Supporting Information for

Copper-Catalyzed Enantioconvergent Radical C(sp $\left.{ }^{3}\right)$-N Cross-Coupling to Access Chiral $\boldsymbol{\alpha}$-Amino- $\boldsymbol{\beta}$-Lactams

 Xin-Yuan Liu ${ }^{\text {t, }, *}$ *
${ }^{\dagger}$ Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China.
${ }^{\text {TS }}$ Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
${ }^{\perp}$ Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
${ }^{\text {§ }}$ These authors contributed equally

Correspondence to: chenjj@sustech.edu.cn; liuxy3@sustech.edu.cn

Table of contents

1. Tables for experiments 3
2. Figure for experiments 5
3. General information 7
4. The synthesis of ligands and alkyl halides 8
5. Cross-coupling of racemic tertiary α-bromo- β-lactams and aromatic amines 19
6. Mechanistic studies 35
7. References 37
8. NMR spectra 38
9. HPLC spectra 73

1. Tables for experiments

Table S1. Reaction condition optimization with tertiary α-bromo- β-lactam $\mathbf{E 1}$ and aromatic amine A1: screening of different copper catalysts ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E} 1(0.05 \mathrm{mmol}), \mathbf{A 1}(0.05 \mathrm{mmol}),[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{8}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in EtOAc $(1.0 \mathrm{~mL})$ at rt for 72 h under argon; yield of 1 was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee value was based on HPLC analysis.

Table S2. Reaction condition optimization with tertiary α-bromo- β-lactam $\mathbf{E} 1$ and aromatic amine A1: screening of different inorganic bases ${ }^{a}$

${ }^{a}$ Reaction conditions: $(\pm)-\mathbf{E 1}(0.05 \mathrm{mmol}), \mathbf{A 1}(0.05 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{8}(15 \mathrm{~mol} \%)$, and base (3.0 equiv) in EtOAc (1.0 mL) at rt for 72 h under argon; yield was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard; ee value was based on HPLC analysis.

2. Figure for experiments

Figure S1. X-ray crystallography for 18

complex	$\mathbf{1 8}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}$
Formula weight $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	500.54
Temperature $/ \mathrm{K}$	$100.0(2)$
Crystal system	triclinic
space group	P 1
a / \AA	$10.1532(7)$
b / \AA	$11.4776(8)$
c / \AA	$12.4689(9)$
$\alpha /{ }^{\circ}$	$70.110(2)$
$\beta /{ }^{\circ}$	$66.594(2)$
$\gamma /{ }^{\circ}$	$84.186(2)$
Volume $/ \AA^{3}$	$1252.98(15)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}$	
μ	1.327
$\mathrm{~F}\left(\mathrm{~mm}^{-1}\right.$	0.482
Crystal size $/ \mathrm{mm}^{3}$	528.0
Radiation	$0.21 \times 0.19 \times 0.18$
Theta range for data collection $/{ }^{\circ}$	$\mathrm{GaK} \alpha(\lambda=1.34138)$
Index ranges	7.116 to 5146.894
Reflections collected	$-14<=\mathrm{h}<=14,-16<=\mathrm{k}<=16,-17<=\mathrm{k}<=17$
Independent reflections	76725
	$14661\left[\mathrm{R}_{\mathrm{int}}=0.0473, \mathrm{R}_{\text {sigma }}=0.0426\right]$

Data / restraints / parameters	$14661 / 5 / 667$
Goodness-of-fit on F^{2}	1.096
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0369, \mathrm{wR}_{2}=0.1104$
Final R indexes [all data]	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.1133$
Largest diff. peak and hole/e \AA^{3}	$0.28 /-0.26$
Flack parameter	$0.09(5)$

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and DMF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was purchased from Bide Pharmatech Ltd. and treated by hot gun (approximate 300 to $400{ }^{\circ} \mathrm{C}$) for 2 minutes in vacuum. Anhydrous EtOAc, and benzene was purchased from J\&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$). As the eluent, the petroleum ether (PE), $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO_{4} indicator. NMR spectra were recorded on Bruker DRX-400 spectrometers at 400 for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR, and 376 MHz for ${ }^{19} \mathrm{~F}$ NMR respectively, in CDCl_{3} or DMSO- d_{6} with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

4. The synthesis of ligands and alkyl halides

The synthesis of chiral ligand $L * 8$

General procedure for preparation of $L * \mathbf{8}$:

According to the literature reported procedure. ${ }^{1}$ Under an argon atmosphere, to a solution of 2aminobenzonitrile ($0.92 \mathrm{~g}, 7.8 \mathrm{mmol}, 1.0$ equiv) and (S)-2-amino-2-(naphthalen-1-yl)ethan-1-ol $\left(1.46 \mathrm{~g}, 7.8 \mathrm{mmol}, 1.0\right.$ equiv) in chlorobenzene (30 mL) was added dry $\mathrm{ZnCl}_{2}(3.19 \mathrm{~g}, 23.4 \mathrm{mmol}$, 3.0 equiv) at once at rt . Then, the reaction mixture was reflux for 24 h . After completion (monitored by TLC), the reaction mixture was dissolved in water, EtOAc, and 2 mL ethylenediamine. Next, the reaction was extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to afford the product $\mathbf{L 8}-1$ as a white solid ($0.67 \mathrm{~g}, 29 \%$ yield).
Under an argon atmosphere, to a solution of (S)-2-(4-(naphthalen-1-yl)-4,5-dihydrooxazol-2yl)aniline L8-1 ($0.67 \mathrm{~g}, 2.3 \mathrm{mmol}, 1.0$ equiv) and quinoline-8-sulfonyl chloride ($0.79 \mathrm{~g}, 3.5 \mathrm{mmol}$, 1.5 equiv) in pyridine ($12 \mathrm{~mL}, 0.2 \mathrm{M}$) was added DMAP ($56.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.2$ equiv) at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred overnight. After completion (monitored by TLC), the reaction was quenched with water and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=50 / 1\right.$ to $\left.20 / 1\right)$ to afford the product $\mathbf{L} * 8$ as a white $\operatorname{solid}(0.56 \mathrm{~g}, 51 \%$ yield).
(S)-N-(2-(4-(Naphthalen-1-yl)-4,5-dihydrooxazol-2-yl)phenyl)quinoline-8-sulfonamide (L*8)

L*8
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.85(\mathrm{~s}, 1 \mathrm{H}), 8.69-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.63-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.09-$ $8.06(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97 (dd, $J=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.2,151.4,143.8,139.6,137.7,136.5,136.0,133.8,133.7$,
$132.4,132.2,130.4,129.5,129.1,128.7,128.0,126.4,125.8,125.7,125.1,123.7,122.7,122.0$, 121.5, 116.8, 113.0, 73.2, 67.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$480.1376, found 480.1372.

The synthesis of α-bromo- $\boldsymbol{\beta}$-lactams

$\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $70^{\circ} \mathrm{C}$, 24 h

General procedure 1:

According to the literature reported procedure ${ }^{2}$ with slight modification. To a solution of the carboxylic acid (30.0 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added oxalyl chloride $(4.57 \mathrm{~g}, 36.0$ mmol, 1.2 equiv) at $0{ }^{\circ} \mathrm{C}$, and then a few drops of DMF was added as catalyst. After warmed up to room temperature and stirred for 30 min , the resulting acyl chloride was concentrated under reduced pressure to remove the extra oxalyl chloride. The concentrated mixture was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ then cooled to $-20^{\circ} \mathrm{C}$. Anhydrous triethylamine $(7.59 \mathrm{~g}, 75.0 \mathrm{mmol}$, 2.5 equiv) and amine ($33.0 \mathrm{mmol}, 1.1$ equiv) were added, and then the reaction mixture was warmed up to room temperature and stirred at that temperature. After completion (monitored by TLC), the reaction was quenched by the addition of 1.0 M HCl . The organic layer was washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography to yield the acrylamide.

A mixture of acrylamide ($30.0 \mathrm{mmol}, 1.0$ equiv) and sodium acetate ($90.0 \mathrm{mmol}, 3.0$ equiv) in chloroform (0.4 M) was added bromine $\left(\mathrm{Br}_{2}\right)\left(60.0 \mathrm{mmol}, 2.0\right.$ equiv) dropwise at $-15^{\circ} \mathrm{C}$ under argon atmosphere. After completion (monitored by TLC), the mixture was poured into a solution of 10% sodium thiosulfate, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give the crude product, which was purified by flash chromatography. A mixture of the dibromide and potassium carbonate ($90 \mathrm{mmol}, 3.0$ equiv) in acetone (0.1 M) was heated to reflux for 24 h under an argon atmosphere. After being cooled to room temperature, the mixture was filtered through a short pad of silica gel column. The filtrate was concentrated under reduced pressure, and then the residue was purified by column chromatography on silica gel.

$\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$

General procedure 2:

According to the literature reported procedure. ${ }^{3}$ The carboxylic acid ($20 \mathrm{mmol}, 1.0$ equiv), 2-(1H-benzo[d][1,2,3]triazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate(V) (HBTU) ($22 \mathrm{mmol}, 1.1$ equiv), N-ethyl- N -isopropylpropan-2-amine (DIPEA) ($24 \mathrm{mmol}, 1.2$ equiv), and the corresponding amine ($22 \mathrm{mmol}, 1.1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and stirred at room temperature until TLC showed complete consumption of starting material. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ sequentially. The collected organic layer was dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography to yield acrylamide.

According to the literature reported procedure ${ }^{2}$ with slightly modification. To a mixture of acrylamide (20 mmol , 1.0 equiv) and sodium acetate ($60 \mathrm{mmol}, 3.0$ equiv) in chloroform (0.4 M) was added bromine ($20 \mathrm{mmol}, 1.0$ equiv) dropwise at $-10^{\circ} \mathrm{C}$ under an argon atmosphere. After being stirred for 10 min , the mixture was poured into a solution of 10% sodium thiosulfate, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give the crude product, which was purified by flash chromatography.

A mixture of the dibromide and potassium carbonate ($60 \mathrm{mmol}, 3.0$ equiv) in acetone $(0.1 \mathrm{M}$) was heated to reflux for 24 h under an argon atmosphere. After being cooled to room temperature, the mixture was filtered through a short pad of silica gel column. The filtrate was concentrated under reduced pressure, and then the residue was purified by column chromatography on silica gel.

3-Bromo-1-cycloheptyl-3-phenylazetidin-2-one (E1)

E1
According to General procedure 1 with 2-phenylacrylic acid ($4.45 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv) and cycloheptanamine $(3.73 \mathrm{~g}, 33.0 \mathrm{mmol}$, 1.1 equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E} \mathbf{1}$ as a white solid ($2.74 \mathrm{~g}, 28 \%$ overall yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8,137.8,129.0,128.8,127.1,59.7,55.9,53.5,32.5,32.3,27.9$, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16 \mathrm{H} 21 \mathrm{BrNO}}[\mathrm{M}+\mathrm{H}]^{+} 322.0801$, found 322.0800.

3-Bromo-1-cyclohexyl-3-phenylazetidin-2-one (E2)

E2
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and cyclohexanamine ($2.18 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E} 2$ as a white solid ($1.21 \mathrm{~g}, 20 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.19$ $-1.09(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.2,137.8,128.9,128.8127 .1,59.4,55.8,51.6,30.4,30.2,25.2$, 24.64, 24.62.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$308.0645, found 308.0644.

3-Bromo-1-cyclopentyl-3-phenylazetidin-2-one (E3)

E3
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and cyclopentanamine ($1.87 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 3}$ as a white solid ($2.03 \mathrm{~g}, 35 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.97$ $-3.93(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.56(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 164.4,137.7,128.9,128.7,127.0,59.3,56.1,53.6,29.9,29.8$, 23.91, 23.87.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$294.0488, found 294.0486.

3-Bromo-1-cyclopropyl-3-phenylazetidin-2-one (E4)

E4
According to General procedure 1 with 2-phenylacrylic acid ($1.48 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and cyclopropanamine ($0.76 \mathrm{~mL}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product $\mathbf{E 4}$ as a yellowish solid ($0.74 \mathrm{~g}, 28 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.75(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,137.6,129.0,128.8,127.1,59.6,58.6,24.6,5.3$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 266.0175$, found 266.0173.

3-Bromo-1-ethyl-3-phenylazetidin-2-one (E5)

E5
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and ethylamine hydrochloride ($1.79 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product $\mathbf{E 5}$ as a yellowish oil ($1.40 \mathrm{~g}, 28 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.41$ $-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.6, 137.7, 129.0, 128.8, 127.1, 60.1, 57.4, 36.8, 12.2.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$254.0175, found 254.0174.

3-Bromo-1-(tert-butyl)-3-phenylazetidin-2-one (E6)

E6
According to General procedure 2 with 2-phenylacrylic acid ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv) and 2-methylpropan-2-amine ($1.09 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product $\mathbf{E 6}$ as a white solid ($1.14 \mathrm{~g}, 30 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 2 \mathrm{H}), 1.36$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,137.9,128.9,128.8,127.1,58.9,55.4,53.9,27.4$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$282.0488, found 282.0486.
1-(Adamantan-1-yl)-3-bromo-3-phenylazetidin-2-one (E7)

E7
According to General procedure $\mathbf{2}$ with 2-phenylacrylic acid ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv) and adamantan-1-amine ($2.25 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E} 7$ as a white solid ($0.72 \mathrm{~g}, 15 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.10$ $(\mathrm{m}, 3 \mathrm{H}), 2.00-1.99(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,138.0,128.9,128.8,127.1,58.8,54.5,54.4,40.4,36.0,28.9$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 360.0958$, found 360.0956 .

1-Benzyl-3-bromo-3-phenylazetidin-2-one (E8)

E8
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv) and phenylmethanamine ($2.36 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 8}$ as a white solid ($2.95 \mathrm{~g}, 47 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.55$
(d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,137.5,134.2,129.1,129.0,128.9,128.1,127.1,60.5,57.6$, 46.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 316.0332$, found 316.0331.

3-Bromo-1-(4-(tert-butyl)benzyl)-3-phenylazetidin-2-one (E9)

E9
According to General procedure 1 with 2-phenylacrylic acid ($4.45 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv) and (4-(tert-butyl)phenyl)methanamine ($5.39 \mathrm{~g}, 33.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product E9 as a white solid ($3.59 \mathrm{~g}, 32 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.52$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,151.1,137.6,131.1,129.1,128.9,127.8,127.1,125.9,60.5$, 57.6, 45.8, 34.6, 31.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 372.0958$, found 372.0959.

3-Bromo-1-(4-bromobenzyl)-3-phenylazetidin-2-one (E10)

E10
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and (4-bromophenyl)methanamine ($4.09 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product E10 as a yellowish solid ($2.87 \mathrm{~g}, 37 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.13$ $-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,137.3,133.3,132.2,129.7,129.2,128.9,127.1,122.1,60.5$, 57.6, 45.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 393.9437$, found 393.9434.

3-Bromo-1-(4-methoxybenzyl)-3-phenylazetidin-2-one (E11)

E11
According to General procedure 1 with 2-phenylacrylic acid ($1.48 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and (4-methoxyphenyl)methanamine ($1.44 \mathrm{~mL}, 11.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the
product E11 as a white solid ($0.40 \mathrm{~g}, 12 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.89$
$-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.0,159.4,137.6,129.5,129.1,128.9,127.1,126.2,114.4,60.4$, 57.4, 55.3, 45.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$346.0437, found 346.0435.

3-Bromo-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one (E12)

E12
According to General procedure 1 with 2-phenylacrylic acid ($2.96 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) and (4-(trifluoromethyl)phenyl)methanamine $(3.85 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product E12 as a white solid ($2.78 \mathrm{~g}, 36 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,138.5,137.3,130.4(\mathrm{q}, ~ J=32.6 \mathrm{~Hz}), 129.2,129.0,128.3$, $127.1,126.0(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 122.5(\mathrm{q}, J=273.4 \mathrm{~Hz}), 60.6,57.8,45.7$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.63$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 384.0205$, found 384.0201.

3-Bromo-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2-one (E13)

E13
According to General procedure 1 with 2-phenylacrylic acid ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-amine $(2.01 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 3}$ as a white solid ($2.74 \mathrm{~g}, 59 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 3.81$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.5,143.9,137.8,129.0,128.9,128.8,127.4,127.2,125.1,59.4$, 59.1, 55.7, 27.8, 27.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 344.0645$, found 344.0643.

3-Bromo-3-phenyl-1-(o-tolyl)azetidin-2-one (E14)

E14
According to General procedure 1 with 2-phenylacrylic acid ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv) and o-toluidine ($1.60 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 4}$ as a white solid ($2.46 \mathrm{~g}, 57 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.49$ -4.47 (m, 2H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,137.4,135.0,132.3,131.6,129.2,129.0,127.21,127.15$, 126.6, 123.0, 60.5, 59.7, 18.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 316.0332$, found 316.0331.

3-Bromo-1-cycloheptyl-3-(4-fluorophenyl)azetidin-2-one (E15)

E15
According to General procedure 1 with 2-(4-fluorophenyl)acrylic acid ($0.83 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) and cycloheptanamine ($0.62 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product E15 as a white solid ($0.51 \mathrm{~g}, 30 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.85$ - $3.78(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.41(\mathrm{~m}$, 8H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,162.8(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.1(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 58.8,56.0,53.6,32.5,32.2,27.9,27.8,24.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.61$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrFNO}[\mathrm{M}+\mathrm{H}]^{+} 340.0707$, found 340.0704 .

3-Bromo-3-(4-chlorophenyl)-1-cycloheptylazetidin-2-one (E16)

E16
According to General procedure 1 with 2-(4-chlorophenyl)acrylic acid ($1.03 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) and cycloheptanamine ($0.62 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product $\mathbf{E 1 6}$ as a white solid ($0.56 \mathrm{~g}, 32 \%$ overall yield).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.85$ $-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.41(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,136.4,135.0,129.1,128.5,58.6,55.8,53.6,32.5,32.2,27.9$, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrClNO}[\mathrm{M}+\mathrm{H}]^{+} 356.0411$, found 356.0410.

3-Bromo-3-(4-bromophenyl)-1-cycloheptylazetidin-2-one (E17)

E17
According to General procedure 1 with 2-(4-bromophenyl)acrylic acid ($1.48 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.0$ equiv) and cycloheptanamine ($0.81 \mathrm{~g}, 7.2 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 7}$ as a white solid ($0.63 \mathrm{~g}, 24 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.01$ $-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.40(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3,136.8,132.0,128.7,123.2,58.6,55.7,53.6,32.4,32.2$, 27.80, 27.76, 24.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$399.9906, found 399.9906.

3-([1,1'-Biphenyl]-4-yl)-3-bromo-1-cycloheptylazetidin-2-one (E18)

E18
According to General procedure 1 with 2-([1,1'-biphenyl]-4-yl)acrylic acid (1.12 g, 5.0 mmol , 1.0 equiv) and cycloheptanamine ($0.62 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 8}$ as a white solid ($0.24 \mathrm{~g}, 12 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $-7.34(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,141.9,140.2,136.7,128.8,127.7,127.60,127.55,127.1$, 59.6, 55.9, 53.6, 32.5, 32.3, 27.90, 27.86, 24.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 398.1114$, found 398.1112.

3-Bromo-3-(4-(tert-butyl)phenyl)-1-cycloheptylazetidin-2-one (E19)

E19
According to General procedure 1 with 2-(4-(tert-butyl)phenyl)acrylic acid ($1.02 \mathrm{~g}, 5.0 \mathrm{mmol}$, 1.0 equiv) and cycloheptanamine ($0.62 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 1 9}$ as a white solid ($0.16 \mathrm{~g}, 8 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.85$ $-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.40(\mathrm{~m}$, $9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,152.1,134.7,126.8,125.8,59.9,55.9,53.4,34.7,32.5,32.2$, 31.2, 27.9, 27.8, 24.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 378.1427$, found 378.1425.

3-Bromo-1-cycloheptyl-3-isopropylazetidin-2-one (E20)

E20
According to General procedure 1 with 3-methyl-2-methylenebutanoic acid ($1.46 \mathrm{~g}, 12.8 \mathrm{mmol}$, 1.0 equiv) and cycloheptanamine ($1.59 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.1$ equiv), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{E 2 0}$ as a colorless oil ($0.71 \mathrm{~g}, 19 \%$ overall yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.43(\mathrm{~m}, 10 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,69.6,53.0,52.1,34.2,32.6,32.2,27.9,27.8,24.2,24.1$, 18.6, 18.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$288.0958, found 288.0959.

5. Cross-coupling of racemic tertiary α-bromo- β-lactams and aromatic amines

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 8(14.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), racemic tertiary α-bromo- β-lactam ($0.20 \mathrm{mmol}, 1.0$ equiv), and aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), Lrac ($11.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}$, 3.0 equiv), racemic tertiary α-bromo- β-lactam ($0.20 \mathrm{mmol}, 1.0$ equiv), and aromatic amine (0.20 $\mathrm{mmol}, 1.0$ equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(R)-1-Cycloheptyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (1)

1
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 (64.2
$\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product $\mathbf{1}$ as a yellow solid ($72.1 \mathrm{mg}, 85 \%$ yield, 92% ee).
$[\alpha] \mathbf{D}^{27}=-247\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.68 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.15 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.70$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.572(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,149.0,147.5,134.4,129.3,128.6,125.7,113.0,106.9,70.1$, 54.2, 51.3, 32.8, 32.5, 27.8, 24.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 425.1819$, found 425.1811.

(R)-1-Cyclohexyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (2)

2
According to General Procedure A with 3-bromo-1-cyclohexyl-3-phenylazetidin-2-one E2 (61.6 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product $\mathbf{2}$ as a yellow solid ($80.0 \mathrm{mg}, 98 \%$ yield, 88% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-256\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t R $($ major $)=14.82 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.97 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}$, 2H), $7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $-1.20(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,149.0,147.5,134.4,129.3,128.6,125.7,113.0,106.9,70.0$, 52.2, 51.1, 30.7, 30.4, 25.1, 24.63, 24.61.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 411.1663$, found 411.1653.

(R)-1-Cyclopentyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (3)

3
According to General Procedure A with 3-bromo-1-cyclopentyl-3-phenylazetidin-2-one E3 (58.8 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$
$3 / 1$) to yield the product 3 as a yellow solid ($76.8 \mathrm{mg}, 97 \%$ yield, 89% ee).
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=-259\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=17.54 \mathrm{~min}, t_{R}($ minor $)=21.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.66(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,149.0,147.5,134.5,129.3,128.6,125.7,113.1,106.9,70.0$, 54.2, 51.6, 30.4, 30.0, 24.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 397.1506$, found 397.1498.

(R)-1-Cyclopropyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (4)

4
According to General Procedure A with 3-bromo-1-cyclopropyl-3-phenylazetidin-2-one E4 ($53.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=3 / 1$) to yield the product 4 as a yellow solid ($55.0 \mathrm{mg}, 75 \%$ yield, 87% ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-407\left(c 0.25, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.92 \mathrm{~min}, t_{R}($ minor $)=20.02 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.85(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.4,149.1,147.3,134.4,129.4,128.8,125.8,113.1,107.1,70.6$, 53.8, 24.7, 5.54, 5.46.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O} 5[\mathrm{M}+\mathrm{H}]^{+}$369.1193, found 369.1187.
(R)-3-((3,5-Dinitrophenyl)amino)-1-ethyl-3-phenylazetidin-2-one (5)

5
According to General Procedure A with 3-bromo-1-ethyl-3-phenylazetidin-2-one E5 (50.8 mg, $0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product 5 as a yellow solid ($70.0 \mathrm{mg}, 98 \%$ yield, 90% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-248\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R}
$($ major $)=13.59 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.46 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-$ $3.41(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,149.1,147.4,134.5,129.4,128.7,125.8,113.1,107.1,71.3$, 52.8, 37.1, 12.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 357.1193$, found 357.1188.

(R)-1-(Tert-butyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (6)

6
According to General Procedure A with 3-bromo-1-(tert-butyl)-3-phenylazetidin-2-one E6 (56.4 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1)$ to yield the product 6 as a yellow solid $(73.8 \mathrm{mg}, 96 \%$ yield, 91% ee).
$[\alpha] \mathbf{D}^{27}=-270\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=25.83 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=34.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,149.1,147.6,134.5,129.4,128.5,125.7,113.1,106.8,69.2$, 54.2, 50.6, 27.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 385.1506$, found 385.1501 .
(R)-1-(Adamantan-1-yl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (7)

7
According to General Procedure A with 1-(adamantan-1-yl)-3-bromo-3-phenylazetidin-2-one $\mathbf{E} 7$ ($72.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=3 / 1$) to yield the product 7 as a yellow solid ($89.3 \mathrm{mg}, 97 \%$ yield, 91% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-256\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.76 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.86 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}$ $3 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 9 \mathrm{H})$,
$1.77-1.72(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,149.1,147.8,134.6,129.3,128.4,125.7,113.1,106.7,68.8$, 55.0, 49.3, 40.8, 36.0, 29.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{2} 7 \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$463.1976, found 463.1972.

(R)-1-Benzyl-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (8)

8
According to General Procedure A with 1-benzyl-3-bromo-3-phenylazetidin-2-one E8 (63.2 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product $\mathbf{8}$ as a yellow solid ($68.0 \mathrm{mg}, 81 \%$ yield, 89% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-231\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t \mathrm{t}$ $($ major $)=9.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.4 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,149.1,147.1,134.3,134.2,129.4,129.2,128.9,128.4$, 125.8, 113.2, 107.4, 71.8, 53.2, 46.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 419.1350$, found 419.1346.
(R)-1-(4-(Tert-butyl)benzyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (9)

9
According to General Procedure A with 3-bromo-1-(4-(tert-butyl)benzyl)-3-phenylazetidin-2one $\mathbf{E 9}$ ($74.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline $\mathbf{A 1}$ ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 9 as a yellow solid ($85.9 \mathrm{mg}, 91 \%$ yield, 90% ee). $[\alpha]_{\mathbf{D}}{ }^{27}=-202\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=8.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}$, $4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J$ $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,151.4,149.1,147.2,134.3,131.0,129.4,128.8,128.0,126.1$, 125.8, 113.2, 107.2, 71.7, 53.1, 46.2, 34.6, 31.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$475.1976, found 475.1970 .

(R)-1-(4-Bromobenzyl)-3-((3,5-dinitrophenyl)amino)-3-phenylazetidin-2-one (10)

10
According to General Procedure A with 3-bromo-1-(4-bromobenzyl)-3-phenylazetidin-2-one E10 ($79.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 10 as a yellow solid ($89.5 \mathrm{mg}, 90 \%$ yield, $90 \% \mathrm{ee}$).
$[\alpha]_{\mathbf{D}}{ }^{27}=-364\left(c 0.25, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.87 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.41 \mathrm{~min}$.
${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , DMSO-d6) $\delta 166.4,148.9,148.6,136.5,135.5,132.2,130.8,129.6,128.8$, 126.3, 121.4, 113.8, 106.1, 72.4, 54.4, 45.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{4} \mathrm{O} 5[\mathrm{M}+\mathrm{H}]^{+} 497.0455$, found 497.0459.
(R)-3-((3,5-Dinitrophenyl)amino)-1-(4-methoxybenzyl)-3-phenylazetidin-2-one (11)

11
According to General Procedure A with 3-bromo-1-(4-methoxybenzyl)-3-phenylazetidin-2-one E11 ($69.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 11 as a yellow solid ($85.3 \mathrm{mg}, 95 \%$ yield, 88% ee). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-208\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.44 \mathrm{~min}, t_{\mathrm{R}}(\operatorname{minor})=15.89 \mathrm{~min}$.
${ }^{1}$ H NMR (400 MHz, DMSO-d $)^{2} \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) ., 3.55(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}) $\delta 166.1,159.3,149.0,148.6,136.6,130.0,129.6,128.7,127.7$, 126.3, 114.7, 113.7, 106.1, 72.1, 55.6, 54.1, 45.2

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 449.1456$, found 449.1450.
(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one (12)

12
According to General Procedure A with 3-bromo-3-phenyl-1-(4-(trifluoromethyl)benzyl)azetidin-2-one E12 ($76.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 12 as a yellow solid ($96.2 \mathrm{mg}, 99 \%$ yield, 88% ee).
$[\alpha] \mathbf{D}^{27}=-177\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), , R $($ major $)=11.52 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.98 \mathrm{~min}$.
${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.77-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta 166.6,149.0,148.6,140.9,136.5,129.6,129.3,128.833(\mathrm{q}, J$ $=31.8 \mathrm{~Hz}), 128.826,126.4,126.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.6(\mathrm{q}, J=270.4 \mathrm{~Hz}), 113.8,106.2,72.6,54.7$, 45.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}_{-1}$) $\delta-61.06$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$487.1224, found 487.1222.
(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2-one (13)

13
According to General Procedure A with 3-bromo-3-phenyl-1-(2-phenylpropan-2-yl)azetidin-2one E13 ($68.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 13 as a yellow solid ($73.7 \mathrm{mg}, 83 \%$ yield, 90% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-243\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t \mathrm{t}$ $($ major $)=8.21 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.07 \mathrm{~min}$.
${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,149.0,147.4,143.6,134.4,129.4,128.8,128.7,127.7,125.9$, 125.2, 113.1, 107.0, 69.5, 59.6, 51.0, 27.9, 27.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 447.1663$, found 447.1654.
(R)-3-((3,5-Dinitrophenyl)amino)-3-phenyl-1-(o-tolyl)azetidin-2-one (14)

14
According to General Procedure A with 3-bromo-3-phenyl-1-(o-tolyl)azetidin-2-one E14 (63.2 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product 14 as a yellow solid ($82.5 \mathrm{mg}, 99 \%$ yield, 80% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-231\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.58 \mathrm{~min}, t_{R}($ minor $)=22.52 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21$ (m, 3H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,149.1,147.1,134.8,134.2,132.1,131.7,129.6,129.0,127.5$, 126.7, 125.8, 122.5, 113.2, 107.3, 70.8, 56.0, 19.1 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O} 5[\mathrm{M}+\mathrm{H}]^{+} 419.1350$, found 419.1353.

(R)-1-Cycloheptyl-3-((3,5-dinitrophenyl)amino)-3-(4-fluorophenyl)azetidin-2-one (15)

15
According to General Procedure A with 3-bromo-1-cycloheptyl-3-(4-fluorophenyl)azetidin-2one E15 ($68.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 15 as a yellow solid ($77.5 \mathrm{mg}, 88 \%$ yield, 88% ee).
$[\alpha]_{\mathrm{D}}{ }^{27}=-250\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t R $($ major $)=7.20 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.19 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,162.7(\mathrm{~d}, J=247.2 \mathrm{~Hz}), 149.2,147.3,130.3(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $127.7(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 113.1,107.2,69.7,54.3,51.4,32.8,32.5,27.8,24.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.67.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 443.1725$, found 443.1723.

(R)-3-(4-Chlorophenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (16)

16
According to General Procedure A with 3-bromo-3-(4-chlorophenyl)-1-cycloheptylazetidin-2one E16 ($71.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline A1 $(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product 16 as a yellow solid ($88.9 \mathrm{mg}, 97 \%$ yield, 81% ee).
$[\alpha] \mathbf{D}^{27}=-243\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.16 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,149.1,147.2,134.7,133.1,129.6,127.2,113.1,107.2,69.7$, 54.4, 51.3, 32.8, 32.4, 27.8, 24.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 459.1430$, found 459.1421 .
(R)-3-(4-Bromophenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (17)

17
According to General Procedure A with 3-bromo-3-(4-bromophenyl)-1-cycloheptylazetidin-2one E17 ($80.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5 -dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 17 as a yellow solid ($84.2 \mathrm{mg}, 84 \%$ yield, 89% ee).
$[\alpha] \mathbf{D}^{27}=-239\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=10.58 \mathrm{~min}, t_{\mathrm{R}}(\operatorname{minor})=16.62 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,149.1,147.2,133.6,132.5,127.5,122.8,113.1,107.2,69.8$, 54.4, 51.3, 32.8, 32.4, 27.8, 24.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 503.0925$, found 503.0917.
(R)-3-([1,1'-Biphenyl]-4-yl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (18)

18
According to General Procedure A with 3-([1,1'-biphenyl]-4-yl)-3-bromo-1-cycloheptylazetidin-2-one E18 ($79.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=3 / 1$) to yield the product 18 as a yellow solid ($62.2 \mathrm{mg}, 62 \%$ yield, 89% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-240\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.57 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.74 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}$, $6 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,149.2,147.5,141.5,139.9,133.4,128.8,128.0,127.6,126.9$, 126.3, 113.1, 107.1, 70.1, 54.3, 51.2, 32.9, 32.5, 27.9, 24.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 501.2132$, found 501.2140 .

(R)-3-(4-(Tert-butyl)phenyl)-1-cycloheptyl-3-((3,5-dinitrophenyl)amino)azetidin-2-one (19)

19
According to General Procedure \mathbf{A} with 3-bromo-3-(4-(tert-butyl)phenyl)-1-cycloheptylazetidin-2-one E19 ($75.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3,5-dinitroaniline A1 (36.6 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 19 as a yellow solid ($82.8 \mathrm{mg}, 86 \%$ yield, 90% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-236\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=11.60 \mathrm{~min}, t_{R}($ minor $)=14.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,151.7,149.1,147.6,131.4,126.3,125.6,113.0,106.8,70.0$, 54.1, 51.0, 34.5, 32.8, 32.5, 31.1, 27.9, 24.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 481.2445$, found 481.2442 .
(R)-1-Cycloheptyl-3-((3-fluoro-4-nitrophenyl)amino)-3-phenylazetidin-2-one (21)

21
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3-fluoro-4-nitroaniline A2 ($31.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 21 as a yellow solid ($52.3 \mathrm{mg}, 66 \%$ yield, $83 \% \mathrm{ee}$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-306\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.92 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{dd}$, $J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H})$, $3.64(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.49(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,157.8(\mathrm{~d}, J=261.4 \mathrm{~Hz}), 152.3(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 134.7,129.3$, 128.6, 128.1, 127.7 (d, $J=6.4 \mathrm{~Hz}$), 125.4, $109.2(\mathrm{~d}, J=2.2 \mathrm{~Hz}$), $101.2(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 70.2,53.9$, 52.1, 32.8, 32.5, 27.9, 27.8, 24.2, 24.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.46.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$398.1874, found 398.1871.
(R)-3-((3-Chloro-4-nitrophenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (22)

22
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3-chloro-4-nitroaniline $\mathbf{A 3}$ ($34.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum
ether $/ \mathrm{EtOAc}=3 / 1$) to yield the product 22 as a yellow solid ($52.1 \mathrm{mg}, 63 \%$ yield, 86% ee). $[\alpha]_{\mathbf{D}}{ }^{27}=-291\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.57 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.65 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.26(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.51$ (m, 10H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,150.0,137.4,134.9,130.1,129.3,128.6,128.5,125.5,115.6$, 111.6, 70.2, 53.9, 52.0, 32.8, 32.5, 27.88, 27.86, 24.17, 24.15.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 414.1579$, found 414.1575 .
(R)-3-((3-Bromo-4-nitrophenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (23)

23
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 3-bromo-4-nitroaniline $\mathbf{A 4}(43.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 23 as a yellow solid ($50.0 \mathrm{mg}, 55 \%$ yield, 85% ee).
$[\alpha]_{\mathbf{D}}{ }^{27}=-278\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=13.52 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.69 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.27(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,150.0,139.0,134.9,129.3,128.5,128.4,125.5,119.1,117.4$, $112.0,70.2,53.9,52.0,32.8,32.5,27.9,27.8,24.2,24.1$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 458.1074$, found 458.1067.

(R)-1-Cycloheptyl-3-((4-nitro-3-(trifluoromethyl)phenyl)amino)-3-phenylazetidin-2-one

 (24)

24
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 4-nitro-3-(trifluoromethyl)aniline A5 ($41.2 \mathrm{mg}, 0.20 \mathrm{mmol}$,
1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 24 as a yellow solid ($70.0 \mathrm{mg}, 78 \%$ yield, 80% ee).
$[\alpha] \mathbf{D}^{27}=-235\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=12.36 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.19 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.40(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H})$, $3.63(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,149.7,137.5,134.6,129.3,128.6,128.5,126.2(\mathrm{q}, J=33.2$
$\mathrm{Hz}), 125.5,122.0(\mathrm{q}, J=271.6 \mathrm{~Hz}), 114.3,113.2(\mathrm{q}, J=6.1 \mathrm{~Hz}), 70.2,54.0,52.0,32.8,32.5,27.9$, 27.8, 24.2, 24.1.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.31$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 448.1843$, found 448.1838 .
(R)-4-((1-Cycloheptyl-2-oxo-3-phenylazetidin-3-yl)amino)-2-(trifluoromethyl)benzonitrile (25)

25
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 4-amino-2-(trifluoromethyl)benzonitrile A6 ($37.2 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 25 as a yellow solid $(58.9 \mathrm{mg}, 69 \%$ yield, 84% ee).
$[\alpha] \mathbf{D}^{27}=-259\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=7.98 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-$ $6.42(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,149.0,135.8,134.8,133.8(\mathrm{q}, J=32.1 \mathrm{~Hz}), 129.2,128.5$, $125.4,122.3(\mathrm{q}, J=272.3 \mathrm{~Hz}), 116.8,115.1,112.2(\mathrm{q}, J=4.6 \mathrm{~Hz}), 96.4(\mathrm{q}, J=2.3 \mathrm{~Hz}), 70.1,53.9$, 52.0, 32.8, 32.4, 27.81, 27.79, 24.10, 24.09.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.53$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 428.1944$, found 428.1939.

(R)-1-(4-(Tert-butyl)benzyl)-3-((4-nitrophenyl)amino)-3-phenylazetidin-2-one (26)

26
According to General Procedure A with 3-bromo-1-(4-(tert-butyl)benzyl)-3-phenylazetidin-2one $\mathbf{E 9}$ ($74.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 4 -nitroaniline $\mathbf{A 7}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 26 as a yellow solid ($53.9 \mathrm{mg}, 63 \%$ yield, $83 \% \mathrm{ee}$). $[\alpha] \mathbf{D}^{27}=-230\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel AS3 (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=16.80 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26$ $-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.42-6.39(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,151.4,150.7,139.0,135.3,131.2,129.2,128.5,128.1,126.0$, 125.9, 125.7, 113.0, 71.9, 53.7, 46.1, 34.6, 31.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 430.2125$, found 430.2121 .

(R)-1-Cycloheptyl-3-phenyl-3-(quinoxalin-6-ylamino)azetidin-2-one (27)

27
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and quinoxalin- 6 -amine $\mathbf{A 8}(29.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 27 as a brown solid ($45.8 \mathrm{mg}, 59 \%$ yield, $76 \% \mathrm{ee}$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-138\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=39.20 \mathrm{~min}, t_{\mathrm{R}}($ major $)=53.39 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}$, 2H), $7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ $(\mathrm{s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,146.4,144.8,144.7,140.8,138.1,135.3,130.3,129.0$, $128.1,125.7,122.6,106.2,70.5,53.5,51.6,32.9,32.5,27.91,27.88,24.2,24.1$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{2} 7 \mathrm{~N} 4 \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 387.2179$, found 387.2182 .

(R)-1-Cycloheptyl-3-phenyl-3-(phenylamino)azetidin-2-one (28)

28
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and aniline $\mathbf{A 9}(18.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ $3 / 1$) to yield the product 28 as a yellow solid ($18.8 \mathrm{mg}, 28 \%$ yield, $<5 \%$ ee).
$[\alpha]_{\mathrm{D}}{ }^{27}=2.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t R $($ minor $)=17.34 \mathrm{~min}, t_{\mathrm{R}}($ major $)=21.27 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,144.8,136.8,129.2,128.8,127.8,125.9,118.2,114.2,70.7$, 53.2, 51.8, 33.0, 32.5, 28.0, 27.9, 24.22, 24.19.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 335.2118$, found 335.2115.

(R)-3-((4-(Tert-butyl)phenyl)amino)-1-cycloheptyl-3-phenylazetidin-2-one (29)

29
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1
 for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=4 / 1$) to yield the product 29 as a red solid ($53.0 \mathrm{mg}, 68 \%$ yield, $<5 \% \mathrm{ee}$).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=8.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=12.62 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.45 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13$ $-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,142.3,140.9,137.1,128.8,127.7,126.0,125.9,113.9,70.9$, 53.0, 51.6, 33.8, 32.9, 32.5, 31.4, 28.0, 27.9, 24.20, 24.18.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 391.2744$, found 391.2742 .
(R)-1-Cycloheptyl-3-((4-methoxyphenyl)amino)-3-phenylazetidin-2-one (30)

30
According to General Procedure A with 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 4-methoxyaniline $\mathbf{A 1 1}(24.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 30 as a yellow solid ($41.1 \mathrm{mg}, 56 \%$ yield, $<5 \%$ ee).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=6.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=6.26 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.52 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.72$ $-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.46(\mathrm{~m}$, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,152.8,138.6,137.3,128.8,127.8,126.0,116.3,114.7,71.6$, 55.6, 53.0, 51.4, 32.9, 32.4, 27.9, 24.20, 24.17.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 365.2224$, found 365.2226.

6. Mechanistic studies

Effect of nucleophile and ligand on reaction initiation

Cul (10 mol \%), L*8 (15 mol \%)
E1 100\% recovered
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv), EtOAc, $\mathrm{Ar}, 0^{\circ} \mathrm{C}$
(\pm)-E1
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} * 8(3.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), and 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one $\mathbf{E 1}$ ($16.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv). Anhydrous EtOAc (1.0 mL) was added into the mixture and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ${ }^{1} \mathrm{H}$ NMR spectra (recovery of $\mathbf{E} 1$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining E1 100\%). Although we failed to synthesize the chiral ligand-chelated $\mathrm{Cu}(\mathrm{I})$-amido complex, a control experiment without A1 showed that no conversion of $\mathbf{E} 1$ was observed. Thus, it is the ligand exchange of $\mathrm{Cu}(\mathrm{I})$ with the aromatic amine that possibly occurs first rather than the single electron-transfer between $\mathrm{Cu}(\mathrm{I})$ and E1.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%) \mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($16.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and 3,5dinitroaniline A1 ($9.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv). Anhydrous EtOAc (1.0 mL) was added into the mixture and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ${ }^{1} \mathrm{H}$ NMR spectra (recovery of $\mathbf{E 1}$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard, remaining E1 100%). Control experiments confirmed that no reaction takes place in the absence of the chiral ligand.

Radical inhibition experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 8(14.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1
($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), 3,5-dinitroaniline $\mathbf{A 1}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) ($62.5 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv). Anhydrous EtOAc $(4.0 \mathrm{~mL})$ was added into the mixture and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was concentrated to afford the crude product and determined by ${ }^{1} \mathrm{H}$ NMR spectra (yield of $\mathbf{1}$ was based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard).

Radical trap experiment

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 8(14.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), 3-bromo-1-cycloheptyl-3-phenylazetidin-2-one E1 ($64.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), $3,5-$ dinitroaniline A1 ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and butylated hydroxytoluene (BHT) $(88.1 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv). Anhydrous EtOAc (4.0 mL) was added into the mixture and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=20 / 1$ to $4 / 1$) to yield the product 1 as a yellow solid ($26.9 \mathrm{mg}, 32 \%$ yield, 92% ee) and $\mathbf{3 1}$ as a colorless oil ($52.6 \mathrm{mg}, 57 \%$ yield).

1-Cycloheptyl-3-(3,5-di-tert-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-3-phenylazetidin-2-one (31)

31
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 185.8,167.4,148.3,146.6,143.3,142.3,136.4,129.2,127.5$, $127.4,65.3,53.0,46.8,42.6,34.9,34.8,33.0,32.5,29.32,29.26,27.94,27.86,24.19,24.16,21.5$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 462.3367$, found 462.3362 .

7. References

1. Chen, J-J.; Zhang, J.-Y.; Fang, J.-H.; Du, X.-Y.; Xia, H.-D.; Cheng, B.; Li, N.; Yu, Z.-L.; Bian, J.-Q.; Wang, F.-L.; Zheng, J.-J.; Liu, W.-L.; Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical C(sp $\left.{ }^{3}\right)-\mathrm{N}$ Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions. J. Am. Chem. Soc. 2023, 145, 14686-14696.
2. Wang, F.-L.; Yang, C.-J.; Liu, J.-R.; Yang, N.-Y.; Dong, X.-Y.; Jiang, R.-Q.; Chang, X.-Y.; Li, Z.-L.; Xu. G.-X.; Yuan, D.-L.; Zhang, Y.-S.; Gu, Q.-S.; Hong, X.; Liu, X.-Y. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}(\mathrm{sp})$ Cross-Coupling of Tertiary Electrophiles with Alkynes. Nat. Chem. 2022. 14, 949-957.
3. Yusof, Y.; Tan, D. T. C.; Arjomandi, O. K.; Schenk, G.; McGeary, R. P. Captopril Analogues as Metallo- β-Lactamase Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 1589-1593.

8. NMR spectra

8

12

14

14

[^0]

16

[^1]

| 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 | -200 | -210 |
| :--- | f1 (ppm)

[^2]

9. HPLC spectra

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.184	10380734	50.147
2	17.543	10319798	49.853

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.683	61784131	96.084
2	17.151	2518274	3.916

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.213	2573664	50.207
2	18.389	2552479	49.793

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.819	47140337	94.220
2	17.972	2891639	5.780

Signal 2: DAD1 B, Sig=254,4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	17.935	MM	0.5532	9233.18750	278.16382	50.0435
2	21.175	BB	0.6430	9217.12988	210.43494	49.9565
Tota	s :			1.84503e4	488.59875	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

$1 \quad 17.536$ BB $\quad 0.5223 \quad 5.48429 \mathrm{e} 4 \quad 1551.93860 \quad 94.3056$
$\begin{array}{lllllll}2 & 21.238 & \text { BB } & 0.6420 & 3311.54785 & 76.04895 & 5.6944\end{array}$

Totals :
$5.81545 \mathrm{e} 4 \quad 1627.98755$

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.880	5372678	50.292
2	19.661	5310277	49.708

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	13.924	3621920	93.449
2	20.022	253903	6.551

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.401	7481747	49.963
2	15.983	7492783	50.037

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.590	2292285	95.148
2	16.465	116902	4.852

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	26.376	3758092	50.038
2	33.933	3752333	49.962

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	25.830	29949106	95.694
2	34.228	1347580	4.306

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.875	MM	0.4550	5787.72070	211.99913	49.7033
2	14.817	BB	0.6001	5856.81348	149.81439	50.2967
Total	s :			1.16445 e 4	361.81352	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$\left[\mathrm{mAU}^{*}\right]$	$[\mathrm{mAU}]$	$\%$

----|-------|----|-------|---------|----------|--------|
$1 \quad 10.763$ BB $\quad 0.41206 .00029 \mathrm{e} 4 \quad 2243.72974 \quad 95.5395$
$\begin{array}{llllll}2 & 14.862 & \text { BB } & 0.5818 & 2801.38062 & 73.65028 \\ 4.4605\end{array}$

Totals : $\quad 6.28043 \mathrm{e} 4 \mathrm{2317.38001}$

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

| Peak RetTime Type | Width | Area | Height | Area |
| :--- | :---: | :---: | :---: | :---: | :---: |
| \#[min] | [min] | [mAU*s] | [mAU] | $\%$ |

Signal 2: DAD1 B, Sig=254,4 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.301		0.2914	1.90792 e 4	945.61725	94.3666
2	12.424	BB	0.4691	1138.96326	35.23597	5.6334
Total	s :			2.02181 e 4	980.85321	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.352	BB	0.2451	4027.23608	251.09586	50.0512
2	9.872	BB	0.2876	4018.99243	213.52142	49.9488
Total	ls			8046.22852	464.61728	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.432	BB	0.2759	2.01609 e 4	1120.74963	95.1854
2	10.047	BB	0.3117	1019.76605	50.05503	4.8146
Total	s :			2.11807 e 4	1170.80466	

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.213	2488256	49.819
2	17.886	2506293	50.181

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.867	14921366	94.876
2	17.412	805783	5.124

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	12.486	BB	0.3821	1.01156 e 4	398.57224	49.8981
2	15.838	BB	0.4972	1.01569 e 4	305.99948	50.1019
Total	s :			2.02725 e 4	704.57172	

Signal 2: DAD1 B, Sig=254,4 Ref $=360,100$

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	12.439	BB	0.3847	6.01379 e 4	2397.42700	93.8301
2	15.886	BB	0.5171	3954.43213	113.33216	6.1699

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	11.608	BB	0.5046	3. 98022		
2	15.167	BB	0.6460	2483.44238	59.13467	49.9946
Total	s :			4967.42261	136.92059	

Signal 2: DAD1 B, Sig=254,4 Ref $=360,100$

| Peak
 RetTime | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| \quad \# Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | $\%$ |

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.207	BB	0.3314	1.40891 e 4	658.96533	49.8459
2	10.951	BB	0.4371	1.41762 e 4	493.61322	50.1541
Total	s :			2.82654 e 4	1152.57855	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	8.208	BB	0.2895	3.82207 e 4	2050.43994	95.2371
2	11.067	BB	0.4129	1911.46826	71.27647	4.7629
Tota	s :			4.01322 e 4	2121.71641	

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.725	9327082	50.159
2	22.196	9267834	49.841

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.585	34543007	90.096
2	22.521	3797071	9.904

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.239	3912353	49.679
2	9.188	3962835	50.321

maU
(2000
Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.201	28539780	94.183
2	9.194	1762580	5.817

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.262	6786345	49.843
2	15.834	6829011	50.157

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.299	3304063	90.276
2	16.155	355904	9.724

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.603	7153202	49.972
2	16.297	7161225	50.028

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.584	4565216	94.384
2	16.625	271631	5.616

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.188	1143579	50.030
2	18.798	1142219	49.970

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	13.566	13714083	94.544
2	19.740	791449	5.456

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.751	11650097	50.017
2	14.585	11642065	49.983

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.599	19492657	94.779
2	14.677	1073864	5.221

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.805	6721927	49.929
2	18.490	6740930	50.071

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.917	15282162	91.545
2	18.727	1411408	8.455

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.691	5286833	50.078
2	15.779	5270281	49.922

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.570	20752921	93.047
2	15.651	1550674	6.953

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area\%
1	14.121	7296567	49.972
2	17.279	7304748	50.028

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.519	37129472	92.261
2	16.694	3114510	7.739

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.530	1942745	50.281
2	16.220	1921042	49.719

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.361	9023087	90.129
2	16.186	988198	9.871

mAU

Peak Table
PDA Ch1 254 nm

Peak\#\#	Ret. Time	Area	Area $\%$
1	7.909	6504611	50.463
2	10.213	6385346	49.537

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.978	7060752	91.938
2	10.298	619122	8.062

mV

Peak Table
Detector A Ch1 254nm
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.841	881513	49.885
2	23.424	885573	50.115

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.804	1589805	8.575
2	22.682	16951038	91.425

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	39.094	9516986	50.083
2	56.458	9485598	49.917

mAU

Peak Table
PDA Ch1 254nm

PDA Ch1 254 nm			
Peak\#	Ret. Time	Area	Area\%
1	39.198	3362407	12.031
2	53.389	24585437	87.969

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	17.631	BB	0.5680	8796.81738	240.89122	49.9367
2	21.647	BB	0.6822	8819.12305	200.11014	50.0633
Total	s :			1.76159 e 4	441.00136	

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	17.335	BB	0.5468	1.66800 e 4	473.76199	49.5179
2	21.266	BB	0.6794	1.70047 e 4	389.42560	50.4821
Total	ls :			3.36847 e 4	863.18759	

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.293	9242949	49.809
2	14.058	9313788	50.191

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.617	5147735	48.328
2	14.448	5503957	51.672

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
\#	[min]	[min]	[mAU*s]	[mAU]	$\%$

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

[^0]:

[^1]: f1 (ppm)

[^2]: f1 (ppm)

