nature chemistry

Article

A general copper-catalysed enantioconvergent C(*sp*³)–S cross-coupling via biomimetic radical homolytic substitution

In the format provided by the authors and unedited

Table of Contents

General information	S2
1. Supplementary tables for experiments	S3
2. Supplementary figures for experiments	S11
3. General procedure for synthesis of substrates	S21
4. Characterization data of ligands	S48
5. Enantioconvergent cross-coupling of benzyl electrophiles with s arylthiosulfonate	
6. Enantioconvergent cross-coupling of propargyl electrophiles wi benzenethiosulfonate	
7. Enantioconvergent cross-coupling of tertiary alkyl electrophiles	
thiobenzoic acid or potassium thiocarboxylates	
8. Investigation of other electrophiles	S103
9. Procedure for synthetic applications (89–102)	S107
10. Mechanistic studies	S120
11. X-ray crystallography	S129
12. Computational studies	S135
13. NMR spectra	S143
14. HPLC spectra	S389
15. Reference	

General information

Reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Cu(MeCN)₄BF₄ was purchased from TCI. CuI was purchased from Sigma-Aldrich. Cu(PPh3)3CF3 was purchased from Bide Pharmatech Ltd. Anhydrous toluene and diethyl ether (Et₂O) distilled from sodium (Na) and stored under argon. Cs₂CO₃ and Rb₂CO₃ were purchased from Bide Pharmatech Ltd, which were dry at 200 °C for 3 h in vacuum. Chloroform (CHCl3) was distilled from anhydrous calcium hydride (CaH₂) and stored under argon. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). As the eluent, the petroleum ether (PE) and EtOAc were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 spectrometers at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃, CD₃OD or DMSO-d₆ with tetramethylsilane (TMS) as internal standard. The chemical shifts were expressed in ppm and coupling constants were given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR were reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using SHIMADZU LC-20AD with SPD-20AV detector (at appropriate wavelength). Column conditions were reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu-Ka radiation.

1. Supplementary tables for experiments

Supplementary Table 1 | Investigation of the nucleophilic substitution reaction with benzyl electrophile.^a

	Br	+	PhC(O)SK	Solvent r.t., 36 h	→ Et O Ph S	`Ph
	E1		S1		1a	
	En	try	Solv	vent	Yield (%) ^b	_
	1		DN	ЛF	97	
	2		Me	OH	81	
	3		Me	CN	100	
	4		TH	THF		
	4	5	Et	$_{2}O$	7	
	6		DC	CM	4	
_	7	7	Tolı	iene	3	_

^aReaction conditions: **E1** (0.05 mmol) and **S1** (1.2 equiv.) in solvent (1.0 mL) at room temperature (r.t.) for 36 h; ^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard. **Supplementary Table 2** | Reaction condition optimization with benzyl electrophile: screening of different copper salts.^a

Br	O _{_} SNa	O SNa [Cu] (10 mol%), L*5 (10 mol%) SNa Cs2CO3 (4.0 equiv.)		
Et +		toluene, r.t., Ar, 2 days	Ph ''Et	
E1	S5		1	
Entry	[Cu]	Yield (%) ^b	E.e. (%) ^c	
1	CuI	80	79	
2	CuTc	64	78	
3	Cu(MeCN) ₄ PF ₆	88	80	
4	Cu(MeCN) ₄ BF ₄	4 90	80	
5	Cu(PPh ₃) ₂ BH ₄	51	77	
6	Cu(OTf) ₂	41	76	

^aReaction conditions: E1 (0.05 mmol), S5 (1.2 equiv.), [Cu] (10 mol%), L*1 (10 mol%), and Cs_2CO_3 (4.0 equiv.) in toluene (0.5 mL) at r.t. for 2 days under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ^cE.e. values were based on chiral HPLC analysis. **Supplementary Table 3** | Reaction condition optimization with benzyl electrophile: screening of different solvents and temperature.^a

Br Et +		eCN) ₄ BF ₄ (10 mol%) bl%), Cs ₂ CO ₃ (4.0 equiv.)	
	Solv	Solvent, r.t., Ar, 2 days	
E1	S5		1
Entry	Solvent	Yield (%) ^b	E.e. (%) ^c
1	Toluene	90	80
2	Et_2O	23	68
3	DCM	88	79
4	MeCN	14	62
5	Toluene/DMF (10/1)	80	82
6^{d}	Toluene/DMF (10/1)	79	88
7 ^e	Toluene/DMF (10/1)	81	92
8^{f}	Toluene/DMF (10/1)	76	92
9 ^g	Toluene/DMF (10/1)	54	92

^aReaction conditions: E1 (0.05 mmol), S5 (1.2 equiv.), Cu(MeCN)₄BF₄ (10 mol%), L*5 (10 mol%), and Cs₂CO₃ (4.0 equiv.) in solvent (0.5 mL) at r.t. for 2 days under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ^eE.e. values were based on chiral HPLC analysis;

^dRun at 0 °C, 3 days;

^eRun at −15 °C, 3 days;

^fH₂O (1.0 equiv.) in toluene/DMF (vol/vol = 10/1) at -15 °C for 3 days;

 $^{g}Cu(MeCN)_{4}BF_{4}$ (2.5 mol%), L*5 (2.5 mol%) was used.

Supplementary Table 4 | Reaction condition optimization with propargyl electrophile: screening of different copper salts and solvents.^a

Br	+ 0,0	[Cu] (10 mol%), L*12 (10 mol%) Cs ₂ CO ₃ (4.0 equiv.) Solvent, r.t., Ar, 2 d		TIPS 39	
TIPS E37	Ph ^{-S} SNa S6				
Entry	[Cu]	Solvent	Yield (%) ^b	E.e. (%) ^c	
1	Cu(MeCN) ₄ BF ₄	Toluene	31	63	
2	CuI	Toluene	38	63	
3	CuTc	Toluene	13	62	
4	Cu(OTf) ₂	Toluene	4	60	
5	Cu(PPh ₃) ₃ CF ₃	Toluene	14	62	
6	CuI	Et ₂ O	trace	^d	
7	CuI	CH_2Cl_2	13	78	
8	CuI	CHCl ₃	trace	^d	
9	CuI	MeCN	trace	^d	

^aReaction conditions: **E37** (0.05 mmol), **S6** (1.2 equiv.), [Cu] (10 mol%), L*12 (10 mol%), and Cs₂CO₃ (4.0 equiv.) in solvent (0.5 mL) at r.t. for 2 days under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard;

°E.e. values were based on chiral HPLC analysis;

^dNot determined.

Supplementary Table 5 | Reaction condition optimization with propargyl electrophile: screening of different catalyst ratios and bases.^a

	Br	0	0	Cul (x mol%), L*12 (y mol%) Base (4.0 equiv.)		0, 0 \\// SPh	
TIPS	`Et	Et + Ph S		SNa CH ₂ Cl ₂ , r.t., Ar, 2 days		Et	
	E37		S6			TIPS 39	
	Entry	CuI	L*12	Base	Yield (%) ^b	E.e. (%) ^c	
	1	10 mol%	10 mol%	Cs ₂ CO ₃	13	78	
	2	10 mol%	8 mol%	Cs_2CO_3	14	78	
	3	7.5 mol%	6 mol%	Cs_2CO_3	13	78	
	4	7.5 mol%	6 mol%	Rb ₂ CO ₃	60	78	
	5	7.5 mol%	6 mol%	K_2CO_3	29	67	
	6	7.5 mol%	6 mol%	K ₃ PO ₄	59	78	

^aReaction conditions: **E37** (0.05 mmol), **S6** (1.2 equiv.), CuI (x mol%), L*12 (y mol%), and Base (4.0 equiv.) in CH₂Cl₂ (0.5 mL) at r.t. for 2 days under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ^cE.e. values were based on chiral HPLC analysis. **Supplementary Table 6** | Reaction condition optimization with propargyl electrophile: screening of equivalent of base, H₂O, and temperature.^a

Bi	r _, +	0 0	Cul (7.5 mol%), L*12 (6 mol%) Rb ₂ CO ₃ (x equiv.), H ₂ O (y equiv.)			0 0 \\// SPh
TIPS E37	Èt ⁺	Ph ^{_`S`_} SNa S6	CH₂C	I ₂ , r.t., Ar, 2 days	TIPS	Et 39
	Entry	Rb ₂ CO ₃	H ₂ O	Yield (%) ^b	E.e. (%) ^c	
	1	4.0 equiv.	none	60	78	
	2	2.0 equiv.	none	58	78	
	3 ^d	2.0 equiv.	none	32	83	
	4 ^d	2.0 equiv.	2.0 equiv.	83	83	
	5 ^e	2.0 equiv.	2.0 equiv.	91	88	
	6 ^f	2.0 equiv.	2.0 equiv.	93	90	

^aReaction conditions: **E37** (0.05 mmol), **S6** (1.2 equiv.), CuI (7.5 mol%), **L*12** (6 mol%), Rb₂CO₃ (x equiv.) and H₂O (y equiv.) in CH₂Cl₂ (0.5 mL) at r.t. for 2 days under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ^eE.e. values were based on chiral HPLC analysis;

^dE.e. run at 0 °C, 2 days;

eE.e. run at -20 °C, 3 days;

 $^{\rm f}\!E.e.$ run at –20 °C in CHCl₃, 3 days.

Supplementary Table 7 | Reaction condition optimization with tertiary electrophile: screening of different solvents and copper salts.^a

PhHN O Et Ph	+	[Cu] (10 mol%), L*16 (15 mol%) Cs ₂ CO ₃ (3.0 equiv.), Solvent, r.t., Ar, 1 day		PhHN Et 55
Entry	[Cu]	Solvent	Yield (%) ^b	E.e. (%) ^c
1	CuI	EtOAc	85	76
2	CuI	CHCl ₃	10	44
3	CuI	THF	74	66
4	CuI	Toluene	86	78
5	CuI	1,4-Dioxane	55	60
6	CuI	Et ₂ O	81	79
7	CuCN	Et ₂ O	78	67
8	CuTc	Et ₂ O	77	57
9	Cu(MeCN) ₄ PF ₆	Et ₂ O	82	80
10	Cu(PPh ₃) ₃ CF ₃	Et ₂ O	84	83
11 ^d	Cu(PPh ₃) ₃ CF ₃	Et ₂ O	90	87
12 ^e	Cu(PPh ₃) ₃ CF ₃	Et ₂ O	93	90
13 ^f	Cu(PPh ₃) ₃ CF ₃	Et ₂ O	93	90

^aReaction conditions: **E53** (0.05 mmol), **S9** (1.5 equiv.), CuI (10 mol%), L*16 (15 mol%) and Cs₂CO₃ (3.0 equiv.) in EtOAc (1.0 mL) at r.t. for 1 day under argon;

^bYield was based on ¹H-NMR analysis of the crude products using 1,3,5-trimethylbenzene as an internal standard; ^eE.e. values were based on chiral HPLC analysis;

^drun at 0 °C, 2 days;

erun at −10 °C, 3 days;

 $^{\rm f}{\rm S1}$ was used, run at –10 °C, 3 days.

	0	Cu(PPh ₃);	₃ CF ₃ (10 mol%), L*16 (15	mol%)	S Ph	
Et Ph + Ph SK		Cs ₂ CO ₃ (3.0 equiv.), Et ₂ O, –10 °C, Ar, 3 d			H N Et	
E60 , (0.05 mmol)	S1				62	
Entry	[Cu]	L*16	Cs ₂ CO ₃	Yield	E.e.	
1	х	\checkmark	\checkmark	52%	1%	
2	\checkmark	×	\checkmark	45%		
3	×	×	\checkmark	36%		
4	\checkmark	\checkmark	\checkmark	95%	95%	

Supplementary Table 8 | Investigation of the background reactions.

Reaction conditions: **E60** (0.05 mmol, 1.0 equiv.), **S1** (1.5 equiv.), $Cu(PPh_3)_3CF_3$ (10 mol%), **L*16** (15 mol%), and Cs_2CO_3 (3.0 equiv.) in Et₂O (1.0 mL) at -10 °C for 3 days under argon. Yield is based on ¹H-NMR analysis of the crude products using 1,3,5-trimethylbenzene as an internal standard; E.e. is based on chiral HPLC analysis.

2. Supplementary figures for experiments

Supplementary Fig. 1 | α -Chiral alkyl organosulfur compounds in drugs, natural products, catalysts, ligands, metabolites, biomacromolecules and cofactors.

Supplementary Fig. 2 | Large-scale experiments. a, Reaction conditions: E1 (5.0 mmol), S5 (1.2 equiv.), Cu(MeCN)₄BF₄ (2.5 mol%), L*5 (2.5 mol%) and Cs₂CO₃ (4.0 equiv.) in toluene/DMF (vol/vol = 10/1, 55 mL) at -15 °C for 7 days under argon; b, Reaction conditions: E22 (1.2 mmol), S5 (1.2 equiv.), Cu(MeCN) ₄BF₄ (2.5 mol%), L*5 (2.5 mol%) and Cs₂CO₃ (4.0 equiv.) in toluene/DMF (vol/vol = 10/1, 13.2 mL) at -15 °C for 7 days under argon. c, E60 (2.5 mmol, 1.0 equiv.), S1 (1.5 equiv.), Cu(PPh₃)₃CF₃ (10 mol%), L*16 (15 mol%), and Cs₂CO₃ (3.0 equiv.) in Et₂O (50 mL) at -10 °C for 2 days under argon. Isolated yields are shown; E.e. is based on chiral HPLC analysis.

Supplementary Fig. 3 | Explanation for the observed regioselectivity. The complex $L*Cu^{I}SSO_{2}Ph$ reduced E37 to generate a propargylic radical (Int-1) and its resonance structure allenyl radical (Int-2). Subsequently, the propargylic radical (Int-1) coupled with the complex $L*Cu^{II}SSO_{2}Ph$, giving rise to the propargylic cross-coupling product 39 in high yield. It was difficult for the allenyl radical (Int-2) to react with the complex $L*Cu^{II}SSO_{2}Ph$ due to the steric hindrance of the TIPS group. Therefore, we reasoned that the exclusive regioselectivity might be attributed to the less steric int-I than int-II.^{1–3}

Supplementary Fig. 4 | Investigation of the reaction with tertiary electrophiles and S6. a, Reaction conditions: E53 (0.2 mmol), S6 (0.24 mmol, 1.2 equiv.), Cu(MeCN)4BF4 (10 mol%), L*5 (10 mol%) and Cs₂CO₃ (4.0 equiv.) in toluene (2.0 mL) at r.t. for 1 day under argon; b, Reaction conditions: E53 (0.2 mmol), S6 (0.24 mmol, 1.2 equiv.), CuI (7.5 mol%), L*12 (6 mol%) and Rb₂CO₃ (2.0 equiv.) in CH₃Cl (2.0 mL) at r.t. for 1 day under argon. The major side product was elimination by-product 55b and dimerization by-product 55c, of which the latter was possibly derived from 55a.

We have carefully analyzed the NMR spectrum of the crude product for the reaction of E53 and S6 in the presence of L*5. We have found that the conversion of E53 was ca. 52% and the elimination by-product 55b (13% yield) together with the disulfide by-product 55c (23% yield) was formed. The reaction with L*12 gave a similar result. We theorized that 55c was probably derived from the desired product 55a under basic conditions. To verify our hypothesis, we synthesized compound 55a and found that it could be easily converted to 55c upon exposure to simply basic conditions.

Supplementary Fig. 5 | The X-ray structure of 1 (CCDC 2212974, 50% probability ellipsoids).

Supplementary Fig. 6 | The X-ray structure of 52 (CCDC 2213037, 50% probability ellipsoids).

Supplementary Fig. 7 | The X-ray structure of 83 (CCDC 2213038, 50% probability ellipsoids).

Supplementary Fig. 8 | **Unsuccessful examples.** ^aCu(PPh₃)₃CF₃ (10 mol%), L*16 (15 mol%), Cs₂CO₃ (3.0 equiv.), Et₂O, Ar, -10 °C, 3 d. low conversion was observed at -10 °C, with the radical cyclization by-product (107) detected.

^bNo conversion was observed at -10 °C, low conversion was observed with the major elimination by-product (108) detected at 40 °C.

°No conversion was observed at -10 °C, low conversion was observed with the elimination and hydrogen abstraction by-products (**109** and **110**) detected at 40 °C.

^dCu(MeCN)₄BF₄ (10 mol%), L*5 (10 mol%), Cs₂CO₃ (4.0 equiv.), toluene, -10 °C, Ar, 3 d.

eCu(PPh3)3CF3 (10 mol%), L*16 (15 mol%), Cs2CO3 (3.0 equiv.), Et2O, r.t., Ar, 1 d.

^fCu(MeCN)₄BF₄ (10 mol%), L*5 (10 mol%), Cs₂CO₃ (4.0 equiv.), toluene, r.t., 2 d. Both alkyl bromide and iodide was used and low conversion of alkyl bromide/iodide was observed.

b Radical trap experiments for the propargyl reaction

Supplementary Fig. 9 | Mechanistic discussion. a, The benzyl coupling was inhibited by BHT and the BHT-trapped product 115 was isolated. b, The propargyl coupling were inhibited by TEMPO and BHT and the BHT-trapped product 116 was isolated. c, The effects of the lignad and copper(I) thiocarboxylates for the tertiary reaction. d, Radical clock experiment for the tertiary reaction. Ar, 3,5-dimethyl phenyl; TEMPO, 2,2,6,6tetramethyl-1-piperidinyloxy; BHT, 2,6-di-tert-butyl-4-methylphenol.

The radical trap experiment and isolated BHT-trapped product **115** indicateded the formation of benzyl radical species from benzyl halides via a single-electron-transfer process.

The radical trap experiment and isolated BHT-trapped product **116** indicateded the formation of propargyl radical species from propargyl halides via a single-electron-transfer process.

There was a strong background reaction without chiral ligand L*16 in the tertiary reaction. The combination of L*16 and copper(I) thiocarboxylates effectively tuned reactivity and enantioselectivity of this reaction.

The $PhC(O)SCu^{I}L*16$ reduced the radical precursor **119**, leading to the $PhC(O)SCu^{II}BrL*16$ and a R1 radical. The R1 radical underwent a facile addition to alkene **118** and provided the prochiral tertiary alkyl R2 radical. Next, R2 radical interacted with $PhC(O)SCu^{II}BrL*16$ to deliver the desired product **120** and regenerated the copper(I) species.

3. General procedure for synthesis of substrates

Note: The sodium benzenesulfinate S2, sodium benzenethiolate S3, sodium hydrosulfide S4 and thiobenzoic acid S9 were known compounds and commercially available.

The structures and synthesis of potassium arylthioates or alkylthioate:

General procedure 1:

NaSH (purity: 70%, 2.4 g, 30 mmol, 3.0 equiv.) was suspended in MeOH (20.0 mL) and cooled to 0 °C. Acyl chloride (10.0 mmol, 1.0 equiv.) was added slowly. After stirring at this temperature for 2 hours, the mixture was quenched with HCl (1.0 M) and extracted with CH₂Cl₂. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to get the thiocarboxylic acid. Then the thiocarboxylic acid was dissolved in MeOH (10.0 mL). A solution of KOH (8.0 mmol) in MeOH (5.0 mL) was added to the thiocarboxylic acid solution. After shaking, the solvent was removed using rotary evaporator. The resulting solid was washed with CH₂Cl₂ (20.0 mL) and collected by filtration. The solid was then recrystallized from MeOH/toluene for further purification.

Note: The substrates S1, S16 and S17 were known compounds and synthesized according to reported literature⁴.

Potassium benzothioate (S1)

¹**H NMR** (400 MHz, CD₃OD) δ 8.23 – 8.14 (m, 2H), 7.47 – 7.40 (m, 1H), 7.40 – 7.31 (m, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 214.6, 145.6, 131.4, 129.1, 128.3.

Potassium 3-methylbenzothioate (S10)

According to **General procedure 1** with 3-methylbenzoyl chloride (1.55 g, 10 mmol, 1.0 equiv.), yield the product **S10** as a white solid (1.35 g, 71% yield).

¹**H NMR** (400 MHz, CD₃OD) δ 7.98 – 7.94 (m, 1H), 7.93 – 7.88 (m, 1H), 7.24 – 7.18 (m, 2H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 214.9, 145.8, 137.9, 132.0, 129.8, 128.2, 126.3, 21.4. HRMS (ESI) *m/z* calcd for C₈H₇K₂OS [M + K]⁺ 228.9486, found: 228.9485.

Potassium 4-methylbenzothioate (S11)

According to **General procedure 1** with 4-methylbenzoyl chloride (1.55 g, 10 mmol, 1.0 equiv.), yield the product **S11** as a white solid (1.52 g, 80% yield).

¹**H NMR** (400 MHz, CD₃OD) δ 8.02 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 214.4, 143.1, 141.8, 129.4, 128.9, 21.3. HRMS (ESI) *m/z* calcd for C₈H₇K₂OS [M + K]⁺ 228.9486, found: 228.9485.

Potassium 3-(trifluoromethyl)benzothioate (S12)

According to **General procedure 1** with 3-(trifluoromethyl)benzoyl chloride (2.09 g, 10 mmol, 1.0 equiv.), yield the product **S12** as a light yellow solid (2.07 g, 85% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 8.56 (s, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H).

¹³C NMR (100 MHz, CD₃OD) δ 212.2, 146.1, 132.5 (d, J = 1.4 Hz), 130.6 (q, J = 32.1 Hz), 129.2, 127.5 (q, J = 3.8 Hz), 126.0 (q, J = 3.9 Hz), 125.7 (d, J = 271.4 Hz). ¹⁹F NMR (376 MHz, CD₃OD) δ –63.86.

HRMS (ESI) *m/z* calcd for C₈H₄F₃OS [M – K]⁻ 204.9940, found: 204.9934.

Potassium 3-chlorobenzothioate (S13)

According to **General procedure 1** with 3-chlorobenzoyl chloride (1.75 g, 10 mmol, 1.0 equiv.), yield the product **S13** as a white solid (1.64 g, 78% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 8.15 (t, J = 1.9 Hz, 1H), 8.06 (dt, J = 7.7, 1.4 Hz, 1H), 7.40 (ddd, J = 7.9, 2.2, 1.2 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H). ¹³**C NMR** (100 MHz, CD₃OD) δ 212.4, 147.4, 134.3, 130.9, 129.8, 129.2, 127.4. **HRMS** (ESI) m/z calcd for C₇H₄ClK₂OS [M + K]⁺ 248.8940, found: 248.8937.

Potassium 3-bromobenzothioate (S14)

According to **General procedure 1** with 3-bromobenzoyl chloride (2.19 g, 10 mmol, 1.0 equiv.), yield the product **S14** as a white solid (2.04 g, 80% yield).

¹**H** NMR (400 MHz, CD₃OD) δ 8.28 (t, J = 1.8 Hz, 1H), 8.10 – 8.04 (m, 1H), 7.56 – 7.50 (m, 1H), 7.24 (t, J = 7.8 Hz, 1H).

¹³C NMR (100 MHz, CD₃OD) δ 212.3, 147.7, 133.9, 132.2, 130.1, 127.8, 122.4. HRMS (ESI) *m/z* calcd for C₇H₄BrOS [M – K]⁻ 214.9172, found: 214.9167.

Potassium 3,5-dimethylbenzothioate (S15)

According to **General procedure 1** with 3,5-dimethylbenzoyl chloride (1.69 g, 10 mmol, 1.0 equiv.), yield the product **S15** as a yellow solid (1.68 g, 82% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.79 – 7.73 (m, 2H), 7.09 – 7.03 (m, 1H), 2.33 (d, J = 0.8 Hz, 6H). ¹³**C NMR** (100 MHz, CD₃OD) δ 215.1, 145.8, 137.8, 132.8, 127.0, 21.3. **HRMS** (ESI) *m/z* calcd for C₉H₉K₂OS [M + K]⁺ 242.9643, found: 242.9641.

Potassium thiophene-2-carbothioate (S16)

¹**H NMR** (400 MHz, CD₃OD) δ 7.68 (dd, J = 3.7, 1.3 Hz, 1H), 7.46 (dd, J = 5.0, 1.3 Hz, 1H), 7.02 (dd, J = 5.0, 3.7 Hz, 1H). ¹³**C NMR** (100 MHz, CD₃OD) δ 205.0, 153.2, 131.3, 130.0, 128.1. Potassium furan-2-carbothioate (S17)

¹H NMR (400 MHz, CD₃OD) δ 7.66 – 7.60 (m, 1H), 7.24 (dd, *J* = 3.5, 0.9 Hz, 1H), 6.53 (dd, *J* = 3.4, 1.8 Hz, 1H).
¹³C NMR (100 MHz, CD₃OD) δ 201.0, 157.9, 145.1, 116.0, 112.5.

Potassium 2,2-dimethylpropanethioate (S18)

According to **General procedure 1** with pivaloyl chloride (1.21 g, 10 mmol, 1.0 equiv.), yield the product **S18** as a yellow solid (1.17 g, 75% yield).

¹**H NMR** (400 MHz, CD₃OD) δ 1.36 (s, 9H).

¹³C NMR (100 MHz, CD₃OD) δ 230.2, 30.0, 28.5.

HRMS (ESI) *m/z* calcd for C₅H₉K₂OS [M + K]⁺194.9643, found: 194.9642.

The structures and synthesis of sodium arylsulfonothioates:

General procedure 2:

Sodium sulfite (20.0 mmol, 2.0 equiv.), sodium bicarbonate or sodium carbonate (20.0 mmol, 2.0 equiv.) and the corresponding aryl sulfonyl chloride (10.0 mmol, 1.0 equiv.) were dissolved in distilled water (10.0 mL). The reaction mixture was stirred for 4 hours at 80 °C. After cooling down to room temperature, water was removed in vacuo. 50 mL of ethanol was then added to this white residue and the resulting heterogeneous solution was filtered. The filtrate was concentrated under reduced pressure and the desired sodium aryl sulfinates were obtained as white powders.

sodium aryl sulfinates (10.0 mmol, 1.0 equiv.) and S_8 (10.0 mmol, 1.0 equiv.) were dissolved in pyridine (8.0 mL) to give a yellow solution under argon. After the reaction was stirred 6 hours, 30.0 mL anhydrous diethyl ether was added, giving a white suspension, the reaction was filtered and washed with anhydrous diethyl ether. The residue was recrystallized from anhydrous ethanol to afford the desired compound as a white solid

Note: The sodium benzenesulfinate for the synthesis of substrate **S6** was commercially available, and the substrate **S6** was known compound and synthesized according to reported literature⁵.

Sodium 3,5-dimethylbenzenesulfonothioate (S5)

According to **General procedure 2** with 3,5-dimethylbenzenesulfonyl chloride (2.05 g, 10 mmol, 1.0 equiv.), yield the product **S5** as a white solid (2.02 g, 90% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.63 (s, 2H), 7.13 (s, 1H), 2.40 (s, 6H). ¹³**C NMR** (100 MHz, CD₃OD) δ 154.4, 139.1, 132.6, 123.1, 21.3. **HRMS** (ESI) *m/z* calcd for C₈H₉O₂S₂ [M – Na]⁻ 201.0049, found: 201.0042

Sodium benzenesulfonothioate (S6)

¹**H NMR** (400 MHz, CD₃OD) δ 8.04 – 7.95 (m, 2H), 7.51 – 7.41 (m, 3H).

Sodium 4-methylbenzenesulfonothioate (S7)

According to **General procedure 2** with 4-methylbenzenesulfonyl chloride (1.91 g, 10 mmol, 1.0 equiv.), yield the product **S7** as a white solid (1.85 g, 88% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.93 – 7.85 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.43 (s,

3H).

¹³C NMR (100 MHz, CD₃OD) δ 152.1, 141.7, 129.6, 125.6, 21.3.

HRMS (ESI) *m/z* calcd for C₇H₇O₂S₂ [M – Na]⁻ 186.9893, found: 186.9885.

Sodium 3-methylbenzenesulfonothioate (S8)

According to **General procedure 2** with 3-methylbenzenesulfonyl chloride (1.91 g, 10 mmol, 1.0 equiv.), yield the product **S8** as a white solid (1.93 g, 92% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.83 (s, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CD₃OD) δ 154.3, 139.2, 131.9, 129.0, 125.9, 122.6, 21.4. HRMS (ESI) *m/z* calcd for C₇H₇O₂S₂ [M – Na]⁻ 186.9893, found: 186.9885.

The structures and synthesis of benzyl electrophiles:

To a solution of ketone (3.0 mmol) in MeOH (9.0 mL) was added NaBH₄ (136.2 mg, 3.6 mmol) at ice bath and the reaction mixture was stirred at room temperature for 0.5-2 hours. After completion of reaction (monitored by TLC), the reaction was quenched by water, and the mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the corresponding alcohol. The crude product was purified by flash chromatography on silica gel to provide the desired product.

To a solution of the residue obtained above in CH_2Cl_2 (9.0 mL) was added PBr₃ (0.20 mL, 2.1 mmol) under an argon atmosphere at ice water bath and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water at ice water bath, and the mixture was

extracted with CH₂Cl₂ three times. The combined organic phase was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the corresponding crude benzyl bromides, which was directly used in the next step without further purification or stored in a refridgerator.

Note: Benzyl bromide **E2** was purchased from Bide Pharmatech. The benzyl bromide **E1**, **E3–35**, **E78** were known compounds and synthesized according to reported literature^{6,7}. The purities of crude benzyl bromides were determined by ¹H NMR spectroscopy using 1,3,5-trimethylbenzene or 1,1,1,2,2-pentachloroethane as an internal standard.

(1-Bromopropyl)benzene (E1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.29 (m, 1H), 4.91 (dd, *J* = 8.1, 6.8 Hz, 1H), 2.41 – 2.27 (m, 1H), 2.26 – 2.13 (m, 1H), 1.04 (t, *J* = 7.3 Hz, 3H).

(1-Bromobutyl)benzene (E3)

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 1H), 4.97 (dd, *J* = 8.2, 6.9 Hz, 1H), 2.27 – 2.20 (m, 1H), 2.17 – 2.04 (m, 1H), 1.56 – 1.42 (m, 1H), 1.41 – 1.26 (m, 1H), 0.94 (t, *J* = 7.4 Hz, 3H).

(1-Bromo-2-methylpropyl)benzene (E4)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 4H), 7.28 – 7.21 (m, 1H), 4.71 (d, *J* = 8.5 Hz, 1H), 2.37 – 2.29 (m, 1H), 1.18 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.7 Hz, 3H).

(1-Bromo-3-methylbutyl)benzene (E5)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 1H), 5.04 (dd, J = 8.5, 7.1 Hz, 1H), 2.25 – 2.15 (m, 1H), 2.04 – 1.92 (m, 1H), 1.77 – 1.63 (m, 1H), 0.93 (t, J = 6.6 Hz, 6H).

(Bromo(cyclopentyl)methyl)benzene (E6)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.34 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H), 4.77 (d, *J* = 10.2 Hz, 1H), 2.81 – 2.65 (m, 1H), 2.17 – 2.08 (m, 1H), 1.74 – 1.44 (m, 6H), 1.11 – 0.99 (m, 1H).

(1-Bromobutane-1,4-diyl)dibenzene (E7)

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 6H), 7.25 – 7.21 (m, 1H), 7.20 – 7.11 (m, 3H), 4.95 (dd, J = 8.1, 6.9 Hz, 1H), 2.64 (t, J = 7.6 Hz, 2H), 2.37 – 2.31 (m, 1H), 2.21 – 2.11 (m, 1H), 1.90 – 1.77 (m, 2H), 1.70 – 1.56 (m, 1H).

2-(3-Bromo-3-phenylpropyl)-5-methylfuran (E8)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.35 – 7.27 (m, 3H), 5.90 – 5.78 (m, 2H), 4.94 (dd, *J* = 8.3, 6.4 Hz, 1H), 2.74 – 2.66 (m, 2H), 2.61 – 2.52 (m, 1H), 2.50 – 2.37 (m, 1H), 2.24 (s, 3H).

(1-Bromo-4-methoxybutyl)benzene (E9)

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.42 – 7.29 (m, 3H), 5.02 (dd, J = 8.3, 6.7 Hz, 1H), 3.50 – 3.39 (m, 2H), 3.35 (s, 3H), 2.45 – 2.35 (m, 1H), 2.31 – 2.22 (m, 1H), 1.88 – 1.76 (m, 1H), 1.70 – 1.61 (m, 1H).

Ethyl 5-bromo-5-phenylpentanoate (E10)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.25 (m, 5H), 4.95 (dd, J = 8.2, 6.7 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.33 (t, J = 7.3 Hz, 3H), 2.24 – 2.11 (m, 1H), 1.91 – 1.77 (m, 1H), 1.71 – 1.57 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H).

5-Bromo-5-phenylpentanenitrile (E11)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 4.93 (dd, *J* = 8.6, 6.3 Hz, 1H), 2.46 – 2.34 (m, 3H), 2.32 – 2.28 (m, 1H), 1.99 – 1.85 (m, 1H), 1.76 – 1.62 (m, 1H).

2-(3-Bromo-3-phenylpropyl)-5,5-dimethyl-1,3-dioxane (E12)

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.36 – 7.29 (m, 2H), 7.29 – 7.25 (m, 1H), 4.99 (dd, J = 8.4, 6.7 Hz, 1H), 4.45 (t, J = 4.7 Hz, 1H), 3.62 – 3.53 (m, 2H), 3.39 (d, J = 11.1 Hz, 2H), 2.47 – 2.36 (m, 1H), 2.36 – 2.29 (m, 1H), 1.91 – 1.78 (m, 1H), 1.72 – 1.61 (m, 1H), 1.17 (s, 3H), 0.71 (s, 3H).

(1,3-Dibromopropyl)benzene (E13)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.38 – 7.27 (m, 3H), 5.24 – 5.13 (m, 1H), 3.61 – 3.48 (m, 1H), 3.46 – 3.34 (m, 1H), 2.84 – 2.68 (m, 1H), 2.63 – 2.48 (m, 1H).

(1-Bromo-3-chloropropyl)benzene (E14)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.37 – 7.30 (m, 3H), 5.20 (dd, J = 9.0, 5.7 Hz, 1H), 3.74 – 3.66 (m, 1H), 3.59 – 3.52 (m, 1H), 2.76 – 2.62 (m, 1H), 2.52 – 2.40 (m, 1H).

(1-Bromobut-3-en-1-yl)benzene (E15)

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 2H), 7.31 – 7.25 (m, 1H), 5.82 – 5.65 (m, 1H), 5.17 – 5.05 (m, 2H), 4.95 (t, *J* = 7.5 Hz, 1H), 3.11 – 2.85 (m, 2H).

(1-Bromopent-4-en-1-yl)benzene (E16)

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.36 – 7.24 (m, 3H), 5.84 – 5.70 (m, 1H), 5.09 – 4.99 (m, 2H), 4.95 (dd, *J* = 8.4, 5.7 Hz, 1H), 2.46 – 2.33 (m, 1H), 2.24 – 2.03 (m, 3H).

1-Bromo-1,2,3,4-tetrahydronaphthalene (E17)

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 1H), 7.21 – 7.12 (m, 2H), 7.09 – 7.03 (m, 1H), 5.60 (t, *J* = 3.6 Hz, 1H), 2.94 (ddd, 1H), 2.85 (ddd, *J* = 17.1, 11.1, 5.8 Hz, 1H), 2.47 – 2.36 (m, 1H), 2.34 – 2.20 (m, 1H), 2.20 – 2.09 (m, 1H), 1.96 – 1.85 (m, 1H).

1-(1-Bromopropyl)-3-methylbenzene (E18)

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.14 (m, 3H), 7.11 – 7.04 (m, 1H), 4.84 (dd, J = 8.1, 6.8 Hz, 1H), 2.36 – 2.33 (m, 4H), 2.19 – 2.11 (m, 1H), 0.99 (t, J = 7.3 Hz, 3H).

1-(1-Bromopropyl)-4-methylbenzene (E19)

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.15 – 7.12 (m, 2H), 4.87 (t, J = 7.4 Hz, 1H), 2.33 (s, 3H), 2.20 – 2.08 (m, 1H), 1.88 – 1.83 (m, 1H), 0.99 (t, J = 7.3 Hz, 3H).

1-(1-Bromopropyl)-2-methylbenzene (E20)

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 3H), 7.11 – 7.06 (m, 1H), 4.85 (dd, J = 8.2, 6.7 Hz, 1H), 2.35 (s, 3H), 2.33 – 2.29 (m, 1H), 2.18 – 2.13 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H).

1-(1-Bromopropyl)-3-methoxybenzene (E21)

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.22 (m, 1H), 6.99 – 6.95 (m, 1H), 6.93 (t, 1H), 6.84 – 6.80 (m, 1H), 4.84 (dd, J = 8.0, 6.7 Hz, 1H), 3.81 (s, 3H), 2.27 – 2.21 (m, 1H), 2.21 – 2.09 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H).

4-(1-Bromopropyl)-1,1'-biphenyl (E22)

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 4H), 7.46 – 7.41 (m, 4H), 7.37 – 7.31 (m, 1H), 4.93 (dd, *J* = 8.1, 6.7 Hz, 1H), 2.37 – 2.29 (m, 1H), 2.25 – 2.14 (m, 1H), 1.03 (t, *J* = 7.2 Hz, 3H).

1-(1-Bromopropyl)-3-fluorobenzene (E23)

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 1H), 7.19 – 7.07 (m, 2H), 7.00 – 6.93 (m, 1H), 4.88 – 4.76 (m, 1H), 2.33 – 2.20 (m, 1H), 2.20 – 2.08 (m, 1H), 1.00 (t, *J* = 7.3 Hz, 3H).

1-(1-Bromopropyl)-3-chlorobenzene (E24)

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.37 (m, 1H), 7.27 – 7.25 (m, 3H), 4.80 (dd, J = 8.1, 6.8 Hz, 1H), 2.32 – 2.20 (m, 1H), 2.19 – 2.07 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H).

1-Bromo-4-(1-bromopropyl)benzene (E25)

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.29 – 7.26 (m, 2H), 4.85 – 4.79 (m, 1H), 2.32 – 2.20 (m, 1H), 2.20 – 2.07 (m, 1H), 0.99 (t, *J* = 7.2 Hz, 3H).

1-(1-Bromopropyl)-4-(trifluoromethyl)benzene (E26)

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 4.86 (dd, *J* = 8.1, 6.7 Hz, 1H), 2.34 – 2.28 (m, 1H), 2.21 – 2.08 (m, 1H), 1.01 (t, *J* = 7.3 Hz, 3H).

1-(1-Bromoethyl)-3-isocyanobenzene (E27)

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 1.8 Hz, 1H), 7.67 (dt, *J* = 7.8, 1.6 Hz, 1H), 7.57 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 5.15 (q, *J* = 6.9 Hz, 1H), 2.03 (d, *J* = 6.9 Hz, 3H).

1-(3-(1-Bromoethyl)phenyl)ethan-1-one (E28)

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 (t, *J* = 1.9 Hz, 1H), 7.87 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.65 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 5.23 (q, *J* = 7.0 Hz, 1H), 2.61 (s, 3H), 2.06 (d, *J* = 7.0 Hz, 3H).

Methyl 3-(1-bromoethyl)benzoate (E29)

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 1.9 Hz, 1H), 7.96 (dt, J = 7.8, 1.4 Hz, 1H), 7.63 (dt, J = 7.8, 1.5 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 5.22 (q, J = 6.9 Hz, 1H), 3.93 (s, 3H), 2.06 (d, J = 6.9 Hz, 3H).

1-(1-Bromopropyl)naphthalene (E30)

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.6 Hz, 1H), 7.93 (dd, J = 8.2, 1.4 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 7.3 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.59 – 7.48 (m, 2H), 5.75 (t, J = 7.3 Hz, 1H), 2.67 – 2.54 (m, 1H), 2.52 – 2.40 (m, 1H), 1.19 (t, J = 7.2 Hz, 3H).

2-(1-Bromopropyl)naphthalene (E31)

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 4H), 7.61 – 7.57 (m, 1H), 7.54 – 7.51 (m, 2H), 5.10 (t, *J* = 7.4 Hz, 1H), 2.51 – 2.39 (m, 1H), 2.37 – 2.33 (m, 1H), 1.07 (t, *J* = 7.3 Hz, 3H).

3-(1-Bromopropyl)benzo[b]thiophene (E32)

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 1H), 7.87 – 7.83 (m, 1H), 7.47 (s, 1H), 7.46 – 7.41 (m, 1H), 7.40 – 7.35 (m, 1H), 5.31 – 5.24 (m, 1H), 2.49 – 2.37 (m, 2H), 1.13 (t, *J* = 7.3 Hz, 3H).

3-(1-Bromopropyl)thiophene (E33)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.14 (d, *J* = 5.1 Hz, 1H), 5.02 (t, *J* = 7.3 Hz, 1H), 2.25 – 2.14 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H).

3-(1-Bromopropyl)quinoline (E34)

¹**H** NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 8.20 – 8.11 (m, 2H), 7.85 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.80 – 7.71 (m, 1H), 7.64 – 7.56 (m, 1H), 5.09 (dd, *J* = 8.2, 6.7 Hz, 1H), 2.53 – 2.40 (m, 1H), 2.40 – 2.23 (m, 1H), 1.10 (t, *J* = 7.2 Hz, 3H).

3-(1-Bromopropyl)pyridine (E35)

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (d, J = 2.4 Hz, 1H), 8.57 – 8.46 (m, 1H), 7.75 (dt, J = 8.0, 2.0 Hz, 1H), 7.30 (dd, J = 8.0, 4.8 Hz, 1H), 4.87 (t, J = 7.4 Hz, 1H), 2.40 – 2.24 (m, 1H), 2.16 (dp, J = 14.2, 7.1 Hz, 1H), 1.09 – 0.97 (m, 3H).

(Z)-(6-Bromohex-1-ene-1,6-diyl)dibenzene (E78)

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 7H), 7.28 – 7.25 (m, 2H), 7.23 – 7.21 (m, 2H), 6.43 (d, *J* = 11.5 Hz, 1H), 5.65 – 5.55 (m, 1H), 4.90 (t, *J* = 7.5 Hz, 1H), 2.38 – 2.33 (m, 2H), 1.98 – 1.87 (m, 1H), 1.82 – 1.71 (m, 1H), 1.70 – 1.56 (m, 2H), 1.50 – 1.40 (m, 1H).

In a vacuum dried 50 mL round bottomed flask, 1-(naphthalen-2-yl)propan-1-ol (0.93 g, 5.0 mmol) was dissolved in dry CH₂Cl₂ (12.0 mL). Then, thionyl chloride (1.81 mL, 25.0 mmol) was added at 0 °C under argon atmosphere. Then, the reaction mixture was warmed to 50 °C. After stirred for 3 hours, the solvent and the unreacted thionyl chloride were removed by evaporation. The residue was quenched by saturated aqueous NaHCO₃ (1.0 mL) and H₂O (20.0 mL), and then extracted with EtOAc three times (20.0 mL × 3). The combined organic layer was then dried over Na₂SO₄. After filtration, the solvent was removed by rotary evaporator to obtain the corresponding chloride product **E36** (1.05 g, 90% yield) as a pale yellow oil.

Note: The substrate **E36** was known compound and synthesized according to reported literature⁸.

2-(1-Chloropropyl)naphthalene (E36)

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.73 (m, 4H), 7.53 – 7.42 (m, 3H), 4.93 (t, *J* = 7.0 Hz, 1H), 2.31 – 2.05 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).

^{*n*}BuLi (2.4 M in hexane, 1.3 equiv.) was added dropwise into a solution of alkynes (1.3 equiv.) in anhydrous THF (1.0 M) at -78 °C. The mixture was stirred at room temperature for 30 min and cooled to -78 °C. Aldehyde (1.0 equiv.) was added dropwise. Then the mixture was warmed up to room temperature and stirred for overnight. The mixture was quenched by a saturated NH4Cl aqueous solution, extracted with EtOAc, and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure and then subjected to flash chromatography to afford the desired product.

Under an argon atmosphere, to a solution of imidazole (1.2 equiv.) in dry CH₂Cl₂(1.0 M) was added propargyl alcohol (1.0 equiv.). The solution was stirred for 15 min, followed by the addition of dibromotriphenylphosphorane (1.2 equiv.). The reaction mixture was stirred at room temperature overnight. Then the reaction was quenched by the addition of silica gel. The solvent was removed under reduced pressure, and then the plug of silica gel was subjected to flash chromatography to afford the desired product.

Note: The substrates **E37–44**, **E46**, **E48**, **E49** were known compounds and synthesized according to reported literature⁹. The substrate **E52** was known compound and synthesized according to reported literature¹⁰.

(3-Bromopent-1-yn-1-yl)triisopropylsilane (E37)

¹**H NMR** (400 MHz, CDCl₃) δ 4.53 (t, J = 6.3 Hz, 1H), 2.08 – 1.98 (m, 2H), 1.12 (t, J = 7.3 Hz, 3H), 1.09 – 1.05 (m, 21H).

(3-Bromobut-1-yn-1-yl)triisopropylsilane (E38)

¹**H NMR** (400 MHz, CDCl₃) δ 4.63 (q, *J* = 6.9 Hz, 1H), 1.91 (d, *J* = 6.8 Hz, 3H), 1.07 (s, 21H).

(3-Bromohex-1-yn-1-yl)triisopropylsilane (E39)

¹**H** NMR (400 MHz, CDCl₃) δ 4.57 (t, J = 6.8 Hz, 1H), 2.07 – 1.95 (m, 2H), 1.66 – 1.58 (m, 2H), 1.10 (d, J = 1.2 Hz, 21H), 0.98 (t, J = 7.4 Hz, 3H).

(3-Bromo-4-methylpent-1-yn-1-yl)triisopropylsilane (E40)

¹**H** NMR (400 MHz, CDCl₃) δ 4.54 (d, J = 4.4 Hz, 1H), 2.13 – 2.03 (m, 1H), 1.15 (d, J = 6.7 Hz, 6H), 1.10 (s, 21H).

(3-Bromo-5-methylhex-1-yn-1-yl)triisopropylsilane (E41)

¹**H** NMR (400 MHz, CDCl₃) δ 4.55 (t, J = 7.4 Hz, 1H), 1.97 – 1.86 (m, 3H), 1.08 – 1.00 (m, 21H), 0.94 (d, J = 6.3 Hz, 6H).

(3-Bromohept-1-yn-1-yl)triisopropylsilane (E42)

¹**H NMR** (400 MHz, CDCl₃) δ 4.39 (s, 1H), 1.15 (s, 9H), 1.08 (s, 21H).

(3-Bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane (E43)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.17 (m, 3H), 4.49 (t, J = 6.8 Hz, 1H), 2.88 (t, J = 7.7 Hz, 2H), 2.36 – 2.27 (m, 2H), 1.09 (s, 21H).

(3-Bromo-5-(5-methylfuran-2-yl)pent-1-yn-1-yl)triisopropylsilane (E44)

¹**H NMR** (400 MHz, CDCl₃) δ 5.95 – 5.79 (m, 2H), 4.53 (t, *J* = 6.8 Hz, 1H), 2.84 (t, *J* = 7.4 Hz, 2H), 2.35 – 2.27 (m, 2H), 2.25 (d, *J* = 1.0 Hz, 3H), 1.08 (s, 21H).

Ethyl 5-bromo-7-(triisopropylsilyl)hept-6-ynoate (E45)

According to **General procedure 3**, ethyl 5-oxopentanoate (2.70 g, 18.7 mmol, 1.0 equiv.) with ethynyltriisopropylsilane (4.43 g, 24.3 mmol, 1.3 equiv.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 75/1) to yield the product as a colorless oil (2.62 g, 36% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 4.56 (t, *J* = 6.5 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.37 (t, *J* = 7.3 Hz, 2H), 2.10 – 2.01 (m, 2H), 1.96 – 1.84 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.13 – 0.99 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 105.5, 89.3, 60.5, 39.0, 36.8, 33.4, 22.9, 18.7, 14.3, 11.2.

HRMS (ESI) m/z calcd. For C₁₈H₃₄BrO₂Si [M + H]⁺ 389.1506, found 389.1506.

4-Bromo-6-(triisopropylsilyl)hex-5-ynenitrile (E46)

¹**H NMR** (400 MHz, CDCl₃) δ 4.68 (t, *J* = 6.1 Hz, 1H), 2.67 (td, *J* = 7.4, 2.0 Hz, 2H), 2.39 - 2.32 (m, 2H), 1.09 - 1.06 (m, 21H).

(3-Bromo-8-chlorooct-1-yn-1-yl)triisopropylsilane (E47)

According to **General procedure 3**, 6-chlorohexanal (0.67 g, 5 mmol, 1.0 equiv.) with ethynyltriisopropylsilane (1.19 g, 6.5 mmol, 1.3 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil (0.21 g, 11% yield over two steps).

¹**H** NMR (400 MHz, CDCl₃) δ 4.55 (t, J = 6.6 Hz, 1H), 3.54 (t, 2H), 2.07 – 1.98 (m, 2H), 1.85 – 1.75 (m, 2H), 1.64 – 1.45 (m, 4H), 1.07 (s, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 105.8, 89.0, 44.9, 39.7, 37.3, 32.5, 26.7, 26.1, 18.7, 11.3.

HRMS (ESI) *m/z* calcd. For C₁₇H₃₃BrClSi [M + H]⁺ 379.1218, found 379.1206.

(3-Bromooct-7-en-1-yn-1-yl)triisopropylsilane (E48)

¹**H** NMR (400 MHz, CDCl₃) δ 5.84 – 5.74 (m, 1H), 5.06 – 4.96 (m, 2H), 4.56 (t, J = 6.7 Hz, 1H), 2.14 – 2.07 (m, 2H), 2.05 – 1.99 (m, 2H), 1.71 – 1.63 (m, 2H), 1.07 (s, 21H).

(Z)-(3-bromoundec-8-en-1-yn-1-yl)triisopropylsilane (E49)

¹**H** NMR (400 MHz, CDCl₃) δ 5.41 – 5.27 (m, 2H), 4.54 (t, J = 6.7 Hz, 1H), 2.08 – 1.98 (m, 6H), 1.60 – 1.54 (m, 2H), 1.43 – 1.35 (m, 2H), 1.07 (s, 21H), 0.96 (t, J = 7.5 Hz, 3H).

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)trimethylsilane (E50)

According to **General procedure 3**, pivalaldehyde (1.66 g, 19.3 mmol, 1.0 equiv.) with ethynyltrimethylsilane (2.46 g, 25.1 mmol, 1.3 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil (0.86 g, 18% yield over two steps).

¹H NMR (400 MHz, CDCl₃) δ 4.35 (s, 1H), 1.13 (s, 9H), 0.18 (s, 9H).
 ¹³C NMR (100 MHz, CDCl₃) δ 103.1, 92.8, 51.4, 36.6, 26.9, -0.1.
 HRMS (ESI) *m/z* calcd. For C₁₀H₁₉BrNaSi [M + Na]⁺ 269.0332, found 269.0331.

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)triethylsilane (E51)

According to **General procedure 3**, pivalaldehyde (0.89 g, 10.3 mmol, 1.0 equiv.) with triethyl(ethynyl)silane (1.88 g, 13.4 mmol, 1.3 equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil (0.83g, 28% yield over two steps).

¹**H NMR** (400 MHz, CDCl₃) δ 4.37 (s, 1H), 1.14 (s, 9H), 1.00 (t, *J* = 7.9 Hz, 9H), 0.61 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 104.4, 90.5, 51.6, 36.6, 27.0, 7.6, 4.5. HRMS (ESI) *m/z* calcd. For C₁₃H₂₆BrSi [M + H]⁺ 289.0982, found 289.0981.

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)benzene (E52)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 7.37 – 7.32 (m, 3H), 4.65 (s, 1H), 1.24 (s, 9H).

The structures and synthesis of tertiary α-chloroamides:

The α -chloro acid chloride in anhydrous CH₂Cl₂ (5.0 mL) was added dropwise to a solution of the corresponding amine (10.0 mmol) and triethylamine (4.2 mL, 30.0 mmol) in CH₂Cl₂ (30.0 mL) at 0 °C. The reaction was stirred at 0 °C for 15 min and then warmed up to room temperature. After completion (monitored by TLC), the reaction was quenched by the addition of 1.0 M HCl, the organic layer was washed by brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material, which was purified by flash chromatography to yield the tertiary α -chloroamide.

Note: The substrates **E53–77** were known compounds and synthesized according to reported literature^{11,12}

2-Chloro-N,2-diphenylbutanamide (E53)

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.64 – 7.57 (m, 2H), 7.57 – 7.48 (m, 2H), 7.42 – 7.27 (m, 5H), 7.18 – 7.10 (m, 1H), 2.66 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.42 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.07 (t, *J* = 7.2 Hz, 3H).

N-(4-(Tert-butyl)phenyl)-2-chloro-2-phenylbutanamide (E54)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.66 – 7.55 (m, 2H), 7.49 – 7.44 (m, 2H), 7.39 – 7.29 (m, 5H), 2.67 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.41 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.30 (s, 9H), 1.07 (t, *J* = 7.2 Hz, 3H).

N-([1,1'-Biphenyl]-4-yl)-2-chloro-2-phenylbutanamide (E55)

¹**H** NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.66 – 7.59 (m, 4H), 7.59 – 7.54 (m, 4H), 7.45 – 7.31 (m, 6H), 2.68 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.44 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.09 (t, *J* = 7.2 Hz, 3H).

N-(4-Bromophenyl)-2-chloro-2-phenylbutanamide (E56)

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.63 – 7.54 (m, 2H), 7.44 (s, 4H), 7.41 – 7.30 (m, 3H), 2.64 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.41 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.06 (t, *J* = 7.2 Hz, 3H).

2-Chloro-N-(3-fluorophenyl)-2-phenylbutanamide (E57)

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.61 – 7.57 (m, 2H), 7.53 (dt, J = 10.8, 2.2 Hz, 1H), 7.42 – 7.30 (m, 3H), 7.28 – 7.24 (m, 1H), 7.16 – 7.12 (m, 1H), 6.86 – 6.80 (m, 1H), 2.64 (dq, J = 14.3, 7.1 Hz, 1H), 2.41 (dq, J = 14.4, 7.2 Hz, 1H), 1.06 (t, J = 7.2 Hz, 3H).

2-Chloro-N-(3,5-dimethylphenyl)-2-phenylbutanamide (E58)

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.64 – 7.55 (m, 2H), 7.43 – 7.28 (m, 3H), 7.19 (s, 2H), 6.83 – 6.75 (m, 1H), 2.66 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.41 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.29 (s, 6H), 1.07 (t, *J* = 7.2 Hz, 3H).

2-Chloro-N-(3,5-dimethoxyphenyl)-2-phenylbutanamide (E59)

¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.64 – 7.55 (m, 2H), 7.40 – 7.30 (m, 3H), 6.78 (d, J = 2.3 Hz, 2H), 6.26 (t, J = 2.2 Hz, 1H), 3.78 (s, 6H), 2.65 (dq, J = 14.3, 7.1 Hz, 1H), 2.41 (dq, J = 14.4, 7.2 Hz, 1H), 1.07 (t, J = 7.2 Hz, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-phenylbutanamide (E60)

¹**H** NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.91 – 7.80 (m, 1H), 7.70 (d, J = 7.9 Hz, 4H), 7.54 – 7.32 (m, 6H), 2.73 (dq, J = 14.3, 7.1 Hz, 1H), 2.49 (dq, J = 14.4, 7.2 Hz, 1H), 1.13 (t, J = 7.2 Hz, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-phenylpropanamide (E61)

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.34 – 8.17 (m, 1H), 7.83 – 7.74 (m, 3H), 7.69 – 7.60 (m, 2H), 7.49 – 7.31 (m, 6H), 2.25 (s, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-phenylpentanamide (E62)

¹**H** NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.74 – 7.65 (m, 4H), 7.52 – 7.29 (m, 6H), 2.72 – 2.61 (m, 1H), 2.47 – 2.36 (m, 1H), 1.64 – 1.54 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H).

2-Chloro-N-(naphthalen-1-yl)-2,3-diphenylpropanamide (E63)

¹**H** NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.89 – 7.78 (m, 2H), 7.75 – 7.65 (m, 3H), 7.52 – 7.34 (m, 7H), 7.29 – 7.15 (m, 5H), 4.08 (d, *J* = 13.9 Hz, 1H), 3.66 (d, *J* = 13.9 Hz, 1H).

2-Chloro-N-(naphthalen-1-yl)-2,4-diphenylbutanamide (E64)

¹**H NMR** (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.03 – 7.95 (m, 1H), 7.88 – 7.82 (m, 1H), 7.76 – 7.67 (m, 4H), 7.54 – 7.45 (m, 3H), 7.45 – 7.38 (m, 2H), 7.38 – 7.32 (m, 1H), 7.30 – 7.20 (m, 4H), 7.20 – 7.13 (m, 1H), 3.07 – 2.95 (m, 1H), 2.93 – 2.84 (m, 2H), 2.77 – 2.65 (m, 1H).

2-Chloro-3-cyclopropyl-N-(naphthalen-1-yl)-2-phenylpropanamide (E65)

¹**H** NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.89 - 7.83 (m,

1H), 7.80 – 7.75 (m, 1H), 7.73 – 7.66 (m, 3H), 7.54 – 7.44 (m, 3H), 7.43 – 7.31 (m, 3H), 2.54 (d, *J* = 6.6 Hz, 2H), 1.08 – 0.94 (m, 1H), 0.52 – 0.42 (m, 2H), 0.33 – 0.25 (m, 1H), 0.18 – 0.10 (m, 1H).

2-Chloro-3-cyclopropyl-N-(naphthalen-1-yl)-2-phenylpropanamide (E66)

¹**H** NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.74 – 7.67 (m, 3H), 7.61 – 7.56 (m, 1H), 7.51 – 7.37 (m, 6H), 2.96 – 2.86 (m, 1H), 2.73 – 2.64 (m, 1H), 2.51 – 2.19 (m, 2H).

2-Chloro-N-(naphthalen-1-yl)-2-phenylpent-4-enamide (E67)

¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (s, 1H), 7.99 – 7.93 (m, 1H), 7.90 – 7.83 (m, 1H), 7.74 – 7.67 (m, 4H), 7.53 – 7.46 (m, 3H), 7.46 – 7.40 (m, 2H), 7.39 – 7.34 (m, 1H), 5.97 – 5.82 (m, 1H), 5.31 – 5.14 (m, 2H), 3.50 – 3.41 (m, 1H), 3.26 – 3.16 (m, 1H).

2-Chloro-3-methyl-N-(naphthalen-1-yl)-2-phenylbutanamide (E68)

¹**H** NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.87 – 7.80 (m, 3H), 7.73 – 7.67 (m, 2H), 7.51 – 7.32 (m, 6H), 3.33 – 3.14 (m, 1H), 1.24 (d, J = 6.4 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H).

2-(4-(*Tert*-butyl)phenyl)-2-chloro-N-(naphthalen-1-yl)butanamide (E69)

¹**H** NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.73 – 7.68 (m, 2H), 7.65 – 7.57 (m, 2H), 7.52 – 7.41 (m, 5H), 2.75 (dq, J = 14.3, 7.1 Hz, 1H), 2.49 (dq, J = 14.4, 7.2 Hz, 1H), 1.33 (s, 9H), 1.15 (t, J = 7.2 Hz, 3H).

2-(4-Bromophenyl)-2-chloro-N-(naphthalen-1-yl)butanamide (E70)

¹**H** NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.91 – 7.83 (m, 1H), 7.78 – 7.69 (m, 2H), 7.62 – 7.44 (m, 7H), 2.71 (dq, J = 14.3, 7.1 Hz, 1H), 2.45 (dq, J = 14.4, 7.2 Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H).

2-Chloro-2-(3-fluorophenyl)-N-(naphthalen-1-yl)butanamide (E71)

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.77 – 7.71 (m, 2H), 7.56 – 7.44 (m, 5H), 7.42 – 7.34 (m, 1H), 7.11 – 6.99 (m, 1H), 2.72 (dq, J = 14.3, 7.1 Hz, 1H), 2.47 (dq, J = 14.4, 7.2 Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-(p-tolyl)propanamide (E72)

¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.02 – 7.94 (m, 1H), 7.83 – 7.77 (m, 1H), 7.72 – 7.62 (m, 2H), 7.60 – 7.51 (m, 2H), 7.48 – 7.40 (m, 3H), 7.19 (d, *J* = 8.1 Hz, 2H), 2.33 (s, 3H), 2.25 (s, 3H).

2-Chloro-2-(4-isobutylphenyl)-N-(naphthalen-1-yl)propanamide (E73)

¹**H** NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.72 – 7.58 (m, 4H), 7.51 – 7.45 (m, 3H), 7.20 (d, *J* = 8.3 Hz, 2H), 2.50 (d, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.94 – 1.83 (m, 1H), 0.92 (d, *J* = 6.6 Hz, 6H).

2-Chloro-2-(3-methoxyphenyl)-N-(naphthalen-1-yl)propanamide (E74)

¹**H NMR** (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.75 – 7.67 (m, 2H), 7.54 – 7.45 (m, 3H), 7.39 – 7.26 (m, 3H), 6.94 – 6.88 (m, 1H), 3.83 (s, 3H), 2.28 (s, 3H).

2-Chloro-2-(4-chlorophenyl)-N-(naphthalen-1-yl)propanamide (E75)

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (s, 1H), 7.99 (d, *J* = 7.5 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.76 – 7.71 (m, 2H), 7.67 – 7.60 (m, 2H), 7.56 – 7.46 (m, 3H), 7.42 – 7.35 (m, 2H), 2.28 (s, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-(3-(trifluoromethyl)phenyl)propanamide (E76)

¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.00 (s, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.76 – 7.71 (m, 2H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.56 – 7.46 (m, 4H), 2.32 (s, 3H).

2-Chloro-N-(naphthalen-1-yl)-2-(naphthalen-2-yl)propanamide (E77)

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.19 – 8.13 (m, 1H), 8.03 – 7.97 (m, 1H), 7.92 – 7.80 (m, 4H), 7.77 – 7.67 (m, 3H), 7.55 – 7.42 (m, 5H), 2.38 (s, 3H).

4. Characterization data of ligands

Note: L*6 and L*8 were purchased from Daicel Corp. L*1, L*2, L*4, L*5, L*9, L*13–15 were known compounds.

2-(Bis(3,5-di-*tert*-butylphenyl)phosphanyl)-*N*-((*S*)-(6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.6 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.74 – 7.65 (m, 2H), 7.59 (s, 1H), 7.41 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 7.15 (s, 1H), 7.10 – 7.04 (m, 2H), 7.00 – 6.93 (m, 2H), 6.90 – 6.83 (m, 1H), 5.72 – 5.59 (m, 1H), 5.40 (s, 1H), 4.99 – 4.84 (m, 2H), 3.98 (s, 3H), 3.12 – 2.98 (m, 2H), 2.83 (s, 1H), 2.55 (s, 1H), 2.49 – 2.37 (m, 1H), 2.20 (s, 1H), 1.63 – 1.46 (m, 3H), 1.39 – 1.30 (m, 1H), 1.23 (s, 18H), 1.19 (s, 18H), 0.97 – 0.87 (m, 1H). ³¹**P** NMR (162 MHz, CDCl₃) δ –8.74.

2-(Di-*o*-tolylphosphanyl)-*N*-((*S*)-(6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*2)

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 4.6 Hz, 1H), 7.99 (d, J = 9.1 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.42 – 7.32 (m, 2H), 7.30 – 7.24 (m, 2H), 7.23 – 7.17 (m, 2H), 7.17 – 7.09 (m, 3H), 7.08 – 6.98 (m, 2H), 6.88 – 6.81 (m, 1H), 6.74 – 6.68 (m, 1H), 6.68 – 6.63 (m, 1H), 5.77 – 5.63 (m, 1H), 5.49 (s, 1H), 5.01 – 4.96 (m, 1H), 4.95 – 4.92 (m, 1H), 3.95 (s, 3H), 3.24 – 3.03 (m, 2H), 2.89 (s, 1H), 2.67 – 2.45 (m, 2H), 2.27 – 2.22 (m, 1H), 2.17 (d, J = 9.5 Hz, 6H), 1.66 – 1.49 (m, 3H), 1.45 – 1.35 (m, 1H), 0.90 – 0.78 (m, 1H).

³¹**P NMR** (162 MHz, CDCl₃) δ –26.32.

2-(Bis(3-methoxyphenyl)phosphanyl)-*N*-((*S*)-(6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*3)

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.6 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.71 – 7.60 (m, 2H), 7.39 – 7.30 (m, 3H), 7.29 – 7.24 (m, 2H), 7.20 – 7.11 (m, 2H), 6.95 – 6.87 (m, 1H), 6.85 – 6.77 (m, 2H), 6.77 – 6.65 (m, 4H), 5.77 – 5.62 (m, 1H), 5.57 – 5.32 (m, 1H), 5.01 – 4.90 (m, 2H), 3.96 (s, 3H), 3.68 (s, 6H), 3.23 – 3.07 (m, 2H), 3.01 (s, 1H), 2.71 – 2.58 (m, 1H), 2.58 – 2.48 (m, 1H), 2.25 (s, 1H), 1.67 – 1.52 (m, 3H), 1.43 – 1.35 (m, 1H), 0.90 – 0.84 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 169.0, 159.7, 159.6(1), 159.5(8), 159.5(3), 157.9, 147.6, 144.8, 141.3, 138.6, 138.4, 134.4, 131.6, 130.4, 129.7, 129.6, 129.5, 129.0, 128.5, 126.2, 126.0, 121.7, 119.2(4), 119.1(7), 119.0, 118.9, 114.7, 114.4(2), 114.3(5), 102.3, 55.9, 55.8, 55.2(4), 55.2(2), 41.1, 39.5, 27.9, 27.5, 27.0, 26.2.

³¹**P** NMR (162 MHz, CDCl₃) δ –9.11.

HRMS (ESI) m/z calcd. for C₄₁H₄₃N₃O₄P [M + H]⁺ 672.2986, found: 672.2979.

2-(Di([1,1'-biphenyl]-4-yl)phosphanyl)-*N*-((*S*)-(6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*4)

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (d, J = 4.5 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.70 (d, J = 2.7 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.61 – 7.55 (m, 4H), 7.55 – 7.48 (m, 4H), 7.47 – 7.39 (m, 5H), 7.38 – 7.36 (m, 1H), 7.36 – 7.28 (m, 4H), 7.28 – 7.25 (m, 2H), 7.25 – 7.18 (m, 3H), 7.07 – 7.00 (m, 1H), 5.78 – 5.62 (m, 1H), 5.46 (s, 1H), 4.99 – 4.93 (m, 1H), 4.93 – 4.89 (m, 1H), 3.96 (s, 3H), 3.23 – 3.07 (m, 2H), 3.02 (s, 1H), 2.68 – 2.50 (m, 2H), 2.28 – 2.18 (m, 1H), 1.66 – 1.59 (m, 1H), 1.59 – 1.48 (m, 2H), 1.47 – 1.35 (m, 1H), 0.94 – 0.84 (m, 1H).

³¹**P NMR** (162 MHz, CDCl₃) δ –12.32.

2-(Bis(3,5-diisopropylphenyl)phosphanyl)-*N*-((*S*)-(6-methoxyquinolin-4yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*5)

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 – 8.56 (m, 1H), 8.04 – 7.98 (m, 1H), 7.75 – 7.67 (m, 2H), 7.54 (s, 1H), 7.41 – 7.35 (m, 2H), 7.33 – 7.30 (m, 1H), 7.21 (s, 1H), 7.10 – 7.03 (m, 2H), 6.97 – 6.91 (m, 3H), 6.87 – 6.81 (m, 2H), 5.76 – 5.62 (m, 1H), 5.45 (s, 1H), 5.01 – 4.89 (m, 2H), 4.00 (s, 3H), 3.20 – 3.01 (m, 2H), 2.87 – 2.76 (m, 4H), 2.65 – 2.53 (m, 1H), 2.52 – 2.44 (m, 1H), 2.28 – 2.18 (m, 1H), 1.65 – 1.60 (m, 1H), 1.60 – 1.51 (m, 2H), 1.21 – 1.17 (m, 12H), 1.14 (d, J = 6.9 Hz, 12H), 0.98 – 0.89 (m, 1H). ³¹**P NMR** (162 MHz, CDCl₃) δ –10.06.

1-((11bS)-2,6-diiododinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4yl)piperidine (L*7)

¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (d, *J* = 7.8 Hz, 2H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.47 – 7.36 (m, 2H), 7.27 – 7.24 (m, 3H), 7.20 – 7.15 (m, 1H), 3.68 – 3.57 (m, 2H), 3.57 – 3.49 (m, 2H), 3.20 – 3.08 (m, 2H), 3.08 – 2.94 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 148.9, 148.0, 134.0, 139.9, 132.7, 132.6, 132.4, 132.0, 127.4(3), 127.4(2), 126.9, 125.8, 125.7, 124.5(1), 124.4(5), 122.9, 91.5, 91.3, 68.0, 67.9, 44.6, 44.4.

³¹**P NMR** (162 MHz, CDCl₃) δ 143.74.

HRMS (ESI) m/z calcd. for C₂₄H₁₉I₂NO₃P [M + H]⁺ 653.9186, found: 653.9178.

(S)-N-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L*9)

¹**H NMR** (400 MHz, CDCl₃) δ 12.68 (s, 1H), 8.79 – 8.72 (m, 1H), 7.83 (dd, J = 7.9, 1.6 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.45 – 7.39 (m, 1H), 7.36 – 7.25 (m, 12H), 7.23 – 7.11 (m, 5H), 7.09 – 7.03 (m, 2H), 4.67 – 4.57 (m, 1H), 4.36 (t, J = 8.9 Hz, 1H), 4.12 – 4.05 (m, 1H), 3.06 (dd, J = 13.8, 6.6 Hz, 1H), 2.79 (dd, J = 13.9, 7.4 Hz, 1H). ³¹**P NMR** (162 MHz, CDCl₃) δ –8.06.

(S)-N-(2-(4-(4-chlorobenzyl)-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L*10)

¹**H NMR** (400 MHz, CDCl₃) δ 12.58 (s, 1H), 8.75 (dd, J = 8.5, 1.1 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.70 – 7.63 (m, 1H), 7.45 – 7.39 (m, 1H), 7.39 – 7.33 (m, 1H), 7.33 – 7.25 (m, 10H), 7.24 – 7.19 (m, 1H), 7.12 – 7.01 (m, 6H), 4.61 – 4.50 (m, 1H), 4.38 (t, J = 8.9 Hz, 1H), 4.07 – 3.99 (m, 1H), 2.90 (dd, J = 13.9, 7.7 Hz, 1H), 2.79 (dd, J = 14.0, 6.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.3, 141.5, 141.3, 140.2, 138.8, 138.6(2), 138.5(8), 138.4(9), 138.4(6), 138.3, 136.2, 135.0, 134.1, 134.0, 133.9, 133.8, 132.9, 132.5, 130.6, 130.4, 129.2, 128.7, 128.6, 128.5(2), 128.4(8), 128.4(5), 128.4(1), 128.3(8), 127.4, 127.3, 122.5, 120.3, 113.3, 70.8, 67.7, 41.6.

³¹**P** NMR (162 MHz, CDCl₃) δ –8.25.

HRMS (ESI) m/z calcd. for C₃₅H₂₉ClN₂O₂P [M + H]⁺ 575.1650, found: 575.1646.

(S)-N-(2-(4-(4-chlorobenzyl)-1-(p-tolyl)-4,5-dihydro-1H-imidazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L*11)

¹**H** NMR (400 MHz, CDCl₃) δ 12.26 (s, 1H), 8.51 (d, J = 8.4 Hz, 1H), 7.83 – 7.72 (m, 1H), 7.37 – 7.22 (m, 13H), 7.16 (d, 2H), 7.09 – 6.99 (m, 4H), 6.95 (d, J = 8.0 Hz, 2H), 6.75 (t, J = 7.6 Hz, 1H), 6.61 (d, J = 7.9 Hz, 2H), 4.57 – 4.42 (m, 1H), 3.96 (t, J = 9.9 Hz, 1H), 3.54 (t, J = 8.7 Hz, 1H), 2.98 (dd, J = 13.7, 6.4 Hz, 1H), 2.74 (dd, J = 13.8, 6.9 Hz, 1H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 141.3, 141.2, 141.1, 139.0, 138.8, 138.6, 138.5(2), 138.4(8), 138.4(0), 136.7, 134.9, 134.3, 134.1(2), 134.0(9), 133.9(2), 133.8(9), 132.4, 131.0, 130.6(5), 130.5(9), 130.1, 129.6, 128.6, 128.5(4), 128.5(1), 128.5, 128.4(4), 128.4(2), 127.4(1), 127.3(7), 123.7, 122.3, 121.5, 117.1, 65.5, 58.3, 42.0, 20.9. ³¹P NMR (162 MHz, CDCl₃) δ –8.22.

HRMS (ESI) m/z calcd. for C₄₂H₃₆ClN₃OP [M + H]⁺ 664.2279, found: 664.2278.

(S)-N-(2-(1-(4-(*tert*-butyl)phenyl)-4-(4-chlorobenzyl)-4,5-dihydro-1H-imidazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L*12)

¹**H NMR** (400 MHz, CDCl₃) δ 12.26 (s, 1H), 8.52 (d, J = 8.4 Hz, 1H), 7.82 – 7.73 (m, 1H), 7.38 – 7.24 (m, 13H), 7.18 – 7.11 (m, 4H), 7.09 – 7.01 (m, 4H), 6.77 (t, J = 7.6 Hz, 1H), 6.66 – 6.56 (m, 2H), 4.58 – 4.41 (m, 1H), 3.99 (t, J = 9.9 Hz, 1H), 3.61 – 3.50 (m, 1H), 3.03 – 2.91 (m, 1H), 2.74 (dd, J = 13.8, 6.8 Hz, 1H), 1.26 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.9, 161.6, 147.3, 141.4, 141.1, 141.0, 138.9, 138.8, 138.6, 138.5, 138.4, 136.6, 134.9, 134.1(2), 134.0(9), 133.9(2), 133.8(9), 132.4, 131.0, 130.6(4), 130.5(9), 130.2, 128.6(1), 128.5(5), 128.5(1), 128.4(9), 128.4(4), 128.4(2), 128.4

127.4(1), 127.3(8), 125.8, 123.0, 122.4, 121.5, 117.2, 65.5, 58.2, 42.0, 34.4, 31.4. ³¹**P NMR** (162 MHz, CDCl₃) δ –8.20.

HRMS (ESI) m/z calcd. for C₄₅H₄₂ClN₃OP [M + H]⁺ 706.2749, found: 706.2745.

(S)-N-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide (L*13)

¹**H NMR** (400 MHz, CDCl₃) δ 13.86 (s, 1H), 9.11 – 9.03 (m, 1H), 8.29 – 8.22 (m, 2H), 7.97 (dd, J = 7.9, 1.6 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.60 – 7.50 (m, 3H), 7.40 – 7.28 (m, 4H), 7.20 – 7.13 (m, 1H), 5.67 (t, J = 9.7 Hz, 1H), 4.86 (dd, J = 10.1, 8.2 Hz, 1H), 4.35 – 4.18 (m, 1H).

(1Z,3Z)-1,3-bis(((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)methylene)isoindoline (L*14)

¹**H** NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 7.71 – 7.59 (m, 2H), 7.54 – 7.38 (m, 2H), 5.63 (s, 2H), 4.39 – 4.28 (m, 2H), 4.08 – 3.94 (m, 4H), 1.83 – 1.72 (m, 2H), 1.09 (d, *J* = 6.7 Hz, 6H), 0.96 (d, *J* = 6.7 Hz, 6H).

(1Z,3Z)-1,3-bis(((S)-4-phenyl-4,5-dihydrooxazol-2-yl)methylene)isoindoline (L*15)

¹**H** NMR (400 MHz, CDCl₃) δ 11.90 (s, 1H), 7.76 – 7.65 (m, 2H), 7.55 – 7.45 (m, 2H), 7.35 – 7.16 (m, 10H), 5.71 (s, 2H), 5.29 (t, *J* = 9.3 Hz, 2H), 4.64 (t, *J* = 9.1 Hz, 2H), 4.05 (t, *J* = 8.4 Hz, 2H).

(1Z,3Z)-1,3-bis(((S)-4-(naphthalen-2-ylmethyl)-4,5-dihydrooxazol-2-yl)methylene)isoindoline (L*16)

¹**H NMR** (400 MHz, CDCl₃) δ 11.65 (s, 1H), 7.78 – 7.71 (m, 6H), 7.68 (dd, J = 5.7, 3.1 Hz, 2H), 7.66 – 7.64 (m, 2H), 7.48 (dd, J = 5.7, 3.1 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.36 (dd, J = 8.4, 1.7 Hz, 2H), 5.64 (s, 2H), 4.61 – 4.50 (m, 2H), 4.23 – 4.16 (m, 2H), 3.95 (t, J = 7.9 Hz, 2H), 3.29 (dd, J = 13.8, 5.4 Hz, 2H), 2.90 (dd, J = 13.8, 8.3 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.6, 147.7, 135.8, 134.9, 133.7, 132.3, 129.9, 128.2, 127.9, 127.8, 127.7(2), 127.6(7), 126.1, 125.6, 121.1, 83.2, 71.4, 67.4, 42.5. **HRMS** (ESI) *m/z* calcd. for C₃₈H₃₂N₃O₂ [M + H]⁺ 562.2489, found: 562.2485.

5. Enantioconvergent cross-coupling of benzyl electrophiles with sodium arylthiosulfonate

General procedure A: Substrate scope of (hetero)benzyl halides and sodium arylthiosulfonate (Table 2, 1–38)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium arylthiosulfonate (0.24 mmol, 1.2 equiv.), Cu(MeCN)4BF4 (6.28 mg, 0.02 mmol, 10 mol%), L*5 (15.6 mg, 0.02 mmol, 10 mol%) and Cs₂CO₃ (260 mg, 0.80 mmol, 4.0 equiv.), Then, (hetero)benzyl halide (0.20 mmol, 1.0 equiv.) and toluene/DMF (v/v = 10/1, 2.2 mL) were sequentially added into the mixture and the reaction mixture was stirred at -15 or -30 °C. Upon completion (monitored by TLC), the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products (\pm) -1–38:

The mixture of sodium arylthiosulfonate (0.12 mmol, 1.2 eq.) and (hetero)benzyl halide (0.10 mmol, 1.0 eq.) in DMF (0.5 mL) was stirring for 1 day. Brine was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with EtOAc (3x) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemates.

(R)-S-(1-Phenylpropyl) 3,5-dimethylbenzenesulfonothioate (1)

According to General procedure A, (1-bromopropyl)benzene E1 (28.0 μ L, 0.2 mmol, 1.0 eq.) with sodium 3,5-dimethylbenzenesulfonothioate S5 (54.0 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3 days. The reaction mixture was purified by column

chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product 1 as a white solid (47.4 mg, 74% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 17.53 min, t_R (major) = 19.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.13 (m, 5H), 7.13 – 7.08 (m, 2H), 7.05 (s, 1H), 4.41 (dd, J = 8.9, 6.5 Hz, 1H), 2.24 (s, 6H), 2.07 – 1.95 (m, 1H), 1.95 – 1.82 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 139.5, 138.9, 134.8, 128.4, 127.9, 127.7, 124.3, 57.7, 29.9, 21.2, 12.0.

HRMS (ESI) m/z calcd. for C₁₇H₂₀NaO₂S₂ [M + Na]⁺ 343.0797, found: 343.0794.

(R)-S-(1-Phenylpropyl) benzenesulfonothioate (2)

According to **General procedure A**, (1-bromopropyl)benzene **E1** (28 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.1 mg, 0.24 mmol, 1.2 eq.) run at – 30 °C for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **2** as a white solid (45.8 mg, 78% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 23.27 min, t_R (major) = 28.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.48 – 7.42 (m, 1H), 7.34 – 7.27 (m, 2H), 7.16 – 7.11 (m, 3H), 7.10 – 7.04 (m, 2H), 4.39 (dd, *J* = 8.9, 6.5 Hz, 1H), 2.07 – 1.95 (m, 1H), 1.95 – 1.82 (m, 1H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 139.1, 133.1, 128.9, 128.6, 127.8 (two carbon overlapped), 126.7, 57.8, 29.8, 12.0.

HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₂S₂ [M + Na]⁺ 315.0484, found 315.0483.

(*R*)-*S*-(1-Phenylpropyl) 4-methylbenzenesulfonothioate (3)

According to **General procedure A**, (1-bromopropyl)benzene **E1** (28 μ L, 0.2 mmol, 1.0 eq.) with sodium 4-methylbenzenesulfonothioate **S7** (50.5 mg, 0.24 mmol, 1.2 eq.) run at -30 °C for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **3** as a white solid (55.2 mg, 90% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 30.41 min, t_R (major) = 35.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.17 – 7.13 (m, 3H), 7.13 – 7.10 (m, 1H), 7.10 – 7.05 (m, 3H), 4.36 (dd, *J* = 9.0, 6.4 Hz, 1H), 2.36 (s, 3H), 2.07 – 1.95 (m, 1H), 1.95 – 1.83 (m, 1H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.1, 142.5, 139.3, 129.5, 128.6, 127.8, 127.6, 126.8, 57.6, 29.8, 21.6, 12.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂S₂ [M + Na]⁺ 329.0640, found 329.0640.

(R)-S-(1-Phenylpropyl) 3-methylbenzenesulfonothioate (4)

According to **General procedure A**, (1-bromopropyl)benzene **E1** (28 μ L, 0.2 mmol, 1.0 eq.) with sodium 3-methylbenzenesulfonothioate **S8** (50.5 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **4** as a white solid (55.9 mg, 91% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 22.73 min, t_R (major) = 27.13 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.17 – 7.12 (m, 3H), 7.11 – 7.05 (m, 3H), 7.01 – 6.94 (m, 1H), 4.39 (dd, J = 8.9, 6.5 Hz, 1H), 3.75 (s, 3H), 2.07 – 1.96 (m, 1H), 1.96 – 1.83 (m, 1H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.5, 146.3, 139.2, 129.9, 128.5, 127.7 (two carbon overlapped), 119.8, 119.0, 111.1, 57.8, 55.7, 29.9, 12.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂S₂ [M + Na]⁺ 329.0640, found 329.0641.

(R)-S-(1-Phenylethyl) 3,5-dimethylbenzenesulfonothioate (5)

According to **General procedure B**, (1-bromoethyl)benzene **E2** (24 µL, 0.2 mmol, 1.0 eq.) with **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -30 °C for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **5** as a colorless oil (54.8 mg, 89% yield, 91% e.e.). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 214 nm), t_R (minor) = 29.35 min, t_R (major)= 33.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (s, 2H), 7.21 – 7.13 (m, 5H), 7.10 (s, 1H), 4.65 (q, *J* = 7.2 Hz, 1H), 2.27 (s, 6H), 1.66 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 140.6, 139.0, 135.0, 128.6, 127.9, 127.3, 124.3, 50.9, 22.8, 21.2.

HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂S₂ [M + Na]⁺ 329.0640, found 329.0639.

(R)-S-(1-Phenylbutyl) 3,5-dimethylbenzenesulfonothioate (6)

According to the **general procedure A** with (1-bromobutyl)benzene **E3** (30 μ L, 0.20 mmol, 1.0 eq.) and **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **6** as a white solid (49.9 mg, 75% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (minor) = 22.64 min, t_R (major) = 24.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 – 7.12 (m, 5H), 7.12 – 7.08 (m, 2H), 7.04 (s, 1H), 4.49 (dd, J = 9.0, 6.5 Hz, 1H), 2.23 (s, 6H), 1.97 – 1.77 (m, 2H), 1.36 – 1.18 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 139.7, 138.8, 134.8, 128.4, 127.8, 127.7, 124.3, 55.8, 38.5, 21.2, 20.5, 13.6.

HRMS (ESI) m/z calcd. for C₁₈H₂₃O₂S₂ [M + H]⁺ 335.1134, found 335.1127.

(R)-S-(2-Methyl-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (7)

According to the **general procedure A** with (1-bromo-2-methylpropyl)benzene **E4** (31.6 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product 7 as a light yellow solid (38.6 mg, 58% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 16.30 min, t_R (major) = 19.38 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.13 – 7.08 (m, 3H), 7.08 – 7.03 (m, 4H), 6.98 (s, 1H), 4.36 (d, J = 7.3 Hz, 1H), 2.19 (s, 6H), 2.17 – 2.07 (m, 1H), 1.01 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 138.9, 138.7, 134.6, 128.5, 127.9, 127.4, 124.3, 63.5, 34.4, 21.1, 20.8, 20.6.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂S₂ [M + Na]⁺ 357.0953, found: 357.0952.

(R)-S-(3-Methyl-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (8)

According to the **general procedure A** with (1-bromo-3-methylbutyl)benzene E5 (35.1 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate S5 (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **8** as a yellow oil (54.2 mg, 78% yield, 90% e.e.).

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 214 nm), t_R (minor) = 12.47 min, t_R (major) = 13.71 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.19 – 7.14 (m, 5H), 7.14 – 7.10 (m, 2H), 7.06 (s, 1H), 4.56 (t, J = 8.1 Hz, 1H), 2.25 (s, 6H), 1.80 – 1.73 (m, 2H), 1.52 – 1.42 (m, 1H), 0.90 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.7, 138.8, 134.8, 128.4, 127.8, 127.7, 124.3, 54.3, 45.2, 25.7, 22.7, 21.7, 21.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₅O₂S₂ [M + H]⁺ 349.1290, found: 349.1285.

(R)-S-(Cyclopentyl(phenyl)methyl) 3,5-dimethylbenzenesulfonothioate (9)

According to the **general procedure A** with (bromo(cyclopentyl)methyl)benzene **E6** (45.6 μ L,, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **9** as a yellow solid (38.2 mg, 53% yield, 89% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 15.07 min, t_R (major) = 19.08 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.11 – 7.06 (m, 5H), 7.03 (s, 2H), 6.98 (s, 1H), 4.36 (d, J = 10.0 Hz, 1H), 2.28 – 2.21 (m, 1H), 2.19 (s, 6H), 1.97 – 1.88 (m, 1H), 1.71 – 1.53 (m, 3H), 1.49 – 1.33 (m, 3H), 1.22 – 1.10 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 140.2, 138.6, 134.5, 128.1, 128.0, 127.3, 124.2, 62.0, 45.9, 31.6(4), 31.6(1), 25.3, 25.1, 21.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₅O₂S₂ [M + H]⁺ 361.1290, found: 361.1286.

(R)-S-(1,4-Diphenylbutyl) 3,5-dimethylbenzenesulfonothioate (10)

According to the **general procedure A** with (1-bromobutane-1,4-diyl)dibenzene E7 (44.0 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate S5 (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~10/1) to yield the product 10 as a colorless oil (57.2 mg, 70% yield, 86% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 230 nm), t_R (minor) = 23.29 min, t_R (major) = 28.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.18 – 7.11 (m, 6H), 7.10 – 7.04 (m, 4H), 7.04 – 7.01 (m, 1H), 4.49 (dd, *J* = 8.9, 6.7 Hz, 1H), 2.62 – 2.48 (m, 2H), 2.22 (s, 6H), 2.04 – 1.93 (m, 1H), 1.92 – 1.82 (m, 1H), 1.69 – 1.57 (m, 1H), 1.56 – 1.44 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 141.5, 139.6, 138.9, 134.8, 128.4(4), 128.4(3), 128.4(0), 127.8 (two carbon overlapped), 126.0, 124.3, 55.9, 35.9, 35.2, 29.0, 21.2. HRMS (ESI) *m/z* calcd. for C₂₄H₂₆NaO₂S₂ [M + Na]⁺ 433.1266, found: 433.1256.

(*R*)-*S*-(3-(5-Methylfuran-2-yl)-1-phenylpropyl) dimethylbenzenesulfonothioate (11)

According to the general procedure A with 2-(3-bromo-3-phenylpropyl)-5methylfuran (56.0)μL, 0.20 mmol, 1.0 eq.) and sodium **E8** 3.5dimethylbenzenesulfonothioate S5 (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 5/1$) to yield the product 11 as a brown oil (63.0 mg, 79% yield, 85% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (minor)= 15.12 min, t_R (major) = 19.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 5H), 7.13 – 7.08 (m, 2H), 7.07 – 7.04 (m, 1H), 5.85 – 5.79 (m, 2H), 4.49 (dd, J = 9.3, 6.3 Hz, 1H), 2.51 (t, J = 7.4 Hz, 2H), 2.36 – 2.26 (m, 1H), 2.24 (s, 6H), 2.23 (s, 3H), 2.21 – 2.11 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.1, 150.8, 145.1, 139.1, 138.9, 134.9, 128.5, 127.9(1), 127.8(8), 124.3, 106.4, 106.0, 55.1, 34.8, 25.8, 21.2, 13.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₄NaO₃S₂ [M + Na]⁺ 423.1059, found: 423.1057.

(R)-S-(4-Methoxy-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (12)

According to the **general procedure A** with (1-bromo-4-methoxybutyl)benzene **E9** (42.6 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.83 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1~5/1) to yield the product **12** as a white solid (65.6 mg, 90% yield, 87% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 75/25, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 18.97 min, t_R (major) = 21.93 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.16 (s, 2H), 7.16 – 7.12 (m, 3H), 7.12 – 7.08 (m, 2H), 7.05 (s, 1H), 4.50 (dd, J = 9.0, 6.7 Hz, 1H), 3.30 (t, J = 6.2 Hz, 2H), 3.26 (s, 3H), 2.24 (s, 6H), 2.10 – 1.99 (m, 1H), 1.99 – 1.89 (m, 1H), 1.65 – 1.52 (m, 1H), 1.52 – 1.39 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.5, 138.9, 134.8, 128.4, 127.8, 127.7, 124.3, 71.8, 58.6, 55.9, 33.3, 27.4, 21.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₄NaO₃S₂ [M + Na]⁺ 387.1059, found: 387.1058.

Ethyl (R)-5-(((3,5-dimethylphenyl)sulfonyl)thio)-5-phenylpentanoate (13)

According to the **general procedure A** with ethyl 5-bromo-5-phenylpentanoate **E10** (59.8 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~10/1) to yield the product **13** as a yellow oil (60.4 mg, 74% yield, 84% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 21.36 min, t_R (major) = 27.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.13 (m, 5H), 7.13 – 7.09 (m, 2H), 7.06 (s, 1H), 4.47 (dd, J = 9.0, 6.5 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 2.28 – 2.22 (m, 8H), 2.06 – 1.97 (m, 1H), 1.96 – 1.86 (m, 1H), 1.68 – 1.60 (m, 1H), 1.59 – 1.46 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 145.0, 139.2, 139.0, 134.9, 128.5, 127.9, 127.8, 124.3, 60.5, 55.7, 35.8, 33.6, 22.7, 21.2, 14.3.

HRMS (ESI) m/z calcd. for C₂₁H₂₇O₄S₂ [M+H]⁺ 407.1345, found: 407.1334.

(R)-S-(4-Cyano-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (14)

According to the **general procedure A** with 5-bromo-5-phenylpentanenitrile **E11** (35.2 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~5/1) to yield the product **14** as a colorless oil (55.9 mg, 78% yield, 86% e.e.).

HPLC analysis: Chiralcel IC (n-hexane/*i*-PrOH = 50/50, flow rate 1.5 mL/min, λ = 230 nm), t_R (minor) = 31.63 min, t_R (major) = 43.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.16 (m, 5H), 7.14 – 7.07 (m, 3H), 4.46 (dd, J = 8.6, 7.0 Hz, 1H), 2.31 (t, J = 7.1 Hz, 2H), 2.26 (s, 6H), 2.19 – 2.08 (m, 1H), 2.08 – 1.98 (m, 1H), 1.79 – 1.66 (m, 1H), 1.64 – 1.53 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 144.9, 139.1, 138.8, 135.2, 128.8, 128.2, 127.6, 124.3, 119.0, 55.0, 35.4, 23.3, 21.2, 16.8.

HRMS (ESI) m/z calcd. for C₁₉H₂₁NNaO₂S₂ [M + Na]⁺ 382.0906, found: 382.0903.

(*R*)-*S*-(3-(5,5-Dimethyl-1,3-dioxan-2-yl)-1-phenylpropyl) 3,5-dimethylbenzenesulf onothioate (15)

According to the **general procedure A** with 2-(3-bromo-3-phenylpropyl)-5,5dimethyl-1,3-dioxane **E12** (62.0 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~10/1) to yield the product **15** as a white solid (68.7 mg, 79% yield, 84% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 12.98 min, t_R (major) = 15.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.16 (s, 2H), 7.15 – 7.09 (m, 5H), 7.05 (s, 1H), 4.50 (dd, J = 9.2, 6.6 Hz, 1H), 4.35 (t, J = 4.8 Hz, 1H), 3.54 (d, J = 11.1 Hz, 2H), 3.35 (d, J = 11.0 Hz, 2H), 2.24 (s, 6H), 2.17 – 2.06 (m, 1H), 2.04 – 1.92 (m, 1H), 1.69 – 1.60 (m, 1H), 1.56 – 1.45 (m, 1H), 1.13 (s, 3H), 0.69 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.4, 138.9, 134.8, 128.4, 127.9, 127.8, 124.3, 101.1, 56.0, 32.5, 30.7, 30.2, 23.1, 21.9, 21.2.

HRMS (ESI) m/z calcd. for C₂₃H₃₀NaO₄S₂ [M + Na]⁺ 457.1478, found: 457.1476.

(R)-S-(3-Bromo-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (16)

According to the **general procedure A** with (1,3-dibromopropyl)benzene **E13** (29.6 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **16** as a colorless oil (66.4 mg, 83% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 37.23 min, t_R (major) = 40.22 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (s, 2H), 7.23 – 7.19 (m, 3H), 7.16 – 7.11 (m, 3H), 4.66 (dd, *J* = 9.4, 6.1 Hz, 1H), 3.40 – 3.29 (m, 1H), 3.15 – 3.05 (m, 1H), 2.59 – 2.47 (m, 1H), 2.47 – 2.35 (m, 1H), 2.29 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 139.2, 137.9, 135.2, 128.9, 128.3, 127.8, 124.5, 53.6, 38.7, 29.9, 21.3.

HRMS (ESI) *m/z* calcd. for C₁₇H₁₉BrNaO₂S₂ [M + Na]⁺ 420.9902, found: 420.9899.

(R)-S-(3-Chloro-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (17)

According to the **general procedure A** with (1-bromo-3-chloropropyl)benzene **E14** (45.0 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **17** as a white solid (52.4 mg, 74% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (minor) = 37.59 min, *t*_R (major) = 40.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (s, 2H), 7.23 – 7.18 (m, 3H), 7.16 – 7.09 (m, 3H), 4.69 (dd, *J* = 9.4, 6.2 Hz, 1H), 3.55 – 3.45 (m, 1H), 3.32 – 3.20 (m, 1H), 2.51 – 2.40 (m, 1H), 2.36 – 2.30 (m, 1H), 2.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 139.2, 138.1, 135.2, 128.8, 128.3, 127.8, 124.5, 52.6, 41.7, 38.7, 21.2.

HRMS (ESI) m/z calcd. for C₁₇H₂₀ClO₂S₂ [M + H]⁺ 355.0588, found: 355.0581.

(R)-S-(1-Phenylbut-3-en-1-yl) 3,5-dimethylbenzenesulfonothioate (18)

According to the **general procedure A** with (1-bromobut-3-en-1-yl)benzene **E15** (32.0 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **18** as a light yellow solid (53.2 mg, 80% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 214 nm), t_R (minor) = 35.60 min, t_R (major) = 38.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.13 (m, 5H), 7.13 – 7.09 (m, 2H), 7.06 (s, 1H), 5.65 – 5.51 (m, 1H), 5.06 – 5.01 (m, 1H), 5.01 – 4.96 (m, 1H), 4.55 (dd, *J* = 8.3, 6.9 Hz, 1H), 2.72 – 2.61 (m, 2H), 2.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 139.0, 138.9, 134.9, 133.5, 128.4, 127.9, 127.8, 124.3, 118.6, 55.5, 40.8, 21.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₁O₂S₂ [M + H]⁺ 333.0977, found: 333.0970.

(*R*)-S-(1-Phenylpent-4-en-1-yl) 3,5-dimethylbenzenesulfonothioate (19)

According to the **general procedure B** with (1-bromopent-4-en-1-yl)benzene **E16** (42.6 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1~20/1) to yield the product **19** as a light yellow solid (60.0 mg, 87% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 214 nm), *t*_R (minor) = 39.92 min, *t*_R (major) = 42.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 5H), 7.12 – 7.08 (m, 2H), 7.06 (s, 1H), 5.78 – 5.64 (m, 1H), 5.02 – 4.91 (m, 2H), 4.49 (t, *J* = 7.3 Hz, 1H), 2.25 (s, 6H), 2.09 – 1.92 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.3, 138.9, 136.7, 134.9, 128.5, 127.8 (two carbon overlapped), 124.3, 116.1, 55.2, 35.5, 31.2, 21.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₂O₂S₂ [M + H]⁺ 347.1134, found: 347.1132.

(R)-S-(1,2,3,4-Tetrahydronaphthalen-1-yl) 3,5-dimethylbenzenesulfonothioate (20)

According to the **general procedure A** with 1-bromo-1,2,3,4-tetrahydronaphthalene **E17** (32.0 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **20** as a yellow solid (50.9 mg, 77% yield, 77% e.e.).

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 230 nm), t_R (major) = 18.18 min, t_R (minor) = 19.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (s, 2H), 7.27 (s, 1H), 7.15 – 7.09 (m, 1H), 7.08 – 6.97 (m, 3H), 4.72 (t, *J* = 3.7 Hz, 1H), 2.84 – 2.63 (m, 2H), 2.42 (s, 6H), 2.33 – 2.23 (m, 1H), 2.14 – 2.02 (m, 1H), 1.98 – 1.87 (m, 1H), 1.87 – 1.75 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 139.5, 138.1, 135.4, 132.7, 130.7, 129.5, 127.9, 126.3, 124.6, 51.3, 30.1, 28.7, 21.4, 19.0.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₂S₂ [M + Na]⁺ 355.0797, found: 355.0797.

(R)-S-(1-(m-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (21)

According to the **general procedure A** with 1-(1-bromopropyl)-3-methylbenzene **E18** (42.4 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **21** as a colorless oil (48.1 mg, 72% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 18.87 min, t_R (major) = 21.01 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.16 (s, 2H), 7.08 – 7.02 (m, 2H), 6.94 (d, J = 7.7 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.86 (s, 1H), 4.37 (dd, J = 8.8, 6.5 Hz, 1H), 2.25 (s, 6H), 2.20 (s, 3H), 2.05 – 1.94 (m, 1H), 1.93 – 1.81 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 139.3, 138.8, 138.1, 134.7, 128.5, 128.4, 128.2, 125.0, 124.3, 57.7, 29.9, 21.4, 21.2, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂S₂ [M + Na]⁺ 357.0953, found: 357.0951.

(R)-S-(1-(p-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (22)

Me

According to the **general procedure A** with 1-(1-bromopropyl)-4-methylbenzene **E19** (63.2 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **22** as a colorless oil (54.8 mg, 82% yield, 90% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 20.35 min, t_R (major) = 22.63 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (s, 2H), 7.06 (s, 1H), 6.99 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.2 Hz, 2H), 4.38 (dd, J = 9.0, 6.4 Hz, 1H), 2.27 (s, 3H), 2.25 (s, 6H), 2.06 – 1.94 (m, 1H), 1.93 – 1.81 (m, 1H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 138.8, 137.4, 136.4, 134.6, 129.1, 127.8, 124.4, 57.6, 29.9, 21.2 (two carbon overlaped), 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂S₂ [M + Na]⁺ 357.0953, found: 357.0951.

(R)-S-(1-(o-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (23)

According to the **general procedure A** with 1-(1-bromopropyl)-2-methylbenzene **E20** (43.6 μ L, 0.20 mmol, 1.0 equiv) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 equiv) run at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **23** as a colorless oil (50.3 mg, 75% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 18.99 min, t_R (major) = 21.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (s, 2H), 7.10 – 7.02 (m, 4H), 7.00 – 6.94 (m, 1H), 4.69 (dd, J = 9.2, 6.1 Hz, 1H), 2.31 – 2.25 (m, 9H), 2.12 – 2.02 (m, 1H), 2.02 – 1.89 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.0, 137.1, 136.1, 134.9, 130.4, 127.6, 127.4, 126.4, 124.3, 53.3, 29.8, 21.3, 19.5, 12.0.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂S₂ [M + Na]⁺ 357.0953, found: 357.0952.

(R)-S-(1-(3-Methoxyphenyl)propyl) 3,5-dimethylbenzenesulfonothioate (24)

According to the **general procedure A** with 1-(1-bromopropyl)-3-methoxybenzene **E21** (49.2 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **24** as a white solid (50.8 mg, 72% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 20.14 min, t_R (major) = 22.10 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.18 (s, 2H), 7.11 – 7.03 (m, 2H), 6.73 – 6.63 (m, 2H), 6.60 (t, J = 2.1 Hz, 1H), 4.37 (dd, J = 8.8, 6.5 Hz, 1H), 3.68 (s, 3H), 2.25 (s, 6H), 2.05 – 1.93 (m, 1H), 1.93 – 1.80 (m, 1H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 145.2, 140.9, 138.8, 134.8, 129.3, 124.3, 120.4, 113.3, 113.2, 57.7, 55.1, 29.8, 21.2, 12.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₃S₂ [M + Na]⁺ 373.0903, found: 373.0901.

(*R*)-*S*-(1-([1,1'-Biphenyl]-4-yl)propyl) 3,5-dimethylbenzenesulfonothioate (25)

According to the **general procedure A** with 4-(1-bromopropyl)-1,1'-biphenyl **E22** (55.0 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **25** as a colorless oil (69.8 mg, 88% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 23.00 min, t_R (major) = 25.91 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.21 – 7.12 (m, 4H), 7.01 (s, 1H), 4.47 (dd, *J* = 8.7, 6.6 Hz, 1H), 2.18 (s, 6H), 2.10 – 1.98 (m, 1H), 1.98 – 1.85 (m, 1H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) 145.1, 140.4(3), 140.4(2), 138.9, 138.5, 134.7, 129.0, 128.3, 127.6, 126.9(5), 126.9(4), 124.4, 57.5, 29.9, 21.2, 12.1.

HRMS (ESI) m/z calcd. for C₂₃H₂₄NaO₂S₂ [M + Na]⁺ 419.1110, found: 419.1111.

(R)-S-(1-(3-Fluorophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (26)

According to the **general procedure A** with 1-(1-bromopropyl)-3-fluorobenzene **E23** (35.2 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **26** as a colorless oil (47.9 mg, 71% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 16.32 min, t_R (major) = 18.80 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.17 (s, 2H), 7.15 – 7.09 (m, 1H), 7.06 (s, 1H), 6.93 – 6.88 (m, 1H), 6.85 – 6.79 (m, 1H), 6.79 – 6.74 (m, 1H), 4.38 (dd, *J* = 8.7, 6.6 Hz, 1H), 2.25 (s, 6H), 2.04 – 1.92 (m, 1H), 1.90 – 1.78 (m, 1H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 162.7 (d, J = 246.6 Hz), 145.0, 142.1 (d, J = 7.0 Hz), 139.0, 135.0, 129.8 (d, J = 8.3 Hz), 124.3, 123.7 (d, J = 2.9 Hz), 114.8 (d, J = 13.4 Hz), 114.5 (d, J = 12.4 Hz), 57.0 (d, J = 1.9 Hz), 29.7, 21.2, 12.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.85.

HRMS (ESI) m/z calcd. for C₁₇H₁₉FNaO₂S₂ [M + Na]⁺ 361.0703, found: 361.0701.

(R)-S-(1-(3-Chlorophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (27)

According to the **general procedure A** with 1-(1-bromopropyl)-3-chlorobenzene **E24** (37.0 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **27** as a colorless oil (48.0 mg, 68% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 230 nm), t_R (minor) = 15.23 min, t_R (major) = 17.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (s, 2H), 7.10 – 7.04 (m, 3H), 7.03 – 6.96 (m, 2H), 4.36 (dd, J = 8.5, 6.8 Hz, 1H), 2.26 (s, 6H), 2.02 – 1.90 (m, 1H), 1.89 – 1.77 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.8, 141.5, 139.0, 135.1, 134.3, 129.4, 127.9, 127.7, 126.2, 124.2, 56.9, 29.7, 21.2, 12.0.

HRMS (ESI) m/z calcd. for C₁₇H₁₉ClNaO₂S₂ [M + Na]⁺ 377.0407, found: 377.0405.

(R)-S-(1-(4-Bromophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (28)

According to the **general procedure A** with 1-bromo-4-(1-bromopropyl)benzene **E25** (55.6 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **28** as a white solid (70.0 mg, 88% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (minor) = 13.67 min, t_R (major) = 16.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 7.11 – 7.05 (m, 3H), 6.99 – 6.93 (m, 2H), 4.39 (dd, *J* = 8.8, 6.6 Hz, 1H), 2.26 (s, 6H), 2.02 – 1.90 (m, 1H), 1.86 – 1.74 (m, 1H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 138.9, 138.6, 134.7, 131.3, 129.6, 124.2, 121.5, 57.0, 29.6, 21.2, 12.0.

HRMS (ESI) *m/z* calcd. for C₁₇H₁₉BrNaO₂S₂ [M + Na]⁺ 420.9902, found: 420.9899.

(*R*)-*S*-(1-(4-(Trifluoromethyl)phenyl)propyl) 3,5-dimethylbenzenesulfonothioate (29)

According to the **general procedure A** with 1-(1-bromopropy))-4-(trifluoromethyl)benzene **E26** (45.8 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **29** as a white solid (58.4 mg, 75% yield, 92% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 214 nm), t_R (minor) = 20.28 min, t_R (major) = 23.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.12 (s, 2H), 7.02 (s, 1H), 4.46 (dd, J = 8.5, 6.8 Hz, 1H), 2.22 (s, 6H), 2.05 – 1.94 (m, 1H), 1.92 – 1.80 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.8, 143.8, 139.0, 135.0, 129.8 (q, J = 32.4 Hz), 128.3, 125.2 (q, J = 3.7 Hz), 124.3, 124.0 (q, J = 272.1 Hz), 56.9, 29.7, 21.0, 12.0.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.67.

HRMS (ESI) m/z calcd. for C₁₈H₁₉F₃NaO₂S₂ [M + Na]⁺ 411.0671, found: 411.0661.

(R)-S-(1-(3-Cyanophenyl)ethyl) 3,5-dimethylbenzenesulfonothioate (30)

According to the **general procedure A** with 1-(1-bromoethyl)-3-isocyanobenzene **E27** (35.4 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -30 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1 ~ 5/1) to yield the product **30** as a colorless oil (59.2 mg, 89% yield, 88% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 230 nm), *t*_R (major) = 29.46 min, *t*_R (minor) = 33.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.36 – 7.26 (m, 2H), 7.18 (s, 2H), 7.13 (s, 1H), 4.66 (q, *J* = 7.3 Hz, 1H), 2.29 (s, 6H), 1.64 (d, *J* = 7.4, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 142.4, 139.3, 135.4, 131.9, 131.2, 130.8, 129.3, 124.3, 118.2, 112.6, 49.7, 22.5, 21.2.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NO₂S₂ [M + H]⁺ 332.0773, found: 332.0770.

(R)-S-(1-(3-Acetylphenyl)ethyl) 3,5-dimethylbenzenesulfonothioate (31)

According to the **general procedure A** with 1-(3-(1-bromoethyl)phenyl)ethan-1-one **E28** (42.1 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -30 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1 ~ 3/1) to yield the product **31** as a colorless oil (54.6 mg, 78% yield, 89% e.e.).

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (major) = 55.27 min, t_R (minor) = 61.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 1H), 7.68 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.19 (s, 2H), 7.05 (s, 1H), 4.71 (q, *J* = 7.3 Hz, 1H), 2.50 (s, 3H), 2.25 (s, 6H), 1.67 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.3, 144.8, 141.3, 139.1, 137.3, 135.0, 132.1, 128.8, 127.7, 127.0, 124.3, 50.4, 26.7, 22.7, 21.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₃S₂ [M + Na]⁺ 371.0746, found: 371.0744.

According to the **general procedure A** with methyl 3-(1-bromoethyl)benzoate **E29** (41.2 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -30 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1 ~ 10/1) to yield the product **32** as a colorless oil (63.6 mg, 87% yield, 87% e.e.).

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 24.46 min, t_R (minor) = 26.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 1H), 7.76 (s, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.18 (s, 2H), 7.03 (s, 1H), 4.70 (q, *J* = 7.3 Hz, 1H), 3.90 (s, 3H), 2.24 (s, 6H), 1.66 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.5, 144.8, 141.1, 139.0, 134.9, 132.0, 130.4, 129.0, 128.5, 128.3, 124.3, 52.3, 50.4, 22.7, 21.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₁O₄S₂ [M + H]⁺ 365.0876, found: 365.0870.

(R)-S-(1-(Naphthalen-1-yl)propyl) 3,5-dimethylbenzenesulfonothioate (33)

According to the **general procedure A** with 1-(1-bromopropyl)naphthalene **E30** (49.8 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **33** as a white solid (63.5 mg, 86% yield, 93% e.e.).

HPLC analysis: Chiralcel IE (*n*-hexane/*i*-PrOH = 92/8, flow rate 0.0 mL/min, λ = 214 nm), *t*_R (minor) = 23.82 min, *t*_R (major) = 25.01 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 1H), 7.83 – 7.75 (m, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.35 (d, J = 7.2 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.11 (s, 2H), 6.94 (s, 1H), 5.20 (s, 1H), 2.29 – 2.16 (m, 2H), 2.10 (s, 6H), 0.92 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.5, 138.8, 134.8, 134.5, 133.9, 131.0, 129.0, 128.5, 126.5, 125.9, 125.1, 124.4 (two carbon overlapped), 122.8, 30.0, 29.8, 21.1, 12.3. HRMS (ESI) *m/z* calcd. for C₂₁H₂₂NaO₂S₂ [M + Na]⁺ 393.0953, found: 393.0953.

(R)-S-(1-(Naphthalen-2-yl)propyl) 3,5-dimethylbenzenesulfonothioate (34)

According to the **general procedure A** with 2-(1-bromopropyl)naphthalene **E31** (49.8 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **34** as a white solid (64.6 mg, 87% yield, 93% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 21.78 min, t_R (major) = 24.07 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.65 (m, 2H), 7.55 (d, *J* = 8.6 Hz, 1H), 7.53 (s, 1H), 7.48 – 7.41 (m, 2H), 7.16 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.99 (s, 2H), 6.71 (s, 1H), 4.60 (dd, *J* = 9.0, 6.5 Hz, 1H), 2.12 – 2.01 (m, 1H), 2.00 – 1.92 (m, 1H), 1.91 (s, 6H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.9, 138.6, 136.4, 134.4, 132.9, 132.8, 128.2, 127.9, 127.6, 127.3, 126.3(2), 126.3(0), 125.1, 124.1, 58.0, 29.4, 20.7, 12.1.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NaO₂S₂ [M + Na]⁺ 393.0953, found: 393.0953.

34 was prepared from 2-(1-chloropropyl)naphthalene E36:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.), Cu(MeCN)₄BF₄ (12.6 mg, 0.04 mmol, 20 mol%), L*5 (31.2 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (260 mg, 0.80 mmol, 4.0 eq.), Then, 2-(1-chloropropyl)naphthalene **E36** (40.9 mg, 0.20 mmol, 1.0 eq.) and toluene/DMF (v/v = 10/1, 2.2 mL) were sequentially added into the mixture and the reaction mixture was stirred at -15 °C for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **34** as a white solid (29.7 mg, 40% yield, 91% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 20.94 min, *t*_R (major) = 23.21 min.

(R)-S-(1-(Benzo[b]thiophen-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (35)

According to the general procedure A with 3-(1-bromopropyl)benzo[b]thiophene E32

(51.2 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **35** as a colorless oil (56.9 mg, 76% yield, 92% e.e.).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, $\lambda = 254$ nm), t_R (major) = 13.61 min, t_R (minor) = 16.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.70 (m, 1H), 7.65 – 7.59 (m, 1H), 7.31 – 7.26 (m, 2H), 7.18 (s, 1H), 7.15 (s, 2H), 6.94 (s, 1H), 4.78 (dd, *J* = 8.4, 6.7 Hz, 1H), 2.20 – 2.11 (m, 8H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.5, 140.5, 138.8, 136.9, 134.8, 133.0, 125.3, 124.6, 124.3, 124.1, 122.8, 121.9, 51.5, 28.7, 21.1, 12.3.

HRMS (ESI) m/z calcd. for C₁₉H₂₀NaO₂S₃ [M + Na]⁺ 399.0518, found: 399.0515.

(R)-S-(1-(Thiophen-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (36)

According to the **general procedure A** with 3-(1-bromopropyl)thiophene **E33** (34.4 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **36** as a colorless oil (44.5 mg, 68% yield, 88% e.e.).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 19.47 min, t_R (major) = 22.40 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 2H), 7.13 – 7.08 (m, 2H), 7.01 – 6.99 (m, 1H), 6.80 (dd, J = 5.0, 1.3 Hz, 1H), 4.54 (dd, J = 8.6, 6.5 Hz, 1H), 2.32 – 2.29 (m, 6H), 2.06 – 1.95 (m, 1H), 1.95 – 1.84 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 140.2, 139.0, 134.9, 126.6, 126.1, 124.3, 122.9, 52.9, 29.5, 21.3, 12.0.

HRMS (ESI) m/z calcd. for C₁₅H₁₈NaO₂S₃ [M + Na]⁺ 349.0361, found: 349.0359.

(R)-S-(1-(Quinolin-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (37)

According to the **general procedure A** with 3-(1-bromopropyl)quinoline **E34** (50 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column

chromatography on silica gel (petroleum ether/EtOAc = $10/1 \sim 5/1$) to yield the product **37** as a light yellow solid (69.1 mg, 93% yield, 94% e.e.).

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 10.60 min, t_R (minor) = 15.75 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (d, J = 2.3 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 2.3 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.66 – 7.60 (m, 1H), 7.54 – 7.48 (m, 1H), 7.01 (s, 2H), 6.65 (s, 1H), 4.62 (dd, J = 8.6, 6.7 Hz, 1H), 2.15 – 2.06 (m, 1H), 2.03 – 1.93 (m, 7H), 0.96 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.3, 144.6, 138.8, 134.6, 134.6, 132.0, 129.7, 129.2, 127.6, 127.3, 126.9, 124.0, 55.1, 29.4, 20.8, 11.9.

HRMS (ESI) m/z calcd. for C₂₀H₂₂NO₂S₂ [M + H]⁺ 372.1086, found: 372.1079.

(R)-S-(1-(Pyridin-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (38)

According to the **general procedure A** with 3-(1-bromopropyl)pyridine **E35** (40 μ L, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (53.8 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 20/1) to yield the product **38** as a light yellow solid (33.0 mg, 51% yield, 88% e.e.).

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 230 nm), *t*_R (major) = 28.83 min, *t*_R (minor) = 32.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.44 – 8.32 (m, 2H), 7.45 – 7.38 (m, 1H), 7.15 (s, 2H), 7.10 – 7.01 (m, 2H), 4.41 (t, *J* = 7.7 Hz, 1H), 2.26 (s, 6H), 2.05 – 1.98 (m, 1H), 1.93 – 1.81 (m, 1H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.3, 148.9, 144.8, 139.1, 135.5, 135.1, 135.0, 124.2, 123.3, 54.8, 29.6, 21.2, 11.9.

HRMS (ESI) m/z calcd. for C₁₆H₂₀NO₂S₂ [M + H]⁺ 322.0930, found: 322.0923.

6. Enantioconvergent cross-coupling of propargyl electrophiles with sodium benzenethiosulfonate

General procedure B: Substrate scope of propargyl halides and sodium benzenethiosulfonate (Table 3, 39–54)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate **S6** (47.2mg, 0.24 mmol, 1.2 equiv.), CuI (2.86 mg, 0.015 mmol, 7.5 mol%), L*12 (8.47 mg, 0.012 mmol, 6 mol%) and Rb₂CO₃ (92.8 mg, 0.40 mmol, 2.0 equiv.), Then, propargyl halide (0.20 mmol, 1.0 equiv.), H₂O (7.2 μ L, 0.40 mmol, 2.0 equiv.) and CHCl₃ (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at -20 °C. Upon completion (monitored by TLC), the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products **39–43**, **45–51**:

The mixture of sodium benzenethiosulfonate **S6** (23.6 mg, 0.12 mmol, 1.2 equiv.) and propargyl halide (0.10 mmol, 1.0 equiv.) in DMF (0.5 mL) was stirring for 1 d. Brine was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with EtOAc (3x) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemates.

The preparation of racemic products (\pm) -44, 52–54:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate **S6** (47.2mg, 0.24 mmol, 1.2 equiv.), CuI (3.81 mg, 0.02 mmol, 10 mol%), L1 (4.28 mg, 0.016 mmol, 8 mol%, for synthesis of (\pm)-44, 53) or L2 (6.02 mg, 0.016 mmol, 8 mol%, for synthesis of (\pm)-52, 54), Rb₂CO₃ (185.6 mg, 0.80 mmol, 4.0 equiv.), Then, propargyl halide (0.20 mmol, 1.0 equiv.) and CH₂Cl₂ (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 50 °C for 3days, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(S)-S-(1-(Triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (39)

TIPS

According to General procedure B, (3-bromopent-1-yn-1-yl)triisopropylsilane E37 (59.2 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate S6 (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product 39 as a colorless oil (71.4 mg, 90% yield, 90% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 11.27 min, t_R (major) = 13.58 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.64 – 7.59 (m, 1H), 7.56 – 7.51 (m, 2H), 4.17 (dd, *J* = 7.6, 5.2 Hz, 1H), 1.98 – 1.78 (m, 2H), 1.05 (d, *J* = 7.3 Hz, 3H), 1.01 – 0.95 (m, 21H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 133.7, 129.4, 127.0, 103.6, 87.9, 44.2, 29.6, 18.6, 11.1(5), 11.1(3).

HRMS (ESI) m/z calcd. for C₂₀H₃₃O₂S₂Si [M + H]⁺ 397.1686, found: 397.1682.

(S)-S-(4-(Triisopropylsilyl)but-3-yn-2-yl) benzenesulfonothioate (40)

TIPS

According to **General procedure B**, (3-bromobut-1-yn-1-yl)triisopropylsilane **E38** (56.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **40** as a light yellow oil (69.1 mg, 90% yield, 91% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 11.20 min, t_R (major) = 12.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.66 – 7.59 (m, 1H), 7.58 – 7.51 (m, 2H), 4.24 (q, *J* = 7.0 Hz, 1H), 1.62 (d, *J* = 7.0 Hz, 3H), 1.02 – 0.95 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 133.8, 129.4, 127.0, 104.8, 87.2, 37.5, 23.4, 18.6, 11.1.

HRMS (ESI) *m/z* calcd. for C₁₉H₃₀NaO₂S₂Si [M + Na]⁺ 405.1349, found: 405.1347.

(S)-S-(1-(Triisopropylsilyl)hex-1-yn-3-yl) benzenesulfonothioate (41)

TIPS

According to **General procedure B**, (3-bromohex-1-yn-1-yl)triisopropylsilane **E39** (63.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **41** as a colorless oil (69.7 mg, 85% yield, 90% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 10.08 min, t_R (major) = 11.91 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 4.19 (dd, *J* = 7.9, 5.7 Hz, 1H), 1.86 – 1.73 (m, 2H), 1.58 – 1.46 (m, 2H), 1.01 – 0.93 (m, 21H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 133.7, 129.4, 127.0, 104.0, 87.6, 42.5, 38.2, 20.1, 18.6, 13.5, 11.1.

HRMS (ESI) m/z calcd. for C₂₁H₃₅O₂S₂Si [M + H]⁺ 411.1842, found: 411.1839.

(S)-S-(4-Methyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (42)

TIPS

According to **General procedure B**, (3-bromo-4-methylpent-1-yn-1-yl)triisopropylsilane **E40** (100 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.) run at 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **42** as a colorless oil (50.1 mg, 61% yield, 90% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 10.07 min, t_R (major) = 12.68 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.51 (m, 2H), 4.13 (d, *J* = 4.3 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.06 (d, *J* = 6.7 Hz, 3H), 1.01 (d, *J* = 6.6 Hz, 3H), 1.00 – 0.95 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6, 133.7, 129.4, 127.0, 102.3, 88.5, 49.8, 33.8, 20.7, 18.7, 18.3, 11.2.

HRMS (ESI) m/z calcd. for C₂₁H₃₅O₂S₂Si [M + H]⁺ 411.1842, found: 411.1839.

(S)-S-(5-Methyl-1-(triisopropylsilyl)hex-1-yn-3-yl) benzenesulfonothioate (43)

According to **General procedure B**, (3-bromo-5-methylhex-1-yn-1-yl)triisopropylsilane **E41** (63.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **43** as a colorless oil (80.7 mg, 95% yield, 90% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 8.70 min, t_R (major) = 11.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.65 – 7.59 (m, 1H), 7.57 – 7.51 (m, 2H), 4.17 (dd, J = 9.5, 6.1 Hz, 1H), 1.95 – 1.83 (m, 1H), 1.78 – 1.69 (m, 1H), 1.68 – 1.59 (m, 1H), 1.02 – 0.94 (m, 21H), 0.91 (dd, J = 6.6, 4.1 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 133.7, 129.4, 127.1, 104.2, 87.5, 45.1, 41.1, 26.4, 22.8, 21.5, 18.6, 11.1.

HRMS (ESI) *m/z* calcd. for C₂₂H₃₇O₂S₂Si [M + H]⁺ 425.1992, found: 425.1999.

(S)-S-(4,4-Dimethyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (44)

TIPS[^]

According to **General procedure B**, (3-bromo-4,4-dimethylpent-1-yn-1-yl)triisopropylsilane **E42** (65.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.) run at 7 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **44** as a colorless oil (51.8 mg, 61% yield, 96% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 9.05 min, t_R (major) = 12.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.63 – 7.56 (m, 1H), 7.56 – 7.48 (m, 2H), 3.91 (s, 1H), 1.09 (s, 9H), 0.98 – 0.93 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 145.7, 133.6, 129.3, 127.0, 104.1, 87.5, 55.2, 36.5, 27.5, 18.7, 11.2.

HRMS (ESI) m/z calcd. for C₂₂H₃₆NaO₂S₂Si [M + Na]⁺ 447.1818, found: 447.1816.

(S)-S-(5-Phenyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (45)

TIPS

According to General procedure B, (3-bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane E43 (70.4 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate S6 (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $100/1 \sim 50/1$) to yield the product **45** as a colorless oil (75.8 mg, 80% yield, 87% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (major) = 28.24 min, t_R (minor) = 29.95 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.16 – 7.08 (m, 2H), 4.11 (dd, J = 8.5, 5.0 Hz, 1H), 2.89 – 2.73 (m, 2H), 2.25 – 2.04 (m, 2H), 1.04 – 0.96 (m, 21H). ¹³**C** NMR (100 MHz, CDCl₃) δ 145.2, 140.2, 133.8, 129.4, 128.7 (two carbon overlapped), 127.0, 126.4, 103.3, 88.6, 41.8, 38.0, 33.0, 18.7, 11.2. HRMS (ESI) m/z calcd. for C₂₆H₃₆NaO₂S₂Si [M + Na]⁺ 495.1818, found: 495.1814.

(S)-S-(5-(5-Methylfuran-2-yl)-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (46)

According to General procedure B, (3-bromo-5-(5-methylfuran-2-yl)pent-1-yn-1-yl)triisopropylsilane E44 (71.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfono-thioate S6 (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product 46 as a brown oil (76.3 mg, 80% yield, 87% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 11.63 min, t_R (major) = 13.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 2H), 7.65 – 7.55 (m, 1H), 7.56 – 7.48 (m, 2H), 5.89 – 5.82 (m, 2H), 4.18 (dd, J = 8.4, 5.3 Hz, 1H), 2.79 (t, J = 7.4 Hz, 2H), 2.25 (s, 3H), 2.25 – 2.13 (m, 1H), 2.15 – 2.01 (m, 1H), 1.05 – 0.93 (m, 21H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.7, 150.9, 145.3, 133.8, 129.4, 127.0, 106.7, 106.1, 103.2, 88.4, 41.7, 34.8, 25.4, 18.6, 13.6, 11.1.

HRMS (ESI) m/z calcd. for C₂₅H₃₇O₃S₂Si [M + H]⁺ 477.1948, found: 477.1946.

Ethyl (S)-5-((phenylsulfonyl)thio)-7-(triisopropylsilyl)hept-6-ynoate (47)

According to General procedure B, ethyl 5-bromo-7-(triisopropylsilyl)hept-6-ynoate E45 (62.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate S6 (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product 47 as a colorless oil

(82.6 mg, 86% yield, 87% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 45.86 min, t_R (major) = 53.00 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.91 (m, 2H), 7.66 – 7.60 (m, 1H), 7.58 – 7.50 (m, 2H), 4.22 – 4.16 (m, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.33 – 2.26 (m, 2H), 2.00 – 1.89 (m, 1H), 1.89 – 1.79 (m, 3H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.02 – 0.94 (m, 21H).

¹³C NMR (100 MHz, CDCl3) δ 172.9, 145.4, 133.8, 129.4, 127.0, 103.3, 88.3, 60.5, 42.2, 35.4, 33.5, 22.2, 18.6, 14.3, 11.1.

HRMS (ESI) m/z calcd. for C₂₄H₃₉O₄S₂Si [M + H]⁺ 483.2054, found: 483.2052.

(S)-S-(5-Cyano-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (48)

According to **General procedure B**, 4-bromo-6-(triisopropylsilyl)hex-5-ynenitrile **E46** (56.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **48** as a brown oil (68.3 mg, 81% yield, 85% e.e.).

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ = 214 nm), t_R (major) = 18.86 min, t_R (minor) = 24.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.70 – 7.64 (m, 1H), 7.62 – 7.56 (m, 2H), 4.24 (dd, J = 7.9, 5.3 Hz, 1H), 2.57 (t, J = 7.5 Hz, 2H), 2.36 – 2.26 (m, 1H), 2.24 – 2.14 (m, 1H), 1.01 – 0.96 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 134.3, 129.7, 127.1, 118.3, 100.7, 90.7, 40.8, 31.9, 18.6, 14.7, 11.0.

HRMS (ESI) m/z calcd. for C₂₁H₃₁NNaO₂S₂Si [M + Na]⁺ 444.1458, found: 444.1456.

(S)-S-(8-Chloro-1-(triisopropylsilyl)oct-1-yn-3-yl) benzenesulfonothioate (49)

According to **General procedure B**, (3-bromo-8-chlorooct-1-yn-1-yl)triisopropylsilane **E47** (72.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **49** as a light yellow oil (81.5 mg, 86% yield, 84% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 16.36 min, t_R (major) = 17.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.65 – 7.59 (m, 1H), 7.58 – 7.50 (m, 2H), 4.19 (dd, J = 7.9, 5.5 Hz, 1H), 3.50 (t, J = 6.6 Hz, 2H), 1.94 – 1.77 (m, 2H), 1.77 – 1.68 (m, 2H), 1.57 – 1.48 (m, 2H), 1.47 – 1.37 (m, 2H), 1.03 – 0.90 (m, 21H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.4, 133.8, 129.4, 127.0, 103.6, 88.0, 44.8, 42.5, 35.9, 32.3, 26.1, 25.9, 18.6, 11.1.

HRMS (ESI) m/z calcd. for C₂₃H₃₇ClNaO₂S₂Si [M + Na]⁺ 495.1585, found: 495.1582.

(S)-S-(1-(Triisopropylsilyl)oct-7-en-1-yn-3-yl) benzenesulfonothioate (50)

According to **General procedure B**, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane **E48** (68.5 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **50** as a colorless oil (69.9 mg, 80% yield, 86% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (major) = 20.46 min, t_R (minor) = 22.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.65 – 7.59 (m, 1H), 7.57 – 7.50 (m, 2H), 5.78 – 5.66 (m, 1H), 5.02 – 4.92 (m, 2H), 4.20 (dd, J = 8.1, 5.3 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.93 – 1.74 (m, 2H), 1.64 – 1.56 (m, 2H), 1.02 – 0.93 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5, 137.8, 133.8, 129.4, 127.0, 115.3, 103.7, 87.9, 42.6, 35.5, 32.9, 25.9, 18.6, 11.1.

HRMS (ESI) m/z calcd. for C₂₃H₃₇O₂S₂Si [M + H]⁺ 437.1999, found: 437.1997.

(S,Z)-S-(1-(Triisopropylsilyl)undec-8-en-1-yn-3-yl) benzenesulfonothioate (51)

According to **General procedure B**, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane **E49** (78.0 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **51** as a colorless oil (78.0 mg, 81% yield, 85% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 214 nm), t_R (minor) = 13.67 min, t_R (major) = 15.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.49 (m, 2H), 5.40 – 5.32 (m, 1H), 5.31 – 5.22 (m, 1H), 4.19 (dd, *J* = 8.1, 5.4 Hz, 1H), 2.07 – 1.94 (m, 4H), 1.89 – 1.74 (m, 2H), 1.57 – 1.45 (m, 2H), 1.38 – 1.24 (m, 2H), 1.02 – 0.92 (m, 24H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5, 133.7, 132.2, 129.3, 128.6, 127.0, 103.8, 87.8, 42.6, 36.0, 29.0, 26.9, 26.4, 20.6, 18.6, 14.5, 11.1.

HRMS (ESI) m/z calcd. for C₂₆H₄₂NaO₂S₂Si [M + Na]⁺ 501.2288, found: 501.2286.

(S)-S-(4,4-Dimethyl-1-(trimethylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (52)

Me₃Si[~]

According to **General procedure B**, (3-bromo-4,4-dimethylpent-1-yn-1-yl)trimethylsilane **E50** (46.6 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **52** as a white solid (54.5 mg, 80% yield, 95% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 230 nm), t_R (minor) = 12.05 min, t_R (major) = 15.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.93 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 3.92 (s, 1H), 1.06 (s, 9H), 0.01 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6, 133.6, 129.2, 127.3, 102.2, 91.1, 54.9, 36.3, 27.6, -0.1.

HRMS (ESI) m/z calcd. for C₁₆H₂₅O₂S₂Si [M + H]⁺ 341.1056, found: 341.1060.

(S)-S-(4,4-Dimethyl-1-(triethylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (53)

Et₃Si´

According to **General procedure B**, (3-bromo-4,4-dimethylpent-1-yn-1-yl)triethylsilane **E51** (55.5 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **53** as a colorless oil (57.4 mg, 75% yield, 97% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 214 nm), t_R (minor) = 10.65 min, t_R (major) = 13.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.49 (m, 2H), 3.92 (s, 1H), 1.08 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.46 (q, J = 7.9 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 133.6, 129.2, 127.1, 103.5, 88.6, 55.1, 36.4, 27.5, 7.6, 4.4.

HRMS (ESI) *m/z* calcd. for C₁₉H₃₁O₂S₂Si [M + H]⁺ 383.1523, found: 383.1529.

(S)-S-(4,4-Dimethyl-1-phenylpent-1-yn-3-yl) benzenesulfonothioate (54)

According to **General procedure B**, (3-bromo-4,4-dimethylpent-1-yn-1-yl)benzene **E52** (42.5 μ L, 0.2 mmol, 1.0 eq.) with sodium benzenesulfonothioate **S6** (47.2 mg, 0.24 mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to yield the product **54** as a white solid (63.4 mg, 92% yield, 95% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 230 nm), t_R (minor) = 25.71 min, t_R (major) = 34.43 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 – 7.95 (m, 2H), 7.52 – 7.39 (m, 3H), 7.33 – 7.19 (m, 3H), 7.16 – 7.08 (m, 2H), 4.18 (s, 1H), 1.13 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 145.4, 133.5, 131.6, 129.1, 128.5, 128.2, 127.3, 122.5, 86.5, 86.1, 55.0, 36.7, 27.7.

HRMS (ESI) m/z calcd. for C₁₉H₂₁O₂S₂Si [M + H]⁺ 345.0972, found: 345.0978.

7. Enantioconvergent cross-coupling of tertiary alkyl electrophiles with thiobenzoic acid or potassium thiocarboxylates.

General procedure C: Substrate scope of tertiary alkyl electrophiles and thiobenzoic acid (Table, 55–79)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles (0.10 mmol, 1.0 equiv.), $Cu(PPh_3)_3CF_3$ (9.24 mg, 0.010 mmol, 10 mol%), L*16 (8.44 mg, 0.015 mmol, 15 mol%) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, thiobenzoic acid **S9** (17.6 µL, 0.15 mmol, 1.5 equiv.) and Et₂O (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at -10 °C for 3 days. The precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D: Substrate scope of (±)-E60 and potassium thiocarboxylates. (Table, 80–88)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles **E60** (32.4 mg, 0.10 mmol, 1.0 equiv.), Cu(PPh₃)₃CF₃ (9.24 mg, 0.010 mmol, 10 mol%), L*16 (8.44 mg, 0.015 mmol, 15 mol%), potassium thiocarboxylates (0.15 mmol, 1.5 equiv.) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, Et₂O (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at -10 °C for 3 days. The precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products 55-88:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles (0.10 mmol, 1.0 equiv.),

Cu(PPh₃)₃CF₃ (9.24 mg, 0.010 mmol, 10 mol%), Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, thiobenzoic acid or potassium thiocarboxylates (0.15 mmol, 1.5 equiv.) and Et₂O (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 3 days. The precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(R)-S-(1-Oxo-2-phenyl-1-(phenylamino)butan-2-yl) benzothioate (55)

According to **General procedure C**, 2-chloro-*N*,2-diphenylbutanamide **E53** (27.4 mg, 0.1 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **55** as a white solid (34.9 mg, 93% yield, 90% e.e.). **HPLC** analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 16.11 min, *t*_R (major) = 20.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.03 – 7.94 (m, 2H), 7.64 – 7.56 (m, 1H), 7.54 – 7.48 (m, 4H), 7.48 – 7.42 (m, 2H), 7.39 – 7.31 (m, 3H), 7.30 – 7.24 (m, 2H), 7.10 – 7.04 (m, 1H), 2.54 – 2.43 (m, 1H), 2.37 – 2.26 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 192.3, 169.9, 138.4, 138.1, 136.9, 134.2, 129.0, 128.9, 128.6, 128.0, 127.7, 127.4, 124.2, 120.0, 66.0, 32.5, 9.4.

HRMS (ESI) m/z calcd. for C₂₃H₂₂NO₂S [M + H]⁺ 376.1366, found: 376.1362.

S-(1-Oxo-2-phenyl-1-(phenylamino)butan-2-yl) benzenesulfonothioate (55a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 4H), 7.34 – 7.18 (m, 8H), 7.18 – 7.06 (m, 4H), 2.92 – 2.78 (m, 1H), 2.55 – 2.40 (m, 1H), 1.08 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 145.0, 137.1, 136.9, 133.0, 129.0, 128.9, 128.7, 128.7, 128.1, 126.7, 125.0, 120.1, 72.5, 30.8, 9.5. **HRMS** (ESI) *m/z* calcd. for C₂₂H₂₂NO₃S₂ [M + H]⁺ 412.1036, found: 412.1039.

N,2-Diphenylbut-2-enamide (55b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.24 (m, 5H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.15 (q, *J* = 7.2 Hz, 1H), 2.00 (d, *J*

= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 139.0, 137.9, 137.3, 130.0, 129.0, 128.8, 127.9, 126.7, 124.5, 112.0, 15.8. HRMS (ESI) *m/z* calcd. for C₁₆H₁₆NO [M + H]⁺ 238.1226, found: 238.1222

2,2'-Disulfanediylbis(N,2-diphenylbutanamide) (55c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.66 (s, 1H), 7.53 – 7.46 (m, 4H), 7.43 – 7.26 (m, 14H), 7.11 (q, *J* = 7.1 Hz, 2H), 2.38 – 2.25 (m, 2H), 2.22 – 2.08 (m, 2H), 0.84 (t, *J* = 7.2 Hz, 3H), 0.78 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.2, 139.0, 138.9, 137.7(5), 137.7(3), 129.1(0), 129.0(5), 128.8, 128.7, 128.4, 128.30, 128.2(5), 128.1(6), 124.6(3), 124.5(7), 120.0(3), 119.9(8), 68.5, 68.1, 31.1, 30.9, 9.9, 9.8.

HRMS (ESI) m/z calcd. for C₃₂H₃₃N₂O₂S₂ [M + H]⁺ 541.1978, found: 541.1992.

(*R*)-*S*-(1-((4-(*Tert*-butyl)phenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (56)

According to **General procedure C**, *N*-(4-(tert-butyl)phenyl)-2-chloro-2phenylbutanamide **E54** (33.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **56** as a white solid (41.0 mg, 95% yield, 87% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 24.83 min, t_R (minor) = 29.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.02 – 7.93 (m, 2H), 7.63 – 7.55 (m, 1H), 7.52 – 7.48 (m, 2H), 7.47 – 7.41 (m, 4H), 7.38 – 7.27 (m, 5H), 2.54 – 2.44 (m, 1H), 2.37 – 2.26 (m, 1H), 1.28 (s, 9H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ192.2, 169.8, 147.2, 138.2, 136.9, 135.8, 134.1, 128.9, 128.6, 127.9, 127.6, 127.5, 125.8, 119.6, 66.0, 34.5, 32.5, 31.5, 9.4.

HRMS (ESI) m/z calcd. for C₂₇H₃₀NO₂S [M + H]⁺ 432.1992, found: 432.1989.

(R)-S-(1-([1,1'-Biphenyl]-4-ylamino)-1-oxo-2-phenylbutan-2-yl) benzothioate (57)

According to **General procedure C**, N-([1,1'-biphenyl]-4-yl)-2-chloro-2phenylbutanamide **E55** (35.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **57** as a colorless oil (42.5 mg, 94% yield, 89% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 90/1, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 17.66 min, t_R (major) = 20.18 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.06 – 7.96 (m, 2H), 7.64 – 7.57 (m, 3H), 7.56 – 7.49 (m, 6H), 7.49 – 7.43 (m, 2H), 7.43 – 7.35 (m, 4H), 7.35 – 7.27 (m, 2H), 2.55 – 2.44 (m, 1H), 2.38 – 2.27 (m, 1H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.5, 170.0, 140.8, 138.1, 137.7, 137.1, 136.9, 134.2, 128.9(2), 128.8(7), 128.6, 128.0, 127.7 (two carbon overlapped), 127.4, 127.1, 127.0, 120.2, 66.1, 32.6, 9.4.

HRMS (ESI) *m/z* calcd. for C₂₉H₂₆NO₂S [M + H]⁺ 452.1679, found: 452.1674.

(R)-S-(1-((4-Bromophenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (58)

According to **General procedure** C, *N*-(4-bromophenyl)-2-chloro-2phenylbutanamide **E56** (35.3 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **58** as a light yellow solid (41.8 mg, 92% yield, 84% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 19.06 min, t_R (major) = 27.43 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.04 – 7.93 (m, 2H), 7.64 – 7.56 (m, 1H), 7.49 – 7.43 (m, 4H), 7.43 – 7.37 (m, 4H), 7.37 – 7.29 (m, 3H), 2.51 – 2.38 (m, 1H), 2.35 – 2.23 (m, 1H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.6, 170.0, 137.8, 137.5, 136.7, 134.3, 132.0, 128.9, 128.6, 128.0, 127.7, 127.3, 121.5, 116.7, 65.9, 32.6, 9.4.

HRMS (ESI) m/z calcd. for C₂₃H₂₁BrNO₂S [M + H]⁺ 454.0471, found: 454.0466.

(R)-S-(1-((3-Fluorophenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (59)

phenylbutanamide E57 (29.2 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid S9 (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product 59 as a light yellow solid (38.2 mg, 97% yield, 87% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 15.77 min, t_R (major) = 18.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.00 (d, J = 7.7 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.56 – 7.50 (m, 1H), 7.50 – 7.43 (m, 4H), 7.40 – 7.29 (m, 3H), 7.24 – 7.16 (m, 1H), 7.14 – 7.07 (m, 1H), 6.79 – 6.72 (m, 1H), 2.52 – 2.39 (m, 1H), 2.36 – 2.22 (m, 1H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.6, 170.1, 163.1 (d, J = 244.6 Hz), 139.9 (d, J = 10.9 Hz), 137.7, 136.7, 134.3, 130.0 (d, J = 9.4 Hz), 128.9, 128.7, 128.0, 127.7, 127.3, 115.2 (d, J = 3.0 Hz), 110.9 (d, J = 21.3 Hz), 107.4 (d, J = 26.3 Hz), 65.9, 32.6, 9.4. ¹⁹F NMR (376 MHz, CDCl₃) δ –111.58.

HRMS (ESI) m/z calcd. for C₂₃H₂₁FNO₂S [M + H]⁺ 394.1272, found: 394.1267.

(*R*)-*S*-(1-((3,5-Dimethylphenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (60)

According to **General procedure C**, 2-chloro-*N*-(3,5-dimethylphenyl)-2phenylbutanamide **E58** (30.2 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **60** as a colorless oil (36.3 mg, 90% yield, 86% e.e.).

HPLC analysis: Chiralcel AS-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 12.85 min, t_R (major) = 15.71 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.03 – 7.94 (m, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.42 (m, 4H), 7.39 – 7.28 (m, 3H), 7.16 (s, 2H), 6.72 (s, 1H), 2.54 – 2.44 (m, 1H), 2.37 – 2.28 (m, 1H), 2.26 (s, 6H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.2, 169.9, 138.8, 138.2(2), 138.1(9), 136.9, 134.1, 128.9, 128.6, 127.9, 127.7, 127.4, 125.9, 117.6, 66.0, 32.5, 21.5, 9.5.

HRMS (ESI) m/z calcd. for C₂₅H₂₆NO₂S [M + H]⁺ 404.1679, found: 404.1673.

(*R*)-*S*-(1-((3,5-Dimethoxyphenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (61)

According to **General procedure C**, 2-chloro-*N*-(3,5-dimethoxyphenyl)-2phenylbutanamide **E59** (33.4 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **61** as a yellow oil (41.4 mg, 95% yield, 90% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 28.53 min, t_R (minor) = 32.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.02 – 7.94 (m, 2H), 7.65 – 7.56 (m, 1H), 7.51 – 7.40 (m, 4H), 7.40 – 7.28 (m, 3H), 6.78 (d, J = 2.3 Hz, 2H), 6.21 (t, J = 2.3 Hz, 1H), 3.76 (s, 6H), 2.53 – 2.41 (m, 1H), 2.36 – 2.23 (m, 1H), 0.87 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.4, 170.0, 161.1, 140.1, 137.9, 136.8, 134.2, 128.9, 128.6, 128.0, 127.7, 127.4, 97.9, 97.0, 66.1, 55.5, 32.5, 9.4.

HRMS (ESI) m/z calcd. for C₂₅H₂₆NO₄S [M + H]⁺ 436.1577, found: 436.1572.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) benzothioate (62)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **62** as a light yellow oil (40.5 mg, 95% yield, 95% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 28.39 min, t_R (major) = 32.45 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.29 (s, 1H), 8.03 – 7.96 (m, 2H), 7.77 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.6 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.47 – 7.39 (m, 4H), 7.39 – 7.28 (m, 4H), 2.58 – 2.46 (m, 1H), 2.41 – 2.29 (m, 1H), 0.91 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 192.5, 170.2, 138.1, 136.8, 135.8, 134.2, 134.0, 130.6, 128.9, 128.7, 128.6, 128.0, 127.8, 127.7, 127.6, 127.4, 126.5, 125.0, 120.0, 116.5, 66.0, 32.6, 9.5.

HRMS (ESI) m/z calcd. for C₂₇H₂₄NO₂S [M + H]⁺ 426.1522, found: 426.1518.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylpropan-2-yl) benzothioate (63)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylpropanamide **E61** (31.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **63** as a light yellow solid (38.7 mg, 94% yield, 92% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 18.76 min, *t*_R (major) = 23.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.18 (s, 1H), 8.16 – 8.06 (m, 1H), 8.06 – 7.95 (m, 2H), 7.88 – 7.76 (m, 1H), 7.73 – 7.62 (m, 4H), 7.62 – 7.55 (m, 1H), 7.52 – 7.32 (m, 8H), 2.14 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 191.7, 170.5, 140.9, 136.6, 134.3, 134.2, 132.8, 129.1, 128.9, 128.7, 128.2, 127.7, 127.2, 126.6, 126.4, 126.0, 125.9, 125.6, 120.8, 120.2, 61.3, 27.9.

HRMS (ESI) m/z calcd. for C₂₆H₂₂NO₂S [M + H]⁺ 412.1366, found: 412.1361.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylpentan-2-yl) benzothioate (64)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylpentanamide **E62** (33.8 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **64** as a light yellow solid (40.9 mg, 93% yield, 92% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 13.41 min, t_R (major) = 18.51 min.

¹**H NMR** (400 MHz, CDCl3) δ 9.17 (s, 1H), 8.09 (d, J = 7.5 Hz, 1H), 8.00 (d, J = 7.8 Hz, 2H), 7.80 (d, J = 8.1 Hz, 1H), 7.66 – 7.61 (m, 4H), 7.58 (t, J = 7.4 Hz, 1H), 7.50 – 7.32 (m, 8H), 2.58 – 2.48 (m, 1H), 2.40 – 2.29 (m, 1H), 1.45 – 1.28 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃)δ 191.9, 170.6, 139.0, 136.8, 134.2, 134.1, 132.9, 128.9, 128.7(1), 128.6(6), 128.0, 127.7, 127.4, 127.2, 126.3, 125.9, 125.8, 125.4, 120.9, 120.1, 65.6, 41.6, 18.5, 14.4.

HRMS (ESI) m/z calcd. for C₂₈H₂₆NO₂S [M + H]⁺ 440.1679, found: 440.1675.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2,3-diphenylpropan-2-yl) benzothioate (65)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2,3diphenylpropanamide **E63** (38.6 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **65** as a white solid (46.4 mg, 95% yield, 95% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 21.68 min, t_R (minor) = 24.15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.07 – 8.03 (m, 1H), 8.02 – 7.96 (m, 2H), 7.83 – 7.76 (m, 1H), 7.67 – 7.63 (m, 1H), 7.61 – 7.56 (m, 1H), 7.56 – 7.53 (m, 1H), 7.51 – 7.44 (m, 3H), 7.43 – 7.39 (m, 1H), 7.39 – 7.35 (m, 2H), 7.34 – 7.28 (m, 4H), 7.19 – 7.13 (m, 1H), 7.12 – 7.06 (m, 2H), 6.80 – 6.74 (m, 2H), 3.83 (s, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.0, 170.6, 138.0, 136.8, 135.8, 134.3, 134.1, 132.7,

131.6, 129.0, 128.6, 128.5, 128.3, 127.7(6), 127.7(0), 127.5, 127.4, 126.9, 126.3, 125.9, 125.8, 125.7, 120.9, 120.5, 66.0, 44.5.

HRMS (ESI) m/z calcd. for C₃₂H₂₆NO₂S [M + H]⁺ 488.1679, found: 488.1675.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2,4-diphenylbutan-2-yl) benzothioate (66)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2,4diphenylbutanamide **E64** (39.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **66** as a light yellow solid (44.1 mg, 88% yield, 93% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 27.03 min, t_R (minor) = 37.59 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.12 – 8.07 (m, 1H), 8.04 – 7.98 (m, 2H), 7.85 – 7.80 (m, 1H), 7.73 – 7.64 (m, 4H), 7.63 – 7.58 (m, 1H), 7.52 – 7.42 (m, 6H), 7.41 – 7.35 (m, 2H), 7.25 – 7.21 (m, 2H), 7.18 – 7.12 (m, 3H), 2.95 – 2.84 (m, 1H), 2.77 – 2.57 (m, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 191.7, 170.3, 141.7, 138.8, 136.8, 134.3, 134.2, 132.8, 128.9(6), 128.9(5), 128.7, 128.6, 128.5, 128.3, 127.7, 127.4, 127.3, 126.4, 126.1, 126.0, 125.9, 125.6, 121.0, 120.3, 65.3, 41.6, 31.7.

HRMS (ESI) m/z calcd. for C₃₃H₂₈NO₂S [M + H]⁺ 502.1835, found: 502.1830.

(*R*)-*S*-(3-Cyclopropyl-1-(naphthalen-1-ylamino)-1-oxo-2-phenylpropan-2-yl) benzothioate (67)

According to **General procedure C**, 2-chloro-3-cyclopropyl-*N*-(naphthalen-1-yl)-2phenylpropanamide **E65** (35.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **67** as a light yellow solid (40.7 mg, 90% yield, 93% e.e.).

HPLC analysis: Chiralcel ODH (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 9.87 min, t_R (major) = 13.09 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 8.17 – 8.08 (m, 1H), 8.07 – 7.98 (m, 2H), 7.87 – 7.79 (m, 1H), 7.73 – 7.56 (m, 5H), 7.53 – 7.46 (m, 3H), 7.46 – 7.38 (m, 4H), 7.38 – 7.34 (m, 1H), 2.53 (dd, *J* = 14.6, 6.4 Hz, 1H), 2.39 (dd, *J* = 14.6, 6.9 Hz, 1H), 0.95 – 0.77 (m, 1H), 0.48 – 0.39 (m, 1H), 0.39 – 0.31 (m, 1H), 0.08 – 0.00 (m, 1H), 0.00 – -0.09 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 170.7, 139.1, 136.9, 134.1(5), 134.1(3), 132.8, 128.9, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 126.3, 125.9, 125.8, 125.4, 120.9, 120.1, 66.3, 44.3, 7.1, 5.4, 5.1.

HRMS (ESI) m/z calcd. for C₂₉H₂₆NO₂S [M + H]⁺ 452.1679, found:452.1675

(*R*)-*S*-(5,5,5-Trifluoro-1-(naphthalen-1-ylamino)-1-oxo-2-phenylpentan-2-yl) benzothioate (68)

According to **General procedure C**, 2-chloro-5,5,5-trifluoro-*N*-(naphthalen-1-yl)-2phenylpentanamide **E66** (39.2 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **68** as a yellow solid (42.0 mg, 85% yield, 92% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 12.82 min, t_R (major) = 15.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.05 – 7.96 (m, 3H), 7.86 – 7.79 (m, 1H), 7.70 – 7.56 (m, 5H), 7.52 – 7.39 (m, 7H), 7.39 – 7.32 (m, 1H), 3.02 – 2.88 (m, 1H), 2.63 – 2.52 (m, 1H), 2.39 – 2.20 (m, 1H), 2.20 – 2.00 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 190.7, 169.8, 137.6, 136.4, 134.6, 134.2, 132.4, 129.3, 129.1, 128.8(2), 128.7(7), 127.8, 127.3, 127.1(0) (q, J = 276.4 Hz), 127.0(6), 126.5, 126.0, 125.9, 125.8, 120.8, 120.5, 63.6, 32.2 (q, J = 3.0 Hz), 30.4 (q, J = 28.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –66.23.

HRMS (ESI) m/z calcd. for C₂₈H₂₃F₃NO₂S [M + H]⁺ 494.1396, found: 494.1393.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylpent-4-en-2-yl) benzothioate (69)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2-phenylpent-4enamide **E67** (33.6 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **69** as a light yellow solid (41.1 mg, 94% yield, 90% e.e.).

HPLC analysis: Chiralcel OZ-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 30.88 min, t_R (minor) = 46.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.10 – 8.03 (m, 1H), 8.03 – 7.97 (m, 2H), 7.84 – 7.78 (m, 1H), 7.68 – 7.56 (m, 5H), 7.51 – 7.43 (m, 3H), 7.43 – 7.38 (m, 3H), 7.38 – 7.32 (m, 2H), 5.89 – 5.66 (m, 1H), 5.15 – 4.98 (m, 2H), 3.36 – 3.18 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.7, 170.3, 138.6, 136.8, 134.3, 134.2, 133.0, 132.7, 128.9, 128.8, 128.7, 128.2, 127.7, 127.3 (two carbons overlap), 126.3, 125.9, 125.8, 125.6, 120.9, 120.4, 119.7, 64.8, 43.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₄NO₂S [M + H]⁺ 438.1522, found: 438.1518.

(*R*)-*S*-(3-Methyl-1-(naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) benzothioate (70)

According to **General procedure C**, 2-chloro-3-methyl-*N*-(naphthalen-1-yl)-2phenylbutanamide **E68** (33.8 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **70** as a brown oil (33.0 mg, 75% yield, 89% e.e.).

HPLC analysis: Chiralcel IG (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 15.26 min, t_R (major) = 16.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.66 – 7.55 (m, 4H), 7.52 – 7.42

(m, 4H), 7.42 – 7.36 (m, 4H), 3.01 – 2.88 (m, 1H), 1.13 (d, *J* = 6.8 Hz, 3H), 1.01 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.7, 170.1, 137.0, 136.1, 134.2 (two carbon overlapped), 133.1, 128.9, 128.8, 128.6, 127.9(9), 127.9(6), 127.7, 127.2, 126.3, 125.9, 125.8, 125.3, 121.2, 119.9, 70.0, 36.2, 19.2, 18.9.

HRMS (ESI) m/z calcd. for C₂₈H₂₆NO₂S [M + H]⁺ 440.1679, found: 440.1674.

(*R*)-*S*-(2-(4-(*Tert*-butyl)phenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (71)

According to General procedure C, 2-chloro-2-(4-isobutylphenyl)-*N*-(naphthalen-1-yl)butanamide E69 (48.2 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid S9 (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product 71 as a light yellow oil (45.3 mg, 94% yield, 88% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.3 mL/min, λ = 254 nm), t_R (major) = 65.30 min, t_R (minor) = 76.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.11 – 8.01 (m, 3H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 1H), 7.63 – 7.54 (m, 4H), 7.52 – 7.41 (m, 6H), 7.35 (t, *J* = 7.8 Hz, 1H), 2.77 – 2.64 (m, 1H), 2.60 – 2.49 (m, 1H), 1.37 (s, 9H), 1.01 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 191.4, 170.8, 151.0, 137.0, 135.4, 134.1, 134.0, 132.7, 128.8, 128.6, 127.6, 127.3, 127.1, 126.2, 125.9, 125.8, 125.6, 125.4, 120.9, 120.3, 66.1, 34.6, 31.7, 31.4, 9.7.

HRMS (ESI) m/z calcd. for C₃₁H₃₂NO₂S [M + H]⁺ 482.2148, found: 482.2142.

(*R*)-*S*-(2-(4-Bromophenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (72)

According to General procedure C, 2-(4-bromophenyl)-2-chloro-*N*-(naphthalen-1-yl)butanamide E70 (40.3 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid S9 (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product 72 as a brown

solid (46.9 mg, 93% yield, 89% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 23.44 min, t_R (major) = 28.73min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.09 – 8.04 (m, 1H), 8.03 – 7.96 (m, 2H), 7.85 – 7.79 (m, 1H), 7.69 – 7.63 (m, 2H), 7.63 – 7.58 (m, 1H), 7.56 – 7.36 (m, 9H), 2.63 – 2.49 (m, 1H), 2.47 – 2.34 (m, 1H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 191.9, 170.0, 137.9, 136.7, 134.4, 134.2, 132.7, 131.8, 129.3, 129.0, 128.7, 127.7, 127.2, 126.5, 126.0, 125.8, 125.6, 122.1, 120.8, 120.2, 65.6, 32.5, 9.6.

HRMS (ESI) m/z calcd. for C₂₇H₂₃BrNO₂S [M + H]⁺ 504.0627, found: 504.0622.

(*R*)-*S*-(2-(3-Fluorophenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (73)

According to **General procedure C**, 2-chloro-2-(3-fluorophenyl)-*N*-(naphthalen-1-yl)butanamide **E71** (34.2 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **73** as a yellow solid (39.9 mg, 90% yield, 90% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 16.56 min, t_R (major) = 19.17 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.09 – 8.03 (m, 1H), 8.03 – 7.96 (m, 2H), 7.84 – 7.78 (m, 1H), 7.68 – 7.63 (m, 2H), 7.63 – 7.57 (m, 1H), 7.51 – 7.42 (m, 4H), 7.42 – 7.33 (m, 4H), 7.09 – 7.03 (m, 1H), 2.66 – 2.54 (m, 1H), 2.48 – 2.37 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 191.7, 169.9, 162.9 (d, J = 246.6 Hz), 141.4 (d, J = 7.1 Hz), 136.7, 134.4, 134.2, 132.7, 130.2 (d, J = 8.3 Hz), 129.0, 128.7, 127.7, 127.3, 126.4, 126.0, 125.8, 125.7, 123.2 (d, J = 2.8 Hz), 120.8, 120.3, 115.1 (d, J = 21.0 Hz), 114.8 (d, J = 23.5 Hz), 65.6 (d, J = 1.8 Hz), 32.5, 9.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –111.88.

HRMS (ESI) m/z calcd. for C₂₇H₂₃FNO₂S [M + H]⁺ 444.1428, found: 444.1421.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-(p-tolyl)propan-2-yl) benzothioate (74)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2-(p-tolyl)propanamide **E72** (32.4 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **74** as a yellow solid (39.2 mg, 92% yield, 91% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 19.06 min, t_R (minor) = 25.50 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.13 – 8.09 (m, 1H), 8.02 – 7.97 (m, 2H), 7.84 – 7.80 (m, 1H), 7.71 – 7.64 (m, 2H), 7.62 – 7.57 (m, 1H), 7.56 – 7.52 (m, 2H), 7.51 – 7.42 (m, 4H), 7.42 – 7.36 (m, 1H), 7.24 – 7.20 (m, 2H), 2.37 (s, 3H), 2.12 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 191.8, 170.7, 138.1, 137.9, 136.7, 134.2(1), 134.1(7), 132.8, 129.8, 128.9, 128.7, 127.7, 127.2, 126.5, 126.4, 126.0, 125.9, 125.5, 120.9, 120.2, 61.2, 27.8, 21.2.

HRMS (ESI) m/z calcd. for C₂₇H₂₄NO₂S [M + H]⁺ 426.1522, found: 426.1516.

(*R*)-*S*-(2-(4-Isobutylphenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl) benzothioate (75)

According to **General procedure C**, 2-chloro-2-(4-isobutylphenyl)-*N*-(naphthalen-1-yl)propanamide **E73** (36.6 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **75** as a brown solid (42.1 mg, 90% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 11.79 min, t_R (minor) = 14.54 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.12 – 8.05 (m, 1H), 8.02 – 7.95 (m, 2H), 7.84 – 7.78 (m, 1H), 7.69 – 7.63 (m, 1H), 7.63 – 7.53 (m, 4H), 7.52 – 7.39 (m, 4H), 7.38 – 7.31 (m, 1H), 7.22 – 7.16 (m, 2H), 2.50 (d, *J* = 7.2 Hz, 2H), 2.17 (s, 3H), 1.96 – 1.80 (m, 1H), 0.92 (d, *J* = 6.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃)δ 191.5, 170.7, 141.9, 138.0, 136.8, 134.1(6), 134.1(3), 132.7, 129.8, 128.9, 128.7, 127.6, 127.2, 126.5, 126.3, 125.9(4), 125.9(1), 125.5, 120.8, 120.2, 61.3, 45.1, 30.2, 27.5, 22.6, 22.5.

HRMS (ESI) m/z calcd. for C₃₀H₂₉NO₂S [M + H]⁺ 468.1992, found: 468.1987.

(*R*)-*S*-(2-(3-Methoxyphenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl) benzothioate (76)

According to **General procedure C**, 2-chloro-2-(3-methoxyphenyl)-*N*-(naphthalen-1-yl)propanamide **E74** (34.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **76** as a light yellow solid (40.2 mg, 91% yield, 92% e.e.).

HPLC analysis: Chiralcel IF (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 41.58 min, t_R (minor) = 47.27 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.11 – 8.06 (m, 1H), 8.02 – 7.96 (m, 2H), 7.84 – 7.79 (m, 1H), 7.72 – 7.64 (m, 2H), 7.62 – 7.56 (m, 1H), 7.51 – 7.41 (m, 4H), 7.41 – 7.36 (m, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.22 (t, *J* = 2.2 Hz, 1H), 6.92 – 6.87 (m, 1H), 3.77 (s, 3H), 2.14 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 170.4, 160.0, 142.5, 136.7, 134.2(4), 134.1(6), 132.7, 130.1, 128.9, 128.7, 127.7, 127.3, 126.4, 126.0, 125.9, 125.6, 120.9, 120.3, 118.9, 113.4, 112.8, 61.2, 55.4, 27.8.

HRMS (ESI) m/z calcd. for C₂₇H₂₄NO₂S [M + H]⁺ 442.1471, found: 442.1465.

(*R*)-*S*-(2-(4-Chlorophenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl) benzothioate (77)

According to **General procedure C**, 2-chloro-2-(4-chlorophenyl)-*N*-(naphthalen-1-yl)propanamide **E75** (34.4 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **77** as a brown solid (40.6 mg, 91% yield, 95% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 47.99 min, t_R (major) = 52.05min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.12 – 8.04 (m, 1H), 8.02 – 7.94 (m, 2H), 7.86 – 7.79 (m, 1H), 7.72 – 7.65 (m, 2H), 7.63 – 7.55 (m, 3H), 7.51 – 7.40 (m, 5H), 7.40 – 7.34 (m, 2H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.8, 170.1, 139.6, 136.4, 134.5, 134.1(7), 134.1(2), 132.6, 129.2, 129.0, 128.8, 128.1, 127.7, 127.2, 126.5, 126.0, 125.9, 125.7, 120.7, 120.3, 60.6, 28.0.

HRMS (ESI) m/z calcd. for C₂₆H₂₁ClNO₂S [M + H]⁺ 446.0976, found: 446.0971.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-(3-(trifluoromethyl)phenyl)propan-2-yl) benzothioate (78)

According to **General procedure C**, 2-chloro-*N*-(naphthalen-1-yl)-2-(3-(trifluoromethyl)phenyl)propanamide **E76** (37.8 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid **S9** (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product **78** as a light yellow oil (45.6 mg, 95% yield, 84% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 22.00 min, t_R (major) = 27.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.05 – 7.92 (m, 4H), 7.88 – 7.80 (m, 2H), 7.71 – 7.66 (m, 2H), 7.65 – 7.57 (m, 2H), 7.56 – 7.51 (m, 1H), 7.51 – 7.37 (m, 5H), 2.19 – 2.08 (m, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 191.6, 169.9, 142.2, 136.3, 134.6, 134.2, 132.4, 131.4 (q, J = 32.2 Hz), 130.1, 129.6, 129.0, 128.7, 127.7, 127.5, 126.5, 126.1, 126.0, 125.8, 125.1 (q, J = 3.8 Hz), 124.0 (q, J = 272.7 Hz), 123.6 (q, J = 4.0, 3.5 Hz), 120.8(2), 120.7(9), 60.6, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.52.

HRMS (ESI) m/z calcd. for C₂₇H₂₁F₃NO₂S [M + H]⁺ 480.1240, found: 480.1232.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-2-(naphthalen-2-yl)-1-oxopropan-2-yl) benzothioate (79)

According to General procedure C, 2-chloro-*N*-(naphthalen-1-yl)-2-(naphthalen-2-yl)propanamide E77 (36.0 mg, 0.10 mmol, 1.0 eq.) with thiobenzoic acid S9 (17.7 μ L, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1 ~ 10/1) to yield the product 79 as a white solid (40.2 mg, 87% yield, 88% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 22.63 min, t_R (minor) = 29.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.16 – 8.07 (m, 2H), 8.05 – 7.97 (m, 2H), 7.92 – 7.87 (m, 1H), 7.87 – 7.76 (m, 4H), 7.71 – 7.65 (m, 2H), 7.63 – 7.57 (m, 1H), 7.55 – 7.48 (m, 3H), 7.48 – 7.38 (m, 3H), 7.34 – 7.28 (m, 1H), 2.21 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.8, 170.6, 138.3, 136.7, 134.3, 134.2, 133.3, 132.9, 132.8, 129.0(3), 128.9(7), 128.7, 128.4, 127.7(4), 127.7(2), 127.4, 126.8 (two carbon overlapped), 126.4, 126.0, 125.9(0), 125.8(5), 125.7, 124.3, 120.9, 120.5, 61.5, 27.9. HRMS (ESI) *m/z* calcd. for C₃₀H₂₄NO₂S [M + H]⁺ 462.1522, found: 462.1519.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-methylbenzothioate (80)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 3methylbenzothioate **S10** (28.5 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **80** as a colorless oil (41.8 mg, 95% yield, 95% e.e.).

HPLC analysis: Chiralcel AD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 20.23 min, t_R (major) = 23.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.11 – 8.04 (m, 1H), 7.84 – 7.76 (m, 3H), 7.67 – 7.59 (m, 4H), 7.49 – 7.44 (m, 1H), 7.44 – 7.30 (m, 7H), 2.67 – 2.55 (m, 1H), 2.50 – 2.40 (m, 1H), 2.38 (s, 3H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.0, 170.6, 138.8, 138.6, 136.9, 135.0, 134.1, 132.9, 128.8, 128.7, 128.6, 128.1, 128.0, 127.5, 127.2, 126.3, 125.9, 125.8, 125.4, 124.9, 120.9, 120.1, 66.1, 32.4, 21.4, 9.6.

HRMS (ESI) m/z calcd. for C₂₈H₂₆NO₂S [M + H]⁺ 440.1679, found: 440.1675.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 4-methylbenzothioate (81)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 4methylbenzothioate **S11** (28.5 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **81** as a brown oil (41.8 mg, 95% yield, 92% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 24.88 min, t_R (major) = 27.25 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 8.12 – 8.05 (m, 1H), 7.95 – 7.87 (m, 2H), 7.81 (d, J = 8.1 Hz, 1H), 7.68 – 7.58 (m, 4H), 7.50 – 7.45 (m, 1H), 7.45 – 7.32 (m, 5H), 7.28 – 7.22 (m, 2H), 2.66 – 2.53 (m, 1H), 2.48 – 2.36 (m, 4H), 0.94 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.5, 170.7, 145.3, 138.7, 134.4, 134.2, 132.9, 129.6, 128.6(7), 128.6(4), 128.0, 127.8, 127.5, 127.3, 126.3, 125.9(1), 125.8(6), 125.4, 121.0, 120.1, 65.9, 32.5, 21.9, 9.6.

HRMS (ESI) m/z calcd. for C₂₈H₂₆NO₂S [M + H]⁺ 440.1670, found: 440.1679.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-(trifluoromethyl)benzothioate (82)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2-phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 3-(trifluoromethyl)benzothioate **S12** (36.6 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **82** as a brown solid (45.4 mg, 92% yield, 96% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 230$ nm), t_R (minor) = 16.17 min, t_R (major) = 17.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.28 – 8.22 (m, 1H), 8.21 – 8.15 (m, 1H), 8.10 – 8.02 (m, 1H), 7.88 – 7.77 (m, 2H), 7.69 – 7.62 (m, 3H), 7.62 – 7.56 (m, 1H), 7.56 – 7.52 (m, 1H), 7.50 – 7.46 (m, 1H), 7.46 – 7.33 (m, 5H), 2.76 – 2.62 (m, 1H), 2.56 – 2.42 (m, 1H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 190.5, 170.1, 138.3, 137.5, 134.1, 132.6, 131.5 (q, *J* = 33.3 Hz), 130.8, 130.4 (q, *J* = 3.5 Hz), 129.6, 128.9, 128.8, 128.3, 127.5, 127.2, 126.4, 126.0, 125.8, 125.6, 124.4 (q, *J* = 3.8 Hz), 123.5 (q, *J* = 272.6 Hz), 120.6, 120.2, 66.9, 32.0, 9.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.79.

HRMS (ESI) m/z calcd. for C₂₈H₂₃F₃NO₂S [M + H]⁺ 494.1387, found: 494.1396.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-chlorobenzothioate (83)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 3chlorobenzothioate **S13** (31.6 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **83** as a yellow solid (45.5 mg, 99% yield, 95% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 214$

nm), t_{R} (minor) = 18.98 min, t_{R} (major) = 21.44 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.08 – 8.03 (m, 1H), 7.99 – 7.94 (m, 1H), 7.91 – 7.85 (m, 1H), 7.83 – 7.77 (m, 1H), 7.68 – 7.59 (m, 3H), 7.59 – 7.51 (m, 2H), 7.50 – 7.45 (m, 1H), 7.45 – 7.33 (m, 6H), 2.72 – 2.57 (m, 1H), 2.53 – 2.37 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.5, 170.2, 138.3, 135.2, 134.1, 134.0(two carbons overlap), 132.6, 130.2, 128.8, 128.7, 128.2, 127.6, 127.5, 127.2, 126.4, 126.0, 125.8, 125.7, 125.6, 120.7, 120.2, 66.7, 32.1, 9.6.

HRMS (ESI) m/z calcd. for C₂₇H₂₃ClNO₂S [M + H]⁺ 460.1133, found: 460.1120.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-bromobenzothioate (84)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 3bromobenzothioate **S14** (38.3 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **84** as a yellow solid (50.0 mg, 99% yield, 94% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 19.92 min, t_R (major) = 22.64 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.14 – 8.08 (m, 1H), 8.08 – 8.02 (m, 1H), 7.96 – 7.88 (m, 1H), 7.84 – 7.77 (m, 1H), 7.72 – 7.67 (m, 1H), 7.67 – 7.59 (m, 3H), 7.58 – 7.53 (m, 1H), 7.49 – 7.34 (m, 6H), 7.34 – 7.27 (m, 1H), 2.76 – 2.53 (m, 1H), 2.53 – 2.33 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.4, 170.2, 138.5, 138.3, 136.9, 134.1, 132.6, 130.5, 130.4, 128.8, 128.7, 128.2, 127.5, 127.2, 126.4, 126.2, 126.0, 125.8, 125.6, 123.1, 120.7, 120.2, 66.7, 32.1, 9.6.

HRMS (ESI) m/z calcd. for C₂₇H₂₃BrNO₂S [M + H]⁺ 504.0627, found: 504.0616.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3,5-dimethylbenzothioate (85)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 3,5dimethylbenzothioate **S15** (30.6 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **85** as a yellow oil (42.2 mg, 93% yield, 95% e.e.). **HPLC** analysis: Chiralcel AD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 17.19 min, t_R (major) = 22.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.69 – 7.57 (m, 6H), 7.46 (t, J = 7.9 Hz, 1H), 7.44 – 7.32 (m, 5H), 7.21 (s, 1H), 2.65 – 2.55 (m, 1H), 2.49 – 2.38 (m, 1H), 2.34 (s, 6H), 0.95 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 192.2, 170.7, 138.6(8), 138.6(5), 136.9, 135.8, 134.1, 132.9, 128.6, 128.6, 128.0, 127.5, 127.2, 126.3, 125.8(8), 125.8(3), 125.4(two carbons overlap), 121.0, 120.1, 66.0, 32.4, 21.3, 9.6.

HRMS (ESI) m/z calcd. for C₂₉H₂₈NO₂S [M + H]⁺ 454.1835, found: 454.1834.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) thiophene-2carbothioate (86)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium thiophene-2carbothioate **S16** (27.3 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **86** as a brown solid (42.8 mg, 99% yield, 96% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 95/15, flow rate 0.6 mL/min, λ = 254 nm), *t*_R (minor) = 25.66 min, *t*_R (major) = 28.32 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 8.11 – 8.02 (m, 1H), 7.93 – 7.87 (m, 1H), 7.83 – 7.77 (m, 1H), 7.68 – 7.57 (m, 5H), 7.50 – 7.44 (m, 1H), 7.44 – 7.30 (m, 5H), 7.13 – 7.08 (m, 1H), 2.65 – 2.54 (m, 1H), 2.47 – 2.36 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 183.8, 170.4, 141.5, 138.5, 134.1 (two carbon overlapped), 132.8, 132.3, 128.7, 128.6, 128.3, 128.1, 127.4, 127.3, 126.3, 125.9, 125.8, 125.5, 121.0, 120.2, 66.7, 32.5, 9.6.

HRMS (ESI) m/z calcd. for C₂₅H₂₂NO₂S [M + H]⁺ 432.1086, found: 432.1081.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) furan-2carbothioate (87)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium furan-2carbothioate **S17** (25.0 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **87** as a brown oil (41.2 mg, 99% yield, 92% e.e.).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 16.58 min, t_R (major) = 19.45 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.10 – 8.04 (m, 1H), 7.83 – 7.77 (m, 1H), 7.68 – 7.56 (m, 5H), 7.50 – 7.44 (m, 1H), 7.44 – 7.32 (m, 5H), 7.25 – 7.22 (m, 1H), 6.56 – 6.50 (m, 1H), 2.67 – 2.52 (m, 1H), 2.50 – 2.35 (m, 1H), 0.95 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 180.1, 170.4, 150.4, 147.1, 138.5, 134.1, 132.8, 128.7, 128.6, 128.1, 127.4, 127.2, 126.3, 125.9, 125.8, 125.5, 120.9, 120.1, 117.2, 112.7, 66.1, 32.5, 9.6.

HRMS (ESI) m/z calcd. for C₂₅H₂₂NO₃S [M + H]⁺ 416.1315, found: 416.1303.

(*R*)-*S*-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 2,2-dimethyl-propanethioate (88)

According to **General procedure D**, 2-chloro-*N*-(naphthalen-1-yl)-2phenylbutanamide **E60** (32.4 mg, 0.10 mmol, 1.0 eq.) with potassium 2,2dimethylpropanethioate **S18** (23.4 mg, 0.15 mmol, 1.5 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 10/1$) to yield the product **88** as a yellow oil (40.2 mg, 99% yield, 90% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 9.29 min, t_R (minor) = 12.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.09 – 8.02 (m, 1H), 7.85 – 7.77 (m, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.56 – 7.51 (m, 2H), 7.51 – 7.42 (m, 2H), 7.41 – 7.30 (m, 4H), 2.56 – 2.44 (m, 1H), 2.37 – 2.25 (m, 1H), 1.28 (s, 9H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.9, 170.8, 138.8, 134.2, 133.0, 128.7, 128.6, 127.9, 127.3(3), 127.2(6), 126.2, 125.9(4), 125.9(1), 125.4, 121.0, 120.1, 65.2, 47.7, 32.3, 27.5, 9.5.

HRMS (ESI) m/z calcd. for C₂₅H₂₈NO₂S [M + H]⁺ 406.1835, found: 406.1824.

8. Investigation of other electrophiles

Investigation of tertiary alkyl chlorides containing no N-H bond

We examined the reaction of tertiary α -carbonyl alkyl chlorides containing no N–H bond. Under the standard conditions, **E81** gave rise to the corresponding radical cyclization product **107** rather than C–S coupling product **107**'. Under the standard conditions, almost no conversion of **E82** was observed. Only 16% conversion of **E82** was observed at an elevated temperature (40 °C), and the reaction afforded no desired product **108**' but elimination by-product **108** (10% yield). Under the standard conditions, no conversion of **E83** was observed as well. At 40 °C, the reaction of **E83** afforded no desired product **109'**, but furnished the elimination by-product **109** and hydrogen atom abstraction by-product **110**. These results revealed that the N–H bond on tertiary α -carbonyl alkyl chlorides is crucial in tuning reactivity and chemoselectivity.

3-Ethyl-1-methyl-3-phenylindolin-2-one (107)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.25 (m, 5H), 7.25 – 7.18 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 3.22 (s, 3H), 2.48 – 2.38 (m, 1H), 2.29 – 2.17 (m, 1H), 0.68 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.7, 144.2, 140.4, 132.2, 128.6, 128.2, 127.3, 127.1, 124.9, 122.7, 108.3, 57.5, 31.0, 26.4, 9.2.

Note: **107** is a known compound¹².

1-Morpholino-2-phenylbut-2-en-1-one (108)

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.23 (m, 5H), 6.19 (q, *J* = 7.1 Hz, 1H), 3.85 – 3.76 (m, 2H), 3.76 – 3.70 (m, 2H), 3.55 – 3.45 (m, 2H), 3.41 – 3.33 (m, 2H), 1.87 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 137.5, 136.0, 128.9, 127.9, 125.3, 124.8, 67.0, 66.9, 46.8, 41.6, 15.6.

HRMS (ESI) m/z calcd for C₁₄H₁₈NO₂ [M + H]⁺ 232.1332, found: 232.1327.

1-(Indolin-1-yl)-2-phenylbut-2-en-1-one (109)

¹**H NMR** (400 MHz, CDCl₃) (major) δ 8.40 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (t, J = 7.1 Hz, 2H), 7.25 (t, J = 7.2 Hz, 2H), 7.17 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.18 (q, J = 7.1 Hz, 1H), 3.80 (t, J = 8.4 Hz, 2H), 3.06 (t, J = 8.4 Hz, 2H), 1.91 (d, J = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) (major) δ 168.0, 142.6, 139.7, 135.8, 131.9, 128.9, 127.9, 127.7, 125.5, 124.8, 124.7, 124.3, 117.4, 48.5, 28.1, 15.6.

HRMS (ESI) m/z calcd for C₁₈H₁₈NO [M + H]⁺ 264.1383, found: 264.1386.

1-(indolin-1-yl)-2-phenylbutan-1-one (110)

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 8.2 Hz, 1H), 7.37 – 7.26 (m, 4H), 7.26 – 7.14 (m, 2H), 7.10 (d, J = 7.5 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 4.18 – 4.06 (m, 1H), 3.88 – 3.77 (m, 1H), 3.57 (t, J = 7.3 Hz, 1H), 3.18 – 3.05 (m, 1H), 3.05 – 2.91 (m, 1H), 2.28 – 2.15 (m, 1H), 1.89 – 1.72 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 143.4, 139.5, 131.2, 128.9, 128.2, 127.5, 127.1, 124.5, 123.7, 117.3, 54.0, 47.8, 28.1, 28.1, 12.6.

HRMS (ESI) m/z calcd for C₁₈H₁₉NNaO [M + Na]⁺ 288.1359, found: 288.1361.

Investigation of other secondary alkyl bromides

S-(1-(Indolin-1-yl)-1-oxobutan-2-yl) benzothioate (111)

HPLC analysis: Chiralcel AD-H (*n*-Hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 14.81 min, t_R (major) = 19.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 8.03 – 7.84 (m, 2H), 7.64 – 7.52 (m, 1H), 7.52 – 7.37 (m, 2H), 7.24 – 7.14 (m, 2H), 7.07 – 7.00 (m, 1H), 4.62 (t, J = 7.4 Hz, 1H), 4.43 – 4.30 (m, 1H), 4.28 – 4.14 (m, 1H), 3.22 (t, J = 8.5 Hz, 2H), 2.30 – 2.14 (m, 1H), 2.01 – 1.85 (m, 1H), 1.09 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.2, 169.1, 143.0, 136.4, 134.0, 131.8, 128.9, 127.7, 127.6, 124.7, 124.3, 117.6, 48.3, 47.4, 28.2, 26.4, 12.0.

HRMS (ESI) m/z calcd. for C₁₉H₂₀NO₂S [M + H]⁺326.1209, found: 326.1208.

S-(1-Morpholino-1-oxobutan-2-yl) benzothioate (112)

HPLC analysis: Chiralcel AD-H (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 10.21 min, t_R (major) = 11.33 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.81 (m, 2H), 7.66 – 7.54 (m, 1H), 7.51 – 7.38 (m, 2H), 4.64 (t, *J* = 7.3 Hz, 1H), 3.77 – 3.55 (m, 8H), 2.19 – 2.03 (m, 1H), 1.94 – 1.80 (m, 1H), 1.03 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.1, 169.8, 136.3, 134.0, 128.9, 127.5, 67.0, 66.9, 46.7, 43.8, 42.9, 26.4, 11.9.

HRMS (ESI) m/z calcd. for C₁₅H₂₀NO₃S [M + H]⁺ 294.1158, found: 294.1156.

S-(1-Oxo-1-(phenylamino)butan-2-yl) benzothioate (113)

HPLC analysis: Chiralcel AD-H (*n*-Hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 12.83 min, t_R (major) = 15.56 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.01 – 7.93 (m, 2H), 7.65 – 7.58 (m, 1H), 7.58 – 7.51 (m, 2H), 7.51 – 7.43 (m, 2H), 7.34 – 7.27 (m, 2H), 7.12 – 7.06 (m, 1H), 4.20 (t, *J* = 7.6 Hz, 1H), 2.34 – 2.16 (m, 1H), 1.96 – 1.83 (m, 1H), 1.12 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.6, 169.1, 138.0, 136.3, 134.3, 129.1, 129.0, 127.6, 124.5, 119.9, 48.5, 23.4, 12.3.

HRMS (ESI) m/z calcd. for C₁₇H₁₈NO₂S [M + H]⁺300.1053, found: 300.1054.

Ethyl 2-(benzoylthio)-3-methylbutanoate (114)

HPLC analysis: Chiralcel AD-H (*n*-Hexane/*i*-PrOH = 99/1, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 11.09 min, t_R (major) = 14.57 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.61 – 7.54 (m, 1H), 7.50 – 7.41 (m, 2H), 4.34 (d, J = 6.6 Hz, 1H), 4.27 – 4.18 (m, 2H), 2.42 – 2.28 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.07 (dd, J = 6.8, 5.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 190.5, 171.5, 136.7, 133.8, 128.8, 127.6, 61.6, 53.4, 30.9, 20.5, 19.9, 14.3.

HRMS (ESI) m/z calcd. for C₁₄H₁₉O₃S [M + H]⁺ 267.1049, found: 267.1050.

9. Procedure for synthetic applications (89–102)

The synthesis of 89

To a mixture of copper(II) sulfate (16.0 mg, 0.1 mmol, 10 mol%) and sodium bicarbonate (336.0 mg, 4.0 mmol, 4.0 equiv.) was added a solution of corresponding thiosulfonates **1** (320.5 mg, 1.0 mmol, 1.0 equiv.) and phenylboronic acid (366.0 mg, 3.0 mmol, 3.0 equiv.) dissolved in methanol (5.0 mL) at room temperature. After stirring for 48 hours at the same temperature, the mixture was passed through a short pad of silica gel with EtOAc and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = 100/1 ~ 20/1) to give product **89** (183.3 mg, 80%, 91% e.e.) as a white solid.

(*R*)-Phenyl(1-phenylpropyl)sulfane (89)

HPLC analysis: Chiralcel OJ-H (*n*-Hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.68 min, t_R (major) = 13.98 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 6H), 7.22 – 7.15 (m, 4H), 4.05 (dd, J = 8.8, 6.0 Hz, 1H), 2.07 – 1.86 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.1, 135.3, 132.4, 128.7, 128.4, 128.0, 127.2, 127.0, 55.4, 29.5, 12.4.

HRMS (ESI) m/z calcd for C₁₅H₁₇S [M + H]⁺ 229.1045, found: 229.1042.

The synthesis of 90 or 91

An oven-dried Schlenk tube was sequentially charged with the corresponding thiosulfonates **25** (79.3 mg, 0.2 mmol, 1.0 equiv) and NaOAc (49.2 mg, 0.6 mmol, 3.0 equiv). Anhydrous DMSO (1.0 mL) was then added followed by dropwise addition of TMS(CF₂)_nCF₃ (n = 0 or 1) (3.0 equiv) with stirring. Then the reaction was stirred at room temperature for 4 hours. After the reaction was completed, it was diluted with DCM. The organic layer was washed with water (three times) and brine, then dried over

anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding perfluoroalkyl sulfides **90** or **91**.

(*R*)-(1-([1,1'-Biphenyl]-4-yl)propyl)(trifluoromethyl)sulfane (90)

25 with Me₃SiCF₃ (88.8 μ L, 0.6 mmol, 3.0 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **90** as a light yellow solid (58.7 mg, 99% yield, 91% e.e.).

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 10.55 min, t_R (minor) = 17.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.46 – 7.39 (m, 2H), 7.38 – 7.30 (m, 3H), 4.24 (dd, J = 8.8, 6.4 Hz, 1H), 2.14 – 1.91 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.9, 140.6, 139.6, 130.8 (q, *J* = 307.2 Hz), 128.9, 128.0, 127.6, 127.5, 127.2, 51.2 (d, *J* = 1.7 Hz), 30.0, 12.1.

¹⁹F NMR (376 MHz, CDCl₃) δ –39.66.

HRMS (ESI) m/z calcd for C₁₆H₁₆F₃S [M + H]⁺ 297.0919, found: 297.0933.

(*R*)-(1-([1,1'-Biphenyl]-4-yl)propyl)(perfluoroethyl)sulfane (91)

25 with Me₃SiCF₂CF₃ (105.2 μ L, 0.6 mmol, 3.0 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product **91** as a white solid (68.6 mg, 99% yield, 92% e.e.).

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 100/0, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.60 min, t_R (minor) = 15.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.46 – 7.39 (m, 2H), 7.38 – 7.30 (m, 3H), 4.34 (dd, *J* = 8.8, 6.5 Hz, 1H), 2.17 – 1.96 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.9, 140.6, 139.8, 128.9, 128.0(4), 127.5(9), 127.5(8), 127.2, 122.0 (tq, *J* = 40.6 Hz), 118.7 (qt, *J* = 36.4 Hz), 50.1 (t, *J* = 2.6 Hz), 30.7, 12.1.

¹⁹F NMR (376 MHz, CDCl₃) δ –83.41 (t, J = 3.9 Hz, 3F), –90.31 (q, J = 3.8 Hz, 1F), – 90.45 (q, J = 4.0 Hz, 1F).

HRMS (ESI) m/z calcd for C₁₇H₁₆F₅S [M + H]⁺ 347.0887, found: 347.0882.

The synthesis of 92

An oven-dried Schlenk tube was sequentially charged with the corresponding thiosulfonates **1** (64.1 mg, 0.2 mmol, 1.0 equiv) and Cs₂CO₃ (195.6 mg, 0.6 mmol, 3.0 equiv). Anhydrous DMF (1.0 mL) was then added, then the reaction was stirred at room temperature for 18 hours. After the reaction was completed, it was diluted with DCM. The organic layer was washed with water (three times) and brine, then dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the product **92** (52.0 mg, 86%, d.r. = 10:1, >99% e.e.) as a light yellow solid. The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

1,2-Bis((*R*)-1-phenylpropyl)disulfane (92)

HPLC analysis: Chiralcel OJ-3 (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor) = 6.64 min, t_R (major) = 8.82 min, t_R (meso) = 10.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 6H + 6H × 0.1), 7.19 – 7.12 (m, 4H + 4H × 0.1), 3.23 (dd, J = 9.1, 6.1 Hz, 2H × 0.1) 3.16 (dd, J = 9.6, 5.6 Hz, 2H), 2.09 – 1.98 (m, 2H), 1.97 – 1.91 (m, 2H × 0.1), 1.78 (m, 2H + 2H × 0.1), 0.81 – 0.71 (m, 6H + 6H × 0.1).

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 128.5 (two carbon overlapped), 127.5, 57.0, 27.8, 12.3.

HRMS (ESI) m/z calcd for C₁₈H₂₃S₂ [M + H]⁺ 303.1236, found: 303.1227.

The synthesis of 93

A mixture of corresponding thiosulfonates 1 (64.1 mg, 0.2 mmol, 1.0 equiv.) and 4methylphenylthiol (24.8 mg, 0.2 mmol, 1.0 equiv.) in EtOH (1.0 mL) was stirred at 50 °C for 6 hours in air. After the residue was dissolved in Et₂O, the solution was washed with brine and dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the product **93** (53.8 mg, 98%, 91% e.e.) as white solid.

(R)-1-(1-Phenylpropyl)-2-(p-tolyl)disulfane (93)

HPLC analysis: Chiralcel OJ (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, $\lambda = 214$ nm), t_R (minor) = 15.54 min, t_R (major) = 19.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 7.25 – 7.20 (m, 3H), 7.05 (d, J = 8.1 Hz, 2H), 3.79 (dd, J = 9.6, 5.6 Hz, 1H), 2.31 (s, 3H), 2.20 – 2.09 (m, 1H), 1.98 – 1.85 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.5, 136.9, 134.3, 129.7, 128.6, 128.4, 128.3, 127.6, 57.7, 28.0, 21.1, 12.4.

HRMS (ESI) m/z calcd for C₁₆H₁₉S₂ [M + H]⁺ 275.0923, found: 275.0918.

The synthesis of 94

In a round bottomed flask (10 mL) equipped with a stir bar, a solution of **89** (45.7 mg, 0.20 mmol, 1.0 equiv.) in CH₃CN (1.0 mL) was prepared, the solution was cooled to 0 °C. Aqueous 30% H₂O₂ (40.0 μ L, 0.4 mmol, 2.0 equiv.) and Me₃SiCl (17.6 μ L, 0.20 mmol, 1.0 equiv.) were added and the mixture was stirred at room temperature for 30 min. After disappearance of the sulfide, the reaction mixture was quenched by adding H₂O (10 mL), extracted with EtOAc (3 × 5 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = 20/1 ~ 3/1) to afford the product **94** (48.4 mg, 99%, d.r. = 2.8:1, 91% e.e. (major), 91% e.e. (minor)) as a white solid. The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

(((*R*)-1-Phenylpropyl)sulfinyl)benzene (94)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, λ =

214 nm), t_R (minor1) = 17.38 min, t_R (major2) = 18.84 min, t_R (minor2) = 20.04 min, t_R (major1) = 26.49 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 1H + 1H × 0.36), 7.32 – 7.13 (m, 7H + 5H × 0.36), 7.11 – 7.07 (m, 2H × 0.36), 6.94 – 6.88 (m, 2H), 6.88 – 6.84 (m, 2H × 0.36), 3.57 (m, 1H + 1H × 0.36), 2.50 – 2.39 (m, 1H), 2.39 – 2.29 (m, 1H × 0.36), 2.12 – 2.00 (m, 1H), 2.00 – 1.92 (m, 1H × 0.36), 1.03 (t, *J* = 7.4 Hz, 3H× 0.36), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃), (major), δ 142.3, 133.6, 131.0, 129.3, 128.5(3), 128.4(6), 128.0, 125.0, 75.0, 22.4, 11.6.

¹³C NMR (100 MHz, CDCl₃), (minor), δ 141.3, 132.2, 130.7, 129.4, 128.4, 128.3, 128.1, 124.8, 72.2, 21.4, 12.1.

HRMS (ESI) m/z calcd for C₁₅H₁₇OS [M + H]⁺ 245.0995, found: 245.0989.

The synthesis of 95

In a round-bottomed flask (10 mL) equipped with a stir bar, a solution of **89** (45.7 mg, 0.20 mmol, 1.0 equiv.) in CH₂Cl₂ (0.8 mL) was prepared. The solution was cooled to 0 °C. A solution of *m*-CPBA (purity: 85%, 162.4 mg, 0.8 mmol, 4.0 equiv.) in CH₂Cl₂ (4.0 mL) was added dropwise and the mixture was stirred at room temperature for 2 hours. After disappearance of the sulfide, the reaction mixture was quenched by adding H₂O (10 mL), extracted with EtOAc (3×5 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = $20/1 \sim 3/1$) to afford the product **95** (47.9 mg, 92%, 91% e.e.) as a white solid.

(*R*)-((1-Phenylpropyl)sulfonyl)benzene (95)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 214 nm), t_R (minor) = 7.96 min, t_R (major) = 9.88 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.48 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.19 (m, 3H), 7.09 (d, *J* = 7.4 Hz, 2H), 3.96 (dd, *J* = 11.5, 3.7 Hz, 1H), 2.56 – 2.41 (m, 1H), 2.24 – 2.08 (m, 1H), 0.87 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 137.5, 133.5, 132.2, 130.0, 129.1, 128.8, 128.7, 128.5, 73.2, 21.0, 11.6.

HRMS (ESI) m/z calcd for C₁₅H₁₇O₂S [M + H]⁺ 261.0944, found: 261.0938.

The synthesis of 96

96, 72%, d.r. = 2.5:1 92% e.e. (major), 90% e.e. (minor)

The sulfide **89** (45.7 mg, 0.20 mmol, 1.0 equiv.), (diacetoxyiodo)benzene (193.2 mg, 0.60 mmol, 3.0 equiv.) and ammonium carbamate (46.8 mg, 0.60 mmol, 3.0 equiv.) were added to a flask containing a stirrer bar. MeOH (1.0 mL) was added and the reaction was stirred at room temperature for 12 h. After disappearance of the sulfide, the reaction mixture was quenched by adding H₂O (10 mL), extracted with EtOAc ($3 \times 5 \text{ mL}$). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = 20/1 ~ 3/1) to afford the product **96** (37.3 mg, 72%, d.r. = 2.5:1, 92% e.e. (major), 90% e.e. (minor)) as a light yellow solid. The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

Imino(phenyl)((*R*)-1-phenylpropyl)- λ^6 -sulfanone (96)

HPLC analysis: Chiralcel OJ (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 214 nm), t_R (minor1) = 13.43 min, t_R (minor2) = 15.97 min, t_R (major2) = 18.22 min, t_R (major1) = 37.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 2H), 7.68 – 7.63 (m, 2H × 0.4), 7.59 – 7.54 (m, 1H), 7.52 – 7.48 (m, 1H × 0.4), 7.48 – 7.42 (m, 2H), 7.39 – 7.34 (m, 1H), 7.34 – 7.28 (m, 2H + 3H × 0.4), 7.26 – 7.20 (m, 2H + 2H × 0.4), 7.14 – 7.07 (m, 2H × 0.4), 4.04 (dd, *J* = 11.9, 3.6 Hz, 1H × 0.4), 3.92 (dd, *J* = 11.0, 4.3 Hz, 1H), 2.69 (s, 1H + 1H × 0.4), 2.51 – 2.39 (m, 1H × 0.4), 2.25 – 2.10 (m, 2H + 1H × 0.4), 0.82 (t, *J* = 7.4 Hz, 3H × 0.4), 0.78 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) (major), δ 139.3, 133.0, 132.0, 130.3, 129.4, 128.9, 128.6(0), 128.5(8), 75.2, 22.4, 11.6(5).

¹³C NMR (100 MHz, CDCl₃) (minor),δ 139.9, 132.8, 132.4, 130.2, 129.3, 129.0, 128.7, 128.4, 74.4, 21.2, 11.5(9).

HRMS (ESI) m/z calcd for C₁₅H₁₈ONS [M + H]⁺ 260.1104, found: 260.1096.

The synthesis of 97

A mixture of corresponding thiosulfonates **25** (79.3 mg, 0.2 mmol, 1.0 equiv.), morpholine (35.0 μ L, 0.4 mmol, 2.0 equiv.), CuI (5.73 mg, 0.03 mmol, 10 mol%) and 2,2'-bipyridine (bpy, 4.68 mg, 0.03 mmol, 10 mol%) in DMSO (1.0 mL) was stirred at 60 °C for 19 hours in air. After the residue was dissolved in Et₂O, the solution was washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the corresponding sulfenamides, which was directly used in the next step without further purification.

In a round-bottomed flask (10 mL) equipped with a stir bar, a solution of the crude sulfenamides obtained above in CH₂Cl₂ (0.6 mL) was prepared. The solution was cooled to 0 °C. A solution of *m*-CPBA (purity: 85%, 121.8 mg, 0.6 mmol, 3.0 equiv.) in CH₂Cl₂ (3.0 mL) was added dropwise and the mixture was stirred at room temperature for 3 hours. After disappearance of the sulfenamides, the reaction mixture was quenched by adding H₂O (10 mL), extracted with EtOAc (3×5 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = $20/1 \sim 3/1$) to afford the product **97** (38.7 mg, 56% for 2 steps, 92% e.e.) as a white solid.

(R)-4-((1-([1,1'-Biphenyl]-4-yl)propyl)sulfonyl)morpholine (97)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 10.04 min, t_R (major) = 11.55 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.59 (m, 4H), 7.51 – 7.43 (m, 4H), 7.40 – 7.35 (m, 1H), 4.00 (dd, J = 11.2, 3.9 Hz, 1H), 3.60 – 3.52 (m, 2H), 3.52 – 3.45 (m, 2H), 3.14 – 3.05 (m, 2H), 2.89 – 2.78 (m, 2H), 2.50 – 2.38 (m, 1H), 2.25 – 2.11 (m, 1H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 140.1, 132.1, 130.1, 129.0, 127.9, 127.5, 127.1, 69.7, 66.9, 46.3, 23.5, 11.5.

HRMS (ESI) calcd for $C_{19}H_{23}NNaO_3S [M + Na]^+ 368.1291$, found: 368.1280.

To a stirred solution of thiosulfonate **37** (37.2 mg, 0.1 mmol, 1.0 equiv.) in acetonitrile (1.0 mL) and water (0.1 mL), Selectfluor (159.5 mg, 0.45 mmol, 4.5 equiv.) was added and the resulting mixture was heated at 81 °C for 2 hours. The reaction was monitored via TLC. After the thiosulfonate disappeared from the TLC, water (10 mL) was added and the resulting mixture was extracted with EtOAc (3×5 mL). The extract was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = $10/1 \sim 4/1$) to afford the product **98** (24.2 mg, 96%, 93% e.e.) as a yellow oil.

(R)-1-(Quinolin-3-yl)propane-1-sulfonyl fluoride (98)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 214 nm), t_R (major) = 34.80 min, t_R (minor) =37.90 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 2.4 Hz, 1H), 8.28 (d, J = 2.3 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.85 – 7.75 (m, 1H), 7.67 – 7.58 (m, 1H), 4.60 (dd, J = 10.7, 4.6 Hz, 1H), 2.71 – 2.56 (m, 1H), 2.50 – 2.34 (m, 1H), 1.02 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.6, 148.7, 137.0, 131.0, 129.5, 128.2, 127.8, 127.6, 123.4, 67.4 (d, *J* = 13.3 Hz), 23.6, 11.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 46.44.

HRMS (ESI) calcd for $C_{12}H_{13}O_2NFS [M + H]^+ 254.0646$, found: 254.0639.

The synthesis of 99

In a round-bottomed flask (10 mL) equipped with a stir bar, a solution of the **62** (42.6 mg, 0.1 mmol, 1.0 equiv.) in MeOH (2.0 mL) was prepared. The solution was cooled to 0 °C. NaBH₄ (18.9 mg, 0.5 mmol, 5.0 equiv.) was added and the mixture was stirred at room temperature for 4 hours. the reaction mixture was quenched by adding 3N HCl (aq.) and concentrated. The residue was purified by column chromatography on silica

gel (petroleum ether /CH₂Cl₂ = $5/1 \sim 1/1$) to afford the product **99** (29.6 mg, 92%, 95% e.e.) as a white solid.

(R)-2-Mercapto-N-(naphthalen-1-yl)-2-phenylbutanamide (99)

HPLC analysis: Chiralcel AS-H (*n*-Hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, λ = 214 nm), t_R (major) = 12.60 min, t_R (minor) = 15.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.92 – 7.78 (m, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 7.7 Hz, 3H), 7.53 – 7.45 (m, 3H), 7.45 – 7.40 (m, 2H), 7.38 – 7.33 (m, 1H), 2.65 (s, 1H), 2.62 – 2.52 (m, 1H), 2.52 – 2.42 (m, 1H), 1.07 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 141.7, 134.2, 132.3, 129.1, 129.0, 128.2, 126.9, 126.8, 126.5, 126.1, 125.9, 125.7, 120.3, 119.6, 61.6, 34.8, 9.9.

HRMS (ESI) m/z calcd for C₂₀H₂₀ONS [M + H]⁺ 322.1260, found: 322.1253.

The synthesis of 100' and 100

To a mixture of copper(II) sulfate (3.2 mg, 0.02 mmol, 10 mol%) and sodium bicarbonate (33.6 mg, 0.4 mmol, 2.0 equiv.) was added a solution of corresponding 39 0.2 thiosulfonates (79.3)mg, mmol, 1.0 equiv.) and (4-(methoxycarbonyl)phenyl)boronic acid (54.0 mg, 0.3 mmol, 1.5 equiv.) dissolved in methanol (1.0 mL) at room temperature. After stirring for 16 hours at the same temperature, the mixture was passed through a short pad of silica gel with EtOAc and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = $100/1 \sim 60/1$) to give product 100' (74.2 mg, 95%) as a colorless oil.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **100'** (46.9 mg, 0.12 mmol, 1.0 equiv.) dissolved in anhydrous THF (1.2 mL) cooled to -78 °C, Then, tetrabutylammonium fluoride (0.13 mL, 1.0 M in THF, 0.13 mmol, 1.1 equiv.) diluted in anhydrous THF (1.2 mL) were sequentially added into the mixture and the reaction mixture was stirred at -15 °C for 10 min. Upon completion (monitored by TLC), water (10 mL) was added and the resulting mixture was extracted with EtOAc (3 × 5 mL). The extract was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = 60/1 ~ 20/1) to afford the product **100** (27.8 mg, 99%, 90% e.e.) as a colorless oil.

Methyl (S)-4-((1-(triisopropylsilyl)pent-1-yn-3-yl)thio)benzoate (100')

 $\frac{\mathsf{Et}}{\mathsf{S}}$

TIPS[^]

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.89 (m, 2H), 7.53 – 7.46 (m, 2H), 3.96 (dd, J = 7.9, 5.6 Hz, 1H), 3.90 (s, 3H), 1.95 – 1.77 (m, 2H), 1.16 (t, J = 7.3 Hz, 3H), 1.04 – 0.97 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.1, 129.9, 129.5, 128.0, 106.5, 85.7, 52.2, 39.7, 28.5, 18.7, 11.8, 11.3.

HRMS (ESI) m/z calcd for C₂₂H₃₄NaO₂SSi [M + Na]⁺ 413.1941, found: 413.1949.

Methyl (S)-4-(pent-1-yn-3-ylthio)benzoate (100)

HPLC analysis: Chiralcel OD-H (*n*-Hexane/*i*-PrOH = 98/2, flow rate 0.8 mL/min, λ = 230 nm), t_R (minor) = 12.12 min, t_R (major) = 14.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 3.91 (s, 3H), 3.89 – 3.86 (m, 1H), 2.37 (d, *J* = 2.4 Hz, 1H), 1.93 – 1.81 (m, 2H), 1.15 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 141.5, 130.0, 129.5, 128.2, 83.0, 72.7, 52.3, 38.6, 28.2, 11.7.

HRMS (ESI) m/z calcd for C₁₃H₁₅O₂S [M + H]⁺ 235.0787, found: 235.0787.

The synthesis of 101

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with S5 (54.0 mg, 0.24 mmol, 1.2 equiv.), Cu(MeCN)4BF4 (6.28 mg, 0.02 mmol, 10 mol%), L*5 (15.6 mg, 0.02 mmol, 10 mol%) and Cs₂CO₃ (260 mg, 0.80 mmol, 4.0 equiv.), Then, E79 (72.2 mg, 0.20 mmol, 1.0 equiv.) and MTBE/DMF (v/v = 10/1, 2.2 mL) were sequentially added into the mixture and the reaction mixture was stirred at -15 or -30 °C. Upon completion (monitored by TLC), the precipitate was filtered off and washed by CH₂Cl₂ and EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = $20/1 \sim 5/1$) to afford the desired product 101 as a white solid

(86.6 mg, 95% yield, d.r. = 8:1). The diastereomeric ratio was determined by crude 1 H NMR spectroscopy.

Note: The substrates **E79** were known compounds and synthesized according to reported literature⁶, the diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

(8*R*,9*S*,13*S*,14*S*)-3-(1-bromoethyl)-13-methyl-6,7,8,9,11,12,13,14,15,16 decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (E79)

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 2H), 7.17 (s, 1H), 5.28 – 5.09 (m, 1H), 2.98 – 2.87 (m, 2H), 2.56 – 2.46 (m, 1H), 2.45 – 2.38 (m, 1H), 2.33 – 2.24 (m, 1H), 2.22 – 2.09 (m, 2H), 2.07 – 2.01 (m, 4H), 1.99 – 1.93 (m, 1H), 1.69 – 1.60 (m, 2H), 1.56 – 1.38 (m, 4H), 0.90 (s, 3H).

3,5-

S-((*R*)-1-((8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-3-yl)ethyl) dimethylbenzenesulfonothioate (101)

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.16 – 7.10 (m, 2H), 6.97 – 6.91 (m, 1H), 6.88 – 6.82 (m, 1H), 4.63 – 4.54 (m, 1H), 2.85 – 2.74 (m, 2H), 2.55 – 2.46 (m, 1H), 2.41 – 2.34 (m, 1H), 2.31 (s, 6H), 2.25 – 1.93 (m, 6H), 1.66 (d, *J* = 7.2 Hz, 3H), 1.60 – 1.41 (m, 5H), 0.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 220.7, 145.0 139.4, 139.0, 137.8, 136.8, 134.9, 127.8, 125.6, 124.5, 124.4, 124.4, 50.6, 50.5, 48.0, 44.4, 38.1, 35.9, 31.6, 29.3, 26.5, 25.6, 22.8, 21.6, 21.3, 13.9.

HRMS (ESI) m/z calcd. for C₂₈H₃₄NaO₃S₂ [M + Na]⁺ 505.1842, found: 505.1837.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles **E80** (41.7 mg, 0.1 mmol, 1.0 equiv.), Cu(PPh₃)₃CF₃ (9.24 mg, 0.010 mmol, 10 mol%), **L*16** (8.44 mg, 0.015 mmol, 15 mol%), **S1** (0.15 mmol, 1.5 equiv.) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, EtOAc (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at -10 °C for 3 days. The precipitate was filtered off and washed by CH₂Cl₂ and EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 200/1 ~ 30/1) to afford the desired product **102** as a light yellow oli (41.7 mg, 80% yield, 81% e.e.).

2-(Diethylamino)ethyl 4-(2-chloro-2-phenylbutanamido)benzoate (E80)

¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.04 – 7.92 (m, 2H), 7.72 – 7.62 (m, 2H), 7.62 – 7.54 (m, 2H), 7.43 – 7.29 (m, 3H), 4.73 (t, *J* = 5.4 Hz, 2H), 3.38 (t, *J* = 5.4 Hz, 2H), 3.15 (q, *J* = 7.3 Hz, 4H), 2.70 – 2.55 (m, 1H), 2.49 – 2.35 (m, 1H), 1.35 (t, *J* = 7.3 Hz, 6H), 1.04 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.2, 141.8, 139.6, 130.8, 128.6, 128.5, 126.2, 124.9, 119.3, 79.0, 59.5, 49.9, 47.4, 34.8, 9.3, 9.1.

HRMS (ESI) m/z calcd. for C₂₃H₃₀ClN₂O₃ [M + H]⁺ 417.1939, found: 417.1944.

2-(Diethylamino)ethyl (R)-4-(2-(benzoylthio)-2-phenylbutanamido)benzoate (102)

HPLC analysis: Chiralcel ADH (*n*-Hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (minor) = 17.06 min, *t*_R (major) = 23.40 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.05 – 7.91 (m, 4H), 7.66 – 7.56 (m, 3H), 7.51 – 7.42 (m, 4H), 7.40 – 7.31 (m, 3H), 4.39 (t, *J* = 6.2 Hz, 2H), 2.88 (t, *J* = 6.2 Hz, 2H), 2.66 (q, *J* = 7.1 Hz, 4H), 2.50 – 2.40 (m, 1H), 2.34 – 2.25 (m, 1H), 1.08 (t, *J* = 7.1 Hz, 6H), 0.87 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.7, 170.3, 166.2, 142.6, 137.6, 136.7, 134.4, 130.9, 129.0, 128.7, 128.1, 127.7, 127.3, 125.6, 119.1, 66.0, 63.1, 51.0, 47.9, 32.7, 12.0, 9.3. HRMS (ESI) *m/z* calcd. for C₃₀H₃₅N₂O₄S [M + H]⁺ 519.2312, found: 519.2296.

10. Mechanistic studies

The synthesis of copper(I) 3,5-dimethylbenzenesulfonothioate 103

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate **S5** (67.8 mg, 0.3 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (0.3 mmol, 1.0 eq.). Then, toluene (1.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 5 hours, the toluene was evaporated under vacuum to afford analytically pure **103** (~90% yield) as a light yellow solid.

Bis(acetonitrile)tri(copper) tri(3,5-dimethylbenzenesulfonothioate) (103)

 $Cu_3(MeCN)_2(ArSSO_2)_3$ $(Ar = 3,5-Me_2Ph)$

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.48 (s, 6H), 7.14 (s, 3H), 2.31 (s, 18H), 2.07 (s, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 150.8, 137.6, 132.1, 122.4, 117.9, 20.6, 0.9. **HRMS** (ESI) *m*/*z* calcd for C₂₄H₂₇Cu₃NaO₆S₆ [M – 2MeCN + Na]⁺ 816.7894, found: 816.7871.

The effects of the ligand and copper 3,5-dimethylbenzenesulfonothioate 103 on the reaction initiation and product formation

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **103** (17.5 mg, 0.02 mmol, 0.4 eq.), L*5 (46.8 mg, 0.06 mmol, 1.2 eq.), Cs₂CO₃ (65.0 mg, 0.20 mmol, 4.0 eq.), Then, 4-(1-bromopropyl)-1,1'-biphenyl **E22** (13.8 mg, 0.05 mmol, 1.0 eq.) and toluene/DMF (v/v = 10/1, 0.55 mL) were sequentially added into the mixture and the reaction mixture was stirred at – 15 °C for 3.5 days. Upon completion, the reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethybenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of **25** was determined by HPLC analysis.

The procedure for the reaction without L*5 was the same with that described above except that L*5 was not added. There was no conversion of E22.

The effects of sodium 3,5-dimethylbenzenesulfonothioate S5 on the reaction initiation and product formation

According to the **general procedure A** with 4-(1-bromopropyl)-1,1'-biphenyl **E22** (55.0 mg, 0.20 mmol, 1.0 eq.) and sodium 3,5-dimethylbenzenesulfonothioate **S5** (54.0 mg, 0.24 mmol, 1.2 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = $60/1 \sim 20/1$) to yield the product **25** as a colorless oil (69.8 mg, 88% yield, 92% e.e.).

The procedure for the reaction without S5 was the same with that described above except that L*5 was not added. There was no conversion of E22.

The stereochemistry of benzyl halide and product during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with S5 (0.0.6 mmol, 1.2 eq.), Cu(MeCN)₄BF₄ (1.57 mg, 0.005 mmol, 10 mol%), L*5 (3.9 mg, 0.005 mmol, 10 mol%) and Cs₂CO₃ (65 mg, 0.20 mmol, 4.0 eq.), Then, E1 (0.05 mmol, 1.0 eq.) and toluene/DMF (v/v = 10/1, 0.55 mL) were sequentially added into the mixture and the reaction mixture was stirred at -15 °C for appropriate time. Upon completion, the reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethylbenzene as an internal standard. The product was then separated by HPLC analysis.

No apparent enantioenrichment of the recovered alkyl bromide E1 was observed under typical conditions, disfavoring a possible kinetic resolution of E1, and therefore ruling out the typical S_N2 -type substitution pathway. Moreover, the observed e.e. values of the product 1 remained nearly constant at different time intervals, favoring the involvement of a uniform mechanism throughout the reaction course.

Radical trap experiments

According to the **general procedure A** with 4-(1-bromopropyl)-1,1'-biphenyl **E22** (55.0 mg, 0.20 mmol, 1.0 eq.), sodium 3,5-dimethylbenzenesulfonothioate **S5** (54.0 mg, 0.24 mmol, 1.2 eq.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 62.5 mg, 0.40 mmol, 2.0 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1) to yield the TEMPO-trapped products **104** as a white solid (30.5 mg, 43% yield).

1-(1-([1,1'-Biphenyl]-4-yl)propoxy)-2,2,6,6-tetramethylpiperidine (104)

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.8 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.36 – 7.28 (m, 3H), 4.59 (dd, J = 9.5, 3.8 Hz, 1H), 2.19 – 2.07 (m, 1H), 1.91 – 1.77 (m, 1H), 1.49 (s, 3H), 1.41 – 1.14 (m, 10H), 1.03 (s, 3H), 0.71 (t, J = 7.4 Hz, 3H), 0.65 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.8, 141.2, 139.6, 128.8, 128.3, 127.2, 127.1, 126.6, 88.5, 60.0 – 59.7 (m, 1C), 40.6, 34.5 – 34.3 (m, 1C), 28.9, 20.7 – 20.5 (m, 1C), 17.4, 9.9.

Note: **104** is a known compound⁹.

According to the **general procedure A** with 4-(1-bromopropyl)-1,1'-biphenyl **E22** (55.0 mg, 0.20 mmol, 1.0 eq.), sodium 3,5-dimethylbenzenesulfonothioate **S5** (54.0 mg, 0.24 mmol, 1.2 eq.) and 2,6-di-*tert*-butyl-4-methylphenol (BHT, 88.1 mg, 0.40 mmol, 2.0 eq.) run at -15 °C for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1) to yield the BHT-trapped products **115** as a colorless oil (58.7 mg, 71% yield).

4-(1-([1,1'-Biphenyl]-4-yl)propyl)-2,6-di-*tert*-butyl-4-methylcyclohexa-2,5-dien-1one (115)

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 6.59 (s, 1H), 6.44 (s, 1H), 2.67 – 2.60 (m, 1H), 1.83 – 1.72 (m, 1H), 1.64 – 1.52 (m, 1H), 1.28 (s, 9H), 1.15 (s, 3H), 1.12 (s, 9H), 0.72 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 186.5, 147.1, 146.1, 145.8, 145.4, 141.0, 139.7, 139.4, 129.7, 128.8, 127.2, 127.1, 126.6, 57.8, 43.1, 35.0, 34.8, 29.6, 29.5, 25.5, 22.9, 13.1. HRMS (ESI) *m/z* calcd for C₃₀H₃₉O [M + H]⁺ 415.2995, found: 415.2992.

Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate **S5** (54.0 mg, 0.24 mmol, 1.2 eq.), Cu(MeCN)₄BF₄ (6.28 mg, 0.02 mmol, 10 mol%), L*5 (15.6 mg, 0.02 mmol, 10 mol%) and Cs₂CO₃ (260 mg, 0.80 mmol, 4.0 eq.), Then, (*Z*)-(6-bromohex-1-ene-1,6-diyl)dibenzene **E78** and toluene/DMF (v/v = 10/1, 2.2 mL) were

sequentially added into the mixture and the reaction mixture was stirred at -15 °C for 5 days. The precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography (petroleum ether/EtOAc = $60/1 \sim 20/1$) on silica gel to afford the desired product **105** as a colorless oil (18.2 mg, 21% yield) and the radical clock product **106** was then separated by preparative TLC (*n*-Hexane/EtOAc = 20/1) as a colorless oil (26.0 mg, 30% yield, d.r. = 5:2:1). The diastereomeric ratio was determined by crude ¹H NMR spectroscopy.

(R,Z)-S-1,6-Diphenylhex-5-en-1-yl) 3,5-dimethylbenzenesulfonothioate (105)

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.6 Hz, 2H), 7.25 – 7.17 (m, 3H), 7.16 – 7.12 (m, 5H), 7.09 – 7.05 (m, 2H), 7.03 (s, 1H), 6.39 (d, J = 11.6 Hz, 1H), 5.50 (dt, J = 11.7, 7.2 Hz, 1H), 4.46 (dd, J = 9.0, 6.5 Hz, 1H), 2.35 – 2.24 (m, 2H), 2.22 (s, 6H), 2.01 – 1.81 (m, 2H), 1.51 – 1.40 (m, 1H), 1.39 – 1.28 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.5, 138.9, 137.5, 134.8, 131.8, 129.6, 128.8, 128.4, 128.3, 127.8 (two carbon overlapped), 126.7, 124.3, 55.9, 36.0, 28.0, 27.6, 21.2.
HRMS (ESI) *m/z* calcd for C₂₆H₂₈NaO₂S₂ [M + Na]⁺ 459.1423, found: 459.1422.

S-(Phenyl(2-phenylcyclopentyl)methyl) 3,5-dimethylbenzenesulfonothioate (106)

d.r. = 5 : 2 : 1

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.10 (m, 6.4H), 7.04 – 6.91 (m, 12.4H), 6.77 – 6.69 (m, 1H), 6.64 – 6.54 (m, 1H), 4.50 (d, J = 5.9 Hz, 1H), 4.47 – 4.44 (m, 0.2H), 4.04 (d, J = 11.8 Hz, 0.4H), 2.92 (q, J = 8.9 Hz, 1H), 2.87 – 2.82 (m, 0.2H), 2.79 – 2.65 (m, 0.4H), 2.53 (t, J = 7.7 Hz, 0.4H), 2.46 – 2.35 (m, 1.2H), 2.23 (s, 1.2H), 2.21 (s, 2.4H), 2.15 (s, 6H), 2.11 – 2.03 (m, 1.4H), 2.01 – 1.91 (m, 1.8H), 1.82 – 1.55 (m, 6.4H). ¹³**C NMR** (100 MHz, CDCl₃) (major 1) δ 145.1, 144.6, 139.9, 138.6(8), 134.6, 128.5, 128.2, 127.9, 127.5, 127.2, 126.2, 124.3, 59.8, 54.5, 49.8, 35.6, 30.3, 24.7, 21.1. ¹³**C NMR** (100 MHz, CDCl₃) (major 2) δ 145.1, 143.2, 139.6(6), 138.7(4), 134.8, 129.2, 128.2, 128.1, 127.8, 127.4, 126.3, 124.4, 58.6, 49.6, 47.9, 34.8, 31.1, 29.8, 23.9, 21.2. ¹³C NMR (100 MHz, CDCl₃) (minor) δ 145.2, 142.5, 139.6(7), 138.9, 129.0, 128.8, 128.4(2), 128.3(8), 127.7, 125.8, 124.3, 124.2, 56.1, 36.4, 35.8, 31.2, 29.5, 28.7, 27.2. HRMS (ESI) *m/z* calcd for C₂₆H₂₈NaO₂S₂ [M + Na]⁺ 459.1423, found: 459.1422.

Radical trap experiments for the propargyl reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate **S6** (47.2mg, 0.24 mmol, 1.2 equiv.), CuI (2.86 mg, 0.015 mmol, 7.5 mol%), L*12 (8.47 mg, 0.012 mmol, 6 mol%), Rb₂CO₃ (92.8 mg, 0.40 mmol, 2.0 equiv.) and the corresponding trapping reagents (2.0 equiv.), Then, propargyl halide (0.20 mmol, 1.0 equiv.), H₂O (7.2 μ L, 0.40 mmol, 2.0 equiv.) and CHCl₃ (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at –20 °C. Upon completion (monitored by TLC), the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100/1 ~ 50/1) to afford the desired product **39**.

Note: When TEMPO was used as trapping reagent, the coupling was completely inhibited. When BHT was used as trapping reagent, the residue was purified by preparative TLC (*n*-Hexane/Et₂O = 60/1) to afford the BHT-trapped products **116** as colorless oil (44.3 mg, 50% yield).

2,6-Di*-tert*-butyl-4-methyl-4-(1-(triisopropylsilyl)pent-1-yn-3-yl)cyclohexa-2,5dien-1-one (116)

¹**H NMR** (400 MHz, CDCl₃) δ 6.82 (d, J = 2.9 Hz, 1H), 6.36 (d, J = 2.9 Hz, 1H), 2.41 (dd, J = 11.0, 3.8 Hz, 1H), 1.35 (s, 3H), 1.25 – 1.20 (m, 19H), 1.13 – 1.07 (m, 22H), 0.98 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 186.6, 147.3(4), 147.3(1), 145.9, 144.3, 108.1, 85.1, 45.3, 42.5, 35.0, 34.9, 29.7, 26.2, 24.1, 18.8, 12.8, 11.4. HRMS (ESI) *m/z* calcd for C₂₉H₅₁OSi [M + H]⁺ 443.3704, found: 443.3699.

The synthesis of copper(I) thiocarboxylate 117

Potassium benzothioate S1 (123.4 mg, 0.7 mmol, 1.0 eq.) in 1.0 mL of water was added a suspension of CuCl (69.3 mg, 0.7 mmol, 1.0 eq.) in 2.0 mL of CH₂Cl₂ containing triphenylphosphine (367.2 mg, 1.4 mmol, 2.0 eq.). The reddish CH₂Cl₂ layer was separated and layered with Et₂O. Greenish yellow solid were filtered off, washed with Et₂O, and dried under vacuum to afford the product **117** as greenish yellow solid (~80% yield).

Note: The **117** is a known compound and synthesized according to reported literature¹³.

Bis(triphenylphosphine)copper(I) thiocarboxylate (117)

PhC(O)SCu(PPh₃)₂

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2H), 7.40 – 7.30 (m, 14H), 7.29 – 7.25 (m, 5H), 7.21 – 7.13 (m, 14H).
³¹P NMR (162 MHz, CDCl₃) δ –1.83.

Note: **117** is a known compound and NMR spectra match with the literature report¹³.

The effect of ligand and copper(I) thiocarboxylates 117 for the tertiary reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles **E60** (16.2 mg, 0.05 mmol, 1.0 equiv.), PhC(O)SCu(PPh₃)₂ (54.4 mg, 0.075 mmol, 1.5 equiv.), **L*16** (42.2 mg, 0.075 mmol, 1.5 equiv) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, Et₂O (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at -10 °C for 3 days. Upon completion, the reaction was quenched with H₂O and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethylbenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of **62** was determined by HPLC analysis.

The procedure for the reaction without L*16 was the same with that described above

except that L*16 was not added. The racemic product 62 was obtained in high yield, which indicated that there was a strong background reaction without chiral ligand L*16. While combination L*16 and copper(I) thiocarboxylates effectively tuned reactivity and enantioselectivity of this reaction.

Radical clock experiments for the tertiary reaction

Note: The substrate **118** was a known compound and synthesized according to reported literature¹⁴, and **119** was commercially available.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with *N*,2-diphenylacrylamide **118** (0.1 mmol, 1.0 equiv.), potassium benzothioate **S1** (0.15 mmol, 1.5 equiv.), Cu(PPh₃)₃CF₃ (9.24 mg, 0.010 mmol, 10 mol%), L*16 (8.44 mg, 0.015 mmol, 15 mol%) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). Then, *tert*-butyl 2-bromo-2-methylpropanoate **119** (22.4 μ L, 0.12 mmol, 1.2 equiv.) and Et₂O (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 3 days. The precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50/1 ~ 10/1) to afford the desired product **120** as cloroless oil (12.6 mg, 25% yield, 84% e.e.).

N,2-Diphenylacrylamide (118)

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.47 – 7.37 (m, 6H), 7.30 (t, J = 7.8 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.26 (s, 1H), 5.71 (s, 1H).

Tert-butyl (phenylamino)pentanoate (120)

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 15.54 min, t_R (minor) = 17.50 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.96 (d, J = 7.8 Hz, 2H), 7.63 – 7.55 (m, 3H), 7.49 – 7.41 (m, 4H), 7.35 – 7.25 (m, 5H), 7.06 (t, J = 7.4 Hz, 1H), 3.07 (d, J = 15.2 Hz, 1H), 2.96 (d, J = 15.2 Hz, 1H), 1.36 (s, 9H), 1.21 (s, 3H), 1.00 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.2, 176.9, 169.8, 139.9, 138.3, 136.9, 134.2, 129.0, 128.8, 128.7, 128.0, 127.8, 127.5, 124.3, 120.2, 80.2, 64.7, 46.9, 43.0, 28.0, 27.7, 26.7. HRMS (ESI) *m/z* calcd for C₃₀H₃₄NO₄S [M + H]⁺ 504.2203, found: 504.2198.

11. X-ray crystallography

Supplementary Fig. 5' | The X-ray structure of 1 (CCDC 2212974, 50% probability ellipsoids).

	1				
Empirical formula	$C_{17}H_{20}O_2S_2$				
Formula weight	320.45				
Temperature/K	100.0				
Crystal system	orthorhombic				
Space group	$P2_{1}2_{1}2_{1}$				
a/Å	8.676(4)				
b/Å	10.434(6)				
c/Å	17.758(6)				
$lpha/^{\circ}$	90				
β/°	90				
$\gamma/^{\circ}$	90				
Volume/Å ³	1607.6(13)				
Ζ	4				
$ ho_{calc}g/cm^3$	1.324				
μ/mm^{-1}	3.008				
F(000)	680.0				
Crystal size/mm ³	0.1 imes 0.1 imes 0.1				
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)				
2Θ range for data collection/°	13.272 to 136.93				
Index ranges	$-10 \leq h \leq 10, -10 \leq k \leq 12, -14 \leq l \leq 21$				
Reflections collected	10708				
Independent reflections	2911 [$R_{int} = 0.0326, R_{sigma} = 0.0315$]				
Data/restraints/parameters	2911/0/193				
Goodness-of-fit on F ²	1.079				
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0232, wR_2 = 0.0589$				
Final R indexes [all data]	$R_1 = 0.0236, wR_2 = 0.0590$				
Largest diff. peak/hole / e Å ⁻³	0.34/-0.27				
Flack parameter	0.034(6)				

Supplementary Table 9 | Crystal data and structure refinement for Compound 1.

Supplementary Fig. 6' | The X-ray structure of 52 (CCDC 2213037, 50% probability ellipsoids).

Empirical formula	$C_{16}H_{24}O_2S_2Si$		
Formula weight	340.56		
Temperature/K	200.0(2)		
Crystal system	triclinic		
Space group	P_1		
a/Å	9.4425(3)		
b/Å	10.3552(4)		
c/Å	10.7218(4)		
$lpha/^{\circ}$	91.4010(10)		
β/°	92.7930(10)		
$\gamma/^{\circ}$	111.4310(10)		
Volume/Å ³	973.71(6)		
Ζ	2		
$ ho_{calc}g/cm^3$	1.162		
μ/mm^{-1}	0.336		
F(000)	364.0		
Crystal size/mm ³	$0.34 \times 0.29 \times 0.28$		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.644 to 56.706		
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -14 \le l \le 14$		
Reflections collected	38244		
Independent reflections	9568 [$R_{int} = 0.0487, R_{sigma} = 0.0353$]		
Data/restraints/parameters	9568/3/391		
Goodness-of-fit on F ²	1.050		
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0449, wR_2 = 0.1225$		
Final R indexes [all data]	$R_1 = 0.0517, wR_2 = 0.1264$		
Largest diff. peak/hole / e Å ⁻³	0.44/-0.35		
Flack parameter	-0.01(3)		

Supplementary Table 10 | Crystal data and structure refinement for Compound 52.

Supplementary Fig. 7' | The X-ray structure of 83 (CCDC 2213038, 50% probability ellipsoids).

Empirical formula	$C_{27}H_{22}CINO_2S$			
Formula weight	459.96			
Temperature/K	100.0(2)			
Crystal system	monoclinic			
Space group	$P2_1$			
a/Å	11.6349(7)			
b/Å	9.8818(6)			
c/Å	19.6807(11)			
$\alpha/^{\circ}$	90			
β/°	92.263(3)			
γ/°	90			
Volume/Å ³	2261.0(2)			
Ζ	4			
$\rho_{calc}g/cm^3$	1.351			
μ/mm^{-1}	1.682			
F(000)	960.0			
Crystal size/mm ³	$0.28\times0.03\times0.03$			
Radiation	GaKa ($\lambda = 1.34139$)			
2Θ range for data collection/°	3.908 to 114.118			
Index ranges	$-14 \le h \le 14, -12 \le k \le 12, -24 \le l \le 24$			
Reflections collected	49135			
Independent reflections	9250 [$R_{int} = 0.0759, R_{sigma} = 0.0501$]			
Data/restraints/parameters	9250/3/585			
Goodness-of-fit on F ²	1.141			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0697, wR_2 = 0.1826$			
Final R indexes [all data]	$R_1 = 0.0729, wR_2 = 0.1859$			
Largest diff. peak/hole / e Å ⁻³	0.32/-0.72			
Flack parameter	-0.02(2)			

Supplementary Table 11 | Crystal data and structure refinement for Compound 83.

12. Computational studies

12.1. Computational Details

All density functional theory (DFT) calculation results are obtained with Gaussian 16 program¹⁵. Default SCF convergence criteria, optimization convergence criteria and integral grid parameters for Gaussian 16 are applied unless otherwise stated. (5d,7f) keyword in Gaussian 16 was used. Geometry optimizations are conducted with B3LYP functional^{16,17}, employing the D3 version of Grimme's dispersion corrections¹⁸ with Becke-Johnson damping¹⁹. LANL2DZ basis set²⁰⁻²³ is used for copper and 6-31G(d) basis set is used for all other light atoms. Single-point energies and solvent effects at toluene and diethyl ether are also evaluated with B3LYP functional with Grimme's dispersion corrections and Becke-Johnson damping. SDD basis set^{20,24-27} is used for copper and 6-311+G(d,p) basis set is used for all other light atoms. The solvation energies are calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model²⁸. Frequency analysis is also performed at the same level of theory as geometry optimization using harmonic oscillator model to confirm whether optimized stationary points are either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Mulliken spin distribution is obtained at the same level of theory as geometry optimization.

In addition, geometry optimization, frequency analysis and single point energy of open-shell transition states and local minimums are calculated with unrestricted DFT methods, while same computations for closed-shell structures are performed with restricted DFT methods. Wavefunction stability test at the same level of theory as geometry optimizations is employed to ensure that the SCF converged wavefunction is stable.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 mol/L), a correction of $RT\ln(c_s/c_g)$ is added to energies of all species. c_s stands for the standard molar concentration in solution (1 mol/L), c_g stands for the standard molar concentration in gas phase (about 0.040876 mol/L), and R is the gas constant. For calculated intermediates at the standard state of 1 mol/L at 298.15 K, the correction value equaling to 1.89 kcal/mol is used.

The 3D diagrams of optimized structures shown in this supplementary information for computations are generated with CYLview software²⁹. Cartesian coordinates of computed species are included in the Computational Archives.

12.2. Discussion on Cu-Mediated C–S Bonding Mechanism of Secondary Benzyl Radical and Benzothioate

Supplementary Fig. 10 | DFT exploration of C–S bond formation pathways with L5Cu(II)(benzoylthiolate) species Int-S1 and secondary benzyl radical Int-S2. Free energies in kcal/mol are shown in parentheses, which are compared to Int-S1 and Int-S2.

DFT calculations in model systems are performed to study Cu-mediated C–S bond formation pathway for secondary benzyl radical and benzothioate. Simplified achiral N,N,P-ligand based on L*5 is used for calculations in this section.

The proposed C–S bond formation pathways between L5Cu(II)(benzoylthiolate) species Int-S1 and secondary benzyl radical Int-S2 include three major possibilities: sequential SET and ion-type C–S bonding (path A in Supplementary Fig. 10), outer-sphere radical-substitution-type C–S bond formation via TS-S4 (path B in Supplementary Fig. 10), and reductive elimination via TS-S4-RE (path C in Supplementary Fig. 10).

Supplementary Fig. 11 | **Proposed closed-shell structure of pre-intermediate iontype C–S bond formation and further geometry optimization results.** Trivial hydrogen atoms are omitted for clarity.

Regarding path A, the ion-type C–S bonding, the transition state cannot be located after extensive efforts. The structure of the pre-intermediate prior to the proposed ion-type C–S bonding transition state, **Proposed TS-S4-CB-Pre**, has an RHF to UHF 'wavefunction' instability, indicating that such closed-shell singlet, zwitterionic intermediate does not exist at computed potential energy surface. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of **Proposed TS-S4-CB-Pre** leads to the open-shell singlet intermediate **Int-S3**-*OSS*, which is a VdW (van der Waals) complex of L5Cu(II)(benzoylthiolate) species **Int-S1** and secondary benzyl radical **Int-S2**, and also the pre-intermediate for the radical substitution C–S bond formation. Also, the Mulliken spin distribution indicates the open-shell singlet diradical nature of **Int-S3**-*OSS*. Based on these results, the ion-type C–S bonding pathway is not operative. (**Supplementary Fig. 11**)

Supplementary Fig. 12 | Located radical-substitution-type C–S bond formation transition state. Trivial hydrogen atoms are omitted for clarity.

Regarding path B, the radical-substitution-type C–S bonding, the transition state is located as **TS-S4**. The free energy barrier of C–S bond formation via **TS-S4** is 12.3 kcal/mol. The Mulliken spin distribution indicates the open-shell singlet nature of **TS-S4**. (Supplementary Fig. 12)

Supplementary Fig. 13 | **Located C–S reductive elimination transition state.** Trivial hydrogen atoms are omitted for clarity.

Regarding path C, C–S reductive elimination, the transition state is located as **TS-S4-RE**. This **TS-S4-RE** already has a stable wavefunction using RHF (restricted Hartree-Fock) calculation. This result illustrates that open-shell form of **TS-S4-RE** doesn't exist. The free energy barrier of C–S bond formation via **TS-S4-RE** is 17.3 kcal/mol, which is 5.0 kcal/mol unfavorable compared to radical-substitution-type C–S bond formation via **TS-S4. (Supplementary Fig. 13, Supplementary Table. 12)**

Based on the above calculations and discussions, Cu-mediated C–S bond formation for secondary benzyl radical and benzothioate via open-shell singlet radical substitution transition state **TS-S4** is the most favorable.

12.3. Discussion on Cu-Mediated C–S Bonding Mechanism of Tertiary Benzyl Radical and Benzothioate

Supplementary Fig. 14 | DFT exploration of C–S bond formation pathways with L16Cu(II)(benzoylthiolate) species Int-S6 and tertiary benzyl radical Int-S7. Free energies in kcal/mol are shown in parentheses, which are compared to Int-S6 and Int-S7.

DFT calculations in model systems are performed to study Cu-mediated C–S bond formation pathway for tertiary benzyl radical and benzothioate. Simplified achiral N,N,N-ligand based on L*16 is used for calculations in this section.

The proposed C–S bond formation pathways between L16Cu(II)(benzoylthiolate) species Int-S6 and tertiary benzyl radical Int-S7 include three major possibilities: sequential SET and ion-type C–S bonding (path A in Supplementary Fig. 14), outer-sphere radical-substitution-type C–S bond formation via TS-S9 (path B in Supplementary Fig. 14), and reductive elimination (path C in Supplementary Fig. 14).

Supplementary Fig. 15 | Optimized closed-shell structure of pre-intermediate iontype C–S bond formation and further geometry optimization results. Trivial hydrogen atoms are omitted for clarity.

Regarding path A, the ion-type C–S bonding, the transition state cannot be located after extensive efforts. The structure of the pre-intermediate prior to the proposed ion-type C–S bonding transition state can be located using restricted Hartree-Fock (RHF) calculation as **Optimized TS-S9-CB-Pre**. The sequential wavefunction test indicates that this **Optimized TS-S9-CB-Pre** has an RHF to UHF 'wavefunction' instability. Such closed-shell singlet, zwitterionic intermediate does not exist at computed potential energy surface. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of **Optimized TS-S9-CB-Pre** leads to the open-shell singlet intermediate **Int-S8**-*OSS*, which is a VdW (van der Waals) complex of **L16**Cu(II)(benzoylthio) species **Int-S6** and tertiary benzyl radical **Int-S7**, and also the pre-intermediate for the radical substitution C–S bond formation. Mulliken spin distribution indicates the open-shell singlet diradical nature of **Int-S8**-*OSS*. Based on these results, the ion-type C–S bonding pathway is not operative. (**Supplementary Fig. 15**)

Supplementary Fig. 16 | Located radical-substitution-type C–S bond formation transition state. Trivial hydrogen atoms are omitted for clarity.

Regarding path B, the radical-substitution-type C–S bonding, the transition state is located as **TS-S9**. The free energy barrier of C–S bond formation via **TS-S4** is 13.9 kcal/mol compared to the favored VdW complex **Int-S8**-*Triplet*. The Mulliken spin distribution indicates the open-shell singlet nature of **TS-S9**. (**Supplementary Fig. 16**)

Supplementary Fig. 17 | Results on sequential geometry optimizations for closedshell structure of pre-intermediate C–S reductive elimination. Trivial hydrogen atoms are omitted for clarity.

Regarding path C, C–S reductive elimination, the reductive elimination transition state cannot be located after extensive efforts. The pre-intermediate of reductive elimination, **TS-S9-RE-Pre-Fixed**, is firstly optimized with d(C–Cu) fixed to 2.20Å and d(C–S) fixed to 2.43Å in order to maintain the characteristics of the proposed Cu(III) structure during optimization. Sequential geometry optimization with full degrees of freedom leads to **TS-S9-RE-Pre-Release** with C–Cu bond length of 2.82Å. Wavefunction test indicates that this **TS-S9-RE-Pre-Release** has an RHF to UHF 'wavefunction' instability. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of **TS-S9-RE-Pre-Release** leads to **Int-S8**-OSS. Based on these results, the C–S reductive elimination pathway is not operative. (**Supplementary Fig. 17**)

Based on the above calculations and discussions, Cu-mediated C–S bond formation between tertiary benzyl radical and benzothioate via open-shell singlet radical substitution transition state **TS-S9** is the most favorable.

12.4. Table of Energies

Supplementary Table 12 | Energies in Supplementary Figs. 10, 12 and 14. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Toluene)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	E	H	G	Imaginary Frequency
Int-S1	0.527361	0.562973	0.458709	-2358.237425	-2357.674452	-2357.778716	
Int-S2	0.143393	0.151750	0.110895	-310.353457	-310.201707	-310.242562	
Int-S3-OSS	0.672446	0.717195	0.592468	-2668.608790	-2667.891595	-2668.016322	
Int-S3- Triplet	0.672460	0.717199	0.591489	-2668.608809	-2667.891610	-2668.017320	
TS-S4	0.672600	0.716539	0.593891	-2668.592583	-2667.876044	-2667.998692	235.9 <i>i</i>
TS-S4-RE	0.673177	0.717210	0.592332	-2668.583021	-2667.865811	-2667.990689	104.6 <i>i</i>
Int-S5	0.675801	0.719455	0.598784	-2668.627689	-2667.908234	-2668.028905	

Supplementary Table 13 | Energies in Supplementary Figs. 14 and 16 Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Diethyl Ether)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	ТСН	TCG	E	H	G	Imaginary Frequency
Int-S6	0.383519	0.411261	0.322601	-1873.966007	-1873.554746	-1873.643406	
Int-S7	0.23856	0.253748	0.194709	-709.748212	-709.494464	-709.553503	
Int-S8- OSS	0.624067	0.667389	0.546065	-2583.740099	-2583.072710	-2583.194034	
Int-S8- Triplet	0.624005	0.667356	0.544790	-2583.740237	-2583.072881	-2583.195447	
TS-S9	0.622438	0.665361	0.545773	-2583.719100	-2583.053739	-2583.173327	201.8 <i>i</i>
Int-S10	0.624152	0.667367	0.545544	-2583.740048	-2583.072681	-2583.194504	

13. NMR spectra

S150

S153

S154

S156

「1.1411」 1.1415

S237

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

S239

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

TY23-L10.2.fid

140 120 100 80 60 40 20	20 0 -20 -40 -60 -80 -100	-120 -140 -160 -180 -200 -220 -240
140 120 100 80 60 40 20	20 0 -20 -40 -60 -80 -100 - f1 (ppm)	-120 -140 -160 -160 -200 -220 -240

140 120 100 80 60 40 20 0 -20 -40 -60 -100 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -50 -80 -100 -120 -140 -160 -180 -200 -220 -240 fl (ppm)

S255

⁸⁰ f1 (ppm) S265

S267

31 3-F.12.fid

ty21-5-106-826G.19.fid

— -62.669

S329

ty22-7-77.10.fid

S340

S346

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S349

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

7.3.12 (1) 12 (1

S360

7, 338 7, 338 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 35 7, 25

S371

S373

S380

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

14. HPLC spectra

mAU

Peak Table

PDA Ch2 214nm				
Peak#	Ret. Time	Area	Area%	
1	12.336	10018606	49.541	
2	13.721	10204272	50.459	

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	12.471	2189204	5.086
2	13.709	40852376	94.914

PDA Ch2 214nm					
	Peak#	Ret. Time	Area	Area%	
	1	36.714	12669850	50.640	
	2	39.795	12349512	49.360	

PDA Ch2 214nm				
Peak#	Ret. Time	Area	Area%	
1	37.225	1045553	4.701	
2	40.224	21197831	95.299	

Peak Table

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	35.396	30898732	49.785		
2	38.563	31165803	50.215		

Peak Table

PDA Ch	PDA Ch2 214nm				
Peak#	Ret. Time	Area	Area%		
1	35.595	1679186	5.060		
2	38.523	31506008	94.940		

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	39.243	29907225	49.241
2	42.603	30829769	50.759

mAU

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	39.915	2092683	5.108
2	42.988	38878166	94.892

PDA Ch3 23	Onm		
Т	Hight	Area	Area%
15.233	41544	1296315	4.047
17.248	854397	30736560	95.953

Peak Table

PDA Ch2 214nm				
Peak#	Ret.	Time	Area	Area%
1	55.	778	6982046	49.928
2	60.	872	7002321	50.072

Peak Table

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	55.268	155313083	94.276
2	61.523	9429281	5.724

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	24.570	4108846	50.003	
2	26.554	4108398	49.997	

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	24.455	12278353	93.324			
2	26.676	878330	6.676			

34 was prepared from 2-(1-chloropropyl)naphthalene **E36**:

mAU

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	19.469	2622476	6.140
2	22.399	40090585	93.860

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	10.528	17233364	50.095		
2	15.435	17168042	49.905		

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	10.602	28366142	97.183
2	15.747	822199	2.817

Peak Table

PDA Ch2 214nm						
Peak#	Ret.	Time	Area	Area%		
1	10.	954	9626412	50.015		
2	12.	945	9620560	49.985		

PDA Ch2 214nm						
Peak#	Ret.	Time	Area	Area%		
1	11.	272	3495492	4.786		
2	13.	581	69535203	95.214		

Peak Table

PDA Ch2 214nm						
Peak#	Ret.	Time	Area	Area%		
1	10.	861	19373455	50.003		
2	12.	256	19371001	49.997		

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	11.200	3172138	4.701			
2	12.438	64300973	95.299			

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	9.871	33951911	50.567
2	12.003	33190654	49.433

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	10.078	2753426	5.002
2	11.911	52288905	94.998

PDA Ch	12 214nm		
Peak#	Ret. Time	Area	Area%
1	9.558	3512670	50.646
2	12.017	3423118	49.354

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	10.068	1585805	5.197		
2	12.680	28928937	94.803		

PDA	Ch ₂	214nm

Peak#	Ret. Time	Area	Area%		
1	8.629	2666770	49.781		
2	12.270	2690278	50.219		

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	9.045	612506	2.208			
2	12.724	27133258	97.792			

Peak Table

PDA Ch2 214nm							
Peak#	Ret. Time	Area	Area%				
1	27.554	5176525	49.878				
2	28.981	5201761	50.122				

Peal	k T	able

PDA	Ch	2 2	14nm

Peak#	Ret.	Time	Area	Area%
1	28.	243	127945881	93.363
2	29.	950	9095280	6.637

Peak Table

PDA Ch	12 214n	m				
Peak# Ret. Time		A	rea	Are	a%	
1	11.560		1792	24527	50.0	023
2	13.4	96	1790	08287	49.9	977

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	11.627	5177961	6.546			
2	13.501	73928096	93.454			

Peak Table

PDA Ch2 214nm							
Peak#	Ret. Time	Area	Area%				
1	16.725	19402061	50.019				
2	18.425	19387302	49.981				

PDA Ch2 214nm							
Peak#	Ret. Tin	ne Area	Area%]			
1	16.356	850585	8.239	1			
2	17.845	947279	4 91.761	1			

Р	ea	K .	la	b	Le

PDA Ch	2 214nm		
Peak#	Ret. Time	Area	Area%
1	20.464	25422970	92.798
2	22.861	1972921	7.202

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.076	19840907	50.170
2	20.490	19706629	49.830

Peak#	Ret. Time	Area	Area%
1	16.106	325087	5.148
2	20.489	5989633	94.852

PDA Ch1 254nm

PDA	UII	. 204	fum -		13
Peal	k# I	Ret.	Time	Area	Area%
1		25.	061	30562400	50.145
2		30.	096	30386015	49.855

P	'ea	k '	T	a	b	e

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.828	90639272	93.417
2	29.946	6386883	6.583

PDA Ch1 254nm

PDA CI	1 2341111		
Peak#	Ret. Time	Area	Area%
1	17.678	1378141	50.196
2	20.287	1367374	49.804

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.663	870371	5.471
2	20.183	15039201	94.529

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.998	21698332	49.919
2	27.061	21769020	50.081

Pea	kΙ	а	bl	е
-----	----	---	----	---

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.057	7914961	8.135
2	27.431	89385045	91.865

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.813	25409763	49.961
2	18.565	25449458	50.039

P	PDA Ch1 254nm							
F	Peak#	Ret.	Time	Area	Area%			
	1	15.	770	4276206	6.369			
	2	18.	692	62869264	93.631			

PDA Ch	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%					
1	12.889	15208794	50.445					
2	15.855	14940249	49.555					

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.853	2975448	7.226				
2	15.710	38199272	92.774				

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.379	3097972	49.947
2	32. 531	3104562	50.053

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28. 531	22985131	94.946
2	32.832	1223383	5.054

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	28.279	678941	51.095			
2	32.380	649836	48.905			

Pea		le

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.393	367108	2.713
2	32.452	13163809	97.287

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.632	3282819	50.024
2	23.694	3279631	49.976

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.760	631139	4.206
2	23.647	14373000	95.794

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	13.338	19519969	50.988			
2	19.150	18763310	49.012			

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	13.411	2060449	3.775				
2	18.514	52527294	96.225				

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.821	3723162	50.016
2	24.285	3720791	49.984

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.683	8347986	97.592
2	24.146	205975	2.408

Peak Table

PDA	Ch1	254nm
-----	-----	-------

Peak#	Ret.	Time	Area	Area%
1	26.	865	2239294	50.141
2	37.	117	2226728	49.859

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	27.029	12610516	96.386
2	37.592	472828	3.614

Peak Table

PDA	Ch1	254nm

Peak#	Ret.	Time	Area	Area%
1	9.	147	1456202	49.824
2	12.	171	1466488	50.176

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.817	1481149	49.925
2	15.760	1485611	50.075

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.817	257100	3.809
2	15.722	6493207	96.191

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	31.002	6885086	50.463			
2	46.859	6758690	49.537			

PDA Ch	1 254nm	0	
Peak#	Ret. Time	Area	Area%
1	30.883	22619031	95.013
2	46.890	1187174	4.987

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.422	2391264	49.681
2	16.413	2421961	50.319

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	15.259	2448160	5.736			
2	16.092	40230220	94.264			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	64.884	8023396	50.070			
2	75.590	8001112	49.930			

Ρ	eal	κŢ	Га	b	le

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	65.299	7788616	94.148			
2	76.481	484108	5.852			

PDA Ch			
Peak#	Ret.	Time	Area

Peak#	Ret.	Time	Area	Area%
1	23.	450	9356145	50.164
2	28.	798	9294871	49.836

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.441	598561	5.477
2	28.733	10329282	94. 523

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	16.615	9035215	49.652			
2	19.399	9161901	50.348			

Peak	lab	е
------	-----	---

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	16.563	758940	4.983			
2	19.173	14471460	95.017			

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	19.036	5047698	50.198			
2	25.323	5007806	49.802			

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	19.059	9202620	95.334			
2	25.504	450450	4.666			

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.837	7229705	49.977			
2	14.479	7236311	50.023			

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.794	13774900	96.444		
2	14.544	507968	3.556		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	41.698	5733158	50.002		
2	46.832	5732780	49.998		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	41.580	14254970	95.822		
2	47.271	621487	4.178		

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	48.	082	2633414	50.142
2	54.	352	2618461	49.858

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	47.991	2261933	2.725		
2	52.053	80750287	97.275		

PDA	Ch1	254nm

FDA CITI 254IIII					
Peak#	Ret.	Time	Area	Area%	
1	22.	011	3393305	49.833	
2	27.	228	3416000	50.167	

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	21.998	1845198	8.038		
2	27.054	21110567	91.962		

PDA Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	22.	745	858869	51.953
2	29.	577	794292	48.047

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	22.631	14512109	94.074		
2	29.470	914167	5.926		

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.225	97047	2.685
2	23.675	3516725	97.315

S47	2
-----	---

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.105	30284686	50.187
2	22.166	30058489	49.813

mAU

PDA C	h1 254nm		
Peak	Ret. Time	Area	Area%
1	17.193	769141	2.445
2	22.217	30689465	97.555

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.749	1457793	49.808
2	27.484	1469038	50.192

Peak Table

PDA Ch1 254nm					
Peak	# Ret.	Time	Area	Area%	
1	8.	641	3131699	50.051	
2	14.	078	3125336	49.949	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.679	340295	4. 488
2	13.977	7242389	95.512

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.330	13766033	50.028
2	14.803	13750745	49.972

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.596	8033868	95.870
2	15.648	346105	4.130

26.618

20. 038 26. 487

8882 384871

287179 17722909

363244

17172036

1.142 70.475

Peak Table

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	13.382	3455734	13.048		
2	15.985	9841333	37.158		
3	18.412	9795203	36. 984		
4	38.065	3392652	12.810		

Peak	Tab	le
------	-----	----

 PDA
 Ch2
 214nm

 Peak#
 Ret.
 Time
 Area
 Area%

 1
 13.431
 715117
 1.619

 2
 15.970
 1256124
 2.843

 3
 18.219
 28903736
 65.425

 4
 37.843
 13303643
 30.113

Peak Table

PDA Ch2 214nm					
Peak#	Ret. Time	Area	Area%		
1	10.452	8806726	50.179		
2	11.597	8743977	49.821		

Peak Table

PDA Ch2 214nm						
Peak#	Ret. Time	Area	Area%			
1	10.206	3558194	28.903			
2	11.333	8752604	71.097			

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.862	17535425	49.955				
2	15.597	17567353	50.045				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.124	9307251	49.918			
2	14.559	9337882	50.082			

Р	ea	ĸ .	ľa	b	le

PDA Ch	1 254	nm		
Peak#	Ret.	Time	Area	Area%
1	11.	088	10092800	29.652
2	14.	571	23944208	70.348

min

S495

15. Reference

- Song, Y., Fu, C. & Ma, S. Copper-catalyzed syntheses of multiple functionalizatized allenes via three-component reaction of enynes. *ACS Catal*. 11, 10007–10013 (2021).
- Lu, R. et al. Enantioselective copper-catalyzed radical cyanation of propargylic C-H bonds: easy access to chiral allenyl nitriles. J. Am. Chem. Soc. 143, 14451–14451 (2021).
- Guo, X., Shi, Z., Zhang, F.-H. & Wang, Z. Cr-catalyzed regio-, diastereo-, and enantioselective reductive couplings of ketones and propargyl halides. ACS Catal. 13, 3170–3178 (2023).
- Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (S_N2X) reaction. *Science* 363, 400–404 (2019).
- 5. Xiao, X., Feng, M. & Jiang, X. New design of a disulfurating reagent: facile and straightforward pathway to unsymmetrical disulfanes by copper-catalyzed oxidative cross-coupling. *Angew. Chem. Int. Ed.* **55**, 14121–14125 (2016).
- 6. Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira $C(sp^3)$ C(*sp*) coupling. *Nat. Chem.* **11**, 1158–1166 (2019).
- 7. Li, C. et al. Transition-metal-free stereospecific cross-coupling with alkenylboronic acids as nucleophiles. J. Am. Chem. Soc. **138**, 10774–10777 (2016).
- 8. Iwamoto, H. et al. Copper(I)-catalyzed enantioconvergent borylation of racemic benzyl chlorides enabled by quadrant-by-quadrant structure modification of chiral bisphosphine ligands. *Angew. Chem. Int. Ed.* **58**, 11112–11117 (2019).
- 9. Wang, P.-F. et al. Design of hemilabile N,N,N-Ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters. *J. Am. Chem. Soc.* **144**, 6442–6452 (2022).
- Soler-Yanes, R., Arribas-Álvarez, I., Guisán-Ceinos, M., Buñuel, E. & Cárdenas,
 D. J. Ni^I catalyzes the regioselective cross-coupling of alkylzinc halides and propargyl bromides to allenes. *Chem. Eur. J.* 23, 15840–11590 (2017).
- 11. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. *Science* **351**, 681–684 (2016).
- 12. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent $C(sp^3)$ -C(sp) cross-coupling of tertiary electrophiles with alkynes. *Nat. Chem.* 14, 949–957 (2022).

- 13. Deivaraj, T. C., Lai, G. X. & Vittal, J. J. Chemistry of thiocarboxylates: synthesis and structures of neutral copper(I) thiocarboxylates with triphenylphosphine. *Inorg. Chem.* **39**, 1028–1034 (2000).
- 14. Wu, H. et al. High-valent palladium-promoted formal Wagner-Meerwein rearrangement. Org. Lett. 18, 5804–5807 (2016).
- 15. Gaussian 16, Revision A.03, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J., Gaussian, Inc., Wallingford CT, 2016.
- Lee, C., Yang, W. & Parr, R. G. Development of the colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B: Condens. Matter Mater. Phys.* 37, 785–789 (1988).
- 17. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 132, 154104 (2010).
- Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).
- Dunning Jr., T. H. & Hay, P. J. *Modern Theoretical Chemistry*, Ed. Schaefer III, H. F. Vol. 3 (Plenum, New York, 1977) 1–28.
- Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

- Wadt, W. R. & Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985).
- Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).
- Stoll, H., Fuentealba, P., Schwerdtfeger, P., Flad, J., Szentpály, L. V. & Preuss,
 H. Cu and Ag as one-valence-electron Atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH. J. Chem. Phys. 81, 2732–2736 (1984).
- 25. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. *J. Chem. Phys.* **86**, 866–872 (1987).
- 26. Häussermann, U. et al. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials. *Mole. Phys.* **78**, 1211–1224 (1993).
- Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energyadjusted pseudopotentials for elements of groups 13–17. *Mole. Phys.* 80, 1431– 1441 (2006).
- Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* 113, 6378–6396 (2009).
- 29. Legault, C. Y. CYLView, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; (http://www.cylview.org).