Supporting Information for

Copper-Catalyzed Enantioconvergent Radical C(sp³)–N Cross-Coupling to Access Chiral α-Amino-β-Lactams

Jing-Jing Zheng, $^{\dagger,\ddagger,\$}$ Wei-Long Liu, $^{\dagger,\ddagger,\$}$ Qiang-Shuai Gu, $^{\perp}$ Zhong-Liang Li, $^{\perp}$ Ji-Jun Chen, †,‡,* and Xin-Yuan Liu †,‡,*

[†]Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China.

[‡]Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

[⊥]Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

[§]These authors contributed equally

Correspondence to: chenjj@sustech.edu.cn; liuxy3@sustech.edu.cn

Table of contents

1. Tables for experiments	
2. Figure for experiments	5
3. General information	7
4. The synthesis of ligands and alkyl halides	
5. Cross-coupling of racemic tertiary α-bromo-β-lactams and aromatic amines	19
6. Mechanistic studies	
7. References	
8. NMR spectra	
9. HPLC spectra	

1. Tables for experiments

Table S1. Reaction condition optimization with tertiary α -bromo- β -lactam E1 and aromatic amine A1: screening of different copper catalysts^{*a*}

O N Ph	+ H ₂ N- NO ₂	[Cu] (10 mol %) L*8 (15 mol %) Cs ₂ CO ₃ (3.0 equiv) EtOAc, Ar, 25 °C	
(±)- E1	A1		1
Entry	[Cu]	Yield (%)	ee (%)
1	CuI	89	88
2	CuBr SMe ₂	83	87
3	CuOAc	66	66
4	CuTc	84	87
5	$Cu(OAc)_2$	86	84
6	$Cu(acac)_2$	72	82

"Reaction conditions: (\pm)-E1 (0.05 mmol), A1 (0.05 mmol), [Cu] (10 mol %), L*8 (15 mol %), and Cs₂CO₃ (3.0 equiv) in EtOAc (1.0 mL) at rt for 72 h under argon; yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee value was based on HPLC analysis.

Table S2. Reaction condition optimization with tertiary α -bromo- β -lactam E1 and aromatic amine A1: screening of different inorganic bases^{*a*}

N Ph	H ₂ N-NO ₂ NO ₂	Cul (10 mol %) L*8 (15 mol %) base (3.0 equiv) EtOAc, Ar, 25 °C	N N N N Ph
(±)- E1	A1	~	1
Entry	Base	Yield (%)	ee (%)
1	Cs ₂ CO ₃	89	88
2	K ₃ PO ₄	83	88
3	K_2CO_3	85	88
4	Na ₂ CO ₃	7	86
5	KOMe	38	87
6	KO ^t Bu	74	85

^{*a*}Reaction conditions: (±)-E1 (0.05 mmol), A1 (0.05 mmol), CuI (10 mol %), L*8 (15 mol %), and base (3.0 equiv) in EtOAc (1.0 mL) at rt for 72 h under argon; yield was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee value was based on HPLC analysis.

2. Figure for experiments

Figure S1. X-ray crystallography for 18

complex	18
Empirical formula	$C_{28}H_{28}N_4O_5$
Formula weight (g mol ⁻¹)	500.54
Temperature/K	100.0(2)
Crystal system	triclinic
space group	P1
a/Å	10.1532(7)
b/Å	11.4776(8)
c/Å	12.4689(9)
a/°	70.110(2)
β/°	66.594(2)
$\gamma^{/\circ}$	84.186(2)
Volume/Å ³	1252.98(15)
Z	2
$\rho_{calc}g/cm^3$	1.327
μ/mm^{-1}	0.482
F(000)	528.0
Crystal size/mm ³	$0.21\times0.19\times0.18$
Radiation	$GaK\alpha (\lambda = 1.34138)$
Theta range for data collection/°	7.116 to 5146.894
Index ranges	-14<=h<=14, -16<=k<=16, -17<=k<=17
Reflections collected	76725
Independent reflections	14661 [$R_{int} = 0.0473$, $R_{sigma} = 0.0426$]

Data / restraints / parameters	14661 / 5 / 667
Goodness-of-fit on F ²	1.096
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0369, wR_2 = 0.1104$
Final R indexes [all data]	R1 = 0.0394, wR2 = 0.1133
Largest diff. peak and hole/e Å ³	0.28/-0.26
Flack parameter	0.09(5)

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. CH₂Cl₂, THF, and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. Cs₂CO₃ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 300 to 400 °C) for 2 minutes in vacuum. Anhydrous EtOAc, and benzene was purchased from J&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), EtOAc, CH₂Cl₂ and CH₃OH were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 spectrometers at 400 for ¹H NMR, 100 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR respectively, in CDCl₃ or DMSO-*d*₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation.

4. The synthesis of ligands and alkyl halides The synthesis of chiral ligand L*8

General procedure for preparation of L*8:

According to the literature reported procedure.¹ Under an argon atmosphere, to a solution of 2aminobenzonitrile (0.92 g, 7.8 mmol, 1.0 equiv) and (S)-2-amino-2-(naphthalen-1-yl)ethan-1-ol (1.46 g, 7.8 mmol, 1.0 equiv) in chlorobenzene (30 mL) was added dry ZnCl₂ (3.19 g, 23.4 mmol, 3.0 equiv) at once at rt. Then, the reaction mixture was reflux for 24 h. After completion (monitored by TLC), the reaction mixture was dissolved in water, EtOAc, and 2 mL ethylenediamine. Next, the reaction was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to afford the product **L8-1** as a white solid (0.67 g, 29% yield).

Under an argon atmosphere, to a solution of (*S*)-2-(4-(naphthalen-1-yl)-4,5-dihydrooxazol-2-yl)aniline **L8-1** (0.67 g, 2.3 mmol, 1.0 equiv) and quinoline-8-sulfonyl chloride (0.79 g, 3.5 mmol, 1.5 equiv) in pyridine (12 mL, 0.2 M) was added DMAP (56.2 mg, 0.5 mmol, 0.2 equiv) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with water and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (CH₂Cl₂/CH₃OH = 50/1 to 20/1) to afford the product **L*****8** as a white solid (0.56 g, 51% yield).

(S)-N-(2-(4-(Naphthalen-1-yl)-4,5-dihydrooxazol-2-yl)phenyl)quinoline-8-sulfonamide (L*8)

L*8

¹**H NMR** (400 MHz, CDCl₃) δ 12.85 (s, 1H), 8.69 – 8.68 (m, 1H), 8.63 – 8.61 (m, 1H), 8.09 – 8.06 (m, 1H), 7.98 – 7.93 (m, 2H), 7.85 – 7.77 (m, 4H), 7.67 – 7.60 (m, 2H), 7.56 – 7.52 (m, 2H), 7.48 – 7.44 (m, 1H), 7.35 – 7.28 (m, 2H), 6.97 – 6.93 (m, 1H), 6.22 (dd, *J* = 10.3, 8.5 Hz, 1H), 4.97 (dd, *J* = 10.3, 8.3 Hz, 1H), 4.13 (t, *J* = 8.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 151.4, 143.8, 139.6, 137.7, 136.5, 136.0, 133.8, 133.7,

132.4, 132.2, 130.4, 129.5, 129.1, 128.7, 128.0, 126.4, 125.8, 125.7, 125.1, 123.7, 122.7, 122.0, 121.5, 116.8, 113.0, 73.2, 67.1. HRMS (ESI) m/z calcd. for $C_{28}H_{22}N_3O_3S [M + H]^+ 480.1376$, found 480.1372.

The synthesis of α-bromo-β-lactams

$$\begin{array}{c} R^{2} & \overbrace{O}^{H} & 1 \end{array} \underbrace{) \text{ oxalyl chloride, DCM, 0 °C to rt}}_{2) R^{1}NH_{2}, NEt_{3}, DCM, 0 °C} & R^{2} & \overbrace{O}^{H} R^{1} & \xrightarrow{Br_{2}, NaOAc} & \overbrace{CHCl_{3}, -15 °C}^{Br} & R^{2} & \overbrace{O}^{H} R^{1} \\ \hline \\ \hline \\ K_{2}CO_{3}, \text{ acetone, 70 °C, 24 h}} & R^{1}-N & \overbrace{R^{2}}^{H} \\ \hline \\ R^{2} & R^{2} & R^{2} & R^{2} \\ \hline \\ R^{2} & R$$

General procedure 1:

According to the literature reported procedure² with slight modification. To a solution of the carboxylic acid (30.0 mmol) in anhydrous CH₂Cl₂ (50 mL) was added oxalyl chloride (4.57 g, 36.0 mmol, 1.2 equiv) at 0 °C, and then a few drops of DMF was added as catalyst. After warmed up to room temperature and stirred for 30 min, the resulting acyl chloride was concentrated under reduced pressure to remove the extra oxalyl chloride. The concentrated mixture was dissolved in anhydrous CH₂Cl₂ (50 mL) then cooled to -20 °C. Anhydrous triethylamine (7.59 g, 75.0 mmol, 2.5 equiv) and amine (33.0 mmol, 1.1 equiv) were added, and then the reaction mixture was warmed up to room temperature and stirred at that temperature. After completion (monitored by TLC), the reaction was quenched by the addition of 1.0 M HCl. The organic layer was washed by brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography to yield the acrylamide.

A mixture of acrylamide (30.0 mmol, 1.0 equiv) and sodium acetate (90.0 mmol, 3.0 equiv) in chloroform (0.4 M) was added bromine (Br₂) (60.0 mmol, 2.0 equiv) dropwise at -15 °C under argon atmosphere. After completion (monitored by TLC), the mixture was poured into a solution of 10% sodium thiosulfate, and then extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product, which was purified by flash chromatography. A mixture of the dibromide and potassium carbonate (90 mmol, 3.0 equiv) in acetone (0.1 M) was heated to reflux for 24 h under an argon atmosphere. After being cooled to room temperature, the mixture was filtered through a short pad of silica gel column. The filtrate was concentrated under reduced pressure, and then the residue was purified by column chromatography on silica gel.

General procedure 2:

According to the literature reported procedure. ³ The carboxylic acid (20 mmol, 1.0 equiv), 2-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate(V) (HBTU) (22 mmol, 1.1 equiv), *N*-ethyl-*N*-isopropylpropan-2-amine (DIPEA) (24 mmol, 1.2 equiv), and the corresponding amine (22 mmol, 1.1 equiv) was dissolved in CH₂Cl₂ (100 mL) and stirred at room temperature until TLC showed complete consumption of starting material. The solvent was removed under reduced pressure and the residue was dissolved in CH₂Cl₂ (40 mL) and washed with water (30 mL) and brine (30 mL) sequentially. The collected organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography to yield acrylamide.

According to the literature reported procedure² with slightly modification. To a mixture of acrylamide (20 mmol, 1.0 equiv) and sodium acetate (60 mmol, 3.0 equiv) in chloroform (0.4 M) was added bromine (20 mmol, 1.0 equiv) dropwise at -10 °C under an argon atmosphere. After being stirred for 10 min, the mixture was poured into a solution of 10% sodium thiosulfate, and then extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product, which was purified by flash chromatography.

A mixture of the dibromide and potassium carbonate (60 mmol, 3.0 equiv) in acetone (0.1 M) was heated to reflux for 24 h under an argon atmosphere. After being cooled to room temperature, the mixture was filtered through a short pad of silica gel column. The filtrate was concentrated under reduced pressure, and then the residue was purified by column chromatography on silica gel.

3-Bromo-1-cycloheptyl-3-phenylazetidin-2-one (E1)

E1

According to **General procedure 1** with 2-phenylacrylic acid (4.45 g, 30.0 mmol, 1.0 equiv) and cycloheptanamine (3.73 g, 33.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E1** as a white solid (2.74 g, 28% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.39 – 7.30 (m, 3H), 3.97 (s, 2H), 3.86 – 3.79 (m, 1H), 2.01 – 1.97 (m, 1H), 1.90 – 1.86 (m, 1H), 1.73 – 1.60 (m, 4H), 1.58 – 1.40 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.8, 137.8, 129.0, 128.8, 127.1, 59.7, 55.9, 53.5, 32.5, 32.3, 27.9, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}BrNO [M + H]^+ 322.0801$, found 322.0800.

3-Bromo-1-cyclohexyl-3-phenylazetidin-2-one (E2)

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20.0 mmol, 1.0 equiv) and cyclohexanamine (2.18 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E2** as a white solid (1.21 g, 20% overall yield).

E2

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.60 (m, 2H), 7.39 – 7.30 (m, 3H), 3.96 (s, 2H), 3.65 – 3.58 (m, 1H), 1.98 – 1.94 (m, 1H), 1.87 – 1.72 (m, 3H), 1.67 – 1.61 (m, 1H), 1.45 – 1.24 (m, 4H), 1.19 – 1.09 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 137.8, 128.9, 128.8 127.1, 59.4, 55.8, 51.6, 30.4, 30.2, 25.2, 24.64, 24.62.

HRMS (ESI) m/z calcd. for C₁₅H₁₉BrNO $[M + H]^+$ 308.0645, found 308.0644.

3-Bromo-1-cyclopentyl-3-phenylazetidin-2-one (E3)

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20.0 mmol, 1.0 equiv) and cyclopentanamine (1.87 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E3** as a white solid (2.03 g, 35% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.39 – 7.30 (m, 3H), 4.14 – 4.07 (m, 1H), 3.97 – 3.93 (m, 2H), 1.94 – 1.79 (m, 2H), 1.77 – 1.56 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 164.4, 137.7, 128.9, 128.7, 127.0, 59.3, 56.1, 53.6, 29.9, 29.8, 23.91, 23.87.

HRMS (ESI) m/z calcd. for C₁₄H₁₇BrNO $[M + H]^+$ 294.0488, found 294.0486.

3-Bromo-1-cyclopropyl-3-phenylazetidin-2-one (E4)

E4

According to **General procedure 1** with 2-phenylacrylic acid (1.48 g, 10.0 mmol, 1.0 equiv) and cyclopropanamine (0.76 mL, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **E4** as a yellowish solid (0.74 g, 28% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2H), 7.39 – 7.31 (m, 3H), 3.93 (q, *J* = 5.9 Hz, 2H), 2.64 – 2.59 (m, 1H), 0.88 – 0.75 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 165.3, 137.6, 129.0, 128.8, 127.1, 59.6, 58.6, 24.6, 5.3.

HRMS (ESI) m/z calcd. for $C_{12}H_{13}BrNO [M + H]^+$ 266.0175, found 266.0173.

3-Bromo-1-ethyl-3-phenylazetidin-2-one (E5)

E5

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20.0 mmol, 1.0 equiv) and ethylamine hydrochloride (1.79 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **E5** as a yellowish oil (1.40 g, 28% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.39 – 7.30 (m, 3H), 4.00 – 3.97 (m, 2H), 3.41 – 3.26 (m, 2H), 1.18 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.6, 137.7, 129.0, 128.8, 127.1, 60.1, 57.4, 36.8, 12.2. HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNO [M + H]⁺ 254.0175, found 254.0174.

3-Bromo-1-(*tert*-butyl)-**3**-phenylazetidin-**2**-one (E6)

According to **General procedure 2** with 2-phenylacrylic acid (2.00 g, 13.5 mmol, 1.0 equiv) and 2-methylpropan-2-amine (1.09 g, 14.9 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E6** as a white solid (1.14 g, 30% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.40 – 7.31 (m, 3H), 3.95 – 3.91 (m, 2H), 1.36 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 163.8, 137.9, 128.9, 128.8, 127.1, 58.9, 55.4, 53.9, 27.4. HRMS (ESI) m/z calcd. for C₁₃H₁₇BrNO [M + H]⁺ 282.0488, found 282.0486.

1-(Adamantan-1-yl)-3-bromo-3-phenylazetidin-2-one (E7)

E7

According to **General procedure 2** with 2-phenylacrylic acid (2.00 g, 13.5 mmol, 1.0 equiv) and adamantan-1-amine (2.25 g, 14.9 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product E7 as a white solid (0.72 g, 15% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.39 – 7.30 (m, 3H), 3.92 (s, 2H), 2.12 – 2.10 (m, 3H), 2.00 – 1.99 (m, 6H), 1.69 – 1.67 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.7, 138.0, 128.9, 128.8, 127.1, 58.8, 54.5, 54.4, 40.4, 36.0, 28.9. HRMS (ESI) m/z calcd. for C₁₉H₂₃BrNO [M + H]⁺ 360.0958, found 360.0956.

1-Benzyl-3-bromo-3-phenylazetidin-2-one (E8)

E8

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20 mmol, 1.0 equiv) and phenylmethanamine (2.36 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E8** as a white solid (2.95 g, 47% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.40 – 7.31 (m, 6H), 7.25 – 7.22 (m, 2H), 4.55 (d, *J* = 15.1 Hz, 1H), 4.38 (d, *J* = 15.1 Hz, 1H), 3.90 – 3.86 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 137.5, 134.2, 129.1, 129.0, 128.9, 128.1, 127.1, 60.5, 57.6, 46.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{15}BrNO [M + H]^+$ 316.0332, found 316.0331.

3-Bromo-1-(4-(tert-butyl)benzyl)-3-phenylazetidin-2-one (E9)

E9

According to **General procedure 1** with 2-phenylacrylic acid (4.45 g, 30.0 mmol, 1.0 equiv) and (4-(*tert*-butyl)phenyl)methanamine (5.39 g, 33.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E9** as a white solid (3.59 g, 32% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.40 – 7.31 (m, 5H), 7.17 – 7.14 (m, 2H), 4.52 (d, *J* = 15.1 Hz, 1H), 4.36 (d, *J* = 15.1 Hz, 1H), 3.90 – 3.87 (m, 2H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 151.1, 137.6, 131.1, 129.1, 128.9, 127.8, 127.1, 125.9, 60.5, 57.6, 45.8, 34.6, 31.3.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}BrNO [M + H]^+ 372.0958$, found 372.0959.

3-Bromo-1-(4-bromobenzyl)-3-phenylazetidin-2-one (E10)

E10

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20.0 mmol, 1.0 equiv) and (4-bromophenyl)methanamine (4.09 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **E10** as a yellowish solid (2.87 g, 37% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2H), 7.49 – 7.47 (m, 2H), 7.40 – 7.32 (m, 3H), 7.13 – 7.11 (m, 2H), 4.51 (d, *J* = 15.3 Hz, 1H), 4.33 (d, *J* = 15.3 Hz, 1H), 3.90 – 3.85 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 137.3, 133.3, 132.2, 129.7, 129.2, 128.9, 127.1, 122.1, 60.5, 57.6, 45.6.

HRMS (ESI) m/z calcd. for $C_{16}H_{14}Br_2NO [M + H]^+$ 393.9437, found 393.9434.

3-Bromo-1-(4-methoxybenzyl)-3-phenylazetidin-2-one (E11)

E11

According to **General procedure 1** with 2-phenylacrylic acid (1.48 g, 10.0 mmol, 1.0 equiv) and (4-methoxyphenyl)methanamine (1.44 mL, 11.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the

product E11 as a white solid (0.40 g, 12% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.39 – 7.30 (m, 3H), 7.17 – 7.14 (m, 2H), 6.89 – 6.85 (m, 2H), 4.49 (d, *J* = 14.9 Hz, 1H), 4.32 (d, *J* = 14.9 Hz, 1H), 3.86 – 3.82 (m, 2H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0, 159.4, 137.6, 129.5, 129.1, 128.9, 127.1, 126.2, 114.4, 60.4, 57.4, 55.3, 45.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{17}BrNO_2 [M + H]^+$ 346.0437, found 346.0435.

3-Bromo-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one (E12)

E12

According to **General procedure 1** with 2-phenylacrylic acid (2.96 g, 20.0 mmol, 1.0 equiv) and (4-(trifluoromethyl)phenyl)methanamine (3.85 g, 22.0 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E12** as a white solid (2.78 g, 36% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 4H), 7.41 – 7.33 (m, 5H), 4.63 (d, *J* = 15.5 Hz, 1H), 4.43 (d, *J* = 15.5 Hz, 1H), 3.94 – 3.89 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 138.5, 137.3, 130.4 (q, *J* = 32.6 Hz), 129.2, 129.0, 128.3, 127.1, 126.0 (q, *J* = 3.8 Hz), 122.5 (q, *J* = 273.4 Hz), 60.6, 57.8, 45.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.63.

HRMS (ESI) m/z calcd. for $C_{17}H_{14}BrF_{3}NO [M + H]^+ 384.0205$, found 384.0201.

3-Bromo-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2-one (E13)

E13

According to **General procedure 1** with 2-phenylacrylic acid (2.00 g, 13.5 mmol, 1.0 equiv) and 2-phenylpropan-2-amine (2.01 g, 14.9 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E13** as a white solid (2.74 g, 59% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.40 – 7.32 (m, 7H), 7.29 – 7.26 (m, 1H), 3.81 (d, *J* = 6.1 Hz, 1H), 3.76 (d, *J* = 6.2 Hz, 1H), 1.82 (s, 3H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.5, 143.9, 137.8, 129.0, 128.9, 128.8, 127.4, 127.2, 125.1, 59.4, 59.1, 55.7, 27.8, 27.5.

HRMS (ESI) m/z calcd. for C₁₈H₁₉BrNO [M + H]⁺ 344.0645, found 344.0643.

3-Bromo-3-phenyl-1-(o-tolyl)azetidin-2-one (E14)

E14

According to **General procedure 1** with 2-phenylacrylic acid (2.00 g, 13.5 mmol, 1.0 equiv) and *o*-toluidine (1.60 g, 14.9 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E14** as a white solid (2.46 g, 57% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.68 (m, 2H), 7.45 – 7.33 (m, 4H), 7.23 – 7.17 (m, 3H), 4.49 – 4.47 (m, 2H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.9, 137.4, 135.0, 132.3, 131.6, 129.2, 129.0, 127.21, 127.15, 126.6, 123.0, 60.5, 59.7, 18.9.

HRMS (ESI) m/z calcd. for $C_{16}H_{15}BrNO [M + H]^+$ 316.0332, found 316.0331.

3-Bromo-1-cycloheptyl-3-(4-fluorophenyl)azetidin-2-one (E15)

E15

According to **General procedure 1** with 2-(4-fluorophenyl)acrylic acid (0.83 g, 5.0 mmol, 1.0 equiv) and cycloheptanamine (0.62 g, 5.5 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E15** as a white solid (0.51 g, 30% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.09 – 7.03 (m, 2H), 3.97 – 3.92 (m, 2H), 3.85 – 3.78 (m, 1H), 2.03 – 1.96 (m, 1H), 1.92 – 1.85 (m, 1H), 1.75 – 1.65 (m, 2H), 1.63 – 1.41 (m, 8H).

¹³C NMR (100 MHz, CDCl₃) δ 163.6, 162.8 (d, *J* = 249.5 Hz), 133.8 (d, *J* = 3.4 Hz), 129.1 (d, *J* = 8.4 Hz), 115.9 (d, *J* = 21.8 Hz), 58.8, 56.0, 53.6, 32.5, 32.2, 27.9, 27.8, 24.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.61.

HRMS (ESI) m/z calcd. for $C_{16}H_{20}BrFNO [M + H]^+$ 340.0707, found 340.0704.

3-Bromo-3-(4-chlorophenyl)-1-cycloheptylazetidin-2-one (E16)

E16

According to **General procedure 1** with 2-(4-chlorophenyl)acrylic acid (1.03 g, 5.0 mmol, 1.0 equiv) and cycloheptanamine (0.62 g, 5.5 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E16** as a white solid (0.56 g, 32% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.36 – 7.33 (m, 2H), 3.96 – 3.91 (m, 2H), 3.85 – 3.78 (m, 1H), 2.02 – 1.95 (m, 1H), 1.91 – 1.84 (m, 1H), 1.73 – 1.62 (m, 4H), 1.58 – 1.41 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.4, 136.4, 135.0, 129.1, 128.5, 58.6, 55.8, 53.6, 32.5, 32.2, 27.9, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $C_{16}H_{20}BrClNO [M + H]^+$ 356.0411, found 356.0410.

3-Bromo-3-(4-bromophenyl)-1-cycloheptylazetidin-2-one (E17)

According to **General procedure 1** with 2-(4-bromophenyl)acrylic acid (1.48 g, 6.5 mmol, 1.0 equiv) and cycloheptanamine (0.81 g, 7.2 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E17** as a white solid (0.63 g, 24% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 4H), 3.96 – 3.91 (m, 2H), 3.84 – 3.77 (m, 1H), 2.01 – 1.94 (m, 1H), 1.90 – 1.84 (m, 1H), 1.73 – 1.40 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 163.3, 136.8, 132.0, 128.7, 123.2, 58.6, 55.7, 53.6, 32.4, 32.2, 27.80, 27.76, 24.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{20}Br_2NO [M + H]^+$ 399.9906, found 399.9906.

3-([1,1'-Biphenyl]-4-yl)-3-bromo-1-cycloheptylazetidin-2-one (E18)

According to **General procedure 1** with 2-([1,1'-biphenyl]-4-yl)acrylic acid (1.12 g, 5.0 mmol, 1.0 equiv) and cycloheptanamine (0.62 g, 5.5 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E18** as a white solid (0.24 g, 12% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 2H), 7.61 – 7.56 (m, 4H), 7.46 – 7.42 (m, 2H), 7.39 – 7.34 (m, 1H), 4.02 – 3.98 (m, 2H), 3.87 – 3.80 (m, 1H), 2.04 – 1.97 (m, 1H), 1.93 – 1.87 (m, 1H), 1.74 – 1.62 (m, 4H), 1.58 – 1.42 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.8, 141.9, 140.2, 136.7, 128.8, 127.7, 127.60, 127.55, 127.1, 59.6, 55.9, 53.6, 32.5, 32.3, 27.90, 27.86, 24.2.

HRMS (ESI) m/z calcd. for $C_{22}H_{25}BrNO [M + H]^+$ 398.1114, found 398.1112.

3-Bromo-3-(4-(*tert*-butyl)phenyl)-1-cycloheptylazetidin-2-one (E19)

According to **General procedure 1** with 2-(4-(*tert*-butyl)phenyl)acrylic acid (1.02 g, 5.0 mmol, 1.0 equiv) and cycloheptanamine (0.62 g, 5.5 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E19** as a white solid (0.16 g, 8% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.40 – 7.36 (m, 2H), 3.98 – 3.94 (m, 2H), 3.85 – 3.78 (m, 1H), 2.03 – 1.95 (m, 1H), 1.91 – 1.84 (m, 1H), 1.73 – 1.67 (m, 1H), 1.64 – 1.40 (m, 9H), 1.31(s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 152.1, 134.7, 126.8, 125.8, 59.9, 55.9, 53.4, 34.7, 32.5, 32.2, 31.2, 27.9, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $C_{20}H_{29}BrNO [M + H]^+$ 378.1427, found 378.1425.

3-Bromo-1-cycloheptyl-3-isopropylazetidin-2-one (E20)

E20

According to **General procedure 1** with 3-methyl-2-methylenebutanoic acid (1.46 g, 12.8 mmol, 1.0 equiv) and cycloheptanamine (1.59 g, 14.1 mmol, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **E20** as a colorless oil (0.71 g, 19% overall yield).

¹**H** NMR (400 MHz, CDCl₃) δ 3.81 - 3.74 (m, 1H), 3.52 - 3.48 (m, 2H), 2.04 (p, J = 6.6 Hz, 1H), 1.96 - 1.86 (m, 2H), 1.70 - 1.43 (m, 10H), 1.12 (d, J = 6.6 Hz, 3H), 1.02 (d, J = 6.7 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 165.0, 69.6, 53.0, 52.1, 34.2, 32.6, 32.2, 27.9, 27.8, 24.2, 24.1, 18.6, 18.5.

HRMS (ESI) m/z calcd. for $C_{13}H_{23}BrNO [M + H]^+ 288.0958$, found 288.0959.

5. Cross-coupling of racemic tertiary α-bromo-β-lactams and aromatic amines

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), **L*8** (14.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary α -bromo- β -lactam (0.20 mmol, 1.0 equiv), and aromatic amine (0.20 mmol, 1.0 equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Lrac (11.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary α -bromo- β -lactam (0.20 mmol, 1.0 equiv), and aromatic amine (0.20 mmol, 1.0 equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(R)-1-Cycloheptyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (1)

According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (64.2

mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline A1 (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 1 as a yellow solid (72.1 mg, 85% yield, 92% ee).

 $[\alpha]_{D}^{27} = -247 \ (c \ 0.5, \ CHCl_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 13.68 min, *t*_R (minor) = 17.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (t, *J* = 2.0 Hz, 1H), 7.55 (d, *J* = 2.0 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.38 – 7.28 (m, 3H), 7.24 – 7.22 (m, 1H), 4.14 (d, *J* = 5.7 Hz, 1H), 3.95 – 3.88 (m, 1H), 3.70 (d, *J* = 5.7 Hz, 1H), 2.16 – 2.04 (m, 2H), 1.87 – 1.572 (m, 4H), 1.69 – 1.51 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.9, 149.0, 147.5, 134.4, 129.3, 128.6, 125.7, 113.0, 106.9, 70.1, 54.2, 51.3, 32.8, 32.5, 27.8, 24.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₅N₄O₅ [M+H]⁺ 425.1819, found 425.1811.

(R)-1-Cyclohexyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (2)

According to **General Procedure A** with 3-bromo-1-cyclohexyl-3-phenylazetidin-2-one **E2** (61.6 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **2** as a yellow solid (80.0 mg, 98% yield, 88% ee).

 $[\alpha]_{D}^{27} = -256 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.82 min, *t*_R (minor) = 17.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (t, *J* = 2.0 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 2H), 7.47 – 7.43 (m, 2H), 7.36 – 7.30 (m, 3H), 7.25 (s, 1H), 4.13 (d, *J* = 5.8 Hz, 1H), 3.76 – 3.68 (m, 2H), 2.12 – 2.02 (m, 2H), 1.89 – 1.82 (m, 2H), 1.72 – 1.65 (m, 1H), 1.62 – 1.52 (m, 2H), 1.46 – 1.33 (m, 2H), 1.28 – 1.20 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.3, 149.0, 147.5, 134.4, 129.3, 128.6, 125.7, 113.0, 106.9, 70.0, 52.2, 51.1, 30.7, 30.4, 25.1, 24.63, 24.61.

NO₂

HRMS (ESI) m/z calcd. for C₂₁H₂₃N₄O₅ [M+H]⁺ 411.1663, found 411.1653.

(R)-1-Cyclopentyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (3)

3

According to **General Procedure A** with 3-bromo-1-cyclopentyl-3-phenylazetidin-2-one **E3** (58.8 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc =

3/1) to yield the product **3** as a yellow solid (76.8 mg, 97% yield, 89% ee).

 $[\alpha]_{D}^{27} = -259 \ (c \ 0.5, \ CHCl_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 17.54 min, t_R (minor) = 21.24 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (t, J = 2.5 Hz, 1H), 7.57 (d, J = 2.1 Hz, 2H), 7.45 – 7.43 (m, 2H), 7.36 – 7.30 (m, 3H), 7.26 (s, 1H), 4.25 – 4.18 (m, 1H), 4.12 (d, J = 5.8 Hz, 1H), 3.69 (d, J = 5.8 Hz, 1H), 2.06 – 1.66 (m, 8H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 149.0, 147.5, 134.5, 129.3, 128.6, 125.7, 113.1, 106.9, 70.0, 54.2, 51.6, 30.4, 30.0, 24.0.

HRMS (ESI) m/z calcd. for C₂₀H₂₁N₄O₅ [M+H]⁺ 397.1506, found 397.1498.

(*R*)-1-Cyclopropyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (4)

4

According to **General Procedure A** with 3-bromo-1-cyclopropyl-3-phenylazetidin-2-one E4 (53.2 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline A1 (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 4 as a yellow solid (55.0 mg, 75% yield, 87% ee). $[\alpha]_{D}^{27} = -407$ (*c* 0.25, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 13.92 min, t_R (minor) = 20.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.23 (m, 1H), 7.57 (d, J = 2.0 Hz, 2H), 7.45 – 7.42 (m, 2H), 7.37 – 7.31 (m, 3H), 6.98 – 6.93 (m, 1H), 4.09 (d, J = 5.9 Hz, 1H), 3.68 (d, J = 5.9 Hz, 1H), 2.80 – 2.75 (m, 1H), 1.04 – 0.85 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 149.1, 147.3, 134.4, 129.4, 128.8, 125.8, 113.1, 107.1, 70.6, 53.8, 24.7, 5.54, 5.46.

HRMS (ESI) m/z calcd. for C₁₈H₁₇N₄O₅ [M+H]⁺ 369.1193, found 369.1187.

(R)-3-((3,5-Dinitrophenyl)amino)-1-ethyl-3-phenylazetidin-2-one (5)

5

According to **General Procedure A** with 3-bromo-1-ethyl-3-phenylazetidin-2-one **E5** (50.8 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **5** as a yellow solid (70.0 mg, 98% yield, 90% ee).

 $[\alpha]_{D}^{27} = -248 \ (c \ 0.5, \ CHCl_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), t_R

 $(major) = 13.59 min, t_R (minor) = 16.46 min.$

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 (t, J = 2.0 Hz, 1H), 7.58 (d, J = 1.9 Hz, 2H), 7.48 – 7.44 (m, 2H), 7.39 – 7.32 (m, 3H), 6.87 (s, 1H), 4.12 (d, J = 5.7 Hz, 1H), 3.71 (d, J = 5.8 Hz, 1H), 3.56 – 3.41 (m, 2H), 1.33 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 149.1, 147.4, 134.5, 129.4, 128.7, 125.8, 113.1, 107.1, 71.3, 52.8, 37.1, 12.5.

HRMS (ESI) m/z calcd. for C₁₇H₁₇N₄O₅ [M+H]⁺ 357.1193, found 357.1188.

(R)-1-(Tert-butyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (6)

According to **General Procedure A** with 3-bromo-1-(*tert*-butyl)-3-phenylazetidin-2-one **E6** (56.4 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **6** as a yellow solid (73.8 mg, 96% yield, 91% ee).

 $[\alpha]_{D}^{27} = -270 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 25.83 min, *t*_R (minor) = 34.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (t, *J* = 1.7 Hz, 1H), 7.59 (d, *J* = 2.0 Hz, 2H), 7.44 – 7.41 (m, 2H), 7.34 – 7.27 (m, 4H), 4.11 (d, *J* = 5.6 Hz, 1H), 3.66 (d, *J* = 5.7 Hz, 1H), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.1, 147.6, 134.5, 129.4, 128.5, 125.7, 113.1, 106.8, 69.2, 54.2, 50.6, 27.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₁N₄O₅ [M+H]⁺ 385.1506, found 385.1501.

(R)-1-(Adamantan-1-yl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (7)

According to **General Procedure A** with 1-(adamatan-1-yl)-3-bromo-3-phenylazetidin-2-one E7 (72.1 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline A1 (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 7 as a yellow solid (89.3 mg, 97% yield, 91% ee). $|\alpha|_{D}^{27} = -256$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.76 min, t_R (minor) = 14.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (t, *J* = 2.0 Hz, 1H), 7.60 (d, *J* = 2.0 Hz, 2H), 7.43 - 7.39 (m 3H), 7.29 - 7.28 (m, 3H), 4.12 (d, *J* = 5.7 Hz, 1H), 3.66 (d, *J* = 5.8 Hz, 1H), 2.22 - 2.17 (m, 9H),

1.77 – 1.72 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.1, 147.8, 134.6, 129.3, 128.4, 125.7, 113.1, 106.7, 68.8, 55.0, 49.3, 40.8, 36.0, 29.0. HRMS (ESI) m/z calcd. for C₂₅H₂₇N₄O₅ [M+H]⁺ 463.1976, found 463.1972.

(R)-1-Benzyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (8)

According to **General Procedure A** with 1-benzyl-3-bromo-3-phenylazetidin-2-one **E8** (63.2 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **8** as a yellow solid (68.0 mg, 81% yield, 89% ee).

 $[\alpha]_{D}^{27} = -231$ (c 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.30 min, t_R (minor) = 12.4 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (t, *J* = 2.0 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 2H), 7.43 – 7.39 (m, 4H), 7.37 – 7.31 (m, 6H), 6.77 (s, 1H), 4.65 (d, *J* = 14.9 Hz, 1H), 4.52 (d, *J* = 14.9 Hz, 1H), 3.99 (d, *J* = 5.9 Hz, 1H), 3.59 (d, *J* = 5.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 149.1, 147.1, 134.3, 134.2, 129.4, 129.2, 128.9, 128.4, 125.8, 113.2, 107.4, 71.8, 53.2, 46.6.

HRMS (ESI) m/z calcd. for $C_{22}H_{19}N_4O_5 [M + H]^+ 419.1350$, found 419.1346.

(R)-1-(4-(Tert-butyl)benzyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (9)

9

According to **General Procedure A** with 3-bromo-1-(4-(*tert*-butyl)benzyl)-3-phenylazetidin-2one **E9** (74.5 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **9** as a yellow solid (85.9 mg, 91% yield, 90% ee). $|a|_{p}^{27} = -202$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 8.43 min, $t_{\rm R}$ (minor) = 10.05 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (t, *J* = 1.9 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 2H), 7.43 – 7.40 (m, 4H), 7.36 – 7.30 (m, 3H), 7.27 – 7.25 (m, 2H), 6.94 (s, 1H), 4.63 (d, *J* = 14.9 Hz, 1H), 4.50 (d, *J* = 14.9 Hz, 1H), 4.02 (d, *J* = 5.9 Hz, 1H), 3.60 (d, *J* = 5.9 Hz, 1H), 1.32 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃)δ 166.9, 151.4, 149.1, 147.2, 134.3, 131.0, 129.4, 128.8, 128.0, 126.1, 125.8, 113.2, 107.2, 71.7, 53.1, 46.2, 34.6, 31.2.

HRMS (ESI) m/z calcd. for C₂₆H₂₇N₄O₅ [M+H]⁺ 475.1976, found 475.1970.

(R)-1-(4-Bromobenzyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (10)

10

According to **General Procedure A** with 3-bromo-1-(4-bromobenzyl)-3-phenylazetidin-2-one **E10** (79.0 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **10** as a yellow solid (89.5 mg, 90% yield, 90% ee). $[\alpha]_{D}^{27} = -364$ (*c* 0.25, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.87 min, t_R (minor) = 17.41 min.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 8.56 (s, 1H), 7.97 (t, *J* = 2.0 Hz, 1H), 7.80 (d, *J* = 2.1 Hz, 2H), 7.60 – 7.57 (m, 2H), 7.47 – 7.39 (m, 4H), 7.35 – 7.28 (m, 3H), 4.55 (d, *J* = 15.2 Hz, 1H), 4.47 (d, *J* = 15.2 Hz, 1H), 3.76 (d, *J* = 6.0 Hz, 1H), 3.61 (d, *J* = 6.0 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4, 148.9, 148.6, 136.5, 135.5, 132.2, 130.8, 129.6, 128.8, 126.3, 121.4, 113.8, 106.1, 72.4, 54.4, 45.2.

HRMS (ESI) m/z calcd. for C₂₂H₁₈BrN₄O₅ [M+H]⁺ 497.0455, found 497.0459.

(R)-3-((3,5-Dinitrophenyl)amino)-1-(4-methoxybenzyl)-3-phenylazetidin-2-one (11)

11

According to **General Procedure A** with 3-bromo-1-(4-methoxybenzyl)-3-phenylazetidin-2-one **E11** (69.2 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **11** as a yellow solid (85.3 mg, 95% yield, 88% ee). $|a|_{D^{27}} = -208$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.44 min, *t*_R (minor) = 15.89 min.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 8.52 (s, 1H), 7.96 (t, *J* = 2.0 Hz, 1H), 7.79 (d, *J* = 2.0 Hz, 2H), 7.46 – 7.38 (m, 4H), 7.34 – 7.30 (m, 1H), 7.27 – 7.25 (m, 2H), 6.95 – 6.93 (m, 2H), 4.49 (d, *J* = 14.9 Hz, 1H), 4.41 (d, *J* = 14.8 Hz, 1H), 3.74 (s, 3H), 3.71 (d, *J* = 6.2 Hz, 1H). 3.55 (d, *J* = 6.0 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.1, 159.3, 149.0, 148.6, 136.6, 130.0, 129.6, 128.7, 127.7, 126.3, 114.7, 113.7, 106.1, 72.1, 55.6, 54.1, 45.2

HRMS (ESI) m/z calcd. for C₂₃H₂₁N₄O₆ [M+H]⁺ 449.1456, found 449.1450.

(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one (12)

12

According to **General Procedure A** with 3-bromo-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one **E12** (76.9 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **12** as a yellow solid (96.2 mg, 99% yield, 88% ee).

 $[\alpha]_{D}^{27} = -177 (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.52 min, t_R (minor) = 14.98 min.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 8.57 (s, 1H), 7.97 (t, *J* = 2.0 Hz, 1H), 7.81 (d, *J* = 2.0 Hz, 2H), 7.77 – 7.75 (m, 2H), 7.58 – 7.56 (m, 2H), 7.49 – 7.47 (m, 2H), 7.43 – 7.39 (m, 2H), 7.35 – 7.31 (m, 1H), 4.69 (d, *J* = 15.5 Hz, 1H), 4.61 (d, *J* = 15.5 Hz, 1H), 3.82 (d, *J* = 6.0 Hz, 1H), 3.66 (d, *J* = 6.1 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.6, 149.0, 148.6, 140.9, 136.5, 129.6, 129.3, 128.833 (q, *J* = 31.8 Hz), 128.826, 126.4, 126.2 (q, *J* = 3.8 Hz), 124.6 (q, *J* = 270.4 Hz), 113.8, 106.2, 72.6, 54.7, 45.4.

¹⁹**F NMR** (376 MHz, DMSO-d₆) δ -61.06.

HRMS (ESI) m/z calcd. for C₂₃H₁₈F₃N₄O₅ [M+H]⁺ 487.1224, found 487.1222.

(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2-one (13)

13

According to **General Procedure A** with 3-bromo-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2one **E13** (68.9 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **13** as a yellow solid (73.7 mg, 83% yield, 90% ee).

 $[\alpha]_{D}^{27} = -243 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 8.21 min, *t*_R (minor) = 11.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.52 (s, 2H), 7.48 – 7.44 (m, 4H), 7.39 – 7.27 (m, 6H), 7.20 (s, 1H), 3.99 (d, *J* = 5.9 Hz, 1H), 3.52 (d, *J* = 6.0 Hz, 1H), 1.92 (d, *J* = 2.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃)δ 166.5, 149.0, 147.4, 143.6, 134.4, 129.4, 128.8, 128.7, 127.7, 125.9, 125.2, 113.1, 107.0, 69.5, 59.6, 51.0, 27.9, 27.4. HRMS (ESI) m/z calcd. for C₂₄H₂₃N₄O₅ [M+H]⁺ 447.1663, found 447.1654.

(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(o-tolyl)azetidin-2-one (14)

14

According to **General Procedure A** with 3-bromo-3-phenyl-1-(*o*-tolyl)azetidin-2-one **E14** (63.2 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **14** as a yellow solid (82.5 mg, 99% yield, 80% ee).

 $[\alpha]_{D}^{27} = -231$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) =12.58 min, t_R (minor) = 22.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.59 – 7.56 (m, 4H), 7.42 – 7.34 (m, 4H), 7.28 – 7.21 (m, 3H), 7.14 (s, 1H), 4.53 (d, *J* = 6.0 Hz, 1H), 4.25 (d, *J* = 6.0 Hz, 1H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 165.0, 149.1, 147.1, 134.8, 134.2, 132.1, 131.7, 129.6, 129.0, 127.5, 126.7, 125.8, 122.5, 113.2, 107.3, 70.8, 56.0, 19.1.

HRMS (ESI) m/z calcd. for C₂₂H₁₉N₄O₅ [M+H]⁺ 419.1350, found 419.1353.

(R)-1-Cycloheptyl-3-((3,5-dinitrophenyl)amino)-3-(4-fluorophenyl)azetidin-2-one (15)

15

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-(4-fluorophenyl)azetidin-2one **E15** (68.1 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **15** as a yellow solid (77.5 mg, 88% yield, 88% ee).

 $[\alpha]_{D}^{27} = -250 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.20 min, t_R (minor) = 9.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 (t, J = 2.0 Hz, 1H), 7.59 (d, J = 2.0 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.09 (s, 1H), 7.06 – 7.00 (m, 2H), 4.10 (d, J = 5.9 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.71 (d, J = 5.9 Hz, 1H), 2.15 – 2.04 (m, 2H), 1.86 – 1.72 (m, 4H), 1.68 – 1.52 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.6, 162.7 (d, J = 247.2 Hz), 149.2, 147.3, 130.3 (d, J = 3.3Hz), 127.7(d, J = 8.3 Hz), 116.4(d, J = 21.6 Hz), 113.1, 107.2, 69.7, 54.3, 51.4, 32.8, 32.5, 27.8, 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.67.

HRMS (ESI) m/z calcd. for C₂₂H₂₄FN₄O₅ [M+H]⁺ 443.1725, found 443.1723.

(R)-3-(4-Chlorophenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (16)

According to **General Procedure A** with 3-bromo-3-(4-chlorophenyl)-1-cycloheptylazetidin-2one **E16** (71.3 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **16** as a yellow solid (88.9 mg, 97% yield, 81% ee).

16

 $[\alpha]_{D}^{27} = -243$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 10.30 min, *t*_R (minor) = 16.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (t, J = 2.0 Hz, 1H), 7.57 (d, J = 2.0 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.20 (s, 1H), 4.10 (d, J = 5.9 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.71 (d, J = 5.9 Hz, 1H), 2.15 – 2.04 (m, 2H), 1.84 – 1.73 (m, 4H), 1.68 – 1.52 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.4, 149.1, 147.2, 134.7, 133.1, 129.6, 127.2, 113.1, 107.2, 69.7, 54.4, 51.3, 32.8, 32.4, 27.8, 24.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₄ClN₄O₅ [M+H]⁺ 459.1430, found 459.1421.

(R)-3-(4-Bromophenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (17)

17

According to **General Procedure A** with 3-bromo-3-(4-bromophenyl)-1-cycloheptylazetidin-2one **E17** (80.2 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **17** as a yellow solid (84.2 mg, 84% yield, 89% ee).

 $[\alpha]_{D}^{27} = -239 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.58 min, t_R (minor) = 16.62 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (t, J = 2.0 Hz, 1H), 7.57 (d, J = 2.0 Hz, 2H), 7.47 – 7.44 (m, 2H), 7.30 – 7.28 (m, 2H), 6.98 (s, 1H), 4.08 (d, J = 5.9 Hz, 1H), 3.93 – 3.86 (m, 1H), 3.69 (d, J = 5.9 Hz, 1H), 2.14 – 2.03 (m, 2H), 1.82 – 1.71 (m, 4H), 1.68 – 1.54 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.3, 149.1, 147.2, 133.6, 132.5, 127.5, 122.8, 113.1, 107.2, 69.8, 54.4, 51.3, 32.8, 32.4, 27.8, 24.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₄BrN₄O₅ [M+H]⁺ 503.0925, found 503.0917.

(R)-3-([1,1'-Biphenyl]-4-yl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (18)

18

According to **General Procedure A** with 3-([1,1'-biphenyl]-4-yl)-3-bromo-1-cycloheptylazetidin-2-one **E18** (79.7 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **18** as a yellow solid (62.2 mg, 62% yield, 89% ee).

 $[\alpha]_{D}^{27} = -240 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.57 min, t_R (minor) = 19.74 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 (t, J = 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 2H), 7.55 – 7.46 (m, 6H), 7.39 – 7.30 (m, 3H), 7.08 (s, 1H), 4.17 (d, J = 5.8 Hz, 1H), 3.97 – 3.90 (m, 1H), 3.73 (d, J = 5.8 Hz, 1H), 2.18 – 2.06 (m, 2H), 1.86 – 1.74 (m, 4H), 1.68 – 1.55 (m, 6H).

¹³C NMR (100 MHz, CDCl₃)δ 165.8, 149.2, 147.5, 141.5, 139.9, 133.4, 128.8, 128.0, 127.6, 126.9, 126.3, 113.1, 107.1, 70.1, 54.3, 51.2, 32.9, 32.5, 27.9, 24.2.

HRMS (ESI) m/z calcd. for C₂₈H₂₉N₄O₅ [M+H]⁺ 501.2132, found 501.2140.

(R)-3-(4-(Tert-butyl)phenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (19)

According to **General Procedure A** with 3-bromo-3-(4-(*tert*-butyl)phenyl)-1cycloheptylazetidin-2-one **E19** (75.7 mg, 0.20 mmol, 1.0 equiv) and 3,5-dinitroaniline **A1** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **19** as a yellow solid (82.8 mg, 86% yield, 90% ee).

 $[\alpha]_{D}^{27} = -236 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.60 min, t_R (minor) = 14.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (t, J = 2.0 Hz, 1H), 7.58 (d, J = 2.0 Hz, 2H), 7.41 – 7.35 (m, 4H), 7.09 (s, 1H), 4.13 (d, J = 5.7 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.68 (d, J = 5.7 Hz, 1H), 2.14 – 2.03 (m, 2H), 1.83 – 1.72 (m, 4H), 1.67 – 1.53 (m, 6H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 151.7, 149.1, 147.6, 131.4, 126.3, 125.6, 113.0, 106.8, 70.0, 54.1, 51.0, 34.5, 32.8, 32.5, 31.1, 27.9, 24.2.

HRMS (ESI) m/z calcd. for C₂₆H₃₃N₄O₅ [M+H]⁺ 481.2445, found 481.2442.

(R)-1-Cycloheptyl-3-((3-fluoro-4-nitrophenyl)amino)-3-phenylazetidin-2-one (21)

21

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and 3-fluoro-4-nitroaniline **A2** (31.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **21** as a yellow solid (52.3 mg, 66% yield, 83% ee). $[\alpha]_D^{27} = -306$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.92 min, t_R (minor) = 18.73 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (t, J = 8.8 Hz, 1H), 7.40 – 7.32 (m, 5H), 6.77 (s, 1H), 6.20 (dd, J = 9.1, 2.4 Hz, 1H), 6.10 (dd, J = 13.5, 2.5 Hz, 1H), 3.99 (d, J = 5.8 Hz, 1H), 3.91 – 3.84 (m, 1H), 3.64 (d, J = 5.8 Hz, 1H), 2.11 – 1.99 (m, 2H), 1.81 – 1.49 (m, 10H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.6, 157.8 (d, *J* = 261.4 Hz), 152.3 (d, *J* = 11.7 Hz), 134.7, 129.3, 128.6, 128.1, 127.7 (d, *J* = 6.4 Hz), 125.4, 109.2 (d, *J* = 2.2 Hz), 101.2 (d, *J* = 25.0 Hz), 70.2, 53.9, 52.1, 32.8, 32.5, 27.9, 27.8, 24.2, 24.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.46.

HRMS (ESI) m/z calcd. for C₂₂H₂₅FN₃O₃ [M+H]⁺ 398.1874, found 398.1871.

(R)-3-((3-Chloro-4-nitrophenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (22)

22

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and 3-chloro-4-nitroaniline **A3** (34.5mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 3/1) to yield the product **22** as a yellow solid (52.1 mg, 63% yield, 86% ee). $[\alpha]_D^{27} = -291$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 12.57 min, *t*_R (minor) = 15.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, J = 9.1 Hz, 1H), 7.38 – 7.32 (m, 5H), 6.60 (s, 1H), 6.45 (d, J = 2.4 Hz, 1H), 6.29 – 6.26 (m, 1H), 3.99 (d, J = 5.8 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.64 (d, J = 5.7 Hz, 1H), 2.10 – 1.99 (m, 2H), 1.81 – 1.51 (m, 10H).

¹³C NMR (100 MHz, CDCl₃)δ 165.6, 150.0, 137.4, 134.9, 130.1, 129.3, 128.6, 128.5, 125.5, 115.6, 111.6, 70.2, 53.9, 52.0, 32.8, 32.5, 27.88, 27.86, 24.17, 24.15.

HRMS (ESI) m/z calcd. for C₂₂H₂₅ClN₃O₃ [M+H]⁺ 414.1579, found 414.1575.

(R)-3-((3-Bromo-4-nitrophenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (23)

23

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and 3-bromo-4-nitroaniline **A4** (43.4mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **23** as a yellow solid (50.0 mg, 55% yield, 85% ee). $|a|_{D^{27}} = -278$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) =13.52 min, t_R (minor) =16.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 9.1 Hz, 1H), 7.39 – 7.31 (m, 5H), 6.73 (s, 1H), 6.69 (d, J = 2.5 Hz, 1H), 6.30 – 6.27 (m, 1H), 3.99 (d, J = 5.7 Hz, 1H), 3.90 – 3.83 (m, 1H), 3.64 (d, J = 5.8 Hz, 1H), 2.11 – 1.99 (m, 2H), 1.79 – 1.70 (m, 4H), 1.66 – 1.51 (m, 6H).

¹³C NMR (100 MHz, CDCl₃)δ 165.7, 150.0, 139.0, 134.9, 129.3, 128.5, 128.4, 125.5, 119.1, 117.4, 112.0, 70.2, 53.9, 52.0, 32.8, 32.5, 27.9, 27.8, 24.2, 24.1.

HRMS (ESI) m/z calcd. for C₂₂H₂₅BrN₃O₃ [M+H]⁺ 458.1074, found 458.1067.

(*R*)-1-Cycloheptyl-3-((4-nitro-3-(trifluoromethyl)phenyl)amino)-3-phenylazetidin-2-one (24)

24

According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (64.2 mg, 0.20 mmol, 1.0 equiv) and 4-nitro-3-(trifluoromethyl)aniline A5 (41.2mg, 0.20 mmol,

1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **24** as a yellow solid (70.0 mg, 78% yield, 80% ee).

 $[\alpha]_{D}^{27} = -235 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) =12.36 min, *t*_R (minor) = 16.19 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 9.1 Hz, 1H), 7.40 – 7.32 (m, 5H), 6.96 (d, J = 4.6 Hz, 1H), 6.88 (d, J = 2.5 Hz, 1H), 6.43 – 6.40 (m, 1H), 4.01 (d, J = 5.7 Hz, 1H), 3.90 – 3.83 (m, 1H), 3.63 (d, J = 5.8 Hz, 1H), 2.11 – 1.99 (m, 2H), 1.80 – 1.70 (m, 4H), 1.65 – 1.51 (m, 6H).

¹³**C** NMR (100 MHz, CDCl₃) δ 165.6, 149.7, 137.5, 134.6, 129.3, 128.6, 128.5, 126.2 (q, *J* = 33.2 Hz), 125.5, 122.0 (q, *J* = 271.6 Hz), 114.3, 113.2 (q, *J* = 6.1 Hz), 70.2, 54.0, 52.0, 32.8, 32.5, 27.9, 27.8, 24.2, 24.1.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -60.31.

HRMS (ESI) m/z calcd. for $C_{23}H_{25}F_3N_3O_3$ [M+H]⁺ 448.1843, found 448.1838.

(*R*)-4-((1-Cycloheptyl-2-oxo-3-phenylazetidin-3-yl)amino)-2-(trifluoromethyl)benzonitrile (25)

25

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and 4-amino-2-(trifluoromethyl)benzonitrile **A6** (37.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **25** as a yellow solid (58.9 mg, 69% yield, 84% ee).

 $[\alpha]_{D}^{27} = -259 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.98 min, t_R (minor) = 10.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 6H), 7.02 (s, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.45 – 6.42 (m, 1H), 3.98 (d, J = 5.7 Hz, 1H), 3.89 – 3.82 (m, 1H), 3.61 (d, J = 5.7 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.79 – 1.70 (m, 4H), 1.66 – 1.50 (m, 6H).

¹³**C** NMR (100 MHz, CDCl₃) δ 165.8, 149.0, 135.8, 134.8, 133.8 (q, *J* = 32.1 Hz), 129.2, 128.5, 125.4, 122.3 (q, *J* = 272.3 Hz), 116.8, 115.1, 112.2 (q, *J* = 4.6 Hz), 96.4 (q, *J* = 2.3 Hz), 70.1, 53.9, 52.0, 32.8, 32.4, 27.81, 27.79, 24.10, 24.09.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.53.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}F_3N_3O [M+H]^+ 428.1944$, found 428.1939.

(R)-1-(4-(Tert-butyl)benzyl)-3-((4-nitrophenyl)amino)-3-phenylazetidin-2-one (26)

26

According to General Procedure A with 3-bromo-1-(4-(*tert*-butyl)benzyl)-3-phenylazetidin-2one E9 (74.5 mg, 0.20 mmol, 1.0 equiv) and 4-nitroaniline A7 (27.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 26 as a yellow solid (53.9 mg, 63% yield, 83% ee). $[\alpha]_{D}^{27} = -230$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel AS3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 16.80 min, *t*_R (major) = 22.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.43 – 7.41 (m, 2H), 7.38 – 7.32 (m, 5H), 7.26 – 7.24 (m, 2H), 6.42 – 6.39 (m, 2H), 5.96 (s, 1H), 4.55 – 4.46 (m, 2H), 3.86 (d, *J* = 5.8 Hz, 1H), 3.59 (d, *J* = 5.9 Hz, 1H), 1.33 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 151.4, 150.7, 139.0, 135.3, 131.2, 129.2, 128.5, 128.1, 126.0, 125.9, 125.7, 113.0, 71.9, 53.7, 46.1, 34.6, 31.3.

HRMS (ESI) m/z calcd. for C₂₆H₂₈N₃O₃ [M+H]⁺ 430.2125, found 430.2121.

(R)-1-Cycloheptyl-3-phenyl-3-(quinoxalin-6-ylamino)azetidin-2-one (27)

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and quinoxalin-6-amine **A8** (29.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **27** as a brown solid (45.8 mg, 59% yield, 76% ee). $[\alpha]_D^{27} = -138$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 39.20 min, *t*_R (major) = 53.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.50 (s, 1H), 7.83 (d, *J* = 9.1 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.27 (m, 1H), 7.19 – 7.16 (m, 1H), 6.61 (d, *J* = 2.4 Hz, 1H), 6.13 (s, 1H), 4.07 (d, *J* = 5.7 Hz, 1H), 3.93 – 3.86 (m, 1H), 3.76 (d, *J* = 5.7 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.75 – 1.50 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 166.1, 146.4, 144.8, 144.7, 140.8, 138.1, 135.3, 130.3, 129.0, 128.1, 125.7, 122.6, 106.2, 70.5, 53.5, 51.6, 32.9, 32.5, 27.91, 27.88, 24.2, 24.1.

HRMS (ESI) m/z calcd. for C₂₄H₂₇N₄O [M+H]⁺ 387.2179, found 387.2182.

(R)-1-Cycloheptyl-3-phenyl-3-(phenylamino)azetidin-2-one (28)

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and aniline **A9** (18.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **28** as a yellow solid (18.8 mg, 28% yield, <5% ee).

 $[\alpha]_{D}^{27} = 2.0 \ (c \ 0.5, \text{CHCl}_3).$

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 17.34 min, t_R (major) = 21.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.26 (m, 1H), 7.12 – 7.08 (m, 2H), 6.73 – 6.69 (m, 1H), 6.48 – 6.46 (m, 2H), 4.90 (s, 1H), 3.91 – 3.84 (m, 2H), 3.68 (d, *J* = 5.5 Hz, 1H), 2.06 – 1.95 (m, 2H), 1.73 – 1.59 (m, 6H), 1.56 – 1.47 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 144.8, 136.8, 129.2, 128.8, 127.8, 125.9, 118.2, 114.2, 70.7, 53.2, 51.8, 33.0, 32.5, 28.0, 27.9, 24.22, 24.19.

HRMS (ESI) m/z calcd. for C₂₂H₂₇N₂O [M+H]⁺ 335.2118, found 335.2115.

(R)-3-((4-(Tert-butyl)phenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (29)

29

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (64.2 mg, 0.20 mmol, 1.0 equiv) and 4-(*tert*-butyl)aniline **A10** (29.9 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **29** as a red solid (53.0 mg, 68% yield, <5% ee). $|\alpha|_{D^{27}} = 8.0$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.62 min, t_R (major) = 14.45 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.26 (m, 1H), 7.13 – 7.11 (m, 2H), 6.43 – 6.40 (m, 2H), 4.76 (s, 1H), 3.90 – 3.83 (m, 2H), 3.68 (d, *J* = 5.5 Hz, 1H), 2.04 – 1.92 (m, 2H), 1.72 – 1.59 (m, 6H), 1.56 – 1.47 (m, 4H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.3, 140.9, 137.1, 128.8, 127.7, 126.0, 125.9, 113.9, 70.9, 53.0, 51.6, 33.8, 32.9, 32.5, 31.4, 28.0, 27.9, 24.20, 24.18.

HRMS (ESI) m/z calcd. for C₂₆H₃₅N₂O [M+H]⁺ 391.2744, found 391.2742.

(R)-1-Cycloheptyl-3-((4-methoxyphenyl)amino)-3-phenylazetidin-2-one (30)

According to **General Procedure A** with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (64.2 mg, 0.20 mmol, 1.0 equiv) and 4-methoxyaniline A11 (24.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **30** as a yellow solid (41.1 mg, 56% yield, <5% ee). $[\alpha]_D^{27} = 6.0$ (*c* 0.5, CHCl₃).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.26 min, t_R (minor) = 10.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.27 (m, 1H), 6.72 – 6.68 (m, 2H), 6.51 – 6.48 (m, 2H), 4.53 (s, 1H), 3.89 – 3.84 (m, 1H), 3.82 (d, *J* = 5.5 Hz, 1H), 3.70 (s, 3H), 3.63 (d, *J* = 5.5 Hz, 1H), 2.01 – 1.90 (m, 2H), 1.70 – 1.58 (m, 6H), 1.53 – 1.46 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 152.8, 138.6, 137.3, 128.8, 127.8, 126.0, 116.3, 114.7, 71.6, 55.6, 53.0, 51.4, 32.9, 32.4, 27.9, 24.20, 24.17.

HRMS (ESI) m/z calcd. for C₂₃H₂₉N₂O₂ [M+H]⁺ 365.2224, found 365.2226.

6. Mechanistic studies Effect of nucleophile and ligand on reaction initiation

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*8 (3.6 mg, 0.075 mmol, 15 mol %), Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), and 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (16.0 mg, 0.05 mmol, 1.0 equiv). Anhydrous EtOAc (1.0 mL) was added into the mixture and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ¹H NMR spectra (recovery of E1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining E1 100%). Although we failed to synthesize the chiral ligand-chelated Cu(I)-amido complex, a control experiment without A1 showed that no conversion of E1 was observed. Thus, it is the ligand exchange of Cu(I) with the aromatic amine that possibly occurs first rather than the single electron-transfer between Cu(I) and E1.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %) Cs₂CO₃ (48.9 mg, 0.15 mmol, 3.0 equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one **E1** (16.0 mg, 0.05 mmol, 1.0 equiv), and 3,5-dinitroaniline **A1** (9.2 mg, 0.05 mmol, 1.0 equiv). Anhydrous EtOAc (1.0 mL) was added into the mixture and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ¹H NMR spectra (recovery of **E1** was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining **E1** 100%). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

Radical inhibition experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*8 (14.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1

(64.2 mg, 0.20 mmol, 1.0 equiv), 3,5-dinitroaniline A1 (36.6 mg, 0.20 mmol, 1.0 equiv), and 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) (62.5 mg, 0.40 mmol, 2.0 equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ¹H NMR spectra (yield of 1 was based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard).

Radical trap experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*8 (14.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (64.2 mg, 0.20 mmol, 1.0 equiv), 3,5-dinitroaniline A1 (36.6 mg, 0.20 mmol, 1.0 equiv), and butylated hydroxytoluene (BHT) (88.1 mg, 0.40 mmol, 2.0 equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at 0 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1 to 4/1) to yield the product 1 as a yellow solid (26.9 mg, 32% yield, 92% ee) and **31** as a colorless oil (52.6 mg, 57% yield).

1-Cycloheptyl-3-(3,5-di*-tert*-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-3-phenylazetidin-2-one (31)

31

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.30 – 7.25 (m, 3H), 6.63 (d, *J* = 3.0 Hz, 1H), 6.56 (d, *J* = 3.0 Hz, 1H), 3.76 – 3.69 (m, 1H), 3.33 – 3.29 (m, 2H), 1.96 – 1.90 (m, 1H), 1.81 – 1.74 (m, 1H), 1.67 – 1.54 (m, 5H), 1.51 – 1.38 (m, 5H), 1.30 (s, 3H), 1.23 (s, 9H), 1.15 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.8, 167.4, 148.3, 146.6, 143.3, 142.3, 136.4, 129.2, 127.5, 127.4, 65.3, 53.0, 46.8, 42.6, 34.9, 34.8, 33.0, 32.5, 29.32, 29.26, 27.94, 27.86, 24.19, 24.16, 21.5. **HRMS** (ESI) m/z calcd. for C₃₁H₄₄NO₂ [M + H]⁺ 462.3367, found 462.3362.
7. References

- Chen, J-J.; Zhang, J.-Y.; Fang, J.-H.; Du, X.-Y.; Xia, H.-D.; Cheng, B.; Li, N.; Yu, Z.-L.; Bian, J.-Q.; Wang, F.-L.; Zheng, J.-J.; Liu, W.-L.; Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical C(sp³)–N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions. J. Am. Chem. Soc. 2023, 145, 14686–14696.
- Wang, F.-L.; Yang, C.-J.; Liu, J.-R.; Yang, N.-Y.; Dong, X.-Y.; Jiang, R.-Q.; Chang, X.-Y.; Li, Z.-L.; Xu. G.-X.; Yuan, D.-L.; Zhang, Y.-S.; Gu, Q.-S.; Hong, X.; Liu, X.-Y. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent C(sp³)–C(sp) Cross-Coupling of Tertiary Electrophiles with Alkynes. *Nat. Chem.* 2022. 14, 949–957.
- 3. Yusof, Y.; Tan, D. T. C.; Arjomandi, O. K.; Schenk, G.; McGeary, R. P. Captopril Analogues as Metallo-β-Lactamase Inhibitors. *Bioorg. Med. Chem. Lett.* **2016**, *26*, 1589–1593.

8. NMR spectra

S51

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

9. HPLC spectra

PDA Ch			
Peak#	Ret. Time	Area	Area%
1	14.184	10380734	50.147
2	17.543	10319798	49.853

PDA Ch	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%					
1	13.683	61784131	96.084					
2	17.151	2518274	3.916					

PDA Ch1 254m

PDA ChI 254nm							
Peak#	Ret. Time	Area	Area%				
1	15.213	2573664	50.207				
2	18.389	2552479	49.793				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.819	47140337	94.220			
2	17.972	2891639	5.780			

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.935	MM	0.5532	9233.18750	278.16382	50.0435
2	21.175	BB	0.6430	9217.12988	210.43494	49.9565
Tota]	ls :			1.84503e4	488.59875	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 17.536 BB 0.5223 5.48429e4 1551.93860 94.3056 2 21.238 BB 0.6420 3311.54785 76.04895 5.6944 Totals : 5.81545e4 1627.98755

PDA Ch1 254nm

I DH OH								
Peak#	Ret.	Time	Area	Area%				
1	13.	880	5372678	50.292				
2	19.	661	5310277	49.708				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	13.924	3621920	93.449			
2	20.022	253903	6.551			

Peak Table

PDA Chl 254nm						
Peak#	Ret. Time	Area	Area%			
1	13. 401	7481747	49.963			
2	15.983	7492783	50.037			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	13. 590	2292285	95.148			
2	16.465	116902	4.852			

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	26.376	3758092	50.038				
2	33.933	3752333	49.962				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	25.830	29949106	95.694			
2	34.228	1347580	4.306			

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.875	MM	0.4550	5787.72070	211.99913	49.7033
2	14.817	BB	0.6001	5856.81348	149.81439	50.2967

Totals :

1.16445e4 361.81352

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # 1 10.763 BB 0.4120 6.00029e4 2243.72974 95.5395 2 14.862 BB 0.5818 2801.38062 73.65028 4.4605

Totals : 6.28043e4 2317.38001

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.089	BB	0.3428	6119.02490	259.74069	49.8248
2	11.921	BB	0.4893	6162.05615	181.84819	50.1752

1.22811e4 441.58888

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.301	BB	0.2914	1.90792e4	945.61725	94.3666
2	12.424	BB	0.4691	1138.96326	35.23597	5.6334
Total	ls :			2.02181e4	980.85321	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 8.352 BB 0.2451 4027.23608 251.09586 50.0512 9.872 BB 0.2876 4018.99243 2 213.52142 49,9488

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.432	BB	0.2759	2.01609e4	1120.74963	95.1854
2	10.047	BB	0.3117	1019.76605	50.05503	4.8146
Tota]	ls :			2.11807e4	1170.80466	

Ρ	PDA Ch1 254nm						
F	°eak#	Ret.	Time	Area	Area%		
	1	14.	213	2488256	49.819		
	2	17.	886	2506293	50.181		

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	13.867	14921366	94.876				
2	17.412	805783	5.124				

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.486	BB	0.3821	1.01156e4	398.57224	49.8981
2	15.838	BB	0.4972	1.01569e4	305.99948	50.1019
Tota]	ls :			2.02725e4	704.57172	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 12.439 BB 0.3847 6.01379e4 2397.42700 93.8301 2 15.886 BB 0.5171 3954.43213 113.33216 6.1699 Totals : 6.40923e4 2510.75916

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] [mAU] % # [min] [min] 1 11.608 BB 0.5046 2483.98022 77.78592 50.0054 2 15.167 BB 0.6460 2483.44238 59.13467 49.9946 Totals : 4967.42261 136.92059

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU*s] % # [min] [min] [mAU] 1 11.521 BB 0.4569 2.90536e4 939.13513 94.0325 2 14.983 BB 0.6002 1843.79761 45.17266 5.9675 Totals : 3.08974e4 984.30780

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.207	BB	0.3314	1.40891e4	658.96533	49.8459
2	10.951	BB	0.4371	1.41762e4	493.61322	50.1541
Tota]	ls :			2.82654e4	1152.57855	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|

 -----|

 1
 8.208
 BB
 0.2895
 3.82207e4
 2050.43994
 95.2371

 2
 11.067
 BB
 0.4129
 1911.46826
 71.27647
 4.7629

Totals :

4.01322e4 2121.71641

Peak Table

ł	PDA Ch	1 254			
	Peak#	Ret.	Time	Area	Area%
	1	12.	725	9327082	50.159
Γ	2	22.	196	9267834	49.841

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.585	34543007	90.096				
2	22.521	3797071	9.904				

Peak Table

PDA Ch1 254nm						
	Peak#	Ret. Time	Area	Area%		
	1	7.239	3912353	49.679		
	2	9.188	3962835	50.321		

]	PDA Ch	1 254nm		
	Peak#	Ret. Time	Area	Area%
ſ	1	7.201	28539780	94.183
ſ	2	9.194	1762580	5.817

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	10.262	6786345	49.843				
2	15.834	6829011	50.157				

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.299	3304063	90.276
2	16.155	355904	9.724

DDA	01.1	0.0	
PIL	(hl	- 254	Ln

Peak#	Ret.	Time	Area	Area%
1	10.	603	7153202	49.972
2	16.	297	7161225	50.028

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.584	4565216	94.384
2	16.625	271631	5.616

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.188	1143579	50.030
2	18.798	1142219	49.970

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.566	13714083	94.544
2	19.740	791449	5.456

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.751	11650097	50.017
2	14.585	11642065	49.983

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.599	19492657	94.779
2	14.677	1073864	5.221

mAU

PDA Chi 254nm			
Peak#	Ret. Tim	e Area	Area%
1	14.805	6721927	49.929
2	18.490	6740930	50.071

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.917	15282162	91.545
2	18.727	1411408	8.455

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.691	5286833	50.078
2	15.779	5270281	49.922

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.570	20752921	93.047
2	15.651	1550674	6.953

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	14.121	7296567	49.972		
2	17.279	7304748	50.028		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.519	37129472	92.261
2	16.694	3114510	7.739

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.530	1942745	50.281
2	16.220	1921042	49.719

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	12.361	9023087	90.129			
2	16.186	988198	9.871			

mAU

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.909	6504611	50.463
2	10.213	6385346	49.537

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	7.978	7060752	91.938				
2	10.298	619122	8.062				

Peak Table

mV

Detect	or A Ch1	254nm	
Peak#	Ret. Tin	ne Area	Area%
1	16.841	881513	49.885
2	23.424	885573	50.115

S97

Detect	or A Ch1 2	254nm	
Peak#	Ret. Time	Area	Area%
1	16.804	1589805	8.575
2	22.682	16951038	91.425

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	39.094	9516986	50.083
2	56.458	9485598	49.917

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	39.198	3362407	12.031
2	53.389	24585437	87.969

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.631	BB	0.5680	8796.81738	240.89122	49.9367
2	21.647	BB	0.6822	8819.12305	200.11014	50.0633
lotal	LS :			1./6159e4	441.00136	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.335	BB	0.5468	1.66800e4	473.76199	49.5179
2	21.266	BB	0.6794	1.70047e4	389.42560	50.4821
Tota]	ls :			3.36847e4	863.18759	

Peak Table

Detect	or A	Ch1 2	254nm	
Peak#	Ret.	Time	Area	Area%
1	12.	293	9242949	49.809
2	14.	058	9313788	50.191

Detect	or A Ch1 2	:54nm	
Peak#	Ret. Time	Area	Area%
1	12.617	5147735	48.328
2	14.448	5503957	51.672

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.807	BB	0.2808	1302.26221	67.58798	50.1579
2	11.472	MM	0.4807	1294.06396	44.87082	49.8421

2596.32617 112.45881

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] % # [min] [min] [mAU] 1 6.259 BB 0.2218 4264.47607 286.22333 52.2370 2 10.519 BB 0.3939 3899.23901 148.72061 47.7630 Totals : 8163.71509 434.94394