A general copper-catalysed enantioconvergent C(sp ${ }^{3}$)-S cross-coupling via biomimetic radical homolytic substitution

Table of Contents

General information S2

1. Supplementary tables for experiments S3
2. Supplementary figures for experiments S11
3. General procedure for synthesis of substrates S21
4. Characterization data of ligands S48
5. Enantioconvergent cross-coupling of benzyl electrophiles with sodium arylthiosulfonate S54
6. Enantioconvergent cross-coupling of propargyl electrophiles with sodium benzenethiosulfonate S74
7. Enantioconvergent cross-coupling of tertiary alkyl electrophiles with thiobenzoic acid or potassium thiocarboxylates S83
8. Investigation of other electrophiles S103
9. Procedure for synthetic applications (89-102) S107
10. Mechanistic studies S120
11. X-ray crystallography S129
12. Computational studies S135
13. NMR spectra S143
14. HPLC spectra S389
15. Reference S496

General information

Reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ was purchased from TCI. CuI was purchased from Sigma-Aldrich. $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$ was purchased from Bide Pharmatech Ltd. Anhydrous toluene and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) distilled from sodium (Na) and stored under argon. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ were purchased from Bide Pharmatech Ltd, which were dry at $200{ }^{\circ} \mathrm{C}$ for 3 h in vacuum. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ was distilled from anhydrous calcium hydride $\left(\mathrm{CaH}_{2}\right)$ and stored under argon. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF 254 plates. Flash column chromatography was performed using Tsingdao silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$). As the eluent, the petroleum ether (PE) and EtOAc were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO_{4} indicator. NMR spectra were recorded on Bruker DRX-400 spectrometers at 400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR and 376 MHz for ${ }^{19} \mathrm{~F}$ NMR, respectively, in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6} with tetramethylsilane (TMS) as internal standard. The chemical shifts were expressed in ppm and coupling constants were given in Hz . Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m , multiplet; br, broad), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR were reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using SHIMADZU LC-20AD with SPD-20AV detector (at appropriate wavelength). Column conditions were reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

1. Supplementary tables for experiments

Supplementary Table 1 | Investigation of the nucleophilic substitution reaction with benzyl electrophile. ${ }^{\text {a }}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 1}(0.05 \mathrm{mmol})$ and $\mathbf{S 1}(1.2$ equiv.) in solvent $(1.0 \mathrm{~mL})$ at room temperature (r.t.) for 36 h ; ${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard.

Supplementary Table $2 \mid$ Reaction condition optimization with benzyl electrophile: screening of different copper salts. ${ }^{\text {a }}$

Entry	$[\mathrm{Cu}]$	Yield (\%)	E.e. $(\%)^{\mathrm{c}}$
1	CuI	80	79
2	CuTc	64	78
3	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$	88	80
4	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$	90	80
5	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{BH}_{4}$	51	77
6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	41	76

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 1}(0.05 \mathrm{mmol}), \mathbf{S 5}\left(1.2\right.$ equiv.), $[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * 1(10 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4.0$ equiv.) in toluene $(0.5 \mathrm{~mL})$ at r.t. for 2 days under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}$-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ${ }^{\mathrm{c}}$ E.e. values were based on chiral HPLC analysis.

Supplementary Table 3 | Reaction condition optimization with benzyl electrophile: screening of different solvents and temperature. ${ }^{\text {a }}$

${ }^{a}$ Reaction conditions: $\mathbf{E 1}(0.05 \mathrm{mmol})$, $\mathbf{S 5}$ (1.2 equiv.), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(10 \mathrm{~mol} \%), \mathbf{L} * 5(10 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) in solvent (0.5 mL) at r.t. for 2 days under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ${ }^{\text {c }}$ E.e. values were based on chiral HPLC analysis;
${ }^{\text {d Run at }} 0{ }^{\circ} \mathrm{C}, 3$ days;
${ }^{\mathrm{e}}$ Run at $-15^{\circ} \mathrm{C}, 3$ days;
${ }^{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}$ (1.0 equiv.) in toluene/DMF ($\mathrm{vol} / \mathrm{vol}=10 / 1$) at $-15^{\circ} \mathrm{C}$ for 3 days;
${ }^{\mathrm{g}} \mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF}_{4}(2.5 \mathrm{~mol} \%), \mathbf{L} * 5$ (2.5 mol\%) was used.

Supplementary Table $4 \mid$ Reaction condition optimization with propargyl electrophile: screening of different copper salts and solvents. ${ }^{\text {a }}$

	$\mathrm{O}_{\mathrm{Pn}-\mathrm{ivSO}_{\text {SNa }}^{\prime \prime}}$ S6	[Cu] (10 mol\%), L*12 (10 mol\%) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) Solvent, r.t., Ar, 2 d		
Entry	[Cu]	Solvent	Yield (\%) ${ }^{\text {b }}$	E.e. (\%) ${ }^{\text {c }}$
1	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$	Toluene	31	63
2	CuI	Toluene	38	63
3	CuTc	Toluene	13	62
4	$\mathrm{Cu}(\mathrm{OTf})_{2}$	Toluene	4	60
5	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$	Toluene	14	62
6	CuI	$\mathrm{Et}_{2} \mathrm{O}$	trace	-- ${ }^{\text {d }}$
7	CuI	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	13	78
8	CuI	CHCl_{3}	trace	-- ${ }^{\text {d }}$
9	CuI	MeCN	trace	-- ${ }^{\text {d }}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 3 7}$ (0.05 mmol), S6 (1.2 equiv.), $[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * 12(10 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) in solvent $(0.5 \mathrm{~mL})$ at r.t. for 2 days under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}$-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ${ }^{\mathrm{c}}$ E.e. values were based on chiral HPLC analysis;
${ }^{\mathrm{d}}$ Not determined.

Supplementary Table $5 \mid$ Reaction condition optimization with propargyl electrophile: screening of different catalyst ratios and bases. ${ }^{\text {a }}$

Entry	CuI	$\mathbf{L * 1 2}$	Base	Yield (\%) $^{\text {b }}$	E.e. (\%) ${ }^{\text {c }}$
1	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	13	78
2	$10 \mathrm{~mol} \%$	$8 \mathrm{~mol} \%$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	14	78
3	$7.5 \mathrm{~mol} \%$	$6 \mathrm{~mol} \%$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	13	78
4	$7.5 \mathrm{~mol} \%$	$6 \mathrm{~mol} \%$	$\mathrm{Rb}_{2} \mathrm{CO}_{3}$	60	78
5	$7.5 \mathrm{~mol} \%$	$6 \mathrm{~mol} \%$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	29	67
6	$7.5 \mathrm{~mol} \%$	$6 \mathrm{~mol} \%$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	59	78

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 3 7}$ (0.05 mmol), $\mathbf{S 6}$ (1.2 equiv.), $\mathrm{CuI}(\mathrm{x} \mathrm{mol} \%), \mathbf{L} * \mathbf{1 2}$ ($\mathrm{y} \mathrm{mol} \%$), and Base (4.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at r.t. for 2 days under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}$-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ${ }^{\text {c }}$ E.e. values were based on chiral HPLC analysis.

Supplementary Table $6 \mid$ Reaction condition optimization with propargyl electrophile: screening of equivalent of base, $\mathrm{H}_{2} \mathrm{O}$, and temperature. ${ }^{\text {a }}$

Entry	$\mathrm{Rb}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$	Yield (\%) $^{\mathrm{b}}$	E.e. (\%) ${ }^{\mathrm{c}}$
1	4.0 equiv.	none	60	78
2	2.0 equiv.	none	58	78
$3^{\text {d }}$	2.0 equiv.	none	32	83
4^{d}	2.0 equiv.	2.0 equiv.	83	83
$5^{\text {e }}$	2.0 equiv.	2.0 equiv.	91	88
6^{f}	2.0 equiv.	2.0 equiv.	93	90

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 3 7}$ (0.05 mmol), $\mathbf{S 6}$ (1.2 equiv.), $\mathrm{CuI}\left(7.5 \mathrm{~mol} \%\right.$), $\mathbf{L} * \mathbf{1 2}(6 \mathrm{~mol} \%), \mathrm{Rb}_{2} \mathrm{CO}_{3}$ (x equiv.) and $\mathrm{H}_{2} \mathrm{O}$ (y equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at r.t. for 2 days under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}$-NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ${ }^{\text {c }}$ E.e. values were based on chiral HPLC analysis;
${ }^{\mathrm{d}}$ E.e. run at $0{ }^{\circ} \mathrm{C}, 2$ days;
${ }^{\mathrm{e}}$ E.e. run at $-20^{\circ} \mathrm{C}, 3$ days;
${ }^{\mathrm{f}}$ E.e. run at $-20^{\circ} \mathrm{C}$ in $\mathrm{CHCl}_{3}, 3$ days.

Supplementary Table 7| Reaction condition optimization with tertiary electrophile: screening of different solvents and copper salts. ${ }^{\text {a }}$

Entry	[Cu]	Solvent	Yield (\%) ${ }^{\text {b }}$	E.e. (\%) ${ }^{\text {c }}$
1	CuI	EtOAc	85	76
2	CuI	CHCl_{3}	10	44
3	CuI	THF	74	66
4	CuI	Toluene	86	78
5	CuI	1,4-Dioxane	55	60
6	CuI	$\mathrm{Et}_{2} \mathrm{O}$	81	79
7	CuCN	$\mathrm{Et}_{2} \mathrm{O}$	78	67
8	CuTc	$\mathrm{Et}_{2} \mathrm{O}$	77	57
9	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$	$\mathrm{Et}_{2} \mathrm{O}$	82	80
10	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	84	83
$11^{\text {d }}$	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	90	87
$12^{\text {e }}$	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	93	90
$13^{\text {f }}$	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	93	90

${ }^{\text {a }}$ Reaction conditions: $\mathbf{E 5 3}$ (0.05 mmol), $\mathbf{S 9}$ (1.5 equiv.), $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 16(15 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0$ equiv.) in EtOAc $(1.0 \mathrm{~mL})$ at r.t. for 1 day under argon;
${ }^{\text {b }}$ Yield was based on ${ }^{1} \mathrm{H}$-NMR analysis of the crude products using 1,3,5-trimethylbenzene as an internal standard; ${ }^{\mathrm{c}}$ E.e. values were based on chiral HPLC analysis;
${ }^{\mathrm{d}}$ run at $0^{\circ} \mathrm{C}, 2$ days;
${ }^{\mathrm{e}}$ run at $-10^{\circ} \mathrm{C}, 3$ days;
${ }^{\mathrm{f}} \mathbf{S} 1$ was used, run at $-10^{\circ} \mathrm{C}, 3$ days.

Supplementary Table 8 | Investigation of the background reactions.

Reaction conditions: $\mathbf{E 6 0}$ ($0.05 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{S 1}$ (1.5 equiv.), $\mathrm{Cu}^{\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(10 \mathrm{~mol} \%), \mathbf{L} * 16(15 \mathrm{~mol} \%) \text {, and }, ~}$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ for 3 days under argon. Yield is based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude products using 1,3,5-trimethylbenzene as an internal standard; E.e. is based on chiral HPLC analysis.

2. Supplementary figures for experiments

Supplementary Fig. $1 \mid \alpha$-Chiral alkyl organosulfur compounds in drugs, natural products, catalysts, ligands, metabolites, biomacromolecules and cofactors.

E1, $(5.0 \mathrm{mmol})$

$1,1.09 \mathrm{~g}, 68 \%, 91 \%$ ee

Supplementary Fig. $2 \mid$ Large-scale experiments. a, Reaction conditions: E1 (5.0 $\mathrm{mmol}), \mathbf{S 5}$ (1.2 equiv.), $\mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF} 4$ ($2.5 \mathrm{~mol} \%$), $\mathbf{L} * 5$ ($2.5 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) in toluene/DMF ($\mathrm{vol} / \mathrm{vol}=10 / 1,55 \mathrm{~mL}$) at $-15^{\circ} \mathrm{C}$ for 7 days under argon; \mathbf{b}, Reaction conditions: E22 (1.2 mmol), $\mathbf{S 5}$ (1.2 equiv.), $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{BF}_{4}(2.5 \mathrm{~mol} \%)$, $\mathbf{L} * 5\left(2.5 \mathrm{~mol} \%\right.$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) in toluene/DMF ($\mathrm{vol} / \mathrm{vol}=10 / 1,13.2 \mathrm{~mL}$) at $-15{ }^{\circ} \mathrm{C}$ for 7 days under argon. c, E60 ($2.5 \mathrm{mmol}, 1.0$ equiv.), S1 (1.5 equiv.), $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(10 \mathrm{~mol} \%), \mathbf{L} * 16(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ for 2 days under argon. Isolated yields are shown; E.e. is based on chiral HPLC analysis.

Supplementary Fig. 3 | Explanation for the observed regioselectivity. The complex $\mathbf{L} * \mathrm{Cu}^{\mathrm{I}} \mathrm{SSO}_{2} \mathrm{Ph}$ reduced $\mathbf{E 3 7}$ to generate a propargylic radical (Int-1) and its resonance structure allenyl radical (Int-2). Subsequently, the propargylic radical (Int-1) coupled with the complex $\mathbf{L}^{*} \mathrm{Cu}^{\text {II }} \mathrm{SSO}_{2} \mathrm{Ph}$, giving rise to the propargylic cross-coupling product 39 in high yield. It was difficult for the allenyl radical (Int-2) to react with the complex $\mathbf{L} * \mathrm{Cu}^{\text {II }} \mathrm{SSO}_{2} \mathrm{Ph}$ due to the steric hindrance of the TIPS group. Therefore, we reasoned that the exclusive regioselectivity might be attributed to the less steric int-I than intII. ${ }^{1-3}$

Supplementary Fig. 4 | Investigation of the reaction with tertiary electrophiles and S6. a, Reaction conditions: E53 (0.2 mmol), S6 ($0.24 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF}_{4}(10 \mathrm{~mol} \%), \mathbf{L} * 5(10 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.) in toluene (2.0 mL) at r.t. for 1 day under argon; \mathbf{b}, Reaction conditions: $\mathbf{E 5 3}$ (0.2 mmol), S6 (0.24 mmol, 1.2 equiv.), $\mathrm{CuI}\left(7.5 \mathrm{~mol} \%\right.$), $\mathbf{L} * 12$ ($6 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ (2.0 equiv.) in $\mathrm{CH}_{3} \mathrm{Cl}$ $(2.0 \mathrm{~mL})$ at r.t. for 1 day under argon. The major side product was elimination byproduct 55b and dimerization by-product $\mathbf{5 5}$ c, of which the latter was possibly derived from 55a.

We have carefully analyzed the NMR spectrum of the crude product for the reaction of $\mathbf{E 5 3}$ and $\mathbf{S 6}$ in the presence of $\mathbf{L * 5}$. We have found that the conversion of $\mathbf{E 5 3}$ was ca. 52% and the elimination by-product $\mathbf{5 5 b}$ (13% yield) together with the disulfide byproduct $\mathbf{5 5 c}$ (23% yield) was formed. The reaction with $\mathbf{L} * \mathbf{1 2}$ gave a similar result. We theorized that 55 c was probably derived from the desired product 55 a under basic conditions. To verify our hypothesis, we synthesized compound $\mathbf{5 5 a}$ and found that it could be easily converted to $\mathbf{5 5} \mathbf{c}$ upon exposure to simply basic conditions.

Supplementary Fig. 5 | The X-ray structure of 1 (CCDC 2212974, 50\% probability ellipsoids).

Supplementary Fig. 6 | The X-ray structure of 52 (CCDC 2213037, 50\% probability ellipsoids).

Supplementary Fig. 7 | The X-ray structure of 83 (CCDC 2213038, 50\% probability ellipsoids).

$0 \%{ }^{a}$

0\% ${ }^{\text {a,b }}$

0% a,

$113,83 \%, 20 \%$ e.e. ${ }^{e}$

$114,90 \%, 41 \%$ e.e. ${ }^{\text {d }}$
c Unactivated halides

$0 \%^{\text {f }}$

0\% ${ }^{\text {t }}$

Supplementary Fig. $8 \mid$ Unsuccessful examples. ${ }^{a} \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(10 \mathrm{~mol} \%)$, $\mathbf{L}^{*} 16$ ($15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), $\mathrm{Et}_{2} \mathrm{O}, \mathrm{Ar},-10^{\circ} \mathrm{C}, 3 \mathrm{~d}$. low conversion was observed at $-10^{\circ} \mathrm{C}$, with the radical cyclization byproduct (107) detected.
${ }^{\text {b }}$ No conversion was observed at $-10^{\circ} \mathrm{C}$, low conversion was observed with the major elimination by-product (108) detected at $40^{\circ} \mathrm{C}$.
${ }^{\mathrm{c}}$ No conversion was observed at $-10^{\circ} \mathrm{C}$, low conversion was observed with the elimination and hydrogen abstraction by-products ($\mathbf{1 0 9}$ and $\mathbf{1 1 0}$) detected at $40^{\circ} \mathrm{C}$.
${ }^{\mathrm{d}} \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ ($10 \mathrm{~mol} \%$), $\mathbf{L} * \mathbf{5}$ ($10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.), toluene, $-10^{\circ} \mathrm{C}, \mathrm{Ar}, 3 \mathrm{~d}$.
${ }^{\mathrm{e}} \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(10 \mathrm{~mol} \%), \mathrm{L}^{*} 16(15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), $\mathrm{Et}_{2} \mathrm{O}$, r.t., $\mathrm{Ar}, 1 \mathrm{~d}$.
${ }^{\mathrm{f}} \mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{BF}_{4}(10 \mathrm{~mol} \%), \mathbf{L} * 5(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv.), toluene, r.t., 2 d . Both alkyl bromide and iodide was used and low conversion of alkyl bromide/iodide was observed.

b Radical trap experiments for the propargyl reaction

Trapping reagents	yield of 39	e.e. of 39
TEMPO (2.0 equiv.)	trace	-
BHT (2.0 equiv.)	44%	90%

c The effect of ligand and copper(I) thiocarboxylates for the tertiary reaction

Supplementary Fig. $9 \mid$ Mechanistic discussion. a, The benzyl coupling was inhibited by BHT and the BHT-trapped product $\mathbf{1 1 5}$ was isolated. \mathbf{b}, The propargyl coupling were inhibited by TEMPO and BHT and the BHT-trapped product $\mathbf{1 1 6}$ was isolated. c, The effects of the lignad and copper(I) thiocarboxylates for the tertiary reaction. d, Radical clock experiment for the tertiary reaction. Ar, 3,5-dimethyl phenyl; TEMPO, 2,2,6,6-tetramethyl-1-piperidinyloxy; BHT, 2,6-di-tert-butyl-4-methylphenol.

The radical trap experiment and isolated BHT-trapped product 115 indicateded the formation of benzyl radical species from benzyl halides via a single-electron-transfer process.

The radical trap experiment and isolated BHT-trapped product 116 indicateded the formation of propargyl radical species from propargyl halides via a single-electrontransfer process.

There was a strong background reaction without chiral ligand $\mathbf{L} * 16$ in the tertiary reaction. The combination of $\mathbf{L * 1 6}$ and copper(I) thiocarboxylates effectively tuned reactivity and enantioselectivity of this reaction.
The $\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}^{1} \mathbf{L} * 16$ reduced the radical precursor $\mathbf{1 1 9}$, leading to the $\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}^{\mathrm{II}} \mathrm{BrL} * 16$ and a R1 radical. The R1 radical underwent a facile addition to alkene $\mathbf{1 1 8}$ and provided the prochiral tertiary alkyl R2 radical. Next, R2 radical interacted with $\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}^{\mathrm{II}} \mathrm{BrL} * \mathbf{1 6}$ to deliver the desired product $\mathbf{1 2 0}$ and regenerated the copper(I) species.

3. General procedure for synthesis of substrates

Note: The sodium benzenesulfinate $\mathbf{S 2}$, sodium benzenethiolate $\mathbf{S 3}$, sodium hydrosulfide $\mathbf{S 4}$ and thiobenzoic acid $\mathbf{S 9}$ were known compounds and commercially available.

The structures and synthesis of potassium arylthioates or alkylthioate:

S14

S15

S16

S17

S18

General procedure 1:

NaSH (purity: $70 \%, 2.4 \mathrm{~g}, 30 \mathrm{mmol}, 3.0$ equiv.) was suspended in $\mathrm{MeOH}(20.0 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Acyl chloride ($10.0 \mathrm{mmol}, 1.0$ equiv.) was added slowly. After stirring at this temperature for 2 hours, the mixture was quenched with $\mathrm{HCl}(1.0 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to get the thiocarboxylic acid. Then the thiocarboxylic acid was dissolved in $\mathrm{MeOH}(10.0 \mathrm{~mL})$. A solution of $\mathrm{KOH}(8.0 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added to the thiocarboxylic acid solution. After shaking, the solvent was removed using rotary evaporator. The resulting solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ and collected by filtration. The solid was then recrystallized from $\mathrm{MeOH} /$ toluene for further purification.

Note: The substrates S1, S16 and S17 were known compounds and synthesized according to reported literature ${ }^{4}$.

Potassium benzothioate (S1)

S1
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.23-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.31$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 214.6,145.6,131.4,129.1,128.3$.

Potassium 3-methylbenzothioate (S10)

According to General procedure 1 with 3-methylbenzoyl chloride ($1.55 \mathrm{~g}, 10 \mathrm{mmol}$, 1.0 equiv.), yield the product $\mathbf{S 1 0}$ as a white solid ($1.35 \mathrm{~g}, 71 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.98-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18$ (m, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 214.9,145.8,137.9,132.0,129.8,128.2,126.3,21.4$. HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~K}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{K}]^{+}$228.9486, found: 228.9485.

Potassium 4-methylbenzothioate (S11)

According to General procedure 1 with 4-methylbenzoyl chloride ($1.55 \mathrm{~g}, 10 \mathrm{mmol}$, 1.0 equiv.), yield the product $\mathbf{S} 11$ as a white solid ($1.52 \mathrm{~g}, 80 \%$ yield).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.34$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 214.4,143.1,141.8,129.4,128.9,21.3$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~K}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{K}]^{+}$228.9486, found: 228.9485 .

Potassium 3-(trifluoromethyl)benzothioate (S12)

 S12

According to General procedure 1 with 3-(trifluoromethyl)benzoyl chloride (2.09 g , $10 \mathrm{mmol}, 1.0$ equiv.), yield the product $\mathbf{S 1 2}$ as a light yellow solid ($2.07 \mathrm{~g}, 85 \%$ yield).
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 212.2,146.1,132.5(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 130.6(\mathrm{q}, J=32.1$ $\mathrm{Hz}), 129.2,127.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=271.4 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-63.86$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{OS}[\mathrm{M}-\mathrm{K}]^{-}$204.9940, found: 204.9934.

Potassium 3-chlorobenzothioate (S13)

S13

According to General procedure 1 with 3-chlorobenzoyl chloride ($1.75 \mathrm{~g}, 10 \mathrm{mmol}$, 1.0 equiv.), yield the product $\mathbf{S 1 3}$ as a white solid ($1.64 \mathrm{~g}, 78 \%$ yield).
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40 (ddd, $J=7.9,2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 212.4,147.4,134.3,130.9,129.8,129.2,127.4$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClK}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{K}]^{+} 248.8940$, found: 248.8937.

Potassium 3-bromobenzothioate (S14)

S14

According to General procedure 1 with 3-bromobenzoyl chloride ($2.19 \mathrm{~g}, 10 \mathrm{mmol}$, 1.0 equiv.), yield the product $\mathbf{S 1 4}$ as a white solid ($2.04 \mathrm{~g}, 80 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.56-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 212.3,147.7,133.9,132.2,130.1,127.8,122.4$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrOS}[\mathrm{M}-\mathrm{K}]^{-}$214.9172, found: 214.9167.

Potassium 3,5-dimethylbenzothioate (S15)

 S15

According to General procedure $\mathbf{1}$ with 3,5-dimethylbenzoyl chloride ($1.69 \mathrm{~g}, 10$ $\mathrm{mmol}, 1.0$ equiv.), yield the product $\mathbf{S 1 5}$ as a yellow solid ($1.68 \mathrm{~g}, 82 \%$ yield).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 215.1,145.8,137.8,132.8,127.0$, 21.3.
HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~K}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{K}]^{+}$242.9643, found: 242.9641 .

Potassium thiophene-2-carbothioate (S16)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.68(\mathrm{dd}, J=3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.0,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 205.0, 153.2, 131.3, 130.0, 128.1.

Potassium furan-2-carbothioate (S17)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{dd}, J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD 3 OD) $\delta 201.0,157.9,145.1,116.0,112.5$.

Potassium 2,2-dimethylpropanethioate (S18)

S18
According to General procedure $\mathbf{1}$ with pivaloyl chloride ($1.21 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv.), yield the product $\mathbf{S 1 8}$ as a yellow solid ($1.17 \mathrm{~g}, 75 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.36(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 230.2,30.0,28.5$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~K}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{K}]^{+} 194.9643$, found: 194.9642.

The structures and synthesis of sodium arylsulfonothioates:

S5-8

General procedure 2:

Sodium sulfite ($20.0 \mathrm{mmol}, 2.0$ equiv.), sodium bicarbonate or sodium carbonate (20.0 $\mathrm{mmol}, 2.0$ equiv.) and the corresponding aryl sulfonyl chloride ($10.0 \mathrm{mmol}, 1.0$ equiv.) were dissolved in distilled water $(10.0 \mathrm{~mL})$. The reaction mixture was stirred for 4 hours at $80^{\circ} \mathrm{C}$. After cooling down to room temperature, water was removed in vacuo. 50 mL of ethanol was then added to this white residue and the resulting heterogeneous solution was filtered. The filtrate was concentrated under reduced pressure and the desired sodium aryl sulfinates were obtained as white powders.
sodium aryl sulfinates ($10.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{S}_{8}(10.0 \mathrm{mmol}, 1.0$ equiv.) were dissolved in pyridine (8.0 mL) to give a yellow solution under argon. After the reaction was stirred 6 hours, 30.0 mL anhydrous diethyl ether was added, giving a white suspension, the reaction was filtered and washed with anhydrous diethyl ether. The residue was recrystallized from anhydrous ethanol to afford the desired compound as a white solid

Note: The sodium benzenesulfinate for the synthesis of substrate $\mathbf{S 6}$ was commercially available, and the substrate $\mathbf{S 6}$ was known compound and synthesized according to reported literature ${ }^{5}$.

Sodium 3,5-dimethylbenzenesulfonothioate (S5)

 S5

According to General procedure $\mathbf{2}$ with 3,5-dimethylbenzenesulfonyl chloride (2.05 $\mathrm{g}, 10 \mathrm{mmol}, 1.0$ equiv.), yield the product $\mathbf{S 5}$ as a white solid ($2.02 \mathrm{~g}, 90 \%$ yield).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 154.4, 139.1, 132.6, 123.1, 21.3.
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{Na}]^{-} 201.0049$, found: 201.0042

Sodium benzenesulfonothioate (S6)

${ }^{1}$ H NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H})$.

Sodium 4-methylbenzenesulfonothioate (S7)

According to General procedure 2 with 4-methylbenzenesulfonyl chloride (1.91 g, 10 mmol, 1.0 equiv.), yield the product $\mathbf{S 7}$ as a white solid ($1.85 \mathrm{~g}, 88 \%$ yield).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 152.1,141.7,129.6,125.6,21.3$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{Na}]^{-}$186.9893, found: 186.9885.

Sodium 3-methylbenzenesulfonothioate (S8)

 S8

According to General procedure 2 with 3-methylbenzenesulfonyl chloride ($1.91 \mathrm{~g}, 10$ mmol, 1.0 equiv.), yield the product $\mathbf{S 8}$ as a white solid ($1.93 \mathrm{~g}, 92 \%$ yield).
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 154.3,139.2,131.9,129.0,125.9,122.6,21.4$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{Na}]^{-} 186.9893$, found: 186.9885 .

The structures and synthesis of benzyl electrophiles:

To a solution of ketone (3.0 mmol) in $\mathrm{MeOH}(9.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(136.2 \mathrm{mg}$, 3.6 mmol) at ice bath and the reaction mixture was stirred at room temperature for $0.5-$ 2 hours. After completion of reaction (monitored by TLC), the reaction was quenched by water, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the corresponding alcohol. The crude product was purified by flash chromatography on silica gel to provide the desired product.

To a solution of the residue obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(0.20$ $\mathrm{mL}, 2.1 \mathrm{mmol}$) under an argon atmosphere at ice water bath and the resulting reaction mixture was stirred at room temperature. After completion of reaction (monitored by TLC), the mixture was quenched by water at ice water bath, and the mixture was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the corresponding crude benzyl bromides, which was directly used in the next step without further purification or stored in a refridgerator.

Note: Benzyl bromide E2 was purchased from Bide Pharmatech. The benzyl bromide E1, E3-35, E78 were known compounds and synthesized according to reported literature ${ }^{6,7}$. The purities of crude benzyl bromides were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethylbenzene or 1,1,1,2,2-pentachloroethane as an internal standard.

(1-Bromopropyl)benzene (E1)

E1
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.04$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).

(1-Bromobutyl)benzene (E3)

E3
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24$ (m, 1H), 4.97 (dd, $J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.56$ - $1.42(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

(1-Bromo-2-methylpropyl)benzene (E4)

E4

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

(1-Bromo-3-methylbutyl)benzene (E5)

E5
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.77$ $-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

(Bromo(cyclopentyl)methyl)benzene (E6)

E6
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.44(\mathrm{~m}, 6 \mathrm{H}), 1.11-0.99(\mathrm{~m}, 1 \mathrm{H})$.

(1-Bromobutane-1,4-diyl)dibenzene (E7)

 E7
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 4.95(\mathrm{dd}, J=8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 1 \mathrm{H})$.

2-(3-Bromo-3-phenylpropyl)-5-methylfuran (E8)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.90-5.78$ (m, 2H), 4.94 (dd, $J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50$ $-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.

(1-Bromo-4-methoxybutyl)benzene (E9)

E9
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{dd}, J=$ $8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H})$.

Ethyl 5-bromo-5-phenylpentanoate (E10)

E10
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.95(\mathrm{dd}, J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

5-Bromo-5-phenylpentanenitrile (E11)

E11
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=$ $8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.76-$ $1.62(\mathrm{~m}, 1 \mathrm{H})$.

2-(3-Bromo-3-phenylpropyl)-5,5-dimethyl-1,3-dioxane (E12)

E12
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.36$ (m, 2H), $7.36-7.29$ (m, 2H), $7.29-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H})$, $3.39(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H})$.

(1,3-Dibromopropyl)benzene (E13)

E13
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.24-5.13$ $(\mathrm{m}, 1 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.48(\mathrm{~m}$, $1 \mathrm{H})$.

(1-Bromo-3-chloropropyl)benzene (E14)

${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{dd}, J=$ $9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.52-$ $2.40(\mathrm{~m}, 1 \mathrm{H})$.

(1-Bromobut-3-en-1-yl)benzene (E15)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 5.82-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.85$ (m, 2H).

(1-Bromopent-4-en-1-yl)benzene (E16)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.84-5.70$ $(\mathrm{m}, 1 \mathrm{H}), 5.09-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.24$ $-2.03(\mathrm{~m}, 3 \mathrm{H})$.

1-Bromo-1,2,3,4-tetrahydronaphthalene (E17)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=17.1,11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H})$.

1-(1-Bromopropyl)-3-methylbenzene (E18)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=$ $8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(1-Bromopropyl)-4-methylbenzene (E19)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.

1-(1-Bromopropyl)-2-methylbenzene (E20)

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=$ $8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.

1-(1-Bromopropyl)-3-methoxybenzene (E21)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{t}, 1 \mathrm{H})$, $6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(1-Bromopropyl)-1,1'-biphenyl (E22)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.03$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).

1-(1-Bromopropyl)-3-fluorobenzene (E23)

 E23
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93$ $(\mathrm{m}, 1 \mathrm{H}), 4.88-4.76(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.

1-(1-Bromopropyl)-3-chlorobenzene (E24)

 E24
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{dd}, J=$ $8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-Bromo-4-(1-bromopropyl)benzene (E25)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.85-4.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(1-Bromopropyl)-4-(trifluoromethyl)benzene (E26)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.86$ $(\mathrm{dd}, J=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.

1-(1-Bromoethyl)-3-isocyanobenzene (E27)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3-(1-Bromoethyl)phenyl)ethan-1-one (E28)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dt}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 3-(1-bromoethyl)benzoate (E29)
 E29
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(1-Bromopropyl)naphthalene (E30)

E30
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}$, $2 \mathrm{H}), 5.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.

2-(1-Bromopropyl)naphthalene (E31)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 5.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{t}, J=$ 7.3 Hz, 3H).

3-(1-Bromopropyl)benzo[b]thiophene (E32)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, $7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H})$, $1.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(1-Bromopropyl)thiophene (E33)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(1-Bromopropyl)quinoline (E34)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=8.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80-7.71$ (m, 1H), $7.64-7.56$ (m, 1H), 5.09 (dd, $J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ $-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(1-Bromopropyl)pyridine (E35)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{dt}$, $\mathrm{J}=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.16(\mathrm{dp}, \mathrm{J}=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 3 \mathrm{H})$.

(Z)-(6-Bromohex-1-ene-1,6-diyl)dibenzene (E78)

E78
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21$ $(\mathrm{m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ $-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.40(\mathrm{~m}, 1 \mathrm{H})$.

In a vacuum dried 50 mL round bottomed flask, 1-(naphthalen-2-yl)propan-1-ol (0.93 $\mathrm{g}, 5.0 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.0 \mathrm{~mL})$. Then, thionyl chloride (1.81 mL , 25.0 mmol) was added at $0^{\circ} \mathrm{C}$ under argon atmosphere. Then, the reaction mixture was warmed to $50{ }^{\circ} \mathrm{C}$. After stirred for 3 hours, the solvent and the unreacted thionyl chloride were removed by evaporation. The residue was quenched by saturated aqueous $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20.0 \mathrm{~mL})$, and then extracted with EtOAc three times (20.0 $\mathrm{mL} \times 3$). The combined organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by rotary evaporator to obtain the corresponding chloride product E36 ($1.05 \mathrm{~g}, 90 \%$ yield) as a pale yellow oil.

Note: The substrate E36 was known compound and synthesized according to reported literature ${ }^{8}$.

2-(1-Chloropropyl)naphthalene (E36)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.93(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.05(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

The structures and synthesis of propargyl electrophiles:
als,
${ }^{n} \mathrm{BuLi}$ (2.4 M in hexane, 1.3 equiv.) was added dropwise into a solution of alkynes (1.3 equiv.) in anhydrous THF (1.0 M) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min and cooled to $-78{ }^{\circ} \mathrm{C}$. Aldehyde (1.0 equiv.) was added dropwise. Then the mixture was warmed up to room temperature and stirred for overnight. The mixture was quenched by a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, extracted with EtOAc, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and then subjected to flash chromatography to afford the desired product.
Under an argon atmosphere, to a solution of imidazole (1.2 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 M) was added propargyl alcohol (1.0 equiv.). The solution was stirred for 15 min , followed by the addition of dibromotriphenylphosphorane (1.2 equiv.). The reaction mixture was stirred at room temperature overnight. Then the reaction was quenched by the addition of silica gel. The solvent was removed under reduced pressure, and then the plug of silica gel was subjected to flash chromatography to afford the desired product.

Note: The substrates E37-44, E46, E48, E49 were known compounds and synthesized according to reported literature ${ }^{9}$. The substrate $\mathbf{E 5 2}$ was known compound and synthesized according to reported literature ${ }^{10}$.

(3-Bromopent-1-yn-1-yl)triisopropylsilane (E37)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 21 \mathrm{H})$.

(3-Bromobut-1-yn-1-yl)triisopropylsilane (E38)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.63(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ (s, 21 H).

(3-Bromohex-1-yn-1-yl)triisopropylsilane (E39)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.57(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 21 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

(3-Bromo-4-methylpent-1-yn-1-yl)triisopropylsilane (E40)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.54(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 21 \mathrm{H})$.

(3-Bromo-5-methylhex-1-yn-1-yl)triisopropylsilane (E41)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.08-$ $1.00(\mathrm{~m}, 21 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.

(3-Bromohept-1-yn-1-yl)triisopropylsilane (E42)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.39(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H})$.

(3-Bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane (E43)

E43
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 21 \mathrm{H})$.
(3-Bromo-5-(5-methylfuran-2-yl)pent-1-yn-1-yl)triisopropylsilane (E44)

E44

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95-5.79(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H})$.

Ethyl 5-bromo-7-(triisopropylsilyl)hept-6-ynoate (E45)

E45

According to General procedure 3, ethyl 5-oxopentanoate ($2.70 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv.) with ethynyltriisopropylsilane ($4.43 \mathrm{~g}, 24.3 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=75 / 1)$ to yield the product as a colorless oil ($2.62 \mathrm{~g}, 36 \%$ yield over two steps $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.13-0.99(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,105.5,89.3,60.5,39.0,36.8,33.4,22.9,18.7$, 14.3, 11.2.

HRMS (ESI) m / z calcd. For $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{BrO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 389.1506$, found 389.1506.

4-Bromo-6-(triisopropylsilyl)hex-5-ynenitrile (E46)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.68(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 21 \mathrm{H})$.
(3-Bromo-8-chlorooct-1-yn-1-yl)triisopropylsilane (E47)

According to General procedure 3, 6-chlorohexanal ($0.67 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv.) with ethynyltriisopropylsilane ($1.19 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.3$ equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil ($0.21 \mathrm{~g}, 11 \%$ yield over two steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 105.8,89.0,44.9,39.7,37.3,32.5,26.7,26.1,18.7$, 11.3.

HRMS (ESI) m / z calcd. For $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{BrClSi}[\mathrm{M}+\mathrm{H}]^{+} 379.1218$, found 379.1206.

(3-Bromooct-7-en-1-yn-1-yl)triisopropylsilane (E48)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}$, 21 H).

(Z)-(3-bromoundec-8-en-1-yn-1-yl)triisopropylsilane (E49)

 E49
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-$ $1.98(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H}), 0.96(\mathrm{t}, J=7.5$ Hz, 3H).

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)trimethylsilane (E50)

 E50

According to General procedure 3, pivalaldehyde ($1.66 \mathrm{~g}, 19.3 \mathrm{mmol}, 1.0$ equiv.) with ethynyltrimethylsilane ($2.46 \mathrm{~g}, 25.1 \mathrm{mmol}, 1.3$ equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil ($0.86 \mathrm{~g}, 18 \%$ yield over two steps).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 103.1,92.8,51.4,36.6,26.9,-0.1$.
HRMS (ESI) m / z calcd. For $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrNaSi}[\mathrm{M}+\mathrm{Na}]^{+} 269.0332$, found 269.0331 .

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)triethylsilane (E51)

 E51

According to General procedure 3, pivalaldehyde ($0.89 \mathrm{~g}, 10.3 \mathrm{mmol}, 1.0$ equiv.) with triethyl(ethynyl)silane ($1.88 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.3$ equiv.), the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product as a colorless oil $(0.83 \mathrm{~g}, 28 \%$ yield over two steps $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.37(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.61$ $(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 104.4,90.5,51.6,36.6,27.0,7.6,4.5$.
HRMS (ESI) m / z calcd. For $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{BrSi}[\mathrm{M}+\mathrm{H}]^{+}$289.0982, found 289.0981 .

(3-Bromo-4,4-dimethylpent-1-yn-1-yl)benzene (E52)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})$, $1.24(\mathrm{~s}, 9 \mathrm{H})$.

The structures and synthesis of tertiary α-chloroamides:

The α-chloro acid chloride in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added dropwise to a solution of the corresponding amine $(10.0 \mathrm{mmol})$ and triethylamine $(4.2 \mathrm{~mL}, 30.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and then warmed up to room temperature. After completion (monitored by TLC), the reaction was quenched by the addition of 1.0 M HCl , the organic layer was washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the crude material, which was purified by flash chromatography to yield the tertiary α chloroamide.

Note: The substrates E53-77 were known compounds and synthesized according to reported literature ${ }^{11,12}$

2-Chloro-N,2-diphenylbutanamide (E53)

 E53
${ }^{1}{ }^{\mathbf{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dq}, J=$ $14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

N-(4-(Tert-butyl)phenyl)-2-chloro-2-phenylbutanamide (E54)

 E54
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 2.67(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.30 (s, 9H), 1.07 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

N-([1,1'-Biphenyl]-4-yl)-2-chloro-2-phenylbutanamide (E55)

${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 2.68(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

N -(4-Bromophenyl)-2-chloro-2-phenylbutanamide (E56)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 4 \mathrm{H}), 7.41-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro- N -(3-fluorophenyl)-2-phenylbutanamide (E57)

E57

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=10.8,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

2-Chloro- N -(3,5-dimethylphenyl)-2-phenylbutanamide (E58)

 E58
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.19(\mathrm{~s}, 2 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro-N-(3,5-dimethoxyphenyl)-2-phenylbutanamide (E59)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H})$, $6.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.65(\mathrm{dq}, J=14.3,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro- N -(naphthalen-1-yl)-2-phenylbutanamide (E60)

E60
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.54-7.32(\mathrm{~m}, 6 \mathrm{H}), 2.73(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro- N -(naphthalen-1-yl)-2-phenylpropanamide (E61)

E61

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 3 \mathrm{H})$, $7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.

2-Chloro- N -(naphthalen-1-yl)-2-phenylpentanamide (E62)

E62

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.29(\mathrm{~m}, 6 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro- N-(naphthalen-1-yl)-2,3-diphenylpropanamide (E63)

E63

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 3 \mathrm{H})$, $7.52-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H})$.

2-Chloro- N -(naphthalen-1-yl)-2,4-diphenylbutanamide (E64)

E64
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 1 \mathrm{H})$, $7.76-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H})$, $2.77-2.65(\mathrm{~m}, 1 \mathrm{H})$.

2-Chloro-3-cyclopropyl-N-(naphthalen-1-yl)-2-phenylpropanamide (E65)

E65
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}$,
$1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.31(\mathrm{~m}$, $3 \mathrm{H}), 2.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.08-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.52-0.42(\mathrm{~m}, 2 \mathrm{H}), 0.33-0.25(\mathrm{~m}$, 1H), $0.18-0.10(\mathrm{~m}, 1 \mathrm{H})$.

2-Chloro-3-cyclopropyl-N-(naphthalen-1-yl)-2-phenylpropanamide (E66)

E66
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 6 \mathrm{H}), 2.96-2.86(\mathrm{~m}$, $1 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.19(\mathrm{~m}, 2 \mathrm{H})$.

2-Chloro-N-(naphthalen-1-yl)-2-phenylpent-4-enamide (E67)

${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 1 \mathrm{H})$, $7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H})$, $5.97-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.14(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 1 \mathrm{H})$.

2-Chloro-3-methyl- N -(naphthalen-1-yl)-2-phenylbutanamide (E68)
 E68
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.33-3.14(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(4-(Tert-butyl)phenyl)-2-chloro-N-(naphthalen-1-yl)butanamide (E69)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}$, $1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 5 \mathrm{H}), 2.75(\mathrm{dq}, J=14.3$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(4-Bromophenyl)-2-chloro- N-(naphthalen-1-yl)butanamide (E70)

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.78-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.44(\mathrm{~m}, 7 \mathrm{H}), 2.71(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dq}$, $J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Chloro-2-(3-fluorophenyl)- N -(naphthalen-1-yl)butanamide (E71)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.84(\mathrm{~m}$, $1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}$, $1 \mathrm{H}), 2.72(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H).

2-Chloro- N -(naphthalen-1-yl)-2-(p-tolyl)propanamide (E72)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.

2-Chloro-2-(4-isobutylphenyl)- N-(naphthalen-1-yl)propanamide (E73)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

2-Chloro-2-(3-methoxyphenyl)- N -(naphthalen-1-yl)propanamide (E74)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}$, $1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.88(\mathrm{~m}$, 1H), 3.83 (s, 3H), 2.28 (s, 3H).

2-Chloro-2-(4-chlorophenyl)-N-(naphthalen-1-yl)propanamide (E75)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}$, $1 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.

2-Chloro- N -(naphthalen-1-yl)-2-(3-(trifluoromethyl)phenyl)propanamide (E76)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 4 \mathrm{H}), 2.32$ ($\mathrm{s}, 3 \mathrm{H}$).

2-Chloro- N-(naphthalen-1-yl)-2-(naphthalen-2-yl)propanamide (E77)

E77
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.97(\mathrm{~m}, 1 \mathrm{H})$, $7.92-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 5 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.

4. Characterization data of ligands

Note: $\mathbf{L} * \mathbf{6}$ and $\mathbf{L} * \mathbf{8}$ were purchased from Daicel Corp. $\mathbf{L} * \mathbf{1}, \mathbf{L} * \mathbf{2}, \mathbf{L} * \mathbf{4}, \mathbf{L} * \mathbf{5}, \mathbf{L} * \mathbf{9}$, L*13-15 were known compounds.

2-(Bis(3,5-di-tert-butylphenyl)phosphanyl)-N-((S)-(6-methoxyquinolin-4$\mathrm{yl})\left((1 S, 2 S, 4 S, 5 R)-5\right.$-vinylquinuclidin-2-yl)methyl)benzamide ($\mathrm{L}^{*} 1$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ $-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.59(\mathrm{~m}, 1 \mathrm{H})$, $5.40(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.84(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.55$ $(\mathrm{s}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H})$, $1.23(\mathrm{~s}, 18 \mathrm{H}), 1.19(\mathrm{~s}, 18 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.74$.

2-(Di-o-tolylphosphanyl)-N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide ($\mathbf{L} * 2$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ - $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.09(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.68-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.92(\mathrm{~m}$, $1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.67-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.78$ (m, 1H).
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-26.32$.

2-(Bis(3-methoxyphenyl)phosphanyl)-N-((S)-(6-methoxyquinolin-4$\mathrm{yl})((1 S, 2 S, 4 S, 5 R)$-5-vinylquinuclidin-2-yl)methyl)benzamide ($\mathrm{L} * 3$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ - 7.60 (m, 2H), $7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.11$ (m, 2H), 6.95 $6.87(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.65(\mathrm{~m}, 4 \mathrm{H}), 5.77-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.57-$ $5.32(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.23-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.01$ $(\mathrm{s}, 1 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 3 \mathrm{H})$, $1.43-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,159.7,159.6(1), 159.5(8), 159.5(3), 157.9,147.6$, 144.8, 141.3, 138.6, 138.4, 134.4, 131.6, 130.4, 129.7, 129.6, 129.5, 129.0, 128.5, 126.2, 126.0, 121.7, 119.2(4), 119.1(7), 119.0, 118.9, 114.7, 114.4(2), 114.3(5), 102.3, 55.9, 55.8, 55.2(4), 55.2(2), 41.1, 39.5, 27.9, 27.5, 27.0, 26.2.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-9.11.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$672.2986, found: 672.2979.

2-(Di([1,1'-biphenyl]-4-yl)phosphanyl)-N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*4)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.47$ - $7.39(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.93(\mathrm{~m}$, $1 \mathrm{H}), 4.93-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 2.68-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-12.32$.

2-(Bis(3,5-diisopropylphenyl)phosphanyl)-N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (L*5)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.04-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.10-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~s}$, $1 \mathrm{H}), 5.01-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.65$ - $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 12 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta-10.06$.

1-((11bS)-2,6-diiododinaphtho[2,1-d:1',2'-fI[1,3,2]dioxaphosphepin-4yl)piperidine ($\mathbf{L} * 7$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.57-$ 3.49 (m, 2H), $3.20-3.08$ (m, 2H), $3.08-2.94$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,148.0,134.0,139.9,132.7,132.6,132.4,132.0$, 127.4(3), 127.4(2), 126.9, 125.8, 125.7, 124.5(1), 124.4(5), 122.9, 91.5, 91.3, 68.0, 67.9, 44.6, 44.4 .
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.74$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{I}_{2} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 653.9186$, found: 653.9178 .
(S)-N-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide (L^{*})

L*9
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.68(\mathrm{~s}, 1 \mathrm{H}), 8.79-8.72(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 12 \mathrm{H}), 7.23-$ $7.11(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ $4.05(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.06$.
(S)-N-(2-(4-(4-chlorobenzyl)-4,5-dihydrooxazol-2-yl)phenyl)-2-
(diphenylphosphanyl)benzamide (L*10)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.80$ (m, 1H), $7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $10 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 6 \mathrm{H}), 4.61-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07-3.99$ (m, 1H), 2.90 (dd, $J=13.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=14.0,6.3$ Hz, 1H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,164.3,141.5,141.3,140.2,138.8,138.6(2)$, 138.5(8), 138.4(9), 138.4(6), 138.3, 136.2, 135.0, 134.1, 134.0, 133.9, 133.8, 132.9, $132.5,130.6,130.4,129.2,128.7,128.6,128.5(2)$, 128.4(8), 128.4(5), 128.4(1), 128.3(8), 127.4, 127.3, 122.5, 120.3, 113.3, 70.8, 67.7, 41.6.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.25$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 575.1650$, found: 575.1646.

(S)-N-(2-(4-(4-chlorobenzyl)-1-(p-tolyl)-4,5-dihydro-1H-imidazol-2-yl)phenyl)-2(diphenylphosphanyl)benzamide ($\mathrm{L}^{*} 11$)

L*11
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.26(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.72(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 13 \mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.57-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,161.7,141.3,141.2,141.1,139.0,138.8,138.6$, 138.5(2), 138.4(8), 138.4(0), 136.7, 134.9, 134.3, 134.1(2), 134.0(9), 133.9(2), 133.8(9), $132.4,131.0,130.6(5), 130.5(9), 130.1,129.6,128.6,128.5(4), 128.5(1), 128.5$, 128.4(4), 128.4(2), 127.4(1), 127.3(7), 123.7, 122.3, 121.5, 117.1, 65.5, 58.3, 42.0, 20.9.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.22$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}$664.2279, found: 664.2278 .
(S)-N-(2-(1-(4-(tert-butyl)phenyl)-4-(4-chlorobenzyl)-4,5-dihydro-1H-imidazol-2-yl)phenyl)-2-(diphenylphosphanyl)benzamide ($\mathrm{L}^{* 12 \text {) }}$

L*12
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.26(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}$, $1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 13 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.77$ (t, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.50$ (m, 1H), $3.03-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,161.6,147.3,141.4,141.1,141.0,138.9,138.8$, $138.6,138.5,138.4,136.6,134.9,134.1(2), 134.0(9), 133.9(2), 133.8(9), 132.4,131.0$, 130.6(4), 130.5(9), 130.2, 128.6(1), 128.5(5), 128.5(1), 128.4(9), 128.4(4), 128.4(2), 127.4(1), 127.3(8), 125.8, 123.0, 122.4, 121.5, 117.2, 65.5, 58.2, 42.0, 34.4, 31.4.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.20$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{ClN}_{3} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+} 706.2749$, found: 706.2745.
(S)-N-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide (L*13)

L*13

${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.86(\mathrm{~s}, 1 \mathrm{H}), 9.11-9.03(\mathrm{~m}, 1 \mathrm{H}), 8.29-8.22(\mathrm{~m}, 2 \mathrm{H})$, 7.97 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.28$ (m, 4H), $7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=10.1,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35-4.18(\mathrm{~m}, 1 \mathrm{H})$.
(1Z,3Z)-1,3-bis(((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)methylene)isoindoline (L*14)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.36(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 2 \mathrm{H})$, 5.63 (s, 2H), $4.39-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.08-3.94(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.09$ (d, J $=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
(1Z,3Z)-1,3-bis(((S)-4-phenyl-4,5-dihydrooxazol-2-yl)methylene)isoindoline (L*15)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.90(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
(1Z,3Z)-1,3-bis(((S)-4-(naphthalen-2-ylmethyl)-4,5-dihydrooxazol-2yl)methylene)isoindoline ($\mathrm{L} * 16$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{dd}, J=5.7$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=5.7,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H})$, 7.36 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 4.61-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 2 \mathrm{H})$, $3.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,147.7,135.8,134.9,133.7,132.3,129.9,128.2$, 127.9, 127.8, 127.7(2), 127.6(7), 126.1, 125.6, 121.1, 83.2, 71.4, 67.4, 42.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 562.2489$, found: 562.2485.

5. Enantioconvergent cross-coupling of benzyl electrophiles with sodium arylthiosulfonate

General procedure A: Substrate scope of (hetero)benzyl halides and sodium arylthiosulfonate (Table 2, 1-38)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium arylthiosulfonate ($0.24 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{BF}_{4}(6.28 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} * 5(15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($260 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv.), Then, (hetero)benzyl halide (0.20 mmol , 1.0 equiv.) and toluene/DMF ($\mathrm{v} / \mathrm{v}=10 / 1,2.2 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at -15 or $-30^{\circ} \mathrm{C}$. Upon completion (monitored by TLC), the precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products $(\pm) \mathbf{- 1 - 3 8}$:

The mixture of sodium arylthiosulfonate ($0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and (hetero)benzyl halide $(0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in DMF (0.5 mL) was stirring for 1 day. Brine was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with EtOAc (3x) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemates.

(R)-S-(1-Phenylpropyl) 3,5-dimethylbenzenesulfonothioate (1)

According to General procedure A, (1-bromopropyl)benzene E1 (28.0 $\mu \mathrm{L}, 0.2 \mathrm{mmol}$, 1.0 eq.) with sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($54.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15{ }^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was purified by column
chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 1 as a white solid ($47.4 \mathrm{mg}, 74 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=17.53 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $4.41(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 1 \mathrm{H})$, $0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.2,139.5,138.9,134.8,128.4,127.9,127.7,124.3$, 57.7, 29.9, 21.2, 12.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 343.0797$, found: 343.0794.

(R)-S-(1-Phenylpropyl) benzenesulfonothioate (2)

2

According to General procedure A, (1-bromopropyl)benzene E1 ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$, 1.0 eq.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) run at -$ $30{ }^{\circ} \mathrm{C}$ for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2}$ as a white solid ($45.8 \mathrm{mg}, 78 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=23.27 \mathrm{~min}, t_{\mathrm{R}}($ major $)=28.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.27$ (m, 2H), $7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ - $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,139.1,133.1,128.9,128.6$, 127.8 (two carbon overlapped), 126.7, 57.8, 29.8, 12.0.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 315.0484$, found 315.0483.

(R)-S-(1-Phenylpropyl) 4-methylbenzenesulfonothioate (3)

3

According to General procedure A, (1-bromopropyl)benzene E1 (28 $\mu \mathrm{L}, 0.2 \mathrm{mmol}$, 1.0 eq.) with sodium 4-methylbenzenesulfonothioate $\mathbf{S} 7(50.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-30^{\circ} \mathrm{C}$ for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 3 as a white solid ($55.2 \mathrm{mg}, 90 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=30.41 \mathrm{~min}, t_{\mathrm{R}}($ major $)=35.59 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{dd}, J=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.95$ (m, 1H), $1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.1,142.5,139.3,129.5,128.6,127.8,127.6,126.8$, 57.6, 29.8, 21.6, 12.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 329.0640$, found 329.0640.

(R)-S-(1-Phenylpropyl) 3-methylbenzenesulfonothioate (4)

4

According to General procedure A, (1-bromopropyl)benzene E1 ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$, 1.0 eq.) with sodium 3-methylbenzenesulfonothioate $\mathbf{S 8}(50.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 4 as a white solid ($55.9 \mathrm{mg}, 91 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=22.73 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.13 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05$ $(\mathrm{m}, 3 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.96$ $(\mathrm{m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,146.3,139.2,129.9,128.5,127.7$ (two carbon overlapped), $119.8,119.0,111.1,57.8,55.7,29.9,12.0$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 329.0640$, found 329.0641.

(R)-S-(1-Phenylethyl) 3,5-dimethylbenzenesulfonothioate (5)

According to General procedure B, (1-bromoethyl)benzene E2 (24 $\mu \mathrm{L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with $\mathbf{S 5}\left(53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$.) run at $-30^{\circ} \mathrm{C}$ for 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 5 as a colorless oil ($54.8 \mathrm{mg}, 89 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=29.35 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=33.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,140.6,139.0,135.0,128.6,127.9,127.3,124.3$, 50.9, 22.8, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$329.0640, found 329.0639.

(R)-S-(1-Phenylbutyl) 3,5-dimethylbenzenesulfonothioate (6)

According to the general procedure \mathbf{A} with (1-bromobutyl)benzene $\mathbf{E 3}(30 \mu \mathrm{~L}, 0.20$ mmol, 1.0 eq.) and $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{6}$ as a white $\operatorname{solid}(49.9 \mathrm{mg}, 75 \%$ yield, 91\% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=22.64 \mathrm{~min}, t_{\mathrm{R}}($ major $)=24.14 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, 4.49 (dd, $J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 2 \mathrm{H})$, $0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,139.7,138.8,134.8,128.4,127.8,127.7,124.3$, 55.8, 38.5, 21.2, 20.5, 13.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 335.1134$, found 335.1127.

(R)-S-(2-Methyl-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (7)

7

According to the general procedure \mathbf{A} with (1-bromo-2-methylpropyl)benzene $\mathbf{E 4}$ ($31.6 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 7 as a light yellow solid ($38.6 \mathrm{mg}, 58 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.30 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.38 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,138.9,138.7,134.6,128.5,127.9,127.4,124.3$, 63.5, 34.4, 21.1, 20.8, 20.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 357.0953$, found: 357.0952 .

(R)-S-(3-Methyl-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (8)

According to the general procedure A with (1-bromo-3-methylbutyl)benzene E5 (35.1 $\mu \mathrm{L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and sodium 3,5-dimethylbenzenesulfonothioate \mathbf{S 5}(53.8 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{8}$ as a yellow oil ($54.2 \mathrm{mg}, 78 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OD-H (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.47 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.71 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $4.56(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,139.7,138.8,134.8,128.4,127.8,127.7,124.3$, 54.3, 45.2, 25.7, 22.7, 21.7, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 349.1290$, found: 349.1285.

(R)-S-(Cyclopentyl(phenyl)methyl) 3,5-dimethylbenzenesulfonothioate (9)

According to the general procedure A with (bromo(cyclopentyl)methyl)benzene E6 $(45.6 \mu \mathrm{~L},, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 9 as a yellow solid ($38.2 \mathrm{mg}, 53 \%$ yield, 89% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.07 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.08 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.06(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.53$ $(\mathrm{m}, 3 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,140.2,138.6,134.5,128.1,128.0,127.3,124.2$, 62.0, 45.9, 31.6(4), 31.6(1), 25.3, 25.1, 21.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$361.1290, found: 361.1286.

(R)-S-(1,4-Diphenylbutyl) 3,5-dimethylbenzenesulfonothioate (10)

According to the general procedure \mathbf{A} with (1-bromobutane-1,4-diyl)dibenzene E7 $(44.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 10 as a colorless oil ($57.2 \mathrm{mg}, 70 \%$ yield, 86% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=23.29 \mathrm{~min}, t_{\mathrm{R}}($ major $)=28.60 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.04$ (m, 4H), $7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.22$ $(\mathrm{s}, 6 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.44(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,141.5,139.6,138.9,134.8,128.4(4), 128.4(3)$, 128.4(0), 127.8 (two carbon overlapped), 126.0, 124.3, 55.9, 35.9, 35.2, 29.0, 21.2. HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 433.1266$, found: 433.1256 .
(R)-S-(3-(5-Methylfuran-2-yl)-1-phenylpropyl) dimethylbenzenesulfonothioate (11)

11

According to the general procedure \mathbf{A} with 2-(3-bromo-3-phenylpropyl)-5methylfuran E8 (56.0 $\mu \mathrm{L}, \quad 0.20 \mathrm{mmol}, 1.0 \quad$ eq.) and sodium 3,5dimethylbenzenesulfonothioate $\mathbf{S 5}\left(53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2\right.$ eq.) run at $-15^{\circ} \mathrm{C}$ for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 5 / 1)$ to yield the product 11 as a brown oil $(63.0 \mathrm{mg}$, 79% yield, 85% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.12 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.39 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 5.85-5.79(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=9.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,150.8,145.1,139.1,138.9,134.9,128.5$, 127.9(1), 127.8(8), 124.3, 106.4, 106.0, 55.1, 34.8, 25.8, 21.2, 13.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 423.1059$, found: 423.1057 .
(R)-S-(4-Methoxy-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (12)

According to the general procedure \mathbf{A} with (1-bromo-4-methoxybutyl)benzene E9 ($42.6 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.83 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30 / 1 \sim 5 / 1$) to yield the product 12 as a white solid ($65.6 \mathrm{mg}, 90 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=75 / 25$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=18.97 \mathrm{~min}, t_{\mathrm{R}}($ major $)=21.93 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (s, 6H), $2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,139.5,138.9,134.8,128.4,127.8,127.7,124.3$, 71.8, 58.6, 55.9, 33.3, 27.4, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 387.1059$, found: 387.1058 .

Ethyl (R)-5-(((3,5-dimethylphenyl)sulfonyl)thio)-5-phenylpentanoate (13)

According to the general procedure A with ethyl 5-bromo-5-phenylpentanoate E10 ($59.8 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{1 3}$ as a yellow oil ($60.4 \mathrm{mg}, 74 \%$ yield, 84% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=21.36 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $4.47(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 8 \mathrm{H}), 2.06-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,145.0,139.2,139.0,134.9,128.5,127.9,127.8$, 124.3, 60.5, 55.7, 35.8, 33.6, 22.7, 21.2, 14.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 407.1345$, found: 407.1334.

(R)-S-(4-Cyano-1-phenylbutyl) 3,5-dimethylbenzenesulfonothioate (14)

According to the general procedure A with 5-bromo-5-phenylpentanenitrile E11 (35.2 $\mu \mathrm{L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and sodium 3,5-dimethylbenzenesulfonothioate \mathbf{S 5}(53.8 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15{ }^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 5 / 1$) to yield the product 14 as a colorless oil ($55.9 \mathrm{mg}, 78 \%$ yield, 86% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=50 / 50$, flow rate $1.5 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=31.63 \mathrm{~min}, t_{\mathrm{R}}($ major $)=43.25 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{dd}, J=$ $8.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98$ (m, 1H), 1.79 - $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,139.1,138.8,135.2,128.8,128.2,127.6,124.3$, 119.0, 55.0, 35.4, 23.3, 21.2, 16.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$382.0906, found: 382.0903 .
(R)-S-(3-(5,5-Dimethyl-1,3-dioxan-2-yl)-1-phenylpropyl) 3,5-dimethylbenzenesulf onothioate (15)

According to the general procedure \mathbf{A} with 2-(3-bromo-3-phenylpropyl)-5,5-dimethyl-1,3-dioxane E12 ($62.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5dimethylbenzenesulfonothioate $\mathbf{S 5}\left(53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2\right.$ eq.) run at $-15^{\circ} \mathrm{C}$ for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 15 as a white solid (68.7 mg , 79% yield, 84% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.98 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.83 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}$, $J=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,139.4,138.9,134.8,128.4,127.9,127.8,124.3$, 101.1, 56.0, 32.5, 30.7, 30.2, 23.1, 21.9, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 457.1478$, found: 457.1476 .
(R)-S-(3-Bromo-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (16)

16

According to the general procedure A with (1,3-dibromopropyl)benzene E13 (29.6 $\mu \mathrm{L}$, $0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(53.8 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 16 as a colorless oil ($66.4 \mathrm{mg}, 83 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=37.23 \mathrm{~min}, t_{\mathrm{R}}($ major $)=40.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H})$, 4.66 (dd, $J=9.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.47$ (m, 1H), $2.47-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,139.2,137.9,135.2,128.9,128.3,127.8,124.5$, 53.6, 38.7, 29.9, 21.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 420.9902$, found: 420.9899.

(R)-S-(3-Chloro-1-phenylpropyl) 3,5-dimethylbenzenesulfonothioate (17)

According to the general procedure A with (1-bromo-3-chloropropyl)benzene E14 ($45.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 17 as a white solid ($52.4 \mathrm{mg}, 74 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=37.59 \mathrm{~min}, t_{\mathrm{R}}($ major $)=40.53 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 3 \mathrm{H})$, 4.69 (dd, $J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.45$ (m, 1H), $3.32-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.40$ (m, 1H), 2.36-2.30(m, 1H), 2.28 (s, 6H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7,139.2,138.1,135.2,128.8,128.3,127.8,124.5$, 52.6, 41.7, 38.7, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.0588$, found: 355.0581.

(R)-S-(1-Phenylbut-3-en-1-yl) 3,5-dimethylbenzenesulfonothioate (18)

According to the general procedure \mathbf{A} with (1-bromobut-3-en-1-yl)benzene E15 (32.0 $\mu \mathrm{L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and sodium 3,5-dimethylbenzenesulfonothioate \mathbf{S 5}(53.8 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 18 as a light yellow solid ($53.2 \mathrm{mg}, 80 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=35.60 \mathrm{~min}, t_{\mathrm{R}}($ major $)=38.52 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $5.65-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=8.3,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,139.0,138.9,134.9,133.5,128.4,127.9,127.8$, 124.3, 118.6, 55.5, 40.8, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.0977, found: 333.0970.

(R)-S-(1-Phenylpent-4-en-1-yl) 3,5-dimethylbenzenesulfonothioate (19)

According to the general procedure B with (1-bromopent-4-en-1-yl)benzene E16 ($42.6 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 19 as a light yellow solid ($60.0 \mathrm{mg}, 87 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=39.92 \mathrm{~min}, t_{\mathrm{R}}($ major $)=42.99 \mathrm{~min}$.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $5.78-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.09-$ 1.92 (m, 4H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.1,139.3,138.9,136.7,134.9,128.5,127.8$ (two carbon overlapped), 124.3, 116.1, 55.2, 35.5, 31.2, 21.2.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$347.1134, found: 347.1132.

(R)-S-(1,2,3,4-Tetrahydronaphthalen-1-yl) 3,5-dimethylbenzenesulfonothioate (20)

 20

According to the general procedure A with 1-bromo-1,2,3,4-tetrahydronaphthalene $\mathbf{E} 17$ ($32.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2 0}$ as a yellow solid ($50.9 \mathrm{mg}, 77 \%$ yield, 77% e.e.).
HPLC analysis: Chiralcel IE (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=18.18 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.40 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.08-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 2.33-2.23$ $(\mathrm{m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0,139.5,138.1,135.4,132.7,130.7,129.5,127.9$, 126.3, 124.6, 51.3, 30.1, 28.7, 21.4, 19.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 355.0797$, found: 355.0797 .

(R)-S-(1-(m-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (21)

According to the general procedure \mathbf{A} with 1-(1-bromopropyl)-3-methylbenzene E18 ($42.4 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 21 as a colorless oil ($48.1 \mathrm{mg}, 72 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=18.87 \mathrm{~min}, t_{\mathrm{R}}($ major $)=21.01 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2,139.3,138.8,138.1,134.7,128.5,128.4,128.2$, 125.0, 124.3, 57.7, 29.9, 21.4, 21.2, 12.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 357.0953$, found: 357.0951 .

(R)-S-(1-(p-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (22)

According to the general procedure A with 1-(1-bromopropyl)-4-methylbenzene E19 ($63.2 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2 2}$ as a colorless oil ($54.8 \mathrm{mg}, 82 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=20.35 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.63 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.38 (dd, $J=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.06-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,138.8,137.4,136.4,134.6,129.1,127.8,124.4$, 57.6, 29.9, 21.2 (two carbon overlaped), 12.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 357.0953$, found: 357.0951 .

(R)-S-(1-(o-Tolyl)propyl) 3,5-dimethylbenzenesulfonothioate (23)

 23

According to the general procedure \mathbf{A} with 1-(1-bromopropyl)-2-methylbenzene E20 ($43.6 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) run at $-15{ }^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 23 as a colorless oil ($50.3 \mathrm{mg}, 75 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=18.99 \mathrm{~min}, t_{\mathrm{R}}($ major $)=21.15 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H})$, 4.69 (dd, $J=9.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 9 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.89$ (m, 1H), 0.88 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,139.0,137.1,136.1,134.9,130.4,127.6,127.4$, 126.4, 124.3, 53.3, 29.8, 21.3, 19.5, 12.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 357.0953$, found: 357.0952 .

(R)-S-(1-(3-Methoxyphenyl)propyl) 3,5-dimethylbenzenesulfonothioate (24)

According to the general procedure A with 1-(1-bromopropyl)-3-methoxybenzene E21 ($49.2 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2 4}$ as a white solid ($50.8 \mathrm{mg}, 72 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=20.14 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.10 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 2 \mathrm{H})$, $6.60(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.05$ $-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,145.2,140.9,138.8,134.8,129.3,124.3,120.4$, 113.3, 113.2, 57.7, 55.1, 29.8, 21.2, 12.1 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 373.0903$, found: 373.0901.

(R)-S-(1-([1,1'-Biphenyl]-4-yl)propyl) 3,5-dimethylbenzenesulfonothioate (25)

According to the general procedure A with 4-(1-bromopropyl)-1,1'-biphenyl E22 ($55.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2 5}$ as a colorless oil ($69.8 \mathrm{mg}, 88 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=23.00 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.91 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ - $7.32(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ ($\mathrm{s}, 6 \mathrm{H}$), $2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) 145.1, 140.4(3), 140.4(2), 138.9, 138.5, 134.7, 129.0, 128.3, 127.6, 126.9(5), 126.9(4), 124.4, 57.5, 29.9, 21.2, 12.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 419.1110$, found: 419.1111.

(R)-S-(1-(3-Fluorophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (26)

26

According to the general procedure \mathbf{A} with 1-(1-bromopropyl)-3-fluorobenzene E23 ($35.2 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 3 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 26 as a colorless oil ($47.9 \mathrm{mg}, 71 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.32 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.80 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.93-$ $6.88(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 6 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 145.0,142.1(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $139.0,135.0,129.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.3,123.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=13.4 \mathrm{~Hz})$, $114.5(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 57.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 29.7,21.2,12.0$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.85$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 361.0703$, found: 361.0701 .

(R)-S-(1-(3-Chlorophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (27)

According to the general procedure A with 1-(1-bromopropyl)-3-chlorobenzene E24 ($37.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 27 as a colorless oil ($48.0 \mathrm{mg}, 68 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.23 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.25 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H})$, $4.36(\mathrm{dd}, \mathrm{J}=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 1 \mathrm{H})$, $0.90(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,141.5,139.0,135.1,134.3,129.4,127.9,127.7$, 126.2, 124.2, 56.9, 29.7, 21.2, 12.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 377.0407$, found: 377.0405.

(R)-S-(1-(4-Bromophenyl)propyl) 3,5-dimethylbenzenesulfonothioate (28)

28

According to the general procedure A with 1-bromo-4-(1-bromopropyl)benzene E25 ($55.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 28 as a white solid ($70.0 \mathrm{mg}, 88 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $n \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=13.67 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.93$ (m, 2H), 4.39 (dd, $J=8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.74$ (m, 1H), 0.88 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0,138.9,138.6,134.7,131.3,129.6,124.2,121.5$, 57.0, 29.6, 21.2, 12.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 420.9902$, found: 420.9899.

(R)-S-(1-(4-(Trifluoromethyl)phenyl)propyl) 3,5-dimethylbenzenesulfonothioate (29)

According to the general procedure \mathbf{A} with 1-(1-bromopropyl)-4(trifluoromethyl)benzene E26 ($45.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium $3,5-$ dimethylbenzenesulfonothioate $\mathbf{S 5}\left(53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2\right.$ eq.) run at $-15^{\circ} \mathrm{C}$ for 3.5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 29 as a white solid (58.4 $\mathrm{mg}, 75 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=20.28 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (s, 2H), $7.02(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,143.8,139.0,135.0,129.8(\mathrm{q}, J=32.4 \mathrm{~Hz})$, $128.3,125.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.3,124.0(\mathrm{q}, J=272.1 \mathrm{~Hz}), 56.9,29.7,21.0,12.0$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.67$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 411.0671$, found: 411.0661 .

(R)-S-(1-(3-Cyanophenyl)ethyl) 3,5-dimethylbenzenesulfonothioate (30)

30

According to the general procedure A with 1-(1-bromoethyl)-3-isocyanobenzene E27 ($35.4 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-30^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1 \sim 5 / 1$) to yield the product $\mathbf{3 0}$ as a colorless oil ($59.2 \mathrm{mg}, 89 \%$ yield, 88% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=29.46 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=33.46 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{~d}, J=7.4,3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.6,142.4,139.3,135.4,131.9,131.2,130.8,129.3$, 124.3, 118.2, 112.6, 49.7, 22.5, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$332.0773, found: 332.0770.

(R)-S-(1-(3-Acetylphenyl)ethyl) 3,5-dimethylbenzenesulfonothioate (31)

31

According to the general procedure A with 1-(3-(1-bromoethyl)phenyl)ethan-1-one E28 ($42.1 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-30^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1 \sim 3 / 1$) to yield the product $\mathbf{3 1}$ as a colorless oil ($54.6 \mathrm{mg}, 78 \%$ yield, 89% e.e.).
HPLC analysis: Chiralcel IE (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=55.27 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=61.52 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.25$ (s, 6H), 1.67 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,144.8,141.3,139.1,137.3,135.0,132.1,128.8$, 127.7, 127.0, 124.3, 50.4, 26.7, 22.7, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 371.0746$, found: 371.0744 .

Methyl (R)-3-(1-(((3,5-dimethylphenyl)sulfonyl)thio)ethyl)benzoate (32)

32

According to the general procedure A with methyl 3-(1-bromoethyl)benzoate E29 $(41.2 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-30^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1 \sim 10 / 1$) to yield the product $\mathbf{3 2}$ as a colorless oil ($63.6 \mathrm{mg}, 87 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel IE (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=24.46 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=26.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), 7.29 - $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, 3 H), 2.24 ($\mathrm{s}, 6 \mathrm{H}$), 1.66 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,144.8,141.1,139.0,134.9,132.0,130.4,129.0$, 128.5, 128.3, 124.3, 52.3, 50.4, 22.7, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$365.0876, found: 365.0870.

(R)-S-(1-(Naphthalen-1-yl)propyl) 3,5-dimethylbenzenesulfonothioate (33)

 33

According to the general procedure A with 1-(1-bromopropyl)naphthalene E30 (49.8 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(53.8 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 33 as a white solid ($63.5 \mathrm{mg}, 86 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel IE (n-hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $0.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=23.82 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.01 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.11$ (s, 2H), $6.94(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,138.8,134.8,134.5,133.9,131.0,129.0,128.5$, 126.5, 125.9, 125.1, 124.4 (two carbon overlapped), 122.8, 30.0, 29.8, 21.1, 12.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$393.0953, found: 393.0953.

(R)-S-(1-(Naphthalen-2-yl)propyl) 3,5-dimethylbenzenesulfonothioate (34)

 34

According to the general procedure A with 2-(1-bromopropyl)naphthalene $\mathbf{E 3 1}$ (49.8 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(53.8 \mathrm{mg}$, 0.24 mmol , 1.2 eq.) run at $-15{ }^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 34 as a white solid ($64.6 \mathrm{mg}, 87 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=21.78 \mathrm{~min}, t_{\mathrm{R}}($ major $)=24.07 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.60$ $(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 0.92$ ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.9,138.6,136.4,134.4,132.9,132.8,128.2,127.9$, $127.6,127.3,126.3(2), 126.3(0), 125.1,124.1,58.0,29.4,20.7,12.1$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 393.0953$, found: 393.0953 .

34 was prepared from 2-(1-chloropropyl)naphthalene E36:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}.), \mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF}_{4}(12.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, $\mathbf{L} * 5$ (31.2 $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(260 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0 \mathrm{eq}$.$) , Then, 2-(1-$ chloropropyl)naphthalene $\mathbf{E 3 6}(40.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and toluene / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=$ $10 / 1,2.2 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at $-15{ }^{\circ} \mathrm{C}$ for 7 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 34 as a white solid ($29.7 \mathrm{mg}, 40 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=20.94 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.21 \mathrm{~min}$.

(R)-S-(1-(Benzo[b]thiophen-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (35)

According to the general procedure A with 3-(1-bromopropyl)benzo[b]thiophene E32
($51.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (53.8 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{3 5}$ as a colorless oil ($56.9 \mathrm{mg}, 76 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=13.61 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-$ $2.11(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,140.5,138.8,136.9,134.8,133.0,125.3,124.6$, 124.3, 124.1, 122.8, 121.9, 51.5, 28.7, 21.1, 12.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 399.0518$, found: 399.0515 .

(R)-S-(1-(Thiophen-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (36)

 36

According to the general procedure A with 3-(1-bromopropyl)thiophene E33 (34.4 $\mu \mathrm{L}$, $0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(53.8 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 4 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 36 as a colorless oil ($44.5 \mathrm{mg}, 68 \%$ yield, 88% e.e.).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=19.47 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.40 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.99$ $(\mathrm{m}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.29(\mathrm{~m}$, $6 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,140.2,139.0,134.9,126.6,126.1,124.3,122.9$, 52.9, 29.5, 21.3, 12.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 349.0361$, found: 349.0359 .

(R)-S-(1-(Quinolin-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (37)

According to the general procedure A with 3-(1-bromopropyl)quinoline E34 (50 mg, $0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(53.8 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column
chromatography on silica gel (petroleum ether/EtOAc $=10 / 1 \sim 5 / 1$) to yield the product 37 as a light yellow solid ($69.1 \mathrm{mg}, 93 \%$ yield, 94% e.e.).
HPLC analysis: Chiralcel OD-H (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=10.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.75 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.01$ (s, 2H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.93$ (m, 7H), 0.96 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2,147.3,144.6,138.8,134.6,134.6,132.0,129.7$, 129.2, 127.6, 127.3, 126.9, 124.0, 55.1, 29.4, 20.8, 11.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$372.1086, found: 372.1079.

(R)-S-(1-(Pyridin-3-yl)propyl) 3,5-dimethylbenzenesulfonothioate (38)

According to the general procedure A with 3-(1-bromopropyl)pyridine E35 ($40 \mu \mathrm{~L}$, $0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ ($53.8 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2$ eq.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product 38 as a light yellow solid ($33.0 \mathrm{mg}, 51 \%$ yield, 88% e.e.).
HPLC analysis: Chiralcel OD-H (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $230 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=28.83 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.66 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.32(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H})$, $7.10-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,148.9,144.8,139.1,135.5,135.1,135.0,124.2$, 123.3, 54.8, 29.6, 21.2, 11.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$322.0930, found: 322.0923.

6. Enantioconvergent cross-coupling of propargyl electrophiles with sodium benzenethiosulfonate

General procedure B: Substrate scope of propargyl halides and sodium benzenethiosulfonate (Table 3, 39-54)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate S6 ($47.2 \mathrm{mg}, 0.24$ mmol, 1.2 equiv.), $\mathrm{CuI}(2.86 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%), \mathbf{L} * 12(8.47 \mathrm{mg}, 0.012 \mathrm{mmol}$, $6 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($92.8 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv.), Then, propargyl halide (0.20 mmol, 1.0 equiv.), $\mathrm{H}_{2} \mathrm{O}\left(7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$. Upon completion (monitored by TLC), the precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products $39-43,45-51$:

Racemic E37-E41, E43-E49
S6
Racemic 39-43, 45-51
The mixture of sodium benzenethiosulfonate $\mathbf{S 6}$ ($23.6 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and propargyl halide ($0.10 \mathrm{mmol}, 1.0$ equiv.) in DMF (0.5 mL) was stirring for 1 d . Brine was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with EtOAc (3x) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemates.

The preparation of racemic products $(\pm)-\mathbf{4 4}, 52-54$:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate S6 $\mathbf{~} 47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2$ equiv.), CuI ($3.81 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L 1}(4.28 \mathrm{mg}, 0.016 \mathrm{mmol}, 8$ $\mathrm{mol} \%$, for synthesis of $(\pm)-\mathbf{4 4}, \mathbf{5 3})$ or $\mathbf{L 2}(6.02 \mathrm{mg}, 0.016 \mathrm{mmol}, 8 \mathrm{~mol} \%$, for synthesis of (\pm)-52, 54), $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($185.6 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv.), Then, propargyl halide (0.20 $\mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3days, the precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.
(S)-S-(1-(Triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (39)
 39

According to General procedure B, (3-bromopent-1-yn-1-yl)triisopropylsilane E37 $(59.2 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 39 as a colorless oil ($71.4 \mathrm{mg}, 90 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=11.27 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51$ (m, 2H), 4.17 (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.01-0.95(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,133.7,129.4,127.0,103.6,87.9,44.2,29.6,18.6$, 11.1(5), 11.1(3).

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$397.1686, found: 397.1682.
(S)-S-(4-(Triisopropylsilyl)but-3-yn-2-yl) benzenesulfonothioate (40)

40

According to General procedure B, (3-bromobut-1-yn-1-yl)triisopropylsilane E38 $(56.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography on silica$ gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 40 as a light yellow oil ($69.1 \mathrm{mg}, 90 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=11.20 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.95(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,133.8,129.4,127.0,104.8,87.2,37.5,23.4,18.6$, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{3} \mathrm{NaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 405.1349$, found: 405.1347.
(S)-S-(1-(Triisopropylsilyl)hex-1-yn-3-yl) benzenesulfonothioate (41)

41

According to General procedure B, (3-bromohex-1-yn-1-yl)triisopropylsilane E39 $(63.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 41 as a colorless oil ($69.7 \mathrm{mg}, 85 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=10.08 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.91 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.50$ (m, 2H), 4.19 (dd, $J=7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.73$ (m, 2H), $1.58-1.46$ (m, 2H), 1.01 $-0.93(\mathrm{~m}, 21 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,133.7,129.4,127.0,104.0,87.6,42.5,38.2,20.1$, 18.6, 13.5, 11.1 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$411.1842, found: 411.1839.
(S)-S-(4-Methyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (42)

42

According to General procedure \mathbf{B}, (3-bromo-4-methylpent-1-yn-1-yl)triisopropylsilane E40 ($100 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ $(47.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at 5 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product $\mathbf{4 2}$ as a colorless oil ($50.1 \mathrm{mg}, 61 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=10.07 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51$ (m, 2H), 4.13 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.95(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,133.7,129.4,127.0,102.3,88.5,49.8,33.8,20.7$, 18.7, 18.3, 11.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$411.1842, found: 411.1839.
(S)-S-(5-Methyl-1-(triisopropylsilyl)hex-1-yn-3-yl) benzenesulfonothioate (43)

43

According to General procedure \mathbf{B}, (3-bromo-5-methylhex-1-yn-1-yl)triisopropylsilane $\mathbf{E 4 1}(63.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ ($47.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 43 as a colorless oil ($80.7 \mathrm{mg}, 95 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=8.70 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.39 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 21 \mathrm{H}), 0.91(\mathrm{dd}, J=6.6,4.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5,133.7,129.4,127.1,104.2,87.5,45.1,41.1,26.4$, 22.8, 21.5, 18.6, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 425.1992$, found: 425.1999.
(S)-S-(4,4-Dimethyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (44)

According to General procedure B, (3-bromo-4,4-dimethylpent-1-yn-1-yl)triisopropylsilane $\mathbf{E 4 2}$ ($65.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with sodium benzenesulfonothioate $\mathbf{S 6}$ ($47.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at 7 days. The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 44 as a colorless oil ($51.8 \mathrm{mg}, 61 \%$ yield, 96% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=9.05 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48$ (m, 2H), $3.91(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7,133.6,129.3,127.0,104.1,87.5,55.2,36.5,27.5$, 18.7, 11.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 447.1818$, found: 447.1816.
(S)-S-(5-Phenyl-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (45)
 45

According to General procedure B, (3-bromo-5-phenylpent-1-yn-1-yl)triisopropylsilane E43 ($70.4 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ (47.2
$\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 45 as a colorless oil ($75.8 \mathrm{mg}, 80 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=28.24 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=29.95 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}$, $J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,140.2,133.8,129.4,128.7$ (two carbon overlapped), 127.0, 126.4, 103.3, 88.6, 41.8, 38.0, 33.0, 18.7, 11.2.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 495.1818$, found: 495.1814 .
(S)-S-(5-(5-Methylfuran-2-yl)-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (46)

According to General procedure B, (3-bromo-5-(5-methylfuran-2-yl)pent-1-yn-1yl)triisopropylsilane $\mathbf{E 4 4}(71.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 46 as a brown oil ($76.3 \mathrm{mg}, 80 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=11.63 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.50 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48$ (m, 2H), $5.89-5.82(\mathrm{~m}, 2 \mathrm{H}), 4.18$ (dd, $J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.93(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,150.9,145.3,133.8,129.4,127.0,106.7,106.1$, 103.2, 88.4, 41.7, 34.8, 25.4, 18.6, 13.6, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$477.1948, found: 477.1946.

Ethyl (S)-5-((phenylsulfonyl)thio)-7-(triisopropylsilyl)hept-6-ynoate (47)

According to General procedure B, ethyl 5-bromo-7-(triisopropylsilyl)hept-6-ynoate E45 ($62.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ ($47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 47 as a colorless oil
($82.6 \mathrm{mg}, 86 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=45.86 \mathrm{~min}, t_{\mathrm{R}}($ major $)=53.00 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl3) $\delta 172.9,145.4,133.8,129.4,127.0,103.3,88.3,60.5$, 42.2, 35.4, 33.5, 22.2, 18.6, 14.3, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$483.2054, found: 483.2052.

(S)-S-(5-Cyano-1-(triisopropylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (48)

$$
48
$$

According to General procedure B, 4-bromo-6-(triisopropylsilyl)hex-5-ynenitrile E46 ($56.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ mmol, 1.2 eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 48 as a brown oil (68.3 $\mathrm{mg}, 81 \%$ yield, 85% e.e.).
HPLC analysis: Chiralcel ODH (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=18.86 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.69 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56$ (m, 2H), 4.24 (dd, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.7, 134.3, 129.7, 127.1, 118.3, 100.7, 90.7, 40.8, 31.9, 18.6, 14.7, 11.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 444.1458$, found: 444.1456.

(S)-S-(8-Chloro-1-(triisopropylsilyl)oct-1-yn-3-yl) benzenesulfonothioate (49)

According to General procedure B, (3-bromo-8-chlorooct-1-yn-1-yl)triisopropylsilane E47 ($72.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate (47.2 mg , $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 49 as a light yellow oil ($81.5 \mathrm{mg}, 86 \%$ yield, 84% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=16.36 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.85 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.90(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4,133.8,129.4,127.0,103.6,88.0,44.8,42.5,35.9$, 32.3, 26.1, 25.9, 18.6, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{ClNaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 495.1585$, found: 495.1582 .
(S)-S-(1-(Triisopropylsilyl)oct-7-en-1-yn-3-yl) benzenesulfonothioate (50)

50

According to General procedure B, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane E48 ($68.5 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ eq.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 50 as a colorless oil ($69.9 \mathrm{mg}, 80 \%$ yield, 86% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=20.46 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.86 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 5.78-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=8.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.5,137.8,133.8,129.4,127.0,115.3,103.7,87.9$, 42.6, 35.5, 32.9, 25.9, 18.6, 11.1 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$437.1999, found: 437.1997.
(S,Z)-S-(1-(Triisopropylsilyl)undec-8-en-1-yn-3-yl) benzenesulfonothioate (51)

According to General procedure B, (3-bromooct-7-en-1-yn-1-yl)triisopropylsilane E49 ($78.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ ($47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 51 as a colorless oil ($78.0 \mathrm{mg}, 81 \%$ yield, 85% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=13.67 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 5.40-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ - $1.94(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.02-$ $0.92(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.5,133.7,132.2,129.3,128.6,127.0,103.8,87.8$, 42.6, 36.0, 29.0, 26.9, 26.4, 20.6, 18.6, 14.5, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{NaO}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 501.2288$, found: 501.2286.
(S)-S-(4,4-Dimethyl-1-(trimethylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (52)

According to General procedure B, (3-bromo-4,4-dimethylpent-1-yn-1-yl)trimethylsilane E50 ($46.6 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ (47.2 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 52 as a white solid ($54.5 \mathrm{mg}, 80 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $230 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.05 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.37 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,133.6,129.2,127.3,102.2,91.1,54.9,36.3,27.6$, -0.1 .
HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$341.1056, found: 341.1060.
(S)-S-(4,4-Dimethyl-1-(triethylsilyl)pent-1-yn-3-yl) benzenesulfonothioate (53)

According to General procedure B, (3-bromo-4,4-dimethylpent-1-yn-1-yl)triethylsilane E51 ($55.5 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}$ (47.2 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 53 as a colorless oil ($57.4 \mathrm{mg}, 75 \%$ yield, 97% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=10.65 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.67 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.46(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,133.6,129.2,127.1,103.5,88.6,55.1,36.4,27.5$, 7.6, 4.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$383.1523, found: 383.1529.

According to General procedure B, (3-bromo-4,4-dimethylpent-1-yn-1-yl)benzene $\mathbf{E 5 2}(42.5 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with sodium benzenesulfonothioate $\mathbf{S 6}(47.2 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 1.2 \mathrm{eq}$. .) The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to yield the product 54 as a white solid ($63.4 \mathrm{mg}, 92 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=$ $230 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=25.71 \mathrm{~min}, t_{\mathrm{R}}($ major $)=34.43 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.19$ $(\mathrm{m}, 3 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,133.5,131.6,129.1,128.5,128.2,127.3,122.5$, 86.5, 86.1, 55.0, 36.7, 27.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$345.0972, found: 345.0978.

7. Enantioconvergent cross-coupling of tertiary alkyl electrophiles with thiobenzoic acid or potassium thiocarboxylates.

General procedure C: Substrate scope of tertiary alkyl electrophiles and thiobenzoic acid (Table, 55-79)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles ($0.10 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.24 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 16(8.44 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($97.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv.). Then, thiobenzoic acid $\mathbf{S 9}(17.6 \mu \mathrm{~L}, 0.15$ mmol, 1.5 equiv.) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 3 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D: Substrate scope of (\pm)-E60 and potassium thiocarboxylates. (Table, 80-88)

Racemic E60

S10-18

80-88

L*16, R = 2-naphthyl
Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.24 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{L} * 16$ ($8.44 \mathrm{mg}, 0.015$ $\mathrm{mmol}, 15 \mathrm{~mol} \%$), potassium thiocarboxylates ($0.15 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.6$ $\mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv.). Then, $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 3 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The preparation of racemic products 55-88:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles ($0.10 \mathrm{mmol}, 1.0$ equiv.),
$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}\left(9.24 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv.). Then, thiobenzoic acid or potassium thiocarboxylates ($0.15 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 3 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(R)-S-(1-Oxo-2-phenyl-1-(phenylamino)butan-2-yl) benzothioate (55)

According to General procedure C, 2-chloro-N,2-diphenylbutanamide E53 (27.4 mg , $0.1 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 55 as a white solid ($34.9 \mathrm{mg}, 93 \%$ yield, 90% e.e.). HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=16.11 \mathrm{~min}, t_{\mathrm{R}}($ major $)=20.49 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,169.9,138.4,138.1,136.9,134.2,129.0,128.9$, 128.6, 128.0, 127.7, 127.4, 124.2, 120.0, 66.0, 32.5, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$376.1366, found: 376.1362.

S-(1-Oxo-2-phenyl-1-(phenylamino)butan-2-yl) benzenesulfonothioate (55a)

55a
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.06$ (m, 4H), $2.92-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,145.0,137.1,136.9,133.0,129.0,128.9,128.7$, 128.7, 128.1, 126.7, 125.0, 120.1, 72.5, 30.8, 9.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$412.1036, found: 412.1039.

N,2-Diphenylbut-2-enamide (55b)

55b
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34$ (m, $2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J$
$=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,139.0,137.9,137.3,130.0,129.0,128.8,127.9$, 126.7, 124.5, 112.0, 15.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$238.1226, found: 238.1222

2,2'-Disulfanediylbis(N,2-diphenylbutanamide) (55c)

55c
d.r. = 1:1
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-$ $7.26(\mathrm{~m}, 14 \mathrm{H}), 7.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 2 \mathrm{H}), 0.84$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,170.2,139.0,138.9,137.7(5), 137.7(3), 129.1(0)$, 129.0(5), 128.8, 128.7, 128.4, 128.30, 128.2(5), 128.1(6), 124.6(3), 124.5(7), 120.0(3), $119.9(8), 68.5,68.1,31.1,30.9,9.9,9.8$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{3} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$541.1978, found: 541.1992.
(R)-S-(1-((4-(Tert-butyl)phenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate
(56)

According to General procedure C, N-(4-(tert-butyl)phenyl)-2-chloro-2phenylbutanamide E54 ($33.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 56 as a white solid ($41.0 \mathrm{mg}, 95 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i-\operatorname{PrOH}=98 / 2$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=24.83 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=29.95 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 1 \mathrm{H})$, $2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8192.2,169.8,147.2,138.2,136.9,135.8,134.1,128.9$, 128.6, 127.9, 127.6, 127.5, 125.8, 119.6, 66.0, 34.5, 32.5, 31.5, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 432.1992$, found: 432.1989.

According to General procedure $\mathbf{C}, \quad N$-([1,1'-biphenyl]-4-yl)-2-chloro-2phenylbutanamide E55 ($35.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 57 as a colorless oil ($42.5 \mathrm{mg}, 94 \%$ yield, 89% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=90 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=17.66 \mathrm{~min}, t_{\mathrm{R}}($ major $)=20.18 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.06-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 3 \mathrm{H})$, $7.56-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H})$, $2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,170.0,140.8,138.1,137.7,137.1,136.9,134.2$, 128.9(2), 128.8(7), 128.6, 128.0, 127.7 (two carbon overlapped), 127.4, 127.1, 127.0, 120.2, 66.1, 32.6, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 452.1679$, found: 452.1674.
(R)-S-(1-((4-Bromophenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (58)

58

According to General procedure C, N-(4-bromophenyl)-2-chloro-2phenylbutanamide E56 ($35.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 58 as a light yellow solid ($41.8 \mathrm{mg}, 92 \%$ yield, 84% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=19.06 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.43 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.6, 170.0, 137.8, 137.5, 136.7, 134.3, 132.0, 128.9, 128.6, 128.0, 127.7, 127.3, 121.5, 116.7, 65.9, 32.6, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 454.0471$, found: 454.0466 .
(R)-S-(1-((3-Fluorophenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (59)

According to General procedure \mathbf{C}, 2-chloro- N-(3-fluorophenyl)-2-
phenylbutanamide $\mathbf{E 5 7}$ ($29.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 59 as a light yellow solid ($38.2 \mathrm{mg}, 97 \%$ yield, 87% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=15.77 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.69 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.22(\mathrm{~m}$, 1 H), 0.87 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.6, 170.1, 163.1 (d, $J=244.6 \mathrm{~Hz}$), 139.9 (d, $J=$ 10.9 Hz), 137.7, 136.7, 134.3, $130.0(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 128.9,128.7,128.0,127.7,127.3$, $115.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 110.9(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 107.4(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 65.9,32.6$, 9.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.58$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$394.1272, found: 394.1267.

(R)-S-(1-((3,5-Dimethylphenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate

(60)

60

According to General procedure C, 2-chloro- N-(3,5-dimethylphenyl)-2phenylbutanamide $\mathbf{E 5 8}$ ($30.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 60 as a colorless oil ($36.3 \mathrm{mg}, 90 \%$ yield, 86% e.e.).
HPLC analysis: Chiralcel AS-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.85 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.71 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.2,169.9,138.8,138.2(2), 138.1(9), 136.9,134.1$, 128.9, 128.6, 127.9, 127.7, 127.4, 125.9, 117.6, 66.0, 32.5, 21.5, 9.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 404.1679$, found: 404.1673.
(R)-S-(1-((3,5-Dimethoxyphenyl)amino)-1-oxo-2-phenylbutan-2-yl) benzothioate (61)

According to General procedure C, 2-chloro- N-(3,5-dimethoxyphenyl)-2phenylbutanamide E59 ($33.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 61 as a yellow oil ($41.4 \mathrm{mg}, 95 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=28.53 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.83 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.4,170.0,161.1,140.1,137.9,136.8,134.2,128.9$, 128.6, 128.0, 127.7, 127.4, 97.9, 97.0, 66.1, 55.5, 32.5, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 436.1577$, found: 436.1572.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) benzothioate (62)
 62

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{6 2}$ as a light yellow oil ($40.5 \mathrm{mg}, 95 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=28.39 \mathrm{~min}, t_{\mathrm{R}}($ major $)=32.45 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.5,170.2,138.1,136.8,135.8,134.2,134.0,130.6$, $128.9,128.7,128.6,128.0,127.8,127.7,127.6,127.4,126.5,125.0,120.0,116.5,66.0$, 32.6, 9.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 426.1522$, found: 426.1518 .

63

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2phenylpropanamide E61 ($31.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 63 as a light yellow solid ($38.7 \mathrm{mg}, 94 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=18.76 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.65 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.95(\mathrm{~m}, 2 \mathrm{H})$, $7.88-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 8 \mathrm{H})$, 2.14 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,170.5,140.9,136.6,134.3,134.2,132.8,129.1$, $128.9,128.7,128.2,127.7,127.2,126.6,126.4,126.0,125.9,125.6,120.8,120.2,61.3$, 27.9 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 412.1366$, found: 412.1361.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylpentan-2-yl) benzothioate (64)

64

According to General procedure C, 2-chloro-N-(naphthalen-1-yl)-2phenylpentanamide E62 ($33.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{6 4}$ as a light yellow solid ($40.9 \mathrm{mg}, 93 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel OD-3 ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=13.41 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.51 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.32(\mathrm{~m}, 8 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.9,170.6,139.0,136.8,134.2,134.1,132.9,128.9$, 128.7(1), 128.6(6), 128.0, 127.7, 127.4, 127.2, 126.3, 125.9, 125.8, 125.4, 120.9, 120.1, 65.6, 41.6, 18.5, 14.4 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 440.1679$, found: 440.1675.

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2,3diphenylpropanamide $\mathbf{E 6 3}$ ($38.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 65 as a white solid ($46.4 \mathrm{mg}, 95 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=21.68 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.15 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.07-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.83-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.6,138.0,136.8,135.8,134.3,134.1,132.7$, 131.6, 129.0, 128.6, 128.5, 128.3, 127.7(6), 127.7(0), 127.5, 127.4, 126.9, 126.3, 125.9, 125.8, 125.7, 120.9, 120.5, 66.0, 44.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 488.1679$, found: 488.1675.
(R)-S-(1-(Naphthalen-1-ylamino)-1-ox0-2,4-diphenylbutan-2-yl) benzothioate (66)

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2,4diphenylbutanamide E64 ($39.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{6 6}$ as a light yellow solid ($44.1 \mathrm{mg}, 88 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=27.03 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=37.59 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.04-7.98(\mathrm{~m}, 2 \mathrm{H})$, $7.85-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 6 \mathrm{H})$, $7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.57(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,170.3,141.7,138.8,136.8,134.3,134.2,132.8$, 128.9(6), 128.9(5), 128.7, 128.6, 128.5, 128.3, 127.7, 127.4, 127.3, 126.4, 126.1, 126.0, $125.9,125.6,121.0,120.3,65.3,41.6,31.7$.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 502.1835$, found: 502.1830.

(R)-S-(3-Cyclopropyl-1-(naphthalen-1-ylamino)-1-oxo-2-phenylpropan-2-yl) benzothioate (67)

According to General procedure C, 2-chloro-3-cyclopropyl- N-(naphthalen-1-yl)-2phenylpropanamide E65 ($35.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 67 as a light yellow solid ($40.7 \mathrm{mg}, 90 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel ODH (n-Hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=9.87 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.07-7.98(\mathrm{~m}, 2 \mathrm{H})$, $7.87-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.6,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $0.95-0.77(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.31(\mathrm{~m}, 1 \mathrm{H}), 0.08-0.00(\mathrm{~m}, 1 \mathrm{H})$, $0.00-0.09(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.9,170.7,139.1,136.9,134.1(5), 134.1(3), 132.8$, $128.9,128.7,128.6,128.0,127.7,127.5,127.2,126.3,125.9,125.8,125.4,120.9,120.1$, 66.3, 44.3, 7.1, 5.4, 5.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 452.1679$, found:452.1675

(R)-S-(5,5,5-Trifluoro-1-(naphthalen-1-ylamino)-1-oxo-2-phenylpentan-2-yl) benzothioate (68)

According to General procedure C, 2-chloro-5,5,5-trifluoro- N-(naphthalen-1-yl)-2phenylpentanamide E66 ($39.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 68 as a yellow solid ($42.0 \mathrm{mg}, 85 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.82 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.70-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.88(\mathrm{~m}, 1 \mathrm{H})$, $2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.7,169.8,137.6,136.4,134.6,134.2,132.4,129.3$, 129.1, 128.8(2), 128.7(7), 127.8, 127.3, 127.1(0) (q, $J=276.4 \mathrm{~Hz}), 127.0(6), 126.5$, $126.0,125.9,125.8,120.8,120.5,63.6,32.2(\mathrm{q}, J=3.0 \mathrm{~Hz}), 30.4(\mathrm{q}, J=28.6 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-66.23$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 494.1396$, found: 494.1393.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylpent-4-en-2-yl) benzothioate (69)

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2-phenylpent-4enamide E67 ($33.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}, 0.15$ $\mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 69 as a light yellow solid ($41.1 \mathrm{mg}, 94 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OZ-3 (n-Hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=30.88 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=46.89 \mathrm{~min}$.
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.97(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.18(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,170.3,138.6,136.8,134.3,134.2,133.0,132.7$, 128.9, 128.8, 128.7, 128.2, 127.7, 127.3 (two carbons overlap), 126.3, 125.9, 125.8, 125.6, 120.9, 120.4, 119.7, 64.8, 43.9 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 438.1522$, found: 438.1518.
(R)-S-(3-Methyl-1-(naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) benzothioate (70)
 70

According to General procedure \mathbf{C}, 2-chloro-3-methyl- N-(naphthalen-1-yl)-2phenylbutanamide $\mathbf{E 6 8}$ ($33.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography$ on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 70 as a brown oil ($33.0 \mathrm{mg}, 75 \%$ yield, 89% e.e.).
HPLC analysis: Chiralcel IG (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=15.26 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.42$
(m, 4H), $7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.7, 170.1, 137.0, 136.1, 134.2 (two carbon overlapped), 133.1, 128.9, 128.8, 128.6, 127.9(9), 127.9(6), 127.7, 127.2, 126.3, 125.9, $125.8,125.3,121.2,119.9,70.0,36.2,19.2,18.9$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 440.1679$, found: 440.1674.
(R)-S-(2-(4-(Tert-butyl)phenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (71)

According to General procedure C, 2-chloro-2-(4-isobutylphenyl)- N -(naphthalen-1yl)butanamide $\mathbf{E 6 9}$ ($48.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 71 as a light yellow oil ($45.3 \mathrm{mg}, 94 \%$ yield, 88% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=65.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=76.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.35(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.4,170.8,151.0,137.0,135.4,134.1,134.0,132.7$, $128.8,128.6,127.6,127.3,127.1,126.2,125.9,125.8,125.6,125.4,120.9,120.3,66.1$, 34.6, 31.7, 31.4, 9.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 482.2148$, found: 482.2142.
(R)-S-(2-(4-Bromophenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (72)

According to General procedure C, 2-(4-bromophenyl)-2-chloro-N-(naphthalen-1yl)butanamide E70 ($40.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 72 as a brown
solid ($46.9 \mathrm{mg}, 93 \%$ yield, 89% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=23.44 \mathrm{~min}, t_{\mathrm{R}}($ major $)=28.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.04(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.85-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.36(\mathrm{~m}, 9 \mathrm{H})$, $2.63-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.9,170.0,137.9,136.7,134.4,134.2,132.7,131.8$, 129.3, 129.0, 128.7, 127.7, 127.2, 126.5, 126.0, 125.8, 125.6, 122.1, 120.8, 120.2, 65.6, 32.5, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$504.0627, found: 504.0622.
(R)-S-(2-(3-Fluorophenyl)-1-(naphthalen-1-ylamino)-1-oxobutan-2-yl) benzothioate (73)

According to General procedure C, 2-chloro-2-(3-fluorophenyl)- N-(naphthalen-1yl)butanamide E71 ($34.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified by column chromatography on$ silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 73 as a yellow solid ($39.9 \mathrm{mg}, 90 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel OD-3 ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=16.56 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.17 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.42-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H})$, $0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,169.9,162.9(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 141.4(\mathrm{~d}, J=7.1$ Hz), 136.7, 134.4, 134.2, 132.7, 130.2 (d, $J=8.3 \mathrm{~Hz})$, 129.0, 128.7, 127.7, 127.3, 126.4, $126.0,125.8,125.7,123.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 120.8,120.3,115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.8$ (d, $J=23.5 \mathrm{~Hz}$), $65.6(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.5$, 9.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.88$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 444.1428$, found: 444.1421.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-(p-tolyl)propan-2-yl) benzothioate (74)

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2-(ptolyl)propanamide E72 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ (17.7 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 74 as a yellow solid ($39.2 \mathrm{mg}, 92 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=19.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.50 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.97(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}$, 3H).
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 191.8,170.7,138.1,137.9,136.7,134.2(1), 134.1(7)$, $132.8,129.8,128.9,128.7,127.7,127.2,126.5,126.4,126.0,125.9,125.5,120.9,120.2$, 61.2, 27.8, 21.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 426.1522$, found: 426.1516.
(R)-S-(2-(4-Isobutylphenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl) benzothioate (75)

According to General procedure C, 2-chloro-2-(4-isobutylphenyl)- N -(naphthalen-1yl)propanamide E73 ($36.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ ($17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 75 as a brown solid ($42.1 \mathrm{mg}, 90 \%$ yield, 93% e.e.).
HPLC analysis: Chiralcel IA (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=11.79 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.54 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.96-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 191.5, 170.7, 141.9, 138.0, 136.8, 134.1(6), 134.1(3), 132.7, 129.8, 128.9, 128.7, 127.6, 127.2, 126.5, 126.3, 125.9(4), 125.9(1), 125.5, 120.8, 120.2, 61.3, 45.1, 30.2, 27.5, 22.6, 22.5 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 468.1992$, found: 468.1987.
(R)-S-(2-(3-Methoxyphenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl) benzothioate (76)

According to General procedure C, 2-chloro-2-(3-methoxyphenyl)-N-(naphthalen-1yl)propanamide E74 ($34.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}$ ($17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 76 as a light yellow solid ($40.2 \mathrm{mg}, 91 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IF (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=41.58 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=47.27 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.6,170.4,160.0,142.5,136.7,134.2(4), 134.1(6)$, 132.7, 130.1, 128.9, 128.7, 127.7, 127.3, 126.4, 126.0, 125.9, 125.6, 120.9, 120.3, 118.9, 113.4, 112.8, 61.2, 55.4, 27.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 442.1471$, found: 442.1465 .

(R)-S-(2-(4-Chlorophenyl)-1-(naphthalen-1-ylamino)-1-oxopropan-2-yl)

 benzothioate (77)

According to General procedure C, 2-chloro-2-(4-chlorophenyl)-N-(naphthalen-1yl)propanamide $\mathbf{E 7 5}$ ($34.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 77 as a brown solid ($40.6 \mathrm{mg}, 91 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=47.99 \mathrm{~min}, t_{\mathrm{R}}($ major $)=52.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.24(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.04(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H})$, $7.86-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,170.1,139.6,136.4,134.5,134.1(7), 134.1(2)$, 132.6, 129.2, 129.0, 128.8, 128.1, 127.7, 127.2, 126.5, 126.0, 125.9, 125.7, 120.7, 120.3, 60.6, 28.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 446.0976$, found: 446.0971.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-(3-(trifluoromethyl)phenyl)propan-2yl) benzothioate (78)

78

According to General procedure C, 2-chloro- N-(naphthalen-1-yl)-2-(3(trifluoromethyl)phenyl)propanamide $\mathbf{E 7 6}(37.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) with$ thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was purified$ by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 78 as a light yellow oil ($45.6 \mathrm{mg}, 95 \%$ yield, 84% e.e.).
HPLC analysis: Chiralcel OD-3 (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=22.00 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 5 \mathrm{H})$, $2.19-2.08(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 169.9, 142.2, 136.3, 134.6, 134.2, 132.4, 131.4 $(\mathrm{q}, J=32.2 \mathrm{~Hz}), 130.1,129.6,129.0,128.7,127.7,127.5,126.5,126.1,126.0,125.8$, $125.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.0(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.6(\mathrm{q}, J=4.0,3.5 \mathrm{~Hz}), 120.8(2)$, 120.7(9), 60.6, 27.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.52$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} \mathrm{H}_{2} 1 \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 480.1240$, found: 480.1232 .
(R)-S-(1-(Naphthalen-1-ylamino)-2-(naphthalen-2-yl)-1-oxopropan-2-yl) benzothioate (79)

According to General procedure C, 2-chloro- N -(naphthalen-1-yl)-2-(naphthalen-2yl)propanamide E77 ($36.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with thiobenzoic acid $\mathbf{S 9}(17.7 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 79 as a white solid ($40.2 \mathrm{mg}, 87 \%$ yield, 88% e.e.).
HPLC analysis: Chiralcel AD-3 (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=22.63 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=29.47 \mathrm{~min}$.
${ }^{1}{ }^{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.97(\mathrm{~m}, 2 \mathrm{H})$, $7.92-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,170.6,138.3,136.7,134.3,134.2,133.3,132.9$, 132.8, 129.0(3), 128.9(7), 128.7, 128.4, 127.7(4), 127.7(2), 127.4, 126.8 (two carbon overlapped), $126.4,126.0,125.9(0), 125.8(5), 125.7,124.3,120.9,120.5,61.5,27.9$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 462.1522$, found: 462.1519.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-methylbenzothioate (80)

According to General procedure D, 2-chloro- N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 3methylbenzothioate $\mathbf{S 1 0}$ ($28.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ eq.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 0}$ as a colorless oil ($41.8 \mathrm{mg}, 95 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel AD-3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=20.23 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 3 \mathrm{H})$, $7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 7 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,170.6,138.8,138.6,136.9,135.0,134.1,132.9$, 128.8, 128.7, 128.6, 128.1, 128.0, 127.5, 127.2, 126.3, 125.9, 125.8, 125.4, 124.9, 120.9, 120.1, 66.1, 32.4, 21.4, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 440.1679$, found: 440.1675.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 4-methylbenzothioate (81)

According to General procedure D, 2-chloro-N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 4methylbenzothioate $\mathbf{S 1 1}$ ($28.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 1}$ as a brown oil ($41.8 \mathrm{mg}, 95 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=24.88 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.25 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.87(\mathrm{~m}, 2 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 5 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.5,170.7,145.3,138.7,134.4,134.2,132.9,129.6$, 128.6(7), 128.6(4), 128.0, 127.8, 127.5, 127.3, 126.3, 125.9(1), 125.8(6), 125.4, 121.0, 120.1, 65.9, 32.5, 21.9, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 440.1670$, found: 440.1679.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-(trifluoromethyl)benzothioate (82)

According to General procedure D, 2-chloro- N -(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 3(trifluoromethyl)benzothioate $\mathbf{S 1 2}(36.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1$ $\sim 10 / 1$) to yield the product $\mathbf{8 2}$ as a brown solid ($45.4 \mathrm{mg}, 92 \%$ yield, 96% e.e.).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.17 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.69 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.15(\mathrm{~m}, 1 \mathrm{H})$, $8.10-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 5 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.56-2.42(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5,170.1,138.3,137.5,134.1,132.6,131.5(\mathrm{q}, J=$ 33.3 Hz), 130.8, 130.4 (q, $J=3.5 \mathrm{~Hz}$), 129.6, 128.9, 128.8, 128.3, 127.5, 127.2, 126.4, $126.0,125.8,125.6,124.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.5(\mathrm{q}, J=272.6 \mathrm{~Hz}), 120.6,120.2,66.9$, 32.0, 9.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.79$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 494.1387$, found: 494.1396.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-chlorobenzothioate (83)
 83

According to General procedure D, 2-chloro- N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 3chlorobenzothioate $\mathbf{S 1 3}$ ($31.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 3}$ as a yellow solid ($45.5 \mathrm{mg}, 99 \%$ yield, 95% e.e.).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$
$n \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=18.98 \mathrm{~min}, t_{\mathrm{R}}($ major $)=21.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.08-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 1 \mathrm{H})$, $7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 6 \mathrm{H}), 2.72-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 1 \mathrm{H})$, 0.96 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 190.5, 170.2, 138.3, 135.2, 134.1, 134.0(two carbons overlap), 132.6, 130.2, 128.8, 128.7, 128.2, 127.6, 127.5, 127.2, 126.4, 126.0, 125.8, 125.7, 125.6, 120.7, 120.2, 66.7, 32.1, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 460.1133$, found: 460.1120.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3-bromobenzothioate (84)

According to General procedure D, 2-chloro-N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 3bromobenzothioate $\mathbf{S 1 4}$ ($38.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 4}$ as a yellow solid ($50.0 \mathrm{mg}, 99 \%$ yield, 94% e.e.).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=19.92 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.64 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.02(\mathrm{~m}, 1 \mathrm{H})$, $7.96-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 3 \mathrm{H})$, $7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.53-2.33(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,170.2,138.5,138.3,136.9,134.1,132.6,130.5$, $130.4,128.8,128.7,128.2,127.5,127.2,126.4,126.2,126.0,125.8,125.6,123.1,120.7$, 120.2, 66.7, 32.1, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 504.0627$, found: 504.0616.
(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 3,5-dimethylbenzothioate (85)

85

According to General procedure D, 2-chloro-N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 3,5dimethylbenzothioate $\mathbf{S 1 5}$ ($30.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 5}$ as a yellow oil ($42.2 \mathrm{mg}, 93 \%$ yield, 95% e.e.).

HPLC analysis: Chiralcel AD-3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=17.19 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.22 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~s}$, $1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.2,170.7,138.6(8), 138.6(5), 136.9,135.8,134.1$, 132.9, 128.6, 128.6, 128.0, 127.5, 127.2, 126.3, 125.8(8), 125.8(3), 125.4(two carbons overlap), 121.0, 120.1, 66.0, 32.4, 21.3, 9.6.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 454.1835$, found: 454.1834.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) thiophene-2carbothioate (86)

86

According to General procedure D, 2-chloro-N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with potassium thiophene-2carbothioate $\mathbf{S 1 6}$ ($27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product 86 as a brown solid ($42.8 \mathrm{mg}, 99 \%$ yield, 96% e.e.).
HPLC analysis: Chiralcel OD-3 (n-hexane $/ i$ - $\mathrm{PrOH}=95 / 15$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=25.66 \mathrm{~min}, t_{\mathrm{R}}($ major $)=28.32 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 1 \mathrm{H})$, $7.83-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.57(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H})$, $7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.8,170.4,141.5,138.5$, 134.1 (two carbon overlapped), $132.8,132.3,128.7,128.6,128.3,128.1,127.4,127.3,126.3,125.9,125.8$, 125.5, 121.0, 120.2, 66.7, 32.5, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 432.1086$, found: 432.1081.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) furan-2carbothioate (87)

According to General procedure D, 2-chloro- N-(naphthalen-1-yl)-2phenylbutanamide $\mathbf{E 6 0}$ ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) with potassium furan-2carbothioate $\mathbf{S 1 7}$ ($25.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 7}$ as a brown oil ($41.2 \mathrm{mg}, 99 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.58 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.45 \mathrm{~min}$.
${ }^{1}{ }^{1}$ N NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.68-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.56-6.50(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.1,170.4,150.4,147.1,138.5,134.1,132.8,128.7$, $128.6,128.1,127.4,127.2,126.3,125.9,125.8,125.5,120.9,120.1,117.2,112.7,66.1$, 32.5, 9.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 416.1315$, found: 416.1303.

(R)-S-(1-(Naphthalen-1-ylamino)-1-oxo-2-phenylbutan-2-yl) 2,2-dimethylpropanethioate (88)

88

According to General procedure D, 2-chloro-N-(naphthalen-1-yl)-2phenylbutanamide E60 ($32.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) with potassium 2,2dimethylpropanethioate $\mathbf{S 1 8}$ ($23.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 10 / 1$) to yield the product $\mathbf{8 8}$ as a yellow oil ($40.2 \mathrm{mg}, 99 \%$ yield, 90% e.e.).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.29 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.95 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.30(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.9,170.8,138.8,134.2,133.0,128.7,128.6,127.9$, 127.3(3), 127.2(6), 126.2, 125.9(4), 125.9(1), 125.4, 121.0, 120.1, 65.2, 47.7, 32.3, 27.5, 9.5 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 406.1835$, found: 406.1824.

8. Investigation of other electrophiles

Investigation of tertiary alkyl chlorides containing no $\mathbf{N}-\mathbf{H}$ bond

We examined the reaction of tertiary α-carbonyl alkyl chlorides containing no $\mathrm{N}-\mathrm{H}$ bond. Under the standard conditions, E81 gave rise to the corresponding radical cyclization product $\mathbf{1 0 7}$ rather than C-S coupling product 107'. Under the standard conditions, almost no conversion of E82 was observed. Only 16\% conversion of E82 was observed at an elevated temperature $\left(40^{\circ} \mathrm{C}\right)$, and the reaction afforded no desired product $\mathbf{1 0 8}^{\prime}$ but elimination by-product $\mathbf{1 0 8}$ (10% yield). Under the standard conditions, no conversion of $\mathbf{E 8 3}$ was observed as well. At $40^{\circ} \mathrm{C}$, the reaction of $\mathbf{E 8 3}$ afforded no desired product $\mathbf{1 0 9}^{\prime}$, but furnished the elimination by-product $\mathbf{1 0 9}$ and hydrogen atom abstraction by-product 110. These results revealed that the $\mathrm{N}-\mathrm{H}$ bond on tertiary α-carbonyl alkyl chlorides is crucial in tuning reactivity and chemoselectivity.

3-Ethyl-1-methyl-3-phenylindolin-2-one (107)

 107
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.17(\mathrm{~m}$, $1 \mathrm{H}), 0.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.7,144.2,140.4,132.2,128.6,128.2,127.3,127.1$, 124.9, 122.7, 108.3, 57.5, 31.0, 26.4, 9.2.

Note: $\mathbf{1 0 7}$ is a known compound ${ }^{12}$.

1-Morpholino-2-phenylbut-2-en-1-one (108)

108
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.7,137.5,136.0,128.9,127.9,125.3,124.8,67.0$, 66.9, 46.8, 41.6, 15.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$232.1332, found: 232.1327.

1-(Indolin-1-yl)-2-phenylbut-2-en-1-one (109)

109
mixture: 4:1
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) δ 168.0, 142.6, 139.7, 135.8, 131.9, 128.9, 127.9, 127.7, 125.5, 124.8, 124.7, 124.3, 117.4, 48.5, 28.1, 15.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$264.1383, found: 264.1386.

1-(indolin-1-yl)-2-phenylbutan-1-one (110)

110
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 1 \mathrm{H})$, $3.88-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.28-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,143.4,139.5,131.2,128.9,128.2,127.5,127.1$, 124.5, 123.7, 117.3, 54.0, 47.8, 28.1, 28.1, 12.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$288.1359, found: 288.1361.

Investigation of other secondary alkyl bromides

S-(1-(Indolin-1-yl)-1-oxobutan-2-yl) benzothioate (111)

111

HPLC analysis: Chiralcel AD-H (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=14.81 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.04 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.64-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ $-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,169.1,143.0,136.4,134.0,131.8,128.9,127.7$, 127.6, 124.7, 124.3, 117.6, 48.3, 47.4, 28.2, 26.4, 12.0 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 326.1209$, found: 326.1208.

S-(1-Morpholino-1-oxobutan-2-yl) benzothioate (112)

112

HPLC analysis: Chiralcel AD-H (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=10.21 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.33 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.55(\mathrm{~m}, 8 \mathrm{H}), 2.19-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80$ (m, 1H), 1.03 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 191.1,169.8,136.3,134.0,128.9,127.5,67.0,66.9$, 46.7, 43.8, 42.9, 26.4, 11.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$294.1158, found: 294.1156.

S-(1-Oxo-1-(phenylamino)butan-2-yl) benzothioate (113)

HPLC analysis: Chiralcel AD-H (n-Hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.83 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.56 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.6, 169.1, 138.0, 136.3, 134.3, 129.1, 129.0, 127.6, 124.5, 119.9, 48.5, 23.4, 12.3 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 300.1053$, found: 300.1054.

Ethyl 2-(benzoylthio)-3-methylbutanoate (114)

HPLC analysis: Chiralcel AD-H ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=99 / 1$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=11.09 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.57 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=6.8,5.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 190.5,171.5,136.7,133.8,128.8,127.6,61.6,53.4$, 30.9, 20.5, 19.9, 14.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}$ [M + H] ${ }^{+}$267.1049, found: 267.1050.

9. Procedure for synthetic applications (89-102)

The synthesis of 89

To a mixture of copper(II) sulfate ($16.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and sodium bicarbonate ($336.0 \mathrm{mg}, 4.0 \mathrm{mmol}, 4.0$ equiv.) was added a solution of corresponding thiosulfonates 1 ($320.5 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and phenylboronic acid (366.0 mg , 3.0 mmol , 3.0 equiv.) dissolved in methanol (5.0 mL) at room temperature. After stirring for 48 hours at the same temperature, the mixture was passed through a short pad of silica gel with EtOAc and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc $=100 / 1$ $\sim 20 / 1)$ to give product $89(183.3 \mathrm{mg}, 80 \%, 91 \%$ e.e.) as a white solid.

(R)-Phenyl(1-phenylpropyl)sulfane (89)

89

HPLC analysis: Chiralcel OJ-H (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=8.68 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.98 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{dd}, J=$ $8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.86(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,135.3,132.4,128.7,128.4,128.0,127.2,127.0$, 55.4, 29.5, 12.4.

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$229.1045, found: 229.1042.

The synthesis of 90 or 91

25, 92\% e.e.

$\mathrm{n}=0,90,99 \%$, 91\% e.e. $\mathrm{n}=1,91,99 \%, 92 \%$ e.e.

An oven-dried Schlenk tube was sequentially charged with the corresponding thiosulfonates 25 ($79.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaOAc}(49.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv). Anhydrous DMSO (1.0 mL) was then added followed by dropwise addition of $\mathrm{TMS}\left(\mathrm{CF}_{2}\right)_{\mathrm{n}} \mathrm{CF}_{3}(\mathrm{n}=0$ or 1) (3.0 equiv) with stirring. Then the reaction was stirred at room temperature for 4 hours. After the reaction was completed, it was diluted with DCM. The organic layer was washed with water (three times) and brine, then dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding perfluoroalkyl sulfides $\mathbf{9 0}$ or 91 .
(R)-(1-([1,1'-Biphenyl]-4-yl)propyl)(trifluoromethyl)sulfane (90)

90

25 with $\mathrm{Me}_{3} \mathrm{SiCF}_{3}$ ($88.8 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 90 as a light yellow solid ($58.7 \mathrm{mg}, 99 \%$ yield, 91% e.e.).
HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=10.55 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.61 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30$ (m, 3H), $4.24(\mathrm{dd}, J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.91(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,140.6,139.6,130.8(\mathrm{q}, J=307.2 \mathrm{~Hz}), 128.9$, $128.0,127.6,127.5,127.2,51.2(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 30.0,12.1$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-39.66$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F} 3 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$297.0919, found: 297.0933.

(R)-(1-([1,1'-Biphenyl]-4-yl)propyl)(perfluoroethyl)sulfane (91)

$\mathbf{2 5}$ with $\mathrm{Me}_{3} \mathrm{SiCF}_{2} \mathrm{CF}_{3}$ ($105.2 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.). The reaction mixture was purified by column chromatography on silica gel (petroleum ether) to yield the product 91 as a white solid ($68.6 \mathrm{mg}, 99 \%$ yield, 92% e.e.).
HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=9.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.65 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 4.34(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,140.6,139.8,128.9,128.0(4), 127.5(9), 127.5(8)$, $127.2,122.0(\mathrm{tq}, J=40.6 \mathrm{~Hz}), 118.7(\mathrm{qt}, J=36.4 \mathrm{~Hz}), 50.1(\mathrm{t}, J=2.6 \mathrm{~Hz}), 30.7,12.1$. ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-83.41(\mathrm{t}, J=3.9 \mathrm{~Hz}, 3 \mathrm{~F}),-90.31(\mathrm{q}, J=3.8 \mathrm{~Hz}, 1 \mathrm{~F}),-$ 90.45 ($\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{~F}$).

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F} 5 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$347.0887, found: 347.0882.

The synthesis of 92

1, 91% e.e.
92, 86%, d.r. $=10: 1,>99 \%$ e.e.

An oven-dried Schlenk tube was sequentially charged with the corresponding thiosulfonates 1 ($64.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv). Anhydrous DMF (1.0 mL) was then added, then the reaction was stirred at room temperature for 18 hours. After the reaction was completed, it was diluted with DCM. The organic layer was washed with water (three times) and brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the product $92(52.0 \mathrm{mg}, 86 \%$, d.r. $=10: 1,>99 \%$ e.e. $)$ as a light yellow solid. The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy.

1,2-Bis((R)-1-phenylpropyl)disulfane (92)

HPLC analysis: Chiralcel OJ-3 (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=6.64 \mathrm{~min}, t_{\mathrm{R}}($ major $)=8.82 \mathrm{~min}, t_{\mathrm{R}}($ meso $)=10.14 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 6 \mathrm{H}+6 \mathrm{H} \times 0.1), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H}+$ $4 \mathrm{H} \times 0.1), 3.23(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.1) 3.16(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H} \times 0.1), 1.78(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H} \times 0.1), 0.81-0.71(\mathrm{~m}, 6 \mathrm{H}$ $+6 \mathrm{H} \times 0.1$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,128.5$ (two carbon overlapped), 127.5, 57.0, 27.8, 12.3.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$303.1236, found: 303.1227.

The synthesis of 93

1, 91\% e.e.

$\mathrm{EtOH}, 50^{\circ} \mathrm{C}$, air, 6 h

93, 98\%, 91\% e.e.

A mixture of corresponding thiosulfonates $\mathbf{1}(64.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) and 4 methylphenylthiol ($24.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(1.0 \mathrm{~mL}$) was stirred at $50{ }^{\circ} \mathrm{C}$ for 6 hours in air. After the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, the solution was
washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the product 93 ($53.8 \mathrm{mg}, 98 \%$, 91% e.e.) as white solid.

(R)-1-(1-Phenylpropyl)-2-(p-tolyl)disulfane (93)

HPLC analysis: Chiralcel OJ (n-Hexane $/ i$ - $\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.54 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.50 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,136.9,134.3,129.7,128.6,128.4,128.3,127.6$, 57.7, 28.0, 21.1, 12.4 .

HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.0923, found: 275.0918.

The synthesis of 94

In a round bottomed flask (10 mL) equipped with a stir bar, a solution of $\mathbf{8 9}(45.7 \mathrm{mg}$, 0.20 mmol , 1.0 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was prepared, the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(40.0 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{Me} 3 \mathrm{SiCl}(17.6 \mu \mathrm{~L}, 0.20$ $\mathrm{mmol}, 1.0$ equiv.) were added and the mixture was stirred at room temperature for 30 min . After disappearance of the sulfide, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc $=20 / 1 \sim 3 / 1$) to afford the product 94 ($48.4 \mathrm{mg}, 99 \%$, d.r. $=2.8: 1,91 \%$ e.e. (major), 91% e.e. (minor)) as a white solid. The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy.

(((R)-1-Phenylpropyl)sulfinyl)benzene (94)

HPLC analysis: Chiralcel OD-H ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=95 / 5$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$
$214 \mathrm{~nm}), t_{\mathrm{R}}($ minor 1$)=17.38 \mathrm{~min}, t_{\mathrm{R}}($ major 2$)=18.84 \mathrm{~min}, t_{\mathrm{R}}(\operatorname{minor} 2)=20.04 \mathrm{~min}$, $t_{\mathrm{R}}($ majorl $)=26.49 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.32(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H} \times 0.36), 7.32-7.13(\mathrm{~m}, 7 \mathrm{H}+$ $5 \mathrm{H} \times 0.36), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H} \times 0.36), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H} \times 0.36)$, $3.57(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H} \times 0.36), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H} \times 0.36), 2.12-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H} \times 0.36), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} \times 0.36), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}), (major), $\delta 142.3,133.6,131.0,129.3,128.5(3), 128.4(6)$, 128.0, 125.0, 75.0, 22.4, 11.6.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), (minor), $\delta 141.3,132.2,130.7,129.4,128.4,128.3$, 128.1, 124.8, 72.2, 21.4, 12.1.

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$245.0995, found: 245.0989.

The synthesis of 95

89, 91\% e.e.

95, 92\%, 91% e.e.

In a round-bottomed flask (10 mL) equipped with a stir bar, a solution of $\mathbf{8 9}(45.7 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was prepared. The solution was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of m-CPBA (purity: $85 \%, 162.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.0 \mathrm{~mL})$ was added dropwise and the mixture was stirred at room temperature for 2 hours. After disappearance of the sulfide, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc $=20 / 1 \sim 3 / 1$) to afford the product $95(47.9 \mathrm{mg}, 92 \%, 91 \%$ e.e.) as a white solid.

(R)-((1-Phenylpropyl)sulfonyl)benzene (95)

 95

HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=214 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=7.96 \mathrm{~min}, t_{\mathrm{R}}($ major $)=9.88 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-$ 7.19 (m, 3H), 7.09 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=11.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.41$ (m, $1 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5,133.5,132.2,130.0,129.1,128.8,128.7,128.5$, 73.2, 21.0, 11.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$261.0944, found: 261.0938 .

The synthesis of 96

89, 91\% e.e.
96, 72%, d.r. $=2.5: 1$
92% e.e. (major), 90% e.e. (minor)
The sulfide 89 ($45.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), (diacetoxyiodo)benzene (193.2 mg , $0.60 \mathrm{mmol}, 3.0$ equiv.) and ammonium carbamate ($46.8 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv.) were added to a flask containing a stirrer bar. $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added and the reaction was stirred at room temperature for 12 h . After disappearance of the sulfide, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc ($3 \times$ 5 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=20 / 1$ $\sim 3 / 1)$ to afford the product $96(37.3 \mathrm{mg}, 72 \%$, d.r. $=2.5: 1,92 \%$ e.e. (major), 90% e.e. (minor)) as a light yellow solid. The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Imino(phenyl)((R)-1-phenylpropyl)- λ^{6}-sulfanone (96)

 96

HPLC analysis: Chiralcel OJ ($n-\mathrm{Hexane} / i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ minor 1$)=13.43 \mathrm{~min}, t_{\mathrm{R}}($ minor 2$)=15.97 \mathrm{~min}, t_{\mathrm{R}}($ major 2$)=18.22 \mathrm{~min}$, $t_{\mathrm{R}}($ majorl $)=37.84 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H} \times 0.4), 7.59-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H} \times 0.4), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34$ $-7.28(\mathrm{~m}, 2 \mathrm{H}+3 \mathrm{H} \times 0.4), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H} \times 0.4), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H} \times 0.4)$, $4.04(\mathrm{dd}, J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4), 3.92(\mathrm{dd}, J=11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}+1 \mathrm{H}$ $\times 0.4), 2.51-2.39(\mathrm{~m}, 1 \mathrm{H} \times 0.4), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H}+1 \mathrm{H} \times 0.4), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H} \times 0.4), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major), $\delta 139.3,133.0,132.0,130.3,129.4,128.9$, 128.6(0), 128.5(8), 75.2, 22.4, 11.6(5).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor), $\delta 139.9,132.8,132.4,130.2,129.3,129.0,128.7$, 128.4, 74.4, 21.2, 11.5(9).

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+}$260.1104, found: 260.1096.

The synthesis of 97

A mixture of corresponding thiosulfonates $25(79.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), morpholine ($35.0 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv.), $\mathrm{CuI}(5.73 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,2'-bipyridine (bpy, $4.68 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in DMSO (1.0 mL) was stirred at $60{ }^{\circ} \mathrm{C}$ for 19 hours in air. After the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, the solution was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the corresponding sulfenamides, which was directly used in the next step without further purification.
In a round-bottomed flask (10 mL) equipped with a stir bar, a solution of the crude sulfenamides obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was prepared. The solution was cooled to $0^{\circ} \mathrm{C}$. A solution of m-CPBA (purity: $85 \%, 121.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added dropwise and the mixture was stirred at room temperature for 3 hours. After disappearance of the sulfenamides, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=20 / 1 \sim 3 / 1$) to afford the product $97(38.7 \mathrm{mg}, 56 \%$ for 2 steps, 92% e.e.) as a white solid.

(R)-4-((1-([1,1'-Biphenyl]-4-yl)propyl)sulfonyl)morpholine (97)

HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=10.04 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.55 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=11.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.14$ - $3.05(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,140.1,132.1,130.1,129.0,127.9,127.5,127.1$, 69.7, 66.9, 46.3, 23.5, 11.5.

HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$368.1291, found: 368.1280.

The synthesis of 98

To a stirred solution of thiosulfonate 37 ($37.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) in acetonitrile $(1.0 \mathrm{~mL})$ and water (0.1 mL), Selectfluor ($159.5 \mathrm{mg}, 0.45 \mathrm{mmol}, 4.5$ equiv.) was added and the resulting mixture was heated at $81^{\circ} \mathrm{C}$ for 2 hours. The reaction was monitored via TLC. After the thiosulfonate disappeared from the TLC, water $(10 \mathrm{~mL})$ was added and the resulting mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The extract was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1 \sim 4 / 1$) to afford the product $98(24.2 \mathrm{mg}, 96 \%, 93 \%$ e.e.) as a yellow oil.

(R)-1-(Quinolin-3-yl)propane-1-sulfonyl fluoride (98)

98

HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=34.80 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=37.90 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 1 \mathrm{H}), 4.60$ (dd, $J=10.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,148.7,137.0,131.0,129.5,128.2,127.8,127.6$, 123.4, 67.4 (d, $J=13.3 \mathrm{~Hz}$), 23.6, 11.3.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.44$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NFS}[\mathrm{M}+\mathrm{H}]^{+}$254.0646, found: 254.0639.

The synthesis of 99

In a round-bottomed flask $(10 \mathrm{~mL})$ equipped with a stir bar, a solution of the $\mathbf{6 2}(42.6$ $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was prepared. The solution was cooled to $0^{\circ} \mathrm{C}$. NaBH_{4} ($18.9 \mathrm{mg}, 0.5 \mathrm{mmol}, 5.0$ equiv.) was added and the mixture was stirred at room temperature for 4 hours. the reaction mixture was quenched by adding 3 N HCl (aq.) and concentrated. The residue was purified by column chromatography on silica
gel (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=5 / 1 \sim 1 / 1$) to afford the product $99(29.6 \mathrm{mg}, 92 \%, 95 \%$ e.e.) as a white solid.

(R)-2-Mercapto- N-(naphthalen-1-yl)-2-phenylbutanamide (99)

HPLC analysis: Chiralcel AS-H (n-Hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}), t_{\mathrm{R}}($ major $)=12.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.70 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.78(\mathrm{~m}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 1 \mathrm{H})$, $1.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,141.7,134.2,132.3,129.1,129.0,128.2,126.9$, $126.8,126.5,126.1,125.9,125.7,120.3,119.6,61.6,34.8,9.9$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+} 322.1260$, found: 322.1253.

The synthesis of 100 ' and 100

To a mixture of copper(II) sulfate ($3.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and sodium bicarbonate ($33.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.) was added a solution of corresponding thiosulfonates $39 \quad(79.3 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, 1.0$ equiv.) and (4(methoxycarbonyl)phenyl)boronic acid ($54.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) dissolved in methanol (1.0 mL) at room temperature. After stirring for 16 hours at the same temperature, the mixture was passed through a short pad of silica gel with EtOAc and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=100 / 1 \sim 60 / 1$) to give product $\mathbf{1 0 0}^{\prime}(74.2 \mathrm{mg}, 95 \%)$ as a colorless oil.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{1 0 0}^{\prime}(46.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv.) dissolved in anhydrous THF (1.2 mL) cooled to $-78^{\circ} \mathrm{C}$, Then, tetrabutylammonium fluoride (0.13 $\mathrm{mL}, 1.0 \mathrm{M}$ in THF, 0.13 mmol , 1.1 equiv.) diluted in anhydrous THF (1.2 mL) were sequentially added into the mixture and the reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 10 min . Upon completion (monitored by TLC), water (10 mL) was added and the resulting mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The extract was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether /EtOAc $=60 / 1 \sim$ $20 / 1)$ to afford the product $\mathbf{1 0 0}(27.8 \mathrm{mg}, 99 \%, 90 \%$ e.e.) as a colorless oil.

Methyl (S)-4-((1-(triisopropylsilyl)pent-1-yn-3-yl)thio)benzoate (100')

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=$ $7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.97$ (m, 21H).
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 166.9,142.1,129.9,129.5,128.0,106.5,85.7,52.2$, 39.7, 28.5, 18.7, 11.8, 11.3.

HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 413.1941$, found: 413.1949.

Methyl (S)-4-(pent-1-yn-3-ylthio)benzoate (100)

100

HPLC analysis: Chiralcel OD-H (n-Hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $230 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=12.12 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.16 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ (s, 3H), $3.89-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=$ 7.4 Hz, 3H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,141.5,130.0,129.5,128.2,83.0,72.7,52.3,38.6$, 28.2, 11.7.

HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$235.0787, found: 235.0787.

The synthesis of 101

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{S 5}(54.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{BF}_{4}(6.28 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} * 5(15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($260 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv.), Then, E79 ($72.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and MTBE/DMF ($\mathrm{v} / \mathrm{v}=10 / 1,2.2 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at -15 or $-30^{\circ} \mathrm{C}$. Upon completion (monitored by TLC), the precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc . The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1 \sim 5 / 1$) to afford the desired product 101 as a white solid
(86.6 mg , 95% yield, d.r. $=8: 1$). The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy.
Note: The substrates E79 were known compounds and synthesized according to reported literature ${ }^{6}$, the diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy.
($8 R, 9 S, 13 S, 14 S$)-3-(1-bromoethyl)-13-methyl-6,7,8,9,11,12,13,14,15,16 decahydro-17H-cyclopenta[a]phenanthren-17-one (E79)

${ }^{1}{ }^{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.09(\mathrm{~m}, 1 \mathrm{H})$, $2.98-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.

S-((R)-1-((8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)ethyl) dimethylbenzenesulfonothioate (101)

101
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.91$ $(\mathrm{m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.46(\mathrm{~m}$, $1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.25-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.60-1.41(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.7$, 145.0 139.4, 139.0, 137.8, 136.8, 134.9, 127.8, $125.6,124.5,124.4,124.4,50.6,50.5,48.0,44.4,38.1,35.9,31.6,29.3,26.5,25.6,22.8$, 21.6, 21.3, 13.9 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 505.1842$, found: 505.1837.

The synthesis of 102

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles E80 ($41.7 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.24 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 16(8.44 \mathrm{mg}, 0.015$ $\mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathbf{S} 1\left(0.15 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv.). Then, EtOAc (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 3 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc . The filtrate was evaporated and the residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=200 / 1 \sim 30 / 1\right)$ to afford the desired product 102 as a light yellow oli $(41.7 \mathrm{mg}, 80 \%$ yield, 81% e.e.).

2-(Diethylamino)ethyl 4-(2-chloro-2-phenylbutanamido)benzoate (E80)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,165.2,141.8,139.6,130.8,128.6,128.5,126.2$, 124.9, 119.3, 79.0, 59.5, 49.9, 47.4, 34.8, 9.3, 9.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 417.1939$, found: 417.1944.

2-(Diethylamino)ethyl (R)-4-(2-(benzoylthio)-2-phenylbutanamido)benzoate (102)

HPLC analysis: Chiralcel ADH (n-Hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), t_{\mathrm{R}}($ minor $)=17.06 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.40 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 3 \mathrm{H})$, $7.51-7.42$ (m, 4H), $7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.39$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88$ (t, $J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.66(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7,170.3,166.2,142.6,137.6,136.7,134.4,130.9$, 129.0, 128.7, 128.1, 127.7, 127.3, 125.6, 119.1, 66.0, 63.1, 51.0, 47.9, 32.7, 12.0, 9.3. HRMS (ESI) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 519.2312$, found: 519.2296.

10. Mechanistic studies

The synthesis of copper(I) 3,5-dimethylbenzenesulfonothioate 103

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (67.8 $\mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ eq.), $\mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF}_{4}$ ($0.3 \mathrm{mmol}, 1.0$ eq.). Then, toluene (1.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 5 hours, the toluene was evaporated under vacuum to afford analytically pure 103 ($\sim 90 \%$ yield) as a light yellow solid.

Bis(acetonitrile)tri(copper) tri(3,5-dimethylbenzenesulfonothioate) (103)

$\mathrm{Cu}_{3}(\mathrm{MeCN})_{2}\left(\mathrm{ArSSO}_{2}\right)_{3}$
($\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{Ph}$)
${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 7.48$ ($\mathrm{s}, 6 \mathrm{H}$), 7.14 (s, 3H), 2.31 ($\mathrm{s}, 18 \mathrm{H}$), 2.07 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}) $\delta 150.8,137.6,132.1,122.4,117.9,20.6,0.9$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{2} 7 \mathrm{Cu}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{6}[\mathrm{M}-2 \mathrm{MeCN}+\mathrm{Na}]^{+} 816.7894$, found: 816.7871.

The effects of the ligand and copper 3,5-dimethylbenzenesulfonothioate 103 on the reaction initiation and product formation

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $103(17.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.4 \mathrm{eq}),. \mathbf{L} * 5(46.8 \mathrm{mg}$, $0.06 \mathrm{mmol}, 1.2 \mathrm{eq}$.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(65.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ eq.), Then, $4-(1-$ bromopropyl)-1,1'-biphenyl E22 ($13.8 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ eq.) and toluene/DMF ($\mathrm{v} / \mathrm{v}=10 / 1,0.55$ mL) were sequentially added into the mixture and the reaction mixture was stirred at $15{ }^{\circ} \mathrm{C}$ for 3.5 days. Upon completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5trimethybenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of $\mathbf{2 5}$ was determined by HPLC analysis.

The procedure for the reaction without $\mathbf{L} * 5$ was the same with that described above except that $\mathbf{L} * \mathbf{5}$ was not added. There was no conversion of $\mathbf{E 2 2}$.

The effects of sodium 3,5-dimethylbenzenesulfonothioate S 5 on the reaction initiation and product formation

According to the general procedure \mathbf{A} with 4-(1-bromopropyl)-1,1'-biphenyl E22 ($55.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) and sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (54.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) to yield the product $\mathbf{2 5}$ as a colorless oil ($69.8 \mathrm{mg}, 88 \%$ yield, 92% e.e.).

The procedure for the reaction without $\mathbf{S 5}$ was the same with that described above except that $\mathbf{L} * \mathbf{5}$ was not added. There was no conversion of $\mathbf{E 2 2}$.

The stereochemistry of benzyl halide and product during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{S 5}\left(0.0 .6 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$.), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(1.57 \mathrm{mg}$, $0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%$), L*5 ($3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(65 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 4.0 \mathrm{eq}$), Then, $\mathbf{E} 1(0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and toluene/DMF (\mathrm{v} / \mathrm{v}=10 / 1,0.55 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for appropriate time. Upon completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5trimethylbenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of $\mathbf{1}$ and recovered $\mathbf{E} 1$ were determined by HPLC analysis.

No apparent enantioenrichment of the recovered alkyl bromide E1 was observed under typical conditions, disfavoring a possible kinetic resolution of $\mathbf{E 1}$, and therefore ruling out the typical $\mathrm{S}_{\mathrm{N}} 2$-type substitution pathway. Moreover, the observed e.e. values of the product 1 remained nearly constant at different time intervals, favoring the involvement of a uniform mechanism throughout the reaction course.

Radical trap experiments

According to the general procedure \mathbf{A} with 4-(1-bromopropyl)-1,1'-biphenyl E22 ($55.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.), sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}$ (54.0 mg , $0.24 \mathrm{mmol}, 1.2$ eq.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, $62.5 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 2.0 \mathrm{eq}$.) run at $-15^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1$) to yield the TEMPOtrapped products 104 as a white solid ($30.5 \mathrm{mg}, 43 \%$ yield).

1-(1-([1,1'-Biphenyl]-4-yl)propoxy)-2,2,6,6-tetramethylpiperidine (104)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{dd}, J=9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.14(\mathrm{~m}, 10 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,141.2,139.6,128.8,128.3,127.2,127.1,126.6$, 88.5, $60.0-59.7$ (m, 1C), 40.6, 34.5-34.3 (m, 1C), 28.9, $20.7-20.5$ (m, 1C), 17.4, 9.9.

Note: $\mathbf{1 0 4}$ is a known compound ${ }^{9}$.

According to the general procedure \mathbf{A} with 4-(1-bromopropyl)-1,1'-biphenyl E22 ($55.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.), sodium 3,5-dimethylbenzenesulfonothioate $\mathbf{S 5}(54.0 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.2$ eq.) and 2,6-di-tert-butyl-4-methylphenol (BHT, $88.1 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2.0 eq.) run at $-15{ }^{\circ} \mathrm{C}$ for 5 days, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=60 / 1$) to yield the BHT-trapped products $\mathbf{1 1 5}$ as a colorless oil ($58.7 \mathrm{mg}, 71 \%$ yield).

4-(1-([1,1'-Biphenyl]-4-yl)propyl)-2,6-di-tert-butyl-4-methylcyclohexa-2,5-dien-1one (115)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.44$ $(\mathrm{s}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.5,147.1,146.1,145.8,145.4,141.0,139.7,139.4$, 129.7, 128.8, 127.2, 127.1, 126.6, 57.8, 43.1, 35.0, 34.8, 29.6, 29.5, 25.5, 22.9, 13.1.

HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 415.2995$, found: 415.2992.

Radical clock experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium 3,5-dimethylbenzenesulfonothioate S5 (54.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.), $\mathrm{Cu}(\mathrm{MeCN}) 4 \mathrm{BF}_{4}(6.28 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} * 5(15.6$ $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Css}_{2} \mathrm{CO}_{3}(260 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ eq.), Then, $(Z)-(6-$ bromohex-1-ene-1,6-diyl)dibenzene E78 and toluene/DMF ($\mathrm{v} / \mathrm{v}=10 / 1,2.2 \mathrm{~mL}$) were
sequentially added into the mixture and the reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 5 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography (petroleum ether/EtOAc $=60 / 1 \sim 20 / 1$) on silica gel to afford the desired product 105 as a colorless oil ($18.2 \mathrm{mg}, 21 \%$ yield) and the radical clock product 106 was then separated by preparative TLC (n-Hexane/EtOAc $=20 / 1$) as a colorless oil $(26.0 \mathrm{mg}, 30 \%$ yield, d.r. $=5: 2: 1$). The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy

(R,Z)-S-1,6-Diphenylhex-5-en-1-yl) 3,5-dimethylbenzenesulfonothioate (105)

 105
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.16-$ $7.12(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=$ $11.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.01$ $-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,139.5,138.9,137.5,134.8,131.8,129.6,128.8$, 128.4, 128.3, 127.8 (two carbon overlapped), 126.7, 124.3, 55.9, 36.0, 28.0, 27.6, 21.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 459.1423$, found: 459.1422.

S-(Phenyl(2-phenylcyclopentyl)methyl) 3,5-dimethylbenzenesulfonothioate (106)

d.r. $=5: 2: 1$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ - $7.10(\mathrm{~m}, 6.4 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 12.4 \mathrm{H}), 6.77-$ $6.69(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 0.2 \mathrm{H}), 4.04$ (d, $J=11.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.92(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 0.2 \mathrm{H}), 2.79-2.65(\mathrm{~m}$, 0.4 H), 2.53 (t, $J=7.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1.2 \mathrm{H}), 2.23(\mathrm{~s}, 1.2 \mathrm{H}), 2.21(\mathrm{~s}, 2.4 \mathrm{H})$, $2.15(\mathrm{~s}, 6 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1.4 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1.8 \mathrm{H}), 1.82-1.55(\mathrm{~m}, 6.4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major 1) δ 145.1, 144.6, 139.9, 138.6(8), 134.6, 128.5, $128.2,127.9,127.5,127.2,126.2,124.3,59.8,54.5,49.8,35.6,30.3,24.7,21.1$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major 2) $\delta 145.1,143.2,139.6(6), 138.7(4), 134.8,129.2$, 128.2, 128.1, 127.8, 127.4, 126.3, 124.4, 58.6, 49.6, 47.9, 34.8, 31.1, 29.8, 23.9, 21.2.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) (minor) $\delta 145.2,142.5,139.6(7), 138.9,129.0,128.8$, 128.4(2), 128.3(8), 127.7, 125.8, 124.3, 124.2, 56.1, 36.4, 35.8, 31.2, 29.5, 28.7, 27.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 459.1423$, found: 459.1422 .

Radical trap experiments for the propargyl reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sodium benzenethiosulfonate S6 ($47.2 \mathrm{mg}, 0.24$ mmol, 1.2 equiv.), $\mathrm{CuI}(2.86 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%), \mathbf{L} * 12(8.47 \mathrm{mg}, 0.012 \mathrm{mmol}$, $6 \mathrm{~mol} \%), \mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($92.8 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv.) and the corresponding trapping reagents (2.0 equiv.), Then, propargyl halide ($0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{H}_{2} \mathrm{O}(7.2 \mu \mathrm{~L}, 0.40$ $\mathrm{mmol}, 2.0$ equiv.) and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$. Upon completion (monitored by TLC), the precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=100 / 1 \sim 50 / 1$) to afford the desired product 39 .

Note: When TEMPO was used as trapping reagent, the coupling was completely inhibited. When BHT was used as trapping reagent, the residue was purified by preparative TLC (n-Hexane/Et2 $\mathrm{O}=60 / 1$) to afford the BHT-trapped products $\mathbf{1 1 6}$ as colorless oil ($44.3 \mathrm{mg}, 50 \%$ yield).

2,6-Di-tert-butyl-4-methyl-4-(1-(triisopropylsilyl)pent-1-yn-3-yl)cyclohexa-2,5-dien-1-one (116)

TIPS

${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=11.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 19 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 22 \mathrm{H})$, $0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 186.6, 147.3(4), 147.3(1), 145.9, 144.3, 108.1, 85.1, 45.3, 42.5, 35.0, 34.9, 29.7, 26.2, 24.1, 18.8, 12.8, 11.4.

HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 443.3704$, found: 443.3699.

The synthesis of copper(I) thiocarboxylate 117

Potassium benzothioate $\mathbf{S 1}$ ($123.4 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 1.0 mL of water was added a suspension of $\mathrm{CuCl}\left(69.3 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.0\right.$ eq.) in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing triphenylphosphine ($367.2 \mathrm{mg}, 1.4 \mathrm{mmol}, 2.0$ eq.). The reddish $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and layered with $\mathrm{Et}_{2} \mathrm{O}$. Greenish yellow solid were filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum to afford the product 117 as greenish yellow solid ($\sim 80 \%$ yield).
Note: The 117 is a known compound and synthesized according to reported literature ${ }^{13}$.

Bis(triphenylphosphine)copper(I) thiocarboxylate (117)

$\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}\left(\mathrm{PPh}_{3}\right)_{2}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 14 \mathrm{H}), 7.29$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.83$.
Note: $\mathbf{1 1 7}$ is a known compound and NMR spectra match with the literature report ${ }^{13}$.
The effect of ligand and copper(I) thiocarboxylates $\mathbf{1 1 7}$ for the tertiary reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with tertiary alkyl electrophiles E60 ($16.2 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}_{\left(\mathrm{PPh}_{3}\right) 2}\left(54.4 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.5\right.$ equiv.), $\mathbf{L}^{*} 16(42.2 \mathrm{mg}$, $0.075 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(97.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0\right.$ equiv.). Then, $\mathrm{Et}_{2} \mathrm{O}$ (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at $10^{\circ} \mathrm{C}$ for 3 days. Upon completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layer was concentrated to afford crude product. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethylbenzene as an internal standard. The product was then separated by preparative TLC. The e.e. values of $\mathbf{6 2}$ was determined by HPLC analysis.

The procedure for the reaction without $\mathbf{L *} \mathbf{1 6}$ was the same with that described above
except that $\mathbf{L} * \mathbf{1 6}$ was not added. The racemic product $\mathbf{6 2}$ was obtained in high yield, which indicated that there was a strong background reaction without chiral ligand $\mathbf{L} * \mathbf{1 6}$. While combination $\mathbf{L * 1 6}$ and copper(I) thiocarboxylates effectively tuned reactivity and enantioselectivity of this reaction.

Radical clock experiments for the tertiary reaction

Note: The substrate 118 was a known compound and synthesized according to reported literature ${ }^{14}$, and $\mathbf{1 1 9}$ was commercially available.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $N, 2$-diphenylacrylamide 118 ($0.1 \mathrm{mmol}, 1.0$ equiv.), potassium benzothioate $\mathbf{S 1}$ ($0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CF}_{3}(9.24 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 16(8.44 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.6 \mathrm{mg}, 0.30$ $\mathrm{mmol}, 3.0$ equiv.). Then, tert-butyl 2-bromo-2-methylpropanoate $\mathbf{1 1 9}$ ($22.4 \mu \mathrm{~L}, 0.12$ $\mathrm{mmol}, 1.2$ equiv.) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at r.t. for 3 days. The precipitate was filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50 / 1 \sim 10 / 1$) to afford the desired product 120 as cloroless oil ($12.6 \mathrm{mg}, 25 \%$ yield, 84% e.e.).

N,2-Diphenylacrylamide (118)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H})$.

Tert-butyl
 (phenylamino)pentanoate (120)

4-(benzoylthio)-2,2-dimethyl-5-oxo-4-phenyl-5-

HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.54 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.50 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}$, $3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.2,176.9,169.8,139.9,138.3,136.9,134.2,129.0$, 128.8, 128.7, 128.0, 127.8, 127.5, 124.3, 120.2, 80.2, 64.7, 46.9, 43.0, 28.0, 27.7, 26.7. HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 504.2203$, found: 504.2198.
11. X-ray crystallography

Supplementary Fig. 5^{\prime} | The X-ray structure of 1 (CCDC $2212974,50 \%$ probability ellipsoids).

Supplementary Table 9 | Crystal data and structure refinement for Compound 1.

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$
Formula weight	320.45
Temperature/K	100.0
Crystal system	orthorhombic
Space group	$P 2{ }_{12} 2_{1}$
a / \AA	8.676(4)
b / \AA	10.434(6)
c/ \AA	17.758(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1607.6(13)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.324
μ / mm^{-1}	3.008
F(000)	680.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	13.272 to 136.93
Index ranges	$-10 \leq \mathrm{h} \leq 10,-10 \leq \mathrm{k} \leq 12,-14 \leq 1 \leq 21$
Reflections collected	10708
Independent reflections	$2911\left[\mathrm{R}_{\text {int }}=0.0326, \mathrm{R}_{\text {sigma }}=0.0315\right]$
Data/restraints/parameters	2911/0/193
Goodness-of-fit on F^{2}	1.079
Final R indexes [I>=2 σ (I)]	$\mathrm{R}_{1}=0.0232, \mathrm{wR}_{2}=0.0589$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0236, \mathrm{wR}_{2}=0.0590$
Largest diff. peak/hole / e \AA^{-3}	0.34/-0.27
Flack parameter	0.034(6)

Supplementary Fig. 6' | The X-ray structure of 52 (CCDC 2213037, 50\% probability ellipsoids).

Supplementary Table 10 | Crystal data and structure refinement for Compound 52.

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}$
Formula weight	340.56
Temperature/K	200.0(2)
Crystal system	triclinic
Space group	P_{1}
a / \AA	9.4425(3)
b/Å	10.3552(4)
c/ \AA	10.7218(4)
$\alpha /{ }^{\circ}$	91.4010(10)
$\beta /{ }^{\circ}$	92.7930(10)
γ^{\prime}	111.4310(10)
Volume $/ \AA^{3}$	973.71(6)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.162
μ / mm^{-1}	0.336
$\mathrm{F}(000)$	364.0
Crystal size/mm ${ }^{3}$	$0.34 \times 0.29 \times 0.28$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.644 to 56.706
Index ranges	$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-14 \leq 1 \leq 14$
Reflections collected	38244
Independent reflections	$9568\left[\mathrm{R}_{\text {int }}=0.0487, \mathrm{R}_{\text {sigma }}=0.0353\right]$
Data/restraints/parameters	9568/3/391
Goodness-of-fit on F^{2}	1.050
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0449, \mathrm{wR}_{2}=0.1225$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0517, \mathrm{wR}_{2}=0.1264$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.35
Flack parameter	-0.01(3)

Supplementary Fig. 7' | The X-ray structure of 83 (CCDC 2213038, 50\% probability ellipsoids).

Supplementary Table 11 | Crystal data and structure refinement for Compound 83.

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{2} \mathrm{~S}$
Formula weight	459.96
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	$P 2_{1}$
a / \AA	11.6349(7)
b/ \AA	9.8818(6)
c/ \AA	19.6807(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.263(3)
γ^{\prime}	90
Volume $/ \AA^{3}$	2261.0(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.351
μ / mm^{-1}	1.682
F(000)	960.0
Crystal size/mm ${ }^{3}$	$0.28 \times 0.03 \times 0.03$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection $/{ }^{\circ}$	3.908 to 114.118
Index ranges	$-14 \leq \mathrm{h} \leq 14,-12 \leq \mathrm{k} \leq 12,-24 \leq 1 \leq 24$
Reflections collected	49135
Independent reflections	$9250\left[\mathrm{R}_{\text {int }}=0.0759, \mathrm{R}_{\text {sigma }}=0.0501\right]$
Data/restraints/parameters	9250/3/585
Goodness-of-fit on F^{2}	1.141
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0697, \mathrm{wR}_{2}=0.1826$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0729, \mathrm{wR}_{2}=0.1859$
Largest diff. peak/hole / e \AA^{-3}	0.32/-0.72
Flack parameter	-0.02(2)

12. Computational studies

12.1. Computational Details

All density functional theory (DFT) calculation results are obtained with Gaussian 16 program ${ }^{15}$. Default SCF convergence criteria, optimization convergence criteria and integral grid parameters for Gaussian 16 are applied unless otherwise stated. (5d,7f) keyword in Gaussian 16 was used. Geometry optimizations are conducted with B3LYP functional ${ }^{16,17}$, employing the D3 version of Grimme's dispersion corrections ${ }^{18}$ with Becke-Johnson damping ${ }^{19}$. LANL2DZ basis set ${ }^{20-23}$ is used for copper and $6-31 \mathrm{G}(\mathrm{d})$ basis set is used for all other light atoms. Single-point energies and solvent effects at toluene and diethyl ether are also evaluated with B3LYP functional with Grimme's dispersion corrections and Becke-Johnson damping. SDD basis set ${ }^{20,24-27}$ is used for copper and $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set is used for all other light atoms. The solvation energies are calculated with a self-consistent reaction field (SCRF) using the SMD implicit solvent model ${ }^{28}$. Frequency analysis is also performed at the same level of theory as geometry optimization using harmonic oscillator model to confirm whether optimized stationary points are either local minimum or transition state, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K . Mulliken spin distribution is obtained at the same level of theory as geometry optimization.

In addition, geometry optimization, frequency analysis and single point energy of open-shell transition states and local minimums are calculated with unrestricted DFT methods, while same computations for closed-shell structures are performed with restricted DFT methods. Wavefunction stability test at the same level of theory as geometry optimizations is employed to ensure that the SCF converged wavefunction is stable.

To correct the Gibbs free energies under 1 atm to the standard state in solution (1 $\mathrm{mol} / \mathrm{L})$, a correction of $R T \ln \left(c_{s} / c_{g}\right)$ is added to energies of all species. c_{s} stands for the standard molar concentration in solution ($1 \mathrm{~mol} / \mathrm{L}$), c_{g} stands for the standard molar concentration in gas phase (about $0.040876 \mathrm{~mol} / \mathrm{L}$), and R is the gas constant. For calculated intermediates at the standard state of $1 \mathrm{~mol} / \mathrm{L}$ at 298.15 K , the correction value equaling to $1.89 \mathrm{kcal} / \mathrm{mol}$ is used.

The 3D diagrams of optimized structures shown in this supplementary information for computations are generated with CYLview software ${ }^{29}$. Cartesian coordinates of computed species are included in the Computational Archives.

12.2. Discussion on Cu-Mediated C-S Bonding Mechanism of Secondary Benzyl

Radical and Benzothioate

Supplementary Fig. 10 | DFT exploration of C-S bond formation pathways with $\mathbf{L 5 C u}($ II)(benzoylthiolate) species Int-S1 and secondary benzyl radical Int-S2. Free energies in $\mathrm{kcal} / \mathrm{mol}$ are shown in parentheses, which are compared to Int-S1 and IntS2.

DFT calculations in model systems are performed to study Cu -mediated $\mathrm{C}-\mathrm{S}$ bond formation pathway for secondary benzyl radical and benzothioate. Simplified achiral N, N, P-ligand based on $\mathbf{L} * \mathbf{5}$ is used for calculations in this section.

The proposed $\mathrm{C}-\mathrm{S}$ bond formation pathways between $\mathbf{L 5 C u}(\mathrm{II})$ (benzoylthiolate) species Int-S1 and secondary benzyl radical Int-S2 include three major possibilities: sequential SET and ion-type C-S bonding (path A in Supplementary Fig. 10), outersphere radical-substitution-type $\mathrm{C}-\mathrm{S}$ bond formation via TS-S4 (path B in Supplementary Fig. 10), and reductive elimination via TS-S4-RE (path C in Supplementary Fig. 10).

Supplementary Fig. 11 | Proposed closed-shell structure of pre-intermediate iontype $\mathbf{C - S}$ bond formation and further geometry optimization results. Trivial hydrogen atoms are omitted for clarity.

Regarding path A , the ion-type $\mathrm{C}-\mathrm{S}$ bonding, the transition state cannot be located after extensive efforts. The structure of the pre-intermediate prior to the proposed iontype C-S bonding transition state, Proposed TS-S4-CB-Pre, has an RHF to UHF 'wavefunction' instability, indicating that such closed-shell singlet, zwitterionic intermediate does not exist at computed potential energy surface. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of Proposed TS-S4-CB-Pre leads to the open-shell singlet intermediate Int-S3-OSS, which is a VdW (van der Waals) complex of $\mathbf{L 5 C u}($ II $)$ (benzoylthiolate) species Int-S1 and secondary benzyl radical Int-S2, and also the pre-intermediate for the radical substitution $\mathrm{C}-\mathrm{S}$ bond formation. Also, the Mulliken spin distribution indicates the open-shell singlet diradical nature of Int-S3-OSS. Based on these results, the ion-type $\mathrm{C}-\mathrm{S}$ bonding pathway is not operative. (Supplementary Fig. 11)

Supplementary Fig. 12 | Located radical-substitution-type C-S bond formation transition state. Trivial hydrogen atoms are omitted for clarity.

Regarding path B , the radical-substitution-type $\mathrm{C}-\mathrm{S}$ bonding, the transition state is located as TS-S4. The free energy barrier of $\mathrm{C}-\mathrm{S}$ bond formation via TS-S4 is 12.3 $\mathrm{kcal} / \mathrm{mol}$. The Mulliken spin distribution indicates the open-shell singlet nature of TSS4. (Supplementary Fig. 12)

TS-S4-RE
$\Delta G^{\ddagger}=17.3 \mathrm{kcal} / \mathrm{mol}$

Supplementary Fig. 13 | Located C-S reductive elimination transition state. Trivial hydrogen atoms are omitted for clarity.

Regarding path $\mathrm{C}, \mathrm{C}-\mathrm{S}$ reductive elimination, the transition state is located as TS-S4-RE. This TS-S4-RE already has a stable wavefunction using RHF (restricted Hartree-Fock) calculation. This result illustrates that open-shell form of TS-S4-RE doesn't exist. The free energy barrier of C-S bond formation via TS-S4-RE is 17.3 $\mathrm{kcal} / \mathrm{mol}$, which is $5.0 \mathrm{kcal} / \mathrm{mol}$ unfavorable compared to radical-substitution-type CS bond formation via TS-S4. (Supplementary Fig. 13, Supplementary Table. 12)

Based on the above calculations and discussions, Cu -mediated $\mathrm{C}-\mathrm{S}$ bond formation for secondary benzyl radical and benzothioate via open-shell singlet radical substitution transition state TS-S4 is the most favorable.

12.3. Discussion on Cu-Mediated C-S Bonding Mechanism of Tertiary Benzyl

Radical and Benzothioate

Supplementary Fig. 14 | DFT exploration of C-S bond formation pathways with L 16 Cu (II)(benzoylthiolate) species Int-S6 and tertiary benzyl radical Int-S7. Free energies in $\mathrm{kcal} / \mathrm{mol}$ are shown in parentheses, which are compared to Int-S6 and IntS7.

DFT calculations in model systems are performed to study Cu -mediated $\mathrm{C}-\mathrm{S}$ bond formation pathway for tertiary benzyl radical and benzothioate. Simplified achiral N, N, N-ligand based on $\mathbf{L} * \mathbf{1 6}$ is used for calculations in this section.

The proposed C-S bond formation pathways between $\mathbf{L 1 6 C u}(\mathrm{II})$ (benzoylthiolate) species Int-S6 and tertiary benzyl radical Int-S7 include three major possibilities: sequential SET and ion-type C-S bonding (path A in Supplementary Fig. 14), outersphere radical-substitution-type $\mathrm{C}-\mathrm{S}$ bond formation via TS-S9 (path B in Supplementary Fig. 14), and reductive elimination (path C in Supplementary Fig. 14).

Supplementary Fig. 15 | Optimized closed-shell structure of pre-intermediate iontype $\mathbf{C - S}$ bond formation and further geometry optimization results. Trivial hydrogen atoms are omitted for clarity.

Regarding path A , the ion-type $\mathrm{C}-\mathrm{S}$ bonding, the transition state cannot be located after extensive efforts. The structure of the pre-intermediate prior to the proposed iontype C-S bonding transition state can be located using restricted Hartree-Fock (RHF) calculation as Optimized TS-S9-CB-Pre. The sequential wavefunction test indicates that this Optimized TS-S9-CB-Pre has an RHF to UHF 'wavefunction' instability. Such closed-shell singlet, zwitterionic intermediate does not exist at computed potential energy surface. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of Optimized TS-S9-CB-Pre leads to the open-shell singlet intermediate Int-S8-OSS, which is a VdW (van der Waals) complex of $\mathbf{L 1 6 C u}(I I)$ (benzoylthio) species Int-S6 and tertiary benzyl radical Int-S7, and also the pre-intermediate for the radical substitution $\mathrm{C}-\mathrm{S}$ bond formation. Mulliken spin distribution indicates the open-shell singlet diradical nature of Int-S8-OSS. Based on these results, the ion-type $\mathrm{C}-\mathrm{S}$ bonding pathway is not operative. (Supplementary Fig. 15)

Supplementary Fig. 16 | Located radical-substitution-type C-S bond formation transition state. Trivial hydrogen atoms are omitted for clarity.

Regarding path B , the radical-substitution-type $\mathrm{C}-\mathrm{S}$ bonding, the transition state is located as TS-S9. The free energy barrier of C-S bond formation via TS-S4 is 13.9 $\mathrm{kcal} / \mathrm{mol}$ compared to the favored VdW complex Int-S8-Triplet. The Mulliken spin distribution indicates the open-shell singlet nature of TS-S9. (Supplementary Fig. 16)

Supplementary Fig. 17 | Results on sequential geometry optimizations for closedshell structure of pre-intermediate $\mathbf{C}-\mathbf{S}$ reductive elimination. Trivial hydrogen atoms are omitted for clarity.

Regarding path $\mathrm{C}, \mathrm{C}-\mathrm{S}$ reductive elimination, the reductive elimination transition state cannot be located after extensive efforts. The pre-intermediate of reductive elimination, TS-S9-RE-Pre-Fixed, is firstly optimized with $d(\mathrm{C}-\mathrm{Cu})$ fixed to $2.20 \AA$ and $d(\mathrm{C}-\mathrm{S})$ fixed to $2.43 \AA$ in order to maintain the characteristics of the proposed $\mathrm{Cu}(\mathrm{III})$ structure during optimization. Sequential geometry optimization with full degrees of freedom leads to TS-S9-RE-Pre-Release with $\mathrm{C}-\mathrm{Cu}$ bond length of $2.82 \AA$. Wavefunction test indicates that this TS-S9-RE-Pre-Release has an RHF to UHF 'wavefunction' instability. Further open-shell singlet optimization with unrestricted Hartree-Fock (UHF) calculation of TS-S9-RE-Pre-Release leads to Int-S8-OSS. Based on these results, the $\mathrm{C}-\mathrm{S}$ reductive elimination pathway is not operative. (Supplementary Fig. 17)

Based on the above calculations and discussions, Cu -mediated $\mathrm{C}-\mathrm{S}$ bond formation between tertiary benzyl radical and benzothioate via open-shell singlet radical substitution transition state TS-S9 is the most favorable.

12.4. Table of Energies

Supplementary Table 12 | Energies in Supplementary Figs. 10, 12 and 14. Zero-point correction (ZPE), thermal correction to enthalpy (TCH), thermal correction to Gibbs free energy ($\boldsymbol{T C G}$), energies (\boldsymbol{E}), enthalpies (\boldsymbol{H}), and Gibbs free energies (\boldsymbol{G}) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Toluene)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	TCH	TCG	\boldsymbol{E}	\boldsymbol{H}	\boldsymbol{G}	Imaginary Frequency
Int-S1	0.527361	0.562973	0.458709	-2358.237425	-2357.674452	-2357.778716	
Int-S2	0.143393	0.151750	0.110895	-310.353457	-310.201707	-310.242562	
Int-S3-OSS	0.672446	0.717195	0.592468	-2668.608790	-2667.891595	-2668.016322	
Int-S3-	0.672460	0.717199	0.591489	-2668.608809	-2667.891610	-2668.017320	
Triplet							
TS-S4	0.672600	0.716539	0.593891	-2668.592583	-2667.876044	-2667.998692	$235.9 i$
TS-S4-RE	0.673177	0.717210	0.592332	-2668.583021	-2667.865811	-2667.990689	$104.6 i$
Int-S5	0.675801	0.719455	0.598784	-2668.627689	-2667.908234	-2668.028905	

Supplementary Table 13 | Energies in Supplementary Figs. 14 and 16 Zero-point correction (ZPE), thermal correction to enthalpy (TCH), thermal correction to Gibbs free energy ($\boldsymbol{T C} \boldsymbol{G}$), energies (\boldsymbol{E}), enthalpies (\boldsymbol{H}), and Gibbs free energies (\boldsymbol{G}) (in Hartree) of the structures calculated at B3LYP-D3(BJ)/6-311+G(d,p)-SDD-SMD(Diethyl Ether)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ level of theory.

Structure	ZPE	TCH	TCG	\boldsymbol{E}	\boldsymbol{H}	\boldsymbol{G}	Imaginary Frequency	
Int-S6	0.383519	0.411261	0.322601	-1873.966007	-1873.554746	-1873.643406		
Int-S7	0.23856	0.253748	0.194709	-709.748212	-709.494464	-709.553503		
Int-S8-	0.624067	0.667389	0.546065	-2583.740099	-2583.072710	-2583.194034		
OSS								
Int-S8-	0.624005	0.667356	0.544790	-2583.740237	-2583.072881	-2583.195447		
Triplet							$201.8 i$	
TS-S9	0.622438	0.665361	0.545773	-2583.719100	-2583.053739	-2583.173327		
Int-S10	0.624152	0.667367	0.545544	-2583.740048	-2583.072681	-2583.194504		

13. NMR spectra

$\stackrel{9}{7}$

ty2an6-195-1139D. 13. fid

-21.345

ty22-6-195-1139C. 1.fid

[^0]

ty22-6-195-1139C. 19. fid

$\underbrace{\frac{n}{\infty} \text { oso }}$

ty22-6

	5	

$\underbrace{\text { ty21-6-12-956K. 1. fid }}_{|=|} \underbrace{\text { (}}_{\mid}$

\qquad

9.5	9. 0	8. 5	8. 0	7.5	7.0	6. 5	6. 0	5. 5	5. 0	,	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.

ty21-6-12-656K.13.fid

ty21-5-161-917-Pc. 13. fiof

(4y22-6-76-1020-4P. 1. fid

E4

E5

E8

E9

E11

8.0	7.5	7.0	6. 5	6. 0	5.5	5.0	4. 5	4.0	3. 5	3.0	2.5	2.0	1.5	1.0	${ }_{0}^{1} 5$	${ }_{0}^{1} 0$	${ }_{-0.5}$
								4.0									

E13

E14

E16
(

E21

E24

E27

E28

TIPS

ga22-113-a. 13. fid

180	170	160	150	140	130	120	110	100	90	${ }_{80}$	${ }_{70}$	60	50	40	30	10	10	o
									f1 (

E50 ga-tms-tbu. 1.fid

E50 ga-tms-tbu. 13. fid

$\stackrel{\text { O. }}{\stackrel{\circ}{+}}$

E51 ga22-184-iii.13.fid

$\stackrel{3}{3}$

ga22-206-b-p. 1. fid

\iint

等

M23 6991.

s sill
/

TY23-E71. 1. fid

E72.1. fid

$\int\|\|\|$

${ }^{\text {E77 }}$

E79

			$\frac{\sqrt[m]{i}}{i}$									'20		TV			$\underset{\text { Ti }}{\substack{0}}$		
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6. 0	5. 5	5. 0	$\begin{array}{r} 4.5 \\ (\mathrm{ppm}) \end{array}$	4. 0	3.5	3.0	2.5	2. 0	1.5	1.0	0.5	0. 0

$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{\infty}$

तू̀

L*3

y23-L3. 31.fid

L*3
$\stackrel{8}{8}$

L*4

		*	¢\%
		$\stackrel{1}{6}$	
\/	Y	V	Y

L*9

[^1]

L*10

TY23-L10. 2. fid

L*11

TY23-L11. 1. fid

| 180 | 170 | 160 | 1 |
| :--- |

L*11

TY23-L11. 2. fid
$\stackrel{9}{7}$
i
i

[^2]

$\stackrel{\uparrow}{\circ}$	
13.	

		 	$\stackrel{\text { ® }}{\stackrel{\circ}{\square}}$
-	।		+

TY23-L12.2.fid
辛

L*13

ty23-L14. 1. fid
$\stackrel{\stackrel{\circ}{6}}{\stackrel{\circ}{2}}$
$\stackrel{\text { ® }}{\stackrel{\circ}{2}}$

L*14

L15. 10. fid

L*15

\sim \qquad 1

-

	$\begin{array}{cc} \bar{m} & 0 \\ \stackrel{7}{4} \\ \stackrel{\rightharpoonup}{4} \\ 1 & i \end{array}$

2

~

3

160	150	140	130	120	110	100	90	${ }_{8}^{80}$	70	60	50	40	30	20	10	0	${ }_{-1}$
								S26									

			\％	＋	遃	
I		ゾ，		－	11	$1 /$

部
$\stackrel{\text { ？}}{3}$

[^3]

7.5	7.0	6.5	6.0	5. 5	5.0	4.5	4. 0	3. 5	3.0	2.5	2.0	1.5	1.0	0.	0. 0	${ }_{-0.5}$

$\stackrel{\infty}{\infty}$


```
313-Foltfid lollol
旁
\(\stackrel{y}{x}\)
```


31 3-F. 12. fid

$\stackrel{\text { xin }}{3}$

バ

ty21-5-106-826G. 19. fid

䖝

些

160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0
								S290								

ty21-5-144-900D. 12fido
童
$\stackrel{y}{4}$

160	150	140	130	120	110	100	90	$\begin{gathered} 1 \\ \mathrm{fl} \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	o
								S291								

ty21－5－109
守等
䧺

[^4]

36. 11. fid

章

11 ～年

$\stackrel{n}{\stackrel{n}{\infty}}$

${ }_{150}$	${ }_{140}$	${ }_{130}$	${ }_{120}$	${ }_{110}$	${ }_{100}$	${ }_{90}$	${ }_{80}$	${ }_{70}$	${ }^{1} 0$	${ }_{50}$	40	${ }_{30}$	${ }_{20}$	10	o

商

42

+6		区. did فِ	$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \infty \\ \infty \end{gathered}$	$\stackrel{\text { \% }}{\substack{\text { ¢ }}}$	$\stackrel{\text { N }}{0}$	

150	${ }_{140}^{1}$	130	120	${ }_{110}^{10}$	${ }_{100}$	90	18	${ }_{70}$	60	${ }_{50}^{1}$	40	10	${ }_{20}$	10	1

43

$\frac{\stackrel{2}{9}}{\frac{1}{9}}$
$\stackrel{1}{\substack{6 \\ i}}$

(1)

\qquad

$\begin{aligned} & \overline{\sigma_{\infty}} \\ & \dot{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{2} \\ & \stackrel{6}{f} \end{aligned}$
	\|

为
৷

\iint

8

53

$\stackrel{8}{8}$

LXT-08-75-6-H, $\underset{\substack{\text { C-NEW2. } 2 . f i d ~}}{\substack{\text { I }}}$	守	Now wo

 55a

5om

248032p．13．fid
No

呙
ご

ty23-7-94-1269B. 는. fid
্ָড

$\stackrel{\infty}{\stackrel{\infty}{i}}$

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	10	1	10	o
									(ppm)									

篭

ty22-7-59. 19. fid

		$\begin{aligned} & \text { ఫి } \\ & \stackrel{\vdots}{6} \end{aligned}$	 	$\begin{aligned} & \text { \%ot ot } \\ & \text { ong } \\ & \text { on } \end{aligned}$		$\begin{aligned} & \frac{7}{6} \\ & \substack{6 \\ 0} \end{aligned}$	-

ty22-6-153-1097CR
童
琵

$\mathrm{F}_{3} \mathrm{C}$

ty22-7-68. 19. fid
先
i
i

[^5]

4227－70 ます

LXT-08-77-3-H, G2.fid

5
0
0
0
0
$\stackrel{8}{6}$

ty22-7-77. 10. fid

210	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10	,		
S337																							

若

122778.1.tid

ty22-7-78. 13. fie	 	\%
\bigcirc	- - - - - - - - - - - - - -	\|

糘

 $\xrightarrow{(1)}$
$\stackrel{y}{5}$
䓵

82

83

		$\stackrel{T}{2}$		Hater											$\frac{1}{C}$			$\underset{\substack{\text { Th }}}{ }$			
$\stackrel{1}{10.0}$	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6. 0	5.5	${ }_{5}^{1} .0$	${ }_{4.5}^{1.5}$	4.0	${ }^{1} .5$	3.0	${ }_{2} 2.5$	2.0	1.5	1.0	${ }_{0}^{1} .5$	${ }^{1} 0$	$\stackrel{1}{-0.5}$

Z
ín
1
1

だ

ty22-6-217-1164守宇"

ty22-6-217-1161D. 19. fid

91 ty22-6-217N1宔是

\%	$\bar{\Sigma}$
	¢
\checkmark	1

91 ty22-6-217-1161EP. 19. fid
헉걱

守
～～

 $$
4
$$

 $1 / 1$ 95
ty22-6-221-1165B-P.13.fid
荷

[^6]

[^7]

	$\frac{8}{88}$	$\stackrel{\text { 卒 }}{1}$	$\stackrel{3}{1}$

22-215 $)^{\text {andaxw }}$

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	${ }_{-100}$	${ }_{-110}$

$1 / 1$

?
\vdots
\vdots
i

筞

180	170	160	150	140	130	120	110	100	90	${ }_{80}$	${ }_{70}$	${ }_{60}$	${ }_{50}$	40	30	10	10	o
180	170	160	150	140	130	120	110	100	${ }_{\text {f1 }}{ }^{90}(\mathrm{p}$	80	70	60	50	40	30	20	10	0

ty23-7-102-12678-2. 13. fid

\qquad

$$
\mathrm{Cu}_{3}(\mathrm{MeCN})_{2}\left(\mathrm{ArSSO}_{2}\right)_{3} \quad \mathbf{1 0 3}
$$

$$
\left(\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)
$$

104

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								S374								

160	150	140	130	120	110	100	90	$\begin{gathered} 1 \\ \mathrm{fl}_{1}^{80}(\mathrm{ppmm}) \end{gathered}$	70	60	50	40	30	20	10	0
								S375								

mixture: $4: 1$

$$
\begin{aligned}
& \text { ty23-7-109 22741-5.13.fid }
\end{aligned}
$$

		\%	$\stackrel{\stackrel{\rightharpoonup}{*}}{+}$	둥
\|		\|	1	V

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1									

 $\iiint \mid \iiint \int$

范

$\mathrm{PhC}(\mathrm{O}) \mathrm{SCu}\left(\mathrm{PPh}_{3}\right)_{2} \quad \mathbf{1 1 7}$
ty22-6-183-1127p. 1. f-

ty22-6-183-1127p. 31. fid

l

121-3-154-rac-p.1.fid

$1 \| 11$

\qquad

1z1-3-154-ric-p.2.fid

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	${ }_{40}$	30	${ }_{20}$	10	o
200	190	180	170		150	140				(ppm)										

14. HPLC spectra

mAU

PDA Ch2 214nm

T	Hight	Area	Area $\%$
17.592	745141	21013181	49.792
19.928	658842	21188391	50.208

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
23.183	709940	26913022	50.057
28.203	575249	26851529	49.943

PDA Ch2 214nm

PDA	Hight	Area	Area\%
23.267	22903	808353	5.209
28.237	323184	14711073	94.791

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
30.036	493878	24538554	50.058
35.506	411578	24481263	49.942

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
30.405	113602	5439496	5.065
35.586	1630018	101958464	94.935

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
22.712	751476	28532489	49.952
27.207	621007	28587612	50.048

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
22.731	35009	1221261	5.227
27.128	491035	22142498	94.773

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
29.250	527823	24644777	50.094
33.763	456584	24552104	49.906

PDA Ch2 214nm

T	Hight	Area	Area\%
29.351	74255	3363908	4.684
33.720	1236422	68456512	95.316

PDA Ch2 214 nm

T	Hight	Area	Area\%
22.114	213390	12233929	49.713
23.796	263059	12375388	50.287

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
22.641	23471	783763	4.506
24.144	411116	16610480	95.494

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
16.280	144840	4824361	49.915
19.361	122760	4840714	50.085

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
16.304	5755	186925	3.536
19.384	131771	5099858	96.464

mAU

Peak Table
PDA Ch2 214 nm

Peak=	Ret. Time	Area	Area $\%$
1	12.336	10018606	49.541
2	13.721	10204272	50.459

(maU PDA Multi 2 214nm, 4nm
Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	12.471	2189204	5.086
2	13.709	40852376	94.914

PDA Ch2 214 nm

T	Hight	Area	Area\%
15.200	94054	2608311	50.073
19.253	74428	2600659	49.927

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
15.066	32201	875199	5.556
19.076	414111	14876319	94.444

mAU

PDA Ch3 230 nm

T	Hight	Area	Area\%
24.060	150292	6000378	49.968
29.770	120251	6008024	50.032

mAU

PDA Ch3 230nm

T	Hight	Area	Area\%
23.292	36526	1433258	7.009
28.596	380290	19016121	92.991

mAU

PDA Ch2 214nm

T	Hight	Area	Area $\%$
15.246	251020	6138647	50.024
19.603	197101	6132793	49.976

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
15.122	26853	603477	7.433
19.391	251242	7515036	92.567

PDA Ch2 214 nm

T	Hight	Area	Area\%
18.907	550440	18484914	49.772
21.920	473180	18654472	50.228

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
18.973	48944	1548221	6.499
21.934	565047	22275284	93.501

PDA Ch3 230nm

T	Hight	Area	Area\%
21.455	174492	7940563	50.251
27.960	132268	7861218	49.749

PDA Ch3 230nm

PDA Ch3 $230 n m$		Hight	Area
T	Area\%		
21.361	16002	706336	8.064
27.721	136112	8053247	91.936

mAU

PDA Ch3 230 nm

T	Hight	Area	Area $\%$
31.271	34308	2874512	50.160
43.082	25204	2856223	49.840

(200) PDA Multi 3 230nm, 4nm

PDA Ch3 230nm

T	Hight	Area	Area\%
31.630	19107	1598334	7.175
43.252	177909	20677589	92.825

PDA Ch2 214 nm

T	Hight	Area	Area\%
12.839	199750	4265698	50.249
15.634	160334	4223485	49.751

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	36.714	12669850	50.640
2	39.795	12349512	49.360

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	37.225	1045553	4.701
2	40.224	21197831	95.299

mAU

PDA Ch3 230 nm

T	Hight	Area	Area\%
37.596	78800	5099901	50.139
40.929	72383	5071606	49.861

mAU

PDA Ch2 230nm

T	Hight	Area	Area\%
37.591	39098	2486549	4.684
40.530	670939	50599447	95.316

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	35.396	30898732	49.785
2	38.563	31165803	50.215

mAU

Peak Table
PDA Ch2 214nm

Peak $=$	Ret. Time	Area	Area\%
1	35.595	1679186	5.060
2	38.523	31506008	94.940

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	39.243	29907225	49.241
2	42.603	30829769	50.759

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	39.915	2092683	5.108
2	42.988	38878166	94.892

PDA Ch3 230 nm

T	Hight	Area	Area $\%$
18.032	142887	2954148	49.937
19.220	133485	2961615	50.063

[^8]
mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
18.865	123704	3862936	4.996
21.006	2273772	73457719	95.004

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
18.871	88502	2828989	49.913
20.875	79903	2838873	50.087

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
19.053	636304	20093260	50.061
21.370	564731	20044651	49.939

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
18.994	153593	4777801	4.642
21.146	2907391	98146756	95.358

mAU

PDA Ch2 214nm

T	Hight	Area	Area $\%$
20.150	1617825	56057133	49.749
22.172	1450152	56622997	50.251

PDA Ch2 214nm

T	Hight	Area	Area\%
20.136	37268	1228563	4.232
22.097	740827	27804243	95.768

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
22.104	239452	9480182	49.999
24.842	212830	9480530	50.001

PDA Ch2 214nm

T	Hight	Area	Area\%
22.996	32580	1305689	4.223
25.913	623333	29609744	95.777

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
16.493	514707	14562075	50.555
19.103	453383	14242460	49.445

[^9]

PDA Ch3 230nm

T	Hight	Area	Area\%
15.293	67656	1846037	49.684
17.333	61575	1869483	50.316

PDA Ch3 230 nm

T	Hight	Area	Area $\%$
15.233	41544	1296315	4.047
17.248	854397	30736560	95.953

PDA Ch3 214nm

T	Hight	Area	Area $\%$
13.316	260416	6662816	50.089
15.712	221452	6639180	49.911

(20) PDA Multi 2 230nm, 4nm
PDA Ch2 230 nm

T	Hight	Area	Area $\%$
13.669	42538	1066671	4.100
16.235	776407	24947828	95.900

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
20.413	1660533	52219775	49.851
23.112	1491375	52532813	50.149

maU PDA Multi 2 214nm, 4nm
PDA Ch2 214nm

T	Hight	Area	Area\%
20.278	50444	1673396	4.117
23.053	1014288	38972494	95.883

PDA Ch3 230nm

T	Hight	Area	Area $\%$
29.806	126952	6709551	49.948
33.520	112676	6723391	50.052

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	55.778	6982046	49.928
2	60.872	7002321	50.072

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	55.268	155313083	94.276
2	61.523	9429281	5.724

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	24.570	4108846	50.003
2	26.554	4108398	49.997

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	24.455	12278353	93.324
2	26.676	878330	6.676

PDA Ch2 214 nm

T	Hight	Area	Area\%
23.686	2169874	60540714	50.228
24.980	1935396	59991702	49.772

PDA Ch1 254 nm

T	Hight	Area	Area\%
21.880	74501	2871647	49.886
24.426	66915	2884728	50.114

34 was prepared from 2-(1-bromopropyl)naphthalene E31:
mAU

PDA Ch1 254 nm

T	Hight	Area	Area\%
21.779	37634	1424263	3.424
24.074	886600	40166670	96.576

34 was prepared from 2-(1-chloropropyl)naphthalene E36:
mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
20.935	2880	99940	4.526
23.208	54349	2108424	95.474

PDA Ch2 214 nm

T	Hight	Area	Area\%
13.910	644298	13988049	50.290
16.155	513572	13826774	49.710

PDA Ch1 254nm

T	Hight	Area	Area\%
13.608	1059304	24112620	96.053
16.236	39716	990840	3.947

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
20.398	237844	7572426	50.309
23.694	202687	7479463	49.691

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area $\%$
1	19.469	2622476	6.140
2	22.399	40090585	93.860

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	10.528	17233364	50.095
2	15.435	17168042	49.905

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.602	28366142	97.183
2	15.747	822199	2.817

PDA Ch3 230 nm

T	Hight	Area	Area\%
29.096	360919	16416962	50.079
32.231	294449	16365268	49.921

mAU

PDA Ch3 230nm

T	Hight	Area	Area\%
28.826	559048	24716240	94.004
32.659	30352	1576603	5.996

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	10.954	9626412	50.015
2	12.945	9620560	49.985

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	11.272	3495492	4.786
2	13.581	69535203	95.214

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.861	19373455	50.003
2	12.256	19371001	49.997

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.200	3172138	4.701
2	12.438	64300973	95.299

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.871	33951911	50.567
2	12.003	33190654	49.433

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.078	2753426	5.002
2	11.911	52288905	94.998

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area\%
1	9.558	3512670	50.646
2	12.017	3423118	49.354

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.068	1585805	5.197
2	12.680	28928937	94.803

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
8.771	331172	14016254	49.583
11.142	343906	14252136	50.417

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	8.629	2666770	49.781
2	12.270	2690278	50.219

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	9.045	612506	2.208
2	12.724	27133258	97.792

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	27.554	5176525	49.878
2	28.981	5201761	50.122

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	28.243	127945881	93.363
2	29.950	9095280	6.637

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	11.560	17924527	50.023
2	13.496	17908287	49.977

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.627	5177961	6.546
2	13.501	73928096	93.454

PDA Ch2 214 nm
T
Hight
44.168
901243
51.432
446750

maU

PDA Ch2 214nm

T	Hight	Area	Area\%
45.857	29614	1663674	6.433
52.996	270900	24198370	93.567

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
18.813	290955	7555798	49.737
24.444	228412	7635770	50.263

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
18.860	661823	17748479	92.701
24.691	42449	1397547	7.299

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.725	19402061	50.019
2	18.425	19387302	49.981

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	16.356	850585	8.239
2	17.845	9472794	91.761

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
20.811	357940	10691955	49.859
21.893	376878	10752490	50.141

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	20.464	25422970	92.798
2	22.861	1972921	7.202

mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
13.390	513017	20440421	50.072
15.445	419559	20381397	49.928

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
13.673	66592	2100045	7.614
15.684	678286	25482564	92.386

mAU

PDA Ch3 230nm

T	Hight	Area	Area\%
12.038	44204	1640057	50.342
15.470	42768	1617794	49.658

PDA Ch3 230nm

T	Hight	Area	Area\%
12.052	17915	637380	2.327
15.366	634269	26750181	97.673

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
10.492	359414	9298040	50.642
13.292	318856	9062274	49.358

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
10.651	46725	1041140	1.554
13.671	2808470	65961398	98.446

PDA Ch3 230nm

T	Hight	Area	Area $\%$
25.582	92158	4341491	49.614
35.377	82723	4409126	50.386

(20) PDA Multi 3 230nm, 4nm

PDA Ch3 230nm

T	Hight	Area	Area\%
25.708	71352	3233865	2.557
34.425	1743639	123239984	97.443

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.076	19840907	50.170
2	20.490	19706629	49.830

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.106	325087	5.148
2	20.489	5989633	94.852

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	25.061	30562400	50.145
2	30.096	30386015	49.855

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	24.828	90639272	93.417
2	29.946	6386883	6.583

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.678	1378141	50.196
2	20.287	1367374	49.804

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.663	870371	5.471
2	20.183	15039201	94.529

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	18.998	21698332	49.919
2	27.061	21769020	50.081

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	19.057	7914961	8.135
2	27.431	89385045	91.865

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.813	25409763	49.961
2	18.565	25449458	50.039

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	15.770	4276206	6.369
2	18.692	62869264	93.631

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.889	15208794	50.445
2	15.855	14940249	49.555

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.853	2975448	7.226
2	15.710	38199272	92.774

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	28.379	3097972	49.947
2	32.531	3104562	50.053

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	28.531	22985131	94.946
2	32.832	1223383	5.054

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret . Time	Area	Area $\%$
1	28.279	678941	51.095
2	32.380	649836	48.905

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	28.393	367108	2.713
2	32.452	13163809	97.287

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	18.632	3282819	50.024
2	23.694	3279631	49.976

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	18.760	631139	4.206
2	23.647	14373000	95.794

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.338	19519969	50.988
2	19.150	18763310	49.012

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.411	2060449	3.775
2	18.514	52527294	96.225

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	21.821	3723162	50.016
2	24.285	3720791	49.984

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	21.683	8347986	97.592
2	24.146	205975	2.408

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	26.865	2239294	50.141
2	37.117	2226728	49.859

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	27.029	12610516	96.386
2	37.592	472828	3.614

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.147	1456202	49.824
2	12.171	1466488	50.176

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.817	1481149	49.925
2	15.760	1485611	50.075

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret . Time	Area	Area $\%$
1	12.817	257100	3.809
2	15.722	6493207	96.191

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	31.002	6885086	50.463
2	46.859	6758690	49.537

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	30.883	22619031	95.013
2	46.890	1187174	4.987

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.422	2391264	49.681
2	16.413	2421961	50.319

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.259	2448160	5.736
2	16.092	40230220	94.264

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	64.884	8023396	50.070
2	75.590	8001112	49.930

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	65.299	7788616	94.148
2	76.481	484108	5.852

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	23.450	9356145	50.164
2	28.798	9294871	49.836

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	23.441	598561	5.477
2	28.733	10329282	94.523

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.615	9035215	49.652
2	19.399	9161901	50.348

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.563	758940	4.983
2	19.173	14471460	95.017

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	19.036	5047698	50.198
2	25.323	5007806	49.802

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	19.059	9202620	95.334
2	25.504	450450	4.666

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.837	7229705	49.977
2	14.479	7236311	50.023

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.794	13774900	96.444
2	14.544	507968	3.556

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	41.698	5733158	50.002
2	46.832	5732780	49.998

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	41.580	14254970	95.822
2	47.271	621487	4.178

mAU

Peak Table
PDA Ch1 254 nm

Peak\#\#	Ret. Time	Area	Area\%
1	48.082	2633414	50.142
2	54.352	2618461	49.858

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	47.991	2261933	2.725
2	52.053	80750287	97.275

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	22.011	3393305	49.833
2	27.228	3416000	50.167

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	21.998	1845198	8.038
2	27.054	21110567	91.962

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	22.745	858869	51.953
2	29.577	794292	48.047

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	22.631	14512109	94.074
2	29.470	914167	5.926

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
20.896	199388	10394972	50.094
24.323	176623	10356150	49.906

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	20.225	97047	2.685
2	23.675	3516725	97.315

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
24.643	203841	14153464	49.798
27.614	197139	14268054	50.202

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
24.878	30921	2084672	4.146
27.249	627362	48199881	95.854

mAU

PDA Ch3 230nm

T	Hight	Area	Area $\%$
16.245	150129	6069049	49.573
17.942	139732	6173721	50.427

mAU

PDA Ch2 230 nm

T	Hight	Area	Area $\%$
16.169	28944	1095505	2.179
17.693	1136385	49190891	97.821

mAU

PDA Ch2 214nm

T	Hight	Area	Area $\%$
19.016	344495	15655560	50.624
21.667	323551	15269473	49.376

mAU

PDA Ch3 214 nm

T	Hight	Area	Area\%
18.977	34049	1562057	2.365
21.442	1266399	64481374	97.635

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
20.048	71930	3445433	47.831
22.959	61383	3757847	52.169

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
19.923	30835	1541098	2.929
22.636	887479	51077690	97.071

$m A U$

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	17.105	30284686	50.187
2	22.166	30058489	49.813

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	17.193	769141	2.445
2	22.217	30689465	97.555

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	24.749	1457793	49.808
2	27.484	1469038	50.192

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
25.662	11130	545562	2.112
28.324	464999	25285422	97.888

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
16.438	162145	5802024	49.666
19.734	135039	5880076	50.334

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
16.577	53274	1990102	3.775
19.453	1070660	50725012	96.225

PDA Ch2 230nm

PDA			
T	Hight	Area	Area\%
9.358	668131	15303737	49.646
13.095	511963	15522271	50.354

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.641	3131699	50.051
2	14.078	3125336	49.949

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.679	340295	4.488
2	13.977	7242389	95.512

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
9.986	1288359	20927958	50.052
16.141	733994	20884215	49.948

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
10.545	1186227	23220545	95.653
17.614	37177	1055360	4.347

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.330	13766033	50.028
2	14.803	13750745	49.972

mAU

Peak Table
PDA Ch1 254 nm

Peak\#\#	Ret. Time	Area	Area\%
1	9.596	8033868	95.870
2	15.648	346105	4.130

PDA Ch2 214nm

T	Hight	Area	Area $\%$
6.698	418806	5732286	26.778
8.930	279018	5757785	26.898
10.250	399431	9916295	46.324

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
6.637	5899	118100	0.396
8.818	1112107	27186171	91.189
10.137	87769	2508836	8.415

mAU

PDA Ch2 214 nm

T	Hight	Area	Area\%
15.523	434274	12397993	50.053
19.810	292959	12371532	49.947

mAU

PDA Ch2 214 nm

PDA Ch2 214 nm			
T	Hight	Area	Area\%
15.535	93013	2260320	4.438
19.498	1029215	48668117	95.562

PDA Ch2 214nm

T	Hight	Area	Area\%
17.291	514859	17218035	35.244
18.838	199311	7040740	14.412
20.015	192429	7422621	15.194
26.618	363244	17172036	35.150

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
17.382	28281	839026	3.336
18.842	191820	6298604	25.046
20.038	8882	287179	1.142
26.487	384871	17722909	70.475

PDA Ch2 214nm

T	Hight	Area	Area $\%$
7.907	1214541	19789818	49.164
9.801	1037398	20462937	50.836

PDA Ch2 214nm

T	Hight	Area	Area\%
7.961	37051	553977	4.731
9.880	581981	11156404	95.269

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	13.382	3455734	13.048
2	15.985	9841333	37.158
3	18.412	9795203	36.984
4	38.065	3392652	12.810

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	13.431	715117	1.619
2	15.970	1256124	2.843
3	18.219	28903736	65.425
4	37.843	13303643	30.113

PDA Ch1 254nm
PDA Ch1 254 nm

T	Hight	Area	Area $\%$
10.051	416900	8398131	49.952
11.613	352296	8414379	50.048

mAU

PDA Ch1 254 nm

T	Hight	Area	Area\%
10.038	23291	461349	4.183
11.546	448010	10566669	95.817

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
34.840	771929	46942234	49.514
37.562	719003	47863740	50.486

[^10]mAU

PDA Ch2 214nm

T	Hight	Area	Area\%
13.051	161229	9036873	49.799
16.337	134858	9109928	50.201

mAU

PDA Ch2 214 nm

T	Hight	Area	Area $\%$
12.604	234601	13552525	97.571
15.689	5472	337332	2.429

PDA Ch2 230 nm

T	Hight	Area	Area\%
11.928	1166215	23767531	49.956
14.021	960646	23808924	50.044

mAU

PDA Ch2 230nm

T	Hight	Area	Area $\%$
12.115	26419	478091	5.178
14.161	373536	8754947	94.822

PDA Ch1 254nm

T	Hight	Area	Area\%
16.974	210172	7549285	49.717
23.424	148599	7635268	50.283

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
17.064	34919	1263566	9.743
23.401	228113	11705287	90.257

PDA Ch1 254 nm

PDA			
14.908	Hight	Area	Area\%
19.248	96985	2349324	50.044

mAU

PDA Ch1 254 nm

T	Hight	Area	Area\%
14.808	184442	3874071	23.878
19.043	461333	12350262	76.122

mAU

Peak Table
PDA Ch2 214 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.452	8806726	50.179
2	11.597	8743977	49.821

mAU

Peak Table
PDA Ch2 214nm

Peak\#	Ret. Time	Area	Area\%
1	10.206	3558194	28.903
2	11.333	8752604	71.097

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.862	17535425	49.955
2	15.597	17567353	50.045

mAU

PDA Ch1 254nm
PDA Ch1 254 nm

T	Hight	Area	Area $\%$
12.825	68691	1275356	39.857
15.560	83935	1924455	60.143

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.124	9307251	49.918
2	14.559	9337882	50.082

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.088	10092800	29.652
2	14.571	23944208	70.348

mAU

PDA Ch1 254 nm

T	Hight	Area	Area $\%$
11.540	119037	4614070	49.901
17.510	77640	4632398	50.099

mAU

PDA Ch1 254 nm

T	Hight	Area	Area\%
11.539	125584	4850095	91.967
17.501	7146	423657	8.033

15. Reference

1. Song, Y., Fu, C. \& Ma, S. Copper-catalyzed syntheses of multiple functionalizatized allenes via three-component reaction of enynes. ACS Catal. 11, 10007-10013 (2021).
2. Lu, R. et al. Enantioselective copper-catalyzed radical cyanation of propargylic C-H bonds: easy access to chiral allenyl nitriles. J. Am. Chem. Soc. 143, 14451-14451 (2021).
3. Guo, X., Shi, Z., Zhang, F.-H. \& Wang, Z. Cr-catalyzed regio-, diastereo-, and enantioselective reductive couplings of ketones and propargyl halides. $A C S$ Catal. 13, 3170-3178 (2023).
4. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400-404 (2019).
5. Xiao, X., Feng, M. \& Jiang, X. New design of a disulfurating reagent: facile and straightforward pathway to unsymmetrical disulfanes by copper-catalyzed oxidative cross-coupling. Angew. Chem. Int. Ed. 55, 14121-14125 (2016).
6. Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C $\left(s p^{3}\right)-$ C(sp) coupling. Nat. Chem. 11, 1158-1166 (2019).
7. Li, C. et al. Transition-metal-free stereospecific cross-coupling with alkenylboronic acids as nucleophiles. J. Am. Chem. Soc. 138, 10774-10777 (2016).
8. Iwamoto, H. et al. Copper(I)-catalyzed enantioconvergent borylation of racemic benzyl chlorides enabled by quadrant-by-quadrant structure modification of chiral bisphosphine ligands. Angew. Chem. Int. Ed. 58, 11112-11117 (2019).
9. Wang, P.-F. et al. Design of hemilabile N,N,N-Ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters. J. Am. Chem. Soc. 144, 6442-6452 (2022).
10. Soler-Yanes, R., Arribas-Álvarez, I., Guisán-Ceinos, M., Buñuel, E. \& Cárdenas, D. $\mathrm{J} . \mathrm{Ni}^{\mathrm{I}}$ catalyzes the regioselective cross-coupling of alkylzinc halides and propargyl bromides to allenes. Chem. Eur. J. 23, 15840-11590 (2017).
11. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681-684 (2016).
12. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}(s p)$ cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949-957 (2022).
13. Deivaraj, T. C., Lai, G. X. \& Vittal, J. J. Chemistry of thiocarboxylates: synthesis and structures of neutral copper(I) thiocarboxylates with triphenylphosphine. Inorg. Chem. 39, 1028-1034 (2000).
14. Wu, H. et al. High-valent palladium-promoted formal Wagner-Meerwein rearrangement. Org. Lett. 18, 5804-5807 (2016).
15. Gaussian 16, Revision A.03, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. \& Fox, D. J., Gaussian, Inc., Wallingford CT, 2016.
16. Lee, C., Yang, W. \& Parr, R. G. Development of the colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785-789 (1988).
17. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993).
18. Grimme, S., Antony, J., Ehrlich, S. \& Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
19. Grimme, S., Ehrlich, S. \& Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456-1465 (2011).
20. Dunning Jr., T. H. \& Hay, P. J. Modern Theoretical Chemistry, Ed. Schaefer III, H. F. Vol. 3 (Plenum, New York, 1977) 1-28.
21. Hay, P. J. \& Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270-283 (1985).
22. Wadt, W. R. \& Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284-298 (1985).
23. Hay, P. J. \& Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299-310 (1985).
24. Stoll, H., Fuentealba, P., Schwerdtfeger, P., Flad, J., Szentpály, L. V. \& Preuss, $\mathrm{H} . \mathrm{Cu}$ and Ag as one-valence-electron Atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH. J. Chem. Phys. 81, 2732-2736 (1984).
25. Dolg, M., Wedig, U., Stoll, H. \& Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866872 (1987).
26. Häussermann, U. et al. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials. Mole. Phys. 78, 1211-1224 (1993).
27. Bergner, A., Dolg, M., Küchle, W., Stoll, H. \& Preuß, H. Ab initio energyadjusted pseudopotentials for elements of groups 13-17. Mole. Phys. 80, 14311441 (2006).
28. Marenich, A. V., Cramer, C. J. \& Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378-6396 (2009).
29. Legault, C. Y. CYLView, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; (http://www.cylview.org).

[^0]: ty22 $\underset{\sim}{\infty}$-195-1139C. 13. fid

[^1]:

[^2]:

[^3]:

[^4]: $\begin{array}{lllllllllllllllll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 85 \\ \text { f1（ppm）}\end{array}$

[^5]:

[^6]: $\stackrel{7}{170}$
 $160 \quad 150$
 $120 \quad 110$
 ${ }^{90} \begin{array}{r}\text { f1 } \\ (\mathrm{ppm})\end{array}$

[^7]:

[^8]: mAU

 PDA Ch3 230 nm

 | T | Hight | Area | Area $\%$ |
 | :---: | ---: | ---: | ---: |
 | 18.179 | 119246 | 2453140 | 88.593 |
 | 19.397 | 14074 | 315845 | 11.407 |

[^9]: mAU

 PDA Ch2 214nm

 | PDA Ch2 214 nm | | Hight | Area |
 | ---: | ---: | ---: | ---: |
 | T | Area\% | | |
 | 16.317 | 144950 | 4587210 | 3.593 |
 | 18.800 | 3433945 | 123074142 | 96.407 |

[^10]: mAU

 PDA Ch2 214 nm

 | T | Hight | Area | Area\% |
 | :---: | ---: | ---: | ---: |
 | 34.802 | 2519072 | 135790328 | 96.479 |
 | 37.899 | 79130 | 4955636 | 3.521 |

