Supporting Information for

Copper-Catalyzed Enantioconvergent Radical C(sp³)–N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions

Ji-Jun Chen,^{†,‡,§} Jia-Yong Zhang,^{1,‡,§} Jia-Heng Fang,^{‡,§} Xuan-Yi Du,^{‡,§} Hai-Dong Xia,^{‡,§} Bin Cheng,^{1,§} Nan Li,[‡] Zhang-Long Yu,[‡] Jun-Qian Bian,[‡] Fu-Li Wang,[‡] Jing-Jing Zheng,[‡] Wei-Long Liu,[‡] Qiang-Shuai Gu,[£] Zhong-Liang Li,^{†,‡} and Xin-Yuan Liu^{†,‡,*}

[†]Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China.

[‡]Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

^IInstitute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China

[£]Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

[§]These authors contributed equally

Correspondence to: liuxy3@sustech.edu.cn

Table of contents

108
109

1. Tables for experiments

Table S1. Reaction condition optimization with tertiary α -chloroamide E1 and (hetero)aromatic amine A1: screening of different solvents^{*a*}

N Et Ph +	F ₃ C F ₃ C		mol %), L*9 (15 mol %) 	ON Ph CF ₃
(±)- E1	A1			1
Entry	S	olvent	Yield (%)	ee (%)
1	1,4	-dioxane	92	94
2		DMF	12	87
3]	DMA	15	88
4	Ι	OMSO	trace	-
5	Ν	MTBE	90	93
6		ⁱ Pr ₂ O	8	93
7		THF	90	92
8		DME	93	92
9	b	enzene	91	95
10]	PhMe	92	94
11	Ι	PhCF ₃	92	92
12		PhF	91	93
13		DCM	93	91
14		DCE	92	92
15	C	CH ₃ CN	93	84
16	I	EtOAc	92	90
17	cyc	lohexane	9	89
18	n-	hexane	trace	_

^{*a*}Reaction conditions: (\pm)-E1 (0.05 mmol), A1 (0.06 mmol), CuI (10 mol %), L*9 (15 mol %), and Cs₂CO₃ (3.0 equiv) in solvent (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

	N Et Ph +) mol %), L*9 (15 mol %		O Et H CF3
٥́	<u>ک</u> (±)- E1	F ₃ C A1	base (3.0	equiv), benzene (1.0 ml	_), rt	CF ₃
	Entry		Base	Yield (%)		ee (%)
	1	С	s ₂ CO ₃	91		95
	2	R	b_2CO_3	90		95
	3	ŀ	K ₃ PO ₄	90		95
	4	N	la ₃ PO ₄	54		95
	5		CsF	7		94
	6]	LiOH	0		_
	7	L	liOMe	0		_
	8	L	uiO ^t Bu	trace		94
	9	N	a_2CO_3	23		94
	10	Ν	aOMe	74		94
	11	Ν	aO ^t Bu	0		—
	12	1	NaOH	7		95
	13	k	X_2CO_3	90		95
	14	k	KOMe	6		11
	15	k	KO ^t Bu	6		0
	16		КОН	0		_

Table S2. Reaction condition optimization with tertiary α -chloroamide E1 and (hetero)aromatic amine A1: screening of different bases^{*a*}

^{*a*}Reaction conditions: (\pm)-E1 (0.05 mmol), A1 (0.06 mmol), CuI (10 mol %), L*9 (15 mol %), and base (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

F ₃ C	0
☐ Et [Cu] (10 mol %), L*9 (15 mol %)	
$\begin{bmatrix} \mathbf{N} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{N} \\ \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \end{bmatrix} \begin{bmatrix} $	
(±)-E1 A1	1 CF3
Entry [Cu] Yield (%)	ee (%)
1 CuI 91	95
2 CuCN 6	95
3 CuSCN 90	95
4 CuTc 90	95
5 $CuBH_4(PPh_3)_2$ 27	95
6 $CuBrSMe_2$ 91	95
7 CuOAc trace	95
8 Cu(PPh ₃) ₃ Br 18	95
9 $Cu(CH_3CN)_4PF_6$ 91	94
10 Cu(acac) ₂ 14	95
11 Cu(OTf) ₂ 87	94
12 $Cu(OAc)_2$ 0	_
13 $CuCl_2$ 35	94
14 CuF_2 0	_
15 IMesCuCl 0	_
16 CuBr ₂ 91	95
17 $Cu_3(PO_4)_2$ 0	_

Table S3. Reaction condition optimization with tertiary α -chloroamide E1 and (hetero)aromatic amine A1: screening of different copper salts^{*a*}

^{*a*}Reaction conditions: (\pm)-E1 (0.05 mmol), A1 (0.06 mmol), [Cu] (10 mol %), L*9 (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S4. Reaction condition optimization with tertiary α -chloroamide E1 and (hetero)aromatic amine A1: screening of starting materials loading^{*a*}

uIII	annie Mr. Sereening of Starting materials founding						
	$O_{CI} = F_{3}C + F$		Cul (10 mol %), L*9 (₂ CO ₃ (3.0 equiv), benz				
	(±)- E1	й А 1			1 ČF ₃		
	Entry	(±)-E1 (equiv)	A1 (equiv)	Yield (%)	ee (%)		
	1	1.0	1.2	91	95		
	2	1.0	1.1	91	95		
	3	1.0	1.0	91	95		
	4	1.1	1.0	96	95		
	5	1.2	1.0	>99	95		

^{*a*}Reaction conditions: (\pm)-E1, A1, CuI (10 mol %), L*9 (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

O Et Ph	+ F ₃ C + NH ₂	Cul (10 mol %), L*9	(15 mol %)	
	F ₃ C	Cs ₂ CO ₃ (3.0 equiv), benz	ene (1.0 mL), <i>T</i> , t	Ó Ph
(±)- E1	A1			1 ČF ₃
Entry	<i>T</i> (°C)	t (h)	Yield (%)	Ee (%)
1	40	8	>99	92
2	35	8	>99	93
3	30	8	>99	94
4	25	48	>99	95
5	25	24	>99	95
6	25	16	65	95
7	25	8	22	95
8	20	48	>99	95
9	20	24	82	95
10	10	48	12	95
11 ^b	0	48	19	95

Table S5. Reaction condition optimization with tertiary α -chloroamide E1 and (hetero)aromatic amine A1: screening of temperature and time^{*a*}

^{*a*}Reaction conditions: (\pm)-E1 (0.06 mmol), A1 (0.05 mmol), CuI (10 mol %), L*9 (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (1.0 mL) at *T* for t under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ^{*b*}THF was used.

Ме		Br NH ₂	Cul (10 mol %), L*(15 mol %)	
	$\frac{N}{Me} = \frac{1}{Cl} + \frac{D}{Cl} = \frac{1}{Cl} + \frac{D}{Cl} = \frac{1}{Cl} + \frac{1}{Cl} $		Cs_2CO_3 (3.0 equiv)	Me Ph Br
	(±)- E34	A15	benzene (1.0 mL), rt	47
	O S S N N Ph L*9	OMe H N N O	L*3: Ar = $3,5^{-t}Bu_2C_6H_3$ L*15: Ar = $4-OMeC_6H_4$ L*16: Ar = $4-OPhC_6H_4$	Me H N
-	Entry	L*	Yield (%)	ee (%)
-	1	L*9	90	14
	2	L*3	68	64
	3	L*15	31	69
	4	L*16	60	74
_	5	L*10	68	76

Table S6. Reaction condition optimization with tertiary α -chloroamide E34 and (hetero)aromatic amine A15: screening of different ligands^{*a*}

^{*a*}Reaction conditions: (\pm)-E34 (0.05 mmol), A15 (0.05 mmol), CuI (10 mol %), L* (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Ме	O LEt O∖, LPh +	Br	Cul (10 m	nol %), L*10 (15 mol %)	
	Me Cl	Br NH ₂	Cs ₂ CO ₃ (3.0	equiv), solvent (1.0 mL), rt	Me Ph Br
	(±)- E34	A15			47
	Entry	Solv	ent	Yield (%)	ee (%)
	1	benz	ene	68	76
	2	DM	IF	0	_
	3	TH	F	44	75
	4	1,4-dic	oxane	47	76
	5	DC	М	87	68
	6	CH ₃	CN	8	73
	7	EtO	Ac	66	78
	8	<i>n</i> -hex	ane	28	65

Table S7. Reaction condition optimization with tertiary α -chloroamide E34 and (hetero)aromatic amine A15: screening of different solvents^{*a*}

^{*a*}Reaction conditions: (\pm)-E34 (0.05 mmol), A15 (0.05 mmol), CuI (10 mol %), L*10 (15 mol %), and Cs₂CO₃ (3.0 equiv) in solvent (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

	e	e		0	
O MeO _{∖N} ↓ Et Ph +	Br-NH ₂	Cul (10 m	ol %), L*10 (15 mol %)		
Me Cl	Br – NH ₂	Cs ₂ CO ₃ (X equiv), EtOAc (1.0 mL), rt		Me Ph Br	
(±)- E34	A15			47	
Entry	Cs_2CO_3 (X equiv)	Yield (%)	ee (%)	
1	2	2	38	74	
2	3	3	66	78	
3	4	ł	70	79	
4	5	5	75	80	
5	6	5	79	80	
6	7	7	81	80	
7	8	3	82	81	
8^b	8	3	94	81	
9 ^c	8	3	99	81	

Table S8. Reaction condition optimization with tertiary α -chloroamide E34 and (hetero)aromatic amine A15: screening of Cs₂CO₃ loading^{*a*}

^{*a*}Reaction conditions: (\pm)-**E34** (0.05 mmol), **A15** (0.05 mmol), CuI (10 mol %), **L*10** (15 mol %), and Cs₂CO₃ (X equiv) in EtOAc (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ^{*b*}(\pm)-**E34** (0.055 mmol). ^{*c*}(\pm)-**E34** (0.06 mmol).

Table S9. Reaction condition optimization with secondary propargyl bromide **E35** and (hetero)aromatic amine A9: screening of different copper salts^a

(inc		inte A). sereening	s of unforcing	copper suits	CO ₂ Me
	<u>ک</u>	2N CO ₂ Me	[Cu] (10 m	ol %), L*14 (10 mol %)	
TIP	S Et	℃O ₂ Me	Cs ₂ CO ₃ (3.0 eq	uiv), 1,4-dioxane (0.5 mL), rt	HŅ CO ₂ Me
	(±)- E35	A9			TIPS 78
	Entry	[C	u]	Yield (%)	ee (%)
	1	С	uI	33	86
	2	Cu	Br	27	85
	3	Cu	Br_2	41	84
	4	Cu	CN	0	_
	5	Cu	Tc	23	81
	6	CuBr	SMe_2	34	84
	7	Cu(CH ₃	CN) ₄ PF ₆	31	82
	8	Cu(PP	h ₃) ₃ Br	27	88
	9	Cu(PPI	n3)3CF3	32	90
	10	-	_	0	_
	11^{b}	Cu(PPI	n ₃) ₃ CF ₃	0	_

^{*a*}Reaction conditions: (±)-**E35** (0.05 mmol), **A9** (0.075 mmol), [Cu] (10 mol %), **L*14** (10 mol %), and Cs_2CO_3 (3.0 equiv) in 1,4-dioxane (0.5 mL) at rt for 48 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ^{*b*}Without **L*14**.

Br H ₂ N	CO ₂ Me Cu(PPh ₃) ₃ CF ₃	(10 mol %), L*14 (10 mol %)	CO ₂ Me
TIPS	Co ₂ Me Cs ₂ CO ₃ (3.0	equiv), solvent (0.5 mL), rt	HN CO ₂ Me
(±)-E35	A9	1	TIPS 78
Entry	Solvent	Yield (%)	ee (%)
1	1,4-dioxane	32	90
2	THF	33	86
3	CH ₃ CN	0	_
4	MTBE	27	85
5	DME	21	86
6	benzene	26	86
7	PhCF ₃	0	_
8	DCM	13	84
9	DMF	0	_
10	EtOAc	26	85
11^{b}	1,4-dioxane	51	90
12^c	1,4-dioxane	62	90
13 ^d	1,4-dioxane	63	90

Table S10. Reaction condition optimization with secondary propargyl bromide **E35** and (hetero)aromatic amine A9: screening of different solvents^a

^{*a*}Reaction conditions: (\pm)-**E35** (0.05 mmol), **A9** (0.075 mmol), Cu(PPh₃)₃CF₃ (10 mol %), **L*14** (10 mol %), and Cs₂CO₃ (3.0 equiv) in solvent (0.5 mL) at rt for 48 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ^{*b*}For 96 h. ^{*c*}For 120 h. ^{*d*}For 144 h.

2. Figures for experiments

Figure S1. Unsuccessful examples. Standard reaction conditions: (\pm)-E (1.2 equiv), A1 (0.20 mmol), CuI (10 mol %), L*9 (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (4.0 mL) at rt for 72 h under argon; yields were isolated ones; ee values were determined by HPLC analysis. ^{*a*}Most of E1 was recovered. ^{*b*}3-Ethyl-1,3-diphenylindolin-2-one was obtained in 90% yield. ^{*c*}Alkyl bromide was used.

Figure S2. The X-ray structure of 1.

Figure S3. The X-ray structure of 5.

Figure S4. The X-ray structure of 13.

Figure S5. The X-ray structure of 31.

Figure S6. The X-ray structure of 32.

Figure S7. The X-ray structure of 53.

Figure S8. The X-ray structure of 96.

Figure S9. The X-ray structure of CatA.

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CH₂Cl₂, THF, and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 300 to 400 °C) for 2 minutes in vacuum. Anhydrous 1.4-dioxane, EtOAc, and benzene was purchased from J&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), EtOAc, CH₂Cl₂ and CH₃OH were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR and 162 MHz for ³¹P NMR respectively, in CDCl₃, CD₃OD or DMSO-*d*₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Kα radiation.

4. The synthesis of ligands and alkyl halides The synthesis of chiral ligand L*9 and L*14

General procedure for preparation of L*9:

According to the literature reported procedure.¹ Under an argon atmosphere, to a solution of 2aminobenzonitrile (1.18 g, 10.0 mmol, 1.0 equiv) and (*S*)-2-amino-2-phenylethan-1-ol (2.06 g, 15.0 mmol, 1.5 equiv) in chlorobenzene (30 mL) was added dry ZnCl₂ (4.02 g, 30.0 mmol, 3.0 equiv) at once at rt. Then, the reaction mixture was reflux for 24 h. After completion (monitored by TLC), the reaction mixture was dissolved in water, EtOAc, and 2 mL ethylenediamine. Next, the reaction was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to afford the product **L9-1** as a white solid (2.17 g, 91% yield).

According to the literature reported procedure.² Under an argon atmosphere, to a solution of (*S*)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)aniline **L9-1** (1.43 g, 6.0 mmol, 1.0 equiv) and quinoline-8-sulfonyl chloride (2.04 g, 9.0 mmol, 1.5 equiv) in pyridine (30 mL, 0.2 M) was added DMAP (146.5 mg, 1.2 mmol, 0.2 equiv) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched by water and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 50/1 to 20/1) to afford the product **L*9** as a white solid (2.54 g, 99% yield).

(S)-N-(2-(4-Phenyl-4,5-dihydrooxazol-2-yl)phenyl)quinoline-8-sulfonamide (L*9)

¹**H** NMR (400 MHz, CDCl₃) δ 12.73 (s, 1H), 8.58 – 8.56 (m, 1H), 8.36 – 8.34 (m, 1H), 8.09 – 8.07 (m, 1H), 7.97 – 7.95 (m, 1H), 7.81 – 7.75 (m, 2H), 7.60 – 7.56 (m, 1H), 7.40 – 7.25 (m, 7H), 6.94 – 6.90 (m, 1H), 5.56 (dd, *J* = 10.1, 7.9 Hz, 1H), 4.71 (dd, *J* = 10.1, 8.4 Hz, 1H), 4.20 (t, *J* = 8.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 151.3, 143.6, 142.0, 139.5, 136.3, 135.9, 133.7, 132.4, 132.0, 129.5, 128.8, 128.6, 127.7, 126.8, 125.0, 121.9, 121.4, 116.4, 112.8, 73.4, 70.0. **HRMS** (ESI) m/z calcd. for C₂₄H₂₀N₃O₃S [M + H]⁺ 430.1220, found 430.1218.

According to the literature reported procedure.³ Quinine (3.24 g, 10.0 mmol) was dissolved in acetic anhydride (20.0 mL) and stirred at room temperature for 2 h. After that, the reaction solution became clear and then was poured into ice-water, basified with aqueous ammonium hydroxide solution, and extracted with CH_2Cl_2 (30 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated, and concentrated to afford the crude acetylated quinine L14-1, which was used directly in the next step without further purification.

According to the literature reported procedure.⁴ To a solution of L14-1 (1.83 g, 5.0 mmol, 1.0 equiv) in dry CH₂Cl₂ (25 mL) was added 2,2-dimethylpropan-1-ol (2.20 g, 25.0 mmol, 5.0 equiv) at room temperature. PIFA (4.30 g, 10.0 mmol, 2.0 equiv) was then added. The reaction was irradiated with 24 W blue LEDs and kept at room temperature under fan cooling for 12 h. After completion (monitored by TLC), the reaction was quenched by addition of saturated NaHCO3 until pH>8 and then extracted with CH₂Cl₂ (20 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford L14-2 (0.74 g, 35% vield).

According to the literature reported procedure.⁵ To a solution of L14-2 (422.3 mg, 1.0 mmol) in MeOH (10 mL) was slowly added K₂CO₃ (689.6 mg, 5.0 mmol, 5.0 equiv) at 0 °C. Then the mixture was slowly warmed to room temperature and stirred for 2 h. After completion (monitored by TLC), the reaction was quenched with H_2O (10 mL) and extracted with CH_2Cl_2 (10 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (EtOAc/MeOH = 10:1) to afford L14-3 as a white solid (362.7 mg, 95% yield).

According to the literature reported procedure⁶ with slightly modification. Under an argon atmosphere, to a solution of L14-3 (304.2 mg, 0.8 mmol, 1.0 equiv) and triphenylphosphine (PPh₃) (272.6 mg, 1.04 mmol, 1.3 equiv) in THF (5 mL) was added diisopropyl azodicarboxylate (DIAD) (210.2 mg, 1.04 mmol, 1.3 equiv) at once and stirred for 15 min at 0 °C. Then the reaction mixture was added diphenyl phosphoryl azide (DPPA) (286.0 mg, 1.04 mmol, 1.3 equiv) dropwise over 15 min at 0 °C. The reaction was allowed to warm to room temperature and stirred for 20 h. Next the reaction was heated to 50 °C for 4 h. Another portion of PPh₃ (293.5 mg, 1.12

mmol, 1.4 equiv) was then added and the reaction stirred at 50 °C for an additional 4 h. After cooling the solution to room temperature, H₂O (1 mL) was added and the solution stirred overnight at room temperature. The mixture was concentrated under reduced pressure, dissolved in CH₂Cl₂ (5 mL) and diluted with HCl aqueous solution (3.0 M, 5 mL) The aqueous layer was washed with CH₂Cl₂ (5 mL \times 3), alkalinized with ammonium hydroxide and washed with CH₂Cl₂ (5 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 100/1 to 10/1) to afford L14-4 as a yellowish oil (189.6 mg, 62% yield).

According to the literature reported procedure.⁷ Under an argon atmosphere, to a solution of L14-4 (189.6 g, 0.5 mmol, 1.0 equiv), 2-(bis(2,3,4,5,6-pentamethylphenyl)phosphaneyl)benzoic acid (234.3 mg, 0.525 mmol, 1.05 equiv), and DMAP (6.1 mg, 0.05 mmol, 0.1 equiv) in CH₂Cl₂ (5 mL) was added EDCI (115 mg, 0.6 mmol, 1.2 equiv) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched by water and extracted with CH₂Cl₂ (5 mL × 3) three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 100/1 to 10/1) to afford the product L*14 as a yellowish solid (325.3 mg, 81% yield).

2-(Bis(2,3,4,5,6-pentamethylphenyl)phosphaneyl)-*N*-((*S*)-(2-(*tert*-butyl)-6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*14)

L*14 (Ar = C₆Me₅)

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 9.1 Hz, 1H), 7.75 – 7.71 (m, 2H), 7.57 – 7.56 (m, 1H), 7.39 (s, 1H), 7.30 – 7.26 (m, 1H), 7.22 – 7.13 (m, 3H), 5.85 – 5.67 (m, 2H), 5.03 – 4.99 (m, 2H), 3.81 (s, 3H), 3.44 – 3.34 (m, 1H), 3.26 – 3.14 (m, 2H), 2.69 – 2.63 (m, 2H), 2.31 – 2.21 (m, 1H), 2.18 (s, 3H), 2.13 (s, 3H), 2.06 (s, 6H), 1.98 (s, 12H), 1.79 (s, 6H), 1.63 – 1.60 (m, 1H), 1.55 – 1.49 (m, 2H), 1.42 (s, 9H), 0.89 – 0.83 (m, 1H), 0.77 – 0.67 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 165.6, 157.1, 143.8, 143.6, 141.6, 140.9, 140.6, 138.2, 137.3, 135.4, 135.0, 133.4, 132.7, 132.6, 132.42, 132.39, 131.0, 129.6, 129.4, 127.7, 126.6, 121.0, 114.2, 101.6, 59.3, 56.0, 55.7, 55.5, 41.3, 39.5, 37.7, 30.2, 27.7, 27.5, 27.1, 19.9, 19.8, 19.7, 19.6, 17.12, 17.0, 16.4.

³¹**P NMR** (162 MHz, CDCl₃) δ -24.26.

HRMS (ESI) m/z calcd. for $C_{53}H_{67}N_3O_2P [M + H]^+ 808.4965$, found 808.4953.

The synthesis of propargyl bromides substrates

All the propargyl bromides were synthesized following the literatures.^{7,8}

The synthesis of α-halide amide substrates

General procedure 1:

According to the literature reported procedure.⁹ The carboxylic acid (25 mmol) was dissolved in SOCl₂ (7.25 mL, 100 mmol), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then *N*-chlorosuccinimide (8.34 g, 63 mmol), SOCl₂ (5 mL), and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at 90 °C for 2.5 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl₄, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.

To a solution of amine (25.0 mmol, 1.0 equiv) and Et₃N (3.03 g, 30.0 mmol, 1.2 equiv) in CH_2Cl_2 (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 2:

According to the literature reported procedure¹⁰ with slightly modification. To a solution of carboxylic acid (20.0 mmol, 1.0 equiv) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv, 1.0 M in THF) via syringe at -78 °C under argon. After being stirred at -78 °C for 30 min, the reaction mixture was warmed up to 0 °C and stirred for another 1 h. The solution was then cooled to -78°C again and alkyl iodide (21.0 mmol, 1.05 equiv) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.

To a solution of the above acid in THF (40 mL) was added hexamethylphosphoramide (HMPA, 6 mL) and lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv, 1.0 M in THF) via syringe at -78 °C under argon. The reaction was slowly warmed up to 0 °C and stirred for another 1 h. Then the reaction mixture was cooled down to -78 °C again and treated with a solution of CCl₄ (80.0 mmol, 4.0 equiv) in THF (3 mL). After being stirred at -78 °C for 2 h, the reaction mixture was warmed up to room temperature over 1 h and stirred overnight. Then, the reaction was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude α -chloro acid, which was used directly in the next step without further purification.

To a solution of the above α -chloro acid in CH₂Cl₂ (50 mL) was added oxalyl chloride (24.0 mmol, 1.2 equiv) and a drop of DMF at 0 °C. The reaction mixture was stirred 40 °C for 3 h. Then, the solvent was removed under reduced pressure to afford the α -chloro acid chloride,

which was used directly in the next step without further purification.

To a solution of amine (20.0 mmol, 1.0 equiv) and Et₃N (2.43 g, 24.0 mmol, 1.2 equiv) in CH₂Cl₂ (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

$$R^{1} COOH \xrightarrow{1) LDA} R^{2} COOH \xrightarrow{1) SOCI_{2}} R^{2} CI \xrightarrow{R^{2}CI} R^{3}R^{4}NH \xrightarrow{R^{2}CI} R^{3}R^{4$$

General procedure 3:

According to the literature reported procedure.^{9,10} To a solution of carboxylic acid (20.0 mmol, 1.0 equiv) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) (44.0 mmol, 2.2 equiv, 1.0 M in THF) via syringe at -78 °C under argon. After being stirred at -78 °C for 30 min, the reaction mixture was warmed up to 0 °C and stirred for another 1 h. The solution was then cooled to -78 °C again and alkyl iodide (21.0 mmol, 1.05 equiv) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.

The above acid was dissolved in SOCl₂ (5.8 mL, 80 mmol), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then *N*-chlorosuccinimide (6.65 g, 50 mmol), SOCl₂ (4.0 mL), and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at 90 °C for 2.5 h. The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl₄, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.

To a solution of amine (20.0 mmol, 1.0 equiv) and Et₃N (2.43 g, 24.0 mmol, 1.2 equiv) in CH_2Cl_2 (50 mL) was added the above α -chloro acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 4:

According to the literature reported procedure.¹⁰ To a solution of carboxylic acid (10.0 mmol, 1.0 equiv) in anhydrous THF (20 mL) was added lithium diisopropylamide (LDA) (25.0 mmol, 2.5 equiv, 1.0 M in THF) via syringe at -78 °C under argon. After being stirred at -78 °C for 30 min, the reaction mixture was warmed up to 0 °C and stirred for another 1 h. The solution was then

cooled to -78° C again and iodomethane (22.0 mmol, 2.2 equiv) was added dropwise into the reaction mixture. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was dried over Na₂SO₄, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.

The above acid was dissolved in SOCl₂ (3.0 mL), and the resulting solution was heated at reflux for 30 min. The mixture was allowed to cool to room temperature, and then Br₂ (3.16 g, 20.0 mmol, 2.0 equiv) and SOCl₂ (2.0 mL) were added. The resulting mixture was heated at 50 °C for 24 h. Then the solvent was removed under reduced pressure to afford the α -bromo acid chloride, which was used directly in the next step without further purification.

To a solution of amine (10.0 mmol, 1.0 equiv) and Et₃N (1.21 g, 12.0 mmol, 1.2 equiv) in CH₂Cl₂ (20 mL) was added the above α -bromo acid chloride at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 20 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 5:

According to the literature reported procedure.¹¹ To a solution of Et₃N (3.64 g, 36.0 mmol, 1.2 equiv) and amine (30.0 mmol, 1.0 equiv) in THF (50 mL) was added α -bromo acid bromide (36.0 mmol, 1.2 equiv) dropwise at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 50 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

2-Chloro-1-morpholino-2-phenylbutan-1-one (E1)

According to **General procedure 1** with 2-phenylbutanoic acid (8.20 g, 50.0 mmol, 1.0 equiv) and morpholine (4.35 g, 50.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E1** as a yellowish oil (11.06 g, 83% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.28 (m, 5H), 3.75 – 3.68 (s, 4H), 3.42 – 3.37 (m, 2H), 3.11 – 3.00 (m, 2H), 2.39 (dq, J = 14.5, 7.3 Hz, 1H), 2.20 (dq, J = 14.4, 7.2 Hz, 1H), 0.80 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 139.5, 128.5, 127.9, 125.4, 74.6, 66.6, 65.6, 47.6, 43.5,

38.0, 8.6. **HRMS** (ESI) m/z calcd. for C₁₄H₁₉ClNO₂ [M + H]⁺ 268.1099, found 268.1097.

2-Chloro-1-morpholino-2-phenylhexan-1-one (E2)

According to **General procedure 2** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv), 1iodobutane (1.93 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E2** as a yellowish oil (1.05 g, 36% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.33 – 7.29 (m, 1H), 3.84 – 3.51 (m, 4H), 3.48 – 3.25 (m, 2H), 3.15 – 2.84 (m, 2H), 2.36 – 2.29 (m, 1H), 2.22 – 2.14 (m, 1H), 1.44 – 1.32 (m, 1H), 1.31 – 1.16 (m, 2H), 1.03 – 0.92 (m, 1H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 139.9, 128.5, 127.8, 125.2, 74.1, 66.6, 65.5, 47.6, 44.7, 43.5, 26.3, 22.5, 13.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}CINO_2 [M + H]^+ 296.1412$, found 296.1414.

2-Chloro-1-morpholino-2-phenylpropan-1-one (E3)

E3

According to **General procedure 1** with 2-phenylpropanoic acid (1.50 g, 10.0 mmol, 1.0 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E3** as a yellow oil (1.96 g, 77% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.41 – 7.36 (m, 2H), 7.34 – 7.29 (m, 1H), 3.74 – 3.68 (m, 4H), 3.51 – 3.40 (m, 2H), 3.23 – 3.13 (m, 1H), 2.99 – 2.90 (m, 1H), 1.95 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.5, 141.8, 128.8, 128.0, 124.4, 70.2, 66.6, 65.6, 47.8, 43.5, 35.3.

HRMS (ESI) m/z calcd. for $C_{13}H_{17}CINO_2 [M + H]^+ 254.0942$, found 254.0940.

2-Chloro-1-morpholino-2,4-diphenylbutan-1-one (E4)

According to **General procedure 2** with 2-phenylacetic acid (0.68 g, 5.0 mmol, 1.0 equiv), (2-iodoethyl)benzene (1.22 g, 5.25 mmol, 1.05 equiv), and morpholine (0.44 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 20/1) to yield the product E4 as a yellowish oil (0.34 g, 20% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.42 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 7.23 – 7.19 (m, 2H), 7.15 – 7.08 (m, 3H), 3.70 – 3.63 (m, 4H), 3.46 – 3.40 (m, 2H), 3.06 – 3.00 (m, 2H), 2.80 – 2.72 (m, 1H), 2.67 – 2.58 (m, 1H), 2.49 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 141.5, 139.7, 128.8, 128.4, 128.2, 128.1, 125.8, 125.3, 73.7, 66.6, 65.6, 47.7, 47.1, 43.6, 31.0.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}CINO_2 [M + H]^+ 344.1412$, found 344.1412.

2-Chloro-1-morpholino-2,3-diphenylpropan-1-one (E5)

According to **General procedure 2** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv), (bromomethyl)benzene (1.78 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to yield the product **E5** as a white solid (2.29 g, 70% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 3H), 7.15 – 7.09 (m, 3H), 7.07 – 7.03 (m, 2H), 6.66 – 6.64 (m, 2H), 3.74 – 3.51 (m, 6H), 3.40 – 3.30 (m, 2H), 3.07 – 2.95 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 138.7, 134.8, 131.6, 128.2, 128.0, 127.0, 126.5, 125.8, 73.1, 66.6, 65.5, 50.1, 47.6, 43.6.

HRMS (ESI) m/z calcd. for $C_{19}H_{21}CINO_2 [M + H]^+ 330.1255$, found 330.1251.

2-Chloro-3-cyclopropyl-1-morpholino-2-phenylpropan-1-one (E6)

According to **General procedure 3** with 2-phenylacetic acid (2.72 g, 20.0 mmol, 1.0 equiv), (bromomethyl)cyclopropane (2.81 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E6** as a yellowish oil (2.79 g, 48% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.39 – 7.29 (m, 3H), 3.75 – 3.63 (m, 4H), 3.38 – 3.32 (m, 2H), 3.11 – 2.97 (m, 2H), 2.32 (dd, *J* = 14.7, 6.2 Hz, 1H), 2.10 (dd, *J* = 14.6, 7.0 Hz, 1H), 0.75 – 0.65 (m, 1H), 0.35 – 0.28 (m, 1H), 0.17 – 0.10 (m, 1H), -0.04 – -0.10 (m, 1H), -0.39 – -0.46 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 139.9, 128.4, 127.9, 125.6, 74.1, 66.6, 65.6, 49.6, 47.6, 43.5, 6.2, 4.5, 4.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}CINO_2 [M + H]^+$ 294.1255, found 294.1253.

2-Chloro-4-methyl-1-morpholino-2-phenylpentan-1-one (E7)

According to **General procedure 3** with 2-phenylacetic acid (2.72 g, 20.0 mmol, 1.0 equiv), 1iodo-2-methylpropane (3.86 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E7** as a yellowish oil (3.48 g, 59% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.40 – 7.36 (m, 2H), 7.34 – 7.29 (m, 1H), 3.72 – 3.53 (m, 4H), 3.37 – 3.27 (m, 2H), 3.15 – 2.91 (m, 2H), 2.28 – 2.18 (m, 2H), 1.76 – 1.61 (m, 1H), 0.81 (d, J = 6.8 Hz, 3H), 0.52 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 139.8, 128.6, 128.0, 125.5, 74.1, 66.6, 65.6, 53.2, 47.7, 43.6, 24.6, 24.4, 24.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{23}CINO_2 [M + H]^+$ 296.1412, found 296.1409.

2-Chloro-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one (E8)

According to **General procedure 2** with 2-phenylacetic acid (2.72 g, 20.0 mmol, 1.0 equiv), 1-1,1,1-trifluoro-3-iodopropane (4.70 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E8** as a yellowish oil (5.17 g, 77% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 5H), 3.79 – 3.55 (m, 4H), 3.40 – 3.32 (m, 2H), 3.16 – 2.93 (m, 2H), 2.66 – 2.54 (m, 1H), 2.45 – 2.29 (m, 2H), 2.06 – 1.89 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 167.6, 138.8, 129.1, 128.7, 127.0 (q, *J* = 274.5 Hz), 125.0, 72.3, 66.6, 65.5, 47.6, 43.6, 38.0 (q, *J* = 3.1 Hz), 30.0 (q, *J* = 28.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -66.10.

HRMS (ESI) m/z calcd. for $C_{15}H_{18}CIF_{3}NO_{2}$ [M + H]⁺ 336.0973, found 336.0971.

2-Chloro-5-fluoro-1-morpholino-2-phenylpentan-1-one (E9)

According to **General procedure 2** with 2-phenylacetic acid (2.72 g, 20.0 mmol, 1.0 equiv), 1-fluoro-3-iodopropane (3.95 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E9** as a yellowish oil (4.20 g, 70% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 5H), 4.46 – 4.38 (m, 1H), 4.34 – 4.26 (m, 1H), 3.76 – 3.55 (m, 4H), 3.46 – 3.27 (m, 2H), 3.12 – 2.88 (m, 2H), 2.48 – 2.40 (m, 1H), 2.32 – 2.25 (m, 1H), 1.94 – 1.77 (m, 1H), 1.57 – 1.41 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.4, 128.8, 128.2, 125.2, 83.6 (d, *J* = 164.5 Hz), 73.4, 66.6, 65.5, 47.6, 43.5, 41.1 (d, *J* = 5.4 Hz), 25.8 (d, *J* = 19.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -218.22.

HRMS (ESI) m/z calcd. for $C_{15}H_{20}ClFNO_2 [M + H]^+ 300.1161$, found 300.1159.

2,6-Dichloro-1-morpholino-2-phenylhexan-1-one (E10)

E10

According to **General procedure 3** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv), 1chloro-4-iodobutane (2.29 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E10** as a yellowish oil (1.00 g, 30% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 3.80 – 3.58 (m, 4H), 3.50 – 3.23 (m, 4H), 3.05 – 2.98 (m, 2H), 2.38 – 2.31 (m, 1H), 2.22 – 2.15 (m, 1H), 1.78 – 1.52 (m, 3H), 1.22 – 1.11 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 139.5, 128.6, 128.0, 125.2, 73.6, 66.5, 65.5, 47.5, 44.5, 44.2, 43.5, 32.3, 21.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}Cl_2NO_2 [M + H]^+ 330.1022$, found 330.1021.

2-Chloro-4-methoxy-1-morpholino-2-phenylbutan-1-one (E11)

According to **General procedure 2** with 2-phenylacetic acid (0.68 g, 5.0 mmol, 1.0 equiv), 1iodo-2-methoxyethane (0.98 g, 5.25 mmol, 1.05 equiv), and morpholine (0.44 g, 5.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E11** as a yellowish oil (0.43 g, 29% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 4H), 7.35 – 7.31 (m, 1H), 3.67 – 3.26 (m, 8H), 3.20 (s, 3H), 3.07 – 2.97 (m, 2H), 2.69 – 2.62 (m, 1H), 2.50 – 2.43 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 139.6, 128.8, 128.2, 125.0, 72.2, 69.1, 66.6, 65.5, 58.4, 47.7, 44.5, 43.6.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO_3 [M + H]^+$ 298.1204, found 298.1205.

6-Chloro-7-morpholino-7-oxo-6-phenylheptanenitrile (E12)

According to **General procedure 2** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv), 5bromopentanenitrile (1.69 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E12** as a yellowish oil (0.71 g, 22% overall yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 5H), 3.75 – 3.62 (m, 4H), 3.47 – 3.31 (m, 2H), 3.08 – 2.92 (m, 2H), 2.38 – 2.14 (m, 4H), 1.68 – 1.50 (m, 3H), 1.28 – 1.15 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 139.3, 128.8, 128.2, 125.1, 119.4, 73.4, 66.6, 65.5, 47.6, 44.2, 43.5, 25.2, 23.6, 16.9.

HRMS (ESI) m/z calcd. for $C_{17}H_{22}CIN_2O_2 [M + H]^+ 321.1364$, found 321.1362.

2-Chloro-1-morpholino-2-phenylhept-4-yn-1-one (E13)

E13

According to **General procedure 2** with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv), 1bromopent-2-yne (1.53 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E13** as a yellowish solid (1.38 g, 45% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.41 – 7.32 (m, 3H), 3.78 – 3.69 (m, 4H), 3.46 – 3.29 (m, 2H), 3.24 – 3.19 (m, 1H), 3.12 – 3.05 (m, 2H), 2.98 – 2.91 (m, 1H), 2.11 – 2.04 (m, 2H), 1.01 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 138.6, 128.33, 128.28, 125.7, 85.6, 74.2, 71.4, 66.6, 65.6, 47.7, 43.5, 36.8, 13.8, 12.4.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}CINO_2 [M + H]^+$ 306.1255, found 306.1252.

2-Chloro-1-morpholino-2-phenylpent-4-en-1-one (E14)

According to **General procedure 2** with 2-phenylacetic acid (2.72 g, 20.0 mmol, 1.0 equiv), 3iodoprop-1-ene (3.53 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E14** as a yellowish oil (2.30 g, 41% overall yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.33 – 7.28 (m, 1H), 5.70 – 5.59 (m, 1H), 5.00 – 4.86 (m, 2H), 3.68 – 3.52 (m, 4H), 3.40 – 3.33 (m, 2H), 3.13 – 2.89 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 139.2, 132.4, 128.4, 127.9, 125.2, 119.0, 72.5, 66.4, 65.4, 49.4, 47.4, 43.4. HRMS (ESI) m/z calcd. for C₁₅H₁₉ClNO₂ [M + H]⁺ 280.1099, found 280.1101.

2-Chloro-3-methyl-1-morpholino-2-phenylbutan-1-one (E15)

According to **General procedure 2** with 2-phenylacetic acid (1136 g, 10.0 mmol, 1.0 equiv), 2iodopropane (1.78 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E15** as a yellowish solid (0.73 g, 26% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 3.81 – 3.58 (m, 4H), 3.47 – 3.27 (m, 2H), 3.18 – 2.83 (m, 2H), 2.80 – 2.71 (m, 1H), 1.15 (d, J = 6.4 Hz, 3H), 0.65 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 138.7, 128.2, 127.8, 125.9, 79.1, 66.6, 65.5, 47.9, 43.6, 39.2, 19.8, 17.9.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO_2 [M + H]^+ 282.1255$, found 282.1253.

2-Chloro-2-cyclopentyl-1-morpholino-2-phenylethan-1-one (E16)

According to **General procedure 1** with 2-cyclopentyl-2-phenylacetic acid (0.82 g, 4.0 mmol, 1.0 equiv), and morpholine (0.35 g, 4.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E16** as a colorless oil (0.77 g, 63% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.38 – 7.34 (m, 2H), 7.31 – 7.27 (m, 1H), 3.77 – 3.60 (m, 4H), 3.48 – 3.25 (m, 2H), 3.09 – 2.85 (m, 3H), 2.11 – 2.03 (m, 1H), 1.75 – 1.66 (m, 1H), 1.63 – 1.55 (m, 1H), 1.54 – 1.44 (m, 2H), 1.36 – 1.24 (m, 2H), 1.15 – 1.06 (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 168.7, 139.7, 128.4, 127.7, 125.4, 78.7, 66.6, 65.5, 51.6, 47.7, 43.5, 29.8, 28.4, 25.9, 25.5.

HRMS (ESI) m/z calcd. for $C_{17}H_{23}CINO_2 [M + H]^+ 308.1412$, found 308.1408.

2-Chloro-2-cyclohexyl-1-morpholino-2-phenylethan-1-one (E17)

According to General procedure 2 with 2-phenylacetic acid (1.36 g, 10.0 mmol, 1.0 equiv),

iodocyclohexane (2.20 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E17** as a colorless oil (2.72 g, 85% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H), 3.69 – 3.36 (m, 6H), 3.16 – 2.80 (m, 2H), 2,42 – 2.32 (m, 1H), 2,26 – 2.14 (m, 1H), 1.78 – 1.71 (m, 1H), 1.66 – 1.57 (m, 2H), 1.42 – 1.24 (m, 2H), 1.22 – 0.97 (m, 3H), 0.89 – 0.76 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 138.4, 128.1, 127.8, 126.1, 78.4, 66.5, 65.5, 49.0, 47.9, 43.6, 29.5, 28.2, 26.44, 26.37, 26.35.

HRMS (ESI) m/z calcd. for $C_{18}H_{25}CINO_2 [M + H]^+ 322.1568$, found 322.1565.

2-Chloro-1-morpholino-2-(*o*-tolyl)butan-1-one (E18)

E18

According to **General procedure 2** with 2-(o-tolyl)acetic acid (4.50 g, 30.0 mmol, 1.0 equiv), iodoethane (4.91 g, 31.5 mmol, 1.05 equiv), and morpholine (2.61 g, 30.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E18** as a yellow oil (0.48 g, 6% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.77 (m, 1H), 7.25 – 7.20 (m, 2H), 7.15 – 7.13 (m, 1H), 3.80 – 3.58 (m, 4H), 3.41 – 3.36 (m, 1H), 3.31 – 3.25 (m, 1H), 3.14 – 3.09 (m, 1H), 2.97 – 2.91 (m, 1H), 2.51 (dq, J = 14.7, 7.4 Hz, 1H), 2.31 – 2.22 (m, 4H), 0.78 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 136.8, 133.6, 132.3, 128.0, 127.8, 126.2, 75.8, 66.7, 65.7, 47.3, 43.3, 33.7, 20.1, 8.3.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO_2 [M + H]^+ 282.1255$, found 282.1252.

2-Chloro-2-(2-chlorophenyl)-1-morpholinobutan-1-one (E19)

E19

According to **General procedure 2** with 2-(2-chlorophenyl)acetic acid (5.10 g, 30.0 mmol, 1.0 equiv), iodoethane (4.91 g, 31.5 mmol, 1.05 equiv), and morpholine (2.61 g, 30.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **E19** as a yellow oil (5.08 g, 56% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 1H), 7.39 – 7.27 (m, 3H), 3.73 – 3.65 (m, 4H), 3.38 – 3.33 (m, 1H), 3.24 – 3.11 (m, 2H), 2.98 – 2.93 (m, 1H), 2.62 – 2.45 (m, 2H) 0.74 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 136.6, 131.3, 130.6, 129.8, 129.5, 127.1, 74.4, 66.6, 65.6, 47.1, 43.5, 32.7, 8.1.

HRMS (ESI) m/z calcd. for $C_{14}H_{18}Cl_2NO_2 [M + H]^+$ 302.0709, found 302.0707.

2-Chloro-2-(3-methoxyphenyl)-1-morpholinobutan-1-one (E20)

According to **General procedure 2** with 2-(3-methoxyphenyl)acetic acid (1.66 g, 10.0 mmol, 1.0 equiv), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E20** as a yellow oil (0.62 g, 21% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 – 7.18 (m, 1H), 6.90 – 6.84 (m, 2H), 6.76 (dd, J = 8.3, 2.5 Hz, 1H), 3.73 (s, 3H), 3.58 – 3.52 (m, 4H), 3.37 – 3.26 (m, 2H), 3.01 – 2.91 (m, 2H), 2.33 – 2.19 (m, 1H), 2.16 – 2.05 (m, 1H), 0.73 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 159.5, 140.9, 129.4, 117.5, 112.7, 111.5, 74.3, 66.4, 65.4, 55.0, 47.4, 43.3, 37.6, 8.5.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO_3 [M + H]^+ 298.1204$, found 298.1206.

2-Chloro-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one (E21)

E21

According to **General procedure 2** with 2-(3-(trifluoromethyl)phenyl)acetic acid (2.04 g, 10.0 mmol, 1.0 equiv), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E21** as a yellow oil (0.90 g, 27% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.69 (m, 1H), 7.63 – 7.60 (m, 2H), 7.56 – 7.52 (m, 1H), 3.70 – 3.53 (m, 4H), 3.42 – 3.31 (m, 2H), 3.06 – 2.91 (m, 2H), 2.42 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.21 (dq, *J* = 14.5, 7.2 Hz, 1H), 0.82 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.9, 140.9, 131.1 (q, J = 32.3 Hz), 129.2, 128.8, 124.9 (q, J = 3.7 Hz), 123.6 (q, J = 271.0 Hz), 122.3 (q, J = 4.0 Hz), 73.8, 66.6, 65.5, 47.6, 43.6, 38.0, 8.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68.

HRMS (ESI) m/z calcd. for $C_{15}H_{18}ClF_{3}NO_{2}$ [M + H]⁺ 336.0973, found 336.0972.

2-Chloro-2-(3-fluorophenyl)-1-morpholinobutan-1-one (E22)

According to **General procedure 2** with 2-(3-fluorophenyl)acetic acid (1.54 g, 10.0 mmol, 1.0 equiv), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E22** as a yellow oil (1.72 g, 60% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 1H), 7.21 – 7.17 (m, 1H), 7.15 – 7.12 (m, 1H), 7.06 – 7.01 (m, 1H), 3.83 – 3.66 (m, 4H), 3.52 – 3.36 (m, 2H), 3.23 – 3.06 (m, 1H), 2.99 – 2.87 (m, 1H), 2.39 (dq, J = 14.5, 7.3 Hz, 1H), 2.19 (dq, J = 14.5, 7.2 Hz, 1H), 0.81 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 162.6 (d, J = 246.1 Hz), 142.2 (d, J = 7.1 Hz), 130.2 (d, J = 8.1 Hz), 121.0 (d, J = 3.0 Hz), 114.9 (d, J = 21.1 Hz), 113.0 (d, J = 23.7 Hz), 73.7 (d, J = 1.7 Hz), 66.6, 65.6, 47.5, 43.5, 37.8, 8.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.31.

HRMS (ESI) m/z calcd. for $C_{14}H_{18}ClFNO_2 [M + H]^+ 286.1005$, found 286.1003.

2-Chloro-1-morpholino-2-(*p*-tolyl)butan-1-one (E23)

E23

According to **General procedure 1** with 2-(*p*-tolyl)acetic acid (3.00 g, 20.0 mmol, 1.0 equiv), iodoethane (3.27 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E23** as a yellowish oil (2.88 g, 51% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.26 (m, 2H), 7.19 – 7.17 (m, 2H), 3.87 – 3.53 (m, 4H), 3.49 – 3.30 (m, 2H), 3.19 – 2.89 (m, 2H), 2.42 – 2.33 (m, 4H), 2.24 – 2.15 (m, 1H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 137.7, 136.5, 129.1, 125.3, 74.6, 66.6, 65.6, 47.6, 43.5, 38.0, 20.9, 8.7.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO_2 [M + H]^+ 282.1255$, found 282.1254.

2-Chloro-2-(4-chlorophenyl)-1-morpholinobutan-1-one (E24)

According to **General procedure 2** with 2-(4-chlorophenyl)acetic acid (3.40 g, 20.0 mmol, 1.0 equiv), iodoethane (3.27 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E24** as a yellowish solid (3.52 g, 58% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 4H), 3.83 – 3.51 (m, 4H), 3.43 – 3.33 (m, 2H), 3.14 – 3.06 (m, 1H), 3.04 – 2.95 (m, 1H), 2.36 (dq, *J* = 14.5, 7.2 Hz, 1H), 2.16 (dq, *J* = 14.5, 7.2 Hz, 1H), 0.79 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 138.1, 133.8, 128.7, 126.8, 73.9, 66.6, 65.6, 47.5, 43.5, 37.9, 8.6.

HRMS (ESI) m/z calcd. for $C_{14}H_{18}Cl_2NO_2$ [M + H]⁺ 302.0709, found 302.0706.

2-(4-Bromophenyl)-2-chloro-1-morpholinobutan-1-one (E25)

According to **General procedure 2** with 2-(4-bromophenyl)acetic acid (4.28 g, 20.0 mmol, 1.0 equiv), iodoethane (3.27 g, 21.0 mmol, 1.05 equiv), and morpholine (1.74 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E25** as a yellowish solid (2.35 g, 34% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.29 – 7.26 (m, 2H), 3.74 – 3.64 (m, 4H), 3.44 – 3.37 (m, 2H), 3.22 – 3.06 (m, 1H), 3.03 – 2.96 (m, 1H), 2.37 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.17 (dq, *J* = 14.5, 7.3 Hz, 1H), 0.80 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 138.7, 131.7, 127.1, 122.0, 73.9, 66.6, 65.6, 47.6, 43.5, 37.8, 8.6.

HRMS (ESI) m/z calcd. for $C_{14}H_{18}BrClNO_2 [M + H]^+ 346.0204$, found 346.0201.

2-Chloro-1-morpholino-2-(naphthalen-2-yl)butan-1-one (E26)

E26

According to **General procedure 2** with 2-(naphthalen-2-yl)acetic acid (1.86 g, 10.0 mmol, 1.0 equiv), iodoethane (1.64 g, 10.5 mmol, 1.05 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **E26** as a yellowish oil (1.06 g, 33% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 2.0 Hz, 1H), 7.87 – 7.84 (m, 3H), 7.56 – 7.50 (m, 2H), 7.45 – 7.42 (m, 1H), 3.76 – 3.67 (m, 4H), 3.45 – 3.38 (m, 2H), 3.01 – 2.99 (m, 2H), 2.47 (dq, J = 14.5, 7.3 Hz, 1H), 2.30 (dq, J = 14.5, 7.2 Hz, 1H), 0.82 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 136.8, 132.8, 132.6, 128.5, 128.1, 127.6, 126.8, 126.6, 124.6, 123.0, 74.8, 66.7, 65.7, 47.6, 43.6, 37.8, 8.7.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}CINO_2 [M + H]^+ 318.1255$, found 318.1256.

2-Bromo-2-cyclohexyl-1-morpholinopropan-1-one (E27)

According to **General procedure 4** with 2-cyclohexylacetic acid (1.42 g, 10.0 mmol, 1.0 equiv), iodomethane (3.12 g, 22.0 mmol, 2.2 equiv), and morpholine (0.87 g, 10.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E27** as a white solid (1.20 g, 40% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 3.82 – 3.64 (m, 8H), 2.20 – 2.16 (m, 1H), 2.03 – 1.96 (m, 1H), 1.90 – 1.86 (m, 1H), 1.83 (s, 3H), 1.82 – 1.79 (m, 1H), 1.71 – 1.67 (m, 1H), 1.53 – 1.48 (m, 1H), 1.32 – 1.08 (m, 5H).
¹³C NMR (100 MHz, CDCl₃) δ 168.7, 68.1, 66.6, 46.6, 28.6, 28.0, 26.6, 26.5, 26.0.

HRMS (ESI) m/z calcd. for $C_{13}H_{23}BrNO_2 [M + H]^+ 304.0907$, found 304.0907.

2-Chloro-2-phenyl-1-(piperidin-1-yl)butan-1-one (E28)

According to **General procedure 1** with 2-phenylbutanoic acid (3.28 g, 20.0 mmol, 1.0 equiv) and piperidine (1.70 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E28** as a yellowish oil (3.19 g, 60% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 4H), 7.31 – 7.27 (m, 1H), 3.72 - 3.47 (m, 2H), 3.30 – 3.12 (m, 1H), 3.08 - 2.92 (m, 1H), 2.39 (dq, J = 14.6, 7.3 Hz, 1H), 2.20 (dq, J = 14.4, 7.2 Hz, 1H), 1.63 - 1.44 (m, 4H), 1.31 - 1.26 (m, 1H), 0.95 - 0.86 (m, 1H), 0.79 (t, J = 7.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 140.0, 128.3, 127.5, 125.4, 74.9, 47.8, 44.3, 38.1, 25.5, 24.7, 24.2, 8.7.

HRMS (ESI) m/z calcd. for $C_{15}H_{21}CINO [M + H]^+ 266.1306$, found 266.1303.

2-Chloro-2-phenyl-1-thiomorpholinobutan-1-one (E29)

According to **General procedure 1** with 2-phenylbutanoic acid (3.28 g, 20.0 mmol, 1.0 equiv) and thiomorpholine (2.06 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E29** as a yellowish oil (3.94 g, 70% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 4H), 7.33 – 7.30 (m, 1H), 4.07 – 3.77 (m, 2H), 3.49 – 3.30 (m, 2H), 2.62 – 2.55 (m, 2H), 2.43 – 2.31 (m, 2H), 2.20 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.88 – 1.75 (m, 1H), 0.78 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 139.3, 128.4, 127.8, 125.2, 74.7, 49.1, 45.7, 38.0, 27.1, 26.0, 8.5.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}CINOS [M + H]^+$ 284.0870, found 284.0869.

2-Chloro-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one (E30)

According to General procedure 1 with 2-phenylbutanoic acid (3.28 g, 20.0 mmol, 1.0 equiv)

and pyrrolidine (1.42 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E30** as a yellowish oil (3.18 g, 63% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.39 (m, 2H), 7.37 – 7.33 (m, 2H), 7.31 – 7.27 (m, 1H), 3.58 – 3.51 (m, 2H), 3.50 – 3.43 (m, 1H), 2.49 – 2.40 (m, 2H), 2.21 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.80 – 1.63 (m, 3H), 1.56 – 1.46 (m, 1H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 139.1, 128.1, 127.4, 125.5, 75.5, 47.4, 47.0, 37.1, 26.1, 23.0, 8.4.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}CINO [M + H]^+ 252.1150$, found 252.1148.

2-Chloro-*N*,*N*-dimethyl-2-phenylbutanamide (E31)

According to **General procedure 1** with 2-phenylbutanoic acid (8.20 g, 50.0 mmol, 1.0 equiv), dimethylamine hydrochloride (4.05 g, 50.0 mmol, 1.0 equiv), and Et₃N (11.12 g, 110.0 mmol, 2.2 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E31** as a colorless oil (6.19 g, 55% overall yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 2.99 (s, 3H), 2.63 (s, 3H), 2.40 (dq, *J* = 14.5,

7.3 Hz, 1H), 2.20 (dq, *J* = 14.5, 7.2 Hz, 1H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 139.7, 128.4, 127.6, 125.3, 74.8, 38.5, 38.0, 37.4, 8.7. HRMS (ESI) m/z calcd. for C₁₂H₁₇ClNO [M + H]⁺ 226.0993, found 226.0991.

2-Chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (E32)

According to **General procedure 1** with 2-phenylbutanoic acid (3.28 g, 20.0 mmol, 1.0 equiv) and indoline (2.38 g, 20.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1) to yield the product **E32** as a yellowish oil (4.14 g, 69% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.2 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.38 – 7.29 (m, 3H), 7.25 – 7.20 (m, 1H), 7.13 – 7.10 (m, 1H), 7.05 – 7.01 (m, 1H), 4.19 – 4.12 (m, 1H), 3.08 – 3.01 (m, 1H), 2.95 – 2.87 (m, 1H), 2.75 – 2.67 (m, 1H), 2.52 (dq, J = 14.5, 7.2 Hz, 1H), 2.29 (dq, J = 14.5, 7.3 Hz, 1H), 0.85 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.9, 143.8, 138.8, 131.5, 128.5, 127.9, 127.3, 125.7, 124.4, 124.3, 118.1, 76.3, 49.0, 37.6, 28.6, 8.6.

HRMS (ESI) m/z calcd. for $C_{18}H_{19}CINO [M + H]^+ 300.1150$, found 300.1149.

2-Bromo-1-(indolin-1-yl)butan-1-one (E33)

According to **General procedure 5** with 2-bromobutanoyl bromide (8.20 g, 36.0 mmol, 1.2 equiv) and indoline (3.57 g, 30.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E33** as a brown solid (7.47 g, 93% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.9 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.07 – 7.03 (m, 1H), 4.36 – 4.30 (m, 2H), 4.10 – 4.03 (m, 1H), 3.29 – 3.16 (m, 2H), 2.33 – 2.21 (m, 1H), 2.19 – 2.06 (m, 1H), 1.06 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 142.7, 131.4, 127.6, 124.6, 124.3, 117.5, 48.2, 47.8, 28.0, 27.9, 12.2.

HRMS (ESI) m/z calcd. for $C_{12}H_{15}BrNO [M + H]^+ 268.0332$, found 268.0328.

2-Chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide (E34)

According to **General procedure 1** with 2-phenylbutanoic acid (8.20 g, 50.0 mmol, 1.0 equiv), *N*,*O*-dimethylhydroxylamine hydrochloride (4.85 g, 50.0 mmol, 1.0 equiv), and Et₃N (11.12 g, 110.0 mmol, 2.2 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E34** as a yellowish oil (6.55 g, 54% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.39 – 7.26 (m, 1H), 3.13 (s, 3H), 3.00 (s, 3H), 2.50 (dq, J = 14.5, 7.3 Hz, 1H), 2.24 (dq, J = 14.5, 7.2 Hz, 1H), 0.82 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 139.8, 128.1, 127.4, 125.4, 74.7, 59.3, 35.8, 34.1, 8.2. **HRMS** (ESI) m/z calcd. for C₁₂H₁₇ClNO₂ [M + H]⁺ 242.0942, found 242.0939.

N-Allyl-2-chloro-*N*-methyl-2-phenylbutanamide (E44)

According to **General procedure 1** with 2-phenylbutanoic acid (4.10 g, 25.0 mmol, 1.0 equiv) and *N*-methylprop-2-en-1-amine (1.78 g, 25.0 mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product **E44** as a yellowish oil (4.96 g, 79% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 4H), 7.32 – 7.28 (m, 1H), 5.83 – 4.92 (m, 3H), 4.00 – 3.54 (m, 2H), 2.88 – 2.58 (m, 3H), 2.42 (dq, *J* = 14.5, 7.2 Hz, 1H), 2.21 (dq, *J* = 14.5, 7.2 Hz, 1H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.6, 139.8, 139.6, 132.7, 132.2, 128.4, 127.7, 127.6, 125.4, 118.3, 117.0, 75.0, 53.1, 51.9, 38.1, 38.0, 36.1, 33.9, 8.6.

HRMS (ESI) m/z calcd. for $C_{14}H_{19}CINO [M + H]^+ 252.1150$, found 252.1150.

5. Cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*9 (12.9 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary alkyl chloride (0.24 mmol, 1.2 equiv), (hetero)aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L_{rac1} (11.4 mg, 0.03 mmol, 15 mol %), Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary alkyl chloride (0.24 mmol, 1.2 equiv), (hetero)aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylbutan-1-one (1)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **1** as a white solid (90.6 mg, 98% yield, 95%)

ee).

 $[\alpha]_{D}^{27} = +21$ (*c* 2.2, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.30 min, *t*_R (minor) = 11.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.48 (m, 2H), 7.41 – 7.38 (m, 2H), 7.32 – 7.28 (m, 1H), 7.00 (s, 1H), 6.86 (s, 2H), 6.76 (s, 1H), 3.70 – 3.01 (m, 8H), 2.68 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.32 (dq, *J* = 14.2, 7.2 Hz, 1H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 145.1, 140.6, 131.9 (q, J = 32.4 Hz), 129.2, 128.2, 126.8, 123.4 (q, J = 271.0 Hz), 113.43 – 113.39 (m), 109.8 – 109.7 (m), 66.1, 66.0, 45.7, 23.8, 8.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.34.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_6N_2O_2 [M + H]^+ 461.1658$, found 461.1653.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylhexan-1-one (2)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylhexan-1-one **E2** (70.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **2** as a colorless oil (87.9 mg, 90% yield, 96% ee).

 $[\alpha]_{D}^{27} = +16 (c 2.2, CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.25 min, *t*_R (minor) = 8.90 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.47 (m, 2H), 7.41 – 7.37 (m, 2H), 7.32 – 7.27 (m, 1H), 6.99 (s, 1H), 6.84 (s, 2H), 6.78 (s, 1H), 3.71 – 3.08 (m, 8H), 2.65 – 2.58 (m, 1H), 2.29 – 2.22 (m, 1H), 1.40 – 1.28 (m, 3H), 1.16 – 1.07 (m, 1H), 0.85 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 170.4, 145.1, 140.7, 131.9 (q, J = 32.4 Hz), 129.1, 128.2, 126.8, 123.4 (q, J = 271.0 Hz), 113.40 – 113.36 (m), 109.7 – 109.6 (m), 66.1, 65.5, 45.8, 30.7, 25.9, 22.7, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.34.

HRMS (ESI) m/z calcd. for C₂₄H₂₇F₆N₂O₂ [M + H]+ 489.1971, found 489.1975.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylpropan-1-one (3)

According to General Procedure A with 2-chloro-1-morpholino-2-phenylpropan-1-one E3

(60.7 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **3** as a yellowish oil (88.5 mg, 99% yield, 66% ee).

 $[\alpha]_{D}^{27} = +21$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 12.40 min, *t*_R (major) = 13.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.43 – 7.39 (m, 2H), 7.34 – 7.29 (m, 1H), 7.04 (s, 1H), 6.88 (d, J = 1.5 Hz, 2H), 6.61 (s, 1H), 3.72 – 3.36 (m, 8H), 1.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 145.2, 140.9, 131.9 (q, *J* = 32.3 Hz), 129.2, 128.3, 126.4,

123.4 (q, *J* = 271.0 Hz), 113.53 – 113.49 (m), 110.0 – 119.9 (m), 66.0, 62.5, 45.7, 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.33 (s, 6F).

HRMS (ESI) m/z calcd. For $C_{21}H_{21}F_6N_2O_2$ [M + H]⁺ 447.1502, found 447.1497.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2,4-diphenylbutan-1-one (4)

4

According to **General Procedure A** with 2-chloro-1-morpholino-2,4-diphenylbutan-1-one **E4** (82.4 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **4** as a colorless oil (102.3 mg, 95% yield, 96% ee).

 $[\alpha]_{D}^{27} = +18 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.76 min, *t*_R (minor) = 17.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.47 (m, 2H), 7.41 – 7.37 (m, 2H), 7.32 – 7.28 (m, 1H), 7.26 – 7.23 (m, 2H), 7.19 – 7.15 (m, 1H), 7.06 – 7.03 (m, 3H), 6.86 – 6.82 (m, 3H), 3.72 – 3.11 (m, 8H), 3.03 – 2.95 (m, 1H), 2.76 – 2.69 (m, 1H), 2.60 – 2.53 (m, 1H), 2.49 – 2.42 (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 170.1, 145.0, 140.9, 140.3, 131.9 (q, *J* = 32.4 Hz), 129.2, 128.6, 128.4, 128.3, 126.7, 126.3, 123.4 (q, *J* = 270.9 Hz), 113.51 – 113.47 (m), 110.0 – 109.9 (m), 66.1,

65.4, 45.6, 33.3, 30.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.29.

HRMS (ESI) m/z calcd. for C₂₈H₂₇F₆N₂O₂ [M + H]⁺ 537.1971, found 537.1982.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2,3-diphenylpropan-1-one (5)

According to **General Procedure A** with 2-chloro-1-morpholino-2,3-diphenylpropan-1-one **E5** (79.0 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **5** as a colorless oil (103.0 mg, 99% yield, 94% ee).

 $[\alpha]_{D}^{27} = +16 (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 18.48 min, t_R (minor) = 23.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 7.19 – 7.10 (m, 4H), 7.02 (s, 2H), 6.63 (s, 2H), 5.80 (s, 1H), 3.77 – 3.19 (m, 9H), 3.04 – 2.63 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.8, 145.4, 139.6, 135.0, 132.4 (q, *J* = 32.5 Hz), 130.3, 129.0, 128.3, 127.9, 127.0, 125.8, 123.4 (q, *J* = 271.1 Hz), 113.72 – 113.70 (m), 110.8 – 110.6 (m), 66.3, 66.0, 65.5, 47.0, 44.0, 39.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.18.

HRMS (ESI) m/z calcd. for C₂₇H₂₅F₆N₂O₂ [M + H]⁺ 523.1815, found 523.1816.

(*S*)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-cyclopropyl-1-morpholino-2phenylpropan-1-one (6)

6

According to **General Procedure A** with 2-chloro-3-cyclopropyl-1-morpholino-2phenylpropan-1-one **E6** (70.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **6** as a colorless oil (94.9 mg, 98% yield, 94% ee).

 $[\alpha]_{D}^{27} = +24$ (*c* 2.4, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 10.22 min, *t*_R (minor) = 13.92 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.45 (m, 2H), 7.41 – 7.38 (m, 2H), 7.33 – 7.28 (m, 1H), 7.02 (s, 1H), 6.87 (s, 2H), 6.78 (s, 1H), 4.08 – 2.92 (m, 8H), 2.76 (dd, *J* = 14.2, 5.5 Hz, 1H), 2.05 (dd, *J* = 14.2, 7.6 Hz, 1H), 0.71 – 0.61 (m, 1H), 0.48 – 0.39 (m, 2H), -0.01 – -0.08 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 145.4, 140.8, 132.0 (q, J = 32.4 Hz), 129.1, 128.2, 126.5, 123.4 (q, J = 271.1 Hz), 113.4 – 113.3 (m), 109.9 – 109.8 (m), 66.0, 65.9, 45.5, 36.0, 5.8, 4.2, 3.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31.

HRMS (ESI) m/z calcd. for C₂₄H₂₅F₆N₂O₂ [M + H]⁺ 487.1815, found 487.1813.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-methyl-1-morpholino-2-phenylpentan-1one (7)

According to **General Procedure A** with 2-chloro-4-methyl-1-morpholino-2-phenylpentan-1one **E7** (70.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 7 as a colorless oil (95.9 mg, 98% yield, 91% ee).

 $[\alpha]_D^{27} = +24$ (*c* 2.3, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 6.51 min, t_R (minor) = 8.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (s, 2H), 7.39 – 7.35 (m, 2H), 7.30 – 7.26 (m, 1H), 7.00 – 6.97 (m, 2H), 6.81 (s, 2H), 4.32 – 2.85 (m, 8H), 2.68 (dd, *J* = 14.3, 5.2 Hz, 1H), 2.19 (dd, *J* = 14.3, 6.0 Hz, 1H), 1.82 – 1.72 (m, 1H), 0.93 (d, *J* = 6.7 Hz, 3H), 0.86 (d, *J* = 6.7 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.8, 145.1, 141.0, 131.8 (q, *J* = 32.3 Hz), 129.1, 128.2, 126.8, 123.5 (q, *J* = 271.0 Hz), 113.13 – 113.09 (m), 109.45 – 109.36 (m), 65.9, 65.8, 64.9, 46.5, 44.9, 38.9, 24.5, 24.3, 23.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.34.

HRMS (ESI) m/z calcd. for C₂₄H₂₆F₆N₂NaO₂ [M + Na]⁺ 511.1791, found 511.1788.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one (8)

8

According to General Procedure A with 2-chloro-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one E8 (80.4 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 8 as a white solid (90.9 mg, 93% yield, 94% ee).

 $[\alpha]_{D}^{27} = +23$ (*c* 2.6, CHCl₃).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 10.10 min, *t*_R (minor) = 11.91 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 4H), 7.36 – 7.32 (m, 1H), 7.08 (s, 1H), 6.89 (s, 2H), 6.57 (s, 1H), 3.84 – 3.09 (m, 8H), 2.97 – 2.89 (m, 1H), 2.53 – 2.46 (m, 1H), 2.31 – 2.15 (m, 1H), 2.01 – 1.85 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.4, 144.5, 139.0, 132.2 (q, *J* = 32.6 Hz), 129.5, 128.8, 126.9 (q, *J* = 274.4 Hz), 126.2, 123.3 (q, *J* = 270.0 Hz), 113.6 - 113.5 (m), 110.8 - 110.6 (m), 66.0, 64.7, 45.6, 29.2 (q, *J* = 29.1 Hz), 25.2 - 25.1 (m).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.39, -66.15.

HRMS (ESI) m/z calcd. for C₂₃H₂₂F₉N₂O₂ [M + H]⁺ 529.1532, found 529.1531.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-5-fluoro-1-morpholino-2-phenylpentan-1one (9)

9

According to **General Procedure A** with 2-chloro-5-fluoro-1-morpholino-2-phenylpentan-1-one **E9** (71.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **9** as a white solid (98.2 mg, 99% yield, 96% ee).

 $[\alpha]_{D}^{27} = +38 (c 2.4, CHCl_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.61 min, t_R (minor) = 16.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.48 (m, 2H), 7.42 – 7.39 (m, 2H), 7.33 – 7.29 (m, 1H), 7.01 (s, 1H), 6.86 (s, 2H), 6.80 (s, 1H), 4.60 – 4.30 (m, 2H), 3.86 – 2.94 (m, 8H), 2.77 – 2.70 (m, 1H), 2.55 – 2.48 (m, 1H), 1.84 – 1.53 (m, 2H).

¹³**C** NMR (100 MHz, CDCl₃) δ 170.0, 144.8, 140.0, 131.9 (q, J = 32.4 Hz), 129.2, 128.4, 126.6, 123.4 (q, J = 271.0 Hz), 113.34 – 113.30 (m), 110.0 – 109.9 (m), 83.5 (d, J = 164.4 Hz), 66.0, 65.1, 45.7, 27.3, 25.3 (d, J = 19.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.34, -218.51.

HRMS (ESI) m/z calcd. for C₂₃H₂₄F₇N₂O₂ [M + H]⁺ 493.1721, found 493.1719.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-6-chloro-1-morpholino-2-phenylhexan-1-one (10)

According to **General Procedure A** with 2,6-dichloro-1-morpholino-2-phenylhexan-1-one **E10** (79.0 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **10** as a colorless oil (101.7 mg, 97% yield, 96% ee).

 $[\alpha]_{D}^{27} = +22 \ (c \ 2.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.47 min, t_R (minor) = 12.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 7.02 (s, 1H), 6.87 (s, 2H), 6.71 (s, 1H), 3.75 – 3.38 (m, 10H), 2.64 – 2.57 (m, 1H), 2.36 – 2.28 (m, 1H), 1.87 – 1.70 (m, 2H), 1.56 – 1.45 (m, 1H), 1.43 – 1.31 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 170.1, 144.9, 140.2, 131.9 (q, J = 32.3 Hz), 129.2, 128.3, 126.5, 123.4 (q, J = 271.0 Hz), 113.45 – 113.42 (m), 110.0 – 109.9 (m), 66.1, 65.4, 45.7, 44.3, 32.1, 30.5, 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.32.

HRMS (ESI) m/z calcd. for $C_{24}H_{26}ClF_6N_2O_2 [M + H]^+ 523.1582$, found 523.1582.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-methoxy-1-morpholino-2-phenylbutan-1one (11)

11

According to **General Procedure A** with 2-chloro-4-methoxy-1-morpholino-2-phenylbutan-1one **E11** (71.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **11** as a colorless oil (97.0 mg, 99% yield, 95% ee).

 $[\alpha]_{D}^{27} = +18 (c 2.4, CHCl_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.12 min, t_R (minor) = 16.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.45 (m, 2H), 7.41 – 7.38 (m, 2H), 7.32 – 7.29 (m, 1H), 7.03 (s, 1H), 6.86 (s, 2H), 6.77 (s, 1H), 3.68 –3.23 (m, 13H), 2.86 – 2.80 (m, 1H), 2.66 – 2.59 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 145.2, 140.0, 132.0 (q, J = 32.4 Hz), 129.1, 128.2, 126.6, 123.4 (q, J = 271.0 Hz), 113.8 – 113.7 (m), 110.2 – 110.1 (m), 68.2, 65.9, 64.3, 58.9, 45.5, 31.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.33.

HRMS (ESI) m/z calcd. for C₂₃H₂₅F₆N₂O₃ [M + H]⁺ 491.1764, found 491.1770.

(S)-6-((3,5-Bis(trifluoromethyl)phenyl)amino)-7-morpholino-7-oxo-6-phenylheptanenitrile (12)

12

According to **General Procedure A** with 6-chloro-7-morpholino-7-oxo-6-phenylheptanenitrile **E12** (76.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **12** as a colorless oil (89.2 mg, 87% yield, 96% ee).

 $[\alpha]_{D}^{27} = +15 (c 2.2, CHCl_3).$

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 21.74 min, *t*_R (major) = 29.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 4H), 7.34 – 7.30 (m, 1H), 7.04 (s, 1H), 6.89 (s, 2H), 6.60 (s, 1H), 3.91 – 2.89 (m, 8H), 2.64 – 2.56 (m, 1H), 2.38 – 2.20 (m, 3H), 1.71 – 1.61 (m, 2H), 1.54 – 1.42 (m, 1H), 1.38 – 1.30 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 144.8, 139.9, 132.0 (q, *J* = 32.5 Hz), 129.3, 128.4, 126.3, 123.3 (q, *J* = 271.0 Hz), 119.2, 113.4 – 113.3 (m), 110.2 – 110.1 (m), 66.0, 65.3, 45.9, 31.2, 25.2, 23.0, 17.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.29.

HRMS (ESI) m/z calcd. for C₂₅H₂₆F₆N₃O₂ [M + H]⁺ 514.1924, found 514.1926.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylhept-4-yn-1-one (13)

13

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylhept-4-yn-1-one **E13** (73.2 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **13** as a white solid (98.9 mg, 99% yield, 89% ee).

 $[\alpha]_{D}^{27} = +36 (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.26 min, t_R (major) = 16.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 4H), 7.39 – 7.34 (m, 1H), 7.23 (s, 1H), 7.09 (s, 2H), 5.89 (s, 1H), 3.55 – 3.46 (m, 4H), 3.34 – 3.16 (m, 6H), 2.09 – 2.03 (m, 2H), 1.02 (t, *J* = 7.5 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.5, 145.6, 139.1, 132.2 (q, *J* = 32.6 Hz), 129.0, 128.3, 125.3, 123.3 (q, *J* = 271.0 Hz), 115.31 – 115.28 (m), 112.0 – 111.9 (m), 86.0, 73.5, 66.1, 65.5, 45.3, 27.2, 14.0, 12.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.24.

HRMS (ESI) m/z calcd. for C₂₅H₂₅F₆N₂O₂ [M + H]⁺ 499.1815, found 499.1810.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylpent-4-en-1-one (14)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylpent-4-en-1-one **E14** (67.0 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **14** as a colorless oil (80.3 mg, 85% yield, 93% ee).

 $[\alpha]_{D}^{27} = +22 \ (c \ 2.0, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.60 min, *t*_R (minor) = 12.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 4H), 7.35 – 7.30 (m, 1H), 7.07 (s, 1H), 6.92 (s, 2H), 6.47 (s, 1H), 5.65 – 5.55 (m, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 4.97 (d, *J* = 17.0 Hz, 1H), 3.77 – 2.96 (m, 10H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 145.2, 140.0, 132.0 (q, *J* = 32.5 Hz), 131.6, 129.2, 128.4, 126.3, 123.4 (q, *J* = 271.0 Hz), 119.7, 113.93 – 113.90 (m), 110.5 – 110.3 (m), 66.1, 65.4, 45.6, 36.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.31.

HRMS (ESI) m/z calcd. for $C_{23}H_{23}F_6N_2O_2$ [M + H]⁺ 473.1658, found 473.1662.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-methyl-1-morpholino-2-phenylbutan-1-one (15)

15

According to **General Procedure A** with 2-chloro-3-methyl-1-morpholino-2-phenylbutan-1-one **E15** (67.5 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **15** as a white solid (86.3 mg, 91% yield, 94% ee).

 $[\alpha]_{D}^{27} = -26 (c 2.3, CHCl_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (minor) = 16.72 min, $t_{\rm R}$ (major) = 18.74 min.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 5H), 7.08 (s, 1H), 6.89 (s, 2H), 5.90 (s, 1H), 3.66 -3.04 (m, 9H), 0.97 - 0.90 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 146.6, 137.4, 131.9 (q, J = 33.0 Hz), 128.9, 128.2, 126.6, 123.4 (q, J = 271.0 Hz), 113.8, 110.3 - 110.1 (m), 69.6, 66.0, 45.9, 32.6, 19.8, 17.8.¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.25.

HRMS (ESI) m/z calcd. for $C_{23}H_{24}F_6N_2NaO_2$ [M + Na]⁺ 497.1634, found 497.1633.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclopentyl-1-morpholino-2-phenylethan-1-one (16)

According to General Procedure A with 2-chloro-2-cyclopentyl-1-morpholino-2-phenylethan-1-one E16 (73.7 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 16 as a white solid (98.1 mg, 98%) yield, 96% ee).

 $[\alpha]_{D}^{27} = -55 \ (c \ 2.4, \ CHCl_3).$

HPLC analysis: Chiralcel IH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ $(minor) = 8.90 min, t_R (major) = 11.20 min.$

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.28 (m, 5H), 6.99 (s, 1H), 6.74 (s, 2H), 6.57 (s, 1H), 3.83 -2.77 (m, 9H), 2.11 - 2.02 (m, 1H), 1.65 - 1.48 (m, 6H), 1.39 - 1.28 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 146.9, 138.5, 131.4 (q, J = 32.3 Hz), 129.0, 128.2, 127.4, 123.4 (q, J = 271.1 Hz), 114.33 – 114.28 (m), 109.8 – 109.7 (m), 68.5, 66.2, 65.6, 47.1, 45.5, 44.4, 29.3, 28.1, 25.2, 23.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.26.

HRMS (ESI) m/z calcd. for C₂₅H₂₆F₆N₂NaO₂ [M + Na]⁺ 523.1791, found 523.1789.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclohexyl-1-morpholino-2-phenylethan-1one (17)

According to General Procedure A with 2-chloro-2-cyclohexyl-1-morpholino-2-phenylethan-1one E17 (77.1 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to vield the product 17 as a white solid (96.1 mg, 93% vield, 97% ee).

 $[\alpha]_{D}^{27} = -36 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.50 min, t_R (major) = 14.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.21 (m, 6H), 7.05 (s, 1H), 6.81 (s, 2H), 3.65 – 2.94 (m, 8H), 2.68 – 2.63 (m, 1H), 2.11 – 2.04 (m, 1H), 1.81 – 1.62 (m, 4H), 1.42 – 0.98 (m, 5H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 146.6, 137.7, 131.8 (q, *J* = 30.5 Hz), 128.9, 128.1, 126.9, 123.4 (q, *J* = 271.0 Hz), 113.8, 110.0 – 109.8 (m), 69.8, 66.0, 46.1, 43.4, 30.2, 27.8, 26.8, 26.4, 26.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.25.

HRMS (ESI) m/z calcd. for $C_{26}H_{28}F_6N_2NaO_2 [M + Na]^+ 537.1947$, found 537.1946.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(o-tolyl)butan-1-one (18)

18

According to **General Procedure A** with 2-chloro-1-morpholino-2-(o-tolyl)butan-1-one **E18** (67.5 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **18** as a white solid (94.2 mg, 99% yield, 94% ee).

 $[\alpha]_{D}^{27} = +10 (c \ 1.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 5.06 min, t_R (major) = 5.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.75 (m, 1H), 7.34 – 7.30 (m, 1H), 7.25 – 7.21 (m, 1H), 7.14 – 7.11 (m, 1H), 6.96 (s, 1H), 6.81 – 6.79 (m, 3H), 3.93 – 3.23 (m, 7H), 2.88 – 2.74 (m, 2H), 2.26 – 2.17 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 145.1, 138.1, 137.9, 133.3, 131.8 (q, *J* = 32.3 Hz), 128.5, 127.0, 126.4, 123.5 (q, *J* = 271.0 Hz), 113.41 – 113.38 (m), 109.5 – 109.4 (m), 66.9, 65.9, 65.3, 47.1, 44.3, 25.0, 20.2, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.36.

HRMS (ESI) m/z calcd. for $C_{23}H_{25}F_6N_2O_2$ [M + H]⁺ 475.1815, found 475.1811.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(2-chlorophenyl)-1-morpholinobutan-1one (19)

19

According to **General Procedure A** with 2-chloro-2-(2-chlorophenyl)-1-morpholinobutan-1-one **E19** (72.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **19** as a white solid (98.5 mg, 99% yield, 94% ee).

 $[\alpha]_{D}^{27} = +50 \ (c \ 2.4, \ CHCl_3).$

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 6.10 min, *t*_R (major) = 7.16 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.42 – 7.38 (m, 1H), 7.35 – 7.32 (m, 1H), 7.29 – 7.25 (m, 1H), 6.97 (s, 1H), 6.91 (s, 1H), 6.82 (s, 2H), 3.95 – 2.96 (m, 8H), 2.80 (dq, J = 14.4, 7.3 Hz, 1H), 2.18 (dq, J = 14.2, 7.2 Hz, 1H), 0.97 (t, J = 7.2 Hz, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 145.0, 137.8, 134.1, 132.3, 131.7 (q, *J* = 32.3 Hz), 129.8, 128.8, 127.0, 123.4 (q, *J* = 2721.0 Hz), 113.53 – 113.50 (m), 109.7 – 109.5 (m), 66.4, 65.8, 65.0, 46.9, 44.8, 25.4, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.34.

HRMS (ESI) m/z calcd. for $C_{22}H_{22}ClF_6N_2O_2 [M + H]^+ 495.1269$, found 495.1265.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(3-methoxyphenyl)-1-morpholinobutan-1one (20)

20

According to **General Procedure A** with 2-chloro-2-(3-methoxyphenyl)-1-morpholinobutan-1one **E20** (71.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **20** as a white solid (77.1 mg, 79% yield, 96% ee).

 $[\alpha]_{D}^{27} = +30 \ (c \ 1.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.81 min, *t*_R (minor) = 16.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 7.01 – 6.98 (m, 2H), 6.88 (s, 2H), 6.85 – 6.82 (m, 1H), 6.71 (s, 1H), 3.79 (s, 3H), 3.65 – 3.01 (m, 8H), 2.65 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.27 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 160.3, 145.1, 142.3, 131.9 (q, *J* = 32.3 Hz), 130.1, 123.5

(q, J = 271.0 Hz), 118.9, 113.50 – 113.47 (m), 113.3, 113.2, 109.8 – 109.7 (m), 66.2, 65.9, 55.4, 45.7, 23.9, 8.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31. HRMS (ESI) m/z calcd. for C₂₃H₂₅F₆N₂O₃ [M + H]⁺ 491.1764, found 491.1764.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one (21)

According to **General Procedure A** with 2-chloro-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one **E21** (80.4 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **21** as a colorless oil (83.8 mg, 79% yield, 95% ee).

 $[\alpha]_{D}^{27} = +16 (c 2.2, CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 6.78 min, t_R (minor) = 7.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.68 – 7.66 (m, 1H), 7.62 – 7.60 (m, 1H), 7.57 – 7.53 (m, 1H), 7.04 (s, 1H), 6.83 (s, 2H), 6.76 (s, 1H), 3.71 – 3.15 (m, 8H), 2.73 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.34 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.4, 144.7, 142.2, 132.1 (q, J = 32.5 Hz), 131.6 (q, J = 31.7 Hz), 130.3, 129.9, 125.1 (q, J = 3.7 Hz), 123.62 (q, J = 271.0 Hz), 123.56, 123.3 (q, J = 271.1 Hz), 113.52 – 113.48 (m), 110.4 – 110.3 (m), 66.1, 65.8, 45.8, 23.7, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.84, -63.44.

HRMS (ESI) m/z calcd. for $C_{23}H_{22}F_9N_2O_2$ [M + H]⁺ 529.1532, found 529.1537.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(3-fluorophenyl)-1-morpholinobutan-1-one (22)

22

According to **General Procedure A** with 2-chloro-2-(3-fluorophenyl)-1-morpholinobutan-1-one **E22** (68.4 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **22** as a colorless oil (90.2 mg, 94% yield, 95% ee).

 $[\alpha]_D^{27} = +36 (c 2.3, CHCl_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (major) = 16.67 min, $t_{\rm R}$ (minor) = 19.92 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 1H), 7.33 – 7.31 (m, 1H), 7.21 – 7.18 (m, 1H), 7.05 – 7.00 (m, 2H), 6.86 (s, 2H), 6.74 (s, 1H), 3.56 – 3.41 (m, 8H), 2.66 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.30 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.5, 163.2 (d, J = 247.3 Hz), 144.8, 143.5 (q, J = 6.3 Hz), 132.0 (q, J = 32.4 Hz), 130.7 (d, J = 8.3 Hz), 123.4 (q, J = 271.0 Hz), 122.3, 115.4 (d, J = 20.9 Hz), 114.2 (d, J = 22.0 Hz), 113.5 – 113.4 (m), 110.2 – 110.0 (m), 66.1, 65.7 (d, J = 1.7 Hz), 45.7, 23.9, 8.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.36, -110.57.

HRMS (ESI) m/z calcd. for $C_{22}H_{22}F_7N_2O_2 [M + H]^+ 479.1564$, found 479.1564.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(p-tolyl)butan-1-one (23)

23

According to **General Procedure A** with 2-chloro-1-morpholino-2-(*p*-tolyl)butan-1-one **E23** (67.5 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **23** as a white solid (93.0 mg, 98% yield, 94% ee).

 $[\alpha]_{D}^{27} = +46 (c 2.3, CHCl_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.13 min, t_R (minor) = 11.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.34 (m, 2H), 7.20 – 7.18 (m, 2H), 7.00 (s, 1H), 6.87 (s, 2H), 6.73 (s, 1H), 3.90 – 2.97 (m, 8H), 2.65 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.33 – 2.25 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 145.2, 138.1, 137.4, 131.8 (q, *J* = 32.3 Hz), 129.8, 126.6, 123.5 (q, *J* = 270.9 Hz), 113.41 – 113.37 (m), 109.64 – 109.57 (m), 66.1, 65.7, 45.7, 23.8, 20.9, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.31.

HRMS (ESI) m/z calcd. for $C_{23}H_{24}F_6N_2NaO_2 [M + Na]^+ 497.1634$, found 497.1634.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(4-chlorophenyl)-1-morpholinobutan-1one (24)

According to **General Procedure A** with 2-chloro-2-(4-chlorophenyl)-1-morpholinobutan-1-one **E24** (72.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **24** as a colorless oil (98.1 mg, 99% yield, 94% ee).

 $[\alpha]_D^{27} = +45$ (*c* 2.4, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 13.29 min, t_R (major) = 15.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 4H), 7.04 (s, 1H), 6.85 (s, 2H), 6.74 (s, 1H), 3.81 – 3.00 (m, 8H), 2.66 (dq, J = 14.6, 7.3 Hz, 1H), 2.29 (dq, J = 14.3, 7.2 Hz, 1H), 0.88 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 144.8, 139.3, 134.2, 132.0 (q, J = 32.4 Hz), 129.3, 128.1, 123.4 (q, J = 271.0 Hz), 113.43 – 113.39 (m), 110.1 – 110.0 (m), 66.1, 65.6, 45.7, 23.8, 8.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.32.

HRMS (ESI) m/z calcd. for $C_{22}H_{22}ClF_6N_2O_2$ [M + H]⁺ 495.1269, found 495.1268.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(4-bromophenyl)-1-morpholinobutan-1one (25)

According to **General Procedure A** with 2-(4-bromophenyl)-2-chloro-1-morpholinobutan-1-one **E25** (82.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **25** as a white solid (95.3 mg, 89% yield, 94% ee).

 $[\alpha]_{D}^{27} = +47 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 16.80 min, t_R (minor) = 19.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.37 – 7.35 (m, 2H), 7.04 (s, 1H), 6.84 – 6.71 (m, 3H), 3.60 – 3.24 (m, 8H), 2.65 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.28 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 144.8, 139.8, 132.3, 132.0 (q, J = 32.5 Hz), 128.4, 123.4

(q, J = 271.1 Hz), 122.3, 113.44 – 113.41 (m), 110.2 – 110.1 (m), 66.1, 65.7, 45.7, 23.8, 8.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31. HRMS (ESI) m/z calcd. for C₂₂H₂₁BrF₆N₂NaO₂ [M + Na]⁺ 561.0583, found 561.0581.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(naphthalen-2-yl)butan-1one (26)

According to **General Procedure A** with 2-chloro-1-morpholino-2-(naphthalen-2-yl)butan-1one **E26** (76.1 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **26** as a colorless oil (86.0 mg, 84% yield, 93% ee).

 $[\alpha]_{D}^{27} = -10 (c \ 1.1, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.21 min, t_R (major) = 12.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.87 – 7.80 (m, 3H), 7.55 – 7.48 (m, 3H), 6.98 (s, 1H), 6.94 (s, 2H), 6.78 (s, 1H), 3.83 – 3.03 (m, 8H), 2.83 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.43 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 145.1, 137.8, 132.9, 132.6, 131.9 (q, *J* = 32.4 Hz), 129.4, 127.9, 127.7, 127.0, 126.9, 125.5, 124.3, 123.4 (q, *J* =270.9 Hz), 113.51 – 113.48 (m), 110.0 – 109.9 (m), 66.2, 66.1, 45.7, 24.0, 8.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.34.

HRMS (ESI) m/z calcd. for $C_{26}H_{25}F_6N_2O_2$ [M + H]⁺ 511.1815, found 511.1819.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclohexyl-1-morpholinopropan-1-one (27)

According to General Procedure A with 2-bromo-2-cyclohexyl-1-morpholinopropan-1-one E27 (72.7 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 27 as a white solid (88.7 mg, 98% yield, 77% ee).

 $[\alpha]_{D}^{27} = -41$ (*c* 2.2, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 11.17 min, *t*_R (major) = 18.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (s, 1H), 6.97 (s, 2H), 4.48 (s, 1H), 4.00 – 3.17 (m, 8H), 1.94 – 1.73 (m, 5H), 1.62 – 1.59 (m, 1H), 1.44 (s, 3H), 1.31 – 1.19 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 146.0, 132.5 (q, J = 32.6 Hz), 123.3 (q, J = 271.1 Hz), 113.4 – 113.3 (m), 111.0 – 110.9 (m), 66.7, 64.8, 45.2, 43.7, 28.3, 26.8, 26.6, 26.5, 26.1, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.25.

HRMS (ESI) m/z calcd. for C₂₁H₂₇F₆N₂O₂ [M + H]⁺ 453.1971, found 453.1979.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-(piperidin-1-yl)butan-1-one (28)

According to **General Procedure A** with 2-chloro-2-phenyl-1-(piperidin-1-yl)butan-1-one **E28** (63.6 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **28** as a white solid (91.2 mg, 99% yield, 95% ee).

 $[\alpha]_{D}^{27} = +39 \ (c \ 2.2, \ CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 6.41 min, *t*_R (minor) = 8.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.39 – 7.35 (m, 2H), 7.28 – 7.25 (m, 1H), 7.00 (s, 1H), 6.95 (s, 1H), 6.83 (s, 2H), 3.83 – 3.09 (m, 4H), 2.67 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.36 (dq, *J* = 14.2, 7.1 Hz, 1H), 1.49 – 1.03 (m, 6H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 145.2, 141.1, 131.9 (q, J = 32.4 Hz), 128.9, 127.9, 126.9, 123.4 (q, J = 271.0 Hz), 113.24 – 113.20 (m), 109.3 – 109.2 (m), 65.9, 46.3, 25.3, 24.1, 23.4, 8.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.35.

HRMS (ESI) m/z calcd. for $C_{23}H_{25}F_6N_2O [M + H]^+ 459.1866$, found 459.1862.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-thiomorpholinobutan-1-one (29)

29

According to **General Procedure A** with 2-chloro-2-phenyl-1-thiomorpholinobutan-1-one **E29** (67.9 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **29** as a white solid (94.1 mg, 99% yield, 94% ee).

 $[\alpha]_{D}^{27} = +45 \ (c \ 2.3, \ CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.94 min, *t*_R (minor) = 10.77 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.43 – 7.39 (m, 2H), 7.33 – 7.28 (m, 1H), 7.00 (s, 1H), 6.83 – 6.80 (m, 3H), 4.16 – 3.36 (m, 4H), 2.65 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.51 – 1.77 (m, 5H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 145.0, 140.6, 131.8 (q, J = 32.4 Hz), 129.2, 128.2, 126.8, 123.4 (q, J = 271.1 Hz), 113.4 – 113.3 (m), 109.7 – 109.6 (m), 66.0, 48.0, 26.6, 23.7, 8.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.32.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_6N_2OS [M + H]^+ 477.1430$, found 477.1426.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one (30)

30

According to **General Procedure A** with 2-chloro-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one **E30** (60.3 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **30** as a white solid (87.3 mg, 98% yield, 94% ee).

 $[\alpha]_{D}^{27} = +34$ (*c* 2.1, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.65 min, t_R (minor) = 14.94 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 2H), 7.39 – 7.35 (m, 2H), 7.30 – 7.26 (m, 1H), 6.96 (s, 1H), 6.90 (s, 1H), 6.80 (s, 2H), 3.58 – 3.54 (m, 2H), 3.18 – 3.12 (m, 1H), 2.65 – 2.51 (m, 2H), 2.43 (dq, J = 14.3, 7.2 Hz, 1H), 1.75 – 1.55 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.8, 145.2, 140.1, 131.7 (q, J = 32.3 Hz), 128.9, 128.0, 127.3, 123.5 (q, J = 271.0 Hz), 113.18 – 113.15 (m), 109.3 – 109.1 (m), 65.9, 48.5, 46.8, 26.7, 22.9, 22.0, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.36.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_6N_2O [M + H]^+ 445.1709$, found 445.1705.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-N,N-dimethyl-2-phenylbutanamide (31)

According to **General Procedure A** with 2-chloro-*N*,*N*-dimethyl-2-phenylbutanamide **E31** (54.0 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **31** as a white solid (82.5 mg, 99% yield, 95% ee).

 $[\alpha]_{D}^{27} = +12 (c \ 1.2, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.88 min, t_R (minor) = 8.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.40 – 7.36 (m, 2H), 7.30 – 7.26 (m, 1H), 6.97 (s, 1H), 6.89 (s, 1H), 6.83 (s, 2H), 2.95 – 2.59 (m, 7H), 2.45 (dq, *J* = 14.1, 7.2 Hz, 1H), 0.87 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.3, 145.2, 140.6, 131.8 (q, *J* = 32.2 Hz), 129.0, 128.0, 126.9, 123.5 (q, *J* = 270.9 Hz), 113.3 – 113.2 (m), 109.5 – 109.3 (m), 66.0, 38.1, 23.1, 8.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.36.

HRMS (ESI) m/z calcd. for $C_{20}H_{21}F_6N_2O [M + H]^+ 419.1553$, found 419.1550.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-(indolin-1-yl)-2-phenylbutan-1-one (32)

32

According to **General Procedure A** with 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one **E32** (71.8 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **32** as a white solid (97.1 mg, 99% yield, 93% ee).

 $[\alpha]_{D}^{27} = +62 \ (c \ 2.4, \ CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.04 min, t_R (minor) = 10.33 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.2 Hz, 1H), 7.56 – 7.54 (m, 2H), 7.41 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 7.27 – 7.23 (m, 1H), 7.13 – 7.11 (m, 1H), 7.07 – 7.03 (m, 1H), 7.01 (s, 1H), 6.90 (s, 2H), 6.77 (s, 1H), 3.81 – 3.75 (m, 1H), 3.26 – 3.20 (m, 1H), 2.96 – 2.88 (m, 1H), 2.81 – 2.52 (m, 3H), 0.91 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 145.1, 143.8, 139.7, 132.0 (q, *J* = 32.4 Hz), 131.0, 129.2, 128.4, 127.5, 127.2, 123.5 (q, *J* = 271.0 Hz), 124.7, 124.5, 118.4, 113.45 – 113.41 (m), 109.85 – 109.75 (m), 67.0, 48.6, 28.8, 23.0, 8.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.29.

HRMS (ESI) m/z calcd. for $C_{26}H_{23}F_6N_2O [M + H]^+ 493.1709$, found 493.1709.

2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-(indolin-1-yl)butan-1-one (33)

33

According to **General Procedure A** with 2-bromo-1-(indolin-1-yl)butan-1-one **E33** (64.1 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 7.5/1) to yield the product **33** as a white solid (82.4 mg, 99% yield, 54% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 7.35 min, $t_{\rm R}$ (major) = 9.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.30 – 7.19 (m, 2H), 7.14 – 7.13 (m, 1H), 7.08 – 7.05 (m, 1H), 7.01 – 6.86 (m, 2H), 5.44 – 7.39 (m, 1H), 4.73 – 4.30 (m, 1H), 4.28 – 4.05 (m, 2H), 3.28 – 73.07 (m, 2H), 2.06 – 1.95 (m, 1H), 1.89 – 1.78 (m, 1H), 1.12 – 1.04 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.2, 147.8, 142.4, 132.5 (q, J = 32.5 Hz), 131.2, 127.6, 124.7, 124.5, 123.5 (q, J = 270.9 Hz), 117.4, 112.39 – 112.36 (m), 110.6 – 110.5 (m), 56.3, 47.9, 28.1,

25.18, 25.15, 9.65, 9.62. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.20, -63.21.

HRMS (ESI) m/z calcd. For $C_{20}H_{19}F_6N_2O [M + H]^+ 417.1396$, found 417.1390.

(S)-1-Morpholino-2-phenyl-2-((3,4,5-trifluorophenyl)amino)butan-1-one (34)

34

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv), 3,4,5-trifluoroaniline A2 (29.4 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product 34 as a white solid (71.9 mg, 95% yield, 90% ee).

 $[\alpha]_{D}^{27} = +37 (c \ 1.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.03 min, *t*_R (minor) = 16.34 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 4H), 7.33 – 7.29 (m, 1H), 6.12 – 6.06 (m, 3H), 3.74 – 2.95 (m, 8H), 2.60 (dq, J = 14.6, 7.3 Hz, 1H), 2.28 (dq, J = 14.3, 7.2 Hz, 1H), 0.81 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 152.8 – 150.2 (m), 141.2, 140.5 – 140.2 (m), 133.6 – 130.9 (m), 129.1, 128.1, 126.5, 98.4 – 98.1 (m), 66.14, 66.06, 45.7, 24.2, 7.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -35.28, -35.34, -76.12.

HRMS (ESI) m/z calcd. for C₂₀H₂₂F₃N₂O₂ [M + H]⁺ 379.1628, found 379.1633.

(S)-2-((3,5-Difluorophenyl)amino)-1-morpholino-2-phenylbutan-1-one (35)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), 3, 5-difluoroaniline **A3** (25.8 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **35** as a white

solid (71.4 mg, 99% yield, 87% ee).

 $[\alpha]_{D}^{27} = +30 \ (c \ 1.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.97 min, *t*_R (minor) = 18.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 2H), 7.41 – 7.38 (m, 2H), 7.32 – 7.28 (m, 1H), 6.26 (s, 1H), 6.06 – 5.99 (m, 3H), 3.75 – 3.02 (m, 8H), 2.65 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.30 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 163.7 (dd, J = 242.0, 16.0 Hz), 146.6 (t, J = 13.5 Hz), 141.1, 129.0, 128.0, 126.4, 97.3 – 97.0 (m), 92.3 (t, J = 26.0 Hz), 66.1, 66.0, 45.7, 24.3, 7.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.60.

HRMS (ESI) m/z calcd. for C₂₀H₂₃F₂N₂O₂ [M + H]⁺ 361.1722, found 361.1726.

(S)-2-((3,5-Dinitrophenyl)amino)-1-morpholino-2-phenylbutan-1-one (36)

36

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and 3,5-dinitroaniline A4 (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **36** as a yellowish solid (81.2 mg, 98% yield, 94% ee). $[\alpha]_{D}^{27} = +70$ (*c* 2.0, CHCl₃).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 11.72 min, *t*_R (minor) = 15.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (t, J = 2.0 Hz, 1H), 7.59 – 7.54 (m, 4H), 7.46 – 7.41 (m, 3H), 7.35 – 7.31 (m, 1H), 3.90 – 3.01 (m, 8H), 2.78 (dq, J = 14.6, 7.3 Hz, 1H), 2.37 (dq, J = 14.3, 7.1 Hz, 1H), 0.96 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 148.9, 145.7, 139.6, 129.4, 128.6, 127.0, 112.8, 105.5, 66.2, 66.0, 45.6, 22.9, 8.2.

HRMS (ESI) m/z calcd. for C₂₀H₂₂NaN₄O₆ [M + Na]⁺ 437.1432, found 437.1433.

(S)-4-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)-2-(trifluoromethyl)benzonitrile (37)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 4-amino-2-(trifluoromethyl)benzonitrile **A5** (37.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **37** as a yellowish solid (81.1 mg, 97% yield, 91% ee).

 $[\alpha]_{D}^{27} = +80 \ (c \ 1.8, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 14.33 min, t_R (minor) = 16.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.47 (m, 2H), 7.42 – 7.38 (m, 2H), 7.34 – 7.29 (m, 3H), 6.83 (s, 1H), 6.57 (dd, J = 8.7, 2.5 Hz, 1H), 3.77 – 3.01 (m, 8H), 2.68 (dq, J = 14.5, 7.3 Hz, 1H), 2.35 (dq, J = 14.2, 7.1 Hz, 1H), 0.89 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 147.5, 139.9, 135.6, 133.5 (q, *J* = 31.6 Hz), 129.2, 128.4, 126.7, 122.4 (q, *J* = 272.3 Hz), 117.0, 114.9, 111.8 (q, *J* = 4.8 Hz), 94.8, 66.0, 65.9, 45.6, 23.5, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.61.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_3N_3O_2 [M + H]^+ 418.1737$, found 418.1737.

(S)-3-Methoxy-4-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)benzonitrile (38)

38

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), and 4-amino-3-methoxybenzonitrile **A6** (29.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **38** as a white solid (73.9 mg, 97% yield, 88% ee).

 $[\alpha]_{D}^{27} = +49 (c 1.8, CHCl_3).$

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 300 nm), t_R (minor) = 18.47 min, t_R (major) = 23.82 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 4H), 7.34 – 7.30 (m, 1H), 6.99 – 6.96 (m, 1H), 6.93 – 6.92 (m, 1H), 6.84 (s, 1H), 6.43 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H), 3.56 – 3.29 (m, 8H), 2.54 – 2.47 (m, 1H), 2.40 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.70 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 146.7, 140.4, 138.2, 129.0, 127.9, 126.6, 125.8, 120.4, 111.6, 110.0, 97.8, 66.1, 65.8, 55.9, 45.4, 25.6, 7.6.

HRMS (ESI) m/z calcd. for $C_{22}H_{26}N_3O_3 [M + H]^+$ 380.1969, found 380.1963.

(S)-1-Morpholino-2-((4-nitro-3-(trifluoromethyl)phenyl)amino)-2-phenylbutan-1-one (39)

39

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and 4-nitro-3-(trifluoromethyl)aniline A7 (41.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **39** as a yellowish solid (86.4 mg, 99% yield, 87% ee).

 $[\alpha]_{D}^{27} = +103 \ (c \ 2.1, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 14.49 min, t_R (minor) = 17.42 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 9.1 Hz, 1H), 7.57 – 7.40 (m, 5H), 7.35 – 7.31 (m, 1H), 6.85 (d, J = 2.7 Hz, 1H), 6.51 (dd, J = 9.1, 2.7 Hz, 1H), 4.15 – 2.95 (m, 8H), 2.72 (dq, J = 14.6, 7.3 Hz, 1H), 2.35 (dq, J = 14.2, 7.2 Hz, 1H), 0.92 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 148.3, 139.9, 136.1, 129.4, 128.7, 128.6, 126.9, 126.2 (q, J = 33.0 Hz), 122.2 (q, J = 271.7 Hz), 113.8, 112.8 (q, J = 6.7 Hz), 66.1, 66.0, 45.8, 23.4, 8.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.38.

HRMS (ESI) m/z calcd. for C₂₁H₂₃F₃N₃O₄ [M + H]⁺ 438.1635, found 438.1632.

(S)-2-((2-Methoxy-4-nitrophenyl)amino)-1-morpholino-2-phenylbutan-1-one (40)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), and 2-methoxy-4-nitroaniline **A8** (33.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **40** as a yellowish oil (75.3 mg, 94% yield, 87% ee). $|a|_{D^{27}} = +78$ (*c* 2.3, CHCl₃).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 20.10 min, *t*_R (minor) = 27.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 2H), 7.48 – 7.28 (m, 6H), 6.34 (d, *J* = 8.9 Hz, 1H), 4.00 (s, 3H), 3.56 – 3.12 (m, 8H), 2.62 (dq, *J* = 15.1, 7.6 Hz, 1H), 2.40 (dq, *J* = 14.4, 7.2 Hz, 1H), 0.77 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 146.1, 140.4, 140.2, 137.0, 129.1, 128.1, 126.1, 119.0, 107.8, 104.5, 66.0, 65.9, 56.1, 45.6, 24.8, 7.8.

HRMS (ESI) m/z calcd. for $C_{21}H_{26}N_3O_5 [M + H]^+ 400.1867$, found 400.1860.

Dimethyl (S)-5-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)isophthalate (41)

41

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and dimethyl 5-aminoisophthalate **A9** (41.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **41** as a white solid (87.2 mg, 99% yield, 82% ee). $[\alpha]_D^{27} = +54$ (*c* 2.1, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 16.02 min, *t*_R (minor) = 20.75 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.53 – 7.51 (m, 2H), 7.43 – 7.38 (m, 4H), 7.31 – 7.27 (m, 1H), 6.38 (s, 1H), 3.86 (s, 6H), 3.67 – 3.00 (m, 8H), 2.70 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.33 (dq, *J* = 14.4, 7.1 Hz, 1H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 166.5, 144.6, 141.0, 130.9, 128.8, 127.8, 126.5, 119.4, 119.1, 66.1, 66.0, 52.1, 45.5, 24.2, 7.8.

HRMS (ESI) m/z calcd. for C₂₄H₂₉N₂O₆ [M + H]⁺ 441.2020, found 441.2018.

(S)-1-Morpholino-2-((3-nitrophenyl)amino)-2-phenylbutan-1-one (42)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), 3-nitroaniline **A10** (27.6 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **42** as a yellowish solid (67.0 mg, 91% yield, 94% ee).

 $[\alpha]_{D}^{27} = +76 (c \ 1.3, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 12.31 min, *t*_R (minor) = 13.95 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 2H), 7.42 – 7.39 (m, 3H), 7.33 – 7.28 (m, 2H), 7.14 – 7.10 (m, 1H), 6.86 – 6.83 (m, 1H), 6.52 (s, 1H), 3.69 – 3.13 (m, 8H), 2.70 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.34 (dq, *J* = 14.3, 7.1 Hz, 1H), 0.84 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 148.9, 145.2, 140.8, 129.4, 129.0, 128.0, 126.6, 120.6, 111.6, 107.9, 66.1, 66.0, 45.6, 24.0, 7.9.

HRMS (ESI) m/z calcd. for C₂₀H₂₄N₃O₄ [M + H]⁺ 370.1761, found 370.1768.

(S)-1-Morpholino-2-((4-nitrophenyl)amino)-2-phenylbutan-1-one (43)

43

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 4-nitroaniline **A11** (27.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **43** as a yellowish solid (72.3 mg, 98% yield, 88% ee).

 $[\alpha]_{D}^{27} = +96 (c \ 1.8, CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.30 min, t_R (minor) = 17.35 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.49 – 7.48 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 –7.27 (m, 2H), 6.47 –6.45 (m, 2H), 3.78 – 3.09 (m, 8H), 2.73 (dq, J = 14.6, 7.4 Hz, 1H), 2.35 (dq, J = 14.3, 7.1 Hz, 1H), 0.88 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 149.8, 140.4, 137.7, 129.2, 128.3, 126.7, 125.9, 112.6, 66.1, 66.0, 45.8, 23.9, 8.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₄N₃O₄ [M + H]⁺ 370.1761, found 370.1760.

(S)-3-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)benzonitrile (44)

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv), 3-aminobenzonitrile A12 (23.6 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product 44 as a yellowish solid (69.0 mg, 99% yield, 88% ee).

 $[\alpha]_{D}^{27} = +62 \ (c \ 1.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 14.36 min, *t*_R (minor) = 16.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.41 – 7.38 (m, 2H), 7.32 – 7.28 (m, 1H), 7.09 – 7.05 (m, 1H), 6.86 – 6.84 (m, 1H), 6.78 – 6.75 (m, 1H), 6.71 (s, 1H), 6.31 (s, 1H), 3.65 – 3.33 (m, 8H), 2.62 (dq, *J* = 14.7, 7.3 Hz, 1H), 2.33 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 144.8, 140.9, 129.6, 129.0, 128.0, 126.4, 120.6, 119.3, 119.1, 116.5, 112.4, 66.1, 65.9, 45.6, 24.2, 7.8.

HRMS (ESI) m/z calcd. for $C_{21}H_{24}N_3O_2$ [M + H]⁺ 350.1863, found 350.1862.

(S)-2-((4-(Methylsulfonyl)phenyl)amino)-1-morpholino-2-phenylbutan-1-one (45)

45

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), 4-(methylsulfonyl)aniline **A13** (34.2 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **45** as a white solid (76.9 mg, 96% yield, 88% ee).

 $[\alpha]_{D}^{27} = +66 \ (c \ 1.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 15.12 min, *t*_R (minor) = 22.60 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.48 (m, 4H), 7.41 – 7.37 (m, 2H), 7.32 – 7.28 (m, 1H), 6.83 (s, 1H), 6.59 – 6.57 (m, 2H), 3.54 – 3.10 (m, 8H), 2.93 (s, 3H), 2.68 (dq, *J* = 13.9, 7.0 Hz, 1H), 2.35 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.83 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 148.7, 140.6, 129.0, 128.8, 128.0, 126.9, 126.5, 113.3, 66.0, 65.8, 45.6, 44.8, 24.0, 8.0.

HRMS (ESI) m/z calcd. for $C_{21}H_{26}NaN_2O_4S [M + Na]^+ 425.1505$, found 425.1503.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*10 (25.1 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (521.3 mg, 1.60 mmol, 8.0 equiv), racemic tertiary alkyl chloride (0.24 mmol, 1.2 equiv), aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous EtOAc (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L_{rac1} (11.4 mg, 0.03 mmol, 15 mol %), Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary alkyl chloride (0.24 mmol, 1.2 equiv), aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous EtOAc (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-2-((4-Bromophenyl)amino)-N-methoxy-N-methyl-2-phenylbutanamide (47)

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 4-bromoaniline **A15** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **47** as a colorless oil (74.8 mg, 99% yield, 81% ee). $[\alpha]_{D}^{27} = +81$ (*c* 1.8, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.39 min, t_R (minor) = 14.76 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 4-bromoaniline **A15** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **47** as a colorless oil (72.0 mg, 96% yield, 16% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.37 – 7.35 (m, 2H), 7.25 – 7.22 (m, 1H), 7.04 – 7.00 (m, 2H), 6.30 – 6.26 (m, 2H), 6.07 (s, 1H), 3.16 (s, 3H), 2.72 (dq, *J* = 14.4, 7.3 Hz, 1H), 2.58 (s, 3H), 2.50 (dq, *J* = 14.5, 7.5 Hz, 1H), 0.78 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 143.5, 142.2, 131.4, 128.4, 127.4, 127.2, 116.3, 108.5, 66.0, 59.3, 33.6, 21.7, 8.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_2O_2 [M + H]^+ 377.0859$, found 377.0857.

(S)-2-((3-Bromophenyl)amino)-N-methoxy-N-methyl-2-phenylbutanamide (48)

48

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3-bromoaniline **A16** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **48** as a yellowish oil (69.6 mg, 93% yield, 85% ee). $[\alpha]_{D}^{27} = +82$ (*c* 1.7, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 6.42 min, *t*_R (minor) = 10.03 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3-bromoaniline **A16** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **48** as a yellowish oil (73.8 mg, 98% yield, 8% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.37 – 7.33 (m, 2H), 7.26 – 7.22 (m, 1H), 6.79 – 6.75 (m, 1H), 6.65 – 6.63 (m, 1H), 6.57 – 6.56 (m, 1H), 6.31 – 6.28 (m, 1H), 6.14 (s, 1H), 3.15 (s, 3H), 2.73 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.60 – 2.49 (m, 4H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 145.8, 142.0, 129.9, 128.4, 127.4, 127.2, 122.6, 119.5, 117.4, 113.1, 66.0, 59.3, 33.6, 21.7, 8.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_2O_2 [M + H]^+$ 377.0859, found 377.0854.

(S)-2-((4-Fluorophenyl)amino)-N-methoxy-N-methyl-2-phenylbutanamide (49)

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 4-fluoroaniline **A17** (22.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **49** as a yellowish oil (50.7 mg, 80% yield, 78% ee). $[\alpha]_{D}^{27} = +64$ (*c* 1.2, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.16 min, t_R (minor) = 13.69 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 4-fluoroaniline **A17** (22.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **49** as a yellowish oil (57.9 mg, 92% yield, 27% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.53 (m, 2H), 7.37 – 7.34 (m, 2H), 7.26 – 7.22 (m, 1H), 6.71 – 6.64 (m, 2H), 6.38 – 6.34 (m, 2H), 5.81 (s, 1H), 3.15 (s, 3H), 2.69 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.59 (s, 3H), 2.44 (dq, *J* = 14.5, 7.5 Hz, 1H), 0.78 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 155.8 (d, J = 233.9 Hz), 142.9, 140.9 (d, J = 1.8 Hz), 128.4, 127.3, 127.1, 116.4 (d, J = 7.2 Hz), 115.1 (d, J = 21.8 Hz), 66.4, 59.2, 33.6, 22.3, 8.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.85.

HRMS (ESI) m/z calcd. For $C_{18}H_{22}FN_2O_2 [M + H]^+ 317.1660$, found 317.1656.

(S)-2-((3-Fluorophenyl)amino)-N-methoxy-N-methyl-2-phenylbutanamide (50)

50

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3-fluoroaniline **A18** (22.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **50** as a yellowish oil (51.3 mg, 81% yield, 84% ee). $[\alpha]_{D}^{27} = +92$ (*c* 1.2, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.49 min, t_R (minor) = 10.53 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3-fluoroaniline **A18** (22.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **50** as a yellowish oil (60.5 mg, 96% yield, 12% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 7.37 – 7.33 (m, 2H), 7.26 – 7.22 (m, 1H), 6.91 – 6.85 (m, 1H), 6.24 – 6.18 (m, 3H), 6.06 – 6.02 (m, 1H), 3.16 (s, 3H), 2.73 (dq, *J* = 14.4, 7.3 Hz, 1H), 2.60 – 2.51 (m, 4H), 0.80 (t, *J* = 7.4 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 172.8, 163.5 (d, J = 240.2 Hz), 146.2 (d, J = 11.0 Hz), 142.2, 129.6 (d, J = 10.2 Hz), 128.4, 127.4, 127.2, 110.8 (d, J = 2.2 Hz), 103.2 (d, J = 21.5 Hz), 101.1 (d, J = 25.4 Hz), 66.1, 59.3, 33.6, 21.8, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.23.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}FN_2O_2 [M + H]^+ 317.1660$, found 317.1656.

(S)-N-Methoxy-N-methyl-2-phenyl-2-(p-tolylamino)butanamide (51)

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and *p*-toluidine **A19** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **51** as a colorless oil (58.1 mg, 93% yield, 74% ee). $[\alpha]_{D}^{27} = +73$ (*c* 1.4, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 9.40 min, *t*_R (minor) = 16.17 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and *p*-toluidine **A19** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **51** as a colorless oil (50.2 mg, 80% yield, 39% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.36 – 7.32 (m, 2H), 7.25 – 7.20 (m, 1H), 6.80 – 6.77 (m, 2H), 6.37 – 6.34 (m, 2H), 5.75 (s, 1H), 3.14 (s, 3H), 2.69 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.60 (s, 3H), 2.49 (dq, *J* = 14.8, 7.4 Hz, 1H), 2.13 (s, 3H), 0.78 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 143.0, 142.2, 129.2, 128.3, 127.3, 126.9, 126.3, 115.4, 66.2, 59.2, 33.6, 22.3, 20.3, 8.0.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O_2$ [M + H]⁺ 313.1911, found 313.1908.

(S)-N-Methoxy-N-methyl-2-phenyl-2-(phenylamino)butanamide (52)

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and aniline **A20** (18.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **52** as a colorless oil (54.7 mg, 92% yield, 76% ee). $[\alpha]_{D}^{27} = +64$ (*c* 1.3, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 7.51 min, *t*_R (minor) = 10.40 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.54 (m, 2H), 7.37 – 7.33 (m, 2H), 7.25 – 7.21 (m, 1H), 6.98 – 6.93 (m, 2H), 6.58 – 6.54 (m, 1H), 6.44 – 6.41 (m, 2H), 5.96 (s, 1H), 3.15 (s, 3H), 2.72 (dq, J = 14.5, 7.3 Hz, 1H), 2.59 – 2.50 (m, 4H), 0.79 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 144.6, 142.8, 128.7, 128.3, 127.4, 127.0, 117.0, 115.0, 66.1, 59.3, 33.6, 22.0, 8.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O_2$ [M + H]⁺ 299.1754, found 299.1751.

(S)-N-Methoxy-2-((4-methoxyphenyl)amino)-N-methyl-2-phenylbutanamide (53)

According to General Procedure B with 2-chloro-N-methoxy-N-methyl-2-phenylbutanamide

E34 (57.9 mg, 0.24 mmol, 1.2 equiv) and 4-methoxyaniline A21 (24.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 53 as a colorless oil (57.8 mg, 88% yield, 69% ee). $[\alpha]_D^{27} = +49$ (*c* 1.4, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 7.43 min, *t*_R (minor) = 14.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.53 (m, 2H), 7.37 – 7.34 (m, 2H), 7.26 – 7.22 (m, 1H), 6.61 – 6.57 (m, 2H), 6.44 – 6.41 (m, 2H), 5.50 (s, 1H), 3.66 (s, 3H), 3.14 (s, 3H), 2.69 – 2.60 (m, 4H), 2.38 (dq, J = 14.5, 7.3 Hz, 1H), 0.76 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 152.3, 143.4, 138.5, 128.2, 127.2, 126.9, 117.7, 114.3, 66.8, 59.2, 55.4, 33.5, 23.0, 7.9.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O_3 [M + H]^+ 329.1860$, found 329.1857.

(S)-N-Methoxy-2-((3-methoxyphenyl)amino)-N-methyl-2-phenylbutanamide (54)

54

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3-methoxyaniline **A22** (24.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **54** as a colorless oil (42.1 mg, 64% yield, 81% ee). $[\alpha]_D^{27} = +78$ (*c* 1.0, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.29 min, t_R (minor) = 9.62 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 2H), 7.37 – 7.33 (m, 2H), 7.25 – 7.21 (m, 1H), 6.89 – 6.85 (m, 1H), 6.14 – 6.12 (m, 1H), 6.09 – 6.06 (m, 1H), 6.01 (s, 1H), 5.94 – 5.93 (m, 1H), 3.58 (s, 3H), 3.16 (s, 3H), 2.72 (dq, *J* = 14.4, 7.4 Hz, 1H), 2.63 – 2.54 (m, 4H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 160.1, 145.8, 142.8, 129.4, 128.4, 127.4, 127.0, 108.1, 102.5, 100.3, 66.1, 59.2, 54.8, 33.6, 21.9, 8.2.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O_3 [M + H]^+$ 329.1860, found 329.1856.

(S)-2-((3,5-Dimethoxyphenyl)amino)-N-methoxy-N-methyl-2-phenylbutanamide (55)

55

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3,5-dimethoxyaniline **A23** (30.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **55** as a colorless oil (53.1 mg, 74% yield, 80% ee).

 $[\alpha]_{D}^{27} = +67 (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.43 min, t_R (minor) = 14.87 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 – 7.55 (m, 2H), 7.37 – 7.33 (m, 2H), 7.25 – 7.21 (m, 1H), 6.04 (s, 1H), 5.74 (t, *J* = 2.2 Hz, 1H), 5.61 (d, *J* = 2.2 Hz, 2H), 3.57 (s, 6H), 3.16 (s, 3H), 2.75 – 2.61 (m, 2H), 2.58 (s, 3H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 161.0, 146.2, 142.8, 128.4, 127.4, 127.1, 93.4, 89.8, 66.1, 59.2, 54.8, 33.6, 21.9, 8.2.

HRMS (ESI) m/z calcd. for $C_{20}H_{27}N_2O_4 [M + H]^+$ 359.1965, found 359.1963.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-*N*-methoxy-*N*-methyl-2-phenylbutanamide (56)

56

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **56** as a colorless oil (55.0 mg, 63% yield, 68% ee).

 $[\alpha]_{D}^{27} = +45 \ (c \ 1.3, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.09 min, t_R (minor) = 8.73 min.

According to **General Procedure A** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and 3,5-bis(trifluoromethyl)aniline **A1** (45.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **56** as a colorless oil (86.3 mg, 99% yield, 68% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.39 – 7.35 (m, 2H), 7.28 – 7.24 (m, 1H), 6.96 (s, 1H), 6.76 (s, 2H), 6.67 (s, 1H), 3.20 (s, 3H), 2.82 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.59 (s, 3H), 2.51 (dq, *J* = 14.6, 7.4 Hz, 1H), 0.85 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 172.1, 145.0, 140.9, 131.7 (q, *J* = 32.3 Hz), 128.7, 127.7, 127.4, 123.5 (q, *J* = 270.9 Hz), 113.4 – 113.3 (m), 109.4 – 109.2 (m), 66.1, 59.3, 33.6, 21.6, 8.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.39.

HRMS (ESI) m/z calcd. for $C_{20}H_{21}F_6N_2O_2$ [M + H]⁺ 435.1502, found 435.1497.

(S)-N-Methoxy-N-methyl-2-phenyl-2-(pyrimidin-5-ylamino)butanamide (57)

According to **General Procedure B** with 2-chloro-*N*-methoxy-*N*-methyl-2-phenylbutanamide **E34** (57.9 mg, 0.24 mmol, 1.2 equiv) and pyrimidin-5-amine **A24** (19.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **57** as a yellowish oil (57.8 mg, 96% yield, 83% ee).

 $[\alpha]_{D}^{27} = +62 \ (c \ 1.4, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 11.13 min, t_R (major) = 13.96 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.90 (s, 2H), 7.54 – 7.52 (m, 2H), 7.39 – 7.35 (m, 2H), 7.29 – 7.25 (m, 1H), 6.32 (s, 1H), 3.20 (s, 3H), 2.82 (dq, *J* = 14.4, 7.3 Hz, 1H), 2.59 (s, 3H), 2.47 (dq, *J* = 14.6, 7.4 Hz, 2H), 0.84 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 147.5, 141.8, 140.5, 138.6, 128.7, 127.8, 127.3, 65.6, 59.3, 33.6, 21.4, 8.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}N_4O_2 [M + H]^+$ 301.1659, found 301.1656.

(S)-2-((4-Bromophenyl)amino)-1-morpholino-2-phenylbutan-1-one (58)

58

According to General Procedure B with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and 4-bromoaniline A15 (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 58 as a white solid (71.4 mg, 89% yield, 84% ee). $[\alpha]_D^{27} = +63$ (c 1.7, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.22 min, *t*_R (minor) = 20.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.30 – 7.26 (m, 1H), 7.14 – 7.12 (m, 2H), 6.48 – 6.46 (m, 2H), 5.66 (s, 1H), 3.64 – 3.09 (m, 8H), 2.51 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.35 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.71 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 143.5, 141.2, 131.7, 128.8, 127.7, 126.0, 116.4, 109.4, 66.14, 66.09, 45.5, 25.4, 7.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{24}BrN_2O_2 [M + H]^+ 403.1016$, found 403.1010.

(S)-2-((4-Bromophenyl)amino)-N,N-dimethyl-2-phenylbutanamide (59)

According to **General Procedure B** with 2-chloro-*N*,*N*-dimethyl-2-phenylbutanamide **E31** (54.0 mg, 0.24 mmol, 1.2 equiv) and 4-bromoaniline **A15** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **59** as a white solid (63.4 mg, 88% yield, 83% ee). $[\alpha]_{D}^{27} = +63$ (*c* 1.5, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.26 min, t_R (minor) = 17.16 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 2H), 7.38 – 7.44 (m, 2H), 7.29 – 7.25 (m, 1H), 7.10 – 7.08 (m, 2H), 6.43 – 6.41 (m, 2H), 5.87 (s, 1H), 2.79 (s, 6H), 2.56 – 2.37 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 143.7, 141.4, 131.6, 128.7, 127.5, 126.3, 116.2, 108.9, 66.0, 37.9, 24.6, 7.8.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_{2}O [M + H]^+$ 361.0910, found 361.0904.

(S)-2-((4-Bromophenyl)amino)-1-(indolin-1-yl)-2-phenylbutan-1-one (60)

60

According to **General Procedure B** with 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one **E32** (71.8 mg, 0.24 mmol, 1.2 equiv) and 4-bromoaniline **A15** (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **60** as a yellowish oil (84.5 mg, 97% yield, 80% ee). $|\alpha|_{D^{27}} = +36$ (*c* 2.1, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 20.66 min, t_R (major) = 22.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 – 8.34 (m, 1H), 7.52 – 7.49 (m, 2H), 7.40 – 7.36 (m, 2H), 7.31 – 7.27 (m, 1H), 7.24 – 7.20 (m, 1H), 7.14 – 7.08 (m, 3H), 7.03 – 6.99 (m, 1H), 6.54 – 6.50 (m, 2H), 5.60 (s, 1H), 3.69 – 3.63 (m, 1H), 3.57 – 3.50 (m, 1H), 2.88 – 2.72 (m, 2H), 2.61 – 2.46 (m, 2H), 0.72 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 143.9, 143.5, 140.2, 131.8, 131.0, 128.8, 127.8, 127.3, 126.3, 124.4, 124.2, 118.1, 116.4, 109.5, 67.2, 48.3, 28.8, 25.2, 7.5.

HRMS (ESI) m/z calcd. for $C_{24}H_{24}BrN_{2}O [M + H]^{+} 435.1067$, found 435.1060.

(S)-1-Morpholino-2-phenyl-2-(pyridin-4-ylamino)butan-1-one (61)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and pyridin-4-amine **A25** (18.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/CH₃OH = 20/1) to yield the product **61** as a colorless oil (41.7 mg, 64% yield, 87% ee). $[\alpha]_{D}^{27} = +36$ (*c* 1.0, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 7.69 min, $t_{\rm R}$ (minor) = 10.73 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 6.3 Hz, 2H), 7.71 (s, 1H), 7.51 – 7.49 (m, 1H), 7.43 – 7.39 (m, 2H), 7.35 – 7.31 (m, 1H), 6.55 (s, 2H), 5.88 (s, 1H), 3.65 – 3.36 (m, 8H), 2.63 (dq, J = 14.1, 7.2 Hz, 1H), 2.37 (dq, J = 14.3, 7.2 Hz, 1H), 0.85 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 152.3, 145.2, 139.1, 129.2, 128.5, 126.6, 109.1, 66.1, 66.0, 45.7, 24.2, 8.0. HRMS (ESI) m/z calcd. for C₁₉H₂₄N₃O₂ [M + H]⁺ 326.1863, found 326.1860.

(S)-6-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)picolinonitrile (62)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 6-aminopicolinonitrile **A26** (23.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **62** as a yellowish oil (68.9 mg, 98% yield, 92% ee). $|\alpha|_{D^{27}} = +194$ (*c* 1.7, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 9.26 min, *t*_R (minor) = 13.51 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.21 (m, 2H), 7.15 (s, 1H), 6.79 (d, J = 7.2 Hz, 1H), 6.59 (d, J = 8.6 Hz, 1H), 3.84 – 2.96 (m, 9H), 2.15 (dq, J = 14.3, 7.2 Hz, 1H), 0.86 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 155.6, 140.3, 136.7, 130.6, 128.1, 127.5, 127.0, 117.8, 117.4, 113.8, 66.1, 66.0, 45.9, 23.4, 8.2.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}N_4O_2$ [M + H]⁺ 351.1816, found 351.1814.

(S)-1-Morpholino-2-phenyl-2-((4-(trifluoromethyl)pyridin-2-yl)amino)butan-1-one (63)

63

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 4-(trifluoromethyl)pyridin-2-amine **A27** (32.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **63** as a white solid (62.4 mg, 79% yield, 93% ee).

 $[\alpha]_{D}^{27} = +52 \ (c \ 1.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 8.49 min, *t*_R (major) = 10.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 5.2 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.36 – 7.33 (m, 2H), 7.27 – 7.23 (m, 1H), 6.87 (s, 1H), 6.63 (d, J = 5.3 Hz, 1H), 6.59 (s, 1H), 3.67 – 3.04 (m, 9H), 2.29 (dq, J = 14.5, 7.3 Hz, 1H), 0.81 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 156.1, 149.0, 140.6, 139.0 (q, *J* = 32.9 Hz), 128.4, 127.6, 126.4, 123.0 (q, *J* = 271.4 Hz), 107.9, 104.5 (q, *J* = 4.1 Hz), 66.1, 66.0, 45.5, 25.2, 8.0. ¹⁹**E NMB** (376 MHz, CDCl₃) δ 65.20

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.29.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}F_3N_3O_2$ [M + H]⁺ 394.1737, found 394.1736.

(S)-1-Morpholino-2-phenyl-2-(pyrazin-2-ylamino)butan-1-one (64)

64

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and pyrazin-2-amine A28 (19.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product 64 as a white solid (55.7 mg, 85% yield, 92% ee). $[\alpha]_D^{27} = +133$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 23.16 min, *t*_R (minor) = 27.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.78 – 7.77 (m, 1H), 7.65 (d, J = 2.8 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.35 – 7.31 (m, 2H), 7.26 – 7.22 (m, 1H), 7.00 (s, 1H), 3.65 – 3.17 (m, 9H), 2.23 (dq, J = 14.3, 7.2 Hz, 1H), 0.86 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 152.2, 141.4, 140.6, 133.4, 132.4, 128.4, 127.6, 126.8, 66.1, 65.8, 45.7, 24.1, 8.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_4O_2$ [M + H]⁺ 327.1816, found 327.1813.

(S)-2-((5-Bromopyrazin-2-yl)amino)-1-morpholino-2-phenylbutan-1-one (65)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 5-bromopyrazin-2-amine **A29** (34.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **65** as a white solid (77.5 mg, 96% yield, 91% ee). $|\alpha|_{D^{27}} = +107$ (*c* 1.9, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 21.73 min, *t*_R (minor) = 27.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 1.4 Hz, 1H), 7.63 (d, J = 1.4 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.34 – 7.30 (m, 2H), 7.26 – 7.22 (m, 2H), 3.78 – 3.01 (m, 9H), 2.18 (dq, J = 14.3, 7.1 Hz, 1H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 150.9, 143.2, 140.2, 132.7, 128.3, 127.7, 127.0, 125.3, 66.1, 65.8, 45.5, 23.2, 8.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_4O_2 [M + H]^+ 405.0921$, found 405.0920.

(S)-2-((6-Bromopyrazin-2-yl)amino)-1-morpholino-2-phenylbutan-1-one (66)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 6-bromopyrazin-2-amine **A30** (34.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **66** as a white solid (80.4 mg, 99% yield, 95% ee). $[\alpha]_{D}^{27} = +232$ (*c* 2.0, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 20.07 min, *t*_R (minor) = 24.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (s, 2H), 7.48 – 7.47 (m, 2H), 7.39 (s, 1H), 7.35 – 7.31 (m, 2H), 7.27 – 7.22 (m, 1H), 3.86 – 2.95 (m, 9H), 2.14 (dq, *J* = 14.3, 7.2 Hz, 1H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 151.4, 139.6, 137.5, 132.7, 130.7, 128.2, 127.8, 127.2, 66.2, 66.0, 46.0, 22.9, 8.3.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_4O_2 [M + H]^+ 405.0921$, found 405.0920.

(S)-1-Morpholino-2-phenyl-2-(pyrimidin-5-ylamino)butan-1-one (67)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and pyrimidin-5-amine **A24** (19.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product **67** as a white solid (64.3 mg, 99% yield, 94% ee).

 $[\alpha]_{D}^{27} = +28 \ (c \ 1.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.19 min, t_R (major) = 17.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.98 (s, 2H), 7.49 – 7.47 (m, 2H), 7.41 – 7.37 (m, 2H), 7.32 – 7.28 (m, 1H), 6.49 (s, 1H), 3.80 – 3.37 (m, 8H), 2.66 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.33 (dq, *J* = 14.2, 7.2 Hz, 1H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 148.0, 142.0, 140.4, 138.6, 129.2, 128.2, 126.8, 66.0, 65.5, 45.7, 23.4, 8.0.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_4O_2$ [M + H]⁺ 327.1816, found 327.1814.

(S)-2-((2-Chloropyrimidin-5-yl)amino)-1-morpholino-2-phenylbutan-1-one (68)

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and 2-chloropyrimidin-5-amine A31 (25.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 68 as a white solid (65.8 mg, 91% yield, 94% ee). $[\alpha]_D^{27} = +42$ (*c* 1.7, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 13.53 min, *t*_R (minor) = 17.76 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (s, 2H), 7.46 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.29 (m, 1H), 6.65 (s, 1H), 3.66 – 3.08 (m, 8H), 2.61 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.30 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 148.4, 144.2, 140.0, 137.5, 129.4, 128.6, 127.0, 66.1, 65.6, 45.6, 23.3, 8.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}CIN_4O_2$ [M + H]⁺ 361.1426, found 361.1423.

(S)-2-((2-Bromopyrimidin-5-yl)amino)-1-morpholino-2-phenylbutan-1-one (69)

69

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 2-bromopyrimidin-5-amine **A32** (34.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **69** as a white solid (74.8 mg, 93% yield, 94% ee). $[\alpha]_{D}^{27} = +51$ (*c* 2.0, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 15.14 min, *t*_R (minor) = 22.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (s, 2H), 7.47 – 7.45 (m, 2H), 7.40 – 7.37 (m, 2H), 7.33 – 7.29 (m, 1H), 6.69 (s, 1H), 3.82 – 3.04 (m, 8H), 2.61 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.32 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 144.2, 139.9, 138.3, 137.9, 129.4, 128.6, 126.9, 66.1, 65.5, 46.0, 23.1, 8.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{22}BrN_4O_2 [M + H]^+ 405.0921$, found 405.0918.

(S)-1-Morpholino-2-phenyl-2-((2-(trifluoromethyl)pyrimidin-5-yl)amino)butan-1-one (70)

70

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and 2-(trifluoromethyl)pyrimidin-5-amine **A33** (32.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **70** as a white solid (77.9 mg, 99% yield, 92% ee).

 $[\alpha]_{D}^{27} = +30 \ (c \ 1.9, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 15.07 min, t_R (minor) = 19.17 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (s, 2H), 7.51 – 7.49 (m, 2H), 7.42 – 7.39 (m, 2H), 7.35 – 7.31 (m, 1H), 7.17 (s, 1H), 3.90 – 2.92 (m, 8H), 2.69 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.35 (dq, *J* = 14.2, 7.1 Hz, 1H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.4, 144.6 (q, *J* = 36.6 Hz), 141.0, 139.5, 129.4, 128.7, 126.9, 120.0 (q, *J* = 271.6 Hz), 66.0, 65.4, 45.8, 22.8, 8.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -69.00.

HRMS (ESI) m/z calcd. for $C_{19}H_{22}F_3N_4O_2 [M + H]^+ 395.1689$, found 395.1687.

(S)-1-Morpholino-2-phenyl-2-(pyrimidin-4-ylamino)butan-1-one (71)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and pyrimidin-4-amine **A34** (19.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc /CH₃OH = 30/1) to yield the product **71** as a white solid (29.6 mg, 45% yield, 89% ee).

 $[\alpha]_{D}^{27} = +69 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 8.07 min, $t_{\rm R}$ (minor) = 12.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.01 (s, 1H), 7.52 (s, 1H), 7.47 – 7.45 (m, 2H), 7.36 – 7.33 (m, 2H), 7.29 – 7.25 (m, 1H), 6.32 (d, *J* = 5.9 Hz, 1H), 3.54 – 3.15 (m, 8H), 2.27 – 2.20 (m, 1H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 159.4, 157.8, 153.5, 139.0, 128.5, 127.9, 126.8, 106.1, 66.1, 66.0, 45.6, 24.0, 8.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_4O_2$ [M + H]⁺ 327.1816, found 327.1814.

(S)-1-Morpholino-2-phenyl-2-(quinoxalin-2-ylamino)butan-1-one (72)

72

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and quinoxalin-2-amine A35 (29.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 72 as a white solid (61.1 mg, 81% yield, 91% ee). $[\alpha]_{D}^{27} = +289$ (*c* 1.5, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 35.89 min, t_R (minor) = 41.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.76 – 7.74 (m, 1H), 7.61 – 7.59 (m, 2H), 7.49 – 7.42 (m, 3H), 7.33 – 7.24 (m, 3H), 7.21 – 7.17 (m, 1H), 3.95 – 2.91 (m, 9H), 2.18 (dq, *J* = 14.3,

7.2 Hz, 1H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 148.8, 141.3, 140.4, 139.5, 136.5, 129.4, 128.5, 128.0, 127.6, 127.4, 126.4, 123.9, 66.1, 66.0, 46.6, 22.7, 8.4. HRMS (ESI) m/z calcd. for C₂₂H₂₅N₄O₂ [M + H]⁺ 377.1972, found 377.1968.

(S)-1-Morpholino-2-phenyl-2-(quinoxalin-6-ylamino)butan-1-one (73)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv), quinoxalin-6-amine **A36** (29.0 mg, 0.20 mmol, 1.0 equiv), and anhydrous THF (4.0 mL) at 10 °C for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc /CH₂Cl₂ = 1/1) to yield the product **73** as a white solid (74.6 mg, 99% yield, 89% ee).

 $[\alpha]_{D}^{27} = +207$ (c 1.8, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 12.62 min, *t*_R (minor) = 16.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (d, J = 1.9 Hz, 1H), 8.41 (d, J = 1.9 Hz, 1H), 7.76 (d, J = 9.1 Hz, 1H), 7.60 (d, J = 7.5 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.30 – 7.27 (m, 1H), 7.22 (dd, J = 9.1, 2.6 Hz, 1H), 6.90 (s, 1H), 6.75 (d, J = 2.5 Hz, 1H), 3.72 – 3.25 (m, 8H), 3.00 (dq, J = 14.2, 7.3 Hz, 1H), 2.35 (dq, J = 14.1, 7.1 Hz, 1H), 0.89 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 145.0, 144.9, 144.5, 140.6, 139.9, 137.5, 129.8, 129.0, 128.0, 126.8, 124.2, 104.5, 66.0, 65.9, 45.6, 22.7, 8.1.

HRMS (ESI) m/z calcd. for $C_{22}H_{25}N_4O_2 [M + H]^+ 377.1972$, found 377.1970.

(S)-2-(Isoquinolin-6-ylamino)-1-morpholino-2-phenylbutan-1-one (74)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and isoquinolin-6-amine **A37** (28.8 mg, 0.20 mmol, 1.0 equiv) for 72

mg, 0.24 mmol, 1.2 equiv) and isoquinolin-6-amine A37 (28.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc /CH₃OH = 30/1) to yield the product 74 as a white solid (66.3 mg, 88% yield, 82% ee).

 $[\alpha]_{D}^{27} = +146 \ (c \ 1.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.86 min, t_R (minor) = 19.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.20 (d, J = 6.0 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.42 – 7.38 (m, 2H), 7.31 – 7.27 (m, 1H), 7.20 (d, J = 6.0 Hz, 1H), 7.03 (dd, J = 8.9, 2.3 Hz, 1H), 6.74 (s, 1H), 6.51 (s, 1H), 3.65 – 3.23 (m, 8H), 2.77 (dq, J = 15.1, 7.6 Hz, 1H), 2.41 (dq, J = 14.3, 7.2 Hz, 1H), 0.82 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 150.6, 146.1, 141.8, 140.5, 138.1, 129.0, 128.9, 128.0, 126.4, 122.3, 121.0, 119.3, 102.7, 66.1, 66.0, 45.4, 24.0, 7.9.

HRMS (ESI) m/z calcd. for $C_{23}H_{26}N_3O_2$ [M + H]⁺ 376.2020, found 376.2016.

(S)-1-Morpholino-2-phenyl-2-(quinolin-3-ylamino)butan-1-one (75)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and quinolin-3-amine **A38** (28.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **75** as a white solid (71.8 mg, 96% yield, 74% ee). $[\alpha]_D^{27} = +92$ (*c* 1.8, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 50/50, flow rate 1.0 mL/min, $\lambda = 254$ nm), *t*_R (major) = 14.72 min, *t*_R (minor) = 20.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 2.9 Hz, 1H), 7.88 – 7.86 (m, 1H), 7.54 – 7.52 (m, 2H), 7.43 – 7.36 (m, 3H), 7.35 – 7.27 (m, 3H), 6.88 (d, J = 2.9 Hz, 1H), 6.28 (s, 1H), 3.54 – 3.32 (m, 8H), 2.69 (dq, J = 14.6, 7.4 Hz, 1H), 2.39 (dq, J = 14.4, 7.3 Hz, 1H), 0.81 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 170.5, 144.6, 141.7, 140.8, 137.6, 129.0, 128.9, 128.7, 128.0, 126.6, 126.4, 126.0, 124.9, 111.9, 66.1, 66.0, 45.6, 24.1, 7.8.

HRMS (ESI) m/z calcd. for $C_{23}H_{26}N_3O_2$ [M + H]⁺ 376.2020, found 376.2016.

(S)-1-Morpholino-2-phenyl-2-(thiazol-2-ylamino)butan-1-one (76)

76

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 mg, 0.24 mmol, 1.2 equiv) and thiazol-2-amine A39 (20.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 76 as a colorless oil (46.6 mg, 70% yield, 83% ee). $|\alpha|_{D^{27}} = +16$ (*c* 1.1, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R}$ (minor) = 9.74 min, $t_{\rm R}$ (major) = 12.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.43 – 7.34 (m, 3H), 7.31 – 7.27 (m, 1H), 7.01 (d, J = 3.6 Hz, 1H), 6.34 (d, J = 3.7 Hz, 1H), 3.82 – 3.36 (m, 8H), 2.98 (dq, J = 14.3, 7.2 Hz, 1H), 2.26 (dq, J = 14.2, 7.1 Hz, 1H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 165.1, 139.9, 138.5, 128.6, 128.0, 127.0, 106.9, 67.1, 66.1, 45.3, 24.8, 8.0.

HRMS (ESI) m/z calcd. for $C_{17}H_{22}N_3O_2S [M + H]^+ 332.1427$, found 332.1425.

Methyl (S)-3-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)thiophene-2-carboxylate (77)

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (64.1 mg, 0.24 mmol, 1.2 equiv) and methyl 3-aminothiophene-2-carboxylate **A40** (31.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **77** as a colorless oil (70.9 mg, 91% yield, 80% ee).

 $[\alpha]_{D}^{27} = +89 \ (c \ 1.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.65 min, t_R (major) = 10.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.48 – 7.42 (m, 4H), 7.36 – 7.30 (m, 2H), 6.75 (d, *J* = 5.5 Hz, 1H), 3.89 (s, 3H), 3.71 – 2.82 (m, 8H), 2.45 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.18 (dq, *J* = 14.7, 7.3 Hz, 1H), 0.54 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 165.8, 153.0, 139.8, 132.3, 128.9, 127.5, 124.6, 117.4, 101.5, 67.5, 66.2, 51.3, 46.5, 30.9, 7.0.

HRMS (ESI) m/z calcd. for $C_{20}H_{25}N_2O_4S [M + H]^+ 389.1530$, found 389.1528.

General procedure C:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(PPh₃)₃CF₃ (9.2 mg, 0.01 mmol, 10 mol %), L*14 (8.1 mg, 0.01 mmol, 10 mol %), Cs₂CO₃ (97.7 mg, 0.30 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 0.5 h. After that, racemic propargyl bromide (0.10 mmol, 1.0 equiv), (hetero)aromatic amine (0.15 mmol, 1.5 equiv), and anhydrous 1,4dioxane (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with

Cu(PPh₃)₃CF₃ (9.2 mg, 0.01 mmol, 10 mol %), L_{rac2} (3.8 mg, 0.01 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), racemic propargyl bromide (0.10 mmol, 1.0 equiv), (hetero)aromatic amine (0.15 mmol, 1.5 equiv), and 1,4-dioxane (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Dimethyl (R)-5-((1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate (78)

According to **General Procedure C** with (3-bromopent-1-yn-1-yl)triisopropylsilane **E35** (30.2 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **78** as a colorless oil (26.7 mg, 62% yield, 90% ee). $[\alpha]_{D}^{27} = +78$ (*c* 0.7, CHCl₃).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 280 nm), *t*_R (minor) = 15.76 min, *t*_R (major) = 17.84 min.

According to **General Procedure C** with (3-chloropent-1-yn-1-yl)triisopropylsilane **E35'** (25.8 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **78** as a colorless oil (16.8 mg, 39% yield, 84% ee). ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (t, *J* = 1.4 Hz, 1H), 7.56 (d, *J* = 1.4 Hz, 2H), 4.16 (s, 1H), 3.99 (s, 1H), 3.91 (s, 6H), 1.93 – 1.75 (m, 2H), 1.14 (t, *J* = 7.4 Hz, 3H), 0.99 – 0.96 (m, 21H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 147.0, 131.1, 120.4, 119.1, 107.1, 84.2, 52.2, 47.9, 28.7, 18.4, 11.0, 10.3.

HRMS (ESI) m/z calcd. for C₂₄H₃₈NO₄Si $[M + H]^+$ 432.2565, found 432.2560.

Dimethyl (S)-5-((1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate ((S)-78)

(S)-**78**

According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 mg, 0.10 mmol, 1.0 equiv), dimethyl 5-aminoisophthalate A9 (31.4 mg, 0.15 mmol, 1.5 equiv), and L*14' for 120 h, the reaction mixture was purified by column chromatography on silica gel

(petroleum ether/EtOAc = 10/1) to yield the product (*S*)-**78** as a colorless oil (23.7 mg, 55% yield, 90% ee).

 $[\alpha]_{D}^{27} = -131 \ (c \ 0.6, \text{CHCl}_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 280 nm), t_R (major) = 14.07 min, t_R (minor) = 15.90 min.

(*R*)-4-Bromo-*N*-(1-(triisopropylsilyl)pent-1-yn-3-yl)aniline (79)

According to **General Procedure C** with (3-bromopent-1-yn-1-yl)triisopropylsilane **E35** (30.2 mg, 0.10 mmol, 1.0 equiv) and 4-bromoaniline **A15** (25.6 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **79** as a colorless oil (21.3 mg, 54% yield, 85% ee). $|a|_{D^{27}} = +96$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel AD (*n*-hexane/*i*-PrOH = 99.5/0.5, flow rate 0.5 mL/min, λ = 280 nm), $t_{\rm R}$ (major) = 9.90 min, $t_{\rm R}$ (minor) = 11.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 6.61 – 6.57 (m, 2H), 4.01 (dd, *J* = 7.6, 5.7 Hz, 1H), 3.70 (s, 1H), 1.89 – 1.69 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H), 1.04 – 0.97 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 145.9, 131.7, 115.9, 110.0, 107.8, 83.8, 48.2, 28.8, 18.5, 11.1, 10.3.

HRMS (ESI) m/z calcd. for $C_{20}H_{33}BrNSi [M + H]^+ 394.1560$, found 394.1557.

(*R*)-*N*-(1-(Triisopropylsilyl)pent-1-yn-3-yl)quinoxalin-6-amine (80)

80

According to **General Procedure C** with (3-bromopent-1-yn-1-yl)triisopropylsilane **E35** (30.2 mg, 0.10 mmol, 1.0 equiv) and quinoxalin-6-amine **A36** (21.8 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **80** as a colorless oil (25.3 mg, 69% yield, 89% ee). $[\alpha]_D^{27} = +92$ (*c* 0.6, CHCl₃).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 96/4, flow rate 0.8 mL/min, λ = 270 nm), *t*_R (major) = 13.39 min, *t*_R (minor) = 17.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 2.0 Hz, 1H), 8.53 (d, J = 1.9 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.19 (dd, J = 9.0, 2.4 Hz, 1H), 7.13 (d, J = 2.3 Hz, 1H), 4.33 – 4.25 (m, 2H), 1.98 – 1.82 (m, 2H), 1.16 (t, J = 7.4 Hz, 3H), 1.02 – 0.96 (m, 21H).

¹³C NMR (100 MHz, CDCl₃)δ 147.7, 145.1, 144.9, 140.7, 138.1, 129.9, 122.3, 106.9, 106.0, 84.3, 47.8, 28.5, 18.5, 11.1, 10.2.

HRMS (ESI) m/z calcd. for $C_{22}H_{34}N_3Si [M + H]^+ 368.2517$, found 368.2508.

(R)-N-(1-(Triisopropylsilyl)pent-1-yn-3-yl)isoquinolin-6-amine (81)

According to **General Procedure C** with (3-bromopent-1-yn-1-yl)triisopropylsilane **E35** (30.2 mg, 0.10 mmol, 1.0 equiv) and isoquinolin-6-amine **A41** (21.6 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **81** as a colorless oil (25.0 mg, 68% yield, 91% ee). $|a|_{D^{27}} = +180$ (*c* 0.6, CHCl₃).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 96/4, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 12.10 min, *t*_R (minor) = 14.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.32 (d, *J* = 5.8 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.39 (d, *J* = 5.8 Hz, 1H), 6.97 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.88 (d, *J* = 2.3 Hz, 1H), 4.31 (d, *J* = 7.5 Hz, 1H), 4.21 (q, *J* = 6.9 Hz, 1H), 1.98 – 1.80 (m, 2H), 1.17 (t, *J* = 7.4 Hz, 3H), 1.00 – 0.98 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 151.3, 147.9, 143.1, 138.0, 128.8, 123.2, 119.4, 119.1, 107.0, 103.7, 84.3, 47.6, 28.6, 18.5, 11.1, 10.3.

HRMS (ESI) m/z calcd. for $C_{23}H_{35}N_2Si [M + H]^+ 367.2564$, found 367.2555.

(*R*)-*N*-(1-(Triisopropylsilyl)pent-1-yn-3-yl)quinolin-7-amine (82)

According to **General Procedure C** with (3-bromopent-1-yn-1-yl)triisopropylsilane **E35** (30.2 mg, 0.10 mmol, 1.0 equiv) and quinolin-7-amine **A42** (21.6 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **82** as a colorless oil (20.5 mg, 56% yield, 90% ee). $|a|_{D^{27}} = +68$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 96/4, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 9.14 min, t_R (minor) = 16.28 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.74 (dd, J = 4.3, 1.6 Hz, 1H), 7.96 (dd, J = 8.1, 1.2 Hz, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 2.1 Hz, 1H), 7.12 (dd, J = 8.1, 4.3 Hz, 1H), 6.98 (dd, J = 8.8, 2.3 Hz, 1H), 4.31 – 4.25 (m, 1H), 4.16 (d, J = 7.6 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.88 – 1.79 (m, 1H), 1.15 (t, J = 7.4 Hz, 3H), 1.02 – 0.98 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 150.4, 150.1, 147.5, 135.5, 128.4, 122.1, 118.7, 117.5, 107.5, 107.2, 83.9, 47.8, 28.5, 18.5, 11.1, 10.2.

HRMS (ESI) m/z calcd. for $C_{23}H_{35}N_2Si [M + H]^+ 367.2564$, found 367.2555.

Dimethyl (*R*)-5-((1-(triisopropylsilyl)hex-1-yn-3-yl)amino)isophthalate (83)

According to **General Procedure C** with (3-bromohex-1-yn-1-yl)triisopropylsilane **E36** (31.6 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **83** as a colorless oil (24.5 mg, 55% yield, 87% ee). $|a|_{D^{27}} = +99$ (*c* 0.6, CHCl₃).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ = 280 nm), *t*_R (major) = 22.25 min, *t*_R (minor) = 28.44 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 1.5 Hz, 1H), 7.56 (d, J = 1.5 Hz, 2H), 4.21 (q, J = 6.7 Hz, 1H), 3.97 (d, J = 7.6 Hz, 1H), 3.91 (s, 6H), 1.86 – 1.73 (m, 2H), 1.64 – 1.56 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H), 0.98 – 0.95 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.0, 131.1, 120.3, 119.1, 107.3, 84.0, 52.2, 46.3, 37.6, 19.2, 18.4, 13.7, 11.0.

HRMS (ESI) m/z calcd. for C₂₅H₄₀NO₄Si $[M + H]^+$ 446.2721, found 446.2713.

Dimethyl (*R*)-5-((5-methyl-1-(triisopropylsilyl)hex-1-yn-3-yl)amino)isophthalate (84)

84

According to **General Procedure C** with (3-bromo-5-methylhex-1-yn-1-yl) triisopropylsilane **E37** (33.0 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **84** as a colorless oil (23.4 mg, 51% yield, 86% ee).

 $[\alpha]_{D}^{27} = +79 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, $\lambda = 280$ nm), t_R (major) = 15.34 min, t_R (minor) = 21.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 1.5 Hz, 1H), 7.56 (d, J = 1.5 Hz, 2H), 4.22 (q, J = 7.5 Hz, 1H), 3.94 – 3.91 (m, 7H), 2.05 – 1.95 (m, 1H), 1.73 – 1.66 (m, 2H), 1.00 (t, J = 7.1 Hz, 6H), 0.97 – 0.96 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.0, 131.1, 120.4, 119.2, 107.4, 84.0, 52.2, 45.0, 44.7, 25.3, 22.8, 22.1, 18.4, 11.0.

HRMS (ESI) m/z calcd. for C₂₆H₄₂NO₄Si $[M + H]^+$ 460.2878, found 460.2873.

Dimethyl (R)-5-((5,5-dimethyl-1-(triisopropylsilyl)hex-1-yn-3-yl)amino) isophthalate (85)

According to **General Procedure C** with (3-bromo-5,5-dimethylhex-1-yn-1-yl) triisopropylsilane **E38** (34.4 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **85** as a colorless oil (20.3 mg, 43% yield, 85% ee).

 $[\alpha]_{D}^{27} = +64 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 280 nm), *t*_R (major) = 13.43 min, *t*_R (minor) = 20.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 1.4 Hz, 1H), 7.55 (d, J = 1.4 Hz, 2H), 4.22 (q, J = 6.9 Hz, 1H), 3.93 – 3.89 (m, 7H), 1.86 (dd, J = 13.7, 7.6 Hz, 1H), 1.71 (dd, J = 13.7, 5.3 Hz, 1H), 1.07 (s, 9H), 0.95 – 0.94 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.7, 131.1, 120.4, 119.3, 108.6, 84.1, 52.2, 49.7, 43.7, 30.6, 30.0, 18.4, 11.1.

HRMS (ESI) m/z calcd. for C₂₇H₄₄NO₄Si $[M + H]^+$ 474.3034, found 474.3024.

Dimethyl (R)-5-((5-cyano-1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate (86)

86

According to **General Procedure C** with 4-bromo-6-(triisopropylsilyl)hex-5-ynenitrile **E39** (32.7 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **86** as a colorless oil (30.3 mg, 66% yield, 87% ee).

 $[\alpha]_{D}^{27} = +84 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (minor) = 9.08 min, *t*_R (major) = 10.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (t, J = 1.4 Hz, 1H), 7.58 (d, J = 1.5 Hz, 2H), 4.39 (q, J = 7.2 Hz, 1H), 4.07 (d, J = 8.7 Hz, 1H), 3.92 (s, 6H), 2.73 – 2.60 (m, 2H), 2.27 – 2.11 (m, 2H), 0.99 – 0.97 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 146.2, 131.4, 121.2, 119.3, 118.8, 104.6, 86.7, 52.2, 45.7, 31.0, 18.4, 14.1, 10.9. HRMS (ESI) m/z calcd. for C₂₅H₃₇N₂O₄Si [M + H]⁺ 457.2517, found 457.2511.

Dimethyl (*R*,*Z*)-5-((1-(triisopropylsilyl)undec-8-en-1-yn-3-yl)amino)isophthalate (87)

According to **General Procedure** C with (*Z*)-(3-bromoundec-8-en-1-yn-1-yl)triisopropylsilane **E40** (38.4 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **87** as a colorless oil (21.7 mg, 42% yield, 87% ee).

 $[\alpha]_{D}^{27} = +82 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 19.23 min, *t*_R (minor) = 23.30 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 1.5 Hz, 1H), 7.55 (d, J = 1.5 Hz, 2H), 5.42 – 5.29 (m, 2H), 4.20 (q, J = 6.4 Hz, 1H), 4.03 – 3.94 (m, 1H), 3.91 (s, 6H), 2.10 – 2.01 (m, 4H), 1.88 – 1.74 (m, 2H), 1.64 – 1.57 (m, 2H), 1.50 – 1.38 (m, 2H), 0.99 – 0.95 (m, 24H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.0, 132.0, 131.1, 128.7, 120.4, 119.1, 107.2, 84.2, 52.2, 46.5, 35.4, 29.3, 26.9, 25.5, 20.5, 18.4, 14.4, 11.0.

HRMS (ESI) m/z calcd. for $C_{30}H_{48}NO_4Si [M + H]^+ 514.3347$, found 514.3343.

Dimethyl (*R*)-5-((7-(benzyloxy)-1-(triisopropylsilyl)hept-1-yn-3-yl)amino) isophthalate (88)

According to **General Procedure C** with (7-(benzyloxy)-3-bromohept-1-yn-1-yl) triisopropylsilane **E41** (43.6 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **88** as a colorless oil (29.5 mg, 52% yield, 85% ee).

 $[\alpha]_{D}^{27} = +48 \ (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 280 nm), *t*_R (minor) = 16.02 min, *t*_R (major) = 18.20 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (t, J = 1.6 Hz, 1H), 7.55 (d, J = 1.5 Hz, 2H), 7.34 – 7.33 (m, 4H), 7.31 – 7.27 (m, 1H), 4.51 (s, 2H), 4.20 (s, 1H), 4.00 (s, 1H), 3.90 (s, 6H), 3.52 – 3.47 (m, 2H), 1.88 – 1.80 (m, 2H), 1.74 – 1.64 (m, 4H), 0.98 – 0.96 (m, 21H). ¹³**C** NMR (100 MHz, CDCl₃) δ 166.6, 146.9, 138.5, 131.1, 128.3, 127.6, 127.5, 120.4, 119.1, 107.2, 84.2, 72.9, 70.1, 52.2, 46.4, 35.3, 29.3, 22.8, 18.4, 11.0.

HRMS (ESI) m/z calcd. for $C_{33}H_{48}NO_5Si [M + H]^+ 566.3296$, found 566.3293.

Dimethyl (*R*)-5-((4-phenylbut-3-yn-2-yl)amino)isophthalate (89)

According to **General Procedure C** with (3-bromobut-1-yn-1-yl)benzene **E42** (20.8 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **89** as a yellowish solid (25.6 mg, 76% yield, 78% ee). $[\alpha]_{D}^{27} = +129$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 96/4, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 24.56 min, *t*_R (minor) = 26.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 1.5 Hz, 1H), 7.61 (d, J = 1.2 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.28 – 7.24 (m, 3H), 4.54 – 4.53 (m, 1H), 4.10 (s, 1H), 3.92 (s, 6H), 1.64 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 146.8, 131.7, 131.3, 128.20, 128.19, 122.6, 120.4, 118.9, 89.8, 82.7, 52.2, 41.5, 22.2.

HRMS (ESI) m/z calcd. for $C_{20}H_{20}NO_4 [M + H]^+ 338.1387$, found 338.1382.

Dimethyl (R)-5-((6,6-dimethyl-1-phenylhept-4-yn-3-yl)amino)isophthalate (90)

According to **General Procedure C** with (3-bromo-6,6-dimethylhept-4-yn-1-yl)benzene **E43** (27.8 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5-aminoisophthalate **A9** (31.4 mg, 0.15 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **90** as a colorless oil (14.3 mg, 35% yield, 74% ee).

 $[\alpha]_{D}^{27} = +42 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 280 nm), *t*_R

 $(minor) = 21.52 min, t_R (major) = 28.34 min.$

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (t, *J* = 1.4 Hz, 1H), 7.50 (d, *J* = 1.4 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 3H), 4.16 – 4.13 (m, 1H), 3.97 (s, 1H), 3.91 (s, 6H), 2.92 – 2.80 (m, 2H), 2.14 – 1.99 (m, 2H), 1.18 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 147.0, 141.2, 131.1, 128.51, 128.46, 126.1, 120.1, 118.9, 93.4, 77.6, 52.2, 45.4, 37.3, 32.1, 31.0, 27.3.

HRMS (ESI) m/z calcd. for $C_{25}H_{30}NO_4 [M + H]^+ 408.2169$, found 408.2161.

6. Procedure for synthetic applications Gram-scale reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (94.9 mg, 0.50 mmol, 10 mol %), L*9 (321.8 mg, 0.75 mmol, 15 mol %), Cs₂CO₃ (4.89 g, 15.0 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (1.60 g, 6.0 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (1.15 g, 5.0 mmol, 1.0 equiv), and anhydrous benzene (100 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product 1 as a white solid (2.29 g, 99% yield, 95% ee).

(±)-E31 (1.2 equiv.) A1, 5 mmol 31, 0.83 g, 99%, 95% ee Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (38.0 mg, 0.20 mmol, 10 mol %), L*9 (128.7 mg, 0.30 mmol, 15 mol %), Cs₂CO₃ (1954.8 mg, 6.0 mmol, 3.0 equiv), 2-chloro-*N*,*N*-dimethyl-2-phenylbutanamide E28 (540.2 mg, 2.4 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (458.1 mg, 2.0 mmol, 1.0 equiv), and anhydrous benzene (40 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 7.5/1) to yield the product **28** as a white solid (826.7 mg, 99% yield, 95% ee).

The synthesis of chiral amino aldehyde 91

To a solution of **1** (89.0 mg, 0.20 mmol, 1.0 equiv) in THF (2 mL) was slowly added LiAlH₄ (30.4 mg, 0.80 mmol, 4.0 equiv) at 0 °C under argon. The reaction mixture was stirred for 15 min at 0 °C. Upon completion (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution (3 mL) and extracted with EtOAc (10 mL \times 3), dried with Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the desired product **91** as a colorless oil (68.3 mg, 91% yield, 95% ee).

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenylbutanal (91)

 $[\alpha]_D^{27} = +103 \ (c \ 1.7, \text{CHCl}_3).$

HPLC analysis: AD (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.3 mL/min, $\lambda = 254$ nm), t_R (major) = 35.63 min, t_R (minor) = 54.25 min.

¹**H NMR** (400 MHz, CDCl₃)δ 9.13 (s, 1H), 7.44 – 7.40 (m, 4H), 7.39 – 7.34 (m, 1H), 7.09 (s, 1H), 6.77 (s, 2H), 5.80 (s, 1H), 2.60 – 2.46 (m, 2H), 0.83 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.0, 145.0, 135.3, 132.1 (q, *J* = 32.6 Hz), 129.7, 128.9, 127.1, 123.3 (q, *J* = 271.0 Hz), 113.63 – 113.60 (m), 110.6 – 110.4 (m), 69.8, 22.3, 7.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.37.

HRMS (ESI) m/z calcd. for $C_{18}H_{16}F_6NO [M + H]^+ 376.1131$, found 376.1122.

The synthesis of chiral amino alcohol 92

To a solution of **91** (56.3 mg, 0.15 mmol, 1.0 equiv) in THF (2 mL) was slowly added NaBH₄ (11.4 mg, 0.30 mmol, 2.0 equiv) at 0 $^{\circ}$ C under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc

 $(10 \text{ mL} \times 3)$. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the desired product 92 as a colorless oil (49.0 mg, 87% yield, 95% ee).

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenylbutan-1-ol (92)

 $[\alpha]_{D}^{27} = +5.2$ (*c* 1.0, CHCl₃).

HPLC analysis: AD (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 6.78 min, $t_{\rm R}$ (major) = 8.63 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 7.07 (s, 1H), 6.71 (s, 2H), 4.78 (s, 1H), 3.95 (d, J = 11.1 Hz, 1H), 3.87 (d, J = 11.0 Hz, 1H), 2.21 (dq, J = 14.9, 7.5 Hz, 1H), 2.05 (dq, J = 14.5, 7.4 Hz, 1H), 1.64 (s, 1H), 0.85 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.5, 141.0, 131.9 (q, J = 32.5 Hz), 129.0, 127.6, 126.2, 123.4 (q, J = 271.0 Hz), 114.1 - 114.0 (m), 110.4 - 110.2 (m), 66.1, 62.5, 29.0, 8.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.39.

HRMS (ESI) m/z calcd. for $C_{18}H_{18}F_6NO [M + H]^+ 378.1287$, found 378.1285.

The synthesis of chiral amino alcohol 93

To a solution of 91 (37.5 mg, 0.10 mmol, 1.0 equiv) in THF (4 mL) was slowly added MeMgBr (1 mL, 1.0 M in THF) at 0 °C under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred for 1 h. Upon completion (monitored by TLC), the reaction mixture was guenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (10 mL \times 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the desired product 93 as a colorless oil (29.4 mg, 75% yield, 5:1 dr, 95%/95% ee).

(3S)-3-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-phenylpentan-2-ol (93)

 $[\alpha]_{D}^{27} = -19 (c \ 0.7, \text{CHCl}_3).$

HPLC analysis: ODH (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 36.12 min, t_R (major) = 47.88 min, 95% ee; t_R (minor) = 52.55 min, t_R (major) = 55.90 min, 95% ee.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.30 (m, 5H), 7.05 (s, 1H), 6.69 (s, 2H), 5.34 (s, 0.84H), 5.34 (s, 0.16H), 4.10 – 3.96 (m, 1H), 2.51 – 2.36 (m, 1H), 2.34 – 2.24 (m, 1H), 1.55 – 1.53 (m, 0.16H), 1.31 – 1.27 (m, 0.84H), 1.16 (d, J = 6.4 Hz, 0.48H), 1.04 (d, J = 6.4 Hz, 2.52H), 1.01 – 0.95 (m, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 146.8, 146.6, 141.3, 138.6, 131.8 (q, J = 32.4 Hz), 131.7 (q, J = 32.3 Hz), 128.8, 128.7 127.7, 127.6, 127.5, 127.2, 123.4 (q, J = 271.0 Hz), 114.2 – 114.1 (m), 113.83 – 113.78 (m), 109.9 – 109.7 (m), 109.6 – 109.5 (m), 74.7, 71.4, 64.8, 64.4, 24.7, 23.6, 18.4, 17.8, 8.9, 7.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.36, -63.39.

HRMS (ESI) m/z calcd. for $C_{19}H_{20}F_6NO [M + H]^+ 392.1444$, found 392.1434.

The synthesis of chiral 1,2-diamine 94

To a solution of LiAlH4 (30.4 mg, 0.80 mmol, 4.0 equiv) in 1,4-dioxane (2 mL) was slowly added the solution of **31** (83.6 mg in 2 mL 1,4-dioxane, 0.2 mmol. 1.0 equiv) at 0 °C under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred at 100 °C for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched with water (1 mL), NaOH aqueous solution (1 mL, 0.1 M) and water (1 mL) respectively at 0 °C. Then the reaction mixture was extracted with EtOAc (10 mL \times 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 8/1) to yield the desired product **94** as a white solid (64.5 mg, 80% yield, 95% ee).

(S)-N²-(3,5-Bis(trifluoromethyl)phenyl)-N¹, N¹-dimethyl-2-phenylbutane-1,2-diamine (94)

 $[\alpha]_{D}^{27} = +12 (c \ 1.6, \text{CHCl}_3).$

94

HPLC analysis: ODH (*n*-hexane/*i*-PrOH = 100/0, flow rate 0.4 mL/min, $\lambda = 254$ nm), t_R (minor) = 34.60 min, t_R (major) = 36.36 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 4H), 7.24 – 7.20 (m, 1H), 7.03 (s, 1H), 6.76 (s, 2H), 5.54 (s, 1H), 2.83 (d, *J* = 13.2 Hz, 1H), 2.59 (d, *J* = 13.3 Hz, 1H), 2.23 (dq, *J* = 14.8, 7.4 Hz, 1H), 2.10 – 2.01 (m, 7H), 0.82 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.4, 143.9, 131.8 (q, *J* = 32.3 Hz), 128.5, 126.8, 126.3, 123.5 (q, *J* = 270.9 Hz), 113.72 – 113.68 (m), 109.4 – 109.2 (m), 67.6, 60.9, 47.7, 30.0, 8.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.27.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}F_6N_2$ [M + H]⁺ 405.1760, found 405.1749.

The synthesis of α-chiral primary amine 95

95, 87%, 88% ee

According to **General Procedure A** with 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (641.0 mg, 2.4 mmol, 1.2 equiv) and 4-nitroaniline **A11** (276.1 mg, 2.0 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **43** as a yellowish solid (731.9 mg, 99% yield, 88% ee). To a solution of **43** (73.8 mg, 0.20 mmol, 1.0 equiv) in anhydrous EtOAc (4 mL) was added Pd/C (30 mg, 10 wt%) in one portion. Then the reaction flask was evacuated and refilled with H₂ through a balloon, and the mixture was stirred under a H₂ atmosphere at room temperature for 4 h. After completion (monitored by TLC), the reaction was filtered through a short pad of celite and rinsed with EtOAc (5 mL × 3). The filtrate was concentrated under reduced pressure to afford the crude product, which was used in the next step without further purification.

To a solution of the above crude product was dissolved in CH₃CN (4 mL) and cooled to 0°C. PhI(OAc)₂ (128.8 mg, 0.40 mmol, 2.0 equiv) was added as a solid, and the homogeneous mixture was kept at 0 °C for 30 min before addition of H₂SO₄ (5 mL, 1.0 M). The aqueous layer was washed with CH₂Cl₂ and then was basified (pH=10) by dropwise addition of NaOH (10 mmol, 1.0 M in water) and saturated solution of Na₂CO₃, and was subsequently washed with CH₂Cl₂. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (EtOAc/CH₃OH = 20/1) to yield the product **95** as a slight brown solid (43.3 mg, 87% yield, 88% ee).

(S)-2-Amino-1-morpholino-2-phenylbutan-1-one (95)

 $[\alpha]_{D}^{27} = -13 \ (c \ 0.5, \text{CHCl}_3).$ HPLC analysis: Chiralcel OJ (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210 \text{ nm}$), t_{R} (major) = 11.83 min, t_{R} (minor) = 18.68 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 7.29 – 7.25 (m, 1H), 3.74 – 3.05 (m, 8H), 2.43 (s, 2H), 2.18 (dq, J = 14.8, 7.5 Hz, 1H), 2.07 (dq, J = 14.4, 7.3 Hz, 1H), 0.86 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.0, 143.3, 128.8, 127.3, 125.0, 66.3, 63.9, 46.9, 43.7, 33.0, 8.0.

HRMS (ESI) m/z calcd. for C₁₄H₂₁N₂O₂ [M + H]⁺ 249.1598, found 249.1593.

The synthesis of terminal alkyne derivative 96

To a solution of **78** (43.1 mg, 0.1 mmol, 1.0 equiv) in THF (5 mL) was slowly added TBAF (0.12 mmol, 1.2 equiv, 1M in THF) at 0 °C. Then the mixture was slowly warmed to room temperature and stirred for 2 h before being quenched with H₂O (2 mL). The residue was extracted with EtOAc (10 mL \times 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 8:1) to afford the product **96** as a yellowish solid (23.9 mg, 87% yield, 90% ee).

Dimethyl (R)-5-(pent-1-yn-3-ylamino)isophthalate (96)

 $[\alpha]_{D}^{27} = +12$ (*c* 0.6, CHCl₃).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.88 min, t_R (major) = 17.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (t, J = 1.4 Hz, 1H), 7.55 (d, J = 1.3 Hz, 2H), 4.15 – 4.10 (m, 1H), 4.04 (s, 1H), 3.92 (s, 6H), 2.25 (d, J = 1.6 Hz, 1H), 1.93 – 1.77 (m, 2H), 1.13 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.8, 131.3, 120.4, 118.7, 83.5, 71.4, 52.3, 46.8, 28.7, 10.2.

HRMS (ESI) m/z calcd. for $C_{15}H_{18}NO_4 [M + H]^+ 276.1230$, found 276.1224.

7. Mechanistic studies

To a solution of CuBr₂ (22.1 mg, 0.20 mmol) in CH₂Cl₂ (2 mL) was added L*9 (42.9 mg, 0.10 mmol) at room temperature and stirred overnight. Then the solution was dissolved in CH₂Cl₂ (10 mL) and filtered. Next, the solution was concentrated in vacuo and obtained product CatA (55.7 mg, 98% yield).

Reaction of Cu(II) complex CatA

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **CatA** (2.8 mg, 0.005 mmol, 10 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline **A1** (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product **1** (yield of **1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, >99%, 95% ee).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (3.2 mg, 0.0075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product 1 (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard, >99%, 95% ee).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline **A1** (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ¹H NMR spectra (recovery of **E1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, recovered **E1** >119%). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

Linear relationship experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (3.2 mg, 0.0075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the product was separated by preparative TLC. The ee values of products was then determined by HPLC, which indicated a linear relationship between ee values of products and corresponding catalysts. The catalyst L*9 with different ee values were prepared by mixing (S)-L*9 (99% ee) and (R)-L*9 (99% ee) in appropriate ratios.

Entry	Catalyst ee (%)	Product ee (%)
1	99	94
2	75	66
3	50	43
4	25	21
5	0	0
6	-25	-21
7	-50	-41
8	-75	-66
9	-99	-93

Time-course experiment with CuI/L*9

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (3.2 mg, 0.0075 mmol, 15

mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline **A1** (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of **1** and recovered **E1** were determined by HPLC analysis.

Time-course experiment with CatA

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **CatA** (2.8 mg, 0.005 mmol, 10 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline **A1** (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of **1** and recovered **E1** were determined by HPLC analysis.

Time-course experiment with premixing

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (3.2 mg, 0.0075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 3,5-bis(trifluoromethyl)aniline A1 (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL). Then, the mixture was stirred at 50 °C for 1 h. Next, the mixture was stirred at room temperature for 10 min. After that, 2-chloro-1morpholino-2-phenylbutan-1-one E1 (16.0 mg, 0.06 mmol, 1.2 equiv) was added into the mixture and the reaction mixture was stirred at room temperature for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of 1 and recovered E1 were determined by HPLC analysis.

Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*9 (12.9 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), *N*-allyl-2-chloro-*N*-methyl-2-phenylbutanamide E44 (60.3 mg, 0.24 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg, 0.20 mmol, 1.0 equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15/1 to 3/1) to yield the product 97 as a colorless oil (25.7 mg, 51% yield, 3:1 dr) and 98 as a colorless oil (43.4 mg, 49% yield, 95% ee).

4-(Chloromethyl)-3-ethyl-1-methyl-3-phenylpyrrolidin-2-one (97)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.11 (m, 5H), 3.77 - 3.48 (m, 2H), 3.28 - 2.71 (m, 6H), 2.18 – 1.88 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 0.75H), 0.87 (t, *J* = 7.3 Hz, 2.24H). ¹³**C** NMR (100 MHz, CDCl₃) δ 175.9, 175.5, 140.9, 138.2, 128.6, 128.5, 127.2, 127.1, 127.0, 126.9, 55.9, 55.4, 50.9, 50.5, 47.0, 45.1, 43.3, 43.0, 30.0, 29.7, 28.3, 24.2, 9.1, 9.0. HRMS (ESI) m/z calcd. for C₁₄H₁₉ClNO [M + H]⁺ 252.1150, found 252.1149.

 $[\alpha]_{D}^{27} = +30 \ (c \ 1.0, \ CHCl_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.65 min, t_R (minor) = 7.11 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.27 (m, 1H), 6.97 (s, 1H), 6.87 (s, 1H), 6.82 (s, 2H), 5.69 – 5.00 (m, 3H), 3.91 – 3.65 (m, 2H), 2.70 – 2.34 (m, 5H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 171.2, 145.2, 140.6, 131.84, 131.82 (q, *J* = 32.3 Hz), 129.1, 128.1, 127.0, 123.5 (q, *J* = 271.0 Hz), 117.8, 113.31 – 113.26 (m), 109.5 – 109.4 (m), 66.0, 52.8, 35.4, 23.3, 8.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.35.

HRMS (ESI) m/z calcd. for $C_{22}H_{23}F_6N_2O [M + H]^+ 445.1709$, found 445.1709.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(PPh₃)₃CF₃ (18.4 mg, 0.02 mmol, 10 mol %), L*14 (16.2 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (1.0 mL). Then, the mixture was stirred at room temperature for 0.5 h. After that, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane E45 (68.4 mg, 0.20 mmol, 1.0 equiv), dimethyl 5-aminoisophthalate A9 (62.7 mg, 0.30 mmol, 1.5 equiv), and anhydrous 1,4-dioxane (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15/1 to 5/1) to yield the product 99 as a colorless oil (6.3 mg, 7% yield, 2:1 dr) and 100 as a colorless oil (23.2 mg, 25% yield, 86% ee).

Dimethyl 5-amino-4-((2-((triisopropylsilyl)ethynyl)cyclopentyl)methyl)isophthalate (99)

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 1.7 Hz, 0.34H), 7.80 (d, J = 1.7 Hz, 0.66H), 7.44 –

7.43 (m, 1H), 4.32 (s, 0.68H), 4.09 (s, 1.32H), 3.91 – 3.88 (m, 6H), 3.33 – 3.24 (m, 1H), 3.06 – 3.02 (m, 0.66H), 2.92 – 2.87 (m, 0.34H), 2.42 – 2.20 (m, 1H), 2.12 – 1.97 (m, 2H), 1.90 – 1.60 (m, 5H), 1.11 – 1.05 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 168.3, 166.6, 146.0, 145.6, 131.9, 131.85, 131.77, 130.4, 128.34, 128.26, 121.3, 121.0, 118.8, 118.7, 112.4, 111.1, 84.3, 80.7, 52.19, 52.15, 52.14, 52.10, 47.0, 45.7, 38.0, 36.3, 33.0, 32.8, 31.3, 30.4, 29.9, 28.6, 23.2, 21.6, 18.7, 18.6, 11.34, 11.28. **HRMS** (ESI) m/z calcd. for C₂₇H₄₂NO₄Si [M + H]⁺ 472.2878, found 472.2876.

Dimethyl (R)-5-((1-(triisopropylsilyl)oct-7-en-1-yn-3-yl)amino)isophthalate (100)

 $[\alpha]_{D}^{27} = +71 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 230 nm), *t*_R (major) = 21.71 min, *t*_R (minor) = 26.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (t, J = 1.5 Hz, 1H), 7.55 (d, J = 1.5 Hz, 2H), 5.87 – 5.77 (m, 1H), 5.08 – 4.98 (m, 2H), 4.21 (q, J = 7.0 Hz, 1H), 3.96 (d, J = 8.3 Hz, 1H), 3.91 (s, 6H), 2.19 – 2.12 (m, 2H), 1.90 – 1.76 (m, 2H), 1.75 – 1.66 (m, 2H), 0.98 – 0.96 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.9, 138.1, 131.2, 120.4, 119.1, 115.0, 107.1, 84.3, 52.2, 46.4, 34.9, 33.2, 25.1, 18.4, 11.0.

HRMS (ESI) m/z calcd. for $C_{27}H_{42}NO_4Si [M + H]^+ 472.2878$, found 472.2874.

EPR Experiments for the detection of intermediate during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (2.5 mg, 0.0075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline A1 (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 6 h. Next, 5,5-dimethyl-1-pyrroline *N*-oxide DMPO (11.3 mg, 0.10 mmol, 2.0 equiv) was added and the reaction mixture was stirred at rt for another 1 h. The resulting reaction mixture was analyzed by EPR. The tertiary carbon-centered radicals generated in the process of atom transfer would be affected by steric hindrance and then isomerized to oxygen-centered radicals. A distant signal of the persistent nitroxyl radical 101 was formed. Meanwhile, the proposed radical adducts 101 were consistent with the results of ESI-HRMS.

Effect of nucleophile and ligand on reaction initiation

(±)-E1

$$\underbrace{\begin{array}{c} & & \\ &$$

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*9 (3.2 mg, 0.0075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (13.4 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by 1H NMR spectra (recovery of E1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining E1 >119%). Although we failed to synthesize the chiral ligand-chelated Cu(I)-amido complex, a control experiment without A1 showed that no conversion of E1 was observed. Thus, it is the transmetalation of Cu^I with the (hetero)aromatic amine that possibly occurs firstly rather than the single electron-transfer between Cu^I and E1.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one **E1** (16.0 mg, 0.06 mmol, 1.2 equiv), 3,5-bis(trifluoromethyl)aniline **A1** (11.5 mg, 0.05 mmol, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by 1H NMR spectra (recovery of **E1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining **E1** >119%). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

8. References

- Liu, L.; Guo, K.-X.; Tian, Y.; Yang, C.-J.; Gu, Q.-S.; Li, Z.-L.; Ye, L.; Liu, X.-Y. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp³)-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. *Angew. Chem., Int. Ed.* 2021, *60*, 26710–26717.
- 2. Zhang, H.; Chen B.; Zhang, G. Enantioselective 1,2-Alkylhydroxylmethylation of Alkynes via Chromium/Cobalt Cocatalysis. *Org. Lett.* **2020**, *22*, 656–660.
- 3. Hu, B.; Bezpalko, M. W.; Fei, C.; Dickie, D. A.; Foxman, B. M.; Deng, L. Origin of and a Solution for Uneven Efficiency by Cinchona Alkaloid-Derived, Pseudoenantiomeric Catalysts for Asymmetric Reactions. J. Am. Chem. Soc. **2018**, 140, 13913–13920.
- 4. Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z.-Q. Surgical Cleavage of Unstrained C(*sp*³)–C(*sp*³) Bonds in General Alcohols for Heteroaryl C–H Alkylation and Acylation. *Adv. Synth. Catal.* **2019**, *361*, 4568–4574.
- 5. Sarkar, S. M.; Taira, Y.; Nakano, A.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Organocatalytic Asymmetric Synthesis of Quinine and Quinidine. *Tetrahedron Lett.* **2011**, *52*, 923–927.
- Line, N. J.; Witherspoon, B. P.; Hancock, E. N; Brown, M. K. Synthesis of *ent*-[3]-Ladderanol: Development and Application of Intramolecular Chirality Transfer [2+2] Cycloadditions of Allenic Ketones and Alkenes. J. Am. Chem. Soc. 2017, 139, 14392–14395.
- Jiang, S.-P.; Dong, X.-Y.; Gu, Q.-S.; Ye, L.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical Suzuki–Miyaura C(sp³)–C(sp²) Cross-Coupling. J. Am. Chem. Soc. 2020, 142, 19652–19659.
- 8. Wang, P.-F.; Yu, J.; Guo, K.-X.; Jiang, S.-P.; Chen, J.-J.; Gu, Q.-S.; Liu, J.-R.; Hong, X.; Li, Z.-L.; Liu, X.-Y. Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters. J. Am. Chem. Soc. 2022, 144, 6442–6452.
- 9. Kainz, Q. M., Matier, C. D., Bartoszewicz, A., Zultanski, S. L., Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C–N Cross-Couplings Induced by Visible Light. *Science* 2016, *351*, 681–684.
- Wang, F.-L., Yang, C.-J., Liu, J.-R., Yang, N.-Y., Dong, X.-Y., Jiang, R.-Q., Chang, X.-Y., Li, Z.-L., Xu. G.-X., Yuan, D.-L., Zhang, Y.-S., Gu, Q.-S., Hong, X.; Liu, X.-Y. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent C(sp³)–C(sp) Cross-Coupling of Tertiary Electrophiles with Alkynes. *Nat. Chem.* 2022. 14, 949–957.
- Zhang, Y.-F.; Dong, X.-Y.; Cheng, J.-T.; Yang, N.-Y.; Wang, L.-L.; Wang, F.-L.; Luan, C.; Liu, J.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Enantioconvergent Cu-Catalyzed Radical C–N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J. Am. Chem. Soc. 2021, 143, 15413–15419.

9. NMR spectra

00 190 100 90 f1 (ppm) 130 120 -

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

¹⁰⁰ f1 (ppm)

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

S127

S129

f1 (ppm)

-

fl (ppm)

S137

f1 (ppm)

100 90 f1 (ppm) -140 130 120

S149

S151

S153

100 90 f1 (ppm) _ 00 190 150 140 130

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

fl (ppm)

00 190 180 -140 130 fl (ppm)

S173

100 90 f1 (ppm)

20 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -1: fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm) -00 190 180 140 130 120

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

100 90 f1 (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

D0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

100 90 f1 (ppm) 140 130 120

100 90 f1 (ppm)

 $\begin{array}{c} 7,7,9\\ 7,7,4\\ 7,7,2\\ 7,$

100 90 f1 (ppm) -180 170 160 140 130 120

00 190 180 100 90 f1 (ppm) -140 130 120 ò

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

00 190 140 130 ò fl (ppm)

110 100 f1 (ppm)

00 190 180 140 130 -ò fl (ppm)

100 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S246

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

100 90 f1 (ppm))0 -1

S254

10. HPLC spectra

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.252	8379238	51.690		
2	11.161	7831270	48.310		

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	9.305	17399663	97.424
	2	11.233	460063	2.576

Peak Table

PDA Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	7.	257	3222722	49.807
2	8.	855	3247758	50.193

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	7.247	6777471	98.206			
2	8.895	123779	1.794			

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.365	7021775	49.953		
2	13.397	7034969	50.047		

1	PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%	
	1	12.	395	2339293	16.884	
	2	13.	378	11515513	83.116	

PDA Ch1 254nm					
Peak#	Ret. Ti	me Area	Area%		
1	12.879	9 467653	7 51.825		
2	16.995	5 434713	4 48.175		

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	12.757	35030685	97.887			
2	17.119	756323	2.113			

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	18.	663	8493199	50.028	
2	22.	770	8483577	49.972	

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	18.480	16198915	96.909			
2	23.171	516728	3.091			

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	10.250	11464718	49.790		
2	13.779	11561382	50.210		

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	10.216	19670775	97.147			
2	13.922	577782	2.853			

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.407	10143934	49.924
2	8, 556	10174849	50.076

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	6.511	21315167	95.560			
2	8.548	990411	4.440			

mAU

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.952	4048646	49.926		
2	11.692	4060634	50.074		

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	10.099	8105783	96.805				
2	11.914	267510	3.195				

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	13.729	5478731	49.913		
2	16.655	5497730	50.087		

PDA Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	13.	613	12907360	98.084		
2	16.	775	252106	1.916		

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	10.	530	3857316	49.999	
2	12.	176	3857437	50.001	

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	10.468	6594309	98.025				
2	12.165	132837	1.975				

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.976	9464796	51.601		
2	14.662	8877439	48.399		

Detect	or A Ch1 2	254nm	
Peak#	Ret. Time	Area	Area%
1	10.122	34285364	97.522
2	16.087	871070	2.478

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	21.	483	14213513	50.050	
2	29.	063	14185330	49.950	

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	21.738	336875	1.758			
2	29.357	18826665	98.242			

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.168	9674697	49.989		
2	16.626	9678875	50.011		

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	12.	261	1172923	5.527	
2	16.	531	20049411	94.473	

PDA	Ch1	254nm

1 011 011			
Peak#	Ret. Time	Area	Area%
1	9.616	3228188	50.111
2	12.736	3213837	49.889

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	9.597	8007732	96.682
2	12.769	274838	3.318

Peak Table

PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	16.	522	7743454	50.110
	2	18.	959	7709434	49.890

PDA Ch1 254nm

Peak#	Ket.	lime	Area	Area%
1	16.	721	495001	3.226
2	18.	745	14847916	96.774

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.570	13205326	49.520		
2	11.380	13461129	50.480		

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	8.895	461470	1.981			
2	11.201	22838901	98.019			

Peak Table

PDA	Ch1	254nm	

Peak#	Ret.	Time	Area	Area%
1	12.	326	6970413	50.052
2	14.	506	6955913	49.948

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.496	200006	1.408		
2	14.336	14007499	98.592		

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	5.052	BV	0.1282	4452.68262	539.76074	49.6947
2	5.574	VV R	0.1458	4507.38721	478.70944	50.3053

Totals :

8960.06982 1018.47018

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	00
1	5.061	BB	0.1203	100.08549	12.65094	2.8531
2	5.579	BV R	0.1411	3407.86865	378.25522	97.1469
Totals	:			3507.95414	390.90616	

#	[min]		[min]	Area [mAU*s]	[mAU]	0
-						
1	6.093	VV R	0.1509	3636.41284	375.78473	49.9678
2	7.163	BB	0.1816	3641.10156	304.37360	50.0322
Totals	:			7277.51440	680.15833	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]			[min]	Area [mAU*s]	[mAU]	8	
			-					
1	6.100	BV	R	0.1475	145.91388	14.48500	3.1272	
2	7.156	VV	R	0.1876	4519.97510	371.99811	96.8728	

Totals :

4665.88898 386.48311

Peak Table

PDA Ch1 254nm									
Peak#	Ret. Time	Area	Area%						
1	11.787	3600654	49.995						
2	16.121	3601319	50.005						

PD	PDA Ch1 254nm									
Pe	eak#	Ret.	Time	Area	Area%					
	1	11.	807	8170260	97.783					
	2	16.	223	185280	2.217					

PDA Ch1 254nm

Peak#	Ret. Ti	me Area	Area%
1	6.839	3044656	49.786
2	7.889	3070876	50.214
mAU			

PDA Ch1 254nm									
Peak#	Ret. Time	Area	Area%						
1	6.781	7944768	97.680						
2	7.847	188706	2.320						

Peak Table

PDA Ch1 254nm									
Peak#	Ret.	Time	Area	Area%					
1	16.	778	6627952	49.948					
2	19.	711	6641669	50.052					

PDA C	PDA Ch1 254nm									
Peak	# Ret.	Time	Area	Area%						
1	16.	674	15687285	97.323						
2	19.	917	431520	2.677						

Peak Table

PDA Ch1 254nm									
Peak#	Ret.	Time	Area	Area%					
1	10.	176	6548523	49.956					
2	11.	449	6560090	50.044					

PDA Ch1 254nm									
Peak#	Ret.	Time	Area	Area%					
1	10.	127	15025437	96.906					
2	11.	501	479803	3.094					

min

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	13.	023	5130529	50.116
2	15.	418	5106760	49.884

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	13.	286	327969	3.160	
2	15.	748	10050656	96.840	

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	17.	014	4930785	49.841	
2	19.	376	4962197	50.159	

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	16.803	11708387	96.792			
2	19.193	388069	3.208			

Peak Table

PDA Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	11.	126	5342231	49.852
2	12.	327	5373959	50.148

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.210	185108	3.631		
2	12.368	4912808	96.369		

Peak Table

Detect	Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	11.145	13655774	48.280			
2	18.711	14628540	51.720			

Detect	or A Ch1 2	254nm	
Peak#	Ret. Time	Area	Area%
1	11.174	8483914	11.407
2	18.587	65892596	88.593

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.444	6125469	50.035	
2	8.943	6116790	49.965	

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.412	14873363	97.688		
2	8.882	352050	2.312		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.940	7907943	49.883		
2	10.746	7945040	50.117		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.936	14407645	97.145		
2	10.773	423403	2.855		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Tim	e Area	Area%		
1	8.650	7745635	50.080		
2	14.902	7720820	49.920		

PDA Ch1 254nm

Peak#	Ret. Tim	e Area	Area%
1	8.650	13320985	97.009
2	14.935	410699	2.991

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	5.880	8145381	51.682		
2	8.422	7615214	48.318		

PDA	PDA Ch1 254nm					
Peak	ς#	Ret.	Time	Area	Area%	
1		5.	878	17487935	97.434	
2		8.	469	460500	2.566	

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.141	10494892	51.846		
2	10.535	9747684	48.154		

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.045	20631337	96.444	
2	10.329	760649	3.556	

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.357	6991462	49.865		
2	9.768	7029192	50.135		

 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 7.347
 6117244
 22.862

 2
 9.738
 20640030
 77.138

检测器A Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	14.	942	4045653	50.067
2	16.	176	4034769	49.933

检测器A Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.027	10348277	95.089	
2	16.340	534507	4.911	

Peak Table

检测器	A Ch1	254n	m	
Peak#	Ret.	Time	Area	Area%
1	15.	967	9143908	49.970
2	18.	145	9154984	50.030

检测器A Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	15.969	17607721	93.714			
2	18.224	1181058	6.286			

Peak Table

检测器A Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	11.	666	11422044	50.069	
2	15.	675	11390530	49.931	

 检测器A Ch1 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 11.716
 28849839
 97.165

 2
 15.887
 841802
 2.835

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	14.354	1098143	50.062		
2	16.101	1095442	49.938		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.334	1927152	95.304			
2	16.128	94954	4.696			

S291

Signal 5: DAD1 E, Sig=300,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	20
1	18.474	BB	0.5309	9843.26270	287.87018	50.0811
2	23.889	BB	0.6183	9811.38770	230.64284	49.9189
Total	s:			1.96547e4	518.51302	

Signal 5: DAD1 E, Sig=300,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	010
1	18.469	BB	0.4853	1535.05518	44.18349	5.9403
2	23.818	BB	0.6676	2.43063e4	563.11780	94.0597
Total	s :			2.58414e4	607.30129	

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.531	3558422	50.126			
2	17.432	3540462	49.874			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.486	6851154	93.319			
2	17.421	490505	6. <u>6</u> 81			

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	20.176	3764110	50.303			
2	27.239	3718733	49.697			

PDA Ch1 254nm

Peak#	Ret. Tim	e Area	Area%
1	20.105	20040465	93.387
2	27.303	1419237	6.613

Peak Table

PDA Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	16.	059	3975340	50.153		
2	20.	638	3951069	49.847		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.015	8384574	90.759		
2	20.754	853685	9.241		

Peak Table

检测	目器	A Chi	l 254n	m	
Pea	ık#	Ret.	Time	Area	Area%
]		11.	903	5678932	50.027
2	2	13.	646	5672797	49.973

检测器	A Ch1 254r	ım	
Peak#	Ret. Time	Area	Area%
1	12.307	29083474	97.210
2	13.948	834789	2.790

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.353	2062856	52.675		
2	17.346	1853353	47.325		

]	PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Area%		
	1	9.302	5529300	93.764		
	2	17.346	367712	6.236		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	14.335	1925871	50.036		
2	16.220	1923134	49.964		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.361	688747	94.232			
2	16.234	42158	5.768			

PDA Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	15.	182	3105445	49.980		
2	22.	561	3107889	50.020		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.123	6111308	94.000		
2	22.600	390088	6.000		

Peak Table

F	PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%	
ſ	1	8.	390	11104062	50.023	
	2	14.	729	11093782	49.977	

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.394	23031345	90.426		
2	14.756	2438490	9.574		

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	6.404	3729709	49.992			
2	9.985	3730854	50.008			

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	6.422	3315330	92.325
2	10.033	275609	7.675

mAU

min

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	7.158	4595424	49.657			
2	13.672	4658990	50.343			

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.159	9206389	88.895
2	13.689	1150078	11.105

mAU

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	6.491	1893278	49.993			
2	10.539	1893782	50.007			

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	6.486	2432257	92.069
2	10.530	209523	7.931

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	9.412	9717773	50.015			
2	16.122	9712016	49.985			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	9.401	25401843	86.762			
2	16.172	3875709	13.238			

PDA Cł	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	7.521	9462229	49.938				
2	10.413	9485886	50.062				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	7.508	20591031	88.034			
2	10.404	2798868	11.966			

Peak Table

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.410	2376763	50.104		
2	14.232	2366883	49.896		

Detector A Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	7.	433	4211974	84.336		
2	14.	230	782319	15.664		

Peak Table

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.300	2508697	49.936		
2	9.656	2515108	50.064		

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.287	5956501	90.264		
2	9.623	642446	9.736		

Peak Table

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	7.437	5570584	49.764			
2	14.872	5623416	50.236			

Detector A Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	7.	432	13263270	89.975	
2	14.	869	1477832	10.025	

Peak Table

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	5.122	7111820	49.963				
2	8.738	7122269	50.037				

mAU

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	4.846	20205970	83.909			
2	8.347	3874918	16.091			

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	11. (040	3676900	49.755	
2	13.8	875	3713121	50.245	

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	11.127	3208091	8.435				
2	13.961	34824810	91.565				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.303	2256512	50.000			
2	20.227	2256524	50.000			

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	14.215	10581378	91.952				
2	20.221	926063	8.048				

Peak Table

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	10.311	1763680	49.956			
2	17.234	1766765	50.044			

PDA (PDA Ch1 254nm						
Peak	# Ret.	Time	Area	Area%			
1	10	. 260	25643105	91.254			
2	17	. 162	2457824	8.746			

mAU

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	21.	098	4331047	49.826	
2	23.	394	4361257	50.174	

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	20.660	2402919	10.149			
2	22.947	21273067	89.851			

Peak Table

1	PDA Ch1 254nm					
[Peak#	Ret. Time	Area	Area%		
	1	7.739	6310975	49.921		
	2	10.759	6330868	50.079		

Peak Tab	тe	;
----------	----	---

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.686	9935014	93.327		
2	10.729	710415	6.673		

Peak Table

PDA Ch1 254nm					
Peak	# Re	t. Time	Area	Area%	
1	9	9. 326	11919880	49.672	
2	1	3.454	12077277	50.328	

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	9.259	31810698	96.015			
2	13.511	1320373	3.985			

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.387	6477019	50.027		
2	10.331	6469922	49.973		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.486	314396	3.339			
2	10.357	9102569	96.661			

PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	23.	077	8004812	49.994
	2	27.	322	8006623	50.006

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	23.156	16357015	95.915			
2	27.723	696673	4.085			

PDA Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	21.	890	16065238	49.825		
2	27.	132	16177974	50.175		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	21.734	23705205	95.477		
2	27.074	1123003	4.523		

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	20.	254	11013818	50.017	
2	24.	207	11006387	49.983	

PDA Ch1 254nm						
Peak#	Ret.	Time	Area	Area%		
1	20.	068	20681630	97.465		
2	24.	422	537962	2.535		

Peak Table

PDA Cł	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	14.980	8445272	49.382			
2	17.735	8656785	50.618			

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.190	425160	2.981		
2	17.635	13835858	97.019		

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	13.	578	13258084	50.010
2	17.	655	13252858	49.990

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Tim	ie Area	Area%			
1	13.534	24541569	97.120			
2	17.763	727855	2.880			

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	15.	190	7822092	49.900	
2	22.2	200	7853514	50.100	

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	15.135	34164773	97.078			
2	22.357	1028313	2.922			

Peak Table

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	15.	059	7400563	49.791	
2	19.	024	7462680	50.209	

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	15.068	11726374	95.931			
2	19.166	497429	4.069			

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	8.080	3471036	49.889			
2	12.224	3486483	50.111			

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	8.068	8098968	94.344			
2	12.225	485503	5.656			

PDA Multi 1 254nm, 4nm

Peak Table

0-

200-

100-

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	36.	074	21471042	50.151
2	41.	638	21341475	49.849

Poo	7		h	
Pea	n I	a.	U I	le

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	35.	889	29118625	95.308	
2	41.	779	1433407	4.692	

Peak Table

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	12.	643	5286564	50.091
2	16.	414	5267412	49.909

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	12.617	8159426	94.392			
2	16.439	484807	5.608			

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	13.854	5212710	49.831	
2	19.278	5248017	50.169	

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	13.858	7259074	90.815		
2	19.349	734172	9.185		

PDA Ch	$1 25^{\prime}$	4nm		
Peak#	Ret.	Time	Area	Area%
1	14.	696	9993401	49.977
2	20.	759	10002616	50.023

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	14.	717	19884282	87.230	
2	20.	783	2910882	12.770	

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.701	1432957	51.343		
2	12.761	1357998	48.657		

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.740	226368	8.412	
2	12.757	2464775	91.588	

Peak Table

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	9.585	2875966	49.856			
2	10.867	2892594	50.144			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.653	437548	9.986
2	10.864	3944028	90.014

mAU

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	15.815	VB R	0.4566	1092.95593	31.05813	49.9373
2	17.957	BV R	0.4873	1095.70178	28.96818	50.0627
Total	s :			2188.65771	60.02631	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak RetTime Type Height Width Area Area # [min] [min] [mAU*s] [mAU] % 1 15.765 MM R 0.6837 144.39362 3.51989 5.0695 2 17.841 MM R 0.8126 2703.87354 55.45856 94.9305 Totals : 2848.26715 58.97844

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 14.263	BB	0.4742	984.46021	32.42763	49.8675
2 15.987	BB	0.5011	989.69073	30.78197	50.1325

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.069	BB	0.5908	1949.42114	52.06353	95.1626
2	15.904	BB	0.5473	99.09438	2.64386	4.8374
Total	s :			2048.51552	54.70740	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	9.821	BB	0.2851	1218.43982	65.46615	50.1681
2	11.214	BB	0.3238	1210.27637	58.40165	49.8319

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] % 1 9.896 BV R 0.2553 1188.84741 71.75516 92.5625 2 11.189 BB 0.2218 95.52575 5.41448 7.4375 Totals : 1284.37316 77.16964

Signal 3: DAD1 C, Sig=270,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.980	BB	0.5804	2785.78638	59.47653	50.1998
2	18.198	BB	0.6576	2763.61157	49.78625	49.8002
Tota]	ls:			5549.39795	109.26278	

Signal 3: DAD1 C, Sig=270,4 Ref=360,100

				Area [mAU*s]	•	
1	13.388	BV R	0.6430	8319.38965	185.57851	94.3790
2	17.356	BV R	0.6316	495.48523	9.36040	5.6210
Total	s :			8814.87488	194.93891	

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime Type [min]	[min]	[mAU*s]	[mAU]	%
1	12.119 BB	0.7769	3286.73804	50.39703	50.2445
2	14.803 BV R	0.8237	3254.74658	47.36638	49.7555
Total	s :		6541.48462	97.76340	

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % # [min] [min] 1 12.099 BB 0.9028 9520.75488 138.36673 95.3925 2 14.874 BB 0.6809 459.85623 7.94888 4.6075

Totals :

9980.61111 146.31561

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.217	MM R	1.6884	1.23480e4	121.88744	50.2238
2	16.519	MM R	2.5620	1.22380e4	79.61347	49.7762
Total	s :			2.45860e4	201.50092	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	9.145	MM R	1.7848	6818.36426	63.67159	95.0881
2	16.285	MM R	1.9002	352.21371	3.08924	4.9119
Total	ls:			7170.57797	66.76084	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

	-	•		Height [mAU]	
1	23.661 BB	1.1542	2450.88354	29.83974	49.6308
2	31.009 BB	1.2105	2487.34912	25.80523	50.3692
Tota]	.s :		4938.23267	55.64497	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # 1 22.246 BB 1.0165 3129.30835 44.82304 93.3188 2 28.445 MM R 1.3531 224.04297 2.75953 6.6812 Totals : 3353.35132 47.58257

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.433	BB	0.7081	701.60181	13.73113	49.9660
2	22.284	BB	0.9115	702.55725	10.32987	50.0340
Total	s :			1404.15906	24.06100	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

				Area [mAU*s]	0	
1	15.339	BB	0.7442	3772.69067	73.57900	92.8931
2	21.088	MM R	1.0980	288.63312	4.38107	7.1069
Total	ls :			4061.32379	77.96007	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	13.426	BB	0.6636	5851.25488	127.92675	49.8832
2	19.470	BB	0.9708	5878.66699	87.38762	50.1168
Total	ls:			1.17299e4	215.31437	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.427	BB	0.6625	2655.62524	58.18132	92.6782
2	20.554	MM R	1.2305	209.80135	2.84160	7.3218
Total	ls :			2865.42659	61.02292	

Peak Table

PDA Ch1 230nm										
Peak#	Ret. Time	Area	Area%							
1	9.065	20003293	49.953							
2	10.835	20041014	50.047							

 PDA Ch1 230nm

 Peak# Ret. Time
 Area
 Area%

 1
 9.084
 3758088
 6.699

 2
 10.799
 52339530
 93.301

PDA Ch1 230nm											
Peak#	Ret. Ti	me	Area	Area%							
1	20.06	8	16597175	50.089							
2	24.01	0	16538014	49.911							

PDA Ch	PDA Ch1 230nm										
Peak#	Ret. Time	Area	Area%								
1	19.234	38371028	93.261								
2	23.295	2772472	6.739								

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.240	BV R	0.5330	2390.43188	61.84201	49.8122
2	18.630	BV R	0.5532	2408.46021	53.91419	50.1878

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 16.022 BB 0.4696 865.90222 23.51558 7.5890 2 18.195 BB 0.6673 1.05441e4 225.59602 92.4110 Totals : 1.14100e4 249.11160

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak RetTime Type		Area	Height	Area
# [min] 			[mAU]	%
1 24.552 BB	0.5614	1143.88599	30.93312	49.9439
2 26.570 BB	0.6119	1146.45374	28.58419	50.0561

Totals :

2290.33972 59.51730

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
	_			[mAU*s]		%
1	24.555	BB	0.5654	1733.89319	47.33388	89.2366
2	26.584	BB	0.5313	209.13638	5.38235	10.7634
Tota]	s :			1943.02957	52.71623	

Signal 5: DAD1 E, Sig=280,4 Ref=360,100

				Area [mAU*s]	0	
1	21.642	BB	0.7816	6558.12402	128.45256	50.2562
2	30.406	BB	1.0163	6491.26221	96.30936	49.7438
Total	s :			1.30494e4	224.76192	

Signal 5: DAD1 E, Sig=280,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	21.523 BB	0.6221	679.73840	16.58545	13.1903
2	28.345 BB	0.8344	4473.57520	83.05232	86.8097
Total	s :		5153.31360	99.63777	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	37.126	MM R	1.6273	7769.32324	79.57370	50.0616
2	53.737	MM R	2.8302	7750.20947	45.63988	49.9384

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU] [min] [min] [mAU*s] % # 1 35.626 MM R 1.9642 4.58705e4 389.21210 97.5095 2 54.247 MM R 2.4557 1171.56604 7.95142 2.4905

Totals : 4.70421e4 397.16352

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	•	Area %
1	6.855	MM R	0.6837	3093.86011	75.42050	49.6644
2	8.671	MM R	0.6645	3135.67139	78.64387	50.3356
Totals	:			6229.53149	154.06437	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	•	
-						
1	6.782	MM R	0.8319	362.84937	7.26934	2.3591
2	8.629	MM R	0.7988	1.50181e4	313.34598	97.6409
Totals	s :			1.53810e4	320.61532	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.207	MM R	1.0070	1532.11865	25.35891	40.9048
2	47.485	MM R	1.2091	1547.77222	21.33422	41.3228
3	52.168	MM R	1.3267	333.82358	4.19354	8.9125
4	55.496	MM R	1.3174	331.85278	4.19832	8.8599
Total	s :			3745.56723	55.08499	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.116	MM R	1.0405	97.93077	1.56864	1.9764
2	47.884	MM R	1.3217	4088.01074	51.54908	82.5016
3	52.552	MM R	1.1504	20.29354	2.94004e-1	0.4096
4	55.900	MM R	1.4640	748.83234	8.52524	15.1125
Total	.s :			4955.06739	61.93696	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]	[mAU]	%
1	32.982	BV	0.7221	1.01445e4	167.15199	50.0722
2	35.515	VV R	0.7909	1.01153e4	160.58565	49.9278
Total	s :			2.02598e4	327.73764	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Totals : 9336.28931 167.15926

Peak Table

PDA Ch2 210nm								
Peak#	Ret.	Time	Area	Area%				
1	12.	093	14231037	50.516				
2	18.	932	13940084	49.484				

PDA Ch2 210nm								
Peak#	Ret. Time	Area	Area%					
1	11.833	32388943	94.081					
2	18.685	2037768	5.919					

mAU

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]		
1	14.753	MM R	0.4390	3473.65674	131.86581	50.0988
2	17.296	VV R	0.4589	3459.95532	107.10828	49.9012
Tota]	s :			6933.61206	238.97410	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 1 14.882 MM R 0.3694 112.32715 5.06845 5.2330 2 17.369 MM R 0.5303 2034.18628 63.93575 94.7670 Totals : 2146.51343 69.00420

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	5.651	682543	49.950				
2	7.180	683900	50.050				

PDA Ch	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%					
1	5.654	1664081	97.253					
2	7.108	47001	2.747					

Peak Table

PDA Ch1 230nm								
Peak#	Ret. Ti	me Area	Area%					
1	21.727	12066639	50.210					
2	26.044	11965789	49.790					

PDA Ch1 230nm								
Peak	# Ret.	Time	Area	Area%				
1	21.	711	17003463	92.978				
2	26.	136	1284246	7.022				