Supporting Information for

Copper-Catalyzed Enantioconvergent Radical C($\mathbf{s p}^{3}$)-N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions

 Cheng, ${ }^{1, \S}$ Nan Li, ${ }^{\ddagger}$ Zhang-Long Yu, ${ }^{\ddagger}$ Jun-Qian Bian,${ }^{\ddagger}$ Fu-Li Wang, ${ }^{\ddagger}$ Jing-Jing Zheng, ${ }^{\ddagger}$ Wei-Long Liu, ${ }^{\dagger}$ Qiang-Shuai Gu, ${ }^{£}$ Zhong-Liang Li, ${ }^{\dagger,{ }^{\dagger}}$ and Xin-Yuan Liu ${ }^{\dagger}{ }^{\dagger,},{ }^{,}$
${ }^{\dagger}$ Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China.
${ }^{\ddagger}$ Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
${ }^{\prime}$ Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
${ }^{\text {E }}$ Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern
University of Science and Technology, Shenzhen 518055, China
${ }^{\text {§ }}$ These authors contributed equally

Correspondence to: liuxy3@sustech.edu.cn

Table of contents

1. Tables for experiments 3
2. Figures for experiments 13
3. General information 22
4. The synthesis of ligands and alkyl halides 23
5. Cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines 43
6. Procedure for synthetic applications 92
7. Mechanistic studies 98
8. References 108
9. NMR spectra 109
10. HPLC spectra 255

1. Tables for experiments

Table S1. Reaction condition optimization with tertiary α-chloroamide E1 and (hetero)aromatic amine A1: screening of different solvents ${ }^{a}$

$(\pm)-$ E1

A1

Entry	Solvent	Yield (\%)	ee (\%)
1	$1,4-$ dioxane	92	94
2	DMF	12	87
3	DMA	15	88
4	DMSO	trace	-
5	MTBE	90	93
6	${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$	8	93
7	THF	90	92
8	DME	93	92
9	benzene	91	95
10	PhMe	92	94
11	PhCF3	92	92
12	PhF	91	93
13	DCM	93	91
14	DCE	92	92
15	$\mathrm{CH}_{3} C N$	93	84
16	EtOAc	92	90
17	cyclohexane	n-hexane	trace

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 1}(0.05 \mathrm{mmol}), \mathbf{A 1}(0.06 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{9}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in solvent $(1.0 \mathrm{~mL})$ at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5$-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S2. Reaction condition optimization with tertiary α-chloroamide E1 and (hetero)aromatic amine A1: screening of different bases ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 1}(0.05 \mathrm{mmol}), \mathbf{A 1}(0.06 \mathrm{mmol}), \mathbf{C u I}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{9}(15 \mathrm{~mol} \%)$, and base (3.0 equiv) in benzene $(1.0 \mathrm{~mL})$ at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S3. Reaction condition optimization with tertiary α-chloroamide E1 and (hetero)aromatic amine A1: screening of different copper salts ${ }^{a}$

Entry	[Cu]	Yield (\%)	ee (\%)
1	CuI	91	95
2	CuCN	6	95
3	CuSCN	90	95
4	CuTc	90	95
5	$\mathrm{CuBH}_{4}\left(\mathrm{PPh}_{3}\right)_{2}$	27	95
6	$\mathrm{CuBrSMe}{ }_{2}$	91	95
7	CuOAc	trace	95
8	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Br}$	18	95
9	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$	91	94
10	$\mathrm{Cu}(\mathrm{acac})_{2}$	14	95
11	$\mathrm{Cu}(\mathrm{OTf})_{2}$	87	94
12	$\mathrm{Cu}(\mathrm{OAc})_{2}$	0	-
13	CuCl_{2}	35	94
14	CuF_{2}	0	-
15	$\mathrm{IMesCuCl}^{\text {che }}$	0	-
16	CuBr_{2}	91	95
17	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	0	-

${ }^{a}$ Reaction conditions: (\pm)-E1 (0.05 mmol), A1 (0.06 mmol), $[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * 9(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S4. Reaction condition optimization with tertiary α-chloroamide E1 and (hetero)aromatic amine A1: screening of starting materials loading ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 1}, \mathbf{A 1}, \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{9}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S5. Reaction condition optimization with tertiary α-chloroamide E1 and (hetero)aromatic amine A1: screening of temperature and time ${ }^{a}$

[^0]Table S6. Reaction condition optimization with tertiary α-chloroamide E34 and (hetero)aromatic amine A15: screening of different ligands ${ }^{a}$

(2)
${ }^{a}$ Reaction conditions: (\pm)-E34 $(0.05 \mathrm{mmol})$, A15 $(0.05 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L}^{*}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in benzene (1.0 mL) at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S7. Reaction condition optimization with tertiary α-chloroamide E34 and (hetero)aromatic amine A15: screening of different solvents ${ }^{a}$

${ }^{a}$ Reaction conditions: (\pm)-E34 (0.05 mmol$)$, A15 $(0.05 \mathrm{mmol})$, $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 10(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0$ equiv) in solvent $(1.0 \mathrm{~mL})$ at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis.

Table S8. Reaction condition optimization with tertiary α-chloroamide E34 and (hetero)aromatic amine A15: screening of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ loading ${ }^{a}$

${ }^{a}$ Reaction conditions: (\pm) - $\mathbf{E 3 4}(0.05 \mathrm{mmol}), \mathbf{A 1 5}(0.05 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 10(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (X equiv) in EtOAc (1.0 mL) at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ${ }^{b}(\pm)$-E34 (0.055 mmol). ${ }^{c}(\pm)$-E34 (0.06 mmol).

Table S9. Reaction condition optimization with secondary propargyl bromide E35 and (hetero)aromatic amine A9: screening of different copper salts ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 3 5}(0.05 \mathrm{mmol}), \mathbf{A 9}(0.075 \mathrm{mmol}),[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * 14(10 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 \mathrm{equiv})$ in 1,4-dioxane (0.5 mL) at rt for 48 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ${ }^{b}$ Without $\mathbf{L} * \mathbf{1 4}$.

Table S10. Reaction condition optimization with secondary propargyl bromide E35 and (hetero)aromatic amine A9: screening of different solvents ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 3 5}(0.05 \mathrm{mmol}), \mathbf{A 9}(0.075 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{1 4}(10 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0$ equiv) in solvent (0.5 mL) at rt for 48 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ${ }^{b}$ For $96 \mathrm{~h} .{ }^{c}$ For $120 \mathrm{~h} .{ }^{d}$ For 144 h .

2. Figures for experiments

Unsuccessful arylamines:

trace ${ }^{a}$
Unsuccessful alkyl halides:

$99 \%, 46 \% \mathrm{ee}^{c}$

trace ${ }^{a}$

$99 \%, 25 \%$ ee

99\%, 47\% ee

$99 \%, 13 \%$ ee

Figure S1. Unsuccessful examples. Standard reaction conditions: (\pm)-E (1.2 equiv), A1 (0.20 $\mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 9(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0$ equiv) in benzene (4.0 mL) at rt for 72 h under argon; yields were isolated ones; ee values were determined by HPLC analysis. ${ }^{a}$ Most of E1 was recovered. ${ }^{b} 3$-Ethyl-1,3-diphenylindolin-2-one was obtained in 90% yield. ${ }^{c}$ Alkyl bromide was used.

1

Figure S2. The X-ray structure of $\mathbf{1}$.

5

Figure S3. The X-ray structure of 5.

13

Figure S4. The X-ray structure of $\mathbf{1 3}$.

31

Figure S5. The X-ray structure of $\mathbf{3 1}$.

32

Figure S6. The X-ray structure of $\mathbf{3 2}$.

53

Figure S7. The X-ray structure of 53.

Figure S8. The X-ray structure of 96.

Figure S9. The X-ray structure of CatA.

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 300 to $400{ }^{\circ} \mathrm{C}$) for 2 minutes in vacuum. Anhydrous 1.4-dioxane, EtOAc, and benzene was purchased from J\&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$). As the eluent, the petroleum ether (PE), $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO_{4} indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 or 150 MHz for ${ }^{13} \mathrm{C}$ NMR, 376 MHz for ${ }^{19} \mathrm{~F}$ NMR and 162 MHz for ${ }^{31} \mathrm{P}$ NMR respectively, in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6} with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz . Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s , singlet; d , doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEXII CCD' diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

4. The synthesis of ligands and alkyl halides

The synthesis of chiral ligand $L * 9$ and $L * 14$

General procedure for preparation of $\mathbf{L * 9}$:
According to the literature reported procedure. ${ }^{1}$ Under an argon atmosphere, to a solution of 2aminobenzonitrile ($1.18 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and (S)-2-amino-2-phenylethan-1-ol (2.06 g , 15.0 mmol , 1.5 equiv) in chlorobenzene (30 mL) was added dry $\mathrm{ZnCl}_{2}(4.02 \mathrm{~g}, 30.0 \mathrm{mmol}, 3.0$ equiv) at once at rt . Then, the reaction mixture was reflux for 24 h . After completion (monitored by TLC), the reaction mixture was dissolved in water, EtOAc, and 2 mL ethylenediamine. Next, the reaction was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to afford the product $\mathbf{L 9 - 1}$ as a white solid $(2.17 \mathrm{~g}, 91 \%$ yield $)$.
According to the literature reported procedure. ${ }^{2}$ Under an argon atmosphere, to a solution of (S)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)aniline $\mathbf{L 9 - 1}(1.43 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ equiv) and quinoline-8sulfonyl chloride ($2.04 \mathrm{~g}, 9.0 \mathrm{mmol}, 1.5$ equiv) in pyridine ($30 \mathrm{~mL}, 0.2 \mathrm{M}$) was added DMAP ($146.5 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.2$ equiv) at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched by water and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=50 / 1\right.$ to $20 / 1$) to afford the product $\mathbf{L} * 9$ as a white solid ($2.54 \mathrm{~g}, 99 \%$ yield).
(S)-N-(2-(4-Phenyl-4,5-dihydrooxazol-2-yl)phenyl)quinoline-8-sulfonamide ($\mathrm{L} * 9$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 8.58-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.34(\mathrm{~m}, 1 \mathrm{H}), 8.09-$ $8.07(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 7 \mathrm{H})$, $6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=10.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,151.3,143.6,142.0,139.5,136.3,135.9,133.7,132.4$, $132.0,129.5,128.8,128.6,127.7,126.8,125.0,121.9,121.4,116.4,112.8,73.4,70.0$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 430.1220$, found 430.1218 .

General procedure for preparation of $L^{*} 14$:
According to the literature reported procedure. ${ }^{3}$ Quinine ($3.24 \mathrm{~g}, 10.0 \mathrm{mmol}$) was dissolved in acetic anhydride (20.0 mL) and stirred at room temperature for 2 h . After that, the reaction solution became clear and then was poured into ice-water, basified with aqueous ammonium hydroxide solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated to afford the crude acetylated quinine L14-1, which was used directly in the next step without further purification.
According to the literature reported procedure. ${ }^{4}$ To a solution of $\mathbf{L 1 4 - 1}(1.83 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added 2,2-dimethylpropan-1-ol ($2.20 \mathrm{~g}, 25.0 \mathrm{mmol}, 5.0$ equiv) at room temperature. PIFA ($4.30 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) was then added. The reaction was irradiated with 24 W blue LEDs and kept at room temperature under fan cooling for 12 h . After completion (monitored by TLC), the reaction was quenched by addition of saturated NaHCO_{3} until $\mathrm{pH}>8$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford $\mathbf{L 1 4 - 2}(0.74 \mathrm{~g}, 35 \%$ yield).
According to the literature reported procedure. ${ }^{5}$ To a solution of $\mathbf{L 1 4 - 2}$ ($422.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was slowly added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(689.6 \mathrm{mg}, 5.0 \mathrm{mmol}, 5.0\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. Then the mixture was slowly warmed to room temperature and stirred for 2 h . After completion (monitored by TLC), the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1)$ to afford $\mathbf{L 1 4 - 3}$ as a white solid (362.7 mg, 95\% yield).
According to the literature reported procedure ${ }^{6}$ with slightly modification. Under an argon atmosphere, to a solution of $\mathbf{L 1 4 - 3}$ ($304.2 \mathrm{mg}, 0.8 \mathrm{mmol}, 1.0$ equiv) and triphenylphosphine (PPh_{3}) ($272.6 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ equiv) in THF (5 mL) was added diisopropyl azodicarboxylate (DIAD) ($210.2 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ equiv) at once and stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was added diphenyl phosphoryl azide (DPPA) ($286.0 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ equiv) dropwise over 15 min at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for 20 h . Next the reaction was heated to $50^{\circ} \mathrm{C}$ for 4 h . Another portion of $\mathrm{PPh}_{3}(293.5 \mathrm{mg}, 1.12$
mmol, 1.4 equiv) was then added and the reaction stirred at $50^{\circ} \mathrm{C}$ for an additional 4 h . After cooling the solution to room temperature, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the solution stirred overnight at room temperature. The mixture was concentrated under reduced pressure, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and diluted with HCl aqueous solution $(3.0 \mathrm{M}, 5 \mathrm{~mL})$ The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$, alkalinized with ammonium hydroxide and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=100 / 1\right.$ to $\left.10 / 1\right)$ to afford $\mathbf{L 1 4 - 4}$ as a yellowish oil ($189.6 \mathrm{mg}, 62 \%$ yield).
According to the literature reported procedure. ${ }^{7}$ Under an argon atmosphere, to a solution of L14-4 ($189.6 \mathrm{~g}, 0.5 \mathrm{mmol}, 1.0$ equiv), 2-(bis(2,3,4,5,6-pentamethylphenyl)phosphaneyl)benzoic acid ($234.3 \mathrm{mg}, 0.525 \mathrm{mmol}, 1.05$ equiv), and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added EDCI ($115 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched by water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=100 / 1\right.$ to $\left.10 / 1\right)$ to afford the product $\mathbf{L} * 14$ as a yellowish solid $(325.3 \mathrm{mg}, 81 \%$ yield).
2-(Bis(2,3,4,5,6-pentamethylphenyl)phosphaneyl)- N-((S)-(2-(tert-butyl)-6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*14)

$$
L^{*} 14\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{Me}_{5}\right)
$$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.99(\mathrm{~m}$, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.21(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 12 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.67(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,165.6,157.1,143.8,143.6,141.6,140.9,140.6,138.2$, $137.3,135.4,135.0,133.4,132.7,132.6,132.42,132.39,131.0,129.6,129.4,127.7,126.6,121.0$, $114.2,101.6,59.3,56.0,55.7,55.5,41.3,39.5,37.7,30.2,27.7,27.5,27.1,19.9,19.8,19.7,19.6$, 17.12, 17.0, 16.4 .
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-24.26.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{53} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$808.4965, found 808.4953.

The synthesis of propargyl bromides substrates

All the propargyl bromides were synthesized following the literatures. ${ }^{7,8}$

The synthesis of $\boldsymbol{\alpha}$-halide amide substrates

General procedure 1:

According to the literature reported procedure. ${ }^{9}$ The carboxylic acid (25 mmol) was dissolved in $\mathrm{SOCl}_{2}(7.25 \mathrm{~mL}, 100 \mathrm{mmol})$, and the resulting solution was heated at reflux for 30 min . The mixture was allowed to cool to room temperature, and then N-chlorosuccinimide ($8.34 \mathrm{~g}, 63$ mmol), $\mathrm{SOCl}_{2}(5 \mathrm{~mL})$, and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 2.5 h . The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl_{4}, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.
To a solution of amine ($25.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(3.03 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added the above α-chloro acid chloride at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution $\left(1.0 \mathrm{M}, 50 \mathrm{~mL}\right.$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 2:
According to the literature reported procedure ${ }^{10}$ with slightly modification. To a solution of carboxylic acid ($20.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) ($44.0 \mathrm{mmol}, 2.2$ equiv, 1.0 M in THF) via syringe at $-78{ }^{\circ} \mathrm{C}$ under argon. After being stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was warmed up to $0{ }^{\circ} \mathrm{C}$ and stirred for another 1 h . The solution was then cooled to $-78^{\circ} \mathrm{C}$ again and alkyl iodide (21.0 mmol , 1.05 equiv) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.
To a solution of the above acid in THF (40 mL) was added hexamethylphosphoramide (HMPA, 6 mL) and lithium diisopropylamide (LDA) (44.0 mmol , 2.2 equiv, 1.0 M in THF) via syringe at $-78^{\circ} \mathrm{C}$ under argon. The reaction was slowly warmed up to $0^{\circ} \mathrm{C}$ and stirred for another 1 h . Then the reaction mixture was cooled down to $-78^{\circ} \mathrm{C}$ again and treated with a solution of $\mathrm{CCl}_{4}(80.0$ mmol, 4.0 equiv) in THF (3 mL). After being stirred at $-78^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was warmed up to room temperature over 1 h and stirred overnight. Then, the reaction was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude α-chloro acid, which was used directly in the next step without further purification.
To a solution of the above α-chloro acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added oxalyl chloride (24.0 mmol, 1.2 equiv) and a drop of DMF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred $40^{\circ} \mathrm{C}$ for 3 h . Then, the solvent was removed under reduced pressure to afford the α-chloro acid chloride,
which was used directly in the next step without further purification.
To a solution of amine ($20.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(2.43 \mathrm{~g}, 24.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added the above α-chloro acid chloride at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution ($1.0 \mathrm{M}, 50 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 3:
According to the literature reported procedure. ${ }^{9,10}$ To a solution of carboxylic acid (20.0 mmol , 1.0 equiv) in anhydrous THF (40 mL) was added lithium diisopropylamide (LDA) (44.0 mmol , 2.2 equiv, 1.0 M in THF) via syringe at $-78^{\circ} \mathrm{C}$ under argon. After being stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was warmed up to $0^{\circ} \mathrm{C}$ and stirred for another 1 h . The solution was then cooled to $-78^{\circ} \mathrm{C}$ again and alkyl iodide ($21.0 \mathrm{mmol}, 1.05$ equiv) was added in one portion. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.
The above acid was dissolved in $\mathrm{SOCl}_{2}(5.8 \mathrm{~mL}, 80 \mathrm{mmol})$, and the resulting solution was heated at reflux for 30 min . The mixture was allowed to cool to room temperature, and then N chlorosuccinimide ($6.65 \mathrm{~g}, 50 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(4.0 \mathrm{~mL}$), and HCl (concentrated, 4 drops) were added. The resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 2.5 h . The mixture was then allowed to cool to room temperature, the precipitate was filtered off and washed by CCl_{4}, and the solvent was removed by evaporation. The resulting liquid residue was used in the next step without further purification.
To a solution of amine ($20.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(2.43 \mathrm{~g}, 24.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added the above α-chloro acid chloride at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution ($1.0 \mathrm{M}, 50 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 4:

According to the literature reported procedure. ${ }^{10}$ To a solution of carboxylic acid ($10.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (20 mL) was added lithium diisopropylamide (LDA) ($25.0 \mathrm{mmol}, 2.5$ equiv, 1.0 M in THF) via syringe at $-78^{\circ} \mathrm{C}$ under argon. After being stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was warmed up to $0^{\circ} \mathrm{C}$ and stirred for another 1 h . The solution was then
cooled to $-78^{\circ} \mathrm{C}$ again and iodomethane ($22.0 \mathrm{mmol}, 2.2$ equiv) was added dropwise into the reaction mixture. The reaction was warmed up to room temperature over 1 h and stirred overnight. The resulting solution was quenched with brine, acidified with 1.0 M aqueous HCl solution, and extracted with EtOAc three times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude acid, which was used directly in the next step without further purification.
The above acid was dissolved in $\mathrm{SOCl}_{2}(3.0 \mathrm{~mL})$, and the resulting solution was heated at reflux for 30 min . The mixture was allowed to cool to room temperature, and then $\mathrm{Br}_{2}(3.16 \mathrm{~g}, 20.0$ $\mathrm{mmol}, 2.0$ equiv) and $\mathrm{SOCl}_{2}(2.0 \mathrm{~mL})$ were added. The resulting mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 24 h . Then the solvent was removed under reduced pressure to afford the α-bromo acid chloride, which was used directly in the next step without further purification.
To a solution of amine ($10.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.21 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added the above α-bromo acid chloride at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution $(1.0 \mathrm{M}, 20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

General procedure 5:

According to the literature reported procedure. ${ }^{11}$ To a solution of $\mathrm{Et}_{3} \mathrm{~N}(3.64 \mathrm{~g}, 36.0 \mathrm{mmol}, 1.2$ equiv) and amine ($30.0 \mathrm{mmol}, 1.0$ equiv) in THF (50 mL) was added α-bromo acid bromide ($36.0 \mathrm{mmol}, 1.2$ equiv) dropwise at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution ($1.0 \mathrm{M}, 50 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product.

2-Chloro-1-morpholino-2-phenylbutan-1-one (E1)

E1
According to General procedure 1 with 2-phenylbutanoic acid ($8.20 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv) and morpholine ($4.35 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 1}$ as a yellowish oil ($11.06 \mathrm{~g}, 83 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.75-3.68(\mathrm{~s}, 4 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 2 \mathrm{H})$, $3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,139.5,128.5,127.9,125.4,74.6,66.6,65.6,47.6,43.5$,
38.0, 8.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$268.1099, found 268.1097.

2-Chloro-1-morpholino-2-phenylhexan-1-one (E2)

According to General procedure 2 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), 1iodobutane ($1.93 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $20 / 1)$ to yield the product $\mathbf{E} 2$ as a yellowish oil ($1.05 \mathrm{~g}, 36 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.51(\mathrm{~m}, 4 \mathrm{H})$, $3.48-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.31-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.6,139.9,128.5,127.8,125.2,74.1,66.6,65.5,47.6,44.7$, 43.5, 26.3, 22.5, 13.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$296.1412, found 296.1414 .

2-Chloro-1-morpholino-2-phenylpropan-1-one (E3)

E3
According to General procedure 1 with 2-phenylpropanoic acid ($1.50 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E} 3$ as a yellow oil ($1.96 \mathrm{~g}, 77 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H})$, $3.74-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,141.8,128.8,128.0,124.4,70.2,66.6,65.6,47.8,43.5$, 35.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$254.0942, found 254.0940.

2-Chloro-1-morpholino-2,4-diphenylbutan-1-one (E4)

E4
According to General procedure 2 with 2-phenylacetic acid ($0.68 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), (2iodoethyl)benzene ($1.22 \mathrm{~g}, 5.25 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.44 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum
ether/EtOAc $=20 / 1$) to yield the product $\mathbf{E 4}$ as a yellowish oil ($0.34 \mathrm{~g}, 20 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.00$ $(\mathrm{m}, 2 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,141.5,139.7,128.8,128.4,128.2,128.1,125.8,125.3$, 73.7, 66.6, 65.6, 47.7, 47.1, 43.6, 31.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 344.1412$, found 344.1412 .
2-Chloro-1-morpholino-2,3-diphenylpropan-1-one (E5)

E5
According to General procedure 2 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), (bromomethyl)benzene ($1.78 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1$) to yield the product $\mathbf{E 5}$ as a white solid ($2.29 \mathrm{~g}, 70 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H})$, $6.66-6.64(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.51(\mathrm{~m}, 6 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 168.7$, 138.7, 134.8, 131.6, 128.2, 128.0, 127.0, 126.5, 125.8, 73.1, 66.6, 65.5, 50.1, 47.6, 43.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 330.1255$, found 330.1251 .

2-Chloro-3-cyclopropyl-1-morpholino-2-phenylpropan-1-one (E6)

E6
According to General procedure 3 with 2-phenylacetic acid ($2.72 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), (bromomethyl)cyclopropane ($2.81 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0$ mmol, 1.0 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 6}$ as a yellowish oil ($2.79 \mathrm{~g}, 48 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 4 \mathrm{H})$, $3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=14.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.6,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.75-0.65(\mathrm{~m}, 1 \mathrm{H}), 0.35-0.28(\mathrm{~m}, 1 \mathrm{H}), 0.17-0.10(\mathrm{~m}, 1 \mathrm{H}),-0.04--0.10(\mathrm{~m}, 1 \mathrm{H}),-$ $0.39-0.46(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.8,139.9,128.4,127.9,125.6,74.1,66.6,65.6,49.6,47.6$, 43.5, 6.2, 4.5, 4.3 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$294.1255, found 294.1253.

2-Chloro-4-methyl-1-morpholino-2-phenylpentan-1-one (E7)

E7
According to General procedure 3 with 2-phenylacetic acid ($2.72 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), 1-iodo-2-methylpropane ($3.86 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 7}$ as a yellowish oil ($3.48 \mathrm{~g}, 59 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H})$, $3.72-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.61$ $(\mathrm{m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,139.8,128.6,128.0,125.5,74.1,66.6,65.6,53.2,47.7$, 43.6, 24.6, 24.4, 24.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$296.1412, found 296.1409.

2-Chloro-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one (E8)

E8
According to General procedure 2 with 2-phenylacetic acid ($2.72 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), 1-1,1,1-trifluoro-3-iodopropane ($4.70 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0$ $\mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 8}$ as a yellowish oil $(5.17 \mathrm{~g}, 77 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.79-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 2 \mathrm{H})$, $3.16-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.89(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,138.8,129.1,128.7,127.0(\mathrm{q}, J=274.5 \mathrm{~Hz}), 125.0,72.3$, $66.6,65.5,47.6,43.6,38.0(\mathrm{q}, J=3.1 \mathrm{~Hz}), 30.0(\mathrm{q}, J=28.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-66.10.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$336.0973, found 336.0971.

2-Chloro-5-fluoro-1-morpholino-2-phenylpentan-1-one (E9)

E9
According to General procedure 2 with 2-phenylacetic acid ($2.72 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), 1-fluoro-3-iodopropane ($3.95 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to yield the product $\mathbf{E 9}$ as a yellowish oil ($4.20 \mathrm{~g}, 70 \%$ overall yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.76-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,139.4,128.8,128.2,125.2,83.6(\mathrm{~d}, J=164.5 \mathrm{~Hz}), 73.4$, $66.6,65.5,47.6,43.5,41.1(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 25.8(\mathrm{~d}, J=19.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-218.22.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClFNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.1161$, found 300.1159 .

2,6-Dichloro-1-morpholino-2-phenylhexan-1-one (E10)

E10
According to General procedure 3 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), 1-chloro-4-iodobutane ($2.29 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1)$ to yield the product $\mathbf{E 1 0}$ as a yellowish oil ($1.00 \mathrm{~g}, 30 \%$ overall yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 3.80-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.50-3.23(\mathrm{~m}, 4 \mathrm{H})$, $3.05-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.11$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,139.5,128.6,128.0,125.2,73.6,66.5,65.5,47.5,44.5$, 44.2, 43.5, 32.3, 21.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 330.1022$, found 330.1021.

2-Chloro-4-methoxy-1-morpholino-2-phenylbutan-1-one (E11)

E11
According to General procedure 2 with 2-phenylacetic acid ($0.68 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), 1-iodo-2-methoxyethane ($0.98 \mathrm{~g}, 5.25 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.44 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=10 / 1$) to yield the product $\mathbf{E 1 1}$ as a yellowish oil ($0.43 \mathrm{~g}, 29 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.26(\mathrm{~m}, 8 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.1,139.6,128.8,128.2,125.0,72.2,69.1,66.6,65.5,58.4$, 47.7, 44.5, 43.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$298.1204, found 298.1205.
6-Chloro-7-morpholino-7-ox0-6-phenylheptanenitrile (E12)

According to General procedure 2 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), 5bromopentanenitrile ($1.69 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 1 2}$ as a yellowish oil ($0.71 \mathrm{~g}, 22 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.75-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 2 \mathrm{H})$, $3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,139.3,128.8,128.2,125.1,119.4,73.4,66.6,65.5,47.6$, 44.2, 43.5, 25.2, 23.6, 16.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$321.1364, found 321.1362 .

2-Chloro-1-morpholino-2-phenylhept-4-yn-1-one (E13)

E13
According to General procedure 2 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), 1-bromopent-2-yne ($1.53 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 3}$ as a yellowish solid ($1.38 \mathrm{~g}, 45 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 4 \mathrm{H})$, $3.46-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.04$ (m, 2H), 1.01 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,138.6,128.33,128.28,125.7,85.6,74.2,71.4,66.6,65.6$, 47.7, 43.5, 36.8, 13.8, 12.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 306.1255$, found 306.1252 .

2-Chloro-1-morpholino-2-phenylpent-4-en-1-one (E14)

E14
According to General procedure 2 with 2-phenylacetic acid ($2.72 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), 3-iodoprop-1-ene ($3.53 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 1 4}$ as a yellowish oil ($2.30 \mathrm{~g}, 41 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.59(\mathrm{~m}, 1 \mathrm{H})$, $5.00-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.13-2.89(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.0,139.2,132.4,128.4,127.9,125.2,119.0,72.5,66.4,65.4$, 49.4, 47.4, 43.4.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$280.1099, found 280.1101.

2-Chloro-3-methyl-1-morpholino-2-phenylbutan-1-one (E15)

E15
According to General procedure 2 with 2-phenylacetic acid ($1136 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), 2iodopropane ($1.78 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ 10/1) to yield the product E15 as a yellowish solid ($0.73 \mathrm{~g}, 26 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 3.81-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.47-3.27(\mathrm{~m}, 2 \mathrm{H})$, $3.18-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,138.7$, 128.2, 127.8, 125.9, 79.1, 66.6, 65.5, 47.9, 43.6, 39.2, 19.8, 17.9.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 282.1255$, found 282.1253 .
2-Chloro-2-cyclopentyl-1-morpholino-2-phenylethan-1-one (E16)

E16
According to General procedure 1 with 2-cyclopentyl-2-phenylacetic acid ($0.82 \mathrm{~g}, 4.0 \mathrm{mmol}$, 1.0 equiv), and morpholine ($0.35 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product E16 as a colorless oil ($0.77 \mathrm{~g}, 63 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $3.77-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,139.7,128.4,127.7,125.4,78.7,66.6,65.5,51.6,47.7$, 43.5, 29.8, 28.4, 25.9, 25.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1412$, found 308.1408 .

2-Chloro-2-cyclohexyl-1-morpholino-2-phenylethan-1-one (E17)

E17
According to General procedure 2 with 2-phenylacetic acid ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv),
iodocyclohexane ($2.20 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product $\mathbf{E 1 7}$ as a colorless oil ($2.72 \mathrm{~g}, 85 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.69-3.36(\mathrm{~m}, 6 \mathrm{H}), 3.16-2.80(\mathrm{~m}, 2 \mathrm{H})$, $2,42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2,26-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24$ $(\mathrm{m}, 2 \mathrm{H}), 1.22-0.97(\mathrm{~m}, 3 \mathrm{H}), 0.89-0.76(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 168.2,138.4,128.1,127.8,126.1,78.4,66.5,65.5,49.0,47.9$, 43.6, 29.5, 28.2, 26.44, 26.37, 26.35.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 322.1568$, found 322.1565 .

2-Chloro-1-morpholino-2-(o-tolyl)butan-1-one (E18)

According to General procedure 2 with 2-(o-tolyl)acetic acid ($4.50 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($4.91 \mathrm{~g}, 31.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($2.61 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $20 / 1)$ to yield the product $\mathbf{E 1 8}$ as a yellow oil ($0.48 \mathrm{~g}, 6 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H})$, $3.80-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.51(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,136.8,133.6,132.3,128.0,127.8,126.2,75.8,66.7,65.7$, 47.3, 43.3, 33.7, 20.1, 8.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$282.1255, found 282.1252 .

2-Chloro-2-(2-chlorophenyl)-1-morpholinobutan-1-one (E19)

E19
According to General procedure 2 with 2-(2-chlorophenyl)acetic acid ($5.10 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($4.91 \mathrm{~g}, 31.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($2.61 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30 / 1$) to yield the product $\mathbf{E 1 9}$ as a yellow oil ($5.08 \mathrm{~g}, 56 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 4 \mathrm{H})$, $3.38-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 2 \mathrm{H}) 0.74(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.7,136.6,131.3,130.6,129.8,129.5,127.1,74.4,66.6,65.6$, 47.1, 43.5, 32.7, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 302.0709$, found 302.0707.

2-Chloro-2-(3-methoxyphenyl)-1-morpholinobutan-1-one (E20)

According to General procedure 2 with 2-(3-methoxyphenyl)acetic acid ($1.66 \mathrm{~g}, 10.0 \mathrm{mmol}$, 1.0 equiv), iodoethane ($1.64 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 2 0}$ as a yellow oil ($0.62 \mathrm{~g}, 21 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=8.3,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.19$ (m, 1H), 2.16-2.05 (m, 1H), 0.73 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,159.5,140.9,129.4,117.5,112.7,111.5,74.3,66.4,65.4$, 55.0, 47.4, 43.3, 37.6, 8.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$298.1204, found 298.1206.

2-Chloro-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one (E21)

E21
According to General procedure 2 with 2-(3-(trifluoromethyl)phenyl)acetic acid ($2.04 \mathrm{~g}, 10.0$ $\mathrm{mmol}, 1.0$ equiv), iodoethane ($1.64 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0$ $\mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1)$ to yield the product $\mathbf{E} 21$ as a yellow oil $(0.90 \mathrm{~g}, 27 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H})$, $3.70-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,140.9,131.1(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.2,128.8,124.9(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 123.6(\mathrm{q}, J=271.0 \mathrm{~Hz}), 122.3(\mathrm{q}, J=4.0 \mathrm{~Hz}), 73.8,66.6,65.5,47.6,43.6,38.0,8.6$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.68.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 336.0973$, found 336.0972.
2-Chloro-2-(3-fluorophenyl)-1-morpholinobutan-1-one (E22)

E22
According to General procedure 2 with 2-(3-fluorophenyl)acetic acid ($1.54 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($1.64 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 2 2}$ as a yellow oil ($1.72 \mathrm{~g}, 60 \%$ overall yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,162.6(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 142.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 130.2(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 113.0(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 73.7(\mathrm{~d}, J=1.7$ Hz), 66.6, 65.6, 47.5, 43.5, 37.8, 8.8.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.31$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClFNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 286.1005$, found 286.1003.
2-Chloro-1-morpholino-2-(p-tolyl)butan-1-one (E23)

E23
According to General procedure 1 with 2 -(p-tolyl)acetic acid ($3.00 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($3.27 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $10 / 1$) to yield the product E23 as a yellowish oil ($2.88 \mathrm{~g}, 51 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.53(\mathrm{~m}, 4 \mathrm{H})$, $3.49-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.19-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 168.8,137.7,136.5,129.1,125.3,74.6,66.6,65.6,47.6,43.5$, 38.0, 20.9, 8.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$282.1255, found 282.1254.

2-Chloro-2-(4-chlorophenyl)-1-morpholinobutan-1-one (E24)

E24
According to General procedure 2 with 2-(4-chlorophenyl)acetic acid ($3.40 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($3.27 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E} 24$ as a yellowish solid ($3.52 \mathrm{~g}, 58 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 3.83-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 2 \mathrm{H})$, $3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dq}, J=14.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 168.2,138.1,133.8,128.7,126.8,73.9,66.6,65.6,47.5,43.5$, 37.9, 8.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 302.0709$, found 302.0706.
2-(4-Bromophenyl)-2-chloro-1-morpholinobutan-1-one (E25)

E25
According to General procedure 2 with 2-(4-bromophenyl)acetic acid ($4.28 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($3.27 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv), and morpholine ($1.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 2 5}$ as a yellowish solid ($2.35 \mathrm{~g}, 34 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ - $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 4 \mathrm{H})$, $3.44-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 (dq, $J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.1,138.7,131.7,127.1,122.0,73.9,66.6,65.6,47.6,43.5$, 37.8, 8.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 346.0204$, found 346.0201.

2-Chloro-1-morpholino-2-(naphthalen-2-yl)butan-1-one (E26)

According to General procedure 2 with 2-(naphthalen-2-yl)acetic acid ($1.86 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), iodoethane ($1.64 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=20 / 1$) to yield the product $\mathbf{E 2 6}$ as a yellowish oil ($1.06 \mathrm{~g}, 33 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dq}, J=$ $14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 168.7,136.8,132.8,132.6,128.5,128.1,127.6,126.8,126.6$, 124.6, 123.0, 74.8, 66.7, 65.7, 47.6, 43.6, 37.8, 8.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 318.1255$, found 318.1256.

2-Bromo-2-cyclohexyl-1-morpholinopropan-1-one (E27)

E27
According to General procedure 4 with 2-cyclohexylacetic acid ($1.42 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), iodomethane ($3.12 \mathrm{~g}, 22.0 \mathrm{mmol}, 2.2$ equiv), and morpholine ($0.87 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $5 / 1$) to yield the product E27 as a white solid ($1.20 \mathrm{~g}, 40 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82-3.64(\mathrm{~m}, 8 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 1 \mathrm{H})$, $1.32-1.08(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,68.1,66.6,46.6,28.6,28.0,26.6,26.5,26.0$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 304.0907$, found 304.0907.
2-Chloro-2-phenyl-1-(piperidin-1-yl)butan-1-one (E28)

E28
According to General procedure 1 with 2-phenylbutanoic acid ($3.28 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and piperidine ($1.70 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 2 8}$ as a yellowish oil ($3.19 \mathrm{~g}, 60 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.47(\mathrm{~m}, 2 \mathrm{H})$, $3.30-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dq}, J=14.4,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.3,140.0,128.3,127.5,125.4,74.9,47.8,44.3,38.1,25.5$, 24.7, 24.2, 8.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$266.1306, found 266.1303.

2-Chloro-2-phenyl-1-thiomorpholinobutan-1-one (E29)

E29
According to General procedure 1 with 2-phenylbutanoic acid ($3.28 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and thiomorpholine ($2.06 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 2 9}$ as a yellowish oil ($3.94 \mathrm{~g}, 70 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.77(\mathrm{~m}, 2 \mathrm{H})$, $3.49-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.75(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.5,139.3,128.4,127.8,125.2,74.7,49.1,45.7,38.0,27.1$, 26.0, 8.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+}$284.0870, found 284.0869.
2-Chloro-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one (E30)

E30
According to General procedure 1 with 2-phenylbutanoic acid ($3.28 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv)
and pyrrolidine ($1.42 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 3 0}$ as a yellowish oil ($3.18 \mathrm{~g}, 63 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $3.58-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,139.1,128.1,127.4,125.5,75.5,47.4,47.0,37.1,26.1$, 23.0, 8.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 252.1150$, found 252.1148 .

2-Chloro- N, N-dimethyl-2-phenylbutanamide (E31)

E31
According to General procedure 1 with 2-phenylbutanoic acid ($8.20 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv), dimethylamine hydrochloride ($4.05 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{Et}_{3} \mathrm{~N}(11.12 \mathrm{~g}, 110.0 \mathrm{mmol}$, 2.2 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product $\mathbf{E 3 1}$ as a colorless oil ($6.19 \mathrm{~g}, 55 \%$ overall yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dq}, J=14.5$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,139.7,128.4,127.6,125.3,74.8,38.5,38.0,37.4,8.7$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 226.0993$, found 226.0991.

2-Chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (E32)

E32
According to General procedure 1 with 2-phenylbutanoic acid ($3.28 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and indoline ($2.38 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1$) to yield the product $\mathbf{E 3 2}$ as a yellowish oil ($4.14 \mathrm{~g}, 69 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.08-$ $3.01(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dq}$, $J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.9,143.8,138.8,131.5,128.5,127.9,127.3,125.7,124.4$, 124.3, 118.1, 76.3, 49.0, 37.6, 28.6, 8.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 300.1150$, found 300.1149 .

2-Bromo-1-(indolin-1-yl)butan-1-one (E33)

According to General procedure 5 with 2-bromobutanoyl bromide ($8.20 \mathrm{~g}, 36.0 \mathrm{mmol}, 1.2$ equiv) and indoline ($3.57 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 3 3}$ as a brown solid ($7.47 \mathrm{~g}, 93 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, $1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 166.5,142.7,131.4,127.6,124.6,124.3,117.5,48.2,47.8,28.0$, 27.9, 12.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$268.0332, found 268.0328.
2-Chloro- N -methoxy- N -methyl-2-phenylbutanamide (E34)

E34
According to General procedure 1 with 2-phenylbutanoic acid ($8.20 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv), N, O-dimethylhydroxylamine hydrochloride ($4.85 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{Et}_{3} \mathrm{~N}(11.12 \mathrm{~g}$, $110.0 \mathrm{mmol}, 2.2$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{E 3 4}$ as a yellowish oil ($6.55 \mathrm{~g}, 54 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ - $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}$, $3 \mathrm{H}), 2.50(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.3,139.8,128.1,127.4,125.4,74.7,59.3,35.8,34.1,8.2$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 242.0942$, found 242.0939.
N-Allyl-2-chloro- N-methyl-2-phenylbutanamide (E44)

E44
According to General procedure 1 with 2-phenylbutanoic acid ($4.10 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.0$ equiv) and N-methylprop-2-en-1-amine ($1.78 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.0$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30 / 1$) to yield the product E44 as a yellowish oil ($4.96 \mathrm{~g}, 79 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.83-4.92(\mathrm{~m}, 3 \mathrm{H})$, $4.00-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dq}, J=14.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 169.9,169.6,139.8,139.6,132.7,132.2,128.4,127.7,127.6$, $125.4,118.3,117.0,75.0,53.1,51.9,38.1,38.0,36.1,33.9,8.6$.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 252.1150$, found 252.1150.

5. Cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines

racemic

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 9(12.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), racemic tertiary alkyl chloride ($0.24 \mathrm{mmol}, 1.2$ equiv), (hetero)aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8$ $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L}_{\text {rac1 }}\left(11.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60$ $\mathrm{mmol}, 3.0$ equiv), racemic tertiary alkyl chloride ($0.24 \mathrm{mmol}, 1.2$ equiv), (hetero)aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene $(4.0 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylbutan-1-one (1)

1
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 1 as a white solid $(90.6 \mathrm{mg}, 98 \%$ yield, 95%
ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+21\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.01(\mathrm{~m}, 8 \mathrm{H}), 2.68(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dq, $J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,145.1,140.6,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.2,128.2,126.8$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.43-113.39(\mathrm{~m}), 109.8-109.7(\mathrm{~m}), 66.1,66.0,45.7,23.8,8.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.34$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 461.1658$, found 461.1653.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylhexan-1-one (2)

2
According to General Procedure A with 2-chloro-1-morpholino-2-phenylhexan-1-one E2 (70.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 2 as a colorless oil $(87.9 \mathrm{mg}, 90 \%$ yield, 96% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+16\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=7.25 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.90 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.08(\mathrm{~m}, 8 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,145.1,140.7,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.1,128.2,126.8$, 123.4 (q, $J=271.0 \mathrm{~Hz}$), 113.40 - 113.36 (m), 109.7 - 109.6 (m), 66.1, 65.5, 45.8, 30.7, 25.9, 22.7, 13.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.34.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{2} 7 \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+489.1971$, found 489.1975 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylpropan-1-one (3)

3
According to General Procedure A with 2-chloro-1-morpholino-2-phenylpropan-1-one E3
($60.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 3 as a yellowish oil $(88.5 \mathrm{mg}, 99 \%$ yield, 66% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+21\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=12.40 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.38 \mathrm{~min}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.36(\mathrm{~m}, 8 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,145.2,140.9,131.9(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.2,128.3,126.4$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.53-113.49(\mathrm{~m}), 110.0-119.9(\mathrm{~m}), 66.0,62.5,45.7,21.2$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.33(\mathrm{~s}, 6 \mathrm{~F})$.
HRMS (ESI) m / z calcd. For $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 447.1502$, found 447.1497 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2,4-diphenylbutan-1-one (4)

4
According to General Procedure A with 2-chloro-1-morpholino-2,4-diphenylbutan-1-one E4 $(82.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 4 as a colorless oil ($102.3 \mathrm{mg}, 95 \%$ yield, 96% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+18\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.76 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.12 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.11$ $(\mathrm{m}, 8 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,145.0,140.9,140.3,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.2,128.6$, $128.4,128.3,126.7,126.3,123.4(\mathrm{q}, J=270.9 \mathrm{~Hz}), 113.51-113.47(\mathrm{~m}), 110.0-109.9(\mathrm{~m}), 66.1$, 65.4, 45.6, 33.3, 30.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.29.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{2} 7 \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$537.1971, found 537.1982.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2,3-diphenylpropan-1-one (5)

5
According to General Procedure A with 2-chloro-1-morpholino-2,3-diphenylpropan-1-one E5 ($79.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $3,5-$ bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 5 as a colorless oil $(103.0 \mathrm{mg}, 99 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+16\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=18.48 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.17 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}$, 2H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.19(\mathrm{~m}, 9 \mathrm{H}), 3.04-2.63(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,145.4,139.6,135.0,132.4(\mathrm{q}, J=32.5 \mathrm{~Hz}), 130.3,129.0$, $128.3,127.9,127.0,125.8,123.4(\mathrm{q}, J=271.1 \mathrm{~Hz}), 113.72-113.70(\mathrm{~m}), 110.8-110.6(\mathrm{~m}), 66.3$, 66.0, 65.5, 47.0, 44.0, 39.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.18.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 523.1815$, found 523.1816.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-cyclopropyl-1-morpholino-2-phenylpropan-1-one (6)

6
According to General Procedure A with 2-chloro-3-cyclopropyl-1-morpholino-2-phenylpropan-1-one E6 ($70.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 6 as a colorless oil ($94.9 \mathrm{mg}, 98 \%$ yield, $94 \% \mathrm{ee}$).
$[\alpha]{ }_{\mathbf{D}}{ }^{27}=+24\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=10.22 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.92 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.02(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.08-2.92(\mathrm{~m}, 8 \mathrm{H}), 2.76(\mathrm{dd}, J=14.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (dd, $J=14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.71-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.39(\mathrm{~m}, 2 \mathrm{H}),-0.01--0.08(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,145.4,140.8,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.1,128.2,126.5$, $123.4(\mathrm{q}, J=271.1 \mathrm{~Hz}), 113.4-113.3(\mathrm{~m}), 109.9-109.8(\mathrm{~m}), 66.0,65.9,45.5,36.0,5.8,4.2,3.8$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 487.1815$, found 487.1813.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-methyl-1-morpholino-2-phenylpentan-1one (7)

7
According to General Procedure A with 2-chloro-4-methyl-1-morpholino-2-phenylpentan-1one E7 ($70.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol , 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 7 as a colorless oil $(95.9 \mathrm{mg}, 98 \%$ yield, 91\% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+24\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.51 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.55 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.00-$ $6.97(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 4.32-2.85(\mathrm{~m}, 8 \mathrm{H}), 2.68(\mathrm{dd}, J=14.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=$ $14.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,145.1,141.0,131.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.1,128.2,126.8$, $123.5(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.13-113.09(\mathrm{~m}), 109.45-109.36(\mathrm{~m}), 65.9,65.8,64.9,46.5,44.9$, 38.9, 24.5, 24.3, 23.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.34.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 511.1791$, found 511.1788.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one (8)

8
According to General Procedure A with 2-chloro-5,5,5-trifluoro-1-morpholino-2-phenylpentan-1-one E8 ($80.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl) aniline $\mathbf{A 1}$ ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0 \mathrm{equiv}$) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{8}$ as a white solid $(90.9 \mathrm{mg}, 93 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+23\left(c 2.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.10 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.91 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, 2H), $6.57(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.09(\mathrm{~m}, 8 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}$, 1H), $2.01-1.85$ (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,144.5,139.0,132.2(\mathrm{q}, J=32.6 \mathrm{~Hz}), 129.5,128.8,126.9$ $(\mathrm{q}, J=274.4 \mathrm{~Hz}), 126.2,123.3(\mathrm{q}, J=270.0 \mathrm{~Hz}), 113.6-113.5(\mathrm{~m}), 110.8-110.6(\mathrm{~m}), 66.0$, 64.7, 45.6, 29.2 (q, $J=29.1 \mathrm{~Hz}$), 25.2 - 25.1 (m).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.39, -66.15.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$529.1532, found 529.1531.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-5-fluoro-1-morpholino-2-phenylpentan-1one (9)

9
According to General Procedure A with 2-chloro-5-fluoro-1-morpholino-2-phenylpentan-1-one E9 ($71.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $3,5-b i s($ trifluoromethyl)aniline $\mathbf{A 1}(45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 9 as a white solid ($98.2 \mathrm{mg}, 99 \%$ yield, 96% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+38\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.61 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.01(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.86-2.94(\mathrm{~m}, 8 \mathrm{H}), 2.77-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,144.8,140.0,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.2,128.4,126.6$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.34-113.30(\mathrm{~m}), 110.0-109.9(\mathrm{~m}), 83.5(\mathrm{~d}, J=164.4 \mathrm{~Hz}), 66.0$, 65.1, 45.7, 27.3, 25.3 (d, $J=19.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.34,-218.51$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$493.1721, found 493.1719.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-6-chloro-1-morpholino-2-phenylhexan-1-one (10)

10

According to General Procedure A with 2,6-dichloro-1-morpholino-2-phenylhexan-1-one E10 ($79.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5 -bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 10 as a colorless oil $(101.7 \mathrm{mg}, 97 \%$ yield, 96% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+22\left(c 2.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.47 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.16 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.02(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.38(\mathrm{~m}, 10 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,144.9,140.2,131.9$ (q, $J=32.3 \mathrm{~Hz}$), 129.2, 128.3, 126.5, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.45-113.42(\mathrm{~m}), 110.0-109.9(\mathrm{~m}), 66.1,65.4,45.7,44.3,32.1$, 30.5, 21.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.32.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 523.1582$, found 523.1582.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-methoxy-1-morpholino-2-phenylbutan-1one (11)

11
According to General Procedure A with 2-chloro-4-methoxy-1-morpholino-2-phenylbutan-1one E11 ($71.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product 11 as a colorless oil ($97.0 \mathrm{mg}, 99 \%$ yield, 95% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+18\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.12 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.23(\mathrm{~m}, 13 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}$, 1H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,145.2,140.0,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.1,128.2,126.6$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.8-113.7(\mathrm{~m}), 110.2-110.1(\mathrm{~m}), 68.2,65.9,64.3,58.9,45.5,31.8$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.33.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$491.1764, found 491.1770.
(S)-6-((3,5-Bis(trifluoromethyl)phenyl)amino)-7-morpholino-7-0xo-6-phenylheptanenitrile (12)

12
According to General Procedure A with 6-chloro-7-morpholino-7-oxo-6-phenylheptanenitrile E12 ($76.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol , 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 12 as a colorless oil ($89.2 \mathrm{mg}, 87 \%$ yield, 96\% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+15\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=21.74 \mathrm{~min}, t_{\mathrm{R}}($ major $)=29.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.91-2.89(\mathrm{~m}, 8 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.61(\mathrm{~m}$, 2H), $1.54-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,144.8,139.9,132.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.3,128.4,126.3$, $123.3(\mathrm{q}, J=271.0 \mathrm{~Hz}), 119.2,113.4-113.3(\mathrm{~m}), 110.2-110.1(\mathrm{~m}), 66.0,65.3,45.9,31.2,25.2$, 23.0, 17.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.29.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$514.1924, found 514.1926.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylhept-4-yn-1-one (13)

13
According to General Procedure A with 2-chloro-1-morpholino-2-phenylhept-4-yn-1-one E13 ($73.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $3,5-$ bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 13 as a white solid ($98.9 \mathrm{mg}, 99 \%$ yield, 89% ee).
$[\alpha] \mathbf{D}^{27}=+36\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=12.26 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.53 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.16(\mathrm{~m}, 6 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,145.6,139.1,132.2(\mathrm{q}, J=32.6 \mathrm{~Hz}), 129.0,128.3,125.3$, 123.3 (q, $J=271.0 \mathrm{~Hz}$), 115.31 - 115.28 (m), 112.0 - 111.9 (m), 86.0, 73.5, 66.1, 65.5, 45.3, 27.2, 14.0, 12.2.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.24.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 499.1815$, found 499.1810.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-phenylpent-4-en-1-one (14)

14
According to General Procedure A with 2-chloro-1-morpholino-2-phenylpent-4-en-1-one E14 ($67.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 14 as a colorless oil $(80.3 \mathrm{mg}, 85 \%$ yield, 93% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+22\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.77 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.65-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ - 2.96 (m, 10H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,145.2,140.0,132.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 131.6,129.2,128.4$, $126.3,123.4(\mathrm{q}, ~ J=271.0 \mathrm{~Hz}), 119.7,113.93-113.90(\mathrm{~m}), 110.5-110.3$ (m), 66.1, 65.4, 45.6, 36.6 .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 473.1658$, found 473.1662.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-methyl-1-morpholino-2-phenylbutan-1-one (15)

15
According to General Procedure A with 2-chloro-3-methyl-1-morpholino-2-phenylbutan-1-one E15 ($67.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 15 as a white solid $(86.3 \mathrm{mg}, 91 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-26\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$
$\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.72 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.74 \mathrm{~min}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 3.66$ $-3.04(\mathrm{~m}, 9 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,146.6,137.4,131.9(\mathrm{q}, J=33.0 \mathrm{~Hz}), 128.9,128.2,126.6$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.8,110.3-110.1(\mathrm{~m}), 69.6,66.0,45.9,32.6,19.8,17.8$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.25.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$497.1634, found 497.1633.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclopentyl-1-morpholino-2-phenylethan-1-one (16)

16
According to General Procedure A with 2-chloro-2-cyclopentyl-1-morpholino-2-phenylethan-1-one E16 ($73.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 (45.8 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 16 as a white solid $(98.1 \mathrm{mg}, 98 \%$ yield, 96% ee).
$[\boldsymbol{\alpha}] \mathbf{D}^{27}=-55\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IH (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=8.90 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.20 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.83$ $-2.77(\mathrm{~m}, 9 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,146.9,138.5,131.4(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.0,128.2,127.4$, $123.4(\mathrm{q}, J=271.1 \mathrm{~Hz}), 114.33-114.28(\mathrm{~m}), 109.8-109.7(\mathrm{~m}), 68.5,66.2,65.6,47.1,45.5$, 44.4, 29.3, 28.1, 25.2, 23.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.26.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$523.1791, found 523.1789.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclohexyl-1-morpholino-2-phenylethan-1one (17)

17
According to General Procedure A with 2-chloro-2-cyclohexyl-1-morpholino-2-phenylethan-1one E17 ($77.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 17 as a white solid $(96.1 \mathrm{mg}, 93 \%$ yield, 97% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=-36\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.50 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.34 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.65-2.94(\mathrm{~m}$, $8 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.42-0.98(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,146.6,137.7,131.8$ ($\mathrm{q}, ~ J=30.5 \mathrm{~Hz}$), 128.9, 128.1, 126.9, 123.4 (q, $J=271.0 \mathrm{~Hz}$), 113.8, 110.0 - 109.8 (m), 69.8, 66.0, 46.1, 43.4, 30.2, 27.8, 26.8, 26.4, 26.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.25.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 537.1947$, found 537.1946.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(o-tolyl)butan-1-one (18)

18
According to General Procedure A with 2-chloro-1-morpholino-2-(o-tolyl)butan-1-one E18 ($67.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 18 as a white solid $(94.2 \mathrm{mg}, 99 \%$ yield, 94% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+10\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=5.06 \mathrm{~min}, t_{\mathrm{R}}($ major $)=5.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.23(\mathrm{~m}, 7 \mathrm{H}), 2.88-2.74(\mathrm{~m}, 2 \mathrm{H})$, $2.26-2.17(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7$, 145.1, 138.1, $137.9,133.3,131.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.5$, $127.0,126.4,123.5(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.41-113.38(\mathrm{~m}), 109.5-109.4(\mathrm{~m}), 66.9,65.9,65.3$, 47.1, 44.3, 25.0, 20.2, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.36.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 475.1815$, found 475.1811 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(2-chlorophenyl)-1-morpholinobutan-1one (19)

19
According to General Procedure A with 2-chloro-2-(2-chlorophenyl)-1-morpholinobutan-1-one E19 ($72.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 19 as a white solid $(98.5 \mathrm{mg}, 99 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+50\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=6.10 \mathrm{~min}, t_{\mathrm{R}}($ major $)=7.16 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 3.95-2.96(\mathrm{~m}, 8 \mathrm{H}), 2.80(\mathrm{dq}, J=$ $14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dq}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,145.0,137.8,134.1,132.3,131.7(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.8$, $128.8,127.0,123.4(\mathrm{q}, J=2721.0 \mathrm{~Hz}), 113.53$ - $113.50(\mathrm{~m}), 109.7$ - 109.5 (m), 66.4, 65.8, 65.0, 46.9, 44.8, 25.4, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.34.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 495.1269$, found 495.1265 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(3-methoxyphenyl)-1-morpholinobutan-1one (20)

20
According to General Procedure A with 2-chloro-2-(3-methoxyphenyl)-1-morpholinobutan-1one E20 ($71.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 20 as a white solid $(77.1 \mathrm{mg}, 79 \%$ yield, 96% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+30\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=11.81 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}$, $2 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.01(\mathrm{~m}, 8 \mathrm{H}), 2.65(\mathrm{dq}, J$ $=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,160.3,145.1,142.3,131.9(\mathrm{q}, J=32.3 \mathrm{~Hz}), 130.1,123.5$
$(\mathrm{q}, J=271.0 \mathrm{~Hz}), 118.9,113.50-113.47(\mathrm{~m}), 113.3,113.2,109.8-109.7(\mathrm{~m}), 66.2,65.9,55.4$, 45.7, 23.9, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$491.1764, found 491.1764.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one (21)

21
According to General Procedure A with 2-chloro-1-morpholino-2-(3-(trifluoromethyl)phenyl)butan-1-one $\mathbf{E 2 1}(80.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 21 as a colorless oil ($83.8 \mathrm{mg}, 79 \%$ yield, 95% ee).
$[\alpha]]^{27}=+16\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.78 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.85 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.15(\mathrm{~m}, 8 \mathrm{H}), 2.73(\mathrm{dq}, J=14.6,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,144.7,142.2,132.1$ (q, $J=32.5 \mathrm{~Hz}$), 131.6 (q, $J=31.7$ $\mathrm{Hz}), 130.3,129.9,125.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.62(\mathrm{q}, J=271.0 \mathrm{~Hz}), 123.56,123.3(\mathrm{q}, J=271.1$ $\mathrm{Hz}), 113.52-113.48(\mathrm{~m}), 110.4-110.3$ (m), 66.1, 65.8, 45.8, 23.7, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.84,-63.44$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 529.1532$, found 529.1537 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(3-fluorophenyl)-1-morpholinobutan-1-one (22)

22
According to General Procedure A with 2-chloro-2-(3-fluorophenyl)-1-morpholinobutan-1-one E22 ($68.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 22 as a colorless oil ($90.2 \mathrm{mg}, 94 \%$ yield, 95\% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+36\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$
$\mathrm{nm}), t_{\mathrm{R}}($ major $)=16.67 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.92 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H})$, $7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.41(\mathrm{~m}, 8 \mathrm{H}), 2.66(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,163.2(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 144.8,143.5(\mathrm{q}, J=6.3 \mathrm{~Hz})$, $132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 122.3$, $115.4(\mathrm{~d}, J=20.9$ $\mathrm{Hz}), 114.2(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 113.5-113.4(\mathrm{~m}), 110.2-110.0(\mathrm{~m}), 66.1,65.7(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 45.7$, 23.9, 8.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.36,-110.57$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 479.1564$, found 479.1564 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(p-tolyl)butan-1-one (23)

23
According to General Procedure A with 2-chloro-1-morpholino-2-(p-tolyl)butan-1-one E23 ($67.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 23 as a white solid ($93.0 \mathrm{mg}, 98 \%$ yield, 94% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+46\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.13 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.50 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}$, $2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.90-2.97(\mathrm{~m}, 8 \mathrm{H}), 2.65(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 4 \mathrm{H}), 0.87$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,145.2,138.1,137.4,131.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.8,126.6$, 123.5 (q, $J=270.9 \mathrm{~Hz}$), 113.41 - 113.37 (m), 109.64 - 109.57 (m), 66.1, 65.7, 45.7, 23.8, 20.9, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 497.1634$, found 497.1634.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(4-chlorophenyl)-1-morpholinobutan-1one (24)

24
According to General Procedure A with 2-chloro-2-(4-chlorophenyl)-1-morpholinobutan-1-one E24 ($72.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product 24 as a colorless oil ($98.1 \mathrm{mg}, 99 \%$ yield, 94\% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+45\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=13.29 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.75 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.81$ $-3.00(\mathrm{~m}, 8 \mathrm{H}), 2.66(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,144.8,139.3,134.2,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.3,128.1$, $123.4(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.43-113.39(\mathrm{~m}), 110.1-110.0(\mathrm{~m}), 66.1,65.6,45.7,23.8,8.0$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.32.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 495.1269$, found 495.1268.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-(4-bromophenyl)-1-morpholinobutan-1one (25)

25
According to General Procedure A with 2-(4-bromophenyl)-2-chloro-1-morpholinobutan-1-one E25 ($82.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5 -bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 25 as a white solid $(95.3 \mathrm{mg}, 89 \%$ yield, 94\% ee).

```
\([\alpha]_{\mathrm{D}}{ }^{27}=+47\left(c 0.5, \mathrm{CHCl}_{3}\right)\).
```

HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=16.80 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.19 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.84-$ $6.71(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.24(\mathrm{~m}, 8 \mathrm{H}), 2.65(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,144.8,139.8,132.3,132.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.4,123.4$
$(\mathrm{q}, J=271.1 \mathrm{~Hz}), 122.3,113.44-113.41(\mathrm{~m}), 110.2-110.1(\mathrm{~m}), 66.1,65.7,45.7,23.8,8.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{BrF}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 561.0583$, found 561.0581.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-morpholino-2-(naphthalen-2-yl)butan-1one (26)

26
According to General Procedure A with 2-chloro-1-morpholino-2-(naphthalen-2-yl)butan-1one E26 ($76.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 26 as a colorless oil $(86.0 \mathrm{mg}, 84 \%$ yield, 93% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-10\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=11.21 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.37 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.03(\mathrm{~m}, 8 \mathrm{H}), 2.83(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dq}, J=$ $14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,145.1,137.8,132.9,132.6,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.4$, $127.9,127.7,127.0,126.9,125.5,124.3,123.4(\mathrm{q}, J=270.9 \mathrm{~Hz}), 113.51-113.48(\mathrm{~m}), 110.0-$ 109.9 (m), 66.2, 66.1, 45.7, 24.0, 8.2.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.34$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 511.1815$, found 511.1819.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-cyclohexyl-1-morpholinopropan-1-one (27)

27
According to General Procedure A with 2-bromo-2-cyclohexyl-1-morpholinopropan-1-one E27 $(72.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5 -bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 27 as a white solid ($88.7 \mathrm{mg}, 98 \%$ yield, 77% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-41\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=11.17 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.59 \mathrm{~min}$.
 $-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,146.0,132.5(\mathrm{q}, J=32.6 \mathrm{~Hz}), 123.3(\mathrm{q}, J=271.1 \mathrm{~Hz})$, $113.4-113.3(\mathrm{~m}), 111.0-110.9(\mathrm{~m}), 66.7,64.8,45.2,43.7,28.3,26.8,26.6,26.5,26.1,18.3$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.25$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 453.1971$, found 453.1979.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-(piperidin-1-yl)butan-1-one (28)

28
According to General Procedure A with 2-chloro-2-phenyl-1-(piperidin-1-yl)butan-1-one E28 $(63.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 28 as a white solid ($91.2 \mathrm{mg}, 99 \%$ yield, 95% ee).
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+39\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.41 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.88 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dq, $J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.03(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,145.2,141.1,131.9(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.9,127.9,126.9$, 123.4 (q, $J=271.0 \mathrm{~Hz}$), 113.24 - $113.20(\mathrm{~m}), 109.3-109.2(\mathrm{~m}), 65.9,46.3,25.3,24.1,23.4,8.2$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.35$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 459.1866$, found 459.1862 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-thiomorpholinobutan-1-one (29)

29
According to General Procedure A with 2-chloro-2-phenyl-1-thiomorpholinobutan-1-one E29 $(67.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 29 as a white solid $(94.1 \mathrm{mg}, 99 \%$ yield, 94% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+45\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.94 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.77 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 3 \mathrm{H}), 4.16-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-$ $1.77(\mathrm{~m}, 5 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,145.0,140.6,131.8(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.2,128.2,126.8$, 123.4 (q, $J=271.1 \mathrm{~Hz}$), 113.4 - 113.3 (m), 109.7 - 109.6 (m), 66.0, 48.0, 26.6, 23.7, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.32.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 477.1430$, found 477.1426.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one (30)

30
According to General Procedure A with 2-chloro-2-phenyl-1-(pyrrolidin-1-yl)butan-1-one E30 ($60.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $3,5-$ bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 30 as a white solid ($87.3 \mathrm{mg}, 98 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+34\left(c 2.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=8.65 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.94 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}$, $2 \mathrm{H}), 2.43(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,145.2,140.1,131.7(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.9,128.0,127.3$, 123.5 (q, $J=271.0 \mathrm{~Hz}$), 113.18 - 113.15 (m), 109.3 - 109.1 (m), 65.9, 48.5, 46.8, 26.7, 22.9, 22.0, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.36.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 445.1709$, found 445.1705 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)- N, N-dimethyl-2-phenylbutanamide (31)

31
According to General Procedure A with 2-chloro-N,N-dimethyl-2-phenylbutanamide E31 (54.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 31 as a white solid $(82.5 \mathrm{mg}, 99 \%$ yield, 95% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+12\left(c 1.2, \mathrm{CHCl}_{3}\right)$.

HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=5.88 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.47 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.59(\mathrm{~m}, 7 \mathrm{H}), 2.45(\mathrm{dq}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.87$ ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,145.2,140.6,131.8(\mathrm{q}, ~ J=32.2 \mathrm{~Hz}), 129.0,128.0,126.9$, 123.5 ($\mathrm{q}, J=270.9 \mathrm{~Hz}$), 113.3 - 113.2 (m), 109.5-109.3 (m), 66.0, 38.1, 23.1, 8.2.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.36$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 419.1553$, found 419.1550 .
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-(indolin-1-yl)-2-phenylbutan-1-one (32)

32
According to General Procedure A with 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one E32 ($71.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 32 as a white solid $(97.1 \mathrm{mg}, 99 \%$ yield, 93% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+62\left(c 2.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.04 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.33 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H})$, $2.81-2.52(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,145.1,143.8,139.7,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 131.0,129.2$, $128.4,127.5,127.2,123.5(\mathrm{q}, J=271.0 \mathrm{~Hz}), 124.7,124.5,118.4,113.45-113.41$ (m), $109.85-$ 109.75 (m), 67.0, 48.6, 28.8, 23.0, 8.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.29.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 493.1709$, found 493.1709.

2-((3,5-Bis(trifluoromethyl)phenyl)amino)-1-(indolin-1-yl)butan-1-one (33)

33
According to General Procedure A with 2-bromo-1-(indolin-1-yl)butan-1-one E33 (64.1 mg, $0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5 -bis(trifluoromethyl)aniline $\mathbf{A 1}(45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum
ether $/ E t O A c=7.5 / 1$) to yield the product $\mathbf{3 3}$ as a white solid ($82.4 \mathrm{mg}, 99 \%$ yield, 54% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=7.35 \mathrm{~min}, t_{\mathrm{R}}($ major $)=9.74 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.28-73.07(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,147.8,142.4,132.5(\mathrm{q}, ~ J=32.5 \mathrm{~Hz}), 131.2,127.6,124.7$, $124.5,123.5(\mathrm{q}, J=270.9 \mathrm{~Hz}), 117.4,112.39-112.36(\mathrm{~m}), 110.6-110.5(\mathrm{~m}), 56.3,47.9,28.1$, 25.18, 25.15, 9.65, 9.62.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.20,-63.21$.
HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 417.1396$, found 417.1390.
(S)-1-Morpholino-2-phenyl-2-((3,4,5-trifluorophenyl)amino)butan-1-one (34)

34
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 3,4,5-trifluoroaniline $\mathbf{A 2}$ ($29.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{equiv}$), and anhydrous THF (4.0 mL) at $10{ }^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product $\mathbf{3 4}$ as a white solid ($71.9 \mathrm{mg}, 95 \%$ yield, 90% ee).
$[\alpha]{ }^{27}=+37\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=15.03 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.34 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.06(\mathrm{~m}, 3 \mathrm{H})$, $3.74-2.95(\mathrm{~m}, 8 \mathrm{H}), 2.60(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,152.8$ - $150.2(\mathrm{~m}), 141.2,140.5-140.2(\mathrm{~m}), 133.6-$ 130.9 (m), 129.1, 128.1, 126.5, 98.4 - 98.1 (m), 66.14, 66.06, 45.7, 24.2, 7.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-35.28, -35.34, -76.12.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 379.1628$, found 379.1633.
(S)-2-((3,5-Difluorophenyl)amino)-1-morpholino-2-phenylbutan-1-one (35)

35
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 3, 5-difluoroaniline $\mathbf{A 3}(25.8 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv), and anhydrous THF (4.0 mL) at $10^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 35 as a white
solid ($71.4 \mathrm{mg}, 99 \%$ yield, 87% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+30\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=15.97 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, $6.26(\mathrm{~s}, 1 \mathrm{H}), 6.06-5.99(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.02(\mathrm{~m}, 8 \mathrm{H}), 2.65(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dq}$, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,163.7(\mathrm{dd}, J=242.0,16.0 \mathrm{~Hz}), 146.6(\mathrm{t}, J=13.5 \mathrm{~Hz})$, 141.1, 129.0, 128.0, 126.4, $97.3-97.0(\mathrm{~m}), 92.3(\mathrm{t}, J=26.0 \mathrm{~Hz}), 66.1,66.0,45.7,24.3,7.9$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.60$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 361.1722$, found 361.1726 .
(S)-2-((3,5-Dinitrophenyl)amino)-1-morpholino-2-phenylbutan-1-one (36)

36
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5 -dinitroaniline $\mathbf{A 4}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=3 / 1$) to yield the product 36 as a yellowish solid ($81.2 \mathrm{mg}, 98 \%$ yield, $94 \% \mathrm{ee}$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+70\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=11.72 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.89 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.01(\mathrm{~m}, 8 \mathrm{H}), 2.78(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dq}, J=14.3,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.96$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,148.9,145.7,139.6,129.4,128.6,127.0,112.8,105.5$, 66.2, 66.0, 45.6, 22.9, 8.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaN}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 437.1432$, found 437.1433.

(S)-4-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)-2-(trifluoromethyl)benzonitrile (37)

37
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4 -amino-2-(trifluoromethyl)benzonitrile $\mathbf{A 5}(37.2 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 37 as a yellowish solid $(81.1 \mathrm{mg}, 97 \%$ yield, 91% ee).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 7}}=+80\left(c 1.8, \mathrm{CHCl}_{3}\right)$.

HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=14.33 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.13 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.01(\mathrm{~m}, 8 \mathrm{H}), 2.68(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.35 (dq, $J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,147.5,139.9,135.6,133.5(\mathrm{q}, J=31.6 \mathrm{~Hz}), 129.2,128.4$, 126.7, $122.4(\mathrm{q}, ~ J=272.3 \mathrm{~Hz}), 117.0,114.9,111.8(\mathrm{q}, J=4.8 \mathrm{~Hz}), 94.8,66.0,65.9,45.6,23.5$, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.61$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 418.1737$, found 418.1737.

(S)-3-Methoxy-4-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)benzonitrile (38)

38
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), and 4-amino-3-methoxybenzonitrile A6 ($29.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 38 as a white solid ($73.9 \mathrm{mg}, 97 \%$ yield, 88% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+49\left(c 1.8, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=18.47 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.82 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 1 \mathrm{H})$, $6.93-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.29(\mathrm{~m}, 8 \mathrm{H})$, $2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.6,146.7,140.4,138.2,129.0,127.9,126.6,125.8,120.4$, 111.6, 110.0, 97.8, 66.1, 65.8, 55.9, 45.4, 25.6, 7.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 380.1969$, found 380.1963 .
(S)-1-Morpholino-2-((4-nitro-3-(trifluoromethyl)phenyl)amino)-2-phenylbutan-1-one (39)

39
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-nitro-3-(trifluoromethyl)aniline A7 ($41.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 39 as a yellowish solid ($86.4 \mathrm{mg}, 99 \%$ yield, 87% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+103\left(c 2.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.49 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.42 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-2.95(\mathrm{~m}, 8 \mathrm{H}), 2.72(\mathrm{dq}, J=$ $14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,148.3,139.9,136.1,129.4,128.7,128.6,126.9,126.2(\mathrm{q}$, $J=33.0 \mathrm{~Hz}), 122.2(\mathrm{q}, J=271.7 \mathrm{~Hz}), 113.8,112.8(\mathrm{q}, J=6.7 \mathrm{~Hz}), 66.1,66.0,45.8,23.4,8.3$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.38.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 438.1635$, found 438.1632 .

(S)-2-((2-Methoxy-4-nitrophenyl)amino)-1-morpholino-2-phenylbutan-1-one (40)

40
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), and 2-methoxy-4-nitroaniline $\mathbf{A 8}$ ($33.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2 / 1$) to yield the product 40 as a yellowish oil ($75.3 \mathrm{mg}, 94 \%$ yield, 87% ee).
$[\alpha]{ }_{\mathbf{D}}{ }^{\mathbf{2 7}}=+78\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=20.10 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=27.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.12(\mathrm{~m}, 8 \mathrm{H}), 2.62(\mathrm{dq}, J=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.2,146.1,140.4,140.2,137.0,129.1,128.1,126.1,119.0$, 107.8, 104.5, 66.0, 65.9, 56.1, 45.6, 24.8, 7.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 400.1867$, found 400.1860 .

Dimethyl (S)-5-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)isophthalate (41)

41
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and dimethyl 5-aminoisophthalate $\mathbf{A 9}$ ($41.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=3 / 1$) to yield the product 41 as a white solid ($87.2 \mathrm{mg}, 99 \%$ yield, 82% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+54\left(c 2.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=16.02 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.75 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.67-3.00(\mathrm{~m}, 8 \mathrm{H}), 2.70(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{dq}, J=14.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.5,166.5,144.6,141.0,130.9,128.8,127.8,126.5,119.4$, 119.1, 66.1, 66.0, 52.1, 45.5, 24.2, 7.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 441.2020$, found 441.2018 .
(S)-1-Morpholino-2-((3-nitrophenyl)amino)-2-phenylbutan-1-one (42)

42
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 3-nitroaniline A10 ($27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{equiv}$), and anhydrous THF $(4.0 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 42 as a yellowish solid $(67.0 \mathrm{mg}, 91 \%$ yield, 94% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+76$ ($c 1.3, \mathrm{CHCl}_{3}$).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=75 / 25$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.31 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.95 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.13(\mathrm{~m}, 8 \mathrm{H}), 2.70(\mathrm{dq}, J=14.6$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.4,148.9,145.2,140.8,129.4,129.0,128.0,126.6,120.6$, 111.6, 107.9, 66.1, 66.0, 45.6, 24.0, 7.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.1761$, found 370.1768 .
(S)-1-Morpholino-2-((4-nitrophenyl)amino)-2-phenylbutan-1-one (43)

43
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-nitroaniline $\mathbf{A 1 1}$ ($27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product 43 as a yellowish solid ($72.3 \mathrm{mg}, 98 \%$ yield, 88% ee).
$[\boldsymbol{\alpha}] \mathbf{D}^{27}=+96\left(c 1.8, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.35 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.45(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.09(\mathrm{~m}, 8 \mathrm{H}), 2.73(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 169.9,149.8,140.4,137.7,129.2,128.3,126.7,125.9,112.6$, 66.1, 66.0, 45.8, 23.9, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$370.1761, found 370.1760 .
(S)-3-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)benzonitrile (44)

44
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 3-aminobenzonitrile $\mathbf{A 1 2}$ ($23.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous THF (4.0 mL) at $10{ }^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 44 as a yellowish solid ($69.0 \mathrm{mg}, 99 \%$ yield, 88% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+62\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=75 / 25$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.36 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.65-$ $3.33(\mathrm{~m}, 8 \mathrm{H}), 2.62(\mathrm{dq}, J=14.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.4,144.8,140.9,129.6,129.0,128.0,126.4,120.6,119.3$, 119.1, 116.5, 112.4, 66.1, 65.9, 45.6, 24.2, 7.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 350.1863$, found 350.1862 .

(S)-2-((4-(Methylsulfonyl)phenyl)amino)-1-morpholino-2-phenylbutan-1-one (45)

45
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 4-(methylsulfonyl)aniline $\mathbf{A 1 3}$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous THF (4.0 mL) at $10{ }^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product $\mathbf{4 5}$ as a white solid ($76.9 \mathrm{mg}, 96 \%$ yield, 88% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+66\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=15.12 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.60 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.59-6.57(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.10(\mathrm{~m}, 8 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{dq}, J=13.9,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.1,148.7,140.6,129.0,128.8,128.0,126.9,126.5,113.3$, 66.0, 65.8, 45.6, 44.8, 24.0, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 425.1505$, found 425.1503.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L}^{*} \mathbf{1 0}(25.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 15$ $\mathrm{mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(521.3 \mathrm{mg}, 1.60 \mathrm{mmol}, 8.0$ equiv), racemic tertiary alkyl chloride (0.24 mmol , 1.2 equiv), aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous EtOAc (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8$ $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L}_{\text {rac1 }}\left(11.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60$ $\mathrm{mmol}, 3.0$ equiv), racemic tertiary alkyl chloride ($0.24 \mathrm{mmol}, 1.2$ equiv), aromatic amine (0.20 $\mathrm{mmol}, 1.0$ equiv), and anhydrous EtOAc $(4.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-2-((4-Bromophenyl)amino)- N-methoxy- N-methyl-2-phenylbutanamide (47)

 47

According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-bromoaniline $\mathbf{A 1 5}$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 47 as a colorless oil ($74.8 \mathrm{mg}, 99 \%$ yield, $81 \% \mathrm{ee}$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+81$ ($c 1.8, \mathrm{CHCl}_{3}$).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=8.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.76 \mathrm{~min}$.

According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-bromoaniline $\mathbf{A 1 5}$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 47 as a colorless oil ($72.0 \mathrm{mg}, 96 \%$ yield, 16% ee).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.30-6.26(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dq}, J=14.4,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,143.5,142.2,131.4,128.4,127.4,127.2,116.3,108.5$, 66.0, 59.3, 33.6, 21.7, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.0859$, found 377.0857.
(S)-2-((3-Bromophenyl)amino)- N -methoxy- N -methyl-2-phenylbutanamide (48)

48
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3-bromoaniline $\mathbf{A 1 6}$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 48 as a yellowish oil ($69.6 \mathrm{mg}, 93 \%$ yield, 85% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+82\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.42 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.03 \mathrm{~min}$.
According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3-bromoaniline A16 ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 48 as a yellowish oil ($73.8 \mathrm{mg}, 98 \%$ yield, 8% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H})$, $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.7,145.8,142.0,129.9,128.4,127.4,127.2,122.6,119.5$, 117.4, 113.1, 66.0, 59.3, 33.6, 21.7, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.0859$, found 377.0854 .
(S)-2-((4-Fluorophenyl)amino)- N-methoxy- N-methyl-2-phenylbutanamide (49)

49
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-fluoroaniline A17 ($22.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 49 as a yellowish oil ($50.7 \mathrm{mg}, 80 \%$ yield, 78% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+64$ (c 1.2, CHCl_{3}).

HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.16 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.69 \mathrm{~min}$.
According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-fluoroaniline $\mathbf{A 1 7 (2 2 . 2 \mathrm { mg } , 0 . 2 0 \mathrm { mmol } , 1 . 0 \text { equiv) }}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=10 / 1$) to yield the product 49 as a yellowish oil ($57.9 \mathrm{mg}, 92 \%$ yield, 27% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.71-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.34(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, $155.8(\mathrm{~d}, J=233.9 \mathrm{~Hz}), 142.9,140.9(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, $128.4,127.3,127.1,116.4(\mathrm{~d}, J=7.2 \mathrm{~Hz}$), 115.1 (d, $J=21.8 \mathrm{~Hz}$), 66.4, 59.2, 33.6, 22.3, 8.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-127.85$.
HRMS (ESI) m/z calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 317.1660$, found 317.1656.
(S)-2-((3-Fluorophenyl)amino)- N-methoxy- N-methyl-2-phenylbutanamide (50)

50
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3-fluoroaniline $\mathbf{A 1 8 (2 2 . 2 \mathrm { mg } , 0 . 2 0 \mathrm { mmol } , 1 . 0 \text { equiv) }}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 50 as a yellowish oil ($51.3 \mathrm{mg}, 81 \%$ yield, $84 \% \mathrm{ee}$). $[\alpha]_{\mathbf{D}}{ }^{27}=+92\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.49 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.53 \mathrm{~min}$.
According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3-fluoroaniline $\mathbf{A 1 8}(22.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 50 as a yellowish oil ($60.5 \mathrm{mg}, 96 \%$ yield, 12% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.91-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.18(\mathrm{~m}, 3 \mathrm{H}), 6.06-6.02(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dq}, J=14.4$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,163.5(\mathrm{~d}, J=240.2 \mathrm{~Hz}), 146.2(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 142.2$, $129.6(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 128.4,127.4,127.2,110.8(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 103.2(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 101.1$ (d, $J=25.4 \mathrm{~Hz}$), 66.1, 59.3, 33.6, 21.8, 8.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.23$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 317.1660$, found 317.1656 .

(S)-N-Methoxy-N-methyl-2-phenyl-2-(p-tolylamino)butanamide (51)

According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and p-toluidine $\mathbf{A 1 9}$ ($21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 51 as a colorless oil ($58.1 \mathrm{mg}, 93 \%$ yield, 74% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+73\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.40 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.17 \mathrm{~min}$.
According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and p-toluidine $\mathbf{A 1 9}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 51 as a colorless oil ($50.2 \mathrm{mg}, 80 \%$ yield, 39% ee).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H})$, $6.80-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.34(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,143.0,142.2,129.2,128.3,127.3,126.9,126.3,115.4$, 66.2, 59.2, 33.6, 22.3, 20.3, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 313.1911$, found 313.1908.
(S)-N-Methoxy- N-methyl-2-phenyl-2-(phenylamino)butanamide (52)

52
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and aniline A20 ($18.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 52 as a colorless oil ($54.7 \mathrm{mg}, 92 \%$ yield, 76% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+64$ ($c 1.3, \mathrm{CHCl}_{3}$).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.51 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.40 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.41(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.72$ (dq, $J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 4 \mathrm{H}), 0.79$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,144.6,142.8,128.7,128.3,127.4,127.0,117.0,115.0$, 66.1, 59.3, 33.6, 22.0, 8.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.1754, found 299.1751.
(S)-N-Methoxy-2-((4-methoxyphenyl)amino)- N -methyl-2-phenylbutanamide (53)

53
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide

E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-methoxyaniline $\mathbf{A 2 1}$ ($24.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product 53 as a colorless oil ($57.8 \mathrm{mg}, 88 \%$ yield, 69% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+49\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.61-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.41(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.60(\mathrm{~m}$, $4 \mathrm{H}), 2.38(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.8,152.3,143.4,138.5,128.2,127.2,126.9,117.7,114.3$, 66.8, 59.2, 55.4, 33.5, 23.0, 7.9.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 329.1860$, found 329.1857.
(S)-N-Methoxy-2-((3-methoxyphenyl)amino)- N-methyl-2-phenylbutanamide (54)

54
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3-methoxyaniline $\mathbf{A 2 2}$ ($24.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 54 as a colorless oil ($42.1 \mathrm{mg}, 64 \%$ yield, 81% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+78$ ($c 1.0, \mathrm{CHCl}_{3}$).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=6.29 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.62 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.09-6.06(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.94-5.93(\mathrm{~m}, 1 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dq}, J=14.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) δ 173.1, 160.1, 145.8, 142.8, 129.4, 128.4, 127.4, 127.0, 108.1, 102.5, 100.3, 66.1, 59.2, 54.8, 33.6, 21.9, 8.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 329.1860$, found 329.1856 .
(S)-2-((3,5-Dimethoxyphenyl)amino)- N-methoxy- N-methyl-2-phenylbutanamide (55)

55
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-dimethoxyaniline $\mathbf{A 2 3}$ ($30.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 55 as a colorless oil $(53.1 \mathrm{mg}, 74 \%$ yield, 80% ee).
$[\alpha]{ }_{\mathbf{D}}{ }^{27}=+67\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.04(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 6 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.75-$ 2.61 (m, 2H), 2.58 ($\mathrm{s}, 3 \mathrm{H}$), $0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,161.0,146.2,142.8,128.4,127.4,127.1,93.4,89.8,66.1$, 59.2, 54.8, 33.6, 21.9, 8.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{2} 7 \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 359.1965$, found 359.1963.
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)- N -methoxy- N -methyl-2-phenylbutanamide (56)

56
According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 56 as a colorless oil $(55.0 \mathrm{mg}, 63 \%$ yield, 68\% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+45\left(c 1.3, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i$-PrOH $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=5.09 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.73 \mathrm{~min}$.
According to General Procedure A with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 56 as a colorless oil ($86.3 \mathrm{mg}, 99 \%$ yield, 68\% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $2.51(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,145.0,140.9,131.7(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.7,127.7,127.4$, $123.5(\mathrm{q}, J=270.9 \mathrm{~Hz}), 113.4-113.3(\mathrm{~m}), 109.4-109.2(\mathrm{~m}), 66.1,59.3,33.6,21.6,8.2$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.39.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 435.1502$, found 435.1497 .
(S)-N-Methoxy- N-methyl-2-phenyl-2-(pyrimidin-5-ylamino)butanamide (57)

According to General Procedure B with 2-chloro- N-methoxy- N-methyl-2-phenylbutanamide E34 ($57.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and pyrimidin-5-amine $\mathbf{A 2 4}(19.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product 57 as a yellowish oil $(57.8 \mathrm{mg}, 96 \%$ yield, 83% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+62\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=11.13 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.96 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dq}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, 2.47 (dq, $J=14.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,147.5,141.8,140.5,138.6,128.7,127.8,127.3,65.6,59.3$, 33.6, 21.4, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 301.1659$, found 301.1656 .
(S)-2-((4-Bromophenyl)amino)-1-morpholino-2-phenylbutan-1-one (58)

58
According to General Procedure B with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-bromoaniline $\mathbf{A 1 5}(34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to yield the product 58 as a white solid ($71.4 \mathrm{mg}, 89 \%$ yield, 84% ee).
$[\alpha] \mathbf{D}^{27}=+63\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.22 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H})$, $6.48-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.09(\mathrm{~m}, 8 \mathrm{H}), 2.51(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}$, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.0,143.5,141.2,131.7,128.8,127.7,126.0,116.4,109.4$, 66.14, 66.09, 45.5, 25.4, 7.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 403.1016$, found 403.1010.
(S)-2-((4-Bromophenyl)amino)- N, N-dimethyl-2-phenylbutanamide (59)

59
According to General Procedure B with 2-chloro- N, N-dimethyl-2-phenylbutanamide E31 (54.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-bromoaniline $\mathbf{A 1 5}(34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=7.5 / 1$) to yield the product 59 as a white solid ($63.4 \mathrm{mg}, 88 \%$ yield, 83% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+63\left(c 1.5, \mathrm{CHCl}_{3}\right)$.

HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.26 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.16 \mathrm{~min}$.
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.41(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 6 \mathrm{H}), 2.56-2.37(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 172.2,143.7,141.4,131.6,128.7,127.5,126.3,116.2,108.9$, 66.0, 37.9, 24.6, 7.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 361.0910$, found 361.0904.
(S)-2-((4-Bromophenyl)amino)-1-(indolin-1-yl)-2-phenylbutan-1-one (60)

60
According to General Procedure B with 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one E32 ($71.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-bromoaniline $\mathbf{A 1 5}$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product $\mathbf{6 0}$ as a yellowish oil ($84.5 \mathrm{mg}, 97 \%$ yield, 80% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+36\left(c 2.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=20.66 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.95 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36-8.34(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.50$ $(\mathrm{m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.46$ (m, 2H), $0.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,143.9,143.5,140.2,131.8,131.0,128.8,127.8,127.3$, 126.3, 124.4, 124.2, 118.1, 116.4, 109.5, 67.2, 48.3, 28.8, 25.2, 7.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 435.1067$, found 435.1060.
(S)-1-Morpholino-2-phenyl-2-(pyridin-4-ylamino)butan-1-one (61)

61
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and pyridin-4-amine $\mathbf{A 2 5}$ ($18.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=\right.$ $20 / 1)$ to yield the product 61 as a colorless oil ($41.7 \mathrm{mg}, 64 \%$ yield, 87% ee). $[\alpha]_{\mathbf{D}}{ }^{27}=+36\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=7.69 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.36(\mathrm{~m}, 8 \mathrm{H}), 2.63(\mathrm{dq}, J=$ $14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.4,152.3,145.2,139.1,129.2,128.5,126.6,109.1,66.1,66.0$, 45.7, 24.2, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 326.1863$, found 326.1860 .
(S)-6-((1-Morpholino-1-oxo-2-phenylbutan-2-yl)amino)picolinonitrile (62)

62
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 6-aminopicolinonitrile A26 ($23.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2 / 1$) to yield the product 62 as a yellowish oil ($68.9 \mathrm{mg}, 98 \%$ yield, 92% ee). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+194\left(c \quad 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.26 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.51 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-2.96(\mathrm{~m}, 9 \mathrm{H}), 2.15(\mathrm{dq}, J=$ $14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.7,155.6,140.3,136.7,130.6,128.1,127.5,127.0,117.8$, 117.4, 113.8, 66.1, 66.0, 45.9, 23.4, 8.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 351.1816$, found 351.1814.

(S)-1-Morpholino-2-phenyl-2-((4-(trifluoromethyl)pyridin-2-yl)amino)butan-1-one (63)

63
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-(trifluoromethyl)pyridin-2-amine A27 ($32.4 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 63 as a white solid ($62.4 \mathrm{mg}, 79 \%$ yield, 93% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+52\left(c 1.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=8.49 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.04(\mathrm{~m}$, $9 \mathrm{H}), 2.29(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,156.1,149.0,140.6,139.0(\mathrm{q}, J=32.9 \mathrm{~Hz}), 128.4,127.6$, $126.4,123.0(\mathrm{q}, J=271.4 \mathrm{~Hz}), 107.9,104.5(\mathrm{q}, J=4.1 \mathrm{~Hz}), 66.1,66.0,45.5,25.2,8.0$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-65.29.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$394.1737, found 394.1736.
(S)-1-Morpholino-2-phenyl-2-(pyrazin-2-ylamino)butan-1-one (64)

64
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and pyrazin-2-amine A28 ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product 64 as a white solid ($55.7 \mathrm{mg}, 85 \%$ yield, 92% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+133\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=23.16 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=27.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-$ 7.47 (m, 2H), $7.35-7.31$ (m, 2H), $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.17$ (m, 9H), 2.23 (dq, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.6,152.2,141.4,140.6,133.4,132.4,128.4,127.6,126.8$, 66.1, 65.8, 45.7, 24.1, 8.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 327.1816$, found 327.1813.

(S)-2-((5-Bromopyrazin-2-yl)amino)-1-morpholino-2-phenylbutan-1-one (65)

65
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 5-bromopyrazin-2-amine A29 ($34.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 65 as a white solid ($77.5 \mathrm{mg}, 96 \%$ yield, 91% ee).
$[\boldsymbol{\alpha}] \mathbf{D}^{27}=+107\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=21.73 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=27.07 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}$, 2H), $7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.01(\mathrm{~m}, 9 \mathrm{H}), 2.18(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,150.9,143.2,140.2,132.7,128.3,127.7,127.0,125.3$, 66.1, 65.8, 45.5, 23.2, 8.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 405.0921$, found 405.0920 .
(S)-2-((6-Bromopyrazin-2-yl)amino)-1-morpholino-2-phenylbutan-1-one (66)

66
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 6-bromopyrazin-2-amine $\mathbf{A 3 0}$ ($34.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2 / 1$) to yield the product 66 as a white solid ($80.4 \mathrm{mg}, 99 \%$ yield, 95% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+232\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=20.07 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.42 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.86-2.95(\mathrm{~m}, 9 \mathrm{H}), 2.14(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.2,151.4,139.6,137.5,132.7,130.7,128.2,127.8,127.2$, 66.2, 66.0, 46.0, 22.9, 8.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 405.0921$, found 405.0920 .
(S)-1-Morpholino-2-phenyl-2-(pyrimidin-5-ylamino)butan-1-one (67)

67
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and pyrimidin-5-amine $\mathbf{A 2 4}$ ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product 67 as a white solid ($64.3 \mathrm{mg}, 99 \%$ yield, 94% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+28\left(c 1.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=15.19 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.64 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.37(\mathrm{~m}, 8 \mathrm{H}), 2.66(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (dq, $J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,148.0,142.0,140.4,138.6,129.2,128.2,126.8,66.0,65.5$, 45.7, 23.4, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 327.1816$, found 327.1814.
(S)-2-((2-Chloropyrimidin-5-yl)amino)-1-morpholino-2-phenylbutan-1-one (68)

68

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 2-chloropyrimidin-5-amine $\mathbf{A 3 1}$ ($25.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2 / 1$) to yield the product 68 as a white solid ($65.8 \mathrm{mg}, 91 \%$ yield, 94% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+42\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.53 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.76 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.08(\mathrm{~m}, 8 \mathrm{H}), 2.61(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dq}, J=$ $14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,148.4,144.2,140.0,137.5,129.4,128.6,127.0,66.1,65.6$, 45.6, 23.3, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$361.1426, found 361.1423.
(S)-2-((2-Bromopyrimidin-5-yl)amino)-1-morpholino-2-phenylbutan-1-one (69)

69
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 2-bromopyrimidin-5-amine A32 ($34.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 69 as a white solid ($74.8 \mathrm{mg}, 93 \%$ yield, $94 \% \mathrm{ee}$).
$[\alpha]_{\mathbf{D}}{ }^{27}=+51\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=15.14 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.04(\mathrm{~m}, 8 \mathrm{H}), 2.61(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dq}, J=$ $14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,144.2,139.9,138.3,137.9,129.4,128.6,126.9,66.1,65.5$, 46.0, 23.1, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 405.0921$, found 405.0918 .
(S)-1-Morpholino-2-phenyl-2-((2-(trifluoromethyl)pyrimidin-5-yl)amino)butan-1-one (70)

70
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 2-(trifluoromethyl)pyrimidin-5-amine $\mathbf{A 3 3}$ ($32.6 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 70 as a white solid ($77.9 \mathrm{mg}, 99 \%$ yield, 92% ee).
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+30\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=15.07 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.17 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 3.90-2.92(\mathrm{~m}, 8 \mathrm{H}), 2.69(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}, J=$ $14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,144.6(\mathrm{q}, J=36.6 \mathrm{~Hz}), 141.0,139.5,129.4,128.7,126.9$, 120.0 (q, $J=271.6 \mathrm{~Hz}$), $66.0,65.4,45.8,22.8,8.1$.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.00$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 395.1689$, found 395.1687.
(S)-1-Morpholino-2-phenyl-2-(pyrimidin-4-ylamino)butan-1-one (71)

71
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and pyrimidin-4-amine $\mathbf{A 3 4}$ ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}=$ $30 / 1$) to yield the product 71 as a white solid ($29.6 \mathrm{mg}, 45 \%$ yield, 89% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+69\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=8.07 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.15(\mathrm{~m}, 8 \mathrm{H}), 2.27-2.20$ (m, 1H), 0.86 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,159.4,157.8,153.5,139.0,128.5,127.9,126.8,106.1$, 66.1, 66.0, 45.6, 24.0, 8.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 327.1816$, found 327.1814.

(S)-1-Morpholino-2-phenyl-2-(quinoxalin-2-ylamino)butan-1-one (72)

72
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and quinoxalin-2-amine A35 ($29.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2 / 1$) to yield the product 72 as a white solid ($61.1 \mathrm{mg}, 81 \%$ yield, $91 \% \mathrm{ee}$).
$[\alpha]_{\mathbf{D}}{ }^{27}=+289\left(c 1.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=35.89 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=41.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.95-2.91(\mathrm{~m}, 9 \mathrm{H}), 2.18(\mathrm{dq}, J=14.3$,
$7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,148.8,141.3,140.4,139.5,136.5,129.4,128.5,128.0$, 127.6, 127.4, 126.4, 123.9, 66.1, 66.0, 46.6, 22.7, 8.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.1972$, found 377.1968.
(S)-1-Morpholino-2-phenyl-2-(quinoxalin-6-ylamino)butan-1-one (73)

73
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), quinoxalin- 6 -amine $\mathbf{A 3 6}(29.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous THF (4.0 mL) at $10{ }^{\circ} \mathrm{C}$ for 72 h , the reaction mixture was purified by column chromatography on silica gel (EtOAc $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1$) to yield the product 73 as a white solid ($74.6 \mathrm{mg}, 99 \%$ yield, 89% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+207\left(c 1.8, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.62 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (dd, $J=9.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.25(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{dq}, J=14.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.3,145.0,144.9,144.5,140.6,139.9,137.5,129.8,129.0$, 128.0, 126.8, 124.2, 104.5, 66.0, 65.9, 45.6, 22.7, 8.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.1972$, found 377.1970.

(S)-2-(Isoquinolin-6-ylamino)-1-morpholino-2-phenylbutan-1-one (74)

74
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and isoquinolin- 6 -amine $\mathbf{A 3 7}$ ($28.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel $\left(\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}=\right.$ $30 / 1$) to yield the product 74 as a white solid ($66.3 \mathrm{mg}, 88 \%$ yield, 82% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+146\left(c \quad 1.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.86 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.35 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.23(\mathrm{~m}, 8 \mathrm{H}), 2.77(\mathrm{dq}, J=15.1,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,150.6,146.1,141.8,140.5,138.1,129.0,128.9,128.0$, 126.4, 122.3, 121.0, 119.3, 102.7, 66.1, 66.0, 45.4, 24.0, 7.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 376.2020$, found 376.2016.

(S)-1-Morpholino-2-phenyl-2-(quinolin-3-ylamino)butan-1-one (75)

75
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and quinolin-3-amine $\mathbf{A 3 8}$ ($28.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=1 / 1$) to yield the product 75 as a white solid ($71.8 \mathrm{mg}, 96 \%$ yield, 74% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+92\left(c 1.8, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.72 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.32$ $(\mathrm{m}, 8 \mathrm{H}), 2.69(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 170.5,144.6,141.7,140.8,137.6,129.0,128.9,128.7,128.0$, 126.6, 126.4, 126.0, 124.9, 111.9, 66.1, 66.0, 45.6, 24.1, 7.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 376.2020$, found 376.2016.
(S)-1-Morpholino-2-phenyl-2-(thiazol-2-ylamino)butan-1-one (76)

76
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and thiazol-2-amine $\mathbf{A 3 9}(20.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 76 as a colorless oil $(46.6 \mathrm{mg}, 70 \%$ yield, 83% ee $)$.
$[\alpha]_{\mathbf{D}}{ }^{27}=+16\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=9.74 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.36(\mathrm{~m}, 8 \mathrm{H}), 2.98(\mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,165.1,139.9,138.5,128.6,128.0,127.0,106.9,67.1,66.1$, 45.3, 24.8, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 332.1427$, found 332.1425 .
Methyl (S)-3-((1-morpholino-1-oxo-2-phenylbutan-2-yl)amino)thiophene-2-carboxylate (77)

77
According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 (64.1 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and methyl 3-aminothiophene-2-carboxylate $\mathbf{A 4 0}(31.4 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 77 as a colorless oil ($70.9 \mathrm{mg}, 91 \%$ yield, 80% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+89\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\operatorname{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=9.65 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.86 \mathrm{~min}$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.71-2.82(\mathrm{~m}, 8 \mathrm{H}), 2.45(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dq}, J=$ $14.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.6,165.8,153.0,139.8,132.3,128.9,127.5,124.6,117.4$, 101.5, 67.5, 66.2, 51.3, 46.5, 30.9, 7.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 389.1530$, found 389.1528 .

General procedure C:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 14(8.1 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 0.5 h . After that, racemic propargyl bromide ($0.10 \mathrm{mmol}, 1.0$ equiv), (hetero)aromatic amine ($0.15 \mathrm{mmol}, 1.5$ equiv), and anhydrous $1,4-$ dioxane $(0.5 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with
$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathbf{L}_{\text {rac2 }}(3.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), racemic propargyl bromide ($0.10 \mathrm{mmol}, 1.0$ equiv), (hetero)aromatic amine ($0.15 \mathrm{mmol}, 1.5$ equiv), and 1,4 -dioxane $(1.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Dimethyl (R)-5-((1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate (78)

78
According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the product 78 as a colorless oil ($26.7 \mathrm{mg}, 62 \%$ yield, 90% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+78\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ minor $)=15.76 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.84 \mathrm{~min}$.
According to General Procedure C with (3-chloropent-1-yn-1-yl)triisopropylsilane E35' (25.8 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=10 / 1$) to yield the product 78 as a colorless oil ($16.8 \mathrm{mg}, 39 \%$ yield, 84% ee).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.0,131.1,120.4,119.1,107.1,84.2,52.2,47.9,28.7$, 18.4, 11.0, 10.3 .

HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 432.2565$, found 432.2560 .

Dimethyl (S)-5-((1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate ((S)-78)

(S)-78

According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv), and $\mathbf{L *} \mathbf{1 4}$ ' for 120 h , the reaction mixture was purified by column chromatography on silica gel
(petroleum ether/EtOAc $=10 / 1)$ to yield the product (S)-78 as a colorless oil $(23.7 \mathrm{mg}, 55 \%$ yield, 90% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-131\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ major $)=14.07 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.90 \mathrm{~min}$.

(R)-4-Bromo-N-(1-(triisopropylsilyl)pent-1-yn-3-yl)aniline (79)

79
According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 4-bromoaniline $\mathbf{A 1 5}(25.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=20 / 1$) to yield the product 79 as a colorless oil ($21.3 \mathrm{mg}, 54 \%$ yield, 85% ee). $[\alpha]_{\mathbf{D}}{ }^{27}=+96\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel AD (n-hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=9.90 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.19 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=7.6,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 145.9,131.7,115.9,110.0,107.8,83.8,48.2,28.8,18.5,11.1$, 10.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BrNSi}[\mathrm{M}+\mathrm{H}]^{+} 394.1560$, found 394.1557 .

(R)-N-(1-(Triisopropylsilyl)pent-1-yn-3-yl)quinoxalin-6-amine (80)

80
According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and quinoxalin- 6 -amine $\mathbf{A 3 6}$ ($21.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to yield the product $\mathbf{8 0}$ as a colorless oil ($25.3 \mathrm{mg}, 69 \%$ yield, 89% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+92\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=270 \mathrm{~nm}$), t_{R} $($ major $)=13.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 2 \mathrm{H}), 1.98-$ $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.7, 145.1, 144.9, 140.7, 138.1, 129.9, 122.3, 106.9, 106.0, 84.3, 47.8, 28.5, 18.5, 11.1, 10.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 368.2517$, found 368.2508 .

(R)- N -(1-(Triisopropylsilyl)pent-1-yn-3-yl)isoquinolin-6-amine (81)

81
According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and isoquinolin-6-amine $\mathbf{A} 41(21.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product $\mathbf{8 1}$ as a colorless oil ($25.0 \mathrm{mg}, 68 \%$ yield, 91% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+180\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.10 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.98(\mathrm{~m}$, 21 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.3,147.9,143.1,138.0,128.8,123.2,119.4,119.1,107.0$, 103.7, 84.3, 47.6, 28.6, 18.5, 11.1, 10.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 367.2564$, found 367.2555 .

(R)-N-(1-(Triisopropylsilyl)pent-1-yn-3-yl)quinolin-7-amine (82)

82
According to General Procedure C with (3-bromopent-1-yn-1-yl)triisopropylsilane E35 (30.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and quinolin- 7 -amine $\mathbf{A 4 2}(21.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 82 as a colorless oil ($20.5 \mathrm{mg}, 56 \%$ yield, 90% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+68\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=9.14 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.28 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=8.8,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.98(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 150.4,150.1,147.5,135.5,128.4,122.1,118.7,117.5,107.5$, 107.2, 83.9, 47.8, 28.5, 18.5, 11.1, 10.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 367.2564$, found 367.2555 .

Dimethyl (R)-5-((1-(triisopropylsilyl)hex-1-yn-3-yl)amino)isophthalate (83)

83
According to General Procedure C with (3-bromohex-1-yn-1-yl)triisopropylsilane E36 (31.6 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}(31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{8 3}$ as a colorless oil ($24.5 \mathrm{mg}, 55 \%$ yield, 87% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+99\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i$-PrOH $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ major $)=22.25 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=28.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (s, 6H), $1.86-1.73$ (m, 2H), $1.64-1.56$ (m, 2H), 1.00 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.95(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.0,131.1,120.3,119.1,107.3,84.0,52.2,46.3,37.6$, 19.2, 18.4, 13.7, 11.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 446.2721$, found 446.2713.

Dimethyl (R)-5-((5-methyl-1-(triisopropylsilyl)hex-1-yn-3-yl)amino)isophthalate (84)

84
According to General Procedure \mathbf{C} with (3-bromo-5-methylhex-1-yn-1-yl) triisopropylsilane E37 $(33.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5-aminoisophthalate A9 ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 84 as a colorless oil $(23.4 \mathrm{mg}, 51 \%$ yield, 86% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+79\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IE (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ major $)=15.34 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 7 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, $0.97-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.0,131.1,120.4,119.2,107.4,84.0,52.2,45.0,44.7$, 25.3, 22.8, 22.1, 18.4, 11.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 460.2878$, found 460.2873 .
Dimethyl (R)-5-((5,5-dimethyl-1-(triisopropylsilyl)hex-1-yn-3-yl)amino) isophthalate (85)

85
According to General Procedure \mathbf{C} with (3-bromo-5,5-dimethylhex-1-yn-1-yl) triisopropylsilane E38 ($34.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate A9 ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{8 5}$ as a colorless oil ($20.3 \mathrm{mg}, 43 \%$ yield, 85% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+64\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IE (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ major $)=13.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.55 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 7 \mathrm{H}), 1.86(\mathrm{dd}, J=13.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.94(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,146.7,131.1,120.4,119.3,108.6,84.1,52.2,49.7,43.7$, 30.6, 30.0, 18.4, 11.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 474.3034$, found 474.3024 .
Dimethyl (R)-5-((5-cyano-1-(triisopropylsilyl)pent-1-yn-3-yl)amino)isophthalate (86)

86
According to General Procedure \mathbf{C} with 4-bromo-6-(triisopropylsilyl)hex-5-ynenitrile E39 $(32.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 86 as a colorless oil $(30.3 \mathrm{mg}, 66 \%$ yield, 87% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+84\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), t_{R} $($ minor $)=9.08 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.80 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 0.99-$ 0.97 (m, 21H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,146.2,131.4,121.2,119.3,118.8,104.6,86.7,52.2,45.7$, 31.0, 18.4, 14.1, 10.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 457.2517$, found 457.2511.

Dimethyl (R, Z)-5-((1-(triisopropylsilyl)undec-8-en-1-yn-3-yl)amino)isophthalate (87)

87
According to General Procedure \mathbf{C} with (Z)-(3-bromoundec-8-en-1-yn-1-yl)triisopropylsilane $\mathbf{E 4 0}(38.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 87 as a colorless oil ($21.7 \mathrm{mg}, 42 \%$ yield, 87% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+82\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), t_{R} $($ major $)=19.23 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.29(\mathrm{~m}$, $2 \mathrm{H}), 4.20(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.74$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,147.0,132.0,131.1,128.7,120.4,119.1,107.2,84.2,52.2$, 46.5, 35.4, 29.3, 26.9, 25.5, 20.5, 18.4, 14.4, 11.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 514.3347$, found 514.3343.

Dimethyl (R)-5-((7-(benzyloxy)-1-(triisopropylsilyl)hept-1-yn-3-yl)amino) isophthalate (88)

88
According to General Procedure \mathbf{C} with (7-(benzyloxy)-3-bromohept-1-yn-1-yl) triisopropylsilane $\mathbf{E 4 1}$ ($43.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate A9 ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{8 8}$ as a colorless oil ($29.5 \mathrm{mg}, 52 \%$ yield, 85% ee). $[\alpha]_{\mathbf{D}}{ }^{27}=+48\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R} $($ minor $)=16.02 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.20 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}$, $4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.52-3.47(\mathrm{~m}$, $2 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 166.6,146.9,138.5,131.1,128.3,127.6,127.5,120.4,119.1$, 107.2, 84.2, 72.9, 70.1, 52.2, 46.4, 35.3, 29.3, 22.8, 18.4, 11.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 566.3296$, found 566.3293.

Dimethyl (R)-5-((4-phenylbut-3-yn-2-yl)amino)isophthalate (89)

89
According to General Procedure C with (3-bromobut-1-yn-1-yl)benzene E42 (20.8 mg, 0.10 mmol, 1.0 equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product $\mathbf{8 9}$ as a yellowish solid ($25.6 \mathrm{mg}, 76 \%$ yield, $78 \% \mathrm{ee}$).
$[\alpha]_{\mathbf{D}}{ }^{27}=+129\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), t_{R} $($ major $)=24.56 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=26.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, 2H), $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.54-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,146.8,131.7,131.3,128.20,128.19,122.6,120.4,118.9$, 89.8, 82.7, 52.2, 41.5, 22.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 338.1387$, found 338.1382 .

Dimethyl (R)-5-((6,6-dimethyl-1-phenylhept-4-yn-3-yl)amino)isophthalate (90)

90
According to General Procedure \mathbf{C} with (3-bromo-6,6-dimethylhept-4-yn-1-yl)benzene E43 $(27.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dimethyl 5 -aminoisophthalate $\mathbf{A 9}$ ($31.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 90 as a colorless oil ($14.3 \mathrm{mg}, 35 \%$ yield, 74% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=+42\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=280 \mathrm{~nm}$), t_{R}
$($ minor $)=21.52 \mathrm{~min}, t_{\mathrm{R}}($ major $)=28.34 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 2 \mathrm{H})$, $2.14-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,147.0,141.2,131.1,128.51,128.46,126.1,120.1,118.9$, 93.4, 77.6, 52.2, 45.4, 37.3, 32.1, 31.0, 27.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 408.2169$, found 408.2161 .

6. Procedure for synthetic applications

Gram-scale reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(94.9 \mathrm{mg}, 0.50 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 9$ ($321.8 \mathrm{mg}, 0.75 \mathrm{mmol}, 15$ $\mathrm{mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($4.89 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($1.60 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv), 3,5-bis(trifluoromethyl)aniline $\mathbf{A 1}(1.15 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (100 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield the product 1 as a white solid ($2.29 \mathrm{~g}, 99 \%$ yield, 95% ee).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(38.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(128.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($1954.8 \mathrm{mg}, 6.0 \mathrm{mmol}, 3.0$ equiv), 2 -chloro- N, N-dimethyl-2-phenylbutanamide E28 (540.2 mg, $2.4 \mathrm{mmol}, 1.2$ equiv), 3,5-bis(trifluoromethyl)aniline A1 ($458.1 \mathrm{mg}, 2.0 \mathrm{mmol}$, 1.0 equiv), and anhydrous benzene (40 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=7.5 / 1$) to yield
the product $\mathbf{2 8}$ as a white solid ($826.7 \mathrm{mg}, 99 \%$ yield, 95% ee).

The synthesis of chiral amino aldehyde 91

To a solution of $1\left(89.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\right.$ equiv) in THF (2 mL) was slowly added LiAlH_{4} ($30.4 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv) at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. Upon completion (monitored by TLC), the reaction was quenched with saturated NaHCO_{3} solution $(3 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the desired product 91 as a colorless oil (68.3 $\mathrm{mg}, 91 \%$ yield, 95% ee).
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenylbutanal (91)

91
$[\alpha]_{\mathbf{D}}{ }^{27}=+103\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: AD (n-hexane $/ i-\mathrm{PrOH}=100 / 0$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=$ $35.63 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=54.25 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.0,145.0,135.3,132.1$ ($\mathrm{q}, ~ J=32.6 \mathrm{~Hz}$), 129.7, 128.9, 127.1, $123.3(\mathrm{q}, J=271.0 \mathrm{~Hz}), 113.63-113.60(\mathrm{~m}), 110.6-110.4(\mathrm{~m}), 69.8,22.3,7.6$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.37.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F} 6 \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 376.1131$, found 376.1122.

The synthesis of chiral amino alcohol 92

To a solution of $91\left(56.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0\right.$ equiv) in THF (2 mL) was slowly added NaBH_{4} ($11.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0$ equiv) at $0^{\circ} \mathrm{C}$ under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred for 2 h . Upon completion (monitored by TLC), the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc
$(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the desired product 92 as a colorless oil ($49.0 \mathrm{mg}, 87 \%$ yield, 95% ee).
(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenylbutan-1-ol (92)

92
$[\alpha]_{\mathbf{D}}{ }^{27}=+5.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: AD (n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=$ $6.78 \mathrm{~min}, t_{\mathrm{R}}($ major $)=8.63 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.95$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dq}, J=14.5$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,141.0,131.9(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.0,127.6,126.2,123.4$ ($\mathrm{q}, ~ J=271.0 \mathrm{~Hz}$), $114.1-114.0(\mathrm{~m}), 110.4-110.2(\mathrm{~m}), 66.1,62.5,29.0,8.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.39.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F} 6 \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 378.1287$, found 378.1285.

The synthesis of chiral amino alcohol 93

To a solution of 91 ($37.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was slowly added MeMgBr ($1 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) at $0^{\circ} \mathrm{C}$ under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred for 1 h . Upon completion (monitored by TLC), the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the desired product 93 as a colorless oil (29.4 $\mathrm{mg}, 75 \%$ yield, $5: 1 \mathrm{dr}, 95 \% / 95 \%$ ee).
(3S)-3-((3,5-Bis(trifluoromethyl)phenyl)amino)-3-phenylpentan-2-ol (93)

93
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=-19\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: ODH (n-hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (minor) $=36.12 \mathrm{~min}, t_{\mathrm{R}}($ major $)=47.88 \mathrm{~min}, 95 \%$ ee; $t_{\mathrm{R}}($ minor $)=52.55 \mathrm{~min}, t_{\mathrm{R}}($ major $)=55.90 \mathrm{~min}, 95 \%$ ee.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 0.84 \mathrm{H})$, $5.34(\mathrm{~s}, 0.16 \mathrm{H}), 4.10-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.53(\mathrm{~m}$, $0.16 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 0.84 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.48 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2.52 \mathrm{H}), 1.01-$ 0.95 (m, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,146.6,141.3,138.6,131.8(\mathrm{q}, J=32.4 \mathrm{~Hz}), 131.7(\mathrm{q}, J=$ $32.3 \mathrm{~Hz}), 128.8,128.7127 .7,127.6,127.5,127.2,123.4(\mathrm{q}, ~ J=271.0 \mathrm{~Hz}), 114.2-114.1(\mathrm{~m})$, $113.83-113.78(\mathrm{~m}), 109.9-109.7(\mathrm{~m}), 109.6-109.5(\mathrm{~m}), 74.7,71.4,64.8,64.4,24.7,23.6$, 18.4, 17.8, 8.9, 7.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.36, -63.39.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F} 6 \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$392.1444, found 392.1434.

The synthesis of chiral 1,2-diamine 94

To a solution of $\mathrm{LiAlH}_{4}(30.4 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv) in 1,4 -dioxane (2 mL) was slowly added the solution of $\mathbf{3 1}$ (83.6 mg in 2 mL 1,4-dioxane, 0.2 mmol .1 .0 equiv) at $0^{\circ} \mathrm{C}$ under argon. Then the reaction mixture was slowly warmed up to room temperature and stirred at $100^{\circ} \mathrm{C}$ for 2 h. Upon completion (monitored by TLC), the reaction mixture was quenched with water (1 mL), NaOH aqueous solution $(1 \mathrm{~mL}, 0.1 \mathrm{M})$ and water $(1 \mathrm{~mL})$ respectively at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc $=8 / 1$) to yield the desired product 94 as a white solid ($64.5 \mathrm{mg}, 80 \%$ yield, 95% ee).
(S)- N^{2}-(3,5-Bis(trifluoromethyl)phenyl)- N^{1}, N^{1}-dimethyl-2-phenylbutane-1,2-diamine (94)

94
$[\alpha]]^{27}=+12\left(c 1.6, \mathrm{CHCl}_{3}\right)$.

HPLC analysis: ODH (n-hexane $/ i-\operatorname{PrOH}=100 / 0$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (minor) $=34.60 \mathrm{~min}, t_{\mathrm{R}}($ major $)=36.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}$, $2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 7 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,143.9,131.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.5,126.8,126.3,123.5$ $(\mathrm{q}, J=270.9 \mathrm{~Hz}), 113.72-113.68(\mathrm{~m}), 109.4-109.2(\mathrm{~m}), 67.6,60.9,47.7,30.0,8.2$.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.27.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 405.1760$, found 405.1749 .
The synthesis of α-chiral primary amine 95

According to General Procedure A with 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($641.0 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv) and 4-nitroaniline $\mathbf{A 1 1}$ ($276.1 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=3 / 1$) to yield the product 43 as a yellowish solid ($731.9 \mathrm{mg}, 99 \%$ yield, $88 \% \mathrm{ee}$). To a solution of 43 ($73.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in anhydrous EtOAc (4 mL) was added $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{wt} \%)$ in one portion. Then the reaction flask was evacuated and refilled with H_{2} through a balloon, and the mixture was stirred under a H_{2} atmosphere at room temperature for 4 h. After completion (monitored by TLC), the reaction was filtered through a short pad of celite and rinsed with EtOAc $(5 \mathrm{~mL} \times 3)$. The filtrate was concentrated under reduced pressure to afford the crude product, which was used in the next step without further purification.
To a solution of the above crude product was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{PhI}(\mathrm{OAc})_{2}(128.8 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv) was added as a solid, and the homogeneous mixture was kept at $0{ }^{\circ} \mathrm{C}$ for 30 min before addition of $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL}, 1.0 \mathrm{M})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then was basified $(\mathrm{pH}=10)$ by dropwise addition of NaOH (10 $\mathrm{mmol}, 1.0 \mathrm{M}$ in water) and saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and was subsequently washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $\left(\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}=20 / 1\right)$ to yield the product 95 as a slight brown solid $(43.3 \mathrm{mg}, 87 \%$ yield, 88% ee).

(S)-2-Amino-1-morpholino-2-phenylbutan-1-one (95)

95
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=-13\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OJ (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), t_{R} $($ major $)=11.83 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.05(\mathrm{~m}, 8 \mathrm{H})$, 2.43 (s, 2H), $2.18(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dq}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.0,143.3,128.8,127.3,125.0,66.3,63.9,46.9,43.7,33.0$, 8.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$249.1598, found 249.1593 .
The synthesis of terminal alkyne derivative 96

78, 90% ee

96, 87\%, 90\% ee

To a solution of 78 ($43.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was slowly added TBAF ($0.12 \mathrm{mmol}, 1.2$ equiv, 1 M in THF) at $0^{\circ} \mathrm{C}$. Then the mixture was slowly warmed to room temperature and stirred for 2 h before being quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The residue was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc $=8: 1$) to afford the product 96 as a yellowish solid ($23.9 \mathrm{mg}, 87 \%$ yield, 90% ee).

Dimethyl (R)-5-(pent-1-yn-3-ylamino)isophthalate (96)

96
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+12\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=14.88 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.37 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.10(\mathrm{~m}$, $1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.6,146.8,131.3,120.4,118.7,83.5,71.4,52.3,46.8,28.7$, 10.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 276.1230$, found 276.1224.

7. Mechanistic studies

Preparation and characterization of $\mathbf{C u}$ (II) complex CatA

To a solution of $\mathrm{CuBr}_{2}(22.1 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathbf{L} * 9(42.9 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ at room temperature and stirred overnight. Then the solution was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) and filtered. Next, the solution was concentrated in vacuo and obtained product CatA (55.7 $\mathrm{mg}, 98 \%$ yield).

Reaction of $\mathbf{C u}$ (II) complex CatA

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CatA ($2.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5bis(trifluoromethyl)aniline $\mathbf{A 1}(11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product 1 (yield of $\mathbf{1}$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, $>99 \%, 95 \%$ ee).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(3.2 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), $3,5-$ bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and afforded the desired product $\mathbf{1}$ (yield of $\mathbf{1}$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard, $>99 \%, 95 \%$ ee).

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5bis(trifluoromethyl)aniline A1 ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ${ }^{1} \mathrm{H}$ NMR spectra (recovery of $\mathbf{E} 1$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, recovered $\mathbf{E} 1>119 \%$). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

Linear relationship experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(3.2 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2 -chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), $3,5-$ bis(trifluoromethyl)aniline $\mathbf{A 1}$ ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the product was separated by preparative TLC. The ee values of products was then determined by HPLC, which indicated a linear relationship between ee values of products and corresponding catalysts. The catalyst $\mathbf{L} * \mathbf{9}$ with different ee values were prepared by mixing $(S)-\mathbf{L} * \mathbf{9}(99 \%$ ee $)$ and (R) $\mathbf{L} * 9(99 \%$ ee) in appropriate ratios.

Entry	Catalyst ee (\%)	Product ee (\%)
$\mathbf{1}$	99	94
$\mathbf{2}$	75	66
$\mathbf{3}$	50	43
$\mathbf{4}$	25	21
$\mathbf{5}$	0	0
$\mathbf{6}$	-25	-21
$\mathbf{7}$	-50	-41
$\mathbf{8}$	-75	-66
$\mathbf{9}$	-99	-93

Time-course experiment with $\mathrm{CuI} / \mathrm{L} * 9$

(\pm)-E1

A1

1

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(3.2 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$
$\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5-bis(trifluoromethyl)aniline A1 ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of $\mathbf{1}$ and recovered $\mathbf{E 1}$ were determined by HPLC analysis.

Time-course experiment with CatA

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CatA ($2.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5bis(trifluoromethyl)aniline $\mathbf{A 1}(11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of $\mathbf{1}$ and recovered $\mathbf{E} 1$ were determined by HPLC analysis.

Time-course experiment with premixing

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} * 9(3.2 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 3,5 -bis(trifluoromethyl)aniline $\mathbf{A 1}$ (11.5 mg , $0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL). Then, the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . Next, the mixture was stirred at room temperature for 10 min . After that, 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv) was added into the mixture and the reaction mixture was stirred at room temperature for appropriate time. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The product was then separated by preparative TLC. The ee values of $\mathbf{1}$ and recovered E1 were determined by HPLC analysis.

Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L * 9}$ ($12.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), N-allyl-2-chloro- N-methyl-2-phenylbutanamide E44 ($60.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), 3,5-bis(trifluoromethyl)aniline A1 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$ to $3 / 1$) to yield the product 97 as a colorless oil ($25.7 \mathrm{mg}, 51 \%$ yield, $3: 1 \mathrm{dr}$) and 98 as a colorless oil ($43.4 \mathrm{mg}, 49 \%$ yield, 95% ee).

4-(Chloromethyl)-3-ethyl-1-methyl-3-phenylpyrrolidin-2-one (97)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.11(\mathrm{~m}, 5 \mathrm{H}), 3.77-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.28-2.71(\mathrm{~m}, 6 \mathrm{H})$, $2.18-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.75 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2.24 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,175.5,140.9,138.2,128.6,128.5,127.2,127.1,127.0$, $126.9,55.9,55.4,50.9,50.5,47.0,45.1,43.3,43.0,30.0,29.7,28.3,24.2,9.1,9.0$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 252.1150$, found 252.1149.
(S)-N-Allyl-2-((3,5-bis(trifluoromethyl)phenyl)amino)- N -methyl-2-phenylbutanamide (98)

98
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+30\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=5.65 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.11 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 5.69-5.00(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.34(\mathrm{~m}$, $5 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,145.2,140.6,131.84,131.82(\mathrm{q}, ~ J=32.3 \mathrm{~Hz}$), 129.1, $128.1,127.0,123.5(\mathrm{q}, J=271.0 \mathrm{~Hz}), 117.8,113.31-113.26(\mathrm{~m}), 109.5-109.4(\mathrm{~m}), 66.0,52.8$, 35.4, 23.3, 8.2.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.35$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 445.1709$, found 445.1709.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(18.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 14(16.2 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (1.0 mL). Then, the mixture was stirred at room temperature for 0.5 h . After that, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane E45 ($68.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), dimethyl 5 -aminoisophthalate A9 ($62.7 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.5 equiv), and anhydrous 1,4-dioxane (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 120 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$ to $5 / 1$) to yield the product 99 as a colorless oil ($6.3 \mathrm{mg}, 7 \%$ yield, $2: 1 \mathrm{dr}$) and 100 as a colorless oil ($23.2 \mathrm{mg}, 25 \%$ yield, $86 \% \mathrm{ee}$).

Dimethyl 5-amino-4-((2-((triisopropylsilyl)ethynyl)cyclopentyl)methyl)isophthalate (99)

99
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.34 \mathrm{H}), 7.80(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.66 \mathrm{H}), 7.44-$
$7.43(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 0.68 \mathrm{H}), 4.09(\mathrm{~s}, 1.32 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 6 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.06-$ $3.02(\mathrm{~m}, 0.66 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 0.34 \mathrm{H}), 2.42-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.60$ $(\mathrm{m}, 5 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,168.3,166.6,146.0,145.6,131.9,131.85,131.77,130.4$, $128.34,128.26,121.3,121.0,118.8,118.7,112.4,111.1,84.3,80.7,52.19,52.15,52.14,52.10$, 47.0, 45.7, 38.0, 36.3, 33.0, 32.8, 31.3, 30.4, 29.9, 28.6, 23.2, 21.6, 18.7, 18.6, 11.34, 11.28.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 472.2878$, found 472.2876 .

Dimethyl (R)-5-((1-(triisopropylsilyl)oct-7-en-1-yn-3-yl)amino)isophthalate (100)

100
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}=+71\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), t_{R} $($ major $)=21.71 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=26.14 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.87-5.77(\mathrm{~m}$, 1H), $5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (s, 6H), 2.19 $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,146.9,138.1,131.2,120.4,119.1,115.0,107.1,84.3,52.2$, 46.4, 34.9, 33.2, 25.1, 18.4, 11.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 472.2878$, found 472.2874 .
EPR Experiments for the detection of intermediate during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5-bis(trifluoromethyl)aniline A1 ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 6 h . Next, 5,5-dimethyl-1-pyrroline N-oxide DMPO (11.3 $\mathrm{mg}, 0.10 \mathrm{mmol}, 2.0$ equiv) was added and the reaction mixture was stirred at rt for another 1 h . The resulting reaction mixture was analyzed by EPR. The tertiary carbon-centered radicals generated in the process of atom transfer would be affected by steric hindrance and then isomerized to oxygen-centered radicals. A distant signal of the persistent nitroxyl radical 101 was formed. Meanwhile, the proposed radical adducts 101 were consistent with the results of ESIHRMS.

Effect of nucleophile and ligand on reaction initiation

(\pm)-E1
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L}^{*} 9(3.2 \mathrm{mg}, 0.0075 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($13.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by 1 H NMR spectra (recovery of E1 was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining $\mathbf{E} 1>119 \%)$. Although we failed to synthesize the chiral ligand-chelated $\mathrm{Cu}(\mathrm{I})$-amido complex, a control experiment without A1 showed that no conversion of $\mathbf{E} 1$ was observed. Thus, it is the transmetalation of Cu^{I} with the (hetero)aromatic amine that possibly occurs firstly rather than the
single electron-transfer between Cu^{I} and $\mathbf{E 1}$.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 2-chloro-1-morpholino-2-phenylbutan-1-one E1 ($16.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), 3,5bis(trifluoromethyl)aniline A1 ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by 1H NMR spectra (recovery of E1 was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining E1 $>119 \%$). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

8. References

1. Liu, L.; Guo, K.-X.; Tian, Y.; Yang, C.-J.; Gu, Q.-S.; Li, Z.-L.; Ye, L.; Liu, X.-Y. CopperCatalyzed Intermolecular Enantioselective Radical Oxidative $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H} / \mathrm{C}(\mathrm{sp})-\mathrm{H}$ CrossCoupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. Angew. Chem., Int. Ed. 2021, 60, 26710-26717.
2. Zhang, H.; Chen B.; Zhang, G. Enantioselective 1,2-Alkylhydroxylmethylation of Alkynes via Chromium/Cobalt Cocatalysis. Org. Lett. 2020, 22, 656-660.
3. Hu, B.; Bezpalko, M. W.; Fei, C.; Dickie, D. A.; Foxman, B. M.; Deng, L. Origin of and a Solution for Uneven Efficiency by Cinchona Alkaloid-Derived, Pseudoenantiomeric Catalysts for Asymmetric Reactions. J. Am. Chem. Soc. 2018, 140, 13913-13920.
4. Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z.-Q. Surgical Cleavage of Unstrained $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ Bonds in General Alcohols for Heteroaryl C-H Alkylation and Acylation. Adv. Synth. Catal. 2019, 361, 4568-4574.
5. Sarkar, S. M.; Taira, Y.; Nakano, A.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Organocatalytic Asymmetric Synthesis of Quinine and Quinidine. Tetrahedron Lett. 2011, 52, 923-927.
6. Line, N. J.; Witherspoon, B. P.; Hancock, E. N; Brown, M. K. Synthesis of ent-[3]-Ladderanol: Development and Application of Intramolecular Chirality Transfer [2+2] Cycloadditions of Allenic Ketones and Alkenes. J. Am. Chem. Soc. 2017, 139, 14392-14395.
7. Jiang, S.-P.; Dong, X.-Y.; Gu, Q.-S.; Ye, L.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C($\left.\mathrm{sp}^{3}\right)^{-C}\left(\mathrm{sp}^{2}\right)$ Cross-Coupling. J. Am. Chem. Soc. 2020, 142, 19652-19659.
8. Wang, P.-F.; Yu, J.; Guo, K.-X.; Jiang, S.-P.; Chen, J.-J.; Gu, Q.-S.; Liu, J.-R.; Hong, X.; Li, Z.-L.; Liu, X.-Y. Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters. J. Am. Chem. Soc. 2022, 144, 6442-6452.
9. Kainz, Q. M., Matier, C. D., Bartoszewicz, A., Zultanski, S. L., Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light. Science 2016, 351, 681-684.
10. Wang, F.-L., Yang, C.-J., Liu, J.-R., Yang, N.-Y., Dong, X.-Y., Jiang, R.-Q., Chang, X.-Y., Li, Z.-L., Xu. G.-X., Yuan, D.-L., Zhang, Y.-S., Gu, Q.-S., Hong, X.; Liu, X.-Y. MechanismBased Ligand Design for Copper-Catalysed Enantioconvergent C(sp ${ }^{3}$)-C(sp) Cross-Coupling of Tertiary Electrophiles with Alkynes. Nat. Chem. 2022. 14, 949-957.
11. Zhang, Y.-F.; Dong, X.-Y.; Cheng, J.-T.; Yang, N.-Y.; Wang, L.-L.; Wang, F.-L.; Luan, C.; Liu, J.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J. Am. Chem. Soc. 2021, 143, 15413-15419.

9. NMR spectra

$\stackrel{\circ}{\circ}$
$\underset{\substack{\infty}}{\stackrel{\infty}{i}}$

1

$$
\begin{aligned}
& -63.34 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \\
& 2
\end{aligned}
$$

NGinas
$\stackrel{\Omega}{1}$
8
0
1

3

(

$$
\begin{aligned}
& 4
\end{aligned}
$$

(

6

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

(1000

 アーコーコーーーーーコ			

：

(

(10)

11

11

| 10 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 1 |
| :--- |
| $\mathrm{fl}(\mathrm{ppm})$ | |

[^1]

12

$$
\begin{aligned}
& 12
\end{aligned}
$$

$$
\begin{aligned}
& 14
\end{aligned}
$$

15

(200

$=$		잉ํ욷	8\％\％	さとっ゚
$\stackrel{F}{2}$		N0，	过年等	
।	／	\1	－1，	－1／

$\begin{array}{llllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ f 1(\mathrm{ppm})\end{array}$
(2)

18

$\stackrel{\circ}{\square} \stackrel{\circ}{\square}$
$\stackrel{\cong}{\infty}$

18

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

s III $1 / 1$

21

(

22

10	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \text { f1 } \end{array}$	${ }^{90}$	80	70	60	50	40	30	20	10

(20)

26

$$
\begin{aligned}
& \text { Coses) } \\
& 28
\end{aligned}
$$

$$
\begin{aligned}
& 29
\end{aligned}
$$

$$
\begin{aligned}
& 31
\end{aligned}
$$

(10)

34

34

$$
\begin{aligned}
& \text { ハ্ড } \\
& 34
\end{aligned}
$$

35


```
\(\stackrel{+}{8}\)
\(\stackrel{y}{子}\)
\(\vdots\)
\(\stackrel{\underset{\sim}{7}}{\underset{1}{\sim}}\)
```


35

$$
\begin{aligned}
& 35
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cosces } \\
& \stackrel{\overline{e r}}{\dot{i}}
\end{aligned}
$$

[^2]

40

$$
\stackrel{\infty}{\underset{\sim}{\sim}} \stackrel{ }{\underset{\sim}{\sim}}
$$

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

42

$\underbrace{\infty \rightarrow \mid}$
 1

管
$\stackrel{\circ}{6}$

| .0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | $-($ |
| :--- |

$\begin{array}{cc}\bar{j} & \stackrel{N}{\infty} \\ 1 & 1\end{array}$

43

44

45

[^3]

49

[^4]

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

52

－	\bigcirc	\bigcirc	网号换	\cdots ¢n	N8\％	べへ		
¢	－	＇${ }^{\text {¢ }}$	ำิํ 처	$\stackrel{\circ}{\circ}$－	$\stackrel{\text { N }}{ }$		\cdots	$\stackrel{\square}{1}$
1	1	11	，	$1 \leqslant$	N	ア人	1	$\stackrel{1}{1}$

\pm	Q	\bigcirc	¢ N°
Ni	8	¢ ¢	－へ へ
｜	1	11	ir

ल－	$\cdots{ }^{\sim}{ }^{\circ}$	$\stackrel{\sim}{\circ}{ }_{0}$	8	$\bar{\sigma}$
ふio	Nべ	Oiが	\cdots	－
।	い	$\bigcirc 1$	｜	｜

55

56

$$
\begin{aligned}
& 56
\end{aligned}
$$

\qquad

 $\stackrel{8}{i}$

59

60

63

(s)
$20 \begin{array}{llllllllllllllllllllllllllllll}10 & 10 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210 & -2 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

64

64

4 9 9			$\begin{aligned} & \text { NO } \\ & \underset{N}{\mathrm{~N}} \stackrel{0}{\circ} \end{aligned}$		$\underset{\text { N }}{\text { N }}$	$\stackrel{\text { J }}{\substack{\text { d }}}$
-	1 \1	<1,	+	\	\|	\|

$\begin{aligned} & i \\ & i o \end{aligned}$	
1	1111

$\underset{\underset{\sim}{\infty}}{\stackrel{m}{\infty}} \stackrel{m}{\infty}$

$\underbrace{\infty}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

78

79

$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$

79

81

82

00
100
$\mathrm{f} 1(\mathrm{ppm})$

86

87

88

$\stackrel{\infty}{n}$	\%	
-	$\stackrel{+}{1}$	
+		吹

88

90
$\begin{array}{llllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \\ \mathrm{fl} 1\end{array}$
 σ
$\stackrel{\sigma}{2}$
$\stackrel{1}{1}$

91

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | | 10 | 10 |
| :--- |

$$
\begin{aligned}
& 91
\end{aligned}
$$

$$
\begin{array}{cc}
& \stackrel{\circ}{6} \\
\stackrel{\circ}{1} & \stackrel{0}{0} \\
1 & 1
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
8.8 \\
4 \\
4
\end{array} \\
& 93
\end{aligned}
$$

00
100
$\mathrm{f} 1(\mathrm{ppm})$
Me,

95

\bigcirc	へ	$\stackrel{\infty}{\sim}$ N
N	筞	
1	｜	1 1

N8＊	त¢	26	$\overline{0}$
N「ペ	\％io	¢	\cdots
い	11	11	

$\stackrel{\varrho}{\infty}$

$\stackrel{\square}{\square}$

97

100

10. HPLC spectra

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.252	8379238	51.690
2	11.161	7831270	48.310

mAU

Peak Table
PDA Ch 1254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	9.305	17399663	97.424
2	11.233	460063	2.576

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.257	3222722	49.807
2	8.855	3247758	50.193

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.247	6777471	98.206
2	8.895	123779	1.794

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.365	7021775	49.953
2	13.397	7034969	50.047

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.395	2339293	16.884
2	13.378	11515513	83.116

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.879	4676537	51.825
2	16.995	4347134	48.175

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.757	35030685	97.887
2	17.119	756323	2.113

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	18.663	8493199	50.028
2	22.770	8483577	49.972

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	18.480	16198915	96.909
2	23.171	516728	3.091

mAU

Peak Table
PDA Ch1 254nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	10.250	11464718	49.790
2	13.779	11561382	50.210

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.216	19670775	97.147
2	13.922	577782	2.853

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.407	10143934	49.924
2	8.556	10174849	50.076

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.511	21315167	95.560
2	8.548	990411	4.440

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.952	4048646	49.926
2	11.692	4060634	50.074

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.099	8105783	96.805
2	11.914	267510	3.195

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.729	5478731	49.913
2	16.655	5497730	50.087

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.613	12907360	98.084
2	16.775	252106	1.916

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.530	3857316	49.999
2	12.176	3857437	50.001

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.468	6594309	98.025
2	12.165	132837	1.975

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.976	9464796	51.601
2	14.662	8877439	48.399

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.122	34285364	97.522
2	16.087	871070	2.478

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.483	14213513	50.050
2	29.063	14185330	49.950

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.738	336875	1.758
2	29.357	18826665	98.242

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.168	9674697	49.989
2	16.626	9678875	50.011

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.261	1172923	5.527
2	16.531	20049411	94.473

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.616	3228188	50.111
2	12.736	3213837	49.889

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.597	8007732	96.682
2	12.769	274838	3.318

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.522	7743454	50.110
2	18.959	7709434	49.890

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.721	495001	3.226
2	18.745	14847916	96.774

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.570	13205326	49.520
2	11.380	13461129	50.480

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.895	461470	1.981
2	11.201	22838901	98.019

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.326	6970413	50.052
2	14.506	6955913	49.948

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	12.496	200006	1.408
2	14.336	14007499	98.592

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	tTime min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area $\%$
1	5.052	BV	0.1282	4452.68262	539.76074	49.6947
2	5.574	VV R	0.1458	4507.38721	478.70944	50.3053
Totals	:			8960.06982	018.47018	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area \%
1	5.061	BB	0.1203	100.085	12.650	2.8531
2	5.579	BV R	0.1411	407.86	78.25	7.1469

Totals : 3507.95414390 .90616

Signal 1: DAD1 A, Sig=254,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.093	VV R	0.1509	3636.41284	375.78473	49.9678
2	7.163	BB	0.1816	3641.10156	304.37360	50.0322
Total	s :			7277.51440	680.15833	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.100	BV R	0.1475	145.91388	14.48500	3.1272
2	7.156	VV R	0.1876	4519.97510	371.99811	96.8728

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.787	3600654	49.995
2	16.121	3601319	50.005

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.807	8170260	97.783
2	16.223	185280	2.217

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.839	3044656	49.786
2	7.889	3070876	50.214

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.781	7944768	97.680
2	7.847	188706	2.320

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.778	6627952	49.948
2	19.711	6641669	50.052

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.674	15687285	97.323
2	19.917	431520	2.677

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.176	6548523	49.956
2	11.449	6560090	50.044

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.127	15025437	96.906
2	11.501	479803	3.094

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	13.023	5130529	50.116
2	15.418	5106760	49.884

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.286	327969	3.160
2	15.748	10050656	96.840

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.014	4930785	49.841
2	19.376	4962197	50.159

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.803	11708387	96.792
2	19.193	388069	3.208

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.126	5342231	49.852
2	12.327	5373959	50.148

Peak Table
PDA Ch1 254nm

Peak $\#$	Ret. Time	Area	Area\%
1	11.210	185108	3.631
2	12.368	4912808	96.369

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.145	13655774	48.280
2	18.711	14628540	51.720

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.174	8483914	11.407
2	18.587	65892596	88.593

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.444	6125469	50.035
2	8.943	6116790	49.965

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.412	14873363	97.688
2	8.882	352050	2.312

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.940	7907943	49.883
2	10.746	7945040	50.117

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.936	14407645	97.145
2	10.773	423403	2.855

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.650	7745635	50.080
2	14.902	7720820	49.920

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.650	13320985	97.009
2	14.935	410699	2.991

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	5.880	8145381	51.682
2	8.422	7615214	48.318

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	5.878	17487935	97.434
2	8.469	460500	2.566

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.141	10494892	51.846
2	10.535	9747684	48.154

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.045	20631337	96.444
2	10.329	760649	3.556

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.357	6991462	49.865
2	9.768	7029192	50.135

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.347	6117244	22.862
2	9.738	20640030	77.138

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area $\%$
1	14.942	4045653	50.067
2	16.176	4034769	49.933

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area $\%$
1	15.027	10348277	95.089
2	16.340	534507	4.911

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	15.967	9143908	49.970
2	18.145	9154984	50.030

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	15.969	17607721	93.714
2	18.224	1181058	6.286

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	11.666	11422044	50.069
2	15.675	11390530	49.931

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	11.716	28849839	97.165
2	15.887	841802	2.835

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	14.354	1098143	50.062
2	16.101	1095442	49.938

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.334	1927152	95.304
2	16.128	94954	4.696

Signal 5: DAD1 E, Sig=300,4 Ref $=360,100$
$\left.\begin{array}{cccccc|}\begin{array}{c}\text { Peak } \\ \#\end{array} & \begin{array}{c}\text { RetTime } \\ \text { [min] }\end{array} & \text { Type } & \begin{array}{c}\text { Width } \\ \text { [min] }\end{array} & \begin{array}{c}\text { Area } \\ \text { [mAU*s] }\end{array} & \begin{array}{c}\text { Height } \\ \text { [mAU] }\end{array}\end{array} \begin{array}{c}\text { Area } \\ \%\end{array}\right]$

Signal 5: DAD1 E, Sig=300,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	18.469	BB	0.4853	1535.05518	44.18349	5.9403
2	23.818		0.6676	$2.43063 e 4$	563.11780	94.0597
Totals	S :			2.58414 e 4	607.30129	

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.531	3558422	50.126
2	17.432	3540462	49.874

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.486	6851154	93.319
2	17.421	490505	6.681

maU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	20.176	3764110	50.303
2	27.239	3718733	49.697

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	20.105	20040465	93.387
2	27.303	1419237	6.613

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.059	3975340	50.153
2	20.638	3951069	49.847

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.015	8384574	90.759
2	20.754	853685	9.241

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	11.903	5678932	50.027
2	13.646	5672797	49.973

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	12.307	29083474	97.210
2	13.948	834789	2.790

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.353	2062856	52.675
2	17.346	1853353	47.325

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.302	5529300	93.764
2	17.346	367712	6.236

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.335	1925871	50.036
2	16.220	1923134	49.964

mAU

Peak Table
PDA Ch 1254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	14.361	688747	94.232
2	16.234	42158	5.768

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.182	3105445	49.980
2	22.561	3107889	50.020

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.123	6111308	94.000
2	22.600	390088	6.000

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.390	11104062	50.023
2	14.729	11093782	49.977

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.394	23031345	90.426
2	14.756	2438490	9.574

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.404	3729709	49.992
2	9.985	3730854	50.008

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.422	3315330	92.325
2	10.033	275609	7.675

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.158	4595424	49.657
2	13.672	4658990	50.343

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.159	9206389	88.895
2	13.689	1150078	11.105

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.491	1893278	49.993
2	10.539	1893782	50.007

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	6.486	2432257	92.069
2	10.530	209523	7.931

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.412	9717773	50.015
2	16.122	9712016	49.985

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.401	25401843	86.762
2	16.172	3875709	13.238

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.521	9462229	49.938
2	10.413	9485886	50.062

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.508	20591031	88.034
2	10.404	2798868	11.966

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.410	2376763	50.104
2	14.232	2366883	49.896

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.433	4211974	84.336
2	14.230	782319	15.664

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.300	2508697	49.936
2	9.656	2515108	50.064

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.287	5956501	90.264
2	9.623	642446	9.736

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.437	5570584	49.764
2	14.872	5623416	50.236

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.432	13263270	89.975
2	14.869	1477832	10.025

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	5.122	7111820	49.963
2	8.738	7122269	50.037

maU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	4.846	20205970	83.909
2	8.347	3874918	16.091

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.040	3676900	49.755
2	13.875	3713121	50.245

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.127	3208091	8.435
2	13.961	34824810	91.565

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.303	2256512	50.000
2	20.227	2256524	50.000

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.215	10581378	91.952
2	20.221	926063	8.048

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.311	1763680	49.956
2	17.234	1766765	50.044

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.260	25643105	91.254
2	17.162	2457824	8.746

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	21.098	4331047	49.826
2	23.394	4361257	50.174

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	20.660	2402919	10.149
2	22.947	21273067	89.851

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.739	6310975	49.921
2	10.759	6330868	50.079

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.686	9935014	93.327
2	10.729	710415	6.673

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.326	11919880	49.672
2	13.454	12077277	50.328

mAU

Peak Table
PDA Ch 1254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	9.259	31810698	96.015
2	13.511	1320373	3.985

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.387	6477019	50.027
2	10.331	6469922	49.973

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.486	314396	3.339
2	10.357	9102569	96.661

mAU

Peak Table
PDA Ch1 254nm
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	23.077	804812	49.994
2	27.322	8006623	50.006

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	23.156	16357015	95.915
2	27.723	696673	4.085

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.890	16065238	49.825
2	27.132	16177974	50.175

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.734	23705205	95.477
2	27.074	1123003	4.523

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	20.254	11013818	50.017
2	24.207	11006387	49.983

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	20.068	20681630	97.465
2	24.422	537962	2.535

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.980	8445272	49.382
2	17.735	8656785	50.618

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.190	425160	2.981
2	17.635	13835858	97.019

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	13.578	13258084	50.010
2	17.655	13252858	49.990

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.534	24541569	97.120
2	17.763	727855	2.880

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.190	7822092	49.900
2	22.200	7853514	50.100

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.135	34164773	97.078
2	22.357	1028313	2.922

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.059	7400563	49.791
2	19.024	7462680	50.209

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.068	11726374	95.931
2	19.166	497429	4.069

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.080	3471036	49.889
2	12.224	3486483	50.111

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.068	8098968	94.344
2	12.225	485503	5.656

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	36.074	21471042	50.151
2	41.638	21341475	49.849

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	35.889	29118625	95.308
2	41.779	1433407	4.692

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.643	5286564	50.091
2	16.414	5267412	49.909

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.617	8159426	94.392
2	16.439	484807	5.608

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.854	5212710	49.831
2	19.278	5248017	50.169

(20) PDA Multi 1 254nm, 4nm

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area\%
1	13.858	7259074	90.815
2	19.349	734172	9.185

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.696	9993401	49.977
2	20.759	10002616	50.023

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.717	19884282	87.230
2	20.783	2910882	12.770

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.701	1432957	51.343
2	12.761	1357998	48.657

mAU

Peak Table
PDA Ch1 254nm

Peak	Ret. Time	Area	Area\%
1	9.740	226368	8.412
2	12.757	2464775	91.588

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.585	2875966	49.856
2	10.867	2892594	50.144

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.653	437548	9.986
2	10.864	3944028	90.014

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.815	VB R	0.4566	1092.95593	31.05813	49.9373
2	17.957	BV R	0.4873	1095.70178	28.96818	50.0627
Total				2188.65771	60.0263	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.765	MM R	0.6837	144.39362	3.51989	5.0695
2	17.841	MM R	0.8126	2703.87354	55.45856	94.9305
Total	s			2848.26715	58.9784	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

| Peak
 RetTime Type | Width
 \#
 [min] | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [min] | [mAU*s] | [mAU] | \% | |

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	14.069	BB	0.5908	1949.42114	52.06353	95.1626
2	15.904	BB	0.5473	99.09438	2.64386	4.8374
Total	s :			2048.51552	54.70740	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	9.821	BB	0.2851	1218.43982	65.46615	50.1681
2	11.214	BB	0.3238	1210. 27637	58.40165	49.8319
Total	s			2428.71619	123.86779	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.896	BV R	0.2553	1188.84741	71.75516	92.5625
2	11.189	BB	0.2218	95.52575	5.41448	7.4375
Totals :				1284.37316	77.16964	

Signal 3: DAD1 C, Sig=270,4 Ref=360,100

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.980	BB	0.5804	2785.78638	59.47653	50.1998
2	18.198	BB	0.6576	2763.61157	49.78625	49.8002
Total	s			5549.39795	109.26278	

Signal 3: DAD1 C, Sig=270,4 Ref=360,100

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.388	BV R	0.6430	8319.38965	185.57851	94.3790
2	17.356	BV R	0.6316	495.48523	9.36040	5.6210
Total	s			8814.87488	194.93891	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.119	BB	0.7769	3286.73804	50.39703	50.2445
2	14.803	BV R	0.8237	3254.74658	47.36638	49.7555
Total	s :			6541.48462	97.76340	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	12.099	BB	0.9028	9520.75488	138.36673	95.3925
2	14.874	BB	0.6809	459.85623	7.94888	4.6075
Total	s :			9980.61111	146.31561	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	9.217	MM R	1.6884	1.23480e4	121.88744	50.2238
2	16.519	MM R	2.5620	1.22380e4	79.61347	49.7762
Totals	s :			2.45860 e 4	201.50092	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak
 RetTime | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | $\%$ |

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	[mAU*s]	[mAU]	$\%$

Signal 7: DAD1 G, Sig=280,4 $\operatorname{Ref}=360,100$

| Peak
 RetTime | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Type | Width | Area | Height | Area |
| [min] | $[\mathrm{min}]$ | [mAU*s] | [mAU] | $\%$ |

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min]	$[$ min]	[mAU*s]	[mAU]	$\%$

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.339	BB	0.7442	3772.69067	73.57900	92.8931
2	21.088	MM R	1.0980	288.63312	4.38107	7.1069
Total	s :			4061.32379	77.96007	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.426	BB	0.6636	5851.25488	127.92675	49.8832
2	19.470	BB	0.9708	5878.66699	87.38762	50.1168
Tota	s :			1.17299 e 4	215.314	

Signal 7: DAD1 G, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.427	BB	0.6625	2655.62524	58.18132	92.6782
2	20.554	MM R	1.2305	209.80135	2.84160	7.3218
Total	s :			2865.42659	61.02292	

mAU

Peak Table
PDA Ch 1230 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.065	20003293	49.953
2	10.835	20041014	50.047

mAU

Peak Table
PDA Ch1 230 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.084	3758088	6.699
2	10.799	52339530	93.301

mAU

Peak Table
PDA Ch1 230nm

Peak\#	Ret. Time	Area	Area\%
1	20.068	16597175	50.089
2	24.010	16538014	49.911

mAU

Peak Table
PDA Ch1 230nm

Peak\#	Ret. Time	Area	Area\%
1	19.234	38371028	93.261
2	23.295	2772472	6.739

Signal 8: DAD1 H, Sig=280, 4 Ref=360, 100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	16.240	BV R	0.5330	2390.43188	61.84201	49.8122
2	18.630	BV R	0.5532	2408.46021	53.91419	50.1878
Total	s :			4798.89209	115.75620	

Signal 8: DAD1 H, Sig=280,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$[\mathrm{mAU}$ s]	[mAU]	$\%$

Signal 6: DAD1 F, Sig=260,4 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
----|------|----|-------|--------------------------|-|
$\begin{array}{lllllll}1 & 24.552 & \text { BB } & 0.5614 & 1143.88599 & 30.93312 & 49.9439\end{array}$
$\begin{array}{llllll}2 & 26.570 & \text { BB } & 0.6119 & 1146.45374 & 28.58419\end{array} 50.0561$

Totals :
$2290.33972 \quad 59.51730$

Signal 6: DAD1 F, Sig=260,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	24.555	BB	0.5654	1733.89319	47.33388	89.2366
2	26.584	BB	0.5313	209.13638	5.38235	10.7634
Total	s			1943.02957	52.71623	

Signal 5: DAD1 E, Sig=280,4 $\operatorname{Ref}=360,100$

Peak	RetTime	Type	Width	Area	Height
$\#$	[min]	[min]	$\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$[\mathrm{mAU}]$	Area

----|-------|----|------|----------|------------------|
$\begin{array}{lllllll}1 & 21.642 & \text { BB } & 0.7816 & 6558.12402 & 128.45256 & 50.2562\end{array}$
2 30.406 BB $1.01636491 .26221 \quad 96.30936 \quad 49.7438$

Totals :
$1.30494 \mathrm{e} 4 \quad 224.76192$

Signal 5: DAD1 E, Sig=280,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	21.523	BB	0.6221	679.73840	16.58545	13.1903
2	28.345	BB	0.8344	4473.57520	83.05232	86.8097
Tota	ls :			5153.31360	99.63777	

Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	37.126	MM R	1.6273	7769.32324	79.57370	50.0616
2	53.737	MM R	2.8302	7750.20947	45.63988	49.9384
Total	s :			1.55195 e 4	125.21358	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak					
RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mAU*s]	[mAU]	\%

Totals :
4.70421e4 397.16352

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mAU*s]	[mAU]	$\%$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	6.782	MM R	0.8319	362.84937	7.26934	2.3591
2	8.629	MM R	0.7988	1.50181 e 4	313.34598	97.6409
Totals				1.53810e4	320.61532	

Signal 1: DAD1 A, Sig=254, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	36.207	MM R	1.0070	1532.11865	25.35891	40.9048
2	47.485	MM R	1.2091	1547.77222	21.33422	41.3228
3	52.168	MM R	1.3267	333.82358	4.19354	8.9125
4	55.496	MM R	1.3174	331.85278	4.19832	8.8599
Total				3745.56723	55.08499	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	36.116	MM R	1.0405	97.93077	1.56864	1.9764
2	47.884	MM R	1.3217	4088.01074	51.54908	82.5016
3	52.552	MM R	1.1504	20.29354	2.94004e-1	0.4096
4	55.900	MM R	1.4640	748.83234	8.52524	15.1125
Total	s :			4955.06739	61.93696	

Signal 1: DAD1 A, Sig=254, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	32.982	BV	0.7221	1.01445 e 4	167.15199	50.0722
2	35.515	VV R	0.7909	1.01153 e 4	160.58565	49.9278
Total	s :			2.02598 e 4	327.73764	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	34.601	MM R	0.7755	236.65259	5.08600	2.5348
2	36.355	MM R	0.9358	9099.63672	162.07326	97.4652
Total	s			9336.28931	167.15926	

mAU

Peak Tab1e
PDA Ch2 210nm

Peak\#	Ret. Time	Area	Area\%
1	12.093	14231037	50.516
2	18.932	13940084	49.484

Peak Table
PDA Ch2 210nm

Peak\#	Ret. Time	Area	Area\%
1	11.833	32388943	94.081
2	18.685	2037768	5.919

Signal 1: DAD1 A, Sig=254, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	14.753	MM R	0.4390	3473.65674	131.86581	50.0988
2	17.296	VV R	0.4589	3459.95532	107.10828	49.9012
Total	s :			6933.61206	238.97410	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s	Height [mAU]	Area \%
1	14.882	MM R	0.3694	112.32715	5.06845	5.2330
2	17.369	MM R	0.5303	2034.18628	63.93575	94.7670
Total	s :			2146.51343	69.00420	

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	5.651	682543	49.950
2	7.180	683900	50.050

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	5.654	1664081	97.253
2	7.108	47001	2.747

mAU

Peak Table
PDA Ch1 230 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.727	12066639	50.210
2	26.044	11965789	49.790

mAU

Peak Table
PDA Ch1 230nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.711	17003463	92.978
2	26.136	1284246	7.022

[^0]: ${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E} 1(0.06 \mathrm{mmol}), \mathbf{A 1}(0.05 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 9(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0$ equiv) in benzene $(1.0 \mathrm{~mL})$ at T for t under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was based on HPLC analysis. ${ }^{b}$ THF was used.

[^1]:

[^2]: | 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
 | :--- |
 | $\mathrm{fl}(\mathrm{ppm})$ | |

[^3]: $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & & (\mathrm{ppm})\end{array}$

[^4]:

