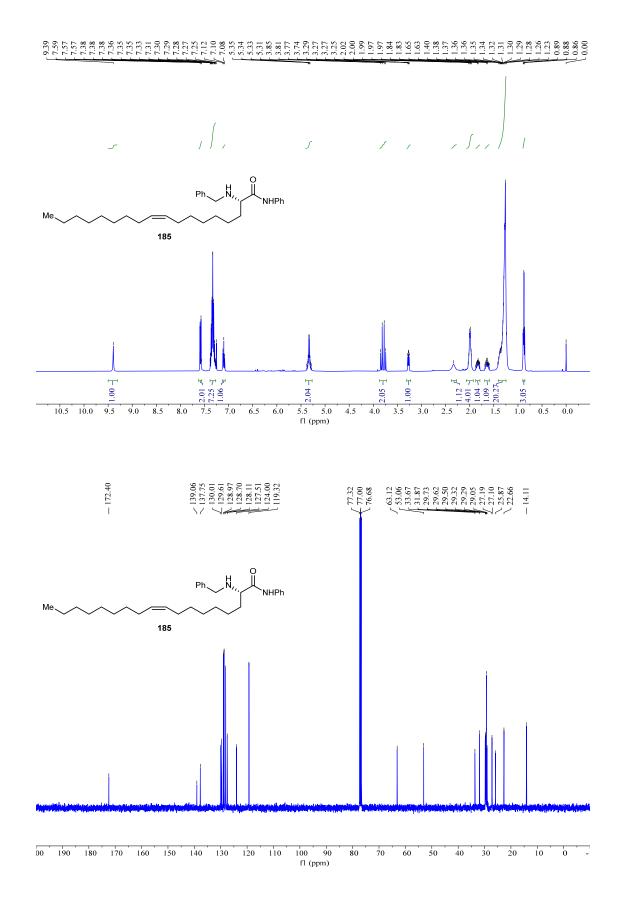

S406

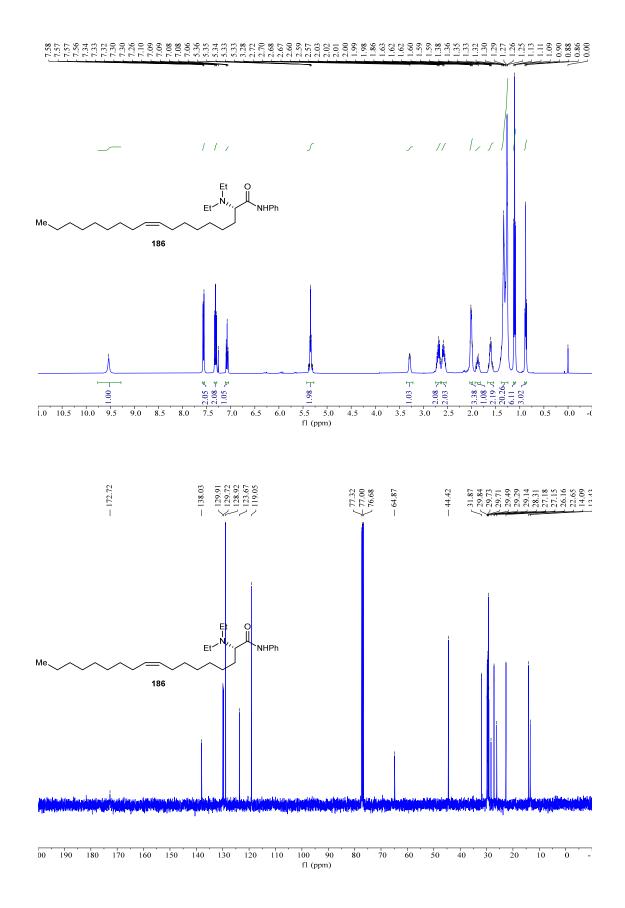

S407

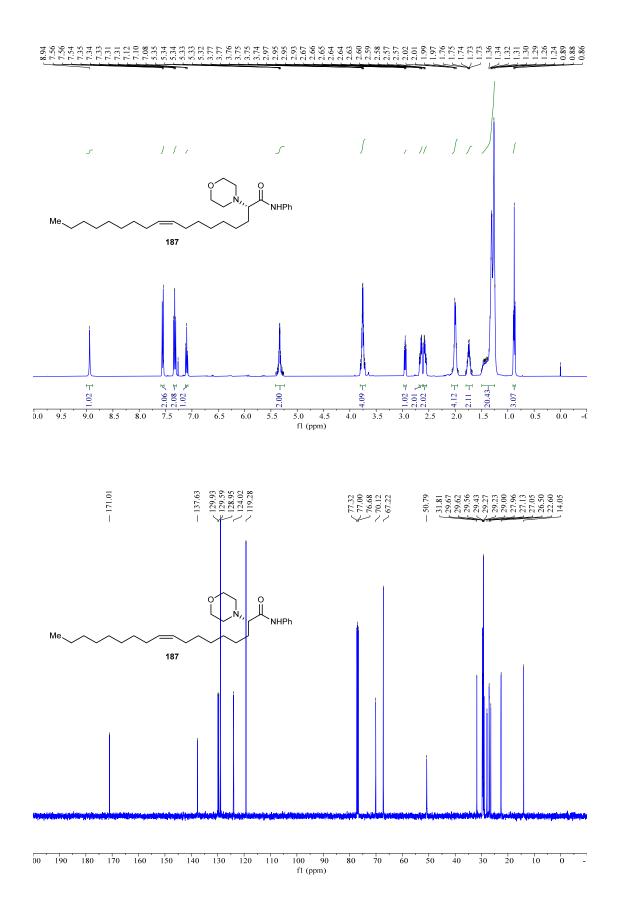


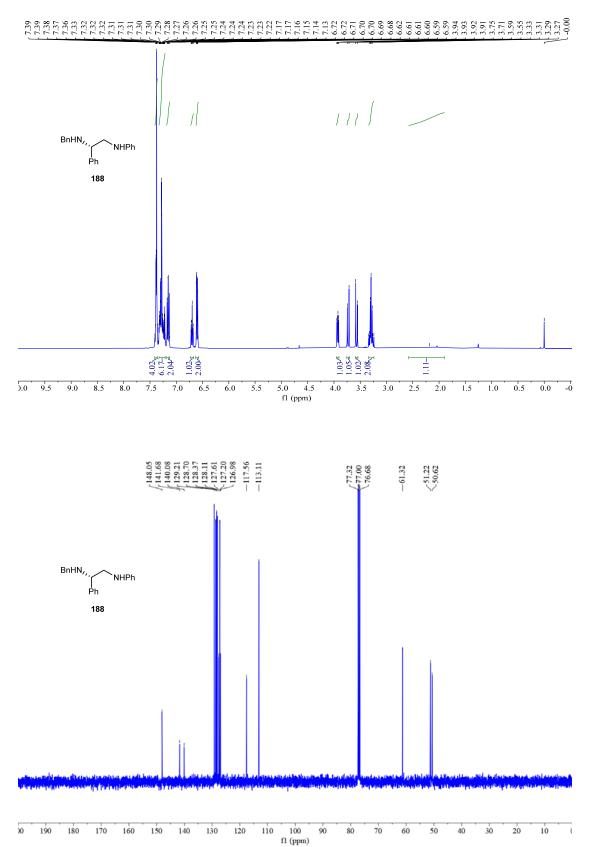


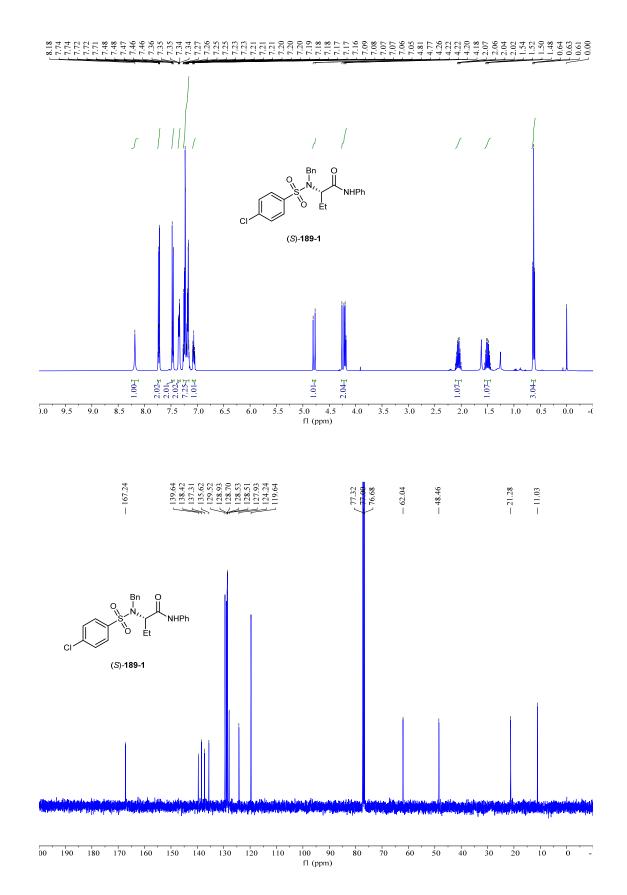

fl (ppm)

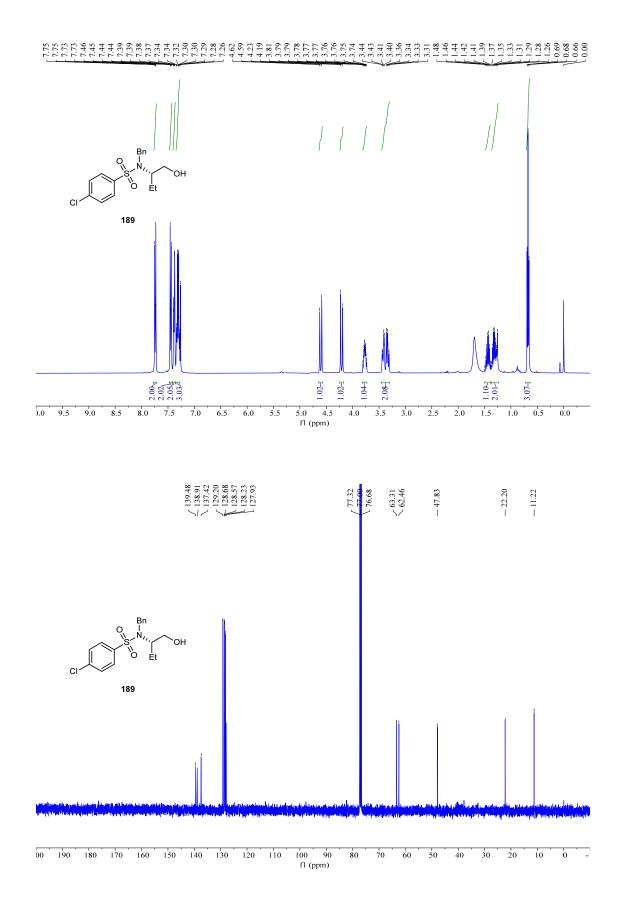


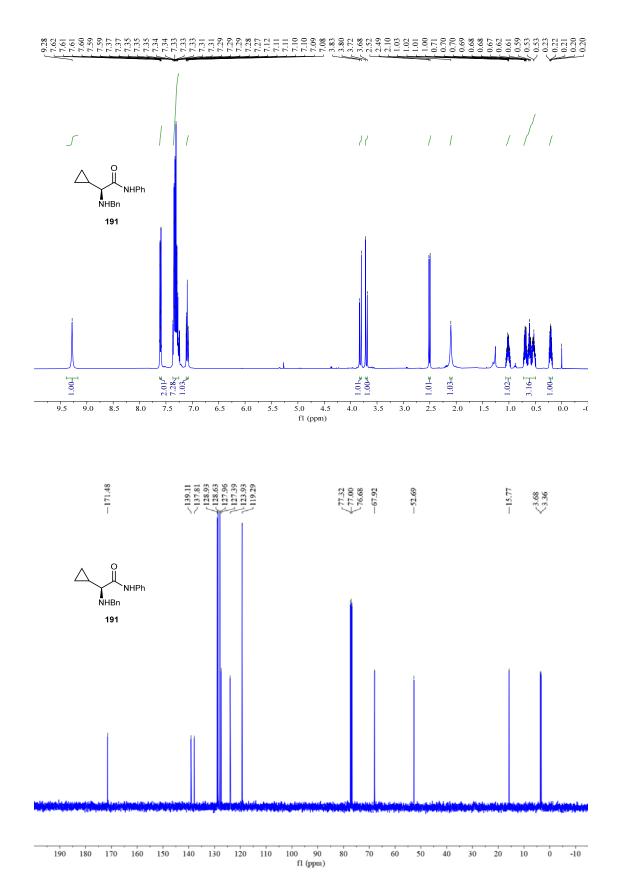

S410

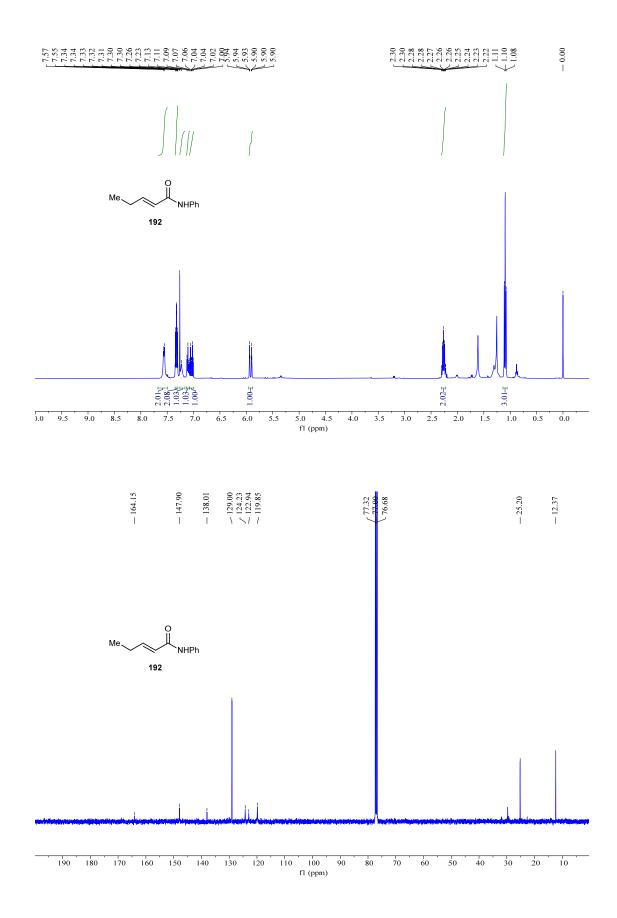


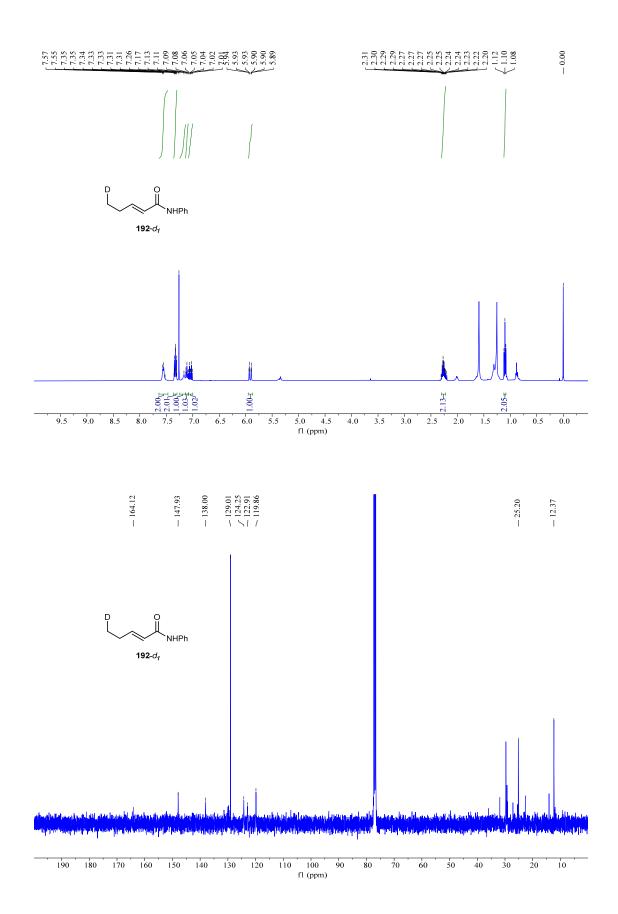


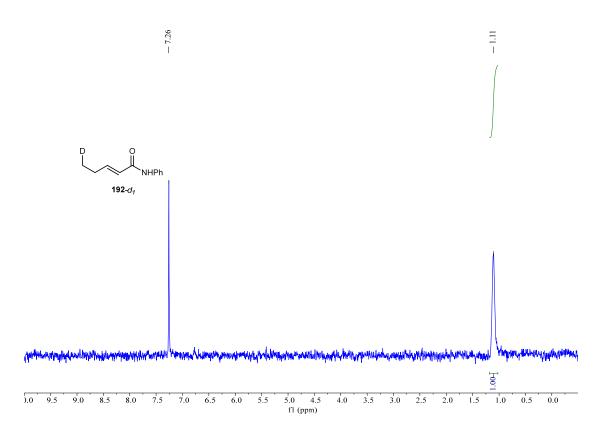


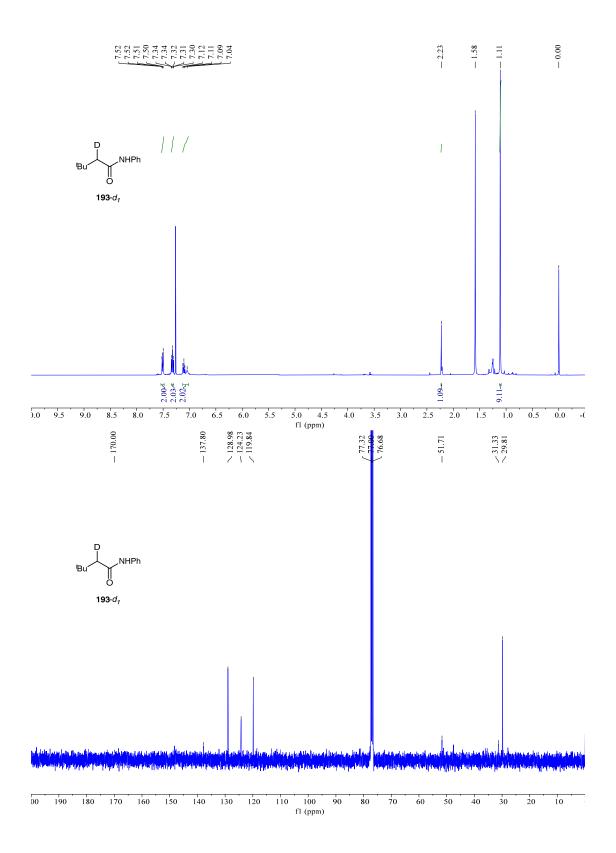


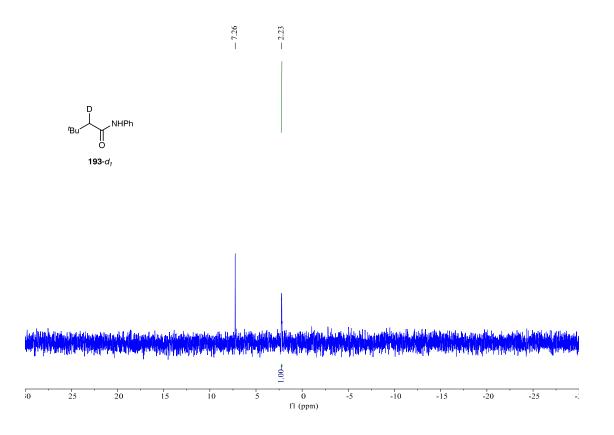

S415

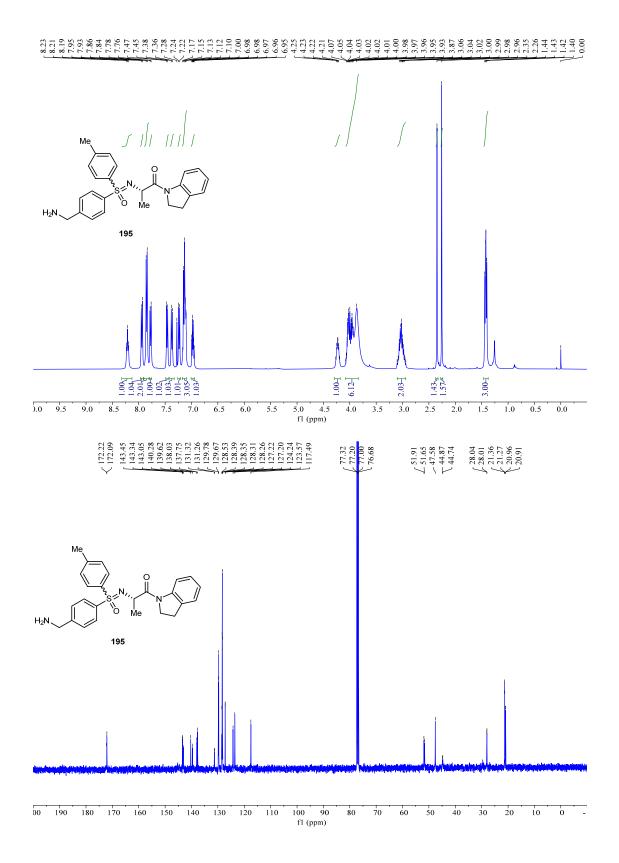


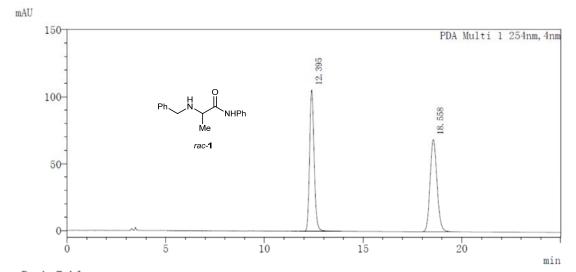




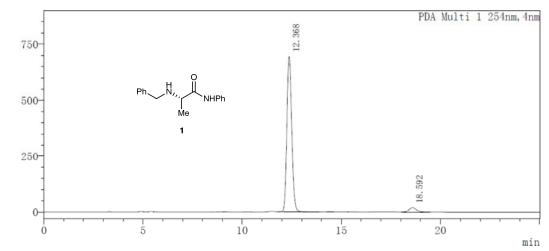




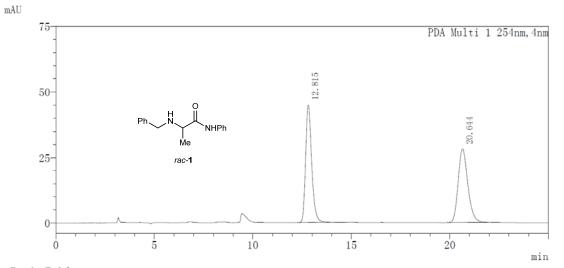


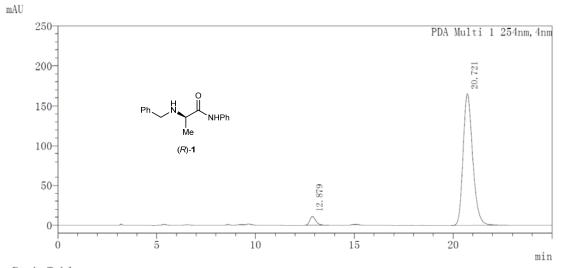


S426

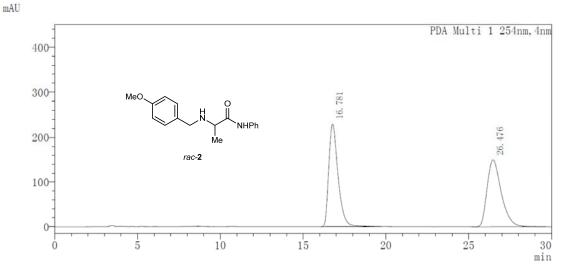

11. HPLC spectra

Peak Table


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.395	1683679	49.990
2	18.558	1684324	50.010

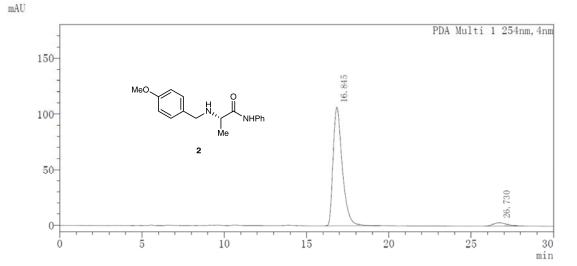

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	12.368	11857534	95.956			
2	18.592	499666	4.044			


Peak Table

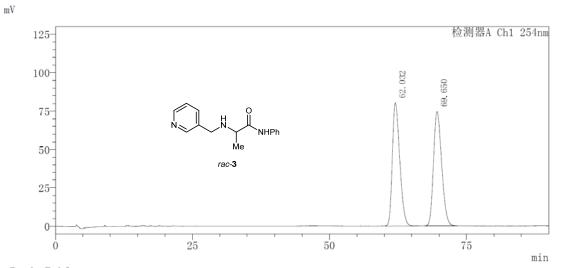
PDA Ch1 254nm						
Peak# Ret. Time		Area	Area%			
1	12.815	964273	49.986			
2	20.644	964803	50.014			

Peak Table

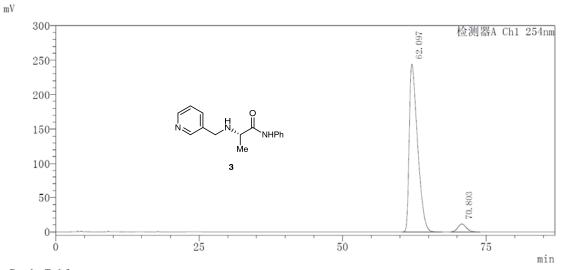

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	12.879	235905	4.064			
2	20.721	5569068	95.936			

Peak Table

PDA Ch1 254nm

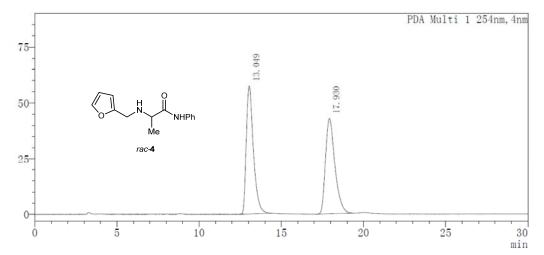

Peak#	Ret.	Time	Area	Area%
1	16.	781	9001909	50.081
2	26.	476	8972662	49.919

Peak Table


PDA Ch1 254nm |Peak#|Ret. Time| Area

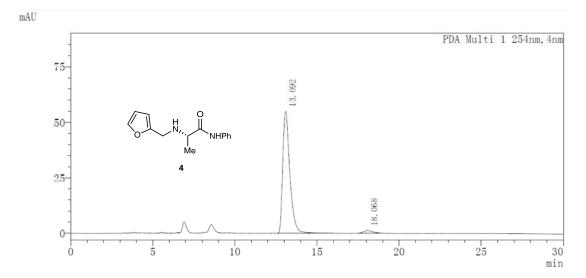
P	еак₩	Ret.	lime	Area	Area%
	1	16.	845	4184542	95.875
	2	26.	730	180038	4.125

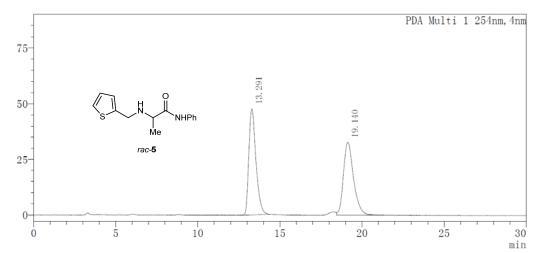
Peak Table


检测器A Ch1 254nm						
Peak# Ret. Time			Area Ar	Area%		
1	62.	032	7566028	49.368		
2	69.	650	7759695	50.632		

Peak Table

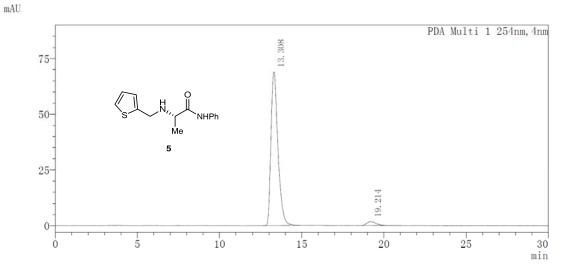
检测器A Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	62.	097	24694597	95.456		
2	70.	803	1175631	4.544		


mAU


Peak Table

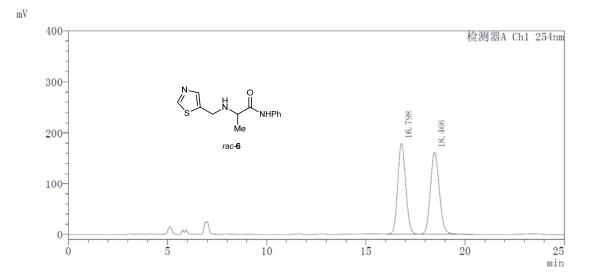
PDA Ch1 254nm

Peak#	Ret. Tin	ne Area	Area%
1	13.049	1747928	50.372
2	17.930	1722113	49.628


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.092	1659582	96.903
2	18.068	53039	3.097

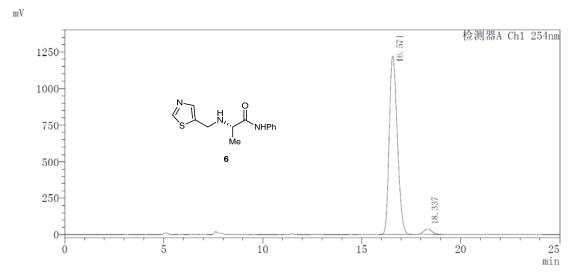
Peak Table

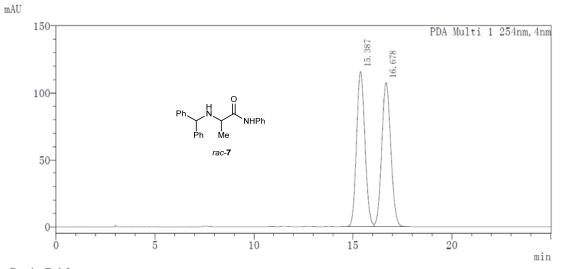
PDA Ch1 254nm


Peak#	Ret.	Time	Area	Area%
1	13.	291	1449939	50.605
2	19.	140	1415296	49.395

Peak Table

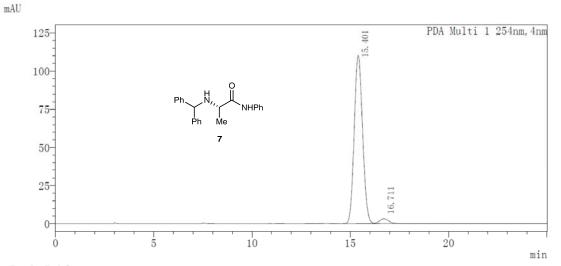
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.308	2061083	96.730
2	19.214	69682	3.270


mAU

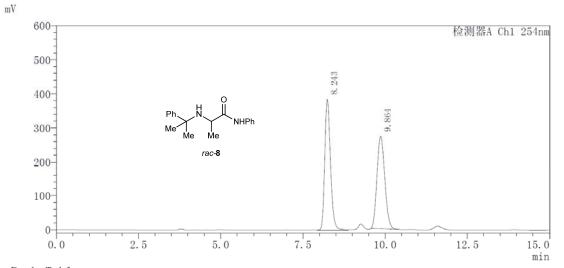

Peak Table

检测	郹Δ	Ch1	25
TW 129	$n \alpha A$	Uni	- 20

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	16.798	5057959	49.809
2	18.466	5096849	50.191

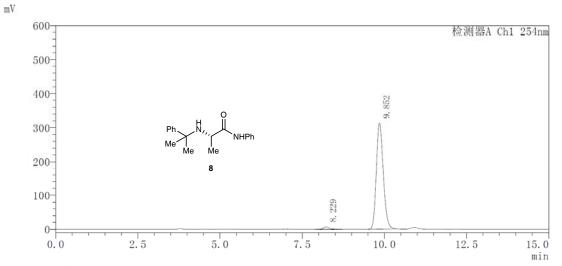


检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	16.571	34750848	97.194
2	18.337	1003241	2.806

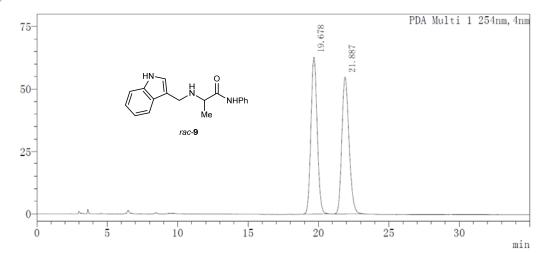


Peak Table

<u>PDA Ch</u>	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.387	3417459	49.887
2	16.678	3432951	50.113

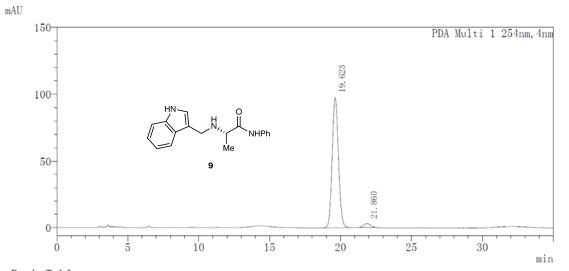


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.401	3263613	96.906
2	16.711	104192	3.094

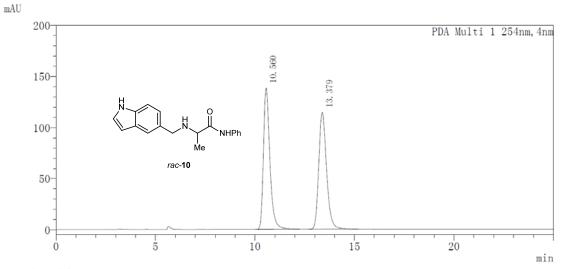


Peak Table

检测器A Ch1 254nm			nm	
	Peak#	Ret. Time	Area	Area%
	1	8.243	4661202	50.963
	2	9.864	4485124	49.037

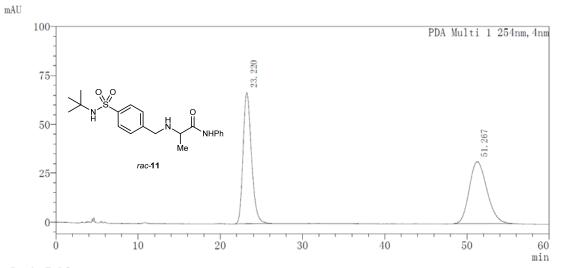


检测器A Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	8.229	87300	1.867
2	9.852	4589308	98.133

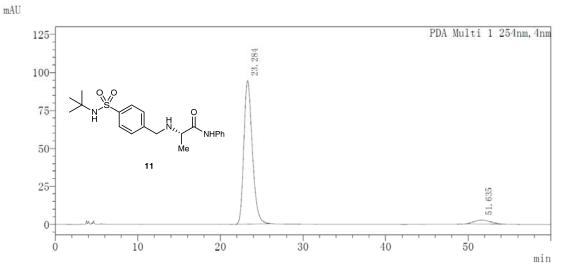


Peak Table

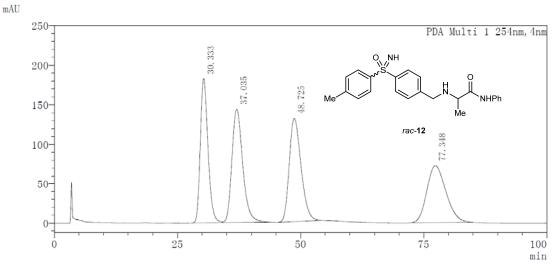

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.678	1952868	50.067
2	21.887	1947663	49.933


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	19.623	3002214	96.581			
2	21.860	106284	3.419			

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	10.560	3117244	49.955		
2	13.379	3122801	50.045		

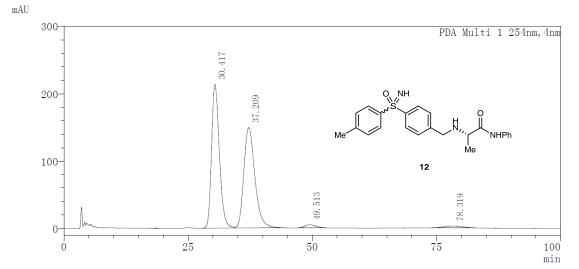


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	10.536	5403435	95.447			
2	13.404	257741	4.553			

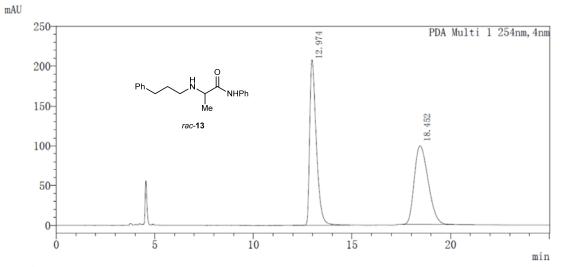


Peak Table

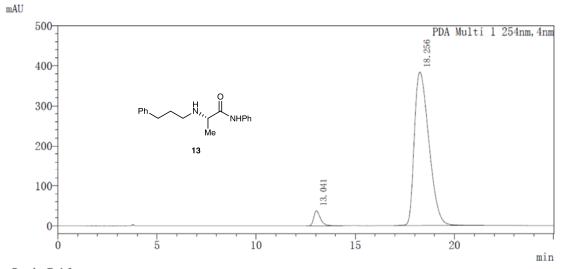
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.220	4777237	50.163	
2	51.267	4746172	49.837	



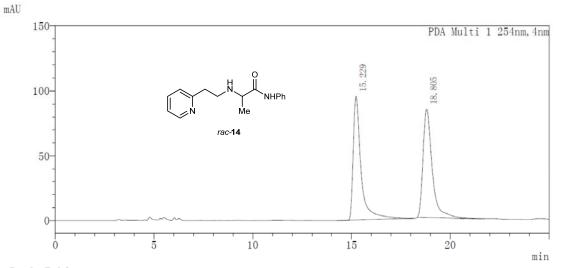
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.284	6733160	95.002	
2	51.635	354227	4.998	


Peak Table

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	30.	333	19795258	23.800
2	37.	035	22002380	26.454
3	48.	725	21869703	26.294
4	77.	348	19504868	23.451

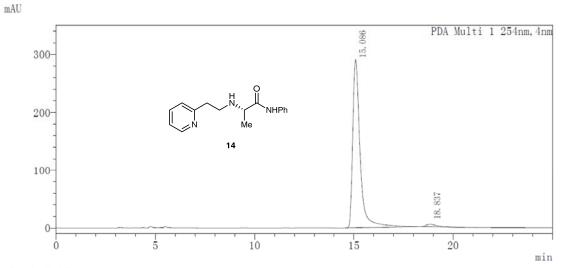

PDA Ch1 254nm

FDA UN	FDA CHI 254HIII				
Peak#	Ret. Time	Area	Area%		
1	30.417	23337575	48.714		
2	37.209	23067487	48.150		
3	49.513	761885	1.590		
4	78.319	740152	1.545		

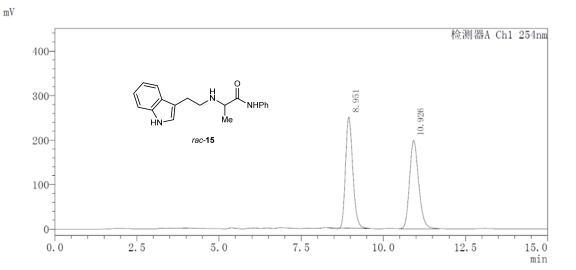


Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	12.974	4841221	49.963	
2	18.452	4848488	50.037	



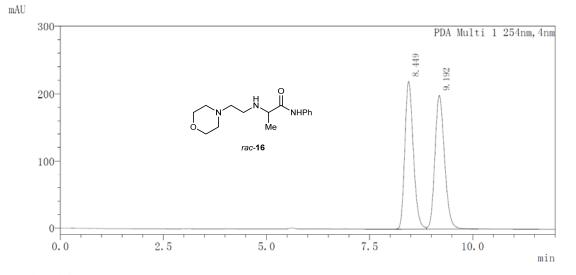
PDA Chl 254nm					
Peak#	Ret. Time	Area	Area%		
1	13.041	861953	4.215		
2	18.256	19588797	95.785		



Peak Table

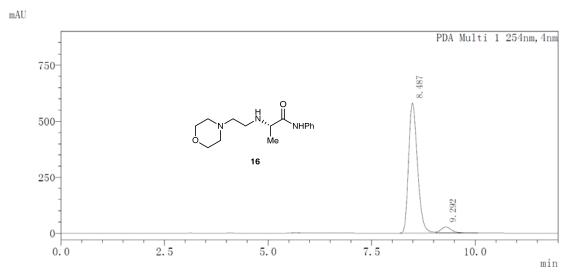
PDA Ch1 254nm				
	Peak#	Ret. Tim	e Area	Area%
	1	15.229	2658649	49.512
	2	18.805	2711092	50.488

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.086	7566308	97.917
2	18.837	160964	2.083

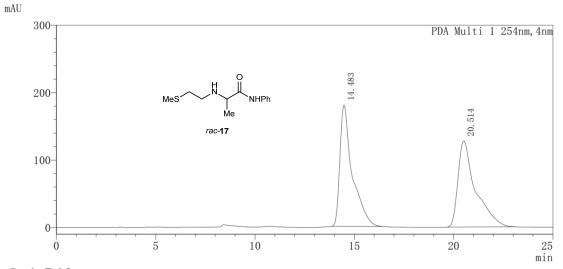

Peak Table

检测	器A	Ch1	25

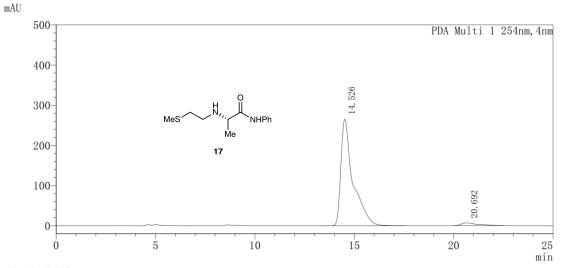
检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	8.9	951	3757680	49.429
2	10.	926	3844520	50.571


检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	8.956	2301141	97.424
2	10,963	60843	2, 576

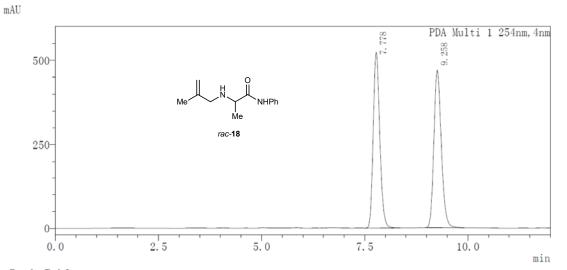
Peak Table


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8.449	3173077	49.444
2	9.192	3244447	50.556

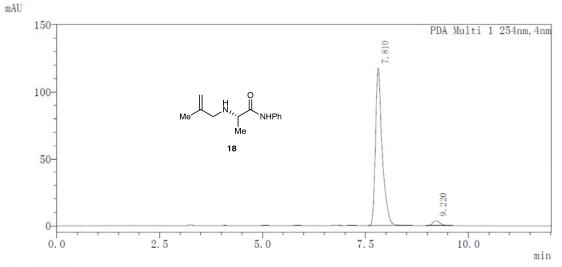

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.487	8711969	94.616	
2	9.292	495760	5.384	

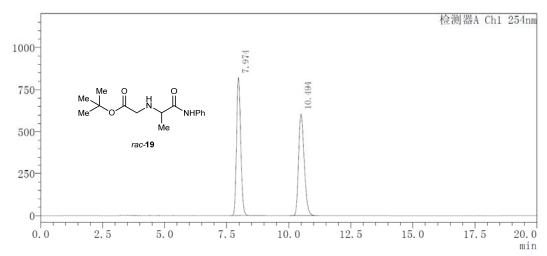


Peak Table

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	14.483	7817462	50.014
2	20.514	7813187	49.986

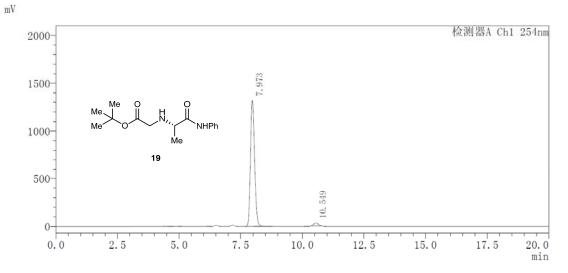


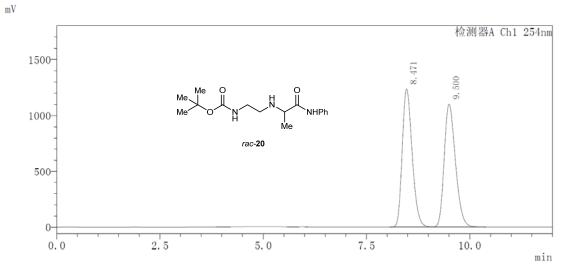
PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	14.526	11263530	96.606		
2	20.692	395758	3.394		



Peak Table

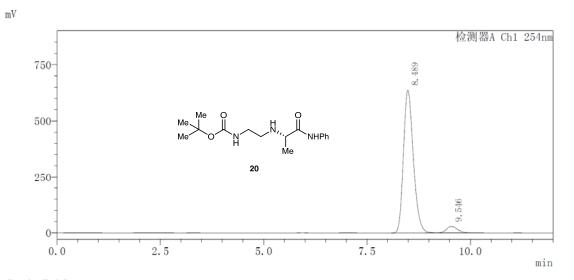
PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	7.778	5796746	49.517
2	9.258	5909911	50.483


PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	7.810	1338204	96.658
2	9.220	46266	3.342


Peak Table

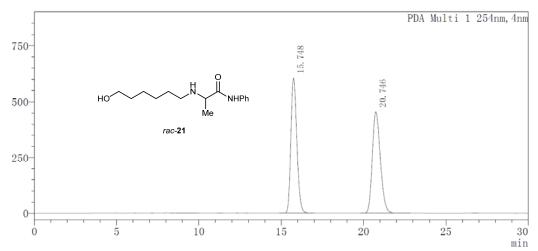
检测器A Ch1 254nm

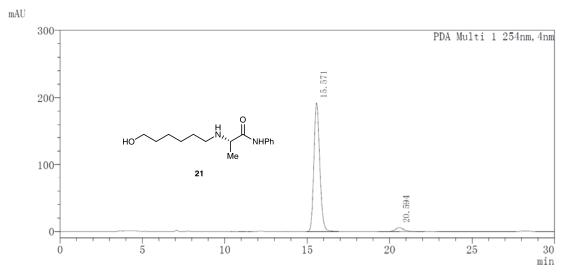
Peak#	Ret. Time	Area	Area%
1	7.974	9505155	49.714
2	10.494	9614642	50.286


检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.973	15149423	97.276	
2	10.549	424218	2.724	

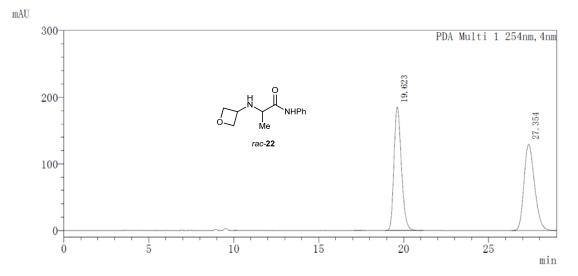
Peak Table

1	合测	器A	Ch1	25

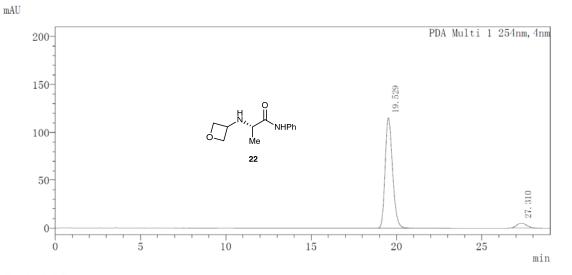

检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.471	20678299	49.799	
2	9.500	20844978	50.201	


Peak Table

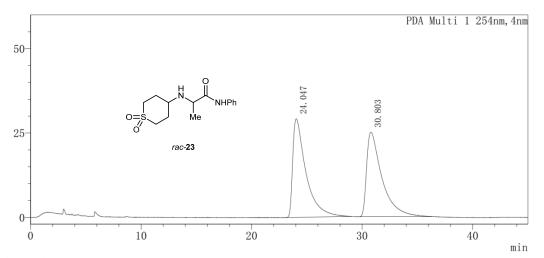
检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.489	10625249	95.141	
2	9.546	542658	4.859	


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.748	15275619	49.706
2	20.746	15456091	50.294

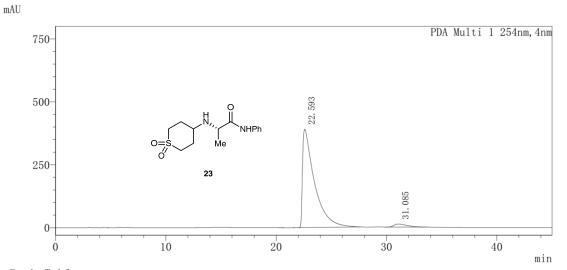
Peak Table


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	15.571	4748341	96.006
2	20.594	197529	3.994

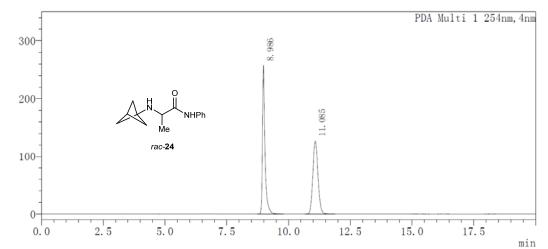

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.623	5525658	49.992
2	27.354	5527425	50.008

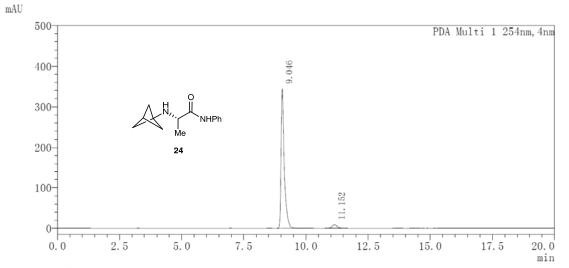


PDA Ch1 254nm

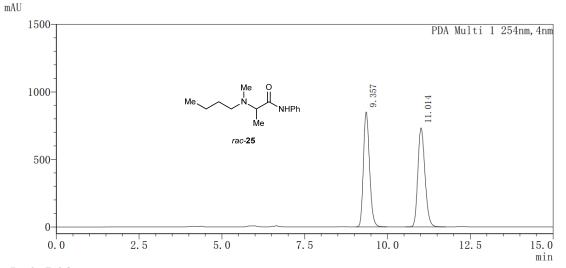
Peak#	Ret. Time	Area	Area%
1	19.529	3505078	94.407
2	27.310	207666	5.593


PDA Ch	1 254r	nm		
Peak#	Ret. '	Time	Area	Area%
1	24.0)47	2439138	50.225
2	30.8	303	2417281	49.775

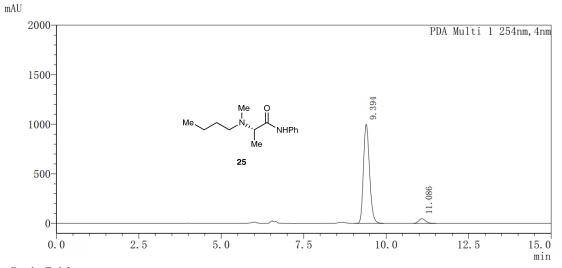
Peak Table


PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	22.593	29423152	96.711		
2	31.085	1000744	3.289		

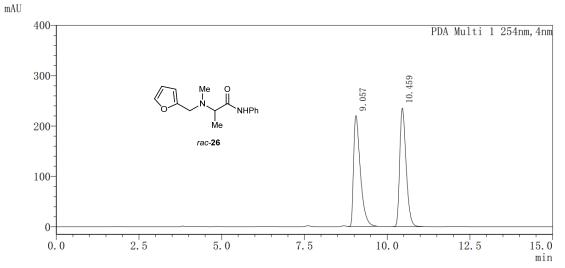
mAU


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.986	1825473	50.057
2	11.085	1821312	49.943

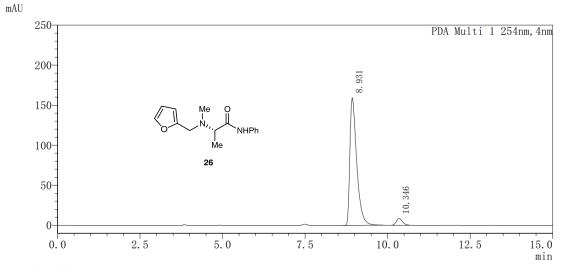

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.046	3068449	95.882
2	11.152	131780	4.118

mAU

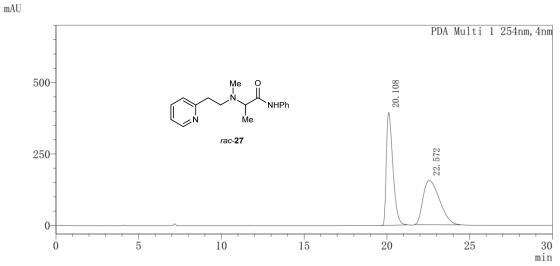


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.357	10942731	50.006
2	11.014	10940249	49.994

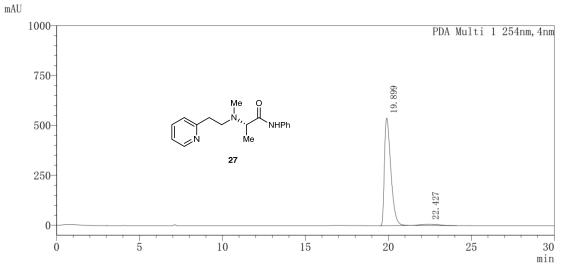


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	9.394	12788006	94.988		
2	11.086	674738	5.012		

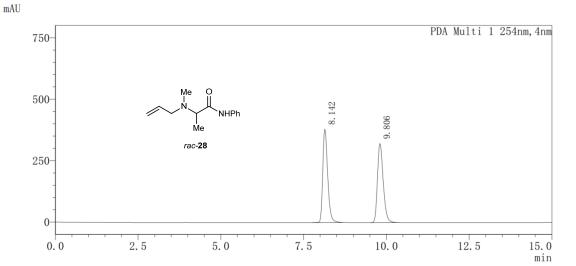


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.057	3133727	49.695
2	10.459	3172195	50.305

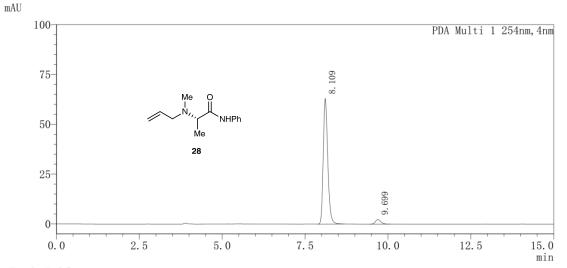


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	8.931	2291123	95.413				
2	10.346	110137	4.587				

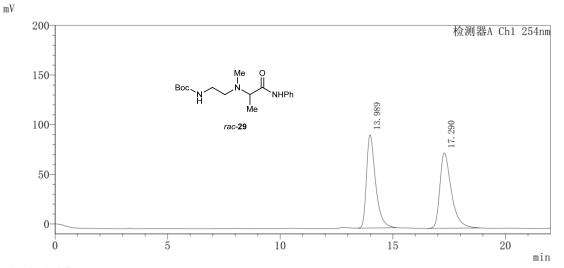


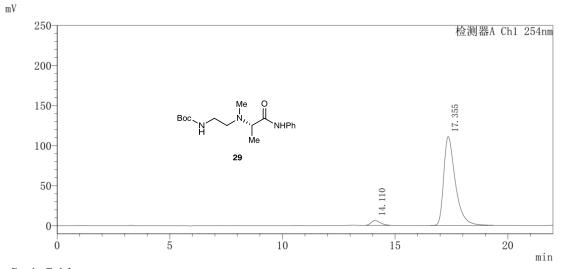
Peak Table

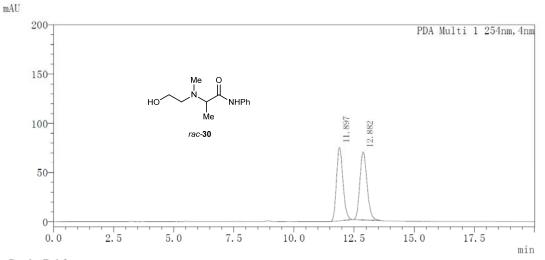
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	20.108	10919806	50.358			
2	22.572	10764485	49.642			



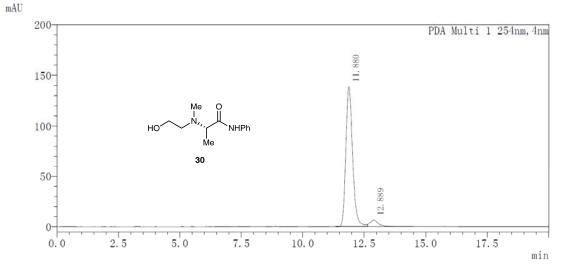
PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	19.899	14507061	96.840				
2	22.427	473354	3.160				




PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.142	3911052	50.058			
2	9.806	3901955	49.942			


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	8.109	598551	95.809				
2	9.699	26184	4.191				

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	13.	989	2636188	49.348
2	17.	290	2705805	50.652

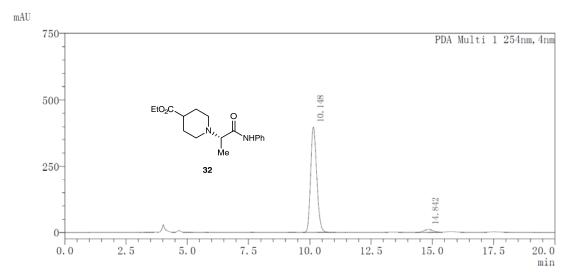


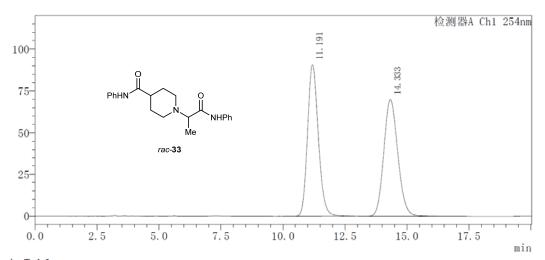
检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	14.110	168875	4.084			
2	17.355	3965926	95.916			



Peak Table

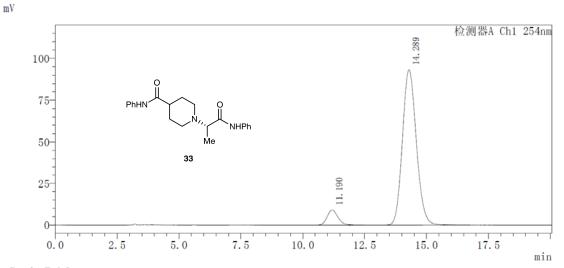
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.897	1394559	49.217		
2	12.882	1438955	50.783		


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	11.880	2644196	94.810				
2	12.889	144742	5.190				

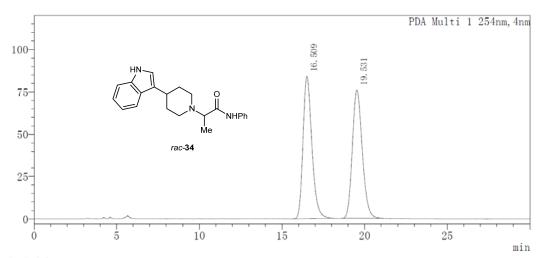

Peak Table

PDA Ch1 254nm

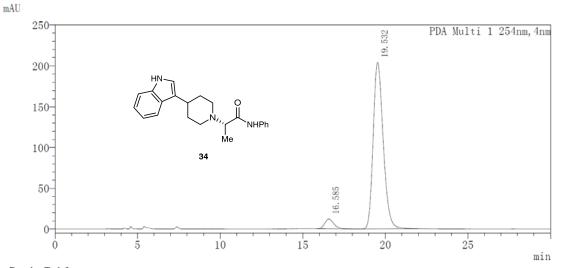
Peak#	Ret. Time	Area	Area%
1	10.120	7895702	50.021
2	14.729	7889048	49.979

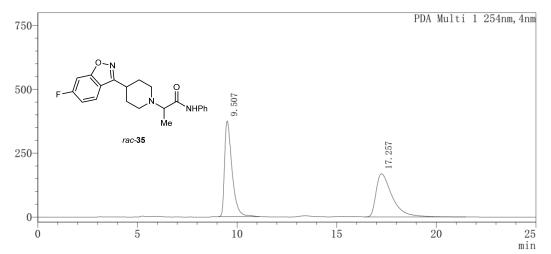


	PDA Ch1 254nm						
[Peak#	Ret. Time	Area	Area%			
	1	10.148	6919915	96.095			
	2	14.842	281172	3.905			

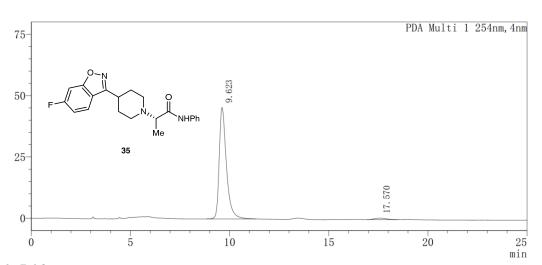


Peak Table

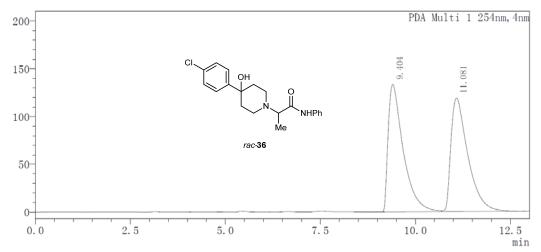

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	11.	191	2754189	50.042
2	14.	333	2749600	49.958


检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	11.190	278910	7.090
2	14.289	3654992	92.910

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.509	3155991	49.859		
2	19.531	3173885	50.141		

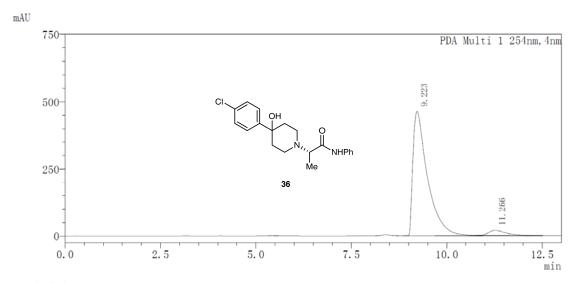

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	16.585	455980	5.013				
2	19.532	8639416	94.987				

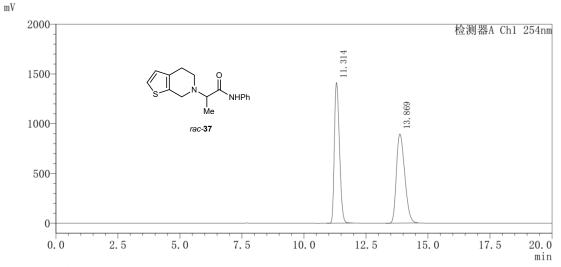
Peak Table


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	9.507	9783838	50.762				
2	17.257	9490246	49.238				

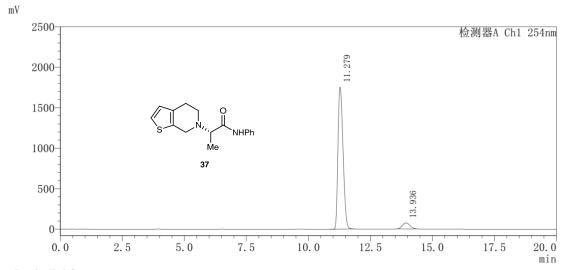
mAU

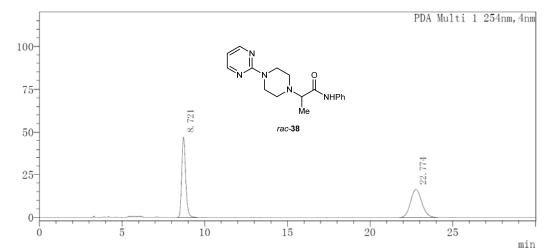
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.623	1149347	97.918
2	17.570	24435	2.082



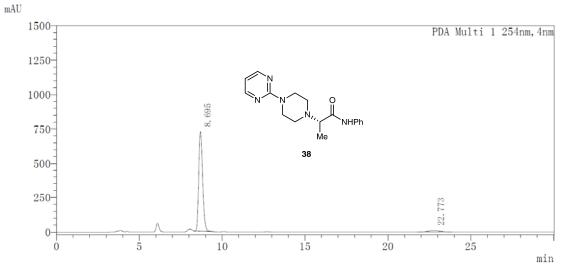

Peak Table

PDA Ch1 254nm

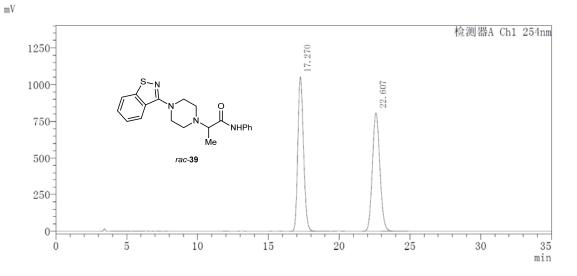

Peak#	Ret. Time	Area	Area%
1	9.404	3702171	50.047
2	11.081	3695153	49.953


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.223	12474593	95.349
2	11.266	608521	4.651

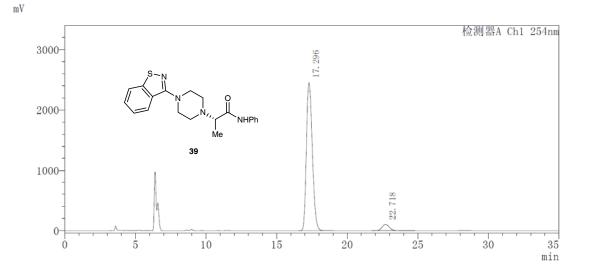
检测器A Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	11.	314	20244210	49.266	
2	13.	869	20847541	50.734	



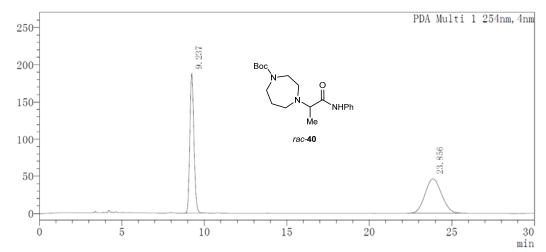
检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	11.279	25123770	93.994			
2	13.936	1605220	6.006			


Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.721	776544	50.385			
2	22.774	764671	49.615			

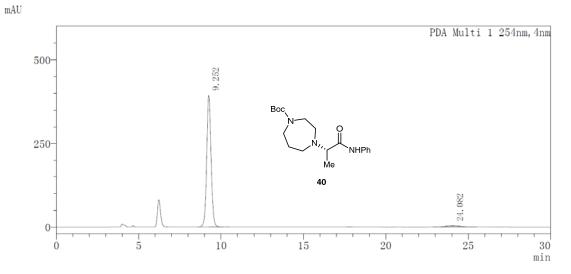

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.695	11824624	95.686			
2	22.773	533050	4.314			

mAU

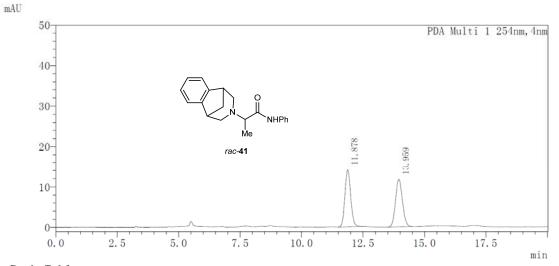


检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	17.270	29467683	49.811			
2	22.607	29691744	50.189			

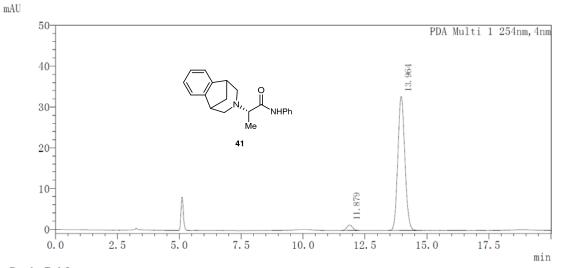
检测器A Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	17.	296	71741675	95.059		
2	22.	718	3729090	4.941		


S465

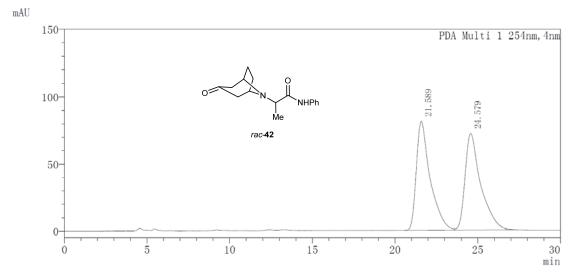
PDA Ch1 254nm


Peak#	Ret. Time	Area	Area%
1	9.237	3257344	50.159
2	23.856	3236743	49.841

Peak Table

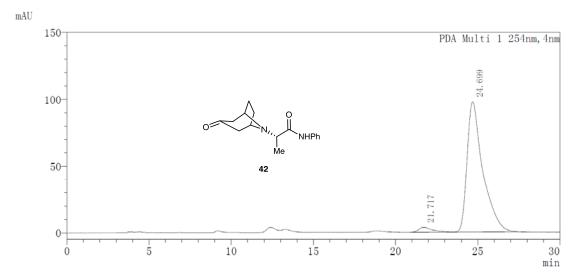

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	9.252	7249612	96.628			
2	24.082	252979	3.372			

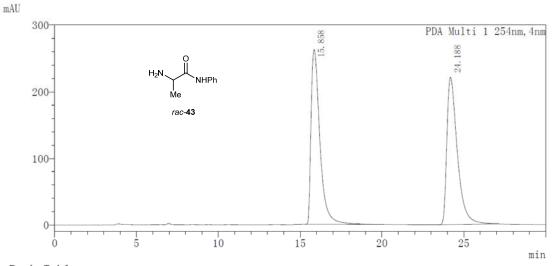
mAU



Peak Table

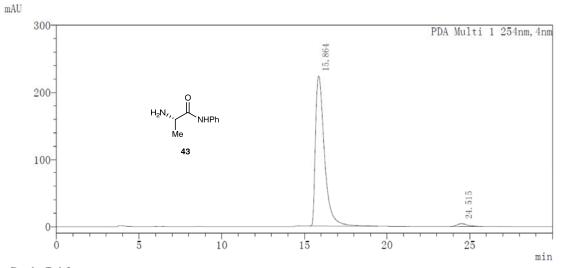
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.878	229662	50.082
2	13.959	228909	49.918


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.879	22347	3.333
2	13.964	648200	96.667

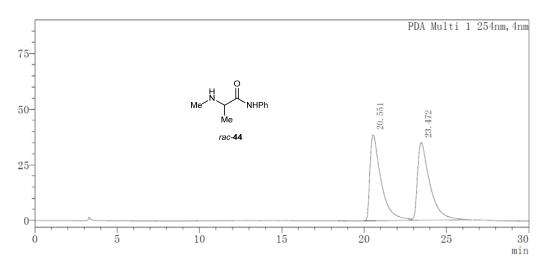

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	21.589	4744653	49.896
2	24.579	4764488	50.104

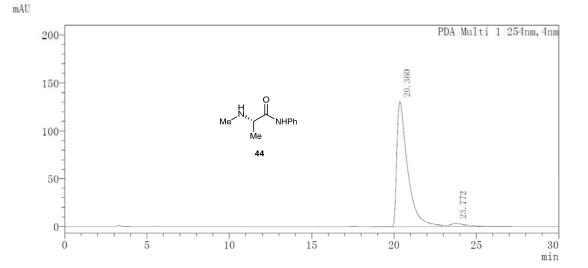


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.717	210607	3.139
2	24.699	6498877	96.861



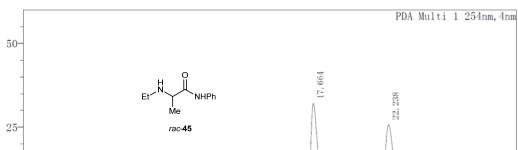
Peak Table

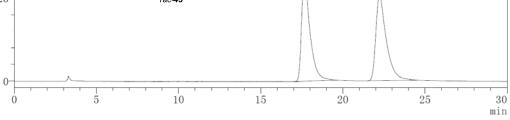
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.858	9847244	50.009
2	24.188	9843857	49.991


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.864	8471501	97.887
2	24.515	182831	2.113

Peak Table

PDA Ch1 254nm

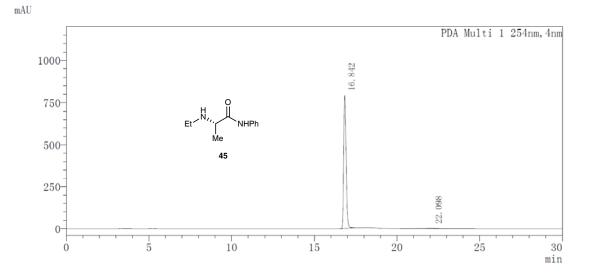

Peak#	Ret. Time	Area	Area%
1	20.551	1824759	49.953
2	23.472	1828193	50.047

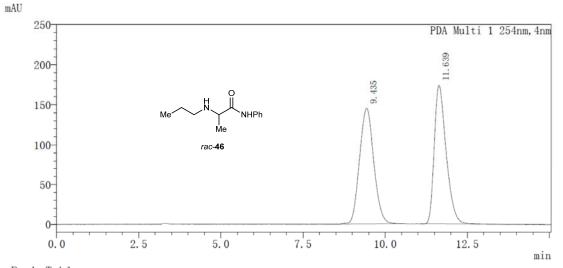


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.360	5989945	95.897
2	23.772	256282	4.103

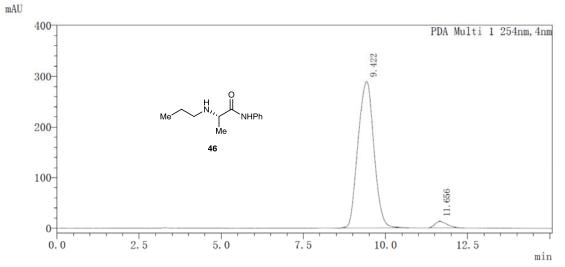
mAU




Peak Table

PDA Ch1 254nm

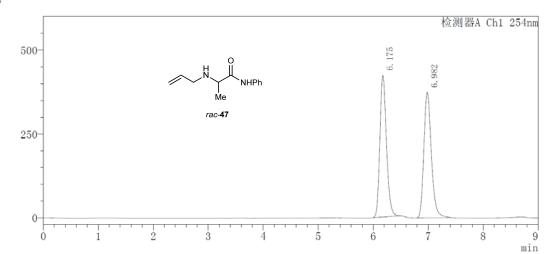
Peak#	Ret. T	ime Area	Area%
1	17.66	64 1123147	49.766
2	22.23	88 1133701	50.234



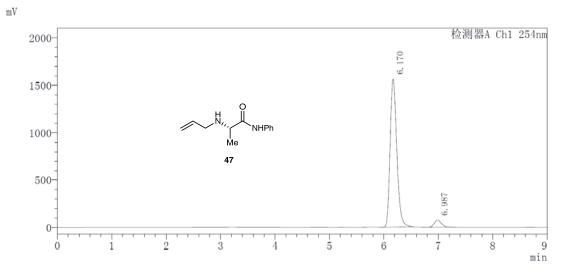
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	16.842	8107519	97.917	
2	22.098	172481	2.083	

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.435	4380006	50.096	
2	11.639	4363186	49.904	



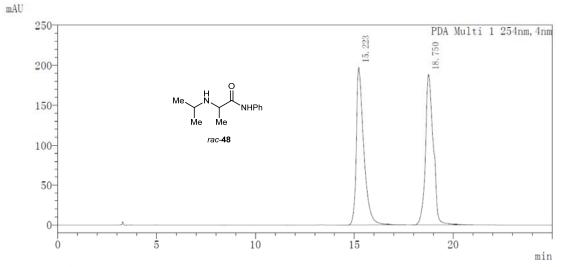
 PDA Ch1 254nm


 Peak# Ret. Time
 Area
 Area%

 1
 9.422
 9751382
 96.840

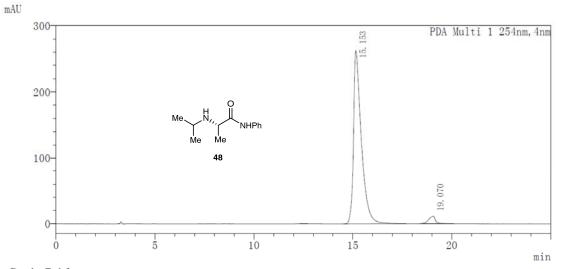
 2
 11.656
 318207
 3.160

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	6.175	3514131	49.664
2	6 982	3561671	50 336

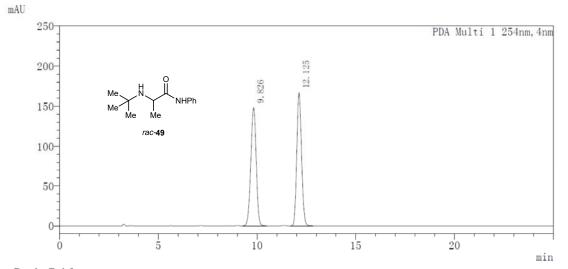


Peak Table

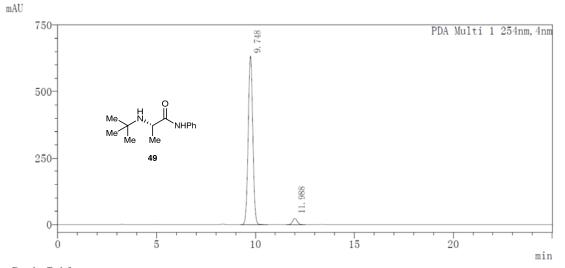
<u>检测器A Ch1 254nm</u>

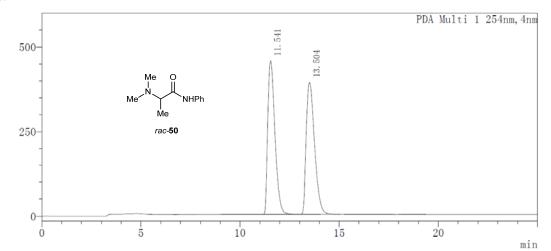

Peak#	Ret. Time	Area	Area%
1	6.170	13333121	95.047
2	6.987	694756	4.953

mV

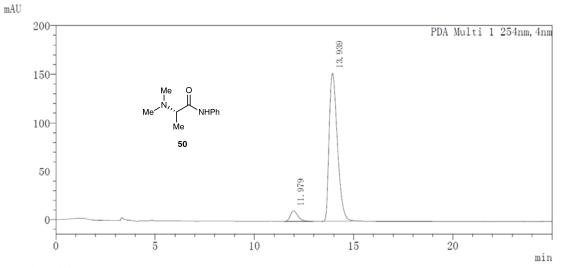


Peak Table


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.223	5164550	49.981
2	18.750	5168442	50.019

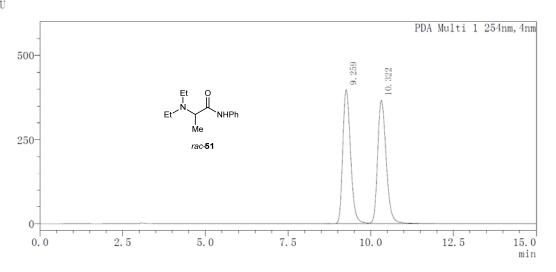

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.153	7228395	96.585
2	19.070	255580	3.415

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.826	2807026	50.068
2	12.125	2799360	49.932

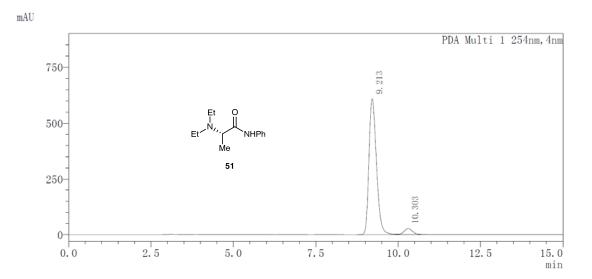


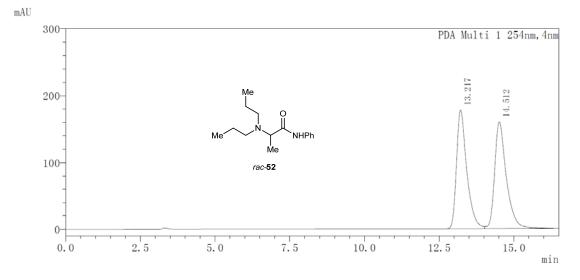
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.748	10220232	96.573
2	11.988	362667	3. 427

Peak Table


PDA	A Ch	$1 25^{4}$	4nm		
Pe	ak#	Ret.	Time	Area	Area%
	1	11.	541	11404279	50.008
	2	13.	504	11400586	49.992

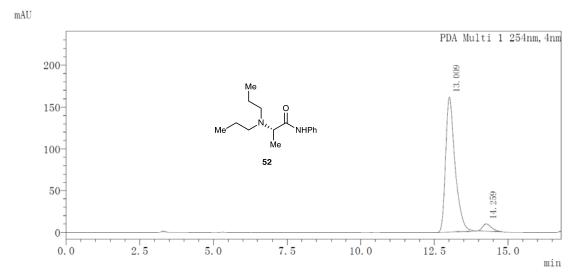
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.979	273777	5.834
2	13.939	4419327	94.166


mAU

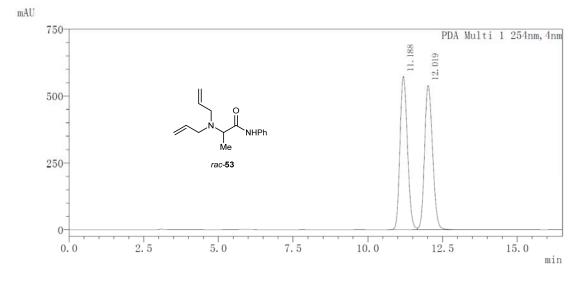


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.259	6530867	49.615
2	10.322	6632263	50.385



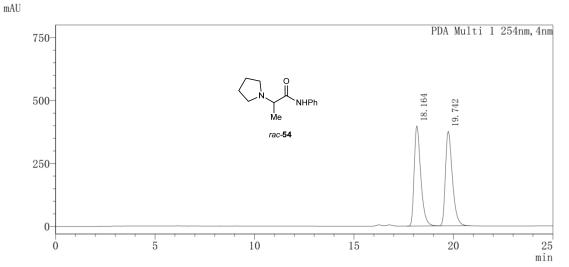
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.213	9664528	95.048
2	10.303	503531	4.952



Peak Table

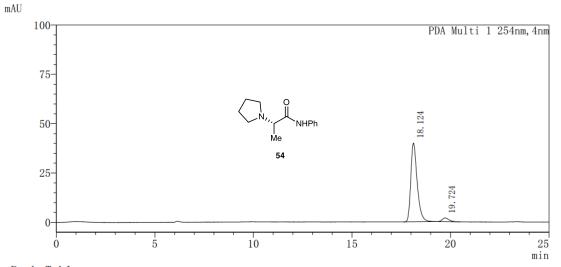
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.217	4234402	49.321
2	14.512	4350928	50.679


]	PDA Ch	1 254nm		
	Peak#	Ret. Time	Area	Area%
	1	13.009	3597071	95.357
	2	14.259	175132	4.643


Peak Table

DD 4	C1 1	0 = 4	
PDA –	Ch1	254nm	

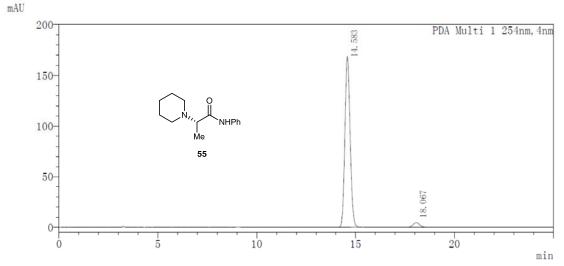
Peak#	Ret.	Time	Area	Area%
1	11.	188	10013536	49.804
2	12.	019	10092467	50.196



PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.150	4815340	94.184
2	11.992	297345	5.816

Peak Table

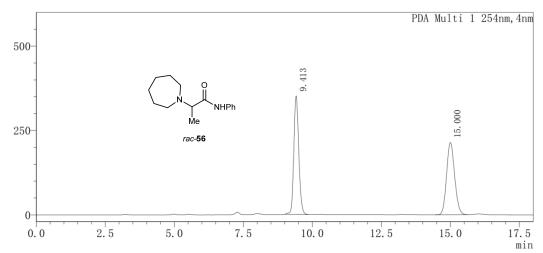
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	18.164	9113688	50.032	
2	19.742	9101996	49.968	



PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	18.124	901013	95.107			
2	19.724	46354	4.893			

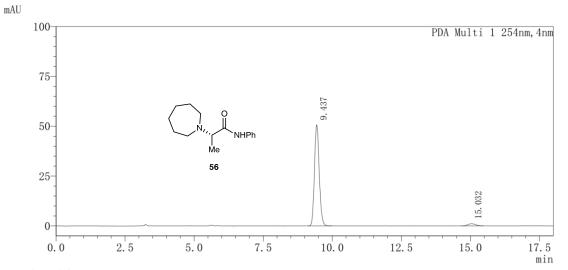
Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	14.558	1839594	49.957		
2	18.011	1842767	50.043		

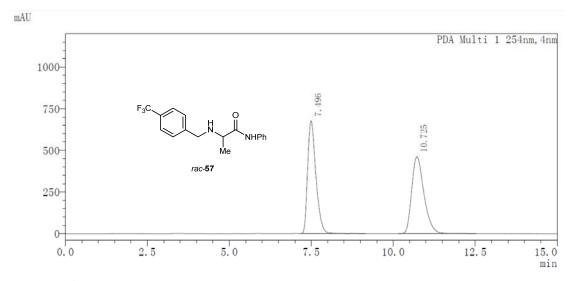


 PDA
 Ch1
 254nm

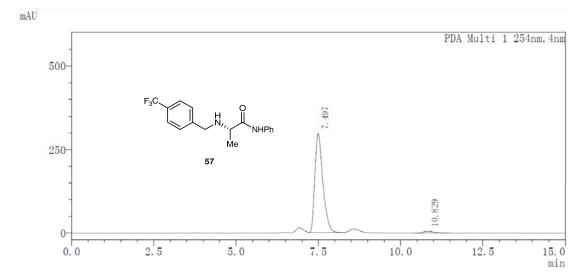
 Peak#
 Ret.
 Time
 Area
 Area%


 1
 14.583
 3093261
 96.714

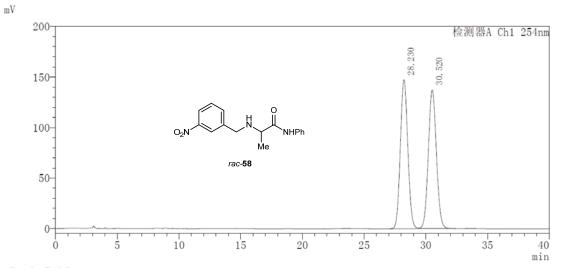
 2
 18.067
 105089
 3.286


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.413	4365835	50.106		
2	15.000	4347393	49.894		

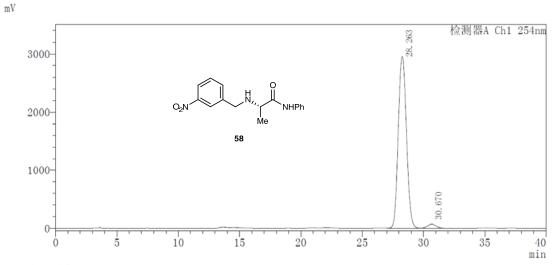

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	9.437	610311	96.584			
2	15.032	21589	3.416			

mAU

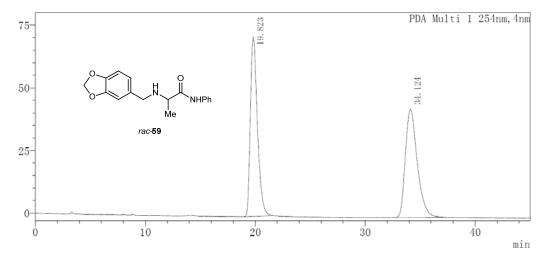


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.496	11927691	49.763
2	10.725	12041154	50.237

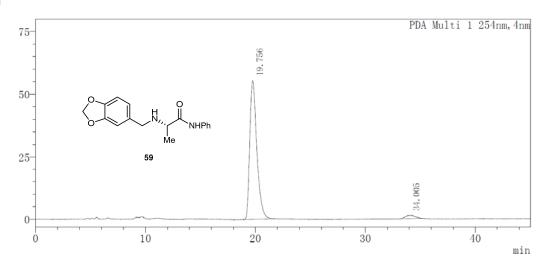


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	7.497	5025867	97.512		
2	10.829	128236	2.488		

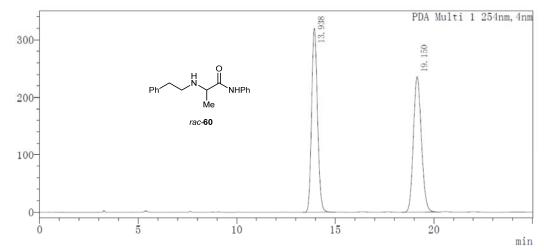

Peak Table

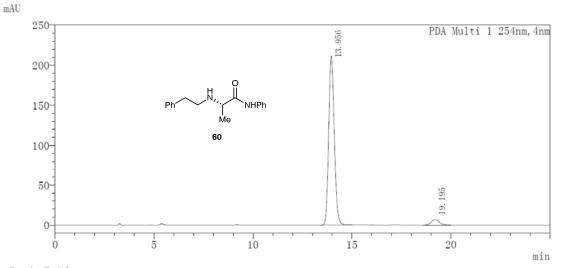
检测器A Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	28.	230	6194929	49.657
	2	30.	520	6280517	50.343

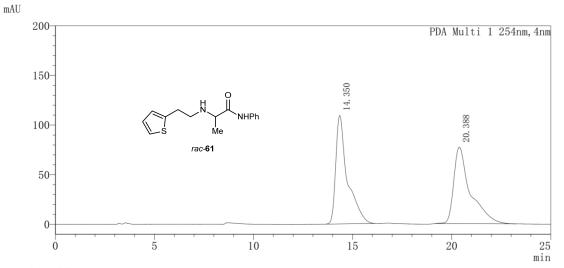
检测器A Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	28.	263	137312965	97.703
	2	30.	670	3228616	2.297



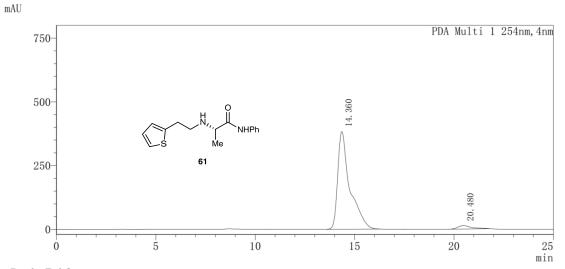
Peak Table

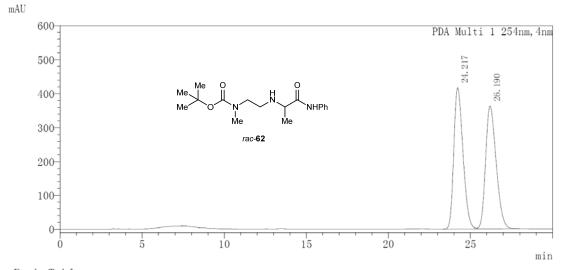

PDA Ch1 254nm				
Peak#	Ret. Ti	me Area	Area%	
1	19.823	3220713	49.650	
2	34.124	3266069	50.350	


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.756	2503643	96.702
2	34.005	85389	3.298

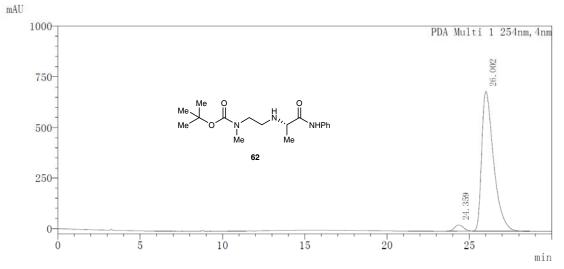


Peak Table

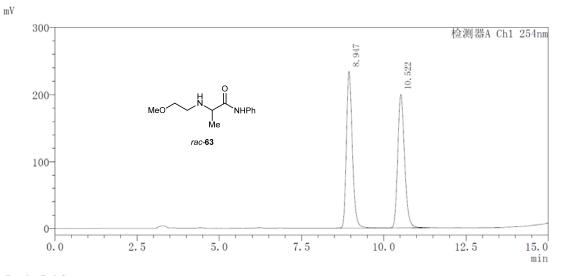

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.938	6656227	49.954
2	19.150	6668507	50.046


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.956	4154074	95.615
2	19.195	190496	4.385

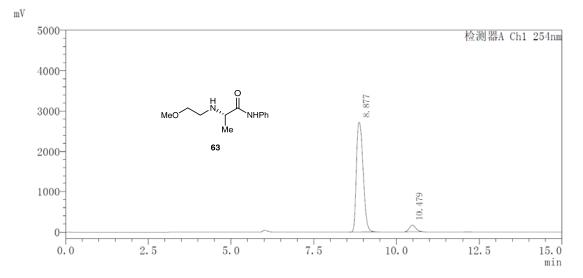
PDA Ch	1 254nm		
Peak#	Ret. Tim	e Area	Area%
1	14.350	4480619	49.935
2	20.388	4492317	50.065



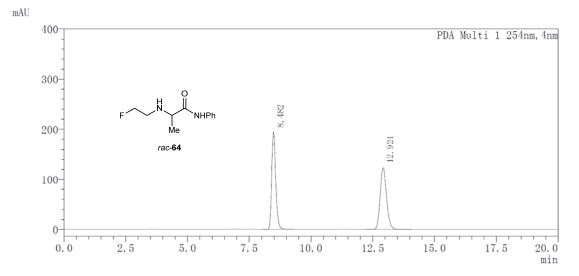
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.360	16314622	96.207
2	20.480	643270	3.793


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.217	16369359	49.936
2	26.190	16411001	50.064

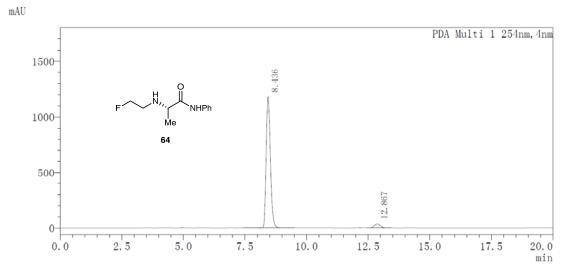

PDA Ch1 254nm

Peak#	Ret. Time	e Area	Area%
1	24.359	1140233	3.142
2	26.002	35144867	96.858



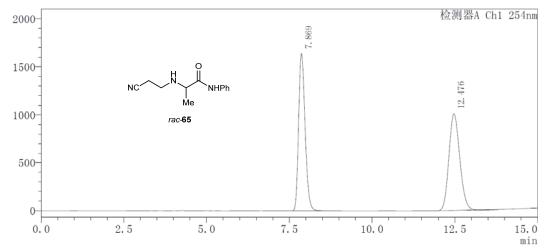
Peak Table

检测器A Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	8.947	2915283	50.150
2	10.522	2897853	49.850


检测器	检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	8.877	38115387	94.499		
2	10.479	2218688	5.501		

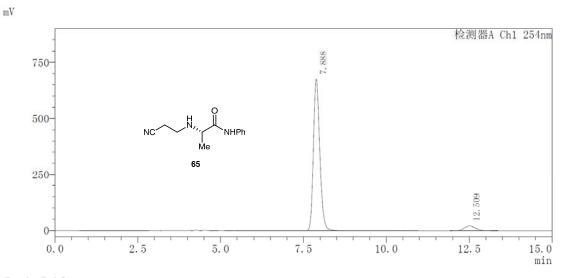
Peak Table

PDA Ch1 254nm

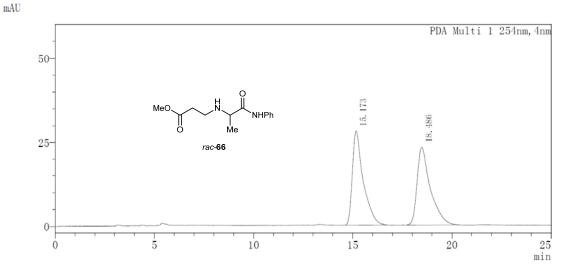

Peak#	Ret. Time	Area	Area%
1	8.482	2199610	50.009
2	12.921	2198789	49.991

Peak Table

PDA Ch1 254nm

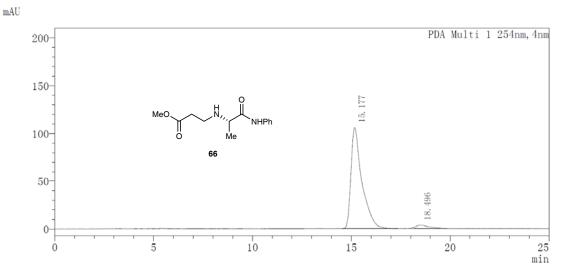

Peak#	Ret. Time	Area	Area%
1	8.436	14155435	95.676
2	12.867	639690	4.324

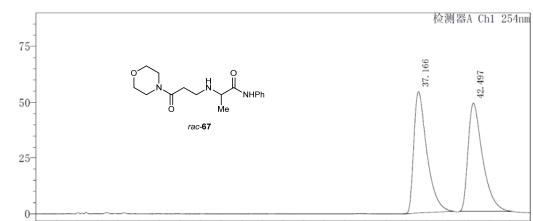
Peak Table


检测器A Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.869	22403695	49.372
2	12.476	22973529	50.628

Peak Table


检测器A Ch1 254nm Peak# Ret. Time Area Area% 1 7.888 9037236 95.082 2 12.509 467446 4.918


Peak Table

PDA Ch1 254nm

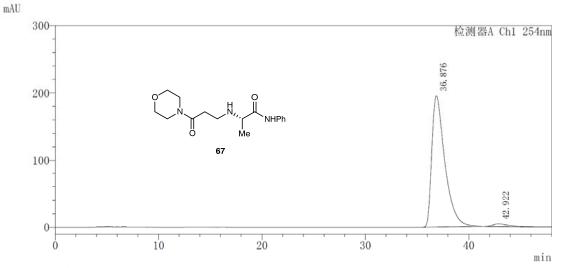
Peak#	Ret.	Time	Area	Area%
1	15.	173	1065960	49.858
2	18.	486	1072023	50.142

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.177	4065792	96.148		
2	18.496	162885	3.852		

20

30

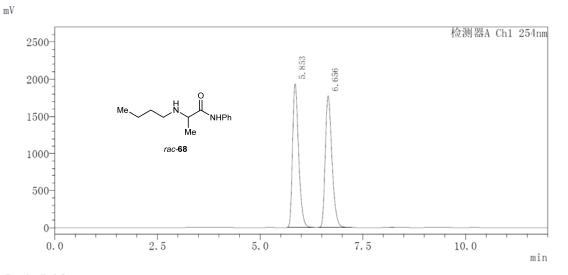
40


min

Peak Table

Ó

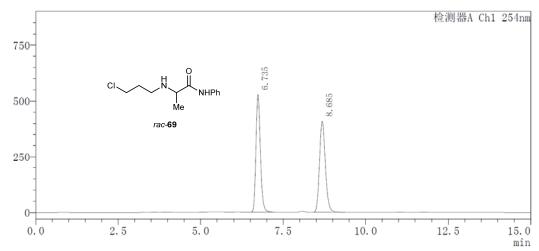
检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	37.166	4812377	50.192		
2	42.497	4775589	49.808		


10

Peak Table

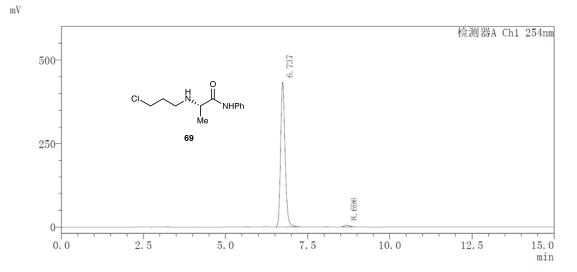
检测器	检测器A Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	36.876	17173442	97.701				
2	42.922	404076	2.299				

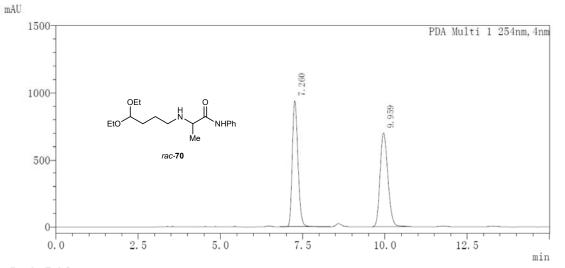
mAU


Peak Table

检测器A Ch1 254nm

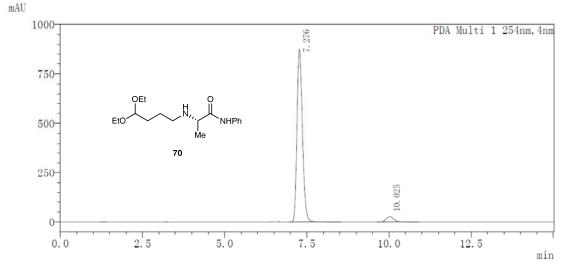
Peak#	Ret. Time	Area	Area%
1	5.853	19885078	49.597
2	6.656	20207917	50.403


检测器	检测器A Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	5.861	18363481	96.305				
2	6.673	704558	3.695				

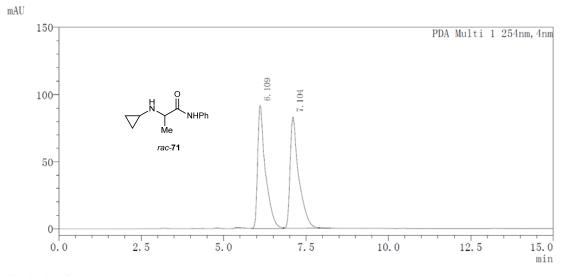

Peak Table

检测	器A	Ch1	25
1豆 沢門	AGA.	Uni	- 23

检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	6.735	4978151	49.609			
2	8.685	5056684	50.391			

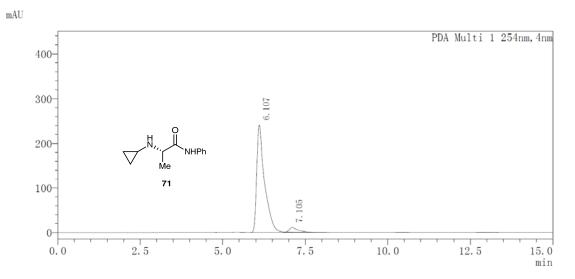


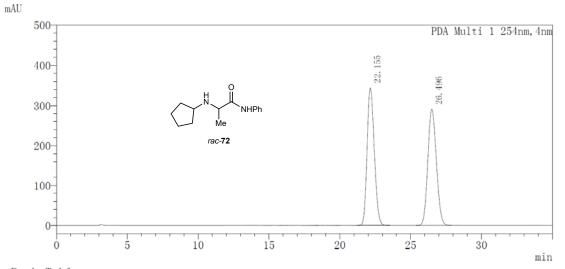
	检测器A Ch1 254nm						
	Peak#	Ret. Time	Area	Area%			
[1	6.737	4096946	98.658			
	2	8.696	55745	1.342			



Peak Table

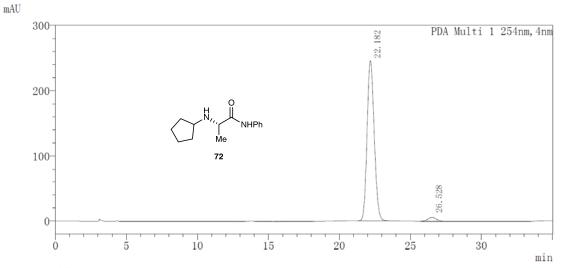
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.260	11254300	49.342		
2	9.959	11554681	50.658		


PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	7.276	10116398	95.632			
2	10.025	462118	4.368			

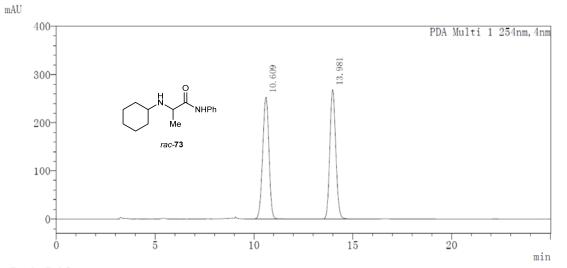

Peak Table

PDA Ch1 254nm

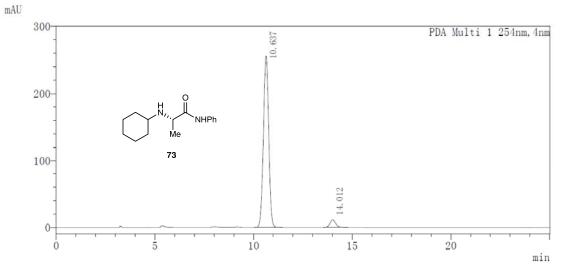
Peak#	Ret. Time	Area	Area%
1	6.109	1501668	49.735
2	7.104	1517697	50.265

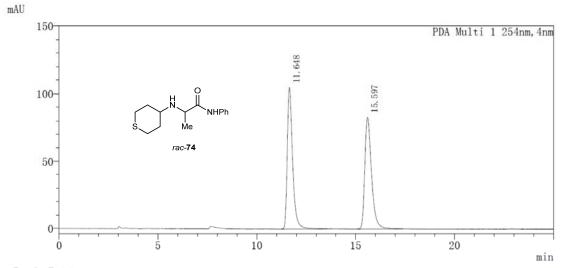


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	6.107	4005610	95.665			
2	7.105	181503	4.335			

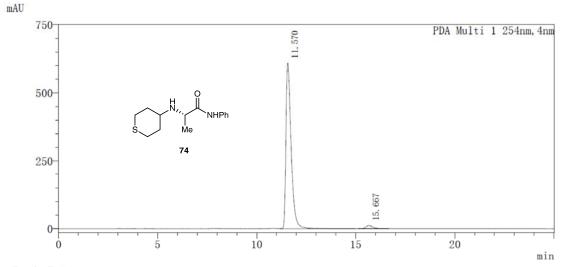


Peak Table

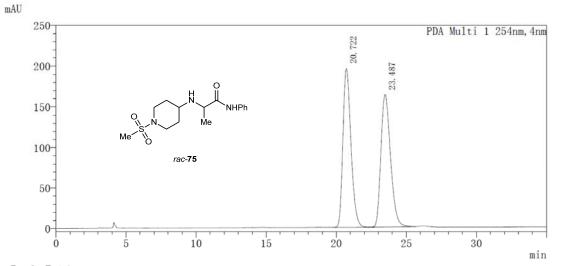

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	22.155	12157328	49.899			
2	26.496	12206470	50.101			


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.182	8577778	97.325
2	26.528	235793	2.675

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.609	5590956	49.966
2	13.981	5598480	50.034

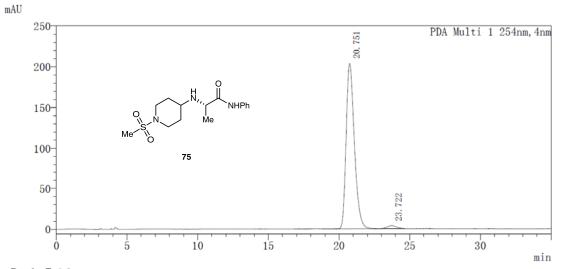


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	10.637	4769365	95.464			
2	14.012	226614	4.536			

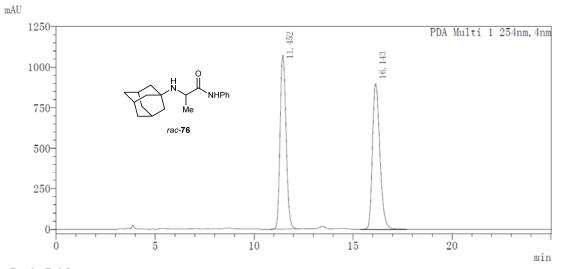


Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.648	1971181	50.044			
2	15.597	1967734	49.956			

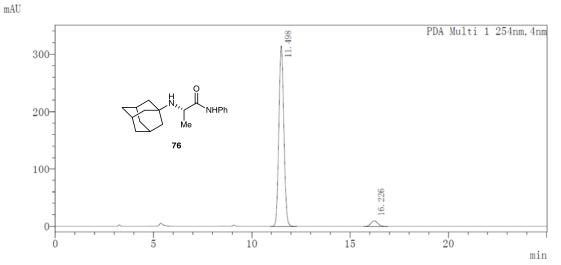


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	11.570	11188843	97.517			
2	15.667	284940	2.483			

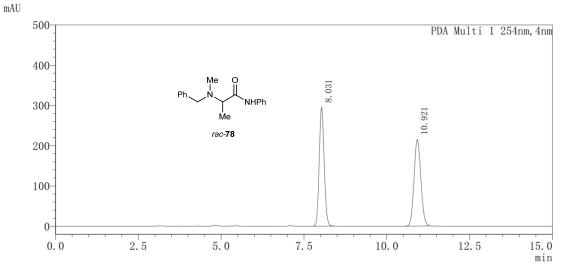


Peak Table

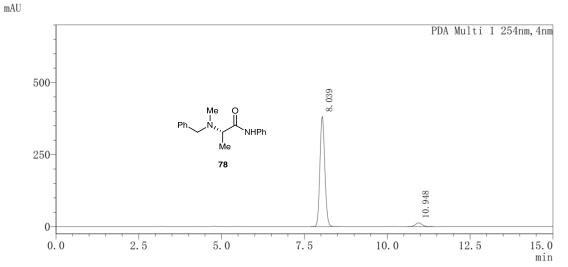
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	20.722	7806774	49.988		
2	23.487	7810452	50.012		



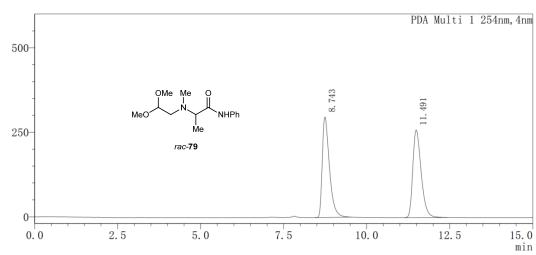
PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	20.751	8256004	97.933			
2	23.722	174221	2.067			


Peak Table

PDA Ch1 254nm					
Peak#	Ret. T	`ime	Area	Area%	
1 11.452		22582496	49.116		
2	16.14	43	23395004	50.884	

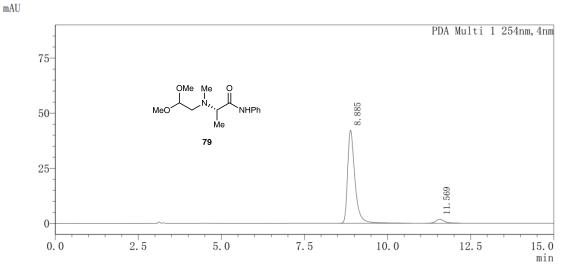

D			m			ч.	
P_i	eal	2	10	a	h	1.	е
* *	v ai		4.1	cı.	0	÷.,	<u> </u>

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	11.498	5542643	96.122			
2	16.226	223589	3.878			

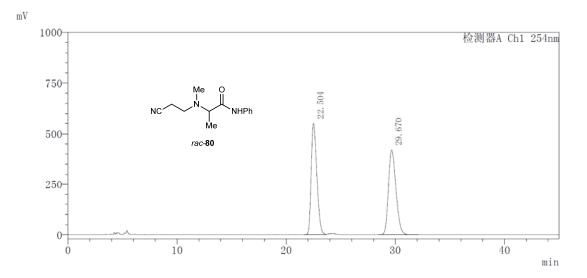


Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.031	3085554	50.036			
2	10.921	3081160	49.964			

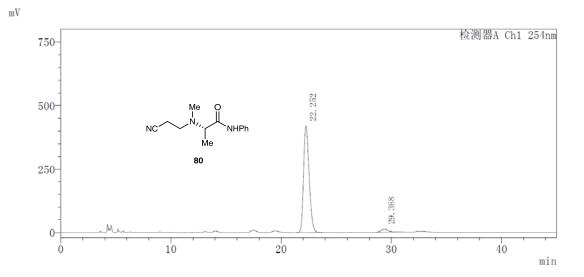


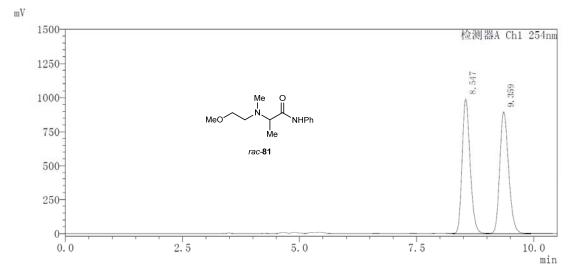
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	8.039	3923199	95.617				
2	10.948	179831	4.383				



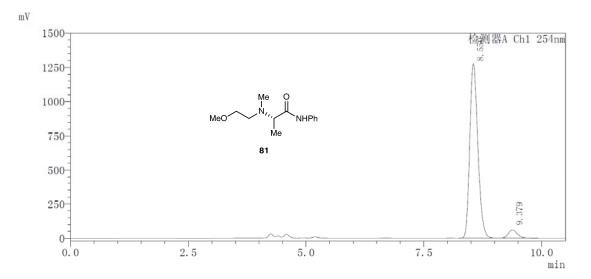
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.743	4487001	49.730			
2	11.491	4535751	50.270			

PDA Ch	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%					
1	8.885	641653	95.582					
2	11.569	29660	4.418					

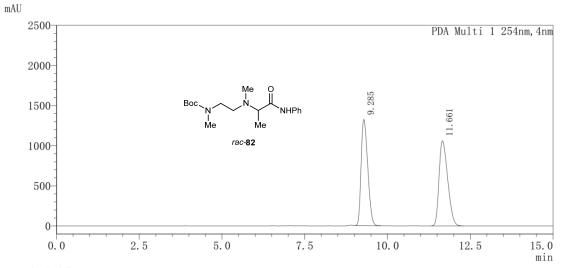

mAU


A 4 1 1 1 1 1 1			
检测	HUL A	CL 1	-95
457 7999	THE A	Uni	- 25

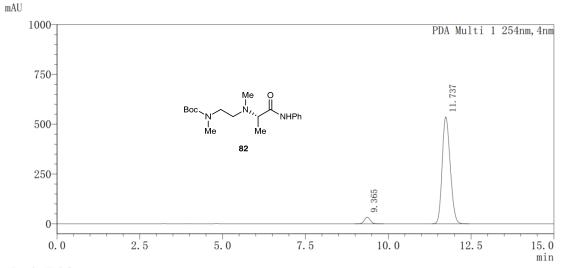
检测器A Ch1 254nm						
Peak#			Area	Area%		
1	22.	504	19965279	49.921		
2	29.0	670	20028165	50.079		


D I	1 7	n 1	1 1	
Poo	2	0	ьı	0
Pea	n I	ſal	$\mathbf{v}1$. C

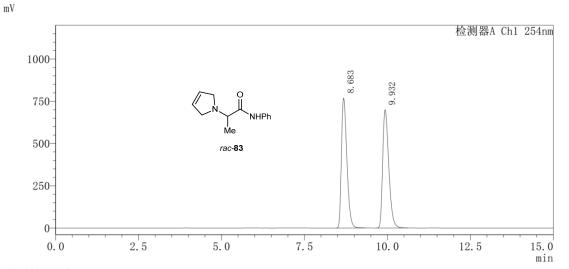
检测器A Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	22.	252	14761863	96.500		
2	29.	368	535474	3.500		


Peak Table

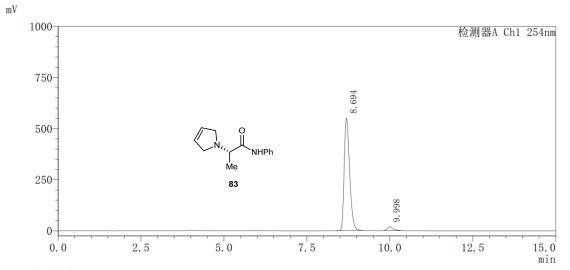
检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	8.547	11753416	49.824			
2	9.359	11836688	50.176			

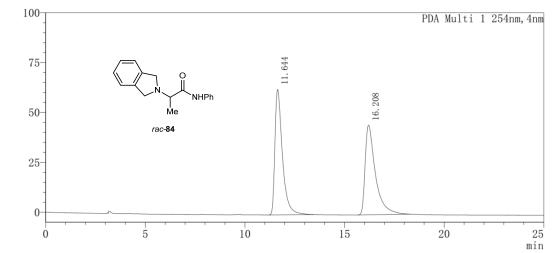

Peak Table

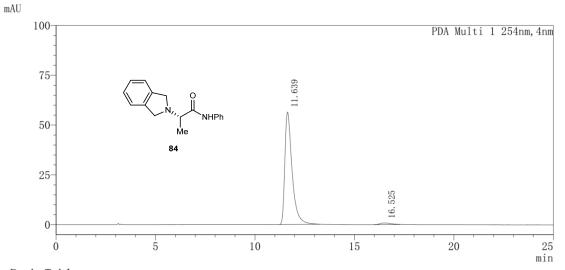
检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	8.550	15283323	94.985			
2	9.379	806914	5.015			



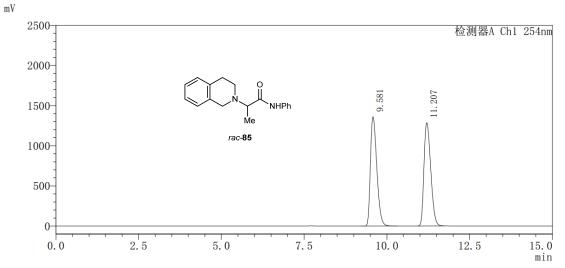
Peak Table

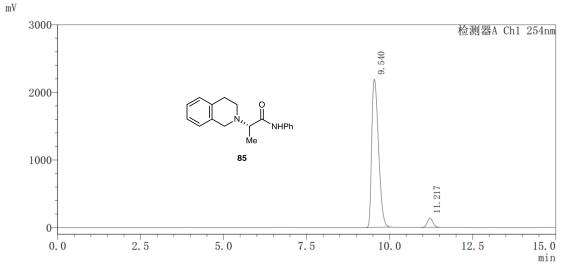

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	9.285	18462073	48.877				
2	11.661	19310399	51.123				


PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	9.365	416961	4.394				
2	11.737	9072797	95.606				

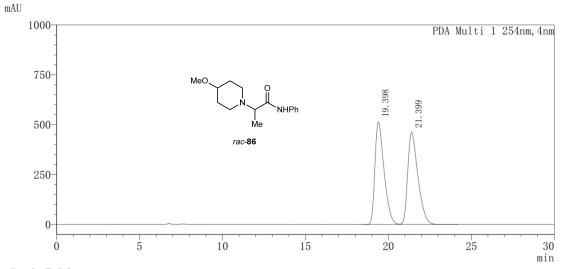

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	8.	683	8846574	49.707
2	9.9	932	8950750	50.293

检测器A Ch1 254nm				
Peak#	Ret. Time	e Area	Area%	
1	8.694	6295302	96.463	
2	9.998	230824	3.537	

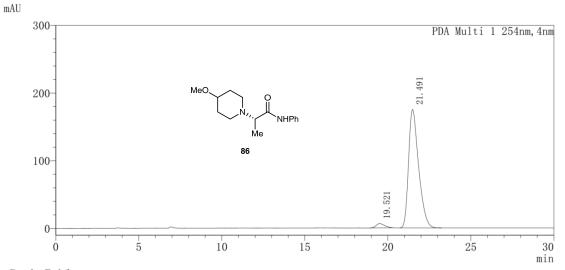

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.644	1650099	50.522
2	16.208	1616031	49.478


Peak Table

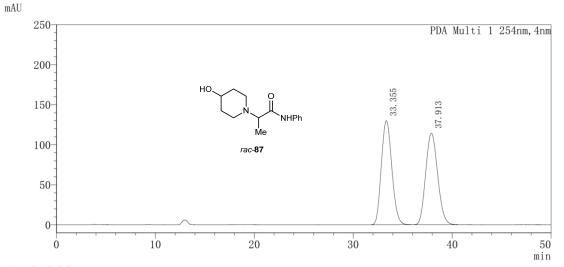
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.639	1431117	98.032
2	16.525	28731	1.968


mAU

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	9.	581	18307666	49.998
2	11.	207	18308837	50.002

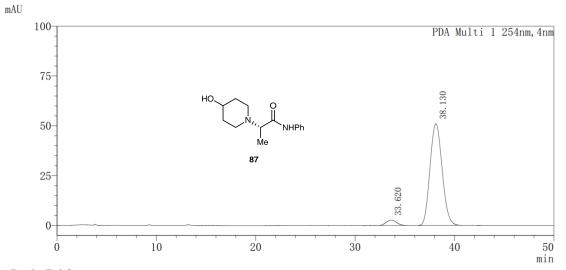


检测器	检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	9.540	31309836	95.045			
2	11.217	1632219	4.955			

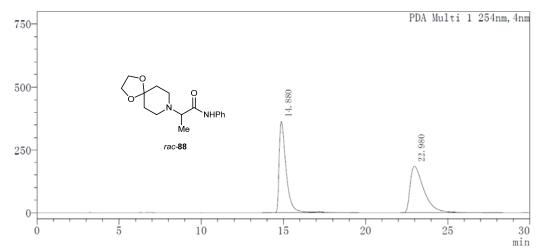


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.398	19818549	49.888
2	21.399	19907160	50.112

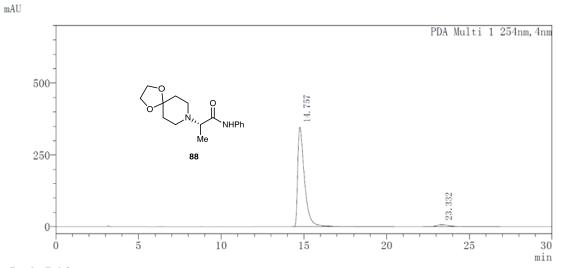


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	19.521	229491	3.004			
2	21.491	7410483	96.996			

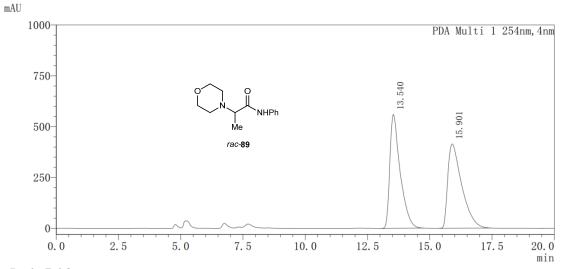


Peak Table

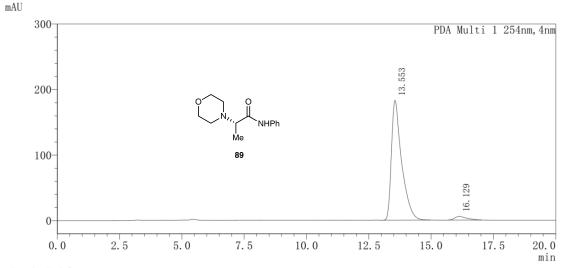
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	33.355	9595221	50.017	
2	37.913	9588792	49.983	



PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	33.620	184144	4.085			
2	38.130	4324012	95.915			


Peak Table

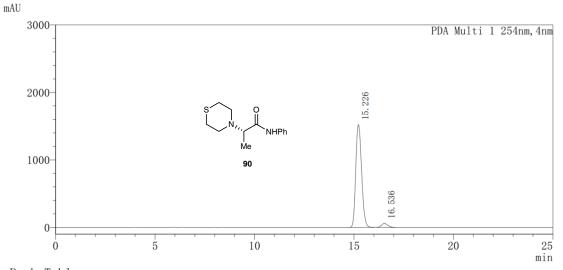
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.880	10801391	50.160
2	22.980	10732575	49.840

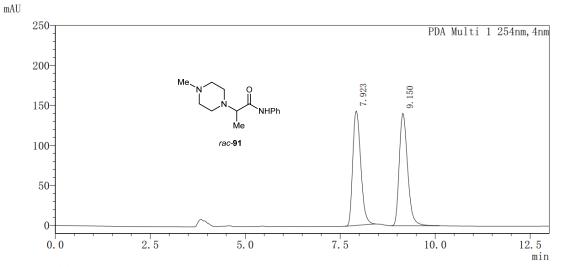

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.757	9955981	96.475
2	23.332	363738	3.525

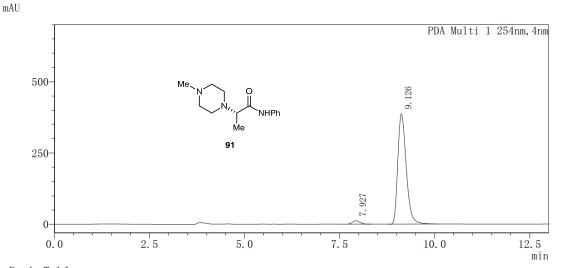
mAU

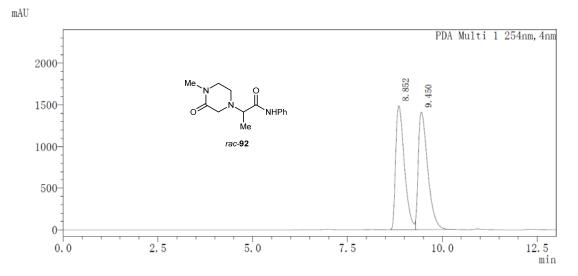


Peak Table

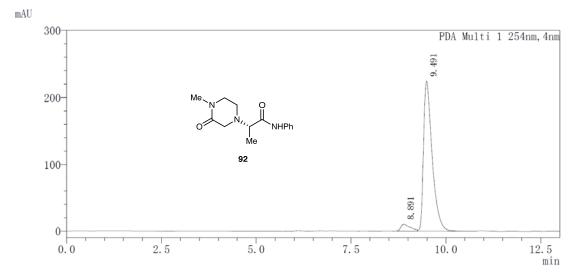

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	13.	540	16173982	49.953
2	15.	901	16204517	50.047

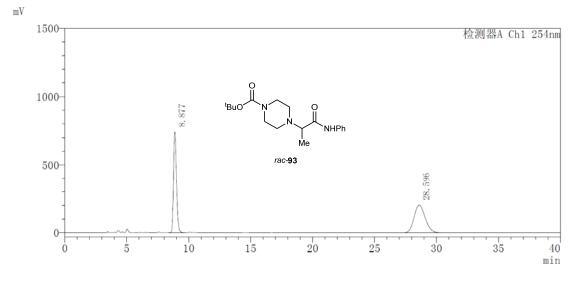

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	13.553	5243159	96.586		
2	16.129	185319	3.414		


PDA Ch1 254nm				
Peak#	Ret. '	Time	Area	Area%
1	15.2	225	6276154	50.157
2	16.4	93	6236859	49.843


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	15.226	31072824	96.086		
2	16.536	1265733	3.914		

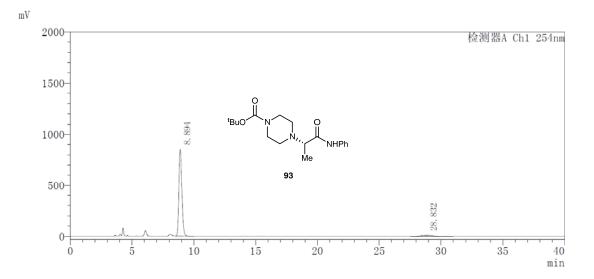
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.923	2094990	49.289		
2	9.150	2155472	50.711		


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	7.927	165086	2.688		
2	9.126	5976254	97.312		

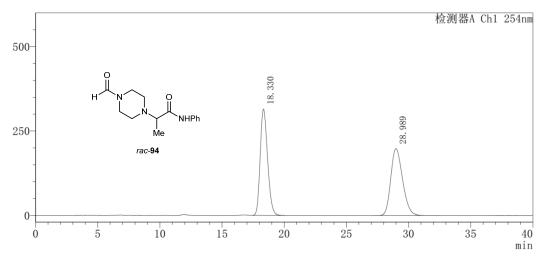

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8.852	23463355	49.440
2	9.450	23995086	50.560

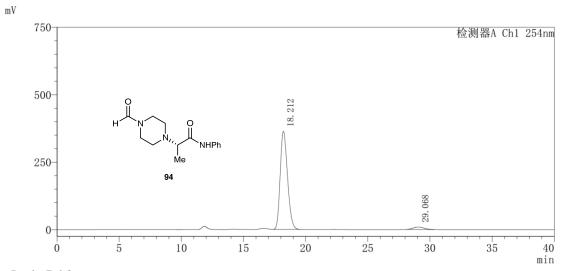


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	8.891	176498	4.821			
2	9.491	3484675	95.179			

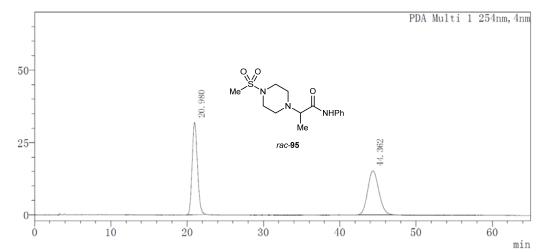


Peak Table

检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.877	12438915	49.743	
2	28.596	12567415	50.257	

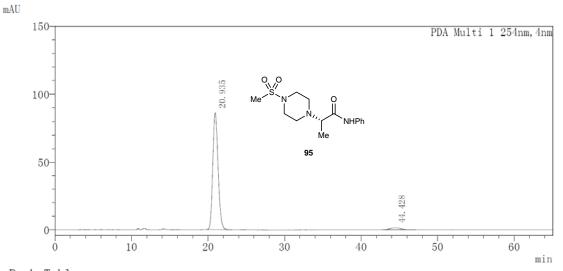


检测器	检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	8.894	14264299	95.928		
2	28.832	605509	4.072		

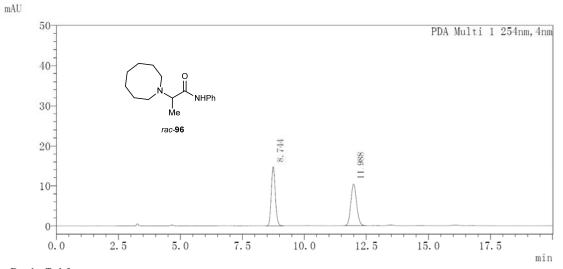


mV

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	18.	330	12979518	49.837
2	28.	989	13064186	50.163



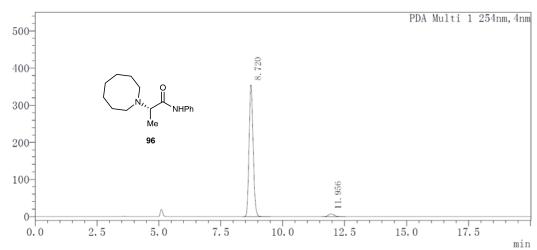
检测器	检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	18.212	14833675	96.357		
2	29.068	560794	3.643		



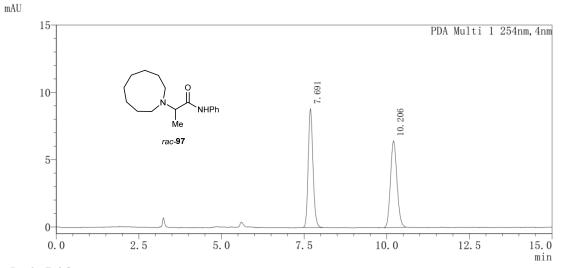
Peak Table

PDA	PDA Ch1 254nm				
Peal	k#Ret	. Time	Area	Area%	
1	2	0.980	1544674	50.282	
2	4	4.362	1527332	49.718	

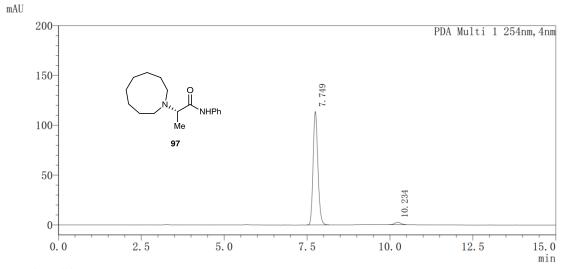
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	20.935	4143233	96.325		
2	44.428	158091	3.675		



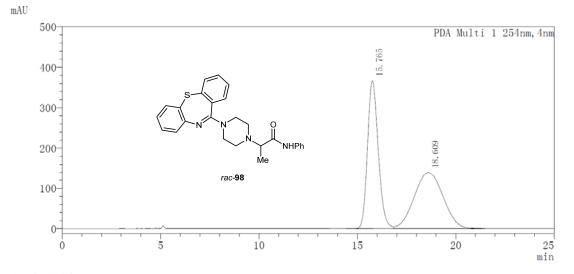
Peak Table


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8.744	167399	49.950
2	11.988	167736	50.050

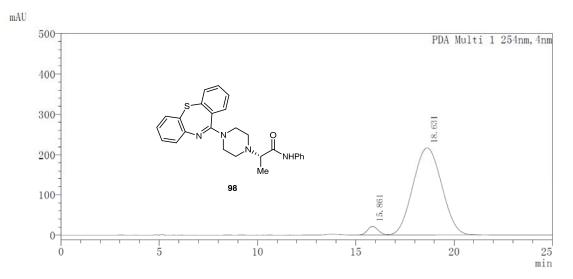


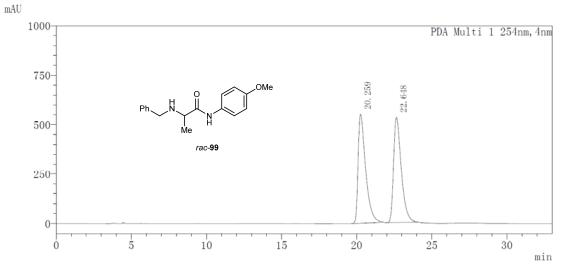
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.720	4050948	97.248		
2	11.956	114642	2.752		



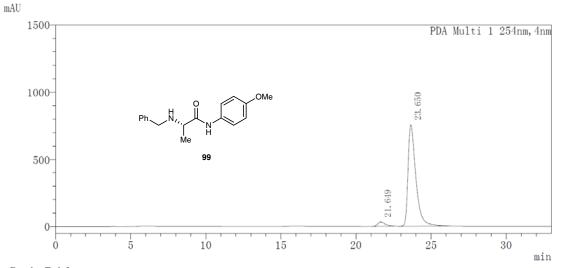
Peak Table

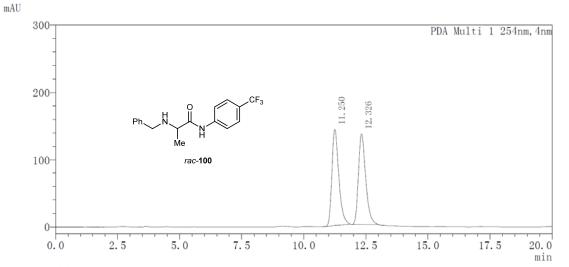
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.691	88503	50.082	
2	10.206	88214	49.918	


PDA Ch1 254nm					
Pea	k#	Ret.	Time	Area	Area%
1		7.	749	1144599	97.318
2		10.	234	31539	2.682

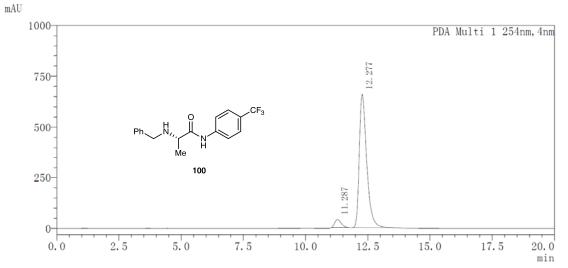

Peak Table

PDA	Ch1	254nm	


Peak#	Ret. Ti	me Area	Area%
1	15.76	5 13925837	49.675
2	18.60	9 14108315	50.325


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.861	826275	3.620
2	18.631	21995881	96.380

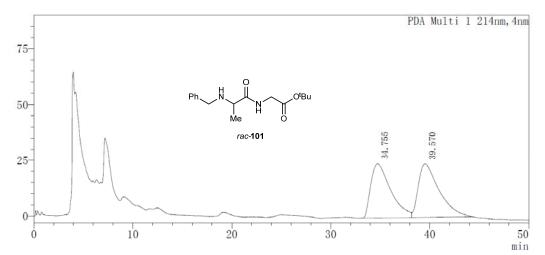
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.259	19244018	50.224
2	22.648	19072528	49.776



PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	21.649	1007908	3.564		
2	23.650	27273249	96.436		

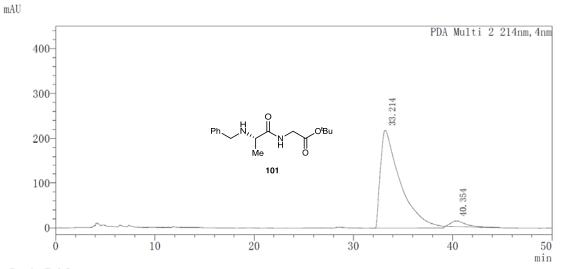
Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.250	2765492	50.139
2	12.326	2750125	49.861

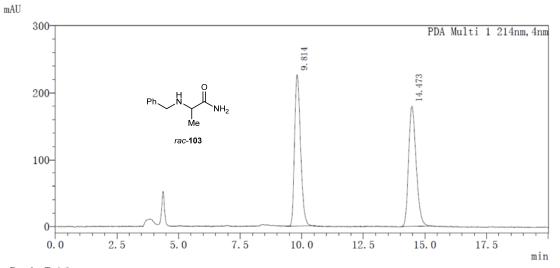


 PDA
 Ch1
 254nm

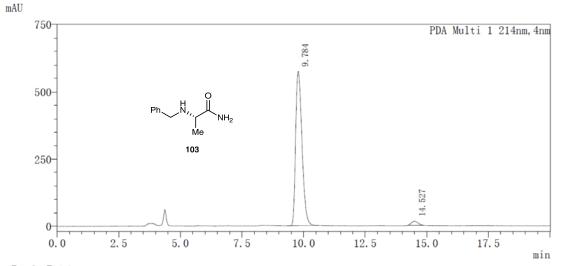
 Peak#
 Ret.
 Time
 Area
 Area%


 1
 11.287
 731610
 5.078

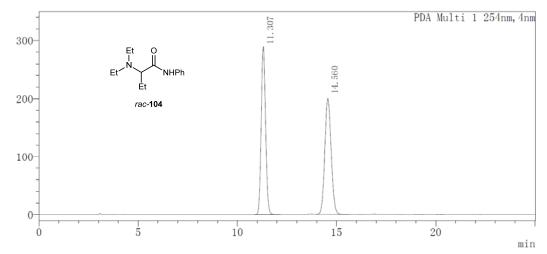
 2
 12.277
 13675036
 94.922


Peak Table

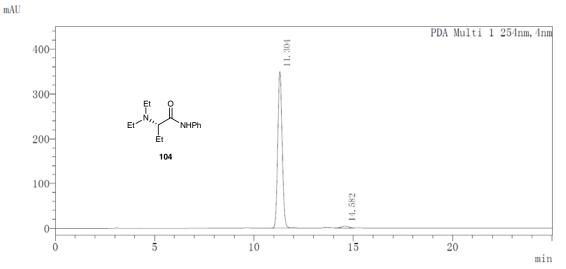
PDA Ch1 214nm					
Peak#	Ret. Time	Area	Area%		
1	34.755	3388981	49.197		
2	39.570	3499564	50.803		

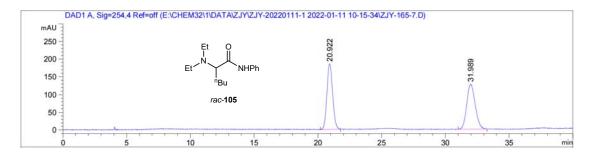

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	33.214	30327644	95.894		
2	40.354	1298576	4.106		

mAU


Peak Table

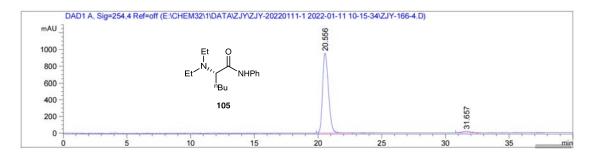
PDA Ch1 214nm						
Peak#	Ret. Time	Area	Area%			
1	9.814	3832729	49.974			
2	14.473	3836736	50.026			


PDA Ch	PDA Ch1 214nm						
Peak#	Ret. Time	Area	Area%				
1	9.784	10283348	97.314				
2	14.527	283844	2.686				



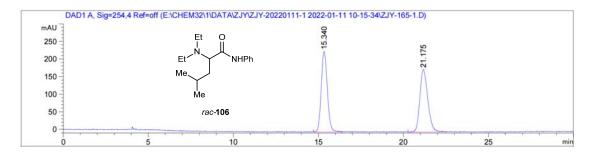
Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.307	4449423	49.998			
2	14.560	4449789	50.002			

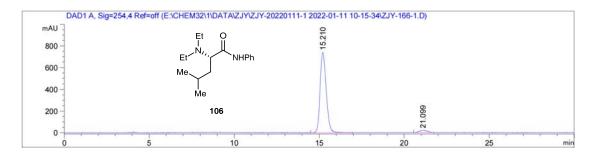


PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.304	5387567	98.193			
2	14.582	99139	1.807			

Signal 1: DAD1 A, Sig=254,4 Ref=off

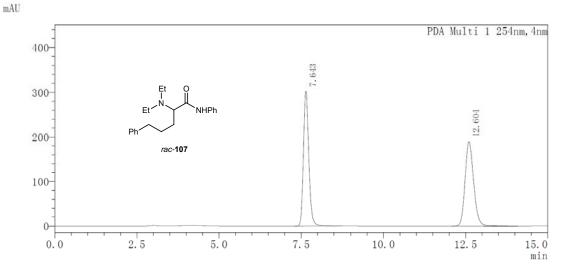

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	20.922	BV R	0.4596	5770.98486	185.16542	49.5125
2	31.989	VV R	0.5554	5884.63379	127.74808	50.4875

Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	20.556	MM R	0.5320	3.04835e4	954.95331	97.3162
2	31.657	MM R	0.7351	840.66663	19.06111	2.6838

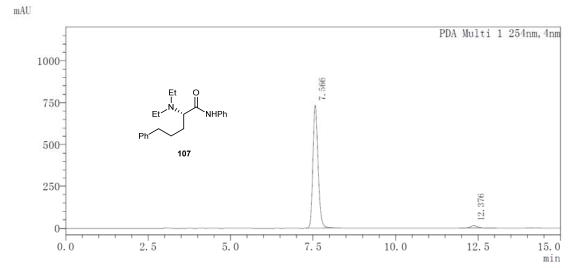
Totals : 3.13241e4 974.01442

Signal 1: DAD1 A, Sig=254,4 Ref=off


#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	15.340	BV R	0.3685	5650.48535	228.28624	49.7100
2	21.175	VV R	0.4521	5716.40967	177.10173	50.2900
Total	s :			1.13669e4	405.38797	

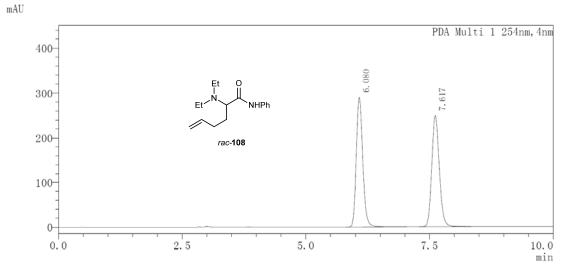
Signal 1: DAD1 A, Sig=254,4 Ref=off

				Area [mAU*s]	0	
1	15.210	MM R	0.4151	1.84114e4	739.19263	96.6689
2	21.099	MM R	0.5093	634.44165	20.76370	3.3311


Totals: 1.90458e4 759.95633

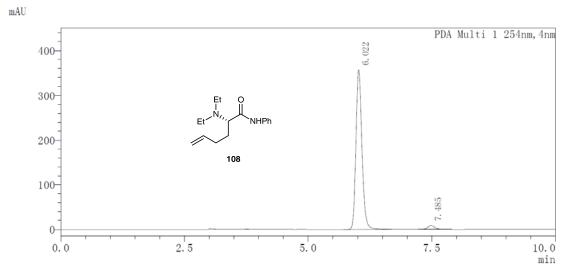
Peak Table

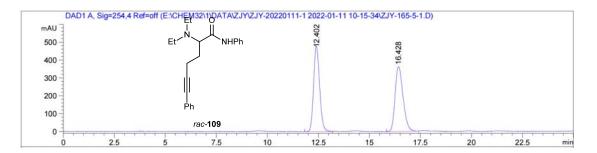
PDA	Ch1	254nm


Peak#	Ret. Time	Area	Area%
1	7.643	3420372	49.843
2	12.604	3441875	50.157

PDA	Ch	1	254nm	
_		_		_

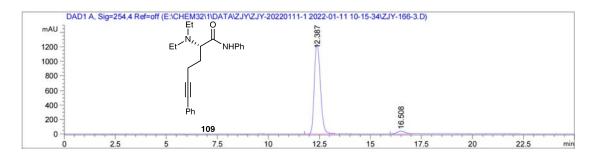
Peak#	Ret. Time	Area	Area%
1	7.566	8005948	97.205
2	12.376	230214	2.795


S531


Peak Table

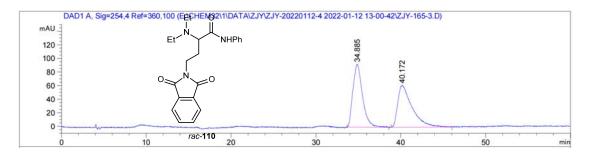
PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	6.080	2648168	50.113
2	7.617	2636185	49.887

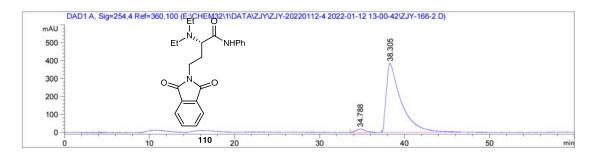

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	6.022	3019042	97.279			
2	7.485	84447	2.721			

Signal 1: DAD1 A, Sig=254,4 Ref=off

#	[min]		[min]	Area [mAU*s]	[mAU]	%	
1	12.402	BV R	0.3168	9789.81348	478.21973	49.9561	
2	16.428	BV R	0.4108	9807.02832	363.50250	50.0439	

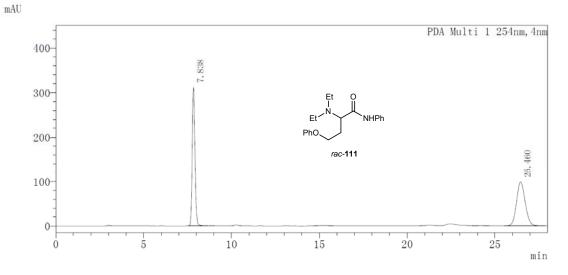


Signal 1: DAD1 A, Sig=254,4 Ref=off


Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 12.387 VV R 0.3250 2.57855e4 1237.81445 96.4664 2 16.508 BB 0.3057 944.53394 37.52529 3.5336

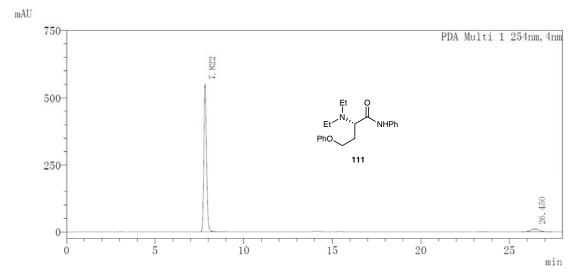
Totals : 2.67300e4 1275.33974

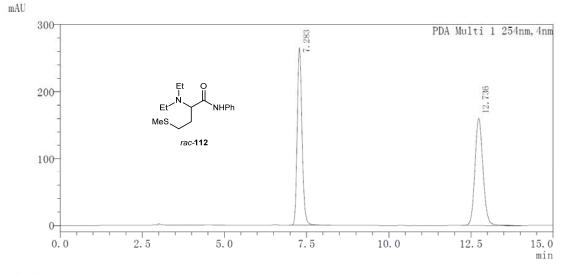
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	34.885	MM R	1.3089	7283.23486	92.74132	50.1853
2	40.172	MM R	1.9418	7229.45703	62.05247	49.8147
Total	s :			1.45127e4	154.79379	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

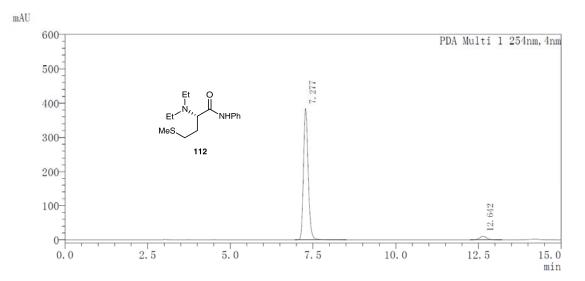
Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 34.788 MM R 1.2517 1396.15027 18.59076 2.9167 2 38.305 MM R 2.0142 4.64713e4 384.53253 97.0833

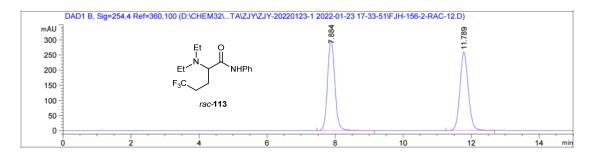

Totals : 4.78675e4 403.12329


Peak Table

PDΔ	Ch1	254nm
I DA	oni	20 mm

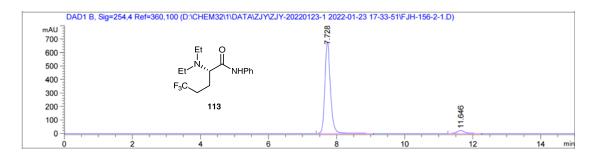
Peak#	Ret. Time	Area	Area%
1	7.838	3383405	49.974
2	26.460	3386924	50.026


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.822	5773138	94.310
2	26.450	348292	5.690


Peak Table

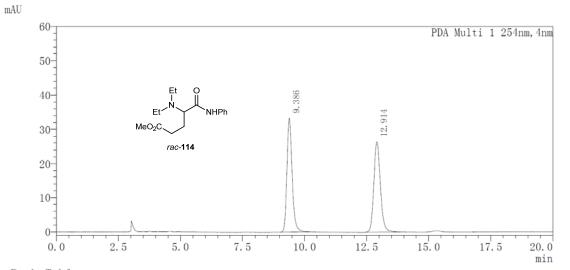
PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.283	2711116	49.879
2	12.736	2724269	50.121

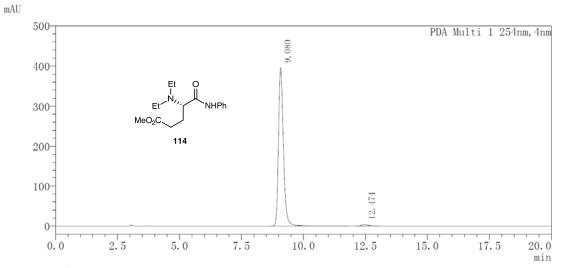


PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	7.277	3792837	95.966			
2	12.642	159422	4.034			

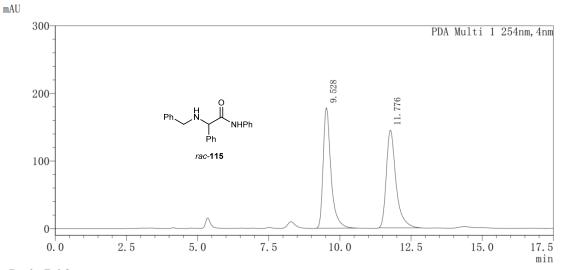
Signal 2: DAD1 B, Sig=254,4 Ref=360,100


				Area [mAU*s]	-	
1	7.884	BB	0.2317	4432.55029	297.66904	50.0920
2	11.789	BB	0.2604	4416.26904	259.71228	49.9080
Total	s :			8848.81934	557.38132	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100


Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 0.1717 7628.06348 675.65509 96.3487 1 7.728 BB 2 11.646 BB 0.2207 289.08072 19.99765 3.6513

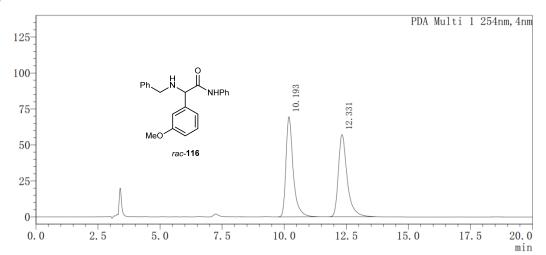
Totals : 7917.14420 695.65274



Peak Table

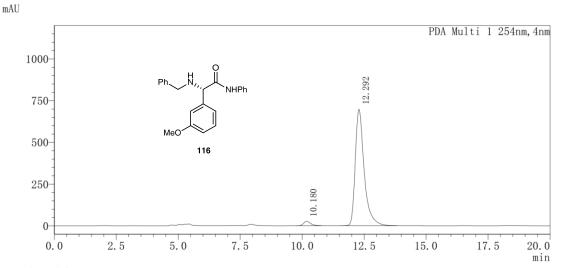
PDA Ch1 254nm								
Peak#	Ret. Time	Area	Area%					
1	9.386	485202	50.066					
2	12.914	483925	49.934					

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	9.080	5471343	98.637				
2	12.474	75616	1.363				

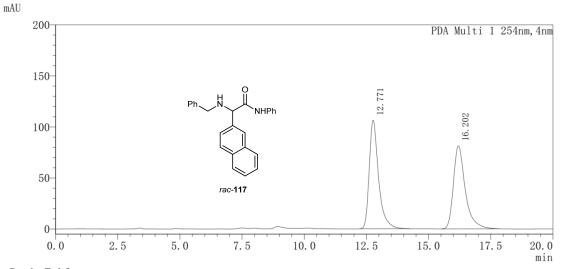


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.528	3401783	49.966
2	11.776	3406451	50.034

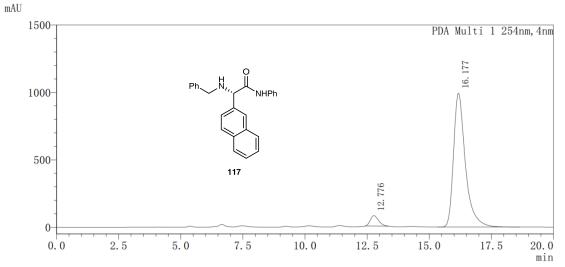


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.538	326486	3.054
2	11.781	10365105	96.946

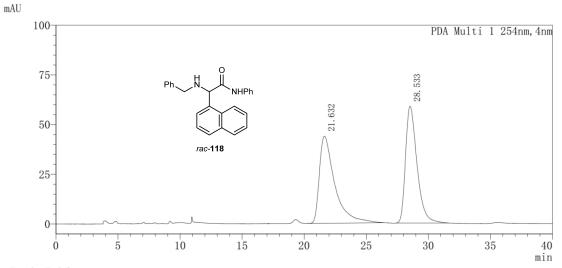


Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	10.193	1404887	49.876	
2	12.331	1411890	50.124	

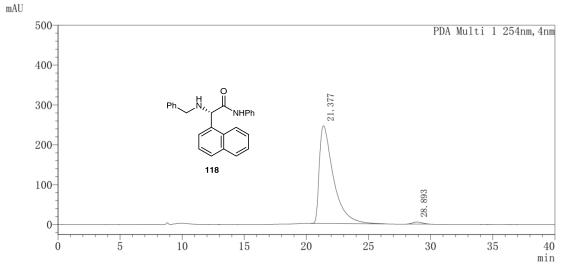


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.180	533215	2.950
2	12.292	17543061	97.050

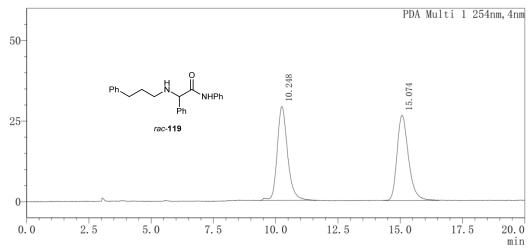


Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	12.771	2781684	50.711	
2	16.202	2703708	49.289	

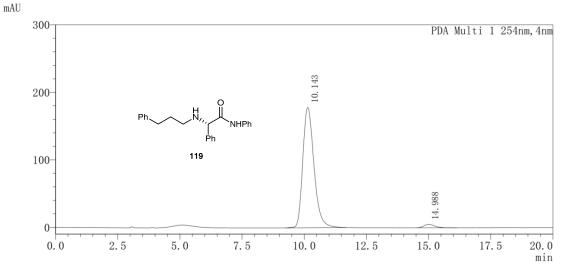


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.776	1781546	5.119
2	16.177	33019701	94.881



Peak Table

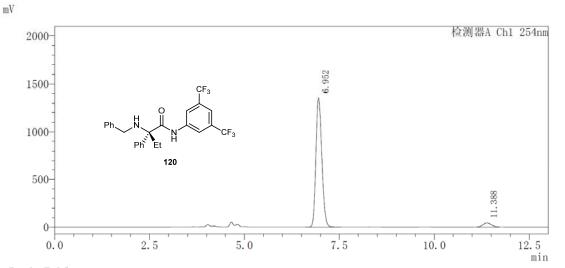
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	21.632	3782749	50.017	
2	28.533	3780112	49.983	



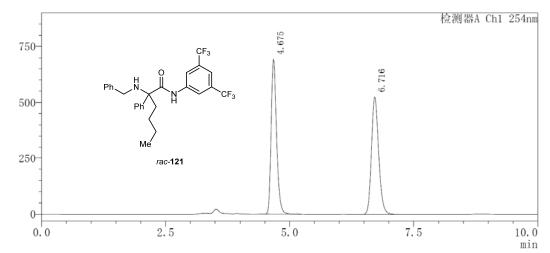
PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	21.377	19353761	98.579		
2	28.893	278939	1.421		

Peak Table

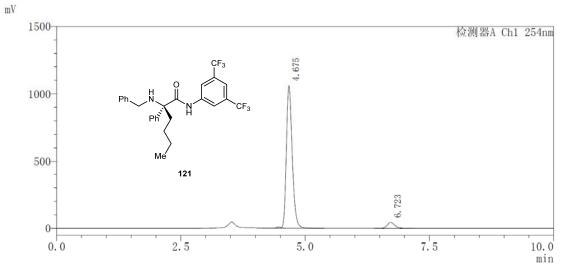
PDA Ch1 254nm				
Peak#	Ret. Time	e Area	Area%	
1	10.248	841047	49.940	
2	15.074	843052	50.060	



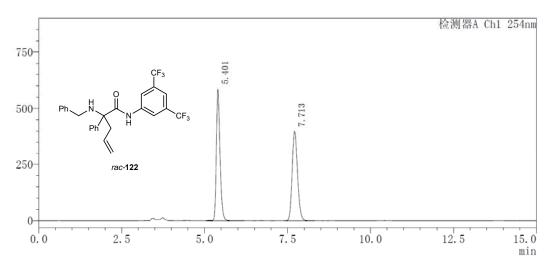
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.143	5616053	97.391
2	14.988	150446	2.609



检测器	检测器A Ch1 254nm			
Peak#	Ret. Time	Area	Area%	
1	6.960	9352184	49.711	
2	11.296	9461049	50.289	

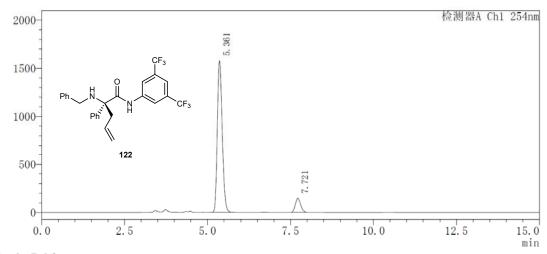


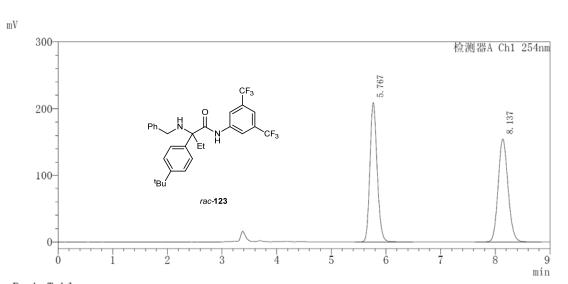
检测器A Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	6.952	14741483	95.558
	2	11.388	685196	4.442


Peak Table

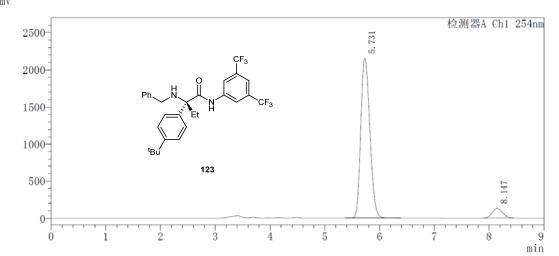
检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	4.675	5253471	49.860
2	6.716	5282926	50.140

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	4.675	8729896	95.086
2	6.723	451186	4.914

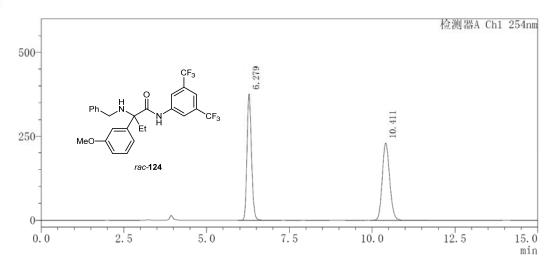

mV



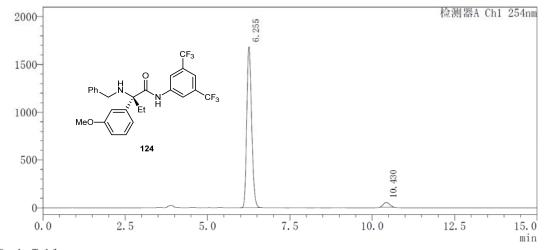
检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	5.401	4476822	50.014
2	7.713	4474357	49.986

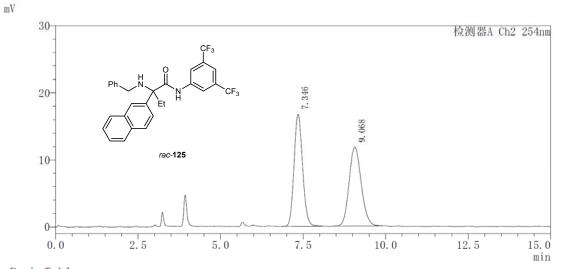


检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	5.361	16201881	91.024
2	7.721	1597707	8.976

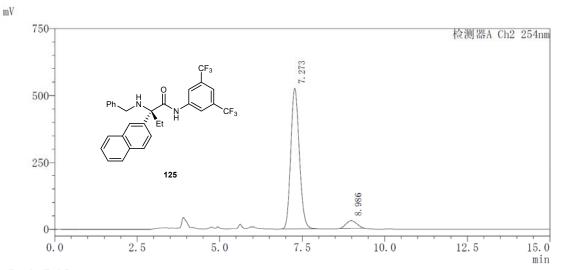


检测器	A Ch1 254	nm	
Peak#	Ret. Time	Area	Area%
1	5.767	1918833	49.767
2	8.137	1936766	50.233

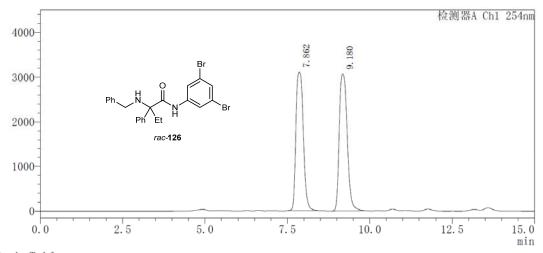

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	5.731	24926072	93.573
2	8.147	1712019	6.427


Peak Table

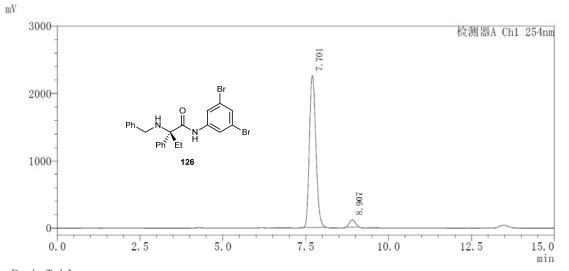
检测器	A Ch1 254r	nm	
Peak#	Ret. Time	Area	Area%
1	6.279	3539361	49.846
2	10.411	3561234	50.154

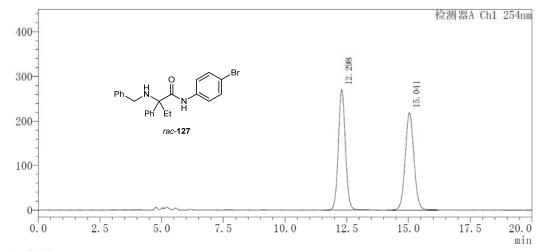


检测器	A Ch1 254n	ım	
Peak#	Ret. Time	Area	Area%
1	6.255	17399567	96.182
2	10.430	690639	3.818

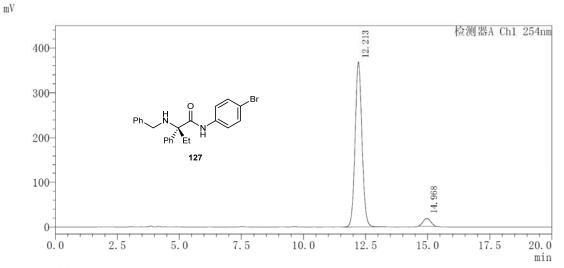


Peak Table

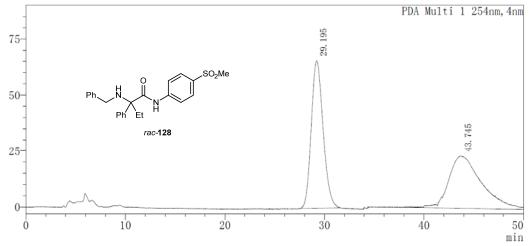

检测器	A Ch2 254n	m	
Peak#	Ret. Time	Area	Area%
1	7.346	301032	50.263
2	9.068	297881	49.737


检测器	A Ch2 254n	m	
Peak#	Ret. Time	Area	Area%
1	7.273	9525711	93.494
2	8.986	662907	6.506

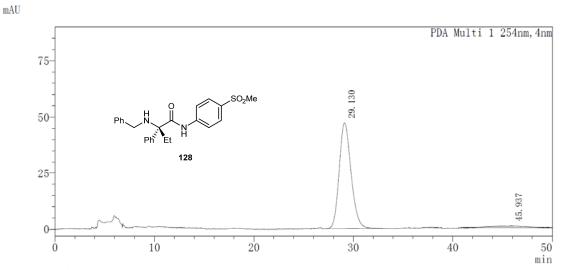
检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	7.862	48674582	48.606
2	9.180	51467351	51.394

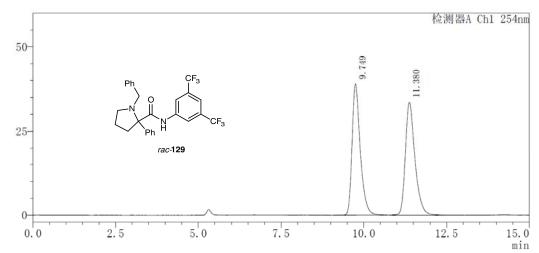

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	7.701	30704112	95.795
2	8.907	1347815	4.205

Peak Table


	检测	器A	Ch1	254
--	----	----	-----	-----

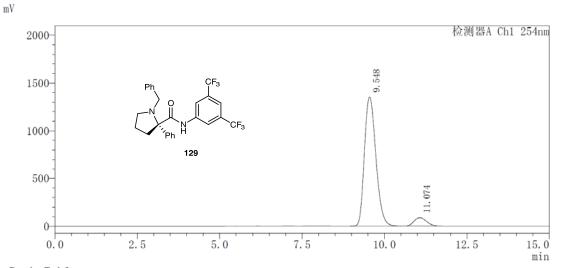
检测器	A Ch1	254n	m	
Peak#	Ret.	Time	Area	Area%
1	12.1	298	5370324	49.941
2	15.0	041	5383120	50.059

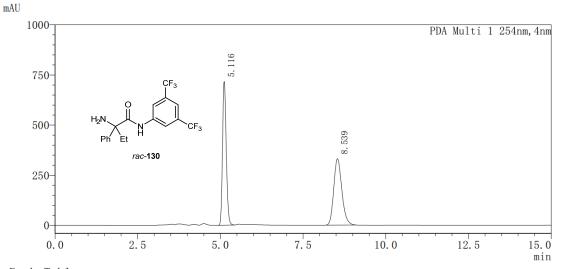

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	12.213	7124997	94.936
2	14.968	380081	5.064



Peak Table

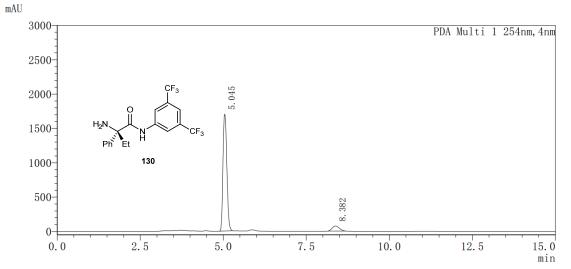
PI	DA Ch	1 254	1nm		
P	eak#	Ret.	Time	Area	Area%
	1	29.	195	5444088	50.520
	2	43.	745	5332068	49.480


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	29.130	3909478	95.639
2	45.937	178257	4.361

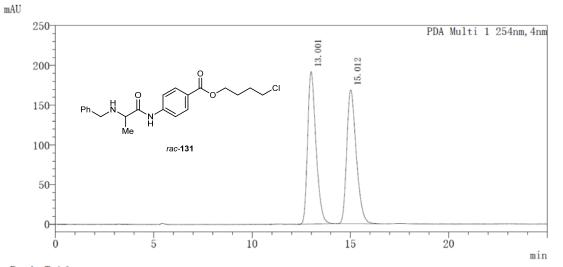

Peak Table

检测器A Ch1 25							
	۰.	0.5		01	ELET A	SEL	4.
	1	25	٦L	Ch	23 A	STUT	ANT.

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	9.749	672987	49.894
2	11.380	675847	50.106

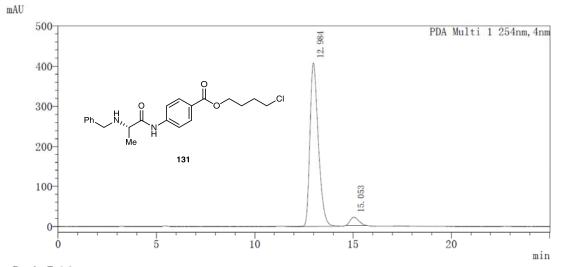


检测器	A Ch1 254n		
Peak#	Ret. Time	Area	Area%
1	9.548	32682775	93.280
2	11.074	2354406	6.720

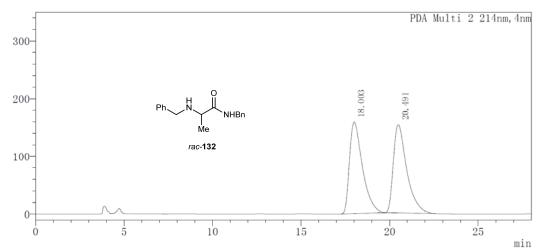


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.116	5575407	49.745
2	8.539	5632597	50.255

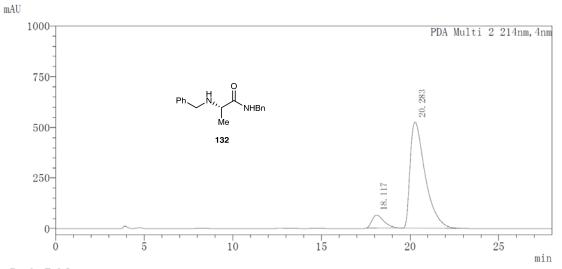


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.045	13834540	92.520
2	8.382	1118504	7.480

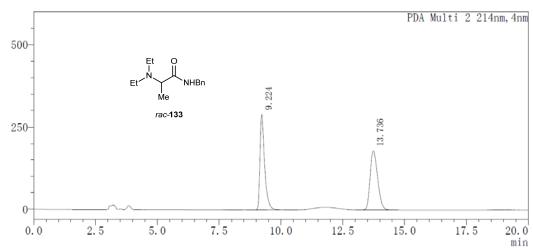


Peak Table

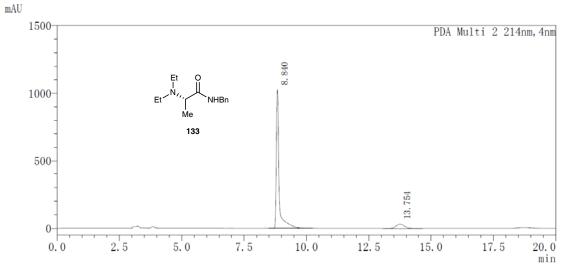
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.001	5688051	50.021
2	15.012	5683162	49.979



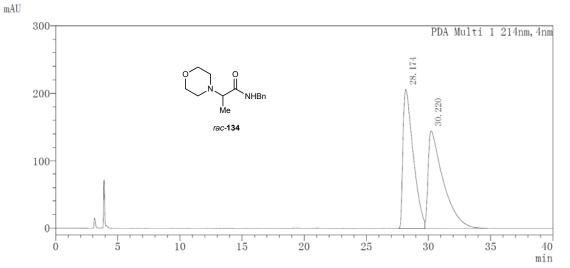
PDA Ch	1 254	1nm		
Peak#	Ret.	Time	Area	Area%
1	12.	984	12109689	94.832
2	15.	053	659955	5.168


Peak Table

PDA Ch2 214nm						
Peak# Ret. Time		Area	Area%			
1	18.003		8072380	50.076		
2 20.491		8047774	49.924			

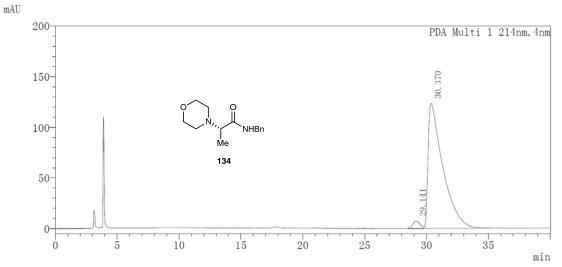

Peak Table

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	18.117	3053021	8.944		
2	20.283	31081739	91.056		

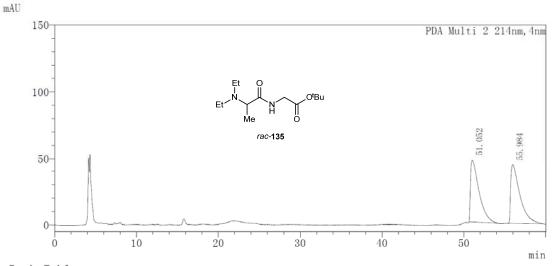


Peak Table

PDA Ch2 214nm					
Peak# Ret. Time		Area	Area%		
1	9.224	3751888	49.772		
2	13.736	3786262	50.228		

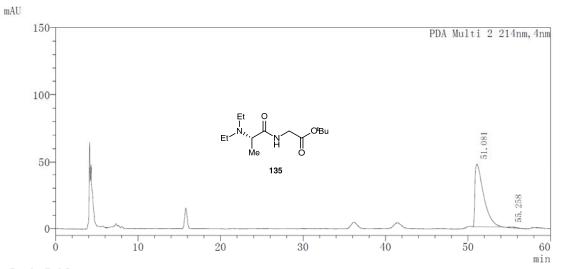


PDA Ch	PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%			
1	8.840	8073122	91.777			
2	13.754	723302	8.223			

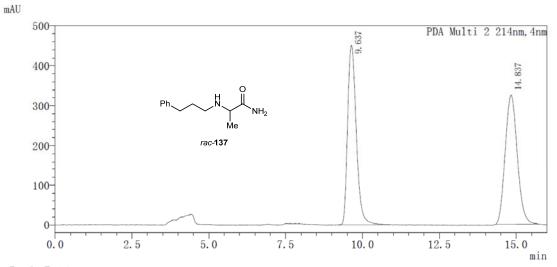


Peak Table

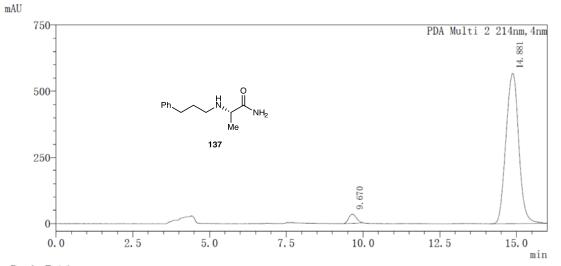
PDA Ch	1 214nm		
Peak#	Ret. Tim	e Area	Area%
1	28.174	11856948	49.287
2	30.220	12199942	50.713


PDA Ch1 214nm						
Peak#	Ret. Time	Area	Area%			
1	29.141	291198	2.769			
2	30.370	10223566	97.231			

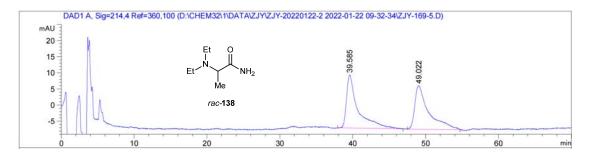
Peak Table


PDA	Ch2	21/	h
FDA	UII2	417	tΠ

PDA Ch2 214nm					
Peak#	Ret. T	ime	Area	Area%	
1	51.05	52	3350636	49.454	
2	55.98	34	3424688	50.546	

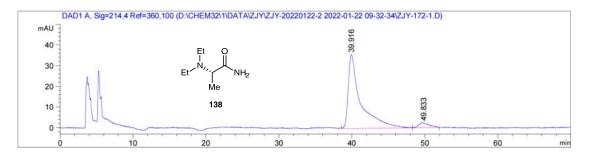

PDA Ch2 214nm

Peak#	Ret.	Time	Area	Area%
1	51.	081	3446560	98.988
2	55.	258	35228	1.012

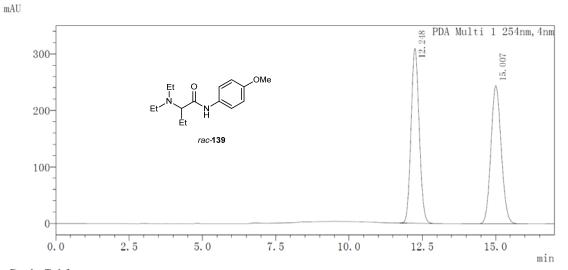


Peak Table

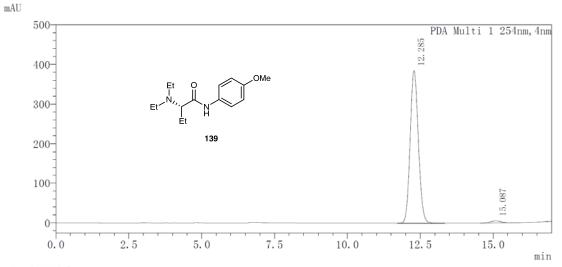
PDA Ch	2 214nm		
Peak# Ret. Ti		Area	Area%
1	9.637	8867147	49.908
2	14.837	8899989	50.092



PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	9.670	593287	3.462
2	14.881	16545409	96.538


Signal 1: DAD1 A, Sig=214,4 Ref=360,100

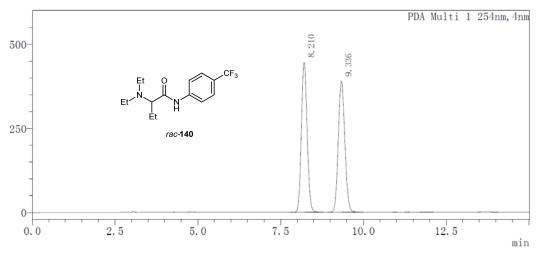
#	[min]	[min]	Area [mAU*s]	[mAU]	%
1	39.585 MM	R 1.8124	1787.79822	16.44020	50.1063
2	49.022 MM	R 2.1976	1780.21301	13.50120	49.8937
Total	s :		3568.01123	29.94140	


Signal 1: DAD1 A, Sig=214,4 Ref=360,100

				Area [mAU*s]	0	
1	39.916	MM R	1.9650	4200.82959	35.63101	94.2319
2	49.833	MM R	1.7445	257.13928	2.45670	5.7681
Total	s:			4457.96887	38.08771	

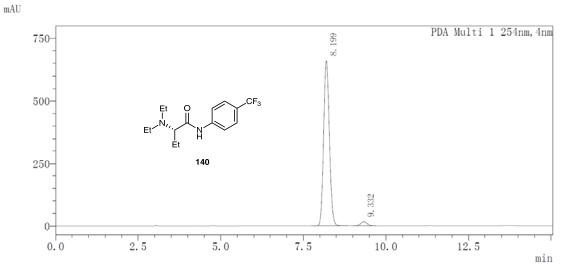
Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.248	5992871	49.962
2	15.007	6001912	50.038

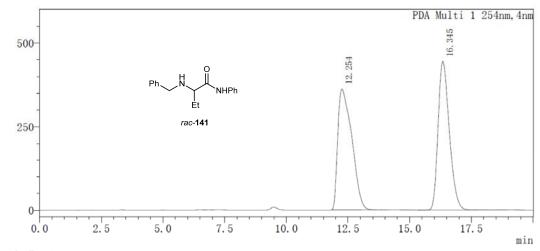


PDA Ch1 254nm

Peak	# Ret.	Time	Area	Area%
1	12.	285	7508808	98.322
2	15.	087	128125	1.678

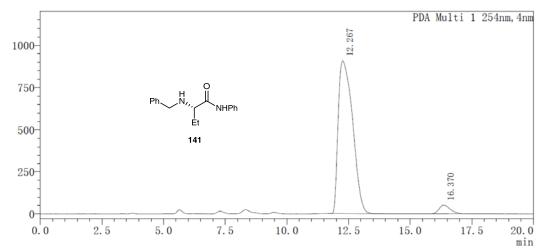

S562

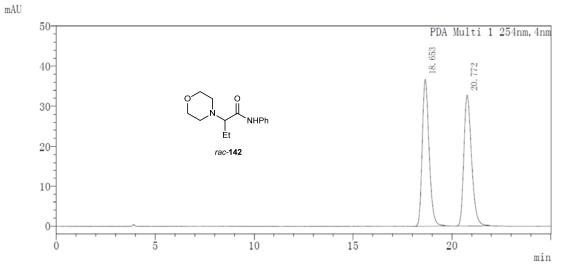
Peak Table


PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	8.210	5382335	49.999
2	9.336	5382606	50.001

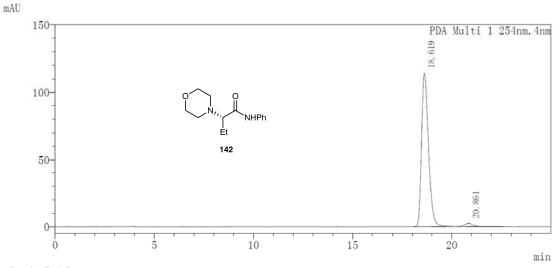
PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8.199	7989718	97.283
2	9.332	223170	2.717




Peak Table

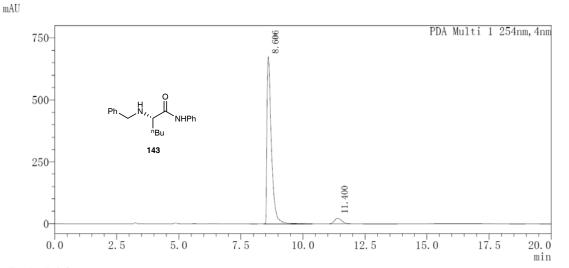
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.254	14334218	50.382		
2	16.345	14117025	49.618		



PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	12.267	36887854	95.827	
2	16.370	1606405	4.173	

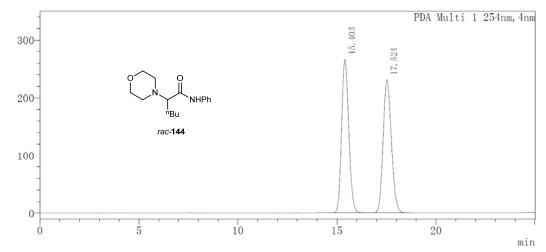

Peak Table

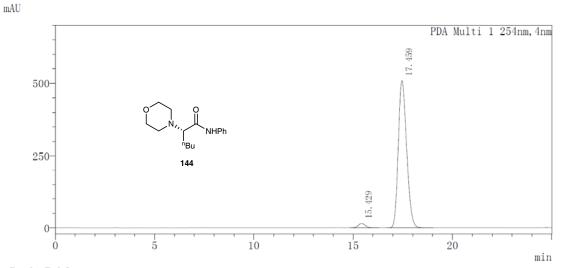
PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.653	886895	50.058
2	20.772	884834	49.942


PDA Ch1 254nm

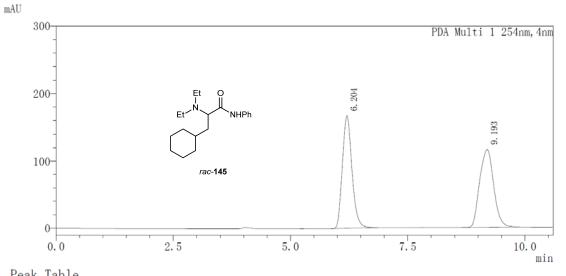
Peak#	Ret. Time	Area	Area%
1	18.619	2777199	97.860
2	20.861	60725	2.140

Peak Table

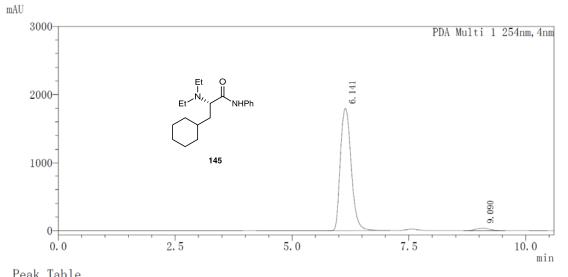

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.672	6443380	50.390
2	11.331	6343609	49.610


PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.606	8421873	95.042	
2	11.400	439341	4.958	

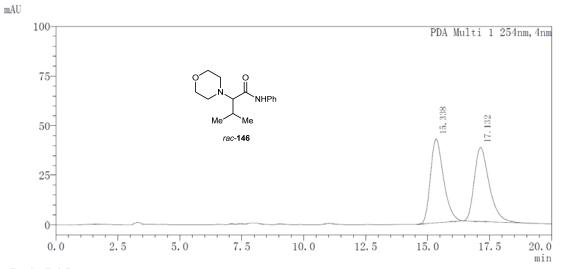
mAU



PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.403	6683462	49.967
2	17.524	6692418	50.033

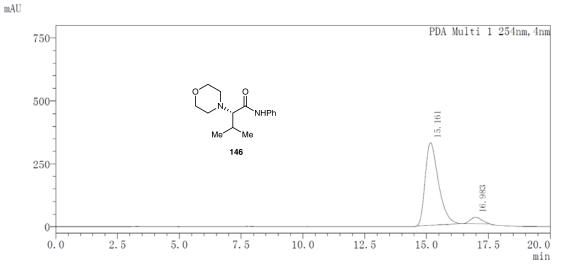


PDA Ch	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%					
1	15.429	375250	2.459					
2	17.459	14884556	97.541					

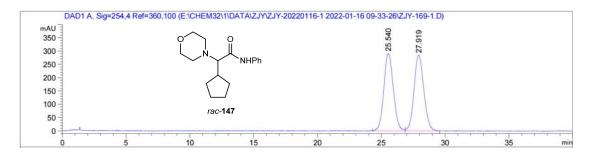


Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	6.204	2389889	50.006			
2	9.193	2389314	49.994			

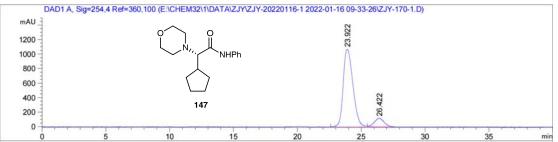


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	6.141	28961799	97.614				
2	9.090	708034	2.386				



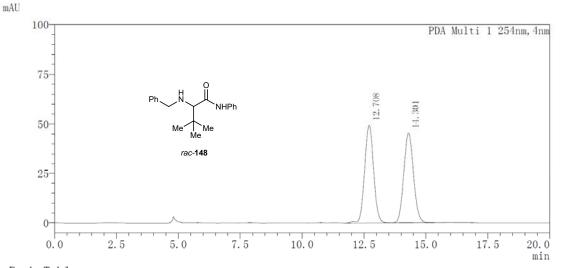
Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	e Area	Area%		
1	15.338	1558062	49.822		
2	17.132	1569164	50.178		

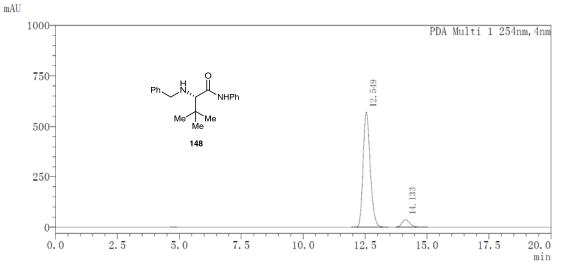


PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	15.161	12303889	93.664				
2	16.983	832328	6.336				

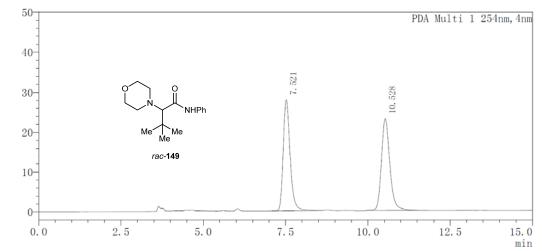
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


				Area [mAU*s]	Height [mAU]	Area %
1	25.540	VV R	0.6187	1.50610e4	291.30521	49.9141
2	27.919	VV R	0.6523	1.51128e4	284.23712	50.0859
Total	s :			3.01737e4	575.54233	

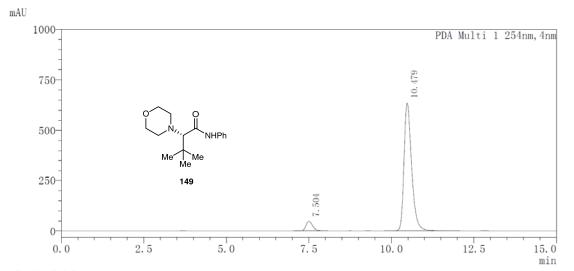
5 10 15 20 25 Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Totals :

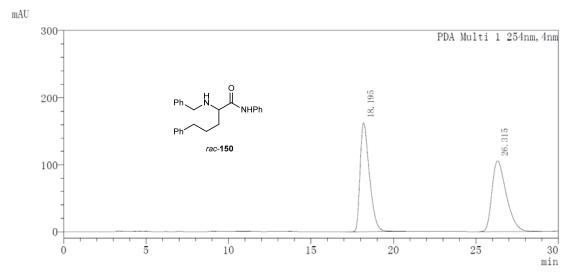
6.20375e4 1183.87867


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.708	1248778	50.250		
2	14.301	1236352	49.750		

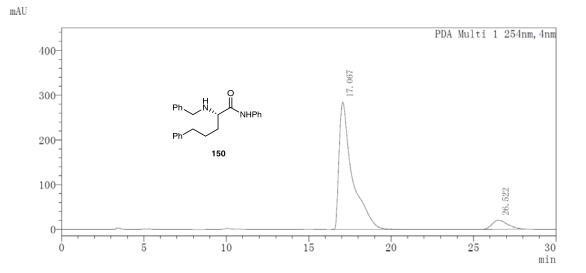

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	12.549	11425235	93.386
2	14.133	809150	6.614



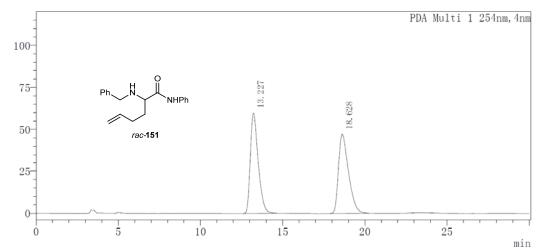
Peak Table

P	PDA Ch1 254nm						
]	Peak#	Ret. Time	Area	Area%			
	1	7.521	405170	49.629			
	2	10.528	411226	50.371			


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	7.504	699637	6.421				
2	10.479	10196538	93.579				

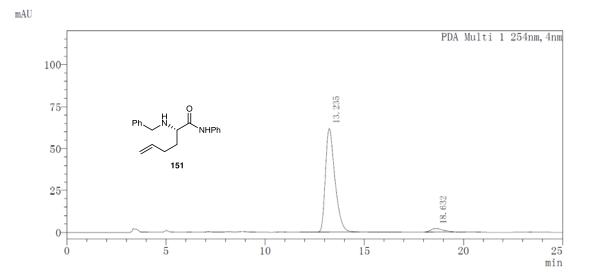
Peak Table

PDA Ch1 254nm

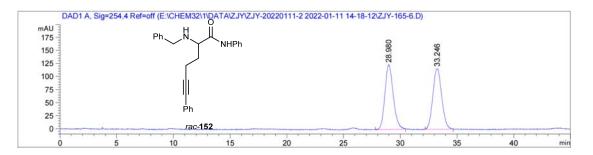

Peak#	Ret.	Time	Area	Area%
1	18.	195	6399270	50.022
2	26.	315	6393727	49.978

Peak Table

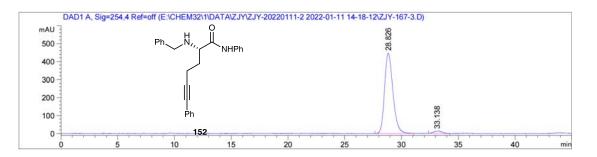
PDA Ch1 254nm


Peak#	Ret.	Time	Area	Area%
1	17.	067	15897674	92.571
2	26.	522	1275830	7.429

PDA Ch1 254nm

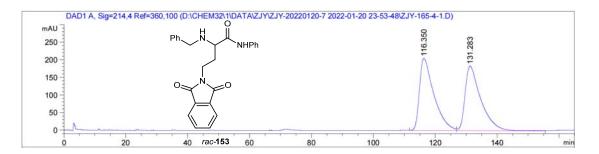

Peak#	Ret.	Time	Area	Area%
1	13.	227	1993921	49.965
2	18.	628	1996734	50.035

Peak Table

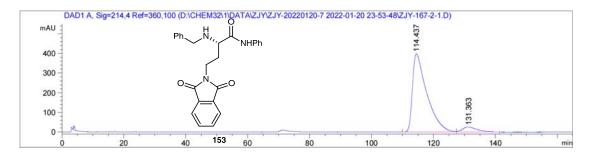

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	13.235	2043468	96.142				
2	18.632	82003	3.858				

mAU

Signal 1: DAD1 A, Sig=254,4 Ref=off

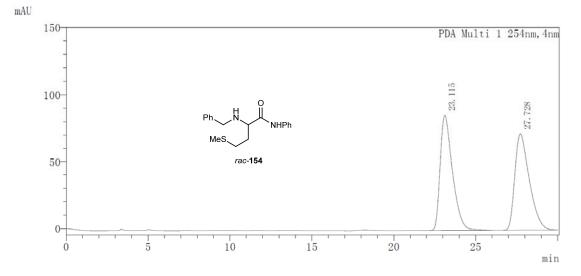

				Area [mAU*s]	•	
1	28.980	VV R	0.6027	6350.08594	124.04106	50.2241
2	33.246	VV R	0.6433	6293.41260	115.82341	49.7759
Total	s :			1.26435e4	239.86447	

Signal 1: DAD1 A, Sig=254,4 Ref=off

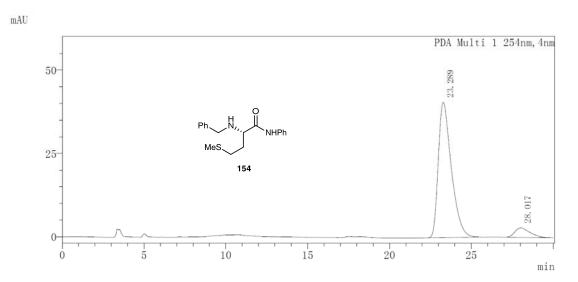

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	28.826	MM R	0.8507	2.27975e4	446.64435	96.8208
2	33.138	MM R	0.8715	748.56732	14.31623	3.1792

Totals : 2.35461e4 460.96057

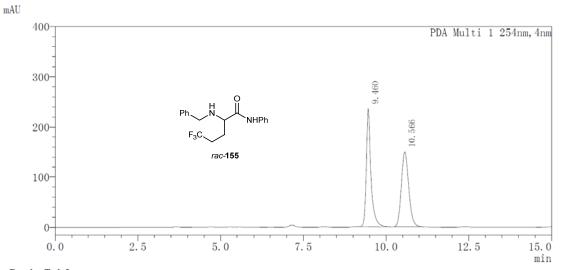
Signal 1: DAD1 A, Sig=214,4 Ref=360,100


Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 116.350 MF R	5.3877	6.63504e4	205.25426	50.5108
2 131.283 FM R	5.8974	6.50083e4	183.71950	49.4892
Totals :		1.31359e5	388.97375	

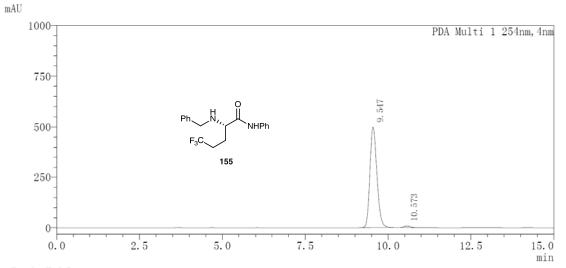
Signal 1: DAD1 A, Sig=214,4 Ref=360,100


Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 114.437 MF R 5.3782 1.28339e5 397.71045 93.8587 2 131.363 FM R 5.4602 8397.38574 25.63233 6.1413

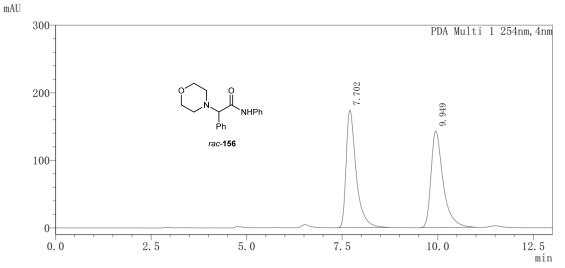
Totals : 1.36736e5 423.34278


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	23.115	4508230	50.330		
2	27.728	4449096	49.670		

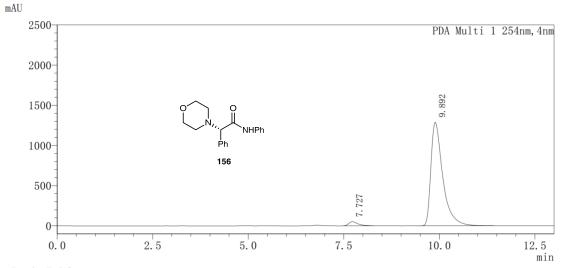

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.289	2247854	92.564	
2	28.017	180575	7.436	

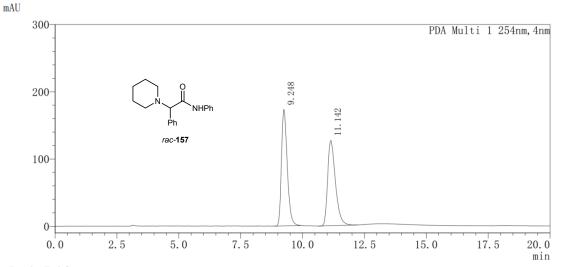


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.460	2280176	49.711		
2	10.566	2306682	50.289		

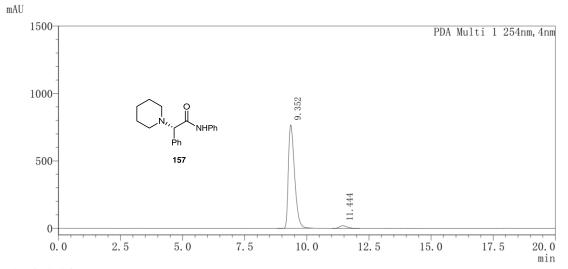


PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.547	7305774	98.680		
2	10.573	97719	1.320		

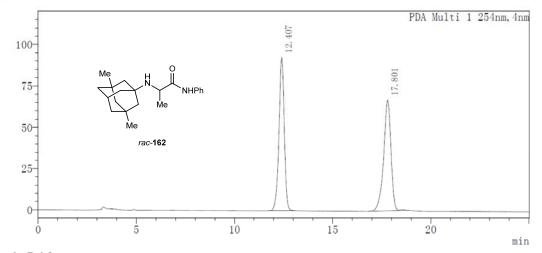


Peak Table

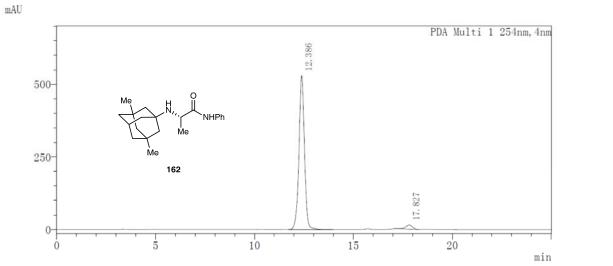
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.702	3157955	50.145		
2	9.949	3139668	49.855		



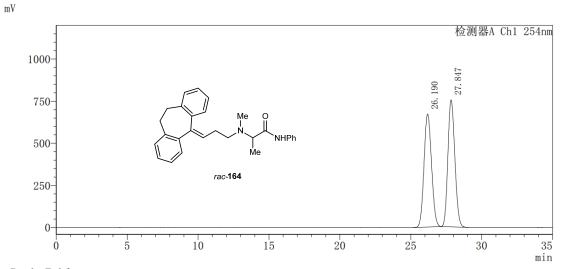
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.727	872024	3.024	
2	9.892	27967797	96.976	


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.248	2826268	50.426		
2	11.142	2778484	49.574		

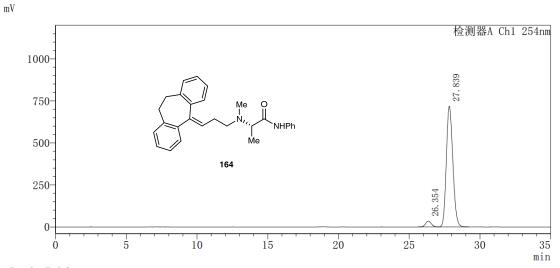

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.352	13448780	96.890	
2	11.444	431628	3.110	

mAU

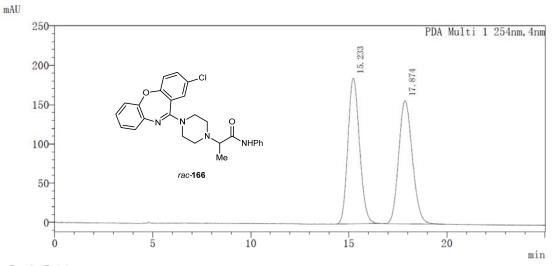


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.407	1744379	49.997
2	17.801	1744584	50.003

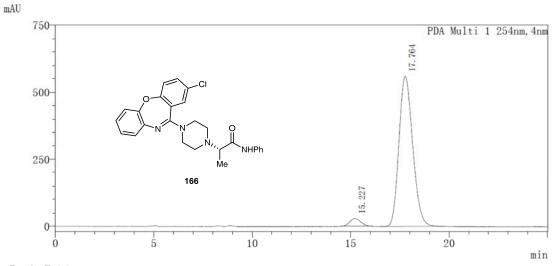


PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	12.386	10192212	97.007			
2	17.827	314473	2.993			

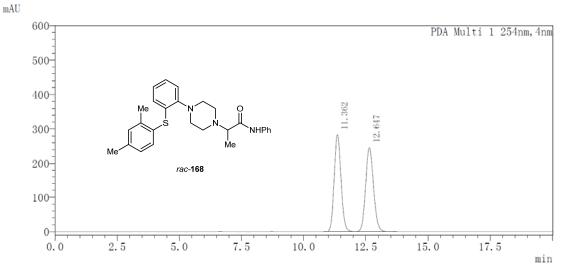


Peak Table

检测器A Ch1 254nm				
Peak#	Ret. T	ime	Area	Area%
1	26.19	90	24752319	49.051
2	27.84	17	25710358	50.949

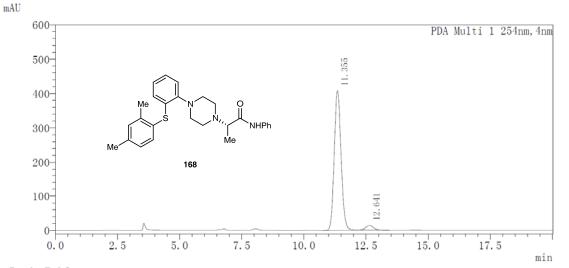


检测器	检测器A Ch1 254nm					
Peak	# Ret. Time	Area	Area%			
1	26.354	9 89134	4.135			
2	27.839	22929786	95.865			

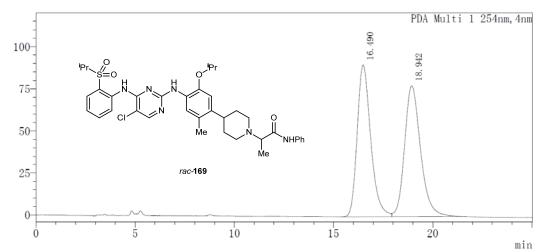


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.233	7695743	50.095		
2	17.874	7666650	49.905		

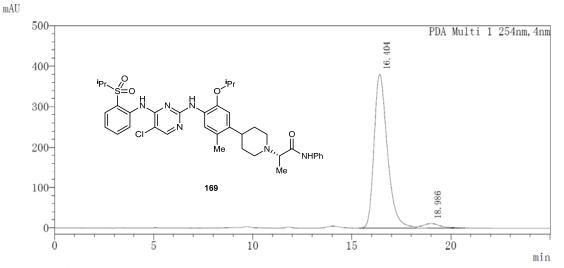


PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	15.227	1169321	4.111				
2	17.764	27271092	95.889				

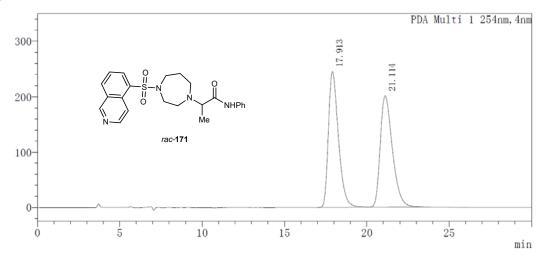


Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.362	5418268	50.047		
2	12.647	5408082	49.953		

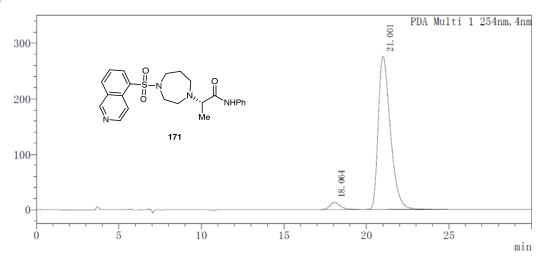


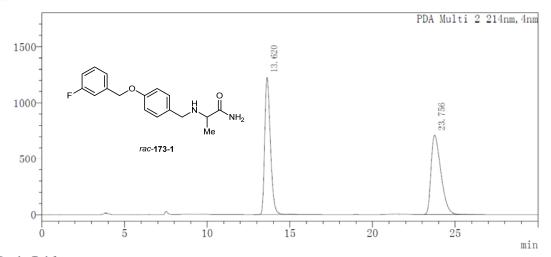
PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	11.355	7815810	95.863				
2	12.641	337320	4.137				


Peak Table

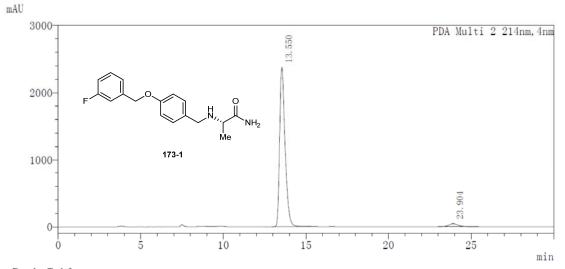
]	PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Area%		
	1	16.490	4295079	49.589		
	2	18.942	4366296	50.411		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	16.404	17837631	96.317			
2	18.986	682076	3.683			


mAU

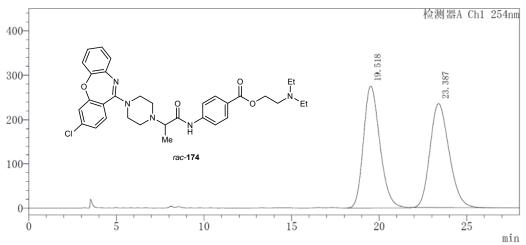

Peak Table

PDA C	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	17.913	10379042	50.031			
2	21.114	10366361	49.969			



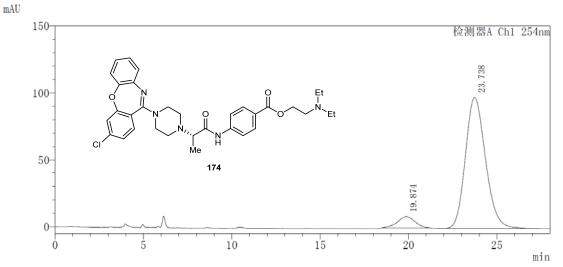
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	18.064	573881	3.905			
2	21.001	14124011	96.095			

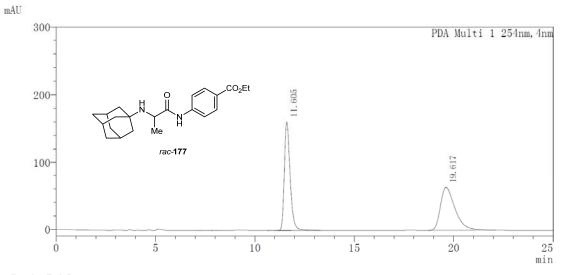
PDA Ch2 214nm					
Peak#	Ret.	Time	Area	Area%	
1	13.	620	29527502	50.081	
2	23.	756	29432228	49.919	



Peak Table

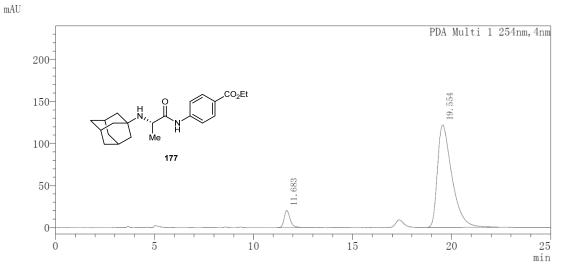
PDA Ch2 214nm


Peak#	Ret. Time	Area	Area%
1	13.550	54650896	96.895
2	23.904	1751264	3.105

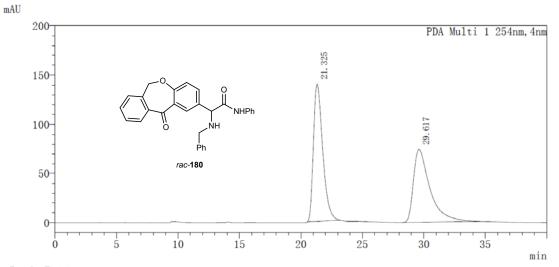


Peak Table

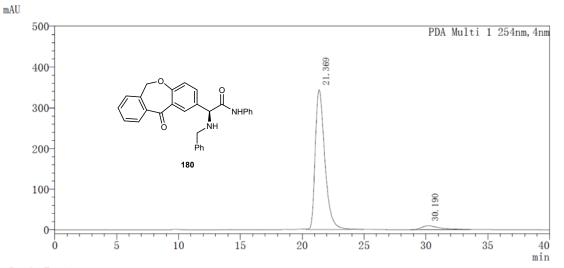
检测器A Ch1 254nm				
Peak#	Ret. Time	e Area	Area%	
1	19.518	18091353	50.313	
2	23.387	17866146	49.687	


检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	19.	874	573417	6.938
2	23.	738	7691609	93.062

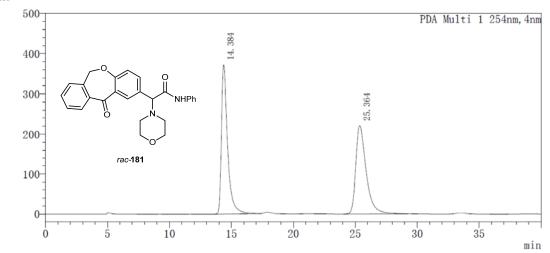
Peak Table


PDA Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	11.	605	3223584	50.112
2	19.	617	3209126	49.888

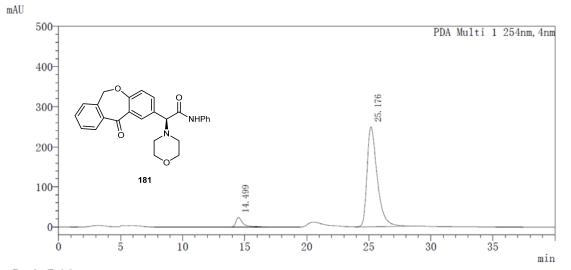

PDA	Ch1	254	nm

Peak#	Ret.		Area	Area%
1	11.	683	410423	6.241
2	19.	554	6166254	93.759



Peak Table

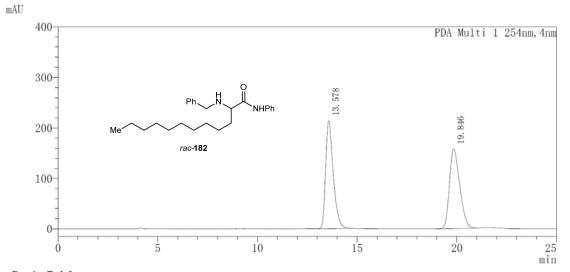
PDA Ch1 254nm					
Peak#	Ret. Tim	e Area	Area%		
1	21.325	7340316	51.438		
2	29.617	6929819	48.562		



PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	21.369	18584713	95.139			
2	30.190	949520	4.861			

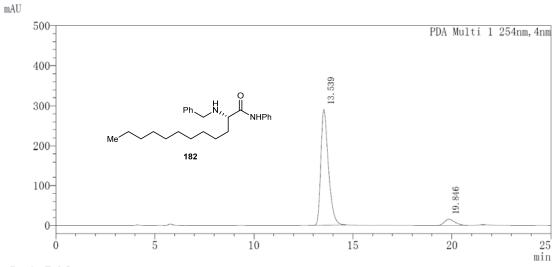
Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	14.384	12813988	50.025	
2	25.364	12801177	49.975	


 PDA
 Ch1
 254nm

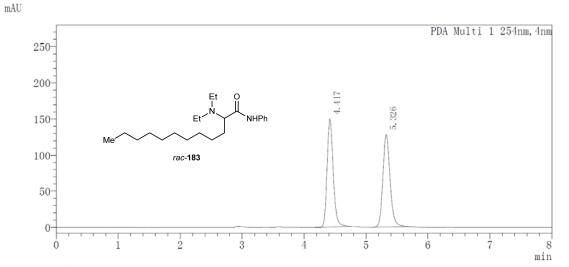
 Peak#
 Ret.
 Time
 Area
 Area%

 1
 14.499
 936657
 6.157

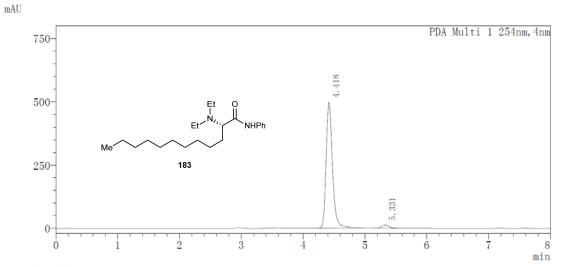

 2
 25.176
 14276441
 93.843

mAU

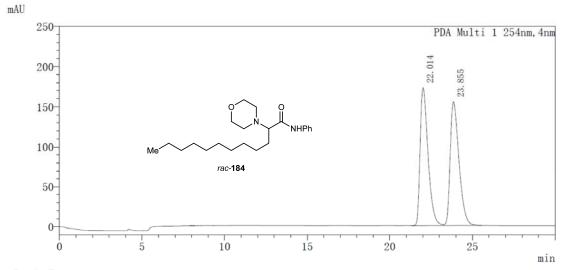
PDA	Ch1	254nm	


Peak#	Ret. Ti	me Area	Area%
1	13.578	3 5667260	50.143
2	19.846	5 5634880	49.857

Peak Table

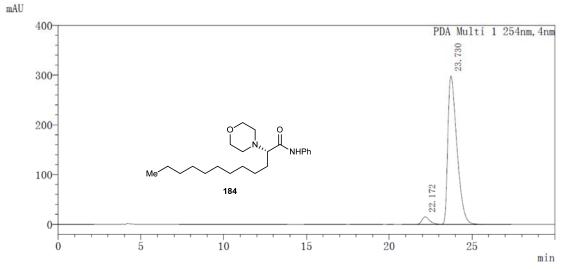

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	13.539	7693575	93.195
2	19.846	561815	6.805

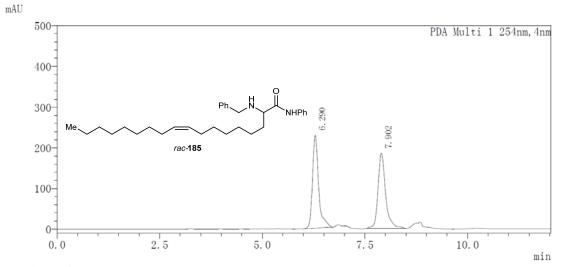


Peak Table

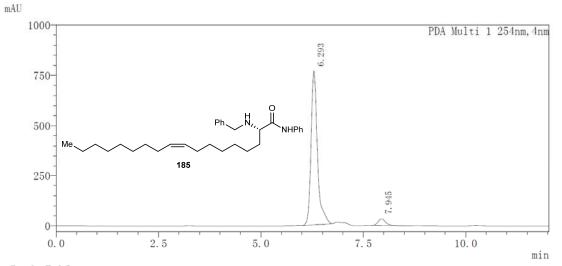
H	PDA Ch	1 254nm		
	Peak#	Ret. Time	Area	Area%
[1	4.417	1031804	49.879
ſ	2	5.326	1036816	50.121

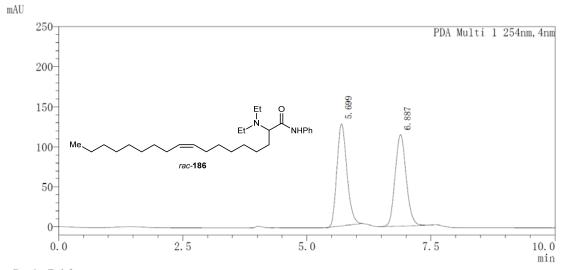


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	4.418	3589423	97.382		
2	5.331	96502	2.618		

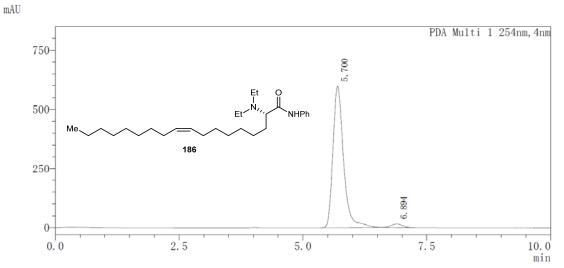


Peak Table

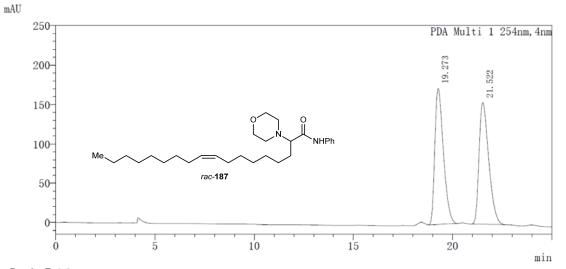

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.014	5717016	50.044
2	23.855	5706855	49.956


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.172	487750	4.106
2	23.730	11390373	95.894

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.290	2385352	50.146
2	7.902	2371441	49.854

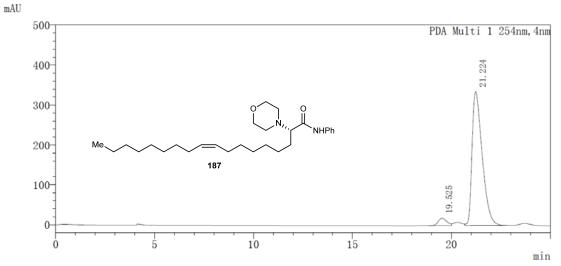


PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	6.293	8366430	95.097		
2	7.945	431362	4.903		

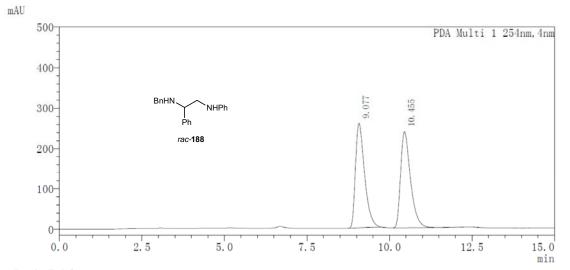


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.699	1791760	50.321
2	6.887	1768885	49.679

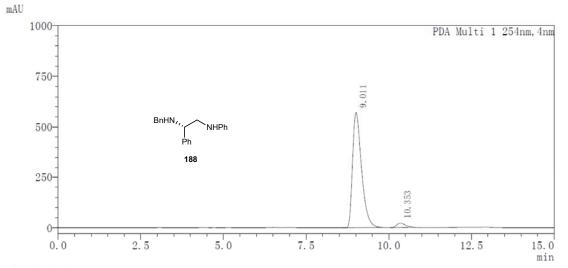


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.700	8920396	97.451
2	6.894	233308	2.549

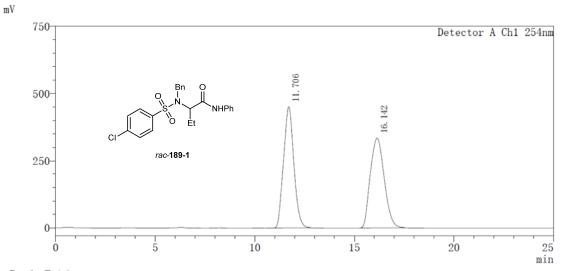


Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	19.273	5213927	49.819	
2	21.522	5251917	50.181	

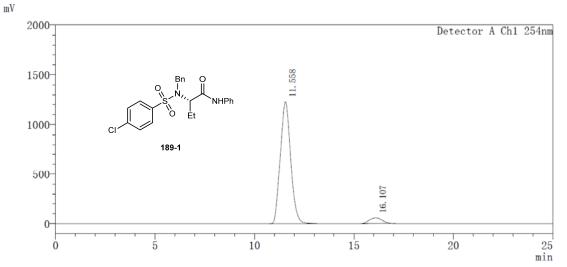


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.525	540154	4.344
2	21.224	11895507	95.656

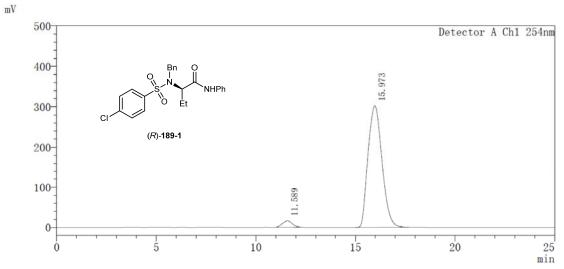


Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.077	4978877	50.022
2	10.455	4974553	49.978

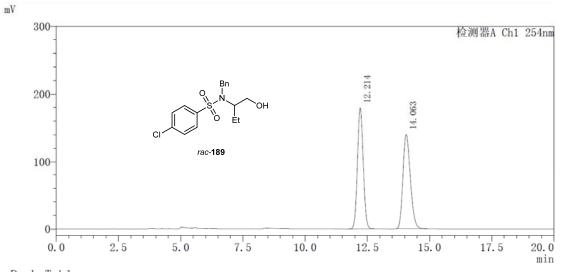


PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.011	10798864	96.572
2	10.353	383317	3. 428

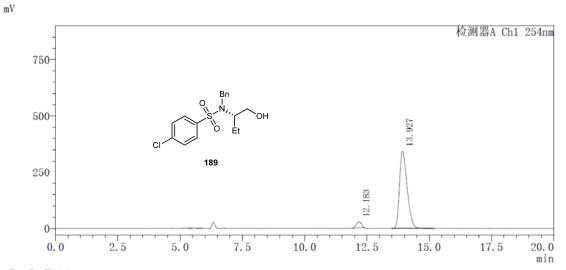


Peak Table

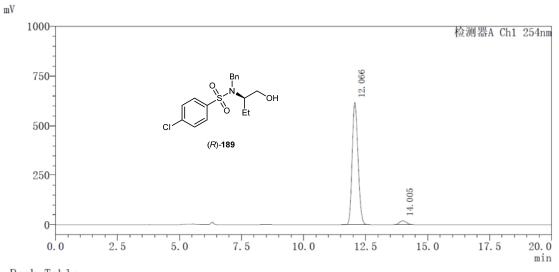
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.706	16235886	49.983		
2	16.142	16246990	50.017		



Detect	or A Ch1 2	254nm	
Peak#	Ret. Time	Area	Area%
1	11.558	44733560	94.781
2	16.107	2463169	5.219

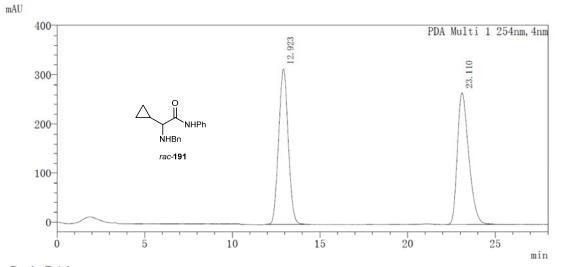

Peak Table

Detector A Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	11.	589	546512	3.572	
2	15.	973	14751444	96.428	

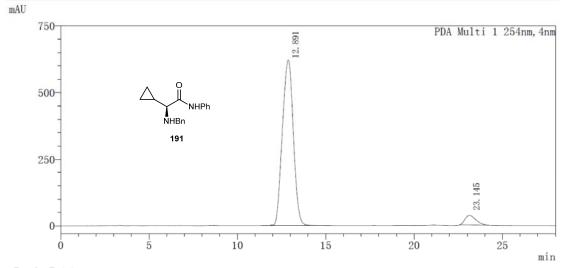


Peak Table

检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	12.214	2900012	50.110	
2	14.063	2887278	49.890	



检测器A Ch1 254nm				
	Ret. Time	Area	Area%	
1	12.183	392320	5.130	
2	13.927	7255788	94.870	


Peak Table

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	12.066	10081095	96.259
2	14.005	391774	3.741

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.923	12063625	49.962		
2	23.110	12082207	50.038		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.891	26879496	94.572		
2	23.145	1542828	5.428		