Supporting Information for

Copper-Catalyzed Enantioconvergent Radical *N*-Alkylation of Diverse (Hetero)aromatic Amines

Xuan-Yi Du,^{†,‡,I,§} Jia-Heng Fang,^{†,‡,I,§} Ji-Jun Chen,^{‡,I,§} Boming Shen,^{‡,§} Wei-Long Liu,^{‡,I} Jia-Yong Zhang,^{‡,I} Xue-Man Ye,^{‡,I} Ning-Yuan Yang,^{‡,I} Qiang-Shuai Gu,[£] Zhong-Liang Li,^{#,*} Peiyuan Yu,^{‡,*} and Xin-Yuan Liu^{‡,I,*}

†School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

[‡]Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China

¹Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China

[£]Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

#Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000, China

[§]These authors contributed equally: Xuan-Yi Du, Jia-Heng Fang, Ji-Jun Chen, and Boming Shen.

Correspondence to: lizl@gbu.edu.cn, yupy@sustech.edu.cn, liuxy3@sustech.edu.cn

Table of contents

1. Tables for experiments	S1
2. Figures for experiments	S10
3. General information	S16
4. Synthesis of α-carbonyl alkyl halide substrates	S17
5. Enantioconvergent N-alkylation of primary and secondary aromatic amines	
6. Procedure for synthetic applications	S89
7. Mechanistic studies	S95
8. Computational studies	S105
9. References	S113
10. NMR spectra	S115
11. HPLC spectra	S264

1. Tables for experiments

Brief summary of condition optimizations

Secondary aromatic amine N1 with α -methyl secondary alkyl halide: We started the condition using CuI, L*1 as the catalyst, and Cs₂CO₃ as base in 1,4-dioxane at 45 °C. The initial screening of alkyl halide indicated bromide was more efficient than chloride (Table S1). Then a series of ligands were strategically tested and L*3 stood out to provide the highest yield with the best enantioselectivity. Next, the solvent was varied and 1,4-dioxane performed the best (Table S2). The subsequent copper salt screening revealed CuI was the optimal one (Table S3). Further investigations on the amine-to-alkyl bromide ratio (Table S4) led to the optimal conditions.

Secondary aromatic amine N1 with α -alkyl secondary alkyl bromide E2: Due to the increased steric bulkiness of alkyl bromides, sterically less congested N,N,N-ligand L*5 became superior for this reaction (Table S5). Among common solvents, benzene delivered slightly better enantioselectivity than 1,4-dioxane while the yield remained comparable (Table S6). Further investigations on the amine-to-alkyl bromide ratio led to the optimal conditions (Table S7).

Secondary aromatic amine N1 with tertiary alkyl chloride E17: The planar tridentate N,N,N-ligand L*9 delivered promising enantioselectivity. Further changing the solvent from 1,4-dioxane to MTBE greatly enhanced the enantioselectivity. The use of K₃PO₄ in place of Cs₂CO₃ provided slightly superior enantioselectivity but with greatly diminished yield. Interestingly, the addition of an additional catalytic amount of Cs₂CO₃ rescued the reaction while slightly boosting the enantioselectivity. (Table S8).

Table S1. Reaction condition optimization with secondary aromatic amine: screening of different alkyl halides

Me NHPh E	H Ph ^{_N} , _{Me} — N1	Cul (10 mol %), L*1 (15 mol %) Cs ₂ CO ₃ (3.0 equiv.), 1,4-dioxane, <i>T</i>	Me O NHPh Me 1	OMe N N O=S L*1
Entry	Х	<i>T</i> (°C)	Yield (%)	ee (%)
1	Cl	45	51	65
2	Cl	rt	35	68
3	Br	rt	71	68

Reaction conditions: E (0.075 mmol), N1 (0.050 mmol), CuI (10 mol %), L*1 (15 mol %), and Cs_2CO_3 (3.0 equiv) in 1,4-dioxane (1.0 mL) for 72 h under argon. The yields of 1 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Me Ne E1	HPh + Ph ^{-N} Me <u>Cul (</u> Cs ₂ C N1	10 mol %), L*3 (15 mol %) O ₃ (3.0 equiv.), Solvent, rt Me 1	
Entry	Solvent	Yield (%)	ee (%)
1	1,4-dioxane	95	96
2	THF	79	96
3	DCM	81	95
4	cyclohexane	35	46
5	benzene	76	93
6	MeCN	10	93
7	DMSO	26	25
8	DMF	56	75

 Table S2. Reaction condition optimization with secondary aromatic amine: screening of different solvents

Reaction conditions: E1 (0.075 mmol), N1 (0.050 mmol), CuI (10 mol %), L*3 (15 mol %), and Cs₂CO₃ (3.0 equiv) in solvent (1.0 mL) at rt for 72 h under argon. The yields of 1 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Me NH E1	$\frac{Ph}{Ph'} + \frac{H}{N} Me - \frac{[Cu] (10)}{Cs_2CO_3 (3)}$ N1	Ma mol %), L*3 (15 mol %) .0 equiv.), 1,4-dioxane, rt ► Ph	Me 1 NHPh NHPh NHPh NHPh NHPh NHPh NHPh NHPh
Entry	Cu	Yield (%)	ee (%)
1	CuI	95	96
2	CuTc	71	95
3	Cu(PPh ₃) ₂ BH ₄	65	94
4	CuSCN	75	96
5	CuBr·SMe ₂	73	87
6	CuCN	83	90
7	Cu(OAc)	72	88
8	CuSO ₄	63	36
9	Cu(OAc) ₂	65	90

Table S3. Reaction condition optimization with secondary aromatic amine: screening of different copper salts

Reaction conditions: E1 (0.075 mmol), N1 (0.050 mmol), [Cu] (10 mol %), L*3 (15 mol %), and Cs₂CO₃ (3.0 equiv) in 1,4-dioxane (1.0 mL) at rt for 72 h under argon. The yields of 1 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S4. Reaction condition optimization with secondary aromatic amine: screening of starting materials loading

Me NHPh O E1	+ Ph ^{-N} Me <u>Cul (10</u> Cs ₂ CO ₃ (N1	0 mol %), L*3 (15 mol %) 3.0 equiv.), 1,4-dioxane, rt	Ph ^{Me} O N ^M Me 1	
Entry	E1 (equiv)	N1 (equiv)	Yield (%)	ee (%)
1	1.5	1.0	95	96
2	1.2	1.0	84	96
3	1.0	1.5	85	95

Reaction conditions: E1, N1, CuI (10 mol %), L*3 (15 mol %), and Cs_2CO_3 (3.0 equiv) in 1,4-dioxane (1.0 mL) at rt for 72 h under argon. The yields of 1 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S5. Reaction condition optimization with α -carbonyl- α -alkyl alkyl bromide: screening of different ligands

Et	Br NHPh + H Ph N Me	Cul (10 mol %), L* (15 mol %) Cs ₂ CO ₃ (3.0 equiv.), 1,4-dioxane,	
	0 E2 N1	ligand screening	Et 71
OMe N OF	NH NH NH N NH N N NH N N N N N N N N N	R O S N Me Me	Ph Ph O S-NH N-Me O Me N Ph Ph O S-NH N-Me O S-NH N Ph
L*1: R = I L*2: R = 1	⊃h L*3 : R = H 1-Naph L*4 : R = Me	L*5	L*6 L*7
L*1: R = F L*2: R = 7 Entry	Ph L*3: R = H 1-Naph L*4: R = Me L*	E*5 Yield (%)	L*6 L*7 ee (%)
$\frac{\mathbf{L} \cdot 1: \mathbf{R} = \mathbf{F}}{\mathbf{L} \cdot 2: \mathbf{R} = 2}$ Entry 1^{a}	Ph L*3: R = H 1-Naph L*4: R = Me L* L*3	L*5 Yield (%) 43	L*6 L*7 ee (%) 83
$\frac{L^*1: R = F}{L^*2: R = 2}$ Entry 1^a 2	Ph L*3: R = H <u>1-Naph L*4: R = Me</u> L* L*3 L*3	L*5 <u>Yield (%)</u> 43 49	L*6 L*7 ee (%) 83 82 82
$L*1: R = F$ $L*2: R = 2$ Entry 1^{a} 2 3	Ph L*3: R = H <u>1-Naph L*4: R = Me</u> <u>L*</u> L*3 L*3 L*3 L*1	► L*5 Yield (%) 43 49 70	L*6 L*7 ee (%) 83 82 66
	Ph L*3: R = H <u>1-Naph</u> L*4: R = Me L*3 L*3 L*3 L*1 L*2	L*5 <u>Yield (%)</u> 43 49 70 67	L*6 L*7 ee (%) 83 82 66 41
	Ph L*3: R = H 1-Naph L*4: R = Me L*3 L*3 L*3 L*3 L*1 L*2 L*4	L*5 <u>Yield (%)</u> 43 49 70 67 81	L*6 L*7 ee (%) 83 82 66 41 75
	$\begin{array}{c c} Ph & L^{*3}: R = H \\ \hline 1-Naph & L^{*4}: R = Me \\ \hline L^{*} & \\ L^{*3} & \\ L^{*3} & \\ L^{*3} & \\ L^{*1} & \\ L^{*2} & \\ L^{*4} & \\ L^{*5} & \\ \end{array}$	L*5 Yield (%) 43 49 70 67 81 78	L*6 L*7 ee (%) 83 82 66 41 75 93
	Ph L*3: $R = H$ 1-Naph L*4: $R = Me$ L*3 L*3 L*3 L*1 L*2 L*4 L*2 L*4 L*5 L*6	L*5 <u>Yield (%)</u> 43 49 70 67 81 78 65	L*6 L*7 ee (%) 83 82 66 41 75 93 92

Reaction conditions: **E2** (0.075 mmol), **N1** (0.050 mmol), CuI (10 mol %), L* (15 mol %), and Cs_2CO_3 (3.0 equiv) in 1,4-dioxane (1.0 mL) at 40 °C for 72 h under argon. The yields of **71** were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The evalue was based on HPLC analysis. ^{*a*}At room temperature.

Table S6. Reaction condition optimization with α -carbonyl- α -alkyl alkyl bromide: screening of different solvents

Et NHPh	+ Ph ^{/N} .Me Cul (10 m Cs ₂ CO ₃ (3.1 N1	ol %), L*5 (15 mol %)) equiv.), Solvent, 40 ºC ➤ Ph´	Me O N, NHPh Et 71 L*5
Entry	Solvent	Yield (%)	ee (%)
1	1,4-dixoane	78	93
2	MTBE	74	95
3	CPME	81	95
4	^{<i>i</i>} Pr ₂ O	78	56
5	Et_2O	69	95
6	DME	51	88
7	THF	64	93
8	benzene	95	96
9	PhMe	89	96
10	PhCF ₃	87	94
11	PhF	83	95

Reaction conditions: E2 (0.075 mmol), N1 (0.050 mmol), CuI (10 mol %), L*5 (15 mol %), and Cs₂CO₃ (3.0 equiv) in solvent (1.0 mL) at 40 °C for 72 h under argon. The yields of 71 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The evalue was based on HPLC analysis.

Table S7. Reaction condition optimization with α -carbonyl- α -alkyl alkyl bromide: screening of starting materials loading

Et	NHPh + H . Ph ^{/N} Me N1	Cul (10 mol %), L*5 (15 Cs ₂ CO ₃ (3.0 equiv.), benz	o mol %) zene, 40 ℃ Ph ^N , Ni Et 71	HPh
				L*5
Entry	E2 (equiv)	N1 (equiv)	Yield (%)	ee (%)
1	1.5	1.0	95	96
2	1.2	1.0	93	96
3	1.0	1.0	86	96
4	1.0	1.5	88	95

Reaction conditions: E2, N1, CuI (10 mol %), L*5 (15 mol %), and Cs₂CO₃ (3.0 equiv) in benzene (1.0 mL) at 40 °C for 72 h under argon. The yields of 71 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S8. Reaction condition optimization with α -carbonyl- α -phenyl alkyl chloride: screening of different ligands

CI		H + Ph ^{-N} 、	Me [Cu] (10 mol % Base (3.0 equ	%), L* (15 mol %) .uiv.), Solvent, rt		CI
	E17	N1			87	
			ligand scre	eening		
		OMe		O S-NH Me N		″Ph ∠Ph
	L*1		L*3	L*5	L*9	
Entry	[Cu]	L*	Base	Solvent	Yield (%)	ee (%)
1	CuI	L*1	Cs_2CO_3	1,4-dioxane	70	6
2	CuI	L*3	Cs_2CO_3	1,4-dioxane	70	1
3	CuI	L*5	Cs_2CO_3	1,4-dioxane	74	2
4	CuI	L*9	Cs_2CO_3	1,4-dioxane	78	35
5	CuI	L*9	Cs_2CO_3	MTBE	75	60
6	CuI	L*9	K ₃ PO ₄	MTBE	67	80
7^a	CuI	L*9	K ₃ PO ₄ /Cs ₂ CO ₃	MTBE	71	82
8^a	CuBr·SMe ₂	L*9	K ₃ PO ₄ /Cs ₂ CO ₃	MTBE	72	88

Reaction conditions: E17 (0.060 mmol), N1 (0.050 mmol, 1.0 equiv), CuI (10 mol %), L* (15 mol %), and Base (3.0 equiv) in anhydrous solvent (1.0 mL) at rt for 96 h under argon. The yields of 87 were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis. ^{*a*}K₃PO₄/Cs₂CO₃ (3.0/0.20 equiv) are used.

2. Figures for experiments

Figure S1. Importance of chiral aromatic amines featuring an α-stereocenter.

58

Figure S2. The X-ray structure of 58.

Figure S4. The X-ray structure of 119.

Figure S5. DFT calculations on the relative stability of possible Cu intermediates.

Figure S6. Time-course experiments for electron-rich *p*-anisidine compared to unsubstituted aniline.

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Diphenylphosphoryl azide and oxalyl chloride were purchased from Adamas. DCM and THF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. CuBr SMe₂ and Cs₂CO₃ were purchased from Bide Pharmatech Ltd. Anhydrous 1,4-dioxane, THF and benzene were purchased from J&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). As the eluent, the petroleum ether (PE), EtOAc, CH₂Cl₂ and CH₃OH were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO₄ indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR, 100 or 150 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR, respectively, in CDCl₃, CD₃OD, DMSO- d_6 or THF- d_8 with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Ka radiation.

4. Synthesis of α-carbonyl alkyl halide substrates

According to the literature reported procedure^{1,2,3,4,5,6}, α -carbonyl alkyl halide substrates were synthesized.

2-Bromo-N-phenylpropanamide (E1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.54 – 7.52 (m, 2H), 7.36 – 7.32 (m, 2H), 7.16 – 7.13 (m, 1H), 4.54 (q, *J* = 7.0 Hz, 1H), 1.94 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.4, 137.1, 129.0, 125.0, 120.0, 45.2, 22.9. HRMS (ESI) m/z calcd. for C₉H₁₁BrNO [M + H]⁺ 228.0019, found 228.0016.

2-Bromo-N-phenylbutanamide (E2)

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.58 – 7.55 (m, 2H), 7.40 – 7.35 (m, 2H), 7.20 – 7.16 (m, 1H), 4.45 (dd, *J* = 7.7, 5.2 Hz, 1H), 2.34 – 2.23 (m, 1H), 2.22 – 2.11 (m, 1H), 1.13 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 137.1, 129.1, 125.0, 120.0, 53.9, 29.4, 11.8. HRMS (ESI) m/z calcd. for C₁₀H₁₃BrNO [M + H]⁺ 242.0175, found 242.0174.

2-Bromo-N-phenylhexanamide (E3)

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 7.56 – 7.54 (m, 2H), 7.29 – 7.326 (m, 2H), 7.13 – 7.09 (m, 1H), 4.48 (t, *J* = 7.1 Hz, 1H), 2.20 – 2.11 (m, 1H), 2.06 – 1.97 (m, 1H), 1.50 – 1.23 (m, 4H), 0.87 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 137.1, 128.8, 124.9, 120.5, 50.5, 35.1, 29.3, 21.9, 13.7. HRMS (ESI) m/z calcd. for C₁₂H₁₇BrNO [M + H]⁺ 270.0488, found 270.0487.

2-Bromo-3-methyl-N-phenylbutanamide (E4)

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.55 – 7.53 (m, 2H), 7.37 – 7.33 (m, 2H), 7.17 – 7.14 (m, 1H), 4.43 (d, *J* = 4.8 Hz, 1H), 2.54 – 2.43 (m, 1H), 1.11 (d, *J* = 6.6 Hz, 3H), 1.05 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.2, 137.0, 129.1, 125.0, 120.1, 61.7, 32.6, 21.0, 18.5. HRMS (ESI) m/z calcd. for C₁₁H₁₅BrNO $[M + H]^+$ 256.0332, found 256.0331.

2-Bromo-3,3-dimethyl-N-phenylbutanamide (E5)

Br_{wy}NHPh ^tBu **E5**

¹**H NMR** (400 MHz, CDCl₃)δ 7.86 (s, 1H), 7.52 – 7.49 (m, 2H), 7.36 – 7.31 (m, 2H), 7.16 – 7.12 (m, 1H), 4.26 (s, 1H), 1.21 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 137.0, 129.0, 124.9, 120.1, 64.3, 35.4, 27.6.

HRMS (ESI) m/z calcd. for C₁₂H₁₇BrNO [M+H]⁺ 270.0488, found 270.0488.

2-Bromo-4-methyl-N-phenylpentanamide (E6)

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.54 – 7.52 (m, 2H), 7.36 – 7.33 (m, 2H), 7.17 – 7.13 (m, 1H), 4.46 – 4.43 (m, 1H), 2.06 – 1.91 (m, 3H), 0.98 (d, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 137.2, 129.1, 124.9, 120.0, 50.6, 44.6, 26.4, 22.6, 21.1. HRMS (ESI) m/z calcd. for C₁₂H₁₇BrNO [M + H]⁺ 270.0488, found 270.0489.

2-Bromo-4-(1,3-dioxoisoindolin-2-yl)-N-phenylbutanamide (E7)

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.82 – 7.79 (m, 2H), 7.72 – 7.67 (m, 2H), 7.53 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.14 – 7.10 (m, 1H), 4.47 (t, *J* = 6.8 Hz, 1H), 3.96 – 3.84 (m, 2H), 2.75 – 2.67 (m, 1H), 2.50 – 2.41 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.9, 137.1, 134.1, 131.8, 129.0, 124.9, 123.4, 119.9, 47.4, 35.9, 34.8.

HRMS (ESI) m/z calcd. for $C_{18}H_{16}BrN_2O_3 [M + H]^+ 387.0339$, found 387.0336.

2-Bromo-3-methoxy-N-phenylpropanamide (E8)

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.54 – 7.52 (m, 2H), 7.34 – 7.30 (m, 2H), 7.15 – 7.11 (m, 1H), 4.52 (t, *J* = 5.0 Hz, 1H), 3.92 (m, 2H), 3.45 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.4, 137.2, 128.9, 124.9, 120.1, 73.4, 59.3, 47.6. **HRMS** (ESI) m/z calcd. for $C_{10}H_{13}BrNO_2 [M + H]^+ 258.0124$, found 258.0125.

2-Bromo-4-(4-bromophenoxy)-*N*-phenylbutanamide (E9)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.43 (s, 1H), 7.61 – 7.59 (m, 2H), 7.45 – 7.43 (m, 2H), 7.35 – 7.31 (m, 2H), 7.11 – 7.08 (m, 1H), 6.93 – 6.91 (m, 2H), 4.82 – 4.78 (m, 1H), 4.18 – 4.04 (m, 2H), 2.59 – 2.54 (m, 1H), 2.37 – 2.31 (m, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.6, 157.5, 138.5, 132.2, 128.9, 123.9, 119.3, 116.8, 112.2, 65.3, 46.5, 33.52.

HRMS (ESI) m/z calcd. for $C_{16}H_{16}Br_2NO_2 [M + H]^+ 411.9542$, found 411.9536.

2-Bromo-4-(methylthio)-N-phenylbutanamide (E10)

¹**H NMR** (400 MHz, CDCl₃)δ 8.35 (s, 1H), 7.54 – 7.51 (m, 2H), 7.35 – 7.30 (m, 2H), 7.16 – 7.12 (m, 1H), 4.66 (dd, *J* = 8.4, 5.3 Hz, 1H), 2.73 – 2.60 (m, 2H), 2.53 – 2.44 (m, 1H), 2.36 – 2.26 (m, 1H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 137.0, 129.0, 125.0, 120.1, 49.3, 34.3, 31.5, 15.2. HRMS (ESI) m/z calcd. for C₁₁H₁₅BrNOS $[M+H]^+$ 288.0052, found 288.0053.

Methyl 4-bromo-5-oxo-5-(phenylamino)pentanoate (E11)

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.55 – 7.52 (m, 2H), 7.37 – 7.32 (m, 2H), 7.17 – 7.13 (m, 1H), 4.60 – 4.57 (m, 1H), 3.69 (s, 3H), 2.62 – 2.50 (m, 3H), 2.46 – 2.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 166.1, 137.0, 129.1, 125.0, 120.0, 51.9, 49.9, 31.4, 30.6. HRMS (ESI) m/z calcd. for C₁₂H₁₅BrNO₃ [M + H]⁺ 300.0230, found 300.0231.

2-Chloro-N-(2,6-dimethylphenyl)-2-phenylacetamide (E12)

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.60 – 7.58 (m, 2H), 7.45 – 7.36 (m, 3H), 7.13 – 7.10 (m, 1H), 7.07 – 7.05 (m, 2H), 5.56 (s, 1H), 2.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 136.6, 135.3, 132.7, 129.2, 129.0, 128.3, 127.7, 127.6, 62.2, 18.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{17}CINO [M + H]^+ 274.0993$, found 274.0991.

2-Bromo-*N*-(4-methoxyphenyl)butanamide (E13)

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.45 – 7.41 (m, 2H), 6.89 – 6.85 (m, 2H), 4.41 (dd, *J* = 7.7, 5.1 Hz, 1H), 3.79 (s, 3H), 2.30 – 2.20 (m, 1H), 2.19 – 2.08 (m, 1H), 1.10 (t, *J* = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 166.5, 156.9, 130.2, 121.9, 114.2, 55.5, 54.0, 29.4, 11.8. HRMS (ESI) m/z calcd. for C₁₁H₁₅BrNO₂ [M + H]⁺ 272.0281, found 272.0275.

2-Bromo-N-(4-(trifluoromethyl)phenyl)butanamide (E14)

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.70 – 7.68 (m, 2H), 7.61 – 7.59 (m, 2H), 4.45 (dd, *J* = 7.8, 5.3 Hz, 1H), 2.31 – 2.21 (m, 1H), 2.20 – 2.10 (m, 1H), 1.11 (t, *J* = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.0, 140.2, 126.8 (q, *J* = 33.0 Hz), 126.3 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 270.0 Hz), 119.6, 53.4, 29.2, 11.8.

HRMS (ESI) m/z calcd. for $C_{11}H_{12}BrF_3NO [M + H]^+ 310.0049$, found 310.0043.

tert-Butyl (2-bromopropanoyl)glycinate (E15)

¹**H** NMR (400 MHz, CDCl₃) δ 6.86 (s, 1H), 4.44 (q, *J* = 7.1 Hz, 1H), 3.95 (dd, *J* = 5.0, 1.3 Hz, 2H), 1.90 (d, *J* = 7.0 Hz, 3H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 168.4, 82.7, 44.4, 42.6, 28.0, 23.0. HRMS (ESI) m/z calcd. for C₉H₁₈NaBrNO₃ [M + Na]⁺ 288.0206, found 288.0208.

2-Chloro-N-(3,5-dichlorophenyl)-2-phenylbutanamide (E17)

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.57 – 7.55 (m, 1H), 7.48 (d, *J* = 1.9 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.09 (t, *J* = 1.8 Hz, 1H), 2.61 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.39 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.03 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 139.5, 138.9, 135.2, 128.6, 126.1, 124.7, 118.1, 79.1, 34.9, 9.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{15}Cl_3NO [M + H]^+ 342.0214$, found 342.0211.

2-Chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide (E18)

¹**H** NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.60 – 7.57 (m, 4H), 7.41 – 7.31 (m, 3H), 2.64 (dq, J = 14.3, 7.1 Hz, 1H), 2.42 (dq, J = 14.5, 7.2 Hz, 1H), 1.06 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 140.2, 139.8, 128.7, 128.6, 126.7 (q, *J* = 32.4 Hz), 126.3 (q, *J* = 3.8 Hz), 126.2, 123.9 (q, *J* = 296.2 Hz), 119.5, 79.2, 34.9, 9.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.18.

HRMS (ESI) m/z calcd. for $C_{17}H_{16}ClF_3NO [M + H]^+$ 342.0867, found 342.0865.

2-Chloro-N-(3,5-dichlorophenyl)-2-phenylpentanamide (E19)

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.58 – 7.55 (m, 2H), 7.50 (d, J = 1.8 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.11 (t, J = 1.9 Hz, 1H), 2.60 – 2.49 (m, 1H), 2.38 – 2.27 (m, 1H), 1.52 – 1.42 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 139.9, 138.9, 135.3, 128.7, 128.6, 126.1, 124.8, 118.1, 78.4, 43.8, 18.3, 13.8.

HRMS (ESI) m/z calcd. for $C_{17}H_{17}Cl_3NO [M + H]^+$ 356.0370, found 356.0370.

2-Chloro-N-(3,5-dichlorophenyl)-5,5,5-trifluoro-2-phenylpentanamide (E20)

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.59 – 7.57 (m, 2H), 7.49 – 7.47 (m, 2H), 7.46 – 7.38 (m, 3H), 7.16 – 7.13 (m, 1H), 2.84 – 2.76 (m, 1H), 2.64 – 2.56 (m, 1H), 2.39 – 2.29 (m, 1H), 2.24 – 2.14 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.4, 138.6, 138.1, 135.4, 129.3, 129.1, 126.7 (q, *J* = 276.1 Hz), 125.8, 125.1, 118.2, 76.0, 34.8 (q, *J* = 3.2 Hz), 30.3 (q, *J* = 29.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ –66.10. HRMS (ESI) m/z calcd. for C₁₇H₁₄Cl₃F₃NO [M + H]⁺ 410.0088, found 410.0078.

2-Chloro-N-(3,5-dichlorophenyl)-2,4-diphenylbutanamide (E21)

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.62 – 7.59 (m, 2H), 7.54 – 7.51 (m, 2H), 7.42 – 7.33 (m, 3H), 7.29 – 7.27 (m, 2H), 7.21 – 7.17 (m, 3H), 7.14 – 7.13 (m, 1H), 2.94 – 2.86 (m, 1H), 2.80 – 2.75 (m, 2H), 2.66 – 2.58 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 140.7, 139.5, 138.9, 135.4, 128.9, 128.8, 128.5, 126.2, 126.1, 124.9, 118.2, 78.0, 43.9, 31.5.

HRMS (ESI) m/z calcd. for $C_{22}H_{19}Cl_{3}NO [M + H]^{+} 418.0527$, found 418.0525.

2-Chloro-N-(3,5-dichlorophenyl)-4-methoxy-2-phenylbutanamide (E22)

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.58 – 7.55 (m, 2H), 7.51 – 7.48 (m, 2H), 7.41 – 7.32 (m, 3H), 7.13 – 7.12 (m, 1H), 3.67 – 3.61 (m, 1H), 3.55 – 3.50 (m, 1H), 3.28 (s, 3H), 3.04 – 2.96 (m, 1H), 2.63 – 2.56 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 139.6, 138.9, 135.3, 128.83, 128.78, 126.0, 124.8, 118.2, 75.7, 68.9, 58.7, 40.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{17}Cl_3NO_2$ [M + H]⁺ 372.0319, found 372.0316.

2-Chloro-2-cyclohexyl-*N*-(3,5-dichlorophenyl)-2-phenylacetamide (E23)

¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.71 – 7.68 (m, 2H), 7.50 – 7.49 (m, 2H), 7.39 – 7.29 (m, 3H), 7.11 – 7.08 (m, 1H), 2.78 – 2.70 (m, 1H), 1.83 – 1.76 (m, 2H), 1.72 – 1.66 (m, 2H), 1.49 – 1.30 (m, 3H), 1.26 – 1.11 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.0, 138.0, 135.3, 128.43, 128.38, 126.6, 124.7, 118.2, 84.6, 47.5, 29.2, 26.9, 26.2, 26.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₁Cl₃NO [M + H]⁺ 396.0683, found 396.0682.

2-Chloro-N-(3,5-dichlorophenyl)-2-(3-methoxyphenyl)butanamide (E24)

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.50 – 7.48 (m, 2H), 7.31 – 7.25 (m, 1H), 7.14 – 7.10 (m, 3H), 6.88 – 6.85 (m, 1H), 3.81 (s, 3H), 2.64 – 2.55 (m, 1H), 2.43 – 2.34 (m, 1H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.2, 159.7, 141.0, 138.9, 135.3, 129.7, 124.7, 118.4, 118.1, 113.5, 112.8, 78.9, 55.3, 34.8, 9.3.

HRMS (ESI) m/z calcd. for $C_{17}H_{17}Cl_{3}NO_{2}$ [M + H]⁺ 372.0319, found 372.0318.

2-Chloro-N-(3,5-dichlorophenyl)-2-(m-tolyl)butanamide (E25)

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.52 (d, *J* = 1.8 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.29 – 7.25 (m, 1H), 7.16 – 7.13 (m, 1H), 7.12 (t, *J* = 1.8 Hz, 1H), 2.66 – 2.57 (m, 1H), 2.44 – 2.35 (m, 4H), 1.04 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 139.5, 139.0, 138.5, 135.3, 129.5, 128.6, 126.8, 124.8, 123.3, 118.1, 79.3, 34.8, 21.6, 9.4.

HRMS (ESI) m/z calcd. for $C_{17}H_{17}Cl_3NO [M + H]^+$ 356.0370, found 356.0369.

2-(4-(*Tert*-butyl)phenyl)-2-chloro-*N*-(3,5-dichlorophenyl)butanamide (E26)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.53 – 7.52 (m, 2H), 7.49 – 7.47 (m, 2H), 7.40 – 7.38 (m, 2H), 7.14 – 7.11 (m, 1H), 2.67 – 2.58 (m, 1H), 2.43 – 2.34 (m, 1H), 1.31 (s, 9H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 151.8, 139.0, 136.7, 135.3, 125.9, 125.6, 124.8, 118.1, 79.3, 34.8, 34.6, 31.2, 9.5.

HRMS (ESI) m/z calcd. for C₂₀H₂₃Cl₃NO [M + H]⁺ 398.0840, found 398.0838.

2-Chloro-*N*-(3,5-dichlorophenyl)-2-(3-fluorophenyl)butanamide (E27)

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.49 (d, 2H), 7.35 – 7.31 (m, 3H), 7.11 (t, J = 1.8 Hz, 1H), 7.06 – 6.99 (m, 1H), 2.64 – 2.55 (m, 1H), 2.42 – 2.33 (m, 1H), 1.04 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.8, 162.7 (d, J = 246.9 Hz), 142.1 (d, J = 7.3 Hz), 138.8, 135.4, 130.3 (d, J = 8.3 Hz), 125.0, 121.9 (d, J = 2.9 Hz), 118.3, 115.7 (d, J = 21.0 Hz), 113.9 (d, J = 24.0 Hz), 78.4, 35.1, 9.4.

¹⁹**F** NMR (376 MHz, CDCl₃) δ –111.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{14}Cl_3FNO [M + H]^+$ 360.0120, found 360.0115.

5. Enantioconvergent N-alkylation of primary and secondary aromatic amines

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl bromide (0.30 mmol, 1.5 equiv), secondary aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

$$Me \xrightarrow[O]{\text{HPh}} Ar \xrightarrow[N]{\text{R}^{1}} R^{1} \xrightarrow[Cs_{2}CO_{3} (3 \text{ equiv}), 1, 4 \text{ dioxane, rt}} Ar \xrightarrow[Me]{\text{HPh}} Ar \xrightarrow[Me]{\text{HPh}} Me$$

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), alkyl bromide (0.30 mmol, 1.5 equiv), secondary aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Methyl(phenyl)amino)-N-phenylpropanamide (1)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg,

0.30 mmol, 1.5 equiv) and *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 1 as a yellowish oil (45.3 mg, 89% yield, 97% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 9.37 min, t_R (minor) = 12.30 min.

A gram-scale experiment: According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (2.05 mg, 9.0 mmol, 1.5 equiv) and *N*-methylaniline N1 (642.9 mg, 6.0 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 1 as a white solid (1.21 g, 79% yield, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.54 – 7.52 (m, 2H), 7.33 – 7.28 (m, 4H), 7.12 – 7.08 (m, 1H), 6.93 – 6.89 (m, 3H), 4.44 (q, *J* = 7.0 Hz, 1H), 2.86 (s, 3H), 1.42 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.3, 149.4, 137.6, 129.4, 129.0, 124.2, 119.6, 115.3, 61.5, 34.3, 11.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O [M + H]^+ 255.1492$, found 255.1491.

(S)-2-(Ethyl(phenyl)amino)-N-phenylpropanamide (2)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-ethylaniline N2 (24.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 2 as a yellowish oil (41.7 mg, 78% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.29 min, t_R (minor) = 14.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.51 – 7.50 (m, 2H), 7.33 – 7.28 (m, 4H), 7.12 – 7.08 (m, 1H), 6.93 – 6.89 (m, 3H), 4.27 (q, *J* = 7.0 Hz, 1H), 3.44 – 3.35 (m, 1H), 3.32 – 3.23 (m, 1H), 1.45 (d, *J* = 7.0 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 147.3, 137.6, 129.4, 129.0, 124.2, 120.2, 119.5, 117.4, 62.2, 42.7, 13.6, 12.8.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M+H]^+$ 269.1648, found 269.1646.

(S)-2-(Isopropyl(phenyl)amino)-N-phenylpropanamide (3)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-isopropylaniline **N3** (27.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **3** as a yellowish oil (31.6 mg, 56% yield, 98% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.54 min, t_R (minor) = 14.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (s, 1H), 7.53 – 7.51 (m, 2H), 7.34 – 7.30 (m, 2H), 7.27 – 7.23 (m, 2H), 7.12 – 7.08 (m, 1H), 6.91 – 6.85 (m, 3H), 4.16 (q, *J* = 6.0, 4.9 Hz, 1H), 4.13 – 4.07 (m, 1H), 1.43 (d, *J* = 7.0 Hz, 3H), 1.33 (d, *J* = 6.6 Hz, 3H), 1.23 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 145.7, 137.7, 129.04, 128.98, 124.2, 120.2, 119.6, 118.8, 55.2, 49.4, 21.7, 19.2, 14.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₃N₂O [M+H]⁺ 283.1805, found 283.1802.

(S)-2-(Isobutyl(phenyl)amino)-N-phenylpropanamide (4)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-isobutylaniline **N4** (29.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **4** as a colorless oil (42.7 mg, 72% yield, 97% ee). **HPLC** analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 12.32 min, *t*_R (major) = 17.25 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.56 – 7.54 (m, 2H), 7.34 – 7.28 (m, 4H), 7.12 – 7.08 (m, 1H), 7.01 – 6.97 (m, 3H), 4.06 (q, J = 7.0 Hz, 1H), 3.07 – 3.02 (m, 1H), 2.83 – 2.77 (m, 1H), 1.96 – 1.85 (m, 1H), 1.35 (d, J = 7.1 Hz, 3H), 0.97 (d, J = 6.7 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 137.8, 129.2, 129.0, 124.1, 121.8, 120.5,

119.2, 65.1, 56.8, 26.1, 20.7, 20.6, 11.9.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O [M+H]^+ 297.1961$, found 297.1959.

(S)-2-((3,3-Dimethylbutyl)(phenyl)amino)-N-phenylpropanamide (5)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(3,3-dimethylbutyl)aniline **N5** (35.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **5** as a yellowish oil (48.0 mg, 74% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) =8.92 min, t_R (minor) =9.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.50 – 7.48 (m, 2H), 7.34 – 7.27 (m, 4H), 7.12 – 7.08 (m, 1H), 6.92 – 6.88 (m, 3H), 4.25 (q, *J* = 7.0 Hz, 1H), 3.38 – 3.30 (m, 1H), 3.25 – 3.18 (m, 1H), 1.60 – 1.56 (m, 1H), 1.51 – 1.44 (m, 4H), 0.95 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 147.5, 137.6, 129.3, 129.0, 124.2, 120.0, 119.6, 117.3, 62.6, 44.8, 41.3, 30.0, 29.3, 12.8.

HRMS (ESI) m/z calcd. for C₂₁H₂₉N₂O [M+H]⁺ 325.2274, found 325.2271.

(S)-2-((Cyclopropylmethyl)(phenyl)amino)-N-phenylpropanamide (6)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(cyclopropylmethyl)aniline **N6** (29.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **6** as a yellowish oil (53.0 mg, 90% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.73 min, t_R (minor) = 14.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 7.56 – 7.53 (m, 2H), 7.34 – 7.27 (m, 4H), 7.12 – 7.08 (m, 1H), 6.98 – 6.96 (m, 2H), 6.94 – 6.90 (m, 1H), 4.29 (q, *J* = 7.1 Hz, 1H), 3.38 – 3.33 (m, 1H), 2.93 – 2.88 (m, 1H), 1.44 (d, *J* = 7.1 Hz, 3H), 1.11 – 1.07 (m, 1H), 0.62 – 0.54 (m, 2H), 0.29 – 0.21 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 147.9, 137.7, 129.2, 129.0, 124.1, 120.3, 119.3, 117.6, 62.5, 53.7, 12.4, 9.9, 4.9, 4.1.

HRMS (ESI) m/z calcd. for C₁₉H₂₃N₂O [M+H]⁺ 295.1805, found 295.1801.

(S)-2-(Cyclohexyl(phenyl)amino)-N-phenylpropanamide (7)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv), *N*-cyclohexylaniline **N7** (35.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30/1) to yield the product 7 as a yellowish oil (36.1 mg, 56% yield, 98% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.26 min, t_R (major) = 16.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.52 – 7.50 (m, 2H), 7.33 – 7.29 (m, 2H), 7.26 – 7.23 (m, 2H), 7.12 – 7.08 (m, 1H), 6.89 – 6.85 (m, 1H), 6.84 – 6.82 (m, 2H), 4.19 (q, J = 7.0 Hz, 1H), 3.67 – 3.60 (m, 1H), 2.03 – 2.00 (m, 1H), 1.96 – 1.85 (m, 3H), 1.74 – 1.70 (m, 1H), 1.64 – 1.46 (m, 2H), 1.43 (d, J = 7.0 Hz, 3H), 1.41 – 1.36 (m, 1H), 1.35 – 1.28 (m, 1H), 1.20 – 1.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 145.8, 137.7, 129.03, 128.96, 124.2, 120.0, 119.5, 118.4, 58.5, 55.9, 32.5, 29.9, 26.4, 25.8, 25.7, 14.1.

HRMS (ESI) m/z calcd. for $C_{21}H_{27}N_2O [M+H]^+ 323.2118$, found 323.2115.

(S)-2-(Benzyl(phenyl)amino)-N-phenylpropanamide (8)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-benzylaniline **N8** (36.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **8** as a yellowish oil (36.3 mg, 55% yield, 96% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.10 min, t_R (minor) = 13.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.35 – 7.22 (m, 11H), 7.08 – 7.04 (m, 1H), 6.92 – 6.86 (m, 3H), 4.59 – 4.47 (m, 2H), 4.44 (q, *J* = 7.1 Hz, 1H), 1.50 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 147.6, 138.5, 137.5, 129.4, 128.9, 128.8, 127.3, 127.0, 124.2, 120.0, 119.6, 116.4, 61.3, 52.4, 12.8. HRMS (ESI) m/z calcd. forC₂₂H₂₃N₂O [M+H]⁺ 331.1805, found 331.1801.

(S)-2-(Allyl(phenyl)amino)-N-phenylpropanamide (9)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-allylaniline N9 (26.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 9 as a yellowish oil (39.8 mg, 71% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.11 min, t_R (minor) = 12.43 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.50 – 7.48 (m, 2H), 7.33 – 7.25 (m, 4H), 7.12 – 7.07 (m, 1H), 6.92 – 6.87 (m, 3H), 5.99 – 5.90 (m, 1H), 5.30 – 5.22 (m, 2H), 4.39 (q, *J* = 7.0 Hz, 1H), 3.99 – 3.84 (m, 2H), 1.46 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 147.5, 137.6, 134.2, 129.3, 129.0, 124.2, 120.0, 119.6, 117.6, 116.6, 61.6, 50.9, 12.6.

HRMS (ESI) m/z calcd. for C₁₈H₂₁N₂O [M+H]⁺ 281.1648, found 281.1646.

(S)-N-Phenyl-2-(phenyl(3-phenylprop-2-yn-1-yl)amino)propanamide (10)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(3-phenylprop-2-yn-1-yl)aniline N10 (41.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 10 as a yellowish oil (43.2 mg, 61% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.46 min, t_R (minor) = 14.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.50 – 7.48 (m, 2H), 7.34 – 7.23 (m, 9H), 7.09 – 7.03 (m, 3H), 6.96 – 6.92 (m, 1H), 4.49 (q, *J* = 7.0 Hz, 1H), 4.36 – 4.26 (m, 2H), 1.60 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 147.0, 137.6, 131.7, 129.4, 128.9, 128.5, 128.3, 124.2, 122.3, 120.4, 119.7, 116.2, 85.2, 85.1, 60.9, 39.4, 13.3. HRMS (ESI) m/z calcd. for C₂₄H₂₃N₂O [M+H]⁺ 355.1805, found 355.1800.

(S)-2-((2-(Benzyloxy)ethyl)(phenyl)amino)-N-phenylpropanamide (11)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(2-(benzyloxy)ethyl)aniline **N11** (45.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **11** as a yellowish oil (44.9 mg, 60% yield, 96% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.25 min, t_R (minor) = 18.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.44 – 7.38 (m, 2H), 7.29 – 7.16 (m, 9H), 7.04 – 7.00 (m, 1H), 6.94 – 6.90 (m, 3H), 4.54 (s, 2H), 4.21 (q, *J* = 7.1 Hz, 1H), 3.76 – 3.71 (m, 1H), 3.66 – 3.62 (m, 1H), 3.52 – 3.49 (m, 2H), 1.44 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 147.3, 138.1, 137.3, 129.2, 128.7, 128.5, 127.9, 127.8, 123.8, 120.6, 119.8, 118.4, 73.3, 66.8, 64.1, 47.7, 12.8.

HRMS (ESI) m/z calcd. for C₂₄H₂₇N₂O₂ [M+H]⁺ 375.2067, found 375.2064.

Ethyl (S)-N-(1-oxo-1-(phenylamino)propan-2-yl)-N-phenylglycinate (12)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and ethyl phenylglycinate **N12** (35.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **12** as a yellowish oil (44.4 mg, 68% yield, 96% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 17.19 min, t_R (minor) =23.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.21 (s, 1H), 7.65 – 7.62 (m, 2H), 7.29 – 7.22 (m, 2H), 7.25 – 7.22 (m, 2H), 7.06 – 7.03 (m, 1H), 6.85 – 6.81 (m, 1H), 6.69 – 6.67 (m, 2H), 4.39 – 4.29 (m, 3H), 4.26 – 4.08 (m, 2H), 1.59 (d, *J* = 7.2 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.4, 171.7, 146.3, 138.4, 129.5, 128.8, 123.8, 119.6, 119.1, 113.0, 62.2, 61.1, 49.4, 15.2, 14.2.

HRMS (ESI) m/z calcd. for $C_{19}H_{23}N_2O_3$ [M+H]⁺ 327.1703, found 327.1700.

(S)-2-((4-Methoxyphenyl)(methyl)amino)-N-phenylpropanamide (13)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 4-methoxy-*N*-methylaniline N13 (27.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 13 as a yellowish oil (49.6 mg, 87% yield, 88% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 8.44 min, t_R (minor) = 13.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.57 – 7.54 (m, 2H), 7.35 – 7.28 (m, 2H), 7.12 – 7.08 (m, 1H), 6.92 – 6.85 (m, 4H), 4.22 (q, *J* = 7.0 Hz, 1H), 3.77 (s, 3H), 2.78 (s, 3H), 1.36 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 153.8, 143.5, 137.7, 128.9, 124.1, 119.5, 118.0, 114.6, 63.0, 55.6, 35.4, 11.1.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O_2 [M + H]^+$ 285.1598, found 285.1596.

(S)-2-(Methyl(p-tolyl)amino)-N-phenylpropanamide (14)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*,4-dimethylaniline **N14** (24.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **14** as a yellowish oil (45.6 mg, 85% yield, 94% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.12 min, t_R (minor) = 17.64 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.55 – 7.53 (m, 2H), 7.34 – 7.30 (m, 2H), 7.13 – 7.08 (m, 3H), 6.86 – 6.83 (m, 2H), 4.37 (q, *J* = 7.0 Hz, 1H), 2.82 (s, 3H), 2.30 (s, 3H), 1.40 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 147.2, 137.7, 129.9, 129.3, 129.0, 124.2, 119.5, 115.8, 62.0, 34.6, 20.3, 11.2.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_{2}O [M+H]^+ 269.1648$, found 269.1646.

(S)-2-((4-Fluorophenyl)(methyl)amino)-N-phenylpropanamide (15)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 4-fluoro-*N*-methylaniline N15 (25.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 15 as a yellowish oil (44.1 mg, 81% yield, 95% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 9.82 min, t_R (minor) = 19.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.55 – 7.53 (m, 2H), 7.34 – 7.31 (m, 2H), 7.13 – 7.09 (m, 1H), 7.03 – 6.97 (m, 2H), 6.90 – 6.85 (m, 2H), 4.28 (q, *J* = 7.0 Hz, 1H), 2.82 (s, 3H), 1.39 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 157.1 (d, J = 238 Hz), 145.9 (d, J = 2.3 Hz), 137.6, 129.0, 124.30, 119.6, 117.3 (d, J = 7.6 Hz), 115.8 (d, J = 22.0 Hz), 62.6, 35.2, 11.2. ¹⁹F NMR (376 MHz, CDCl₃) δ –124.37.

HRMS (ESI) m/z calcd. for C₁₆H₁₈FN₂O [M+H]⁺ 273.1398, found 273.1395.

(S)-2-((4-Chlorophenyl)(methyl)amino)-N-phenylpropanamide (16)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 4-chloro-*N*-methylaniline N16 (28.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 16 as a yellowish oil (50.8 mg, 88% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.06 min, t_R (minor) = 18.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.54 – 7.51 (m, 2H), 7.34 – 7.30 (m, 2H), 7.26 – 7.22 (m, 2H), 7.13 – 7.09 (m, 1H), 6.85– 6.80 (m, 2H), 4.36 (q, *J* = 7.0 Hz, 1H), 2.85 (s, 3H), 1.41 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.8, 147.9, 137.5, 129.2, 129.0, 124.6, 124.4, 119.6, 116.4, 61.6, 34.6, 11.4.

HRMS (ESI) m/z calcd. for C₁₆H₁₈ClN₂O [M+H]⁺ 289.1102, found 289.1099.

(S)-2-((4-Bromophenyl)(methyl)amino)-N-phenylpropanamide (17)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv), 4-bromo-*N*-methylaniline **N17** (37.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **17** as a yellowish oil (58.0 mg, 87% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.27 min, t_R (minor) = 17.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.53 – 7.51 (m, 2H), 7.40 – 7.37 (m, 2H), 7.34 – 7.30 (m, 2H), 7.13 – 7.09 (m, 1H), 6.80 – 6.76 (m, 2H), 4.36 (q, *J* = 7.0 Hz, 1H), 2.85 (s, 3H), 1.42 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl3) δ 170.8, 148.3, 137.5, 132.1, 129.0, 124.4, 119.6, 116.8, 111.8, 61.5, 34.6, 11.5.

HRMS (ESI) m/z calcd. for C₁₆H₁₈BrN₂O [M+H]⁺ 333.0597, found 333.0593.

(S)-2-((2-Methoxyphenyl)(methyl)amino)-N-phenylpropanamide (18)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 2-methoxy-*N*-methylaniline A132 (27.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 18 as a yellowish oil (50.6 mg, 89% yield, 96% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.60 min, t_R (major) = 15.04 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.64 – 7.62 (m, 2H), 7.36 – 7.32 (m, 2H), 7.11 – 7.06 (m, 3H), 6.98 – 6.90 (m, 2H), 4.06 (q, *J* = 7.1 Hz, 1H), 3.89 (s, 3H), 2.68 (s, 3H), 1.28 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 152.8, 140.1, 138.6, 129.0, 123.9, 123.6, 121.2, 120.9, 118.9, 110.9, 61.9, 55.2, 34.7, 10.1.

HRMS (ESI) m/z calcd. for C₁₇H₂₁N₂O₂ [M+H]⁺ 285.1598, found 285.1593.

(S)-2-(Methyl(o-tolyl)amino)-N-phenylpropanamide (19)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*,2-dimethylaniline **N19** (24.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **19** as a colorless oil (46.7 mg, 87% yield, 98% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.49 min, t_R (minor) = 12.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.27 (s, 1H), 7.60 – 7.58 (m, 2H), 7.37 – 7.33 (m, 2H), 7.24 – 7.20 (m, 2H), 7.18 – 7.16 (m, 1H), 7.14 – 7.06 (m, 2H), 3.79 (q, *J* = 7.0 Hz, 1H), 2.69 (s, 3H), 2.43 (s, 3H), 1.31 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 149.6, 137.8, 133.2, 131.5, 129.0, 126.9, 124.8, 124.1, 122.5, 119.3, 63.6, 38.2, 18.9, 12.9.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_{2}O [M+H]^+$ 269.1648, found 269.1647.

(S)-2-((2-(tert-Butyl)phenyl)(methyl)amino)-N-phenylpropanamide (20)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and 2-(*tert*-butyl)-*N*-methylaniline **N20** (32.7 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **20** as a colorless oil (47.8 mg, 77% yield, 98% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 5.28 min, t_R (major) = 6.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.10 (s, 1H), 7.65 – 7.63 (m, 2H), 7.47 – 7.44 (m, 1H), 7.40 – 7.36 (m, 2H), 7.30 – 7.25 (m, 1H), 7.21 – 7.12 (m, 3H), 3.65 (q, *J* = 7.1 Hz, 1H), 2.66 (s, 3H), 1.60 (s, 9H), 1.17 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 149.4, 146.3, 138.0, 129.1, 127.6, 127.3, 126.7, 126.4, 124.1, 119.0, 67.6, 47.8, 35.6, 31.8, 18.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{27}N_2O [M+H]^+$ 311.2118, found 311.2110.
(S)-2-((2,6-Diisopropylphenyl)(methyl)amino)-N-phenylpropanamide (21)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and 2,6-diisopropyl-*N*-methylaniline **N21** (30.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **21** as a yellowish oil (53.5 mg, 79% yield, 89% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 9.07 min, $t_{\rm R}$ (minor) = 11.78 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.18 – 7.13 (m, 3H), 3.97 (q, *J* = 7.1 Hz, 1H), 3.74 – 3.64 (m, 1H), 3.08 – 2.98 (m, 1H), 2.85 (s, 3H), 1.38 – 1.34 (m, 6H), 1.30 – 1.25 (m, 6H), 1.10 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 149.2, 147.8, 142.4, 137.9, 129.2, 127.3, 125.1, 124.2, 123.6, 119.2, 65.7, 43.3, 29.1, 28.6, 25.5, 24.5, 23.8, 23.4, 19.0.

HRMS (ESI) m/z calcd. for $C_{22}H_{31}N_{2}O [M+H]^{+} 339.2431$, found 339.2422.

(S)-2-(*tert*-Butyl(phenyl)amino)-N-phenylpropanamide (22)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(*tert*-butyl)aniline **N22** (29.8 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **22** as a yellowish oil (39.7 mg, 67% yield, 93% ee).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 240 nm), t_R (minor) = 7.39 min, t_R (major) = 8.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.65 – 7.62 (m, 2H), 7.40 – 7.35 (m, 2H), 7.31 – 7.27 (m, 2H), 7.23 – 7.19 (m, 3H), 7.15 – 7.11 (m, 1H), 4.05 (q, *J* = 7.2 Hz, 1H), 1.25 (s, 9H), 1.17 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.7, 144.7, 137.8, 131.6, 129.1, 128.2, 126.1, 124.0, 119.0, 57.8, 57.0, 29.2, 18.4.

HRMS (ESI) m/z calcd. for C₁₉H₂₅N₂O [M+H]⁺ 297.1961, found 297.1954.

(S)-2-(*tert*-Butyl(2,6-dimethylphenyl)amino)-*N*-phenylpropanamide (23)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-(*tert*-butyl)-2,6-dimethylaniline **N23** (34.5 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **23** as a colorless oil (46.1 mg, 71% yield, 90% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 240$ nm), t_R (minor) = 8.08 min, t_R (major) = 10.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.58 – 7.56 (m, 2H), 7.38 – 7.36 (m, 2H), 7.14 – 7.08 (m, 2H), 7.06 – 7.00 (m, 2H), 4.25 (q, *J* = 7.0 Hz, 1H), 2.66 (s, 3H), 2.31 (s, 3H), 1.21 (s, 9H), 1.01 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.5, 143.9, 140.4, 140.0, 137.9, 129.3, 129.2, 128.4, 125.9, 124.0, 119.0, 60.0, 58.2, 30.1, 22.1, 21.7, 20.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₈N₂NaO [M+Na]⁺ 347.2094, found 347.2087.

(S)-2-(Ethyl(naphthalen-2-yl)amino)-N-phenylpropanamide (24)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-ethylnaphthalen-2-amine N24 (34.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 24 as a yellowish oil (25.5 mg, 40% yield, 98% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.84 min, t_R (minor) = 23.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.79 – 7.70 (m, 3H), 7.53 – 7.51 (m, 2H), 7.45 – 7.41 (m, 1H), 7.35 – 7.30 (m, 3H), 7.23 – 7.21 (m, 2H), 7.12 – 7.09 (m, 1H), 4.41 (q, *J* = 7.0 Hz, 1H), 3.55 – 3.46 (m, 1H), 3.41 – 3.32 (m, 1H), 1.49 (d, *J* = 7.0 Hz, 3H), 1.26 – 1.25 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 145.0, 137.6, 134.4, 129.2, 129.0, 128.6, 127.4, 126.7, 126.5, 124.3, 123.8, 119.6, 119.5, 112.7, 62. 4, 42.7, 13.5, 12.7.

HRMS (ESI) m/z calcd. for $C_{21}H_{23}N_2O [M+H]^+ 319.1805$, found 319.1803.

(S)-2-(3,4-Dihydroquinolin-1(2H)-yl)-N-phenylpropanamide (25)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and 1,2,3,4-tetrahydroquinoline **N25** (26.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **25** as a colorless oil (53.3 mg, 95% yield, 94% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.26 min, t_R (minor) = 23.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.51 – 7.49 (m, 2H), 7.32 – 7.28 (m, 2H), 7.10 – 7.04 (m, 3H), 6.76 – 6.72 (m, 1H), 6.68 – 6.66 (m, 1H), 4.41 (q, *J* = 7.0 Hz, 1H), 3.26 – 3.17 (m, 2H), 2.91 – 2.79 (m, 2H), 2.11 – 1.97 (m, 2H), 1.48 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 144.2, 137.6, 129.9, 128.9, 127.1, 124.5, 124.2, 119.5, 118.4, 112.7, 59.1, 45.7, 27.8, 22.7, 11.2.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_{2}O [M+H]^+ 281.1648$, found 281.1646.

(S)-2-(2,3-Dihydro-4H-benzo[b][1,4]oxazin-4-yl)-N-phenylpropanamide (26)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine N26 (27.0 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 26 as a colorless oil (48.4 mg, 86% yield, 95% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 15.23 min, t_R (minor) = 21.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.51 – 7.49 (m, 2H), 7.33 – 7.30 (m, 2H), 7.13 – 7.09 (m, 1H), 6.88 – 6.82 (m, 2H), 6.80 – 6.72 (m, 2H), 4.37 – 4.32 (m, 3H), 3.37 – 3.27 (m, 2H), 1.49 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 145.3, 137.4, 133.1, 129.0, 124.4, 121.5, 120.3, 119.6, 117.1, 114.1, 65.0, 59.1, 43.9, 11.0.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}N_2O_2$ [M+H]⁺ 283.1441, found 283.1437.

(S)-2-(2,3-Dihydro-4H-benzo[b][1,4]thiazin-4-yl)-N-phenylpropanamide (27)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 3,4-dihydro-2*H*-benzo[*b*][1,4]thiazine N27 (30.2 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 27 as a colorless oil (53.7 mg, 90% yield, 96% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.81 min, t_R (minor) = 22.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.54 – 7.52 (m, 2H), 7.33 – 7.29 (m, 2H), 7.16 – 7.14 (m, 1H), 7.12 – 7.08 (m, 1H), 7.06 – 7.02 (m, 1H), 6.82 – 6.78 (m, 2H), 4.48 (q, J = 7.0 Hz, 1H), 3.48 – 3.43 (m, 1H), 3.40 – 3.35 (m, 1H), 3.27 – 3.21 (m, 1H), 3.08 – 3.03 (m, 1H), 1.51 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 143.3, 137.5, 129.0, 127.9, 125.8, 124.3, 122.3, 120.2, 119.4, 115.0, 59.4, 45.3, 27.9, 11.6.

HRMS (ESI) m/z calcd. for C₁₇H₁₉N₂OS [M+H]⁺ 299.1213, found 299.1209.

(S)-N-Phenyl-2-(2,3,4,5-tetrahydro-1H-benzo[b]azepin-1-yl)propanamide (28)

According to General Procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 2,3,4,5-tetrahydro-1*H*-benzo[*b*]azepine N28 (29.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 28 as a colorless oil (52.4 mg, 89% yield, 97% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 13.19 min, t_R (minor) = 25.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.13 (s, 1H), 7.56 – 7.54 (m, 2H), 7.34 – 7.30 (m, 2H), 7.20 – 7.16 (m, 2H), 7.11 – 7.04 (m, 2H), 6.99 – 6.95 (m, 1H), 4.26 (q, *J* = 6.8 Hz, 1H), 3.24 – 3.19 (m, 1H), 2.97– 2.85 (m, 2H), 2.77 – 2.70 (m, 1H), 1.99 – 1.92 (m, 1H), 1.86 – 1.72 (m, 2H), 1.62 (d, *J* = 6.8 Hz, 3H), 1.49 – 1.38 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 150.8, 137.7, 136.5, 130.6, 129.0, 127.1, 124.0, 122.9, 119.2, 119.0, 61.5, 50.2, 36.2, 30.5, 25.9, 13.2.

HRMS (ESI) m/z calcd. for C₁₉H₂₃N₂O [M+H]⁺ 295.1805, found 295.1801.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.8 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl bromide (0.20 mmol, 1.0 equiv), primary aromatic amine (0.30 mmol, 1.5 equiv), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

$$Me \xrightarrow{\text{Br}}_{O} NHPh + Ar - NH_2 \xrightarrow{\text{Cul (10 mol%)}}_{\text{Cs}_2CO_3 (3 \text{ equiv.}), 1,4-\text{dioxane, r.t.}} Ar \xrightarrow{\text{H}}_{Me} NHPr$$

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), alkyl bromide (0.20 mmol, 1.0 equiv), primary aromatic amine (0.30 mmol, 1.5 equiv), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-N-phenyl-2-(o-tolylamino)propanamide (29)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg,

0.20 mmol, 1.0 equiv) and *o*-toluidine **N29** (32.2 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **29** as a white solid (43.2 mg, 85% yield, 90% ee). **HPLC** analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.06 min, t_R (minor) = 17.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.52 – 7.46 (m, 2H), 7.35 – 7.26 (m, 2H), 7.16 – 7.03 (m, 3H), 6.84 – 6.74 (m, 1H), 6.60 – 6.53 (m, 1H), 3.91 (q, *J* = 7.0 Hz, 1H), 3.83 (s, 1H), 2.27 (s, 3H), 1.64 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 144.5, 137.4, 130.4, 128.9, 127.5, 124.4, 122.6, 119.9, 119.4, 111.6, 56.2, 20.1, 17.6.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O [M + H]^+ 255.1492$, found 255.1490.

(S)-2-((2-Isopropylphenyl)amino)-N-phenylpropanamide (30)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 2-isopropylaniline **N30** (40.5 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **30** as a colorless oil (37.7 mg, 67% yield, 96% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.79 min, t_R (minor) = 14.56 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.51 – 7.49 (m, 2H), 7.31 – 7.27 (m, 2H), 7.23 – 7.21 (m, 1H), 7.11 – 7.07 (m, 2H), 6.88 – 6.85 (m, 1H), 6.66 – 6.58 (m, 1H), 4.01 (s, 1H), 3.91 (q, *J* = 7.0 Hz, 1H), 3.00 (hept, *J* = 6.8 Hz, 1H), 1.64 (d, *J* = 7.1 Hz, 3H), 1.35 (d, *J* = 6.7 Hz, 3H), 1.32 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 143.2, 137.4, 133.0, 128.9, 127.1, 125.3, 124.4, 119.8, 119.8, 112.3,56.4, 27.4, 22.6, 22.4, 20.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M + H]^+ 283.1805$, found 283.1801.

(S)-2-((2-(Difluoromethoxy)phenyl)amino)-N-phenylpropanamide (31)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-(difluoromethoxy)aniline **N31** (47.7 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel

(petroleum ether/EtOAc = 5/1) to yield the product **31** as a white solid (53.3 mg, 87% yield, 95% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.38 min, t_R (minor) = 8.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.52 – 7.50 (m, 2H), 7.32 – 7.27 (m, 2H), 7.12 – 7.07 (m, 3H), 6.82 – 6.78 (m, 1H), 6.67 – 6.65 (m, 1H), 6.59 (t, *J* = 73.9 Hz, 1H), 4.50 – 4.46 (m, 1H), 3.90 – 3.84 (m, 1H), 1.64 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 138.5, 138.46 (t, *J* = 2.4 Hz), 137.3, 129.0, 126.8, 124.5, 119.7, 119.2, 116.6 (t, *J* = 260.2 Hz), 113.2, 55.9, 19.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –80.06.

HRMS (ESI) m/z calcd. for $C_{16}H_{17}F_2N_2O_2$ [M + H]⁺ 307.1253, found 307.1253.

(S)-2-((2-Methoxyphenyl)amino)-N-phenylpropanamide (32)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-methoxyaniline **N32** (37.0 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **32** as a yellowish solid (40.5 mg, 75% yield, 88% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 12.27 min, t_R (minor) = 15.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.53 – 7.51 (m, 2H), 7.31 – 7.26 (m, 2H), 7.10 – 7.06 (m, 1H), 6.86 – 6.77 (m, 3H), 6.57 – 6.54 (m, 1H), 4.56 (s, 1H), 3.91 (s, 3H), 3.81 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 146.9, 137.5, 136.3, 128.9, 124.2, 121.4, 119.8, 119.0, 111.7, 109.5, 56.3, 55.4, 19.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O_2$ [M + H]⁺ 271.1441, found 271.1440.

(S)-2-((2-Methyl-4-(trifluoromethoxy)phenyl)amino)-N-phenylpropanamide (33)

According to General procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-methyl-4-(trifluoromethoxy)aniline N33 (57.4 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 33 as a colorless oil (49.4 mg, 73% yield, 96% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.49 min, t_R (minor) = 5.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.52 – 7.49 (m, 2H), 7.32 – 7.28 (m, 2H), 7.13 – 7.09 (m, 1H), 7.02 – 6.99 (m, 1H), 6.97 – 6.94 (m, 1H), 6.51 (d, J = 8.7 Hz, 1H), 3.91 – 3.86 (m, 2H), 2.27 (s, 3H), 1.64 (d, J = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 143.2, 141.7 (q, *J* = 1.4 Hz), 137.2, 129.0, 124.6, 124.0, 123.5, 141.7 (q, *J* = 254.2 Hz), 120.2, 119.9, 111.8, 56.3, 20.0, 17.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –58.27.

HRMS (ESI) m/z calcd. for $C_{17}H_{18}F_3N_2O_2$ [M + H]⁺ 339.1315, found 339.1314.

(S)-2-((2-Ethyl-6-methylphenyl)amino)-N-phenylpropanamide (34)

According to General procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-ethyl-6-methylaniline N34 (40.6 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 34 as a yellowish oil (41.8 mg, 74% yield, 93% ee).

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 8.05 min, t_R (minor) = 12.12 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.62 – 7.59 (m, 2H), 7.37 – 7.32 (m, 2H), 7.14 – 7.10 (m, 1H), 7.09 – 7.02 (m, 2H), 6.97 – 6.93 (m, 1H), 3.72 (q, *J* = 7.0 Hz, 1H), 3.44 (s, 1H), 2.73 – 2.57 (m, 2H), 2.31 (s, 3H), 1.51 (d, *J* = 6.9 Hz, 3H), 1.26 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 143.5, 137.6, 135.1, 129.4, 129.3, 129.0, 127.1, 124.3, 123.1, 119.5, 59.3, 24.4, 19.6, 19.0, 14.8.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M + H]^+ 283.1805$, found 283.1803.

(S)-2-((2-Bromo-6-methylphenyl)amino)-N-phenylpropanamide (35)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-bromo-6-methylaniline **N35** (55.8 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **35** as a colorless oil (39.3 mg, 59% yield, 94% ee).

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 11.16 min, t_R (minor) = 12.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.64 – 7.61 (m, 2H), 7.43 – 7.40 (m, 1H), 7.37 – 7.33 (m, 2H), 7.16 – 7.10 (m, 2H), 6.85 – 6.81 (m, 1H), 3.98 – 3.93 (m, 1H), 3.90 – 3.83 (m, 1H), 2.34 (s, 3H), 1.57 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 143.5, 137.6, 131.2, 131.1, 130.9, 129.1, 124.4, 124.0, 119.5, 117.7, 58.9, 19.6, 19.4.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}BrN_2O [M + H]^+$ 333.0597, found 333.0596.

(S)-2-((4-(tert-butyl)-2,6-dimethylphenyl)amino)-N-phenylpropanamide (36)

According to General procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.6 mg, 0.20 mmol, 1.0 equiv) and 4-(*tert*-butyl)-2,6-dimethylaniline N36 (35.5 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 36 as a yellowish oil (46.7 mg, 72% yield, 90% ee).

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 7.06 min, t_R (minor) = 12.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.61 – 7.59 (m, 2H), 7.35 – 7.31 (m, 2H), 7.14 – 7.09 (m, 1H), 7.04 (s, 2H), 3.73 (q, *J* = 7.0 Hz, 1H), 3.30 (s, 1H), 2.31 (s, 6H), 1.52 (d, *J* = 6.9 Hz, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 145.5, 141.6, 137.6, 129.0, 128.4, 126.3, 124.2, 119.3, 58.7, 33.9, 31.4, 20.0, 19.1.

HRMS (ESI) m/z calcd. for $C_{21}H_{29}N_2O [M + H]^+ 325.2274$, found 325.2272.

(S)-2-(Mesitylamino)-N-phenylpropanamide (37)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2,4,6-trimethylaniline **N37** (40.6 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **37** as a yellowish solid (42.4 mg, 75% yield, 88% ee).

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$

nm), t_R (major) = 9.16 min, t_R (minor) = 12.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.62 – 7.60 (m, 2H), 7.36 – 7.32 (m, 2H), 7.14 – 7.10 (m, 1H), 6.85 (s, 2H), 3.69 (q, *J* = 7.0 Hz, 1H), 3.26 (s, 1H), 2.27 (s, 6H), 2.24 (s, 3H), 1.50 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 141.6, 137.6, 132.2, 130.0, 129.03, 129.01, 124.3, 119.4, 58.9, 20.5, 19.7, 18.7.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M + H]^+ 283.1805$, found 283.1804.

(S)-2-((2-(Dimethylamino)phenyl)amino)-N-phenylpropanamide (38)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-Amino-N,N-dimethylaniline **N38** (40.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **38** as a yellowish solid (36.8 mg, 65% yield, 88% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.62 min, t_R (minor) = 16.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.52 – 7.50 (m, 2H), 7.32 – 7.27 (m, 2H), 7.13 – 7.06 (m, 2H), 7.01 – 6.97 (m, 1H), 6.84 – 6.80 (m, 1H), 6.59 – 6.56 (m, 1H), 5.16 (s, 1H), 3.79 (q, *J* = 7.1 Hz, 1H), 2.71 (s, 6H), 1.63 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 141.7, 141.0, 137.4, 128.9, 125.2, 124.3, 119.70, 119.66, 119.3, 111.9, 56.7, 44.4, 19.9.

HRMS (ESI) m/z calcd. for $C_{17}H_{22}N_{3}O [M + H]^+ 284.1757$, found 284.1757.

(S)-2-((2-(tert-butyl)phenyl)amino)-N-phenylpropanamide (39)

According to General procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-(*tert*-butyl)aniline N39 (44.8 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 39 as a white solid (40.3 mg, 68% yield, 95% ee).

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$

nm), $t_{\rm R}$ (minor) = 6.33 min, $t_{\rm R}$ (major) = 7.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.50 – 7.48 (m, 2H), 7.32 – 7.28 (m, 3H), 7.13 – 7.07 (m, 2H), 6.84 – 6.80 (m, 1H), 6.60 – 6.58 (m, 1H), 4.34 – 4.31 (m, 1H), 3.96 – 3.90 (m, 1H), 1.66 (d, *J* = 7.0 Hz, 3H), 1.52 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 144.6, 137.4, 134.2, 128.9, 127.6, 126.5, 124.4, 119.7, 119.4, 113.3, 56.6, 34.2, 30.3, 20.0.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O [M + H]^+ 297.1961$, found 297.1960.

(S)-2-((2,6-Dimethylphenyl)amino)-N-phenylpropanamide (40)

According to **General Procedure** B with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 2,6-dimethylaniline **N40** (36.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **40** as a colorless oil (30.0 mg, 56% yield, 97% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 9.71 min, *t*_R (minor) = 11.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.61 – 7.59 (m, 2H), 7.36 – 7.32 (m, 2H), 7.14 – 7.10 (m, 1H), 7.04 – 7.02 (m, 2H), 6.90 – 6.86 (m, 1H), 3.75 (q, *J* = 7.0 Hz, 1H), 3.39 (s, 1H), 2.31 (s, 6H), 1.52 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 144.2, 137.6, 129.4, 129.0, 128.9, 124.3, 122.8, 119.5, 58.7, 19.9, 18.8.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M + H]^+ 269.1648$, found 269.1645.

(S)-2-((2,6-Diethylphenyl)amino)-N-phenylpropanamide (41)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2,6-diethylaniline **N41** (44.8 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **41** as a colorless oil (42.1 mg, 71% yield, 96% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.02 min, t_R (minor) = 6.82 min.

A gram-scale experiment: According to General Procedure A with 2-bromo-N-

phenylpropanamide E1 (1.37 g, 6.0 mmol, 1.0 equiv) and 2,6-diethylaniline N41 (1.34 g, 9.0 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 37 as a colorless oil (1.33 g, 75% yield, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 9.39 (s, 1H), 7.62 – 7.60 (m, 2H), 7.37 – 7.33 (m, 2H), 7.15 – 7.11 (m, 1H), 7.10 – 7.08 (m, 2H), 7.03 – 7.00 (m, 1H), 3.69 (q, *J* = 7.0 Hz, 1H), 3.43 (s, 1H), 2.74 – 2.58 (m, 4H), 1.50 (d, *J* = 6.9 Hz, 3H), 1.26 (t, *J* = 7.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 142.8, 137.6, 135.7, 129.0, 127.0, 124.3, 123.5, 119.5, 60.0, 24.5, 19.3, 14.8.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O [M + H]^+ 297.1961$, found 297.1960.

(S)-2-((2,6-Diisopropylphenyl)amino)-N-phenylpropanamide (42)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2,6-diisopropylaniline **N42** (53.2 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **42** as a white solid (44.1 mg, 68% yield, 91% ee).

HPLC analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 5.80 min, t_R (minor) = 7.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.45 (s, 1H), 7.63 – 7.60 (m, 2H), 7.37 – 7.33 (m, 2H), 7.16 – 7.08 (m, 4H), 3.62 (q, *J* = 7.0 Hz, 1H), 3.44 (s, 1H), 3.18 (hept, *J* = 6.8 Hz, 2H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.28 (d, *J* = 6.8 Hz, 6H), 1.22 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.1, 141.6, 140.6, 137.6, 129.0, 124.32, 124.27, 123.9, 119.4, 61.1, 28.0, 24.1, 24.0, 18.5.

HRMS (ESI) m/z calcd. for $C_{21}H_{29}N_2O [M + H]^+$ 325.2274, found 325.2274.

(S)-N-Phenyl-2-(phenylamino)propanamide (43)

According to General Procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.4 mg, 0.20 mmol, 1.0 equiv) and aniline N43 (27.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 43 as a white solid (42.5 mg, 88% yield, 92% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.10 min, t_R (major) = 13.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.52 – 7.48 (m, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.22 (t, *J* = 7.9 Hz, 2H), 7.11 – 7.07 (m, 1H), 6.86 – 6.83 (m, 1H), 6.69 – 6.67 (m, 2H), 3.95 (s, 1H), 3.87 (q, *J* = 7.0 Hz, 1H), 1.60 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 146.4, 137.4, 129.5, 128.9, 124.4, 119.81, 119.76, 114.0, 56.4, 19.8.

HRMS (ESI) m/z calcd. for $C_{15}H_{17}N_2O [M + H]^+ 241.1335$, found 241.1331.

(S)-2-((3-Acetamidophenyl)amino)-N-phenylpropanamide (44)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and *N*-(3-aminophenyl)acetamide **N44** (45.1 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **44** as a white solid (56.0 mg, 94% yield, 95% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 15.30 min, t_R (minor) = 19.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.52 – 7.50 (m, 2H), 7.45 (s, 1H), 7.31 –7.26 (m, 2H), 7.14 – 7.07 (m, 2H), 7.04 (s, 1H), 6.88 – 6.86 (m, 1H), 6.39 – 6.38 (m, 1H), 4.08 (s, 1H), 3.84 (q, *J* = 6.9 Hz, 1H), 2.13 (s, 3H), 1.56 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 168.6, 147.1, 139.1, 137.4, 130.0, 128.9, 124.4, 119.9, 110.9, 109.4, 105.5, 56.2, 24.6, 19.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{20}N_3O_2$ [M + H]⁺ 298.1550, found 298.1546.

(S)-2-((3-Methoxyphenyl)amino)-N-phenylpropanamide (45)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 3-methoxyaniline **N45** (36.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **45** as a white solid (44.5 mg, 82% yield, 94% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 15.35 min, *t*_R (minor) = 18.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.52 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.14 – 7.07 (m, 2H), 6.41 – 6.39 (m, 1H), 6.29 – 6.27 (m, 1H), 6.23 (s, 1H), 3.97 (s, 1H), 3.88 (q, *J* = 7.0 Hz, 1H), 3.75 (s, 3H), 1.59 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 160.8, 147.8, 137.4, 130.3, 128.9, 124.4, 119.8, 106.6, 104.9, 100.2, 56.2, 55.1, 19.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O_2$ [M + H]⁺ 271.1441, found 271.1439.

(S)-2-((4-Methoxyphenyl)amino)-N-phenylpropanamide (46)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-methoxyaniline **N46** (36.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **46** as a white solid (45.6 mg, 84% yield, 87% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 16.76 min, *t*_R (minor) = 20.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.53 – 7.51 (m, 2H), 7.31 – 7.25 (m, 2H), 7.10 – 7.06 (m, 1H), 6.80 – 6.76 (m, 2H), 6.64 – 6.59 (m, 2H), 3.77 (q, *J* = 7.1 Hz, 1H), 3.72 (s, 3H), 1.56 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 153.4, 140.3, 137.5, 128.9, 124.3, 119.7, 115.1, 114.9, 57.0, 55.6, 19.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O_2$ [M + H]⁺ 271.1441, found 271.1438.

(S)-N-Phenyl-2-((4-(trifluoromethoxy)phenyl)amino)propanamide (47)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-(trifluoromethoxy)aniline **N47** (53.1 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **47** as a colorless oil (45.0 mg, 69% yield, 95% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.80 min, t_R (major) = 12.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.52 – 7.50 (m, 2H), 7.32 – 7.9 (m, 2H), 7.13 – 7.06 (m, 3H), 6.65 – 6.63 (m, 2H), 4.10 (s, 1H), 3.84 (q, *J* = 7.0 Hz, 1H), 1.60 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 145.1, 142.1 (d, J = 2.0 Hz), 137.2, 129.0, 124.6, 122.6, 120.6 (q, J = 254.3 Hz), 119.9, 114.4, 56.4, 19.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –58.40. HRMS (ESI) m/z calcd. for C₁₆H₁₆F₃N₂O₂ [M + H]⁺ 325.1158, found 325.1152.

(S)-N-Phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)propanamide (48)

According to **General Procedure E** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline **N48** (65.7 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **48** as a colorless oil (50.0 mg, 68% yield, 96% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.65 min, t_R (major) = 16.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.68 – 7.66 (m, 2H), 7.49 – 7.46 (m, 2H), 7.31 – 7.27 (m, 2H), 7.11 – 7.07 (m, 1H), 6.67 – 6.65 (m, 2H), 4.15 (s, 1H), 3.93 (q, *J* = 7.1 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 3H), 1.31 (s, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 148.8, 137.3, 136.5, 128.9, 124.5, 119.9, 113.0, 83.4, 55.8, 24.8, 19.7.

HRMS (ESI) m/z calcd. for $C_{21}H_{28}BN_2O_3$ [M + H]⁺ 367.2187, found 367.2182.

(S)-2-((4-(tert-Butyl)phenyl)amino)-N-phenylpropanamide (49)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-(*tert*-butyl)aniline **N49** (44.7 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **49** as a white solid (48.1 mg, 81% yield, 90% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (major) = 14.66 min, *t*_R (minor) = 17.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.54 – 7.52 (m, 2H), 7.31 – 7.27 (m, 2H), 7.25 – 7.23 (m, 2H), 7.10 – 7.07 (m, 1H), 6.65 – 6.62 (m, 2H), 3.88 – 3.81 (m, 2H), 1.57 (d, *J* = 7.0 Hz, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 144.1, 142.6, 137.5, 128.9, 126.3, 124.3, 119.8, 113.7, 56.6, 34.0, 31.4, 19.8.

HRMS (ESI) m/z calcd. for $C_{19}H_{25}N_2O [M + H]^+ 297.1961$, found 297.1957.

(S)-2-((4-Bromophenyl)amino)-N-phenylpropanamide (50)

According to General Procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-bromoaniline N50 (51.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel to yield the product 50 (54.0 mg, 85% yield, 96% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.69 min, t_R (major) = 16.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.50 – 7.48 (m, 2H), 7.31 – 7.25 (m, 4H), 7.12 – 7.08 (m, 1H), 6.55 – 6.53 (m, 2H), 4.10 (d, *J* = 6.8 Hz, 1H), 3.82 (q, *J* = 7.0 Hz, 1H), 1.58 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 145.3, 137.2, 132.2, 129.0, 124.6, 119.9, 115.4, 111.6, 56.1, 19.6.

HRMS (ESI) m/z calcd. for $C_{15}H_{16}BrN_2O [M + H]^+ 319.0441$, found 319.0441.

(S)-2-((2-Fluorophenyl)amino)-N-phenylpropanamide (51)

According to **General procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.6 mg, 0.20 mmol, 1.0 equiv) and 2-fluoroaniline **N51** (33.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **51** as a white solid (35.6 mg, 69% yield, 92% ee). **HPLC** analysis: Chiralcel IA3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, λ = 254 nm), *t*_R (major) = 11.30 min, *t*_R (minor) = 12.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.54 – 7.51 (m, 2H), 7.32 – 7.28 (m, 2H), 7.12 – 7.08 (m, 1H), 7.07 – 7.01 (m, 1H), 7.01 – 6.97 (m, 1H), 6.80 – 6.75 (m, 1H), 6.68 – 6.63 (m, 1H), 4.24 (s, 1H), 3.90 – 3.84 (m, 1H), 1.64 (d, *J* = 7.0 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 171.9, 151.6 (d, *J* = 239.3 Hz), 137.3, 134.8 (d, *J* = 11.7 Hz), 129.0, 125.0 (d, *J* = 3.7 Hz), 124.5, 119.8, 119.4 (d, *J* = 7.2 Hz), 114.8 (d, *J* = 18.6 Hz), 113.7 (d, *J* = 2.6 Hz), 56.1, 19.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –135.04.

HRMS (ESI) m/z calcd. for $C_{15}H_{16}FN_{2}O [M + H]^{+} 259.1241$, found 259.1240.

(S)-2-((4-Iodophenyl)amino)-N-phenylpropanamide (52)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-iodoaniline **N52** (65.7 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **52** as a white solid (58.9 mg, 80% yield, 95% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 14.47 min, t_R (major) = 18.11 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.50 – 7.46 (m, 4H), 7.32 – 7.28 (m, 2H), 7.12 – 7.08 (m, 1H), 6.46 – 6.44 (m, 2H), 4.04 (s, 1H), 3.82 (q, *J* = 7.1 Hz, 1H), 1.59 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 145.9, 138.1, 137.2, 129.0, 124.6, 119.8, 116.0, 81.1, 56.1, 19.7.

HRMS (ESI) m/z calcd. for $C_{15}H_{16}IN_{2}O [M + H]^{+} 367.0302$, found 367.0296.

(S)-N-Phenyl-2-((4-(trifluoromethyl)phenyl)amino)propenamide (53)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-(trifluoromethyl)aniline **N53** (48.3 mg, 0.30 mmol, 1.5 equiv) for 120 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **53** as a colorless oil (37.8 mg, 61% yield, 97% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 10.33 min, t_R (major) = 13.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.50 – 7.44 (m, 4H), 7.33 – 7.29 (m, 2H), 7.13 – 7.09 (m, 1H), 6.71 – 6.69 (m, 2H), 4.35 (s, 1H), 3.96 – 3.90 (m, 1H), 1.63 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 148.9, 137.1, 129.0, 126.9 (q, *J* = 3.7 Hz), 124.7, 124.5 (q, *J* = 269.0 Hz), 121.5 (q, *J* = 33.0 Hz), 119.9, 113.3, 55.8, 19.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –61.43.

HRMS (ESI) m/z calcd. for $C_{16}H_{16}F_3N_2O [M + H]^+ 309.1209$, found 309.1209.

(S)-N-Phenyl-2-((3-(trifluoromethyl)phenyl)amino)propanamide (54)

According to General Procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.4 mg, 0.20 mmol, 1.0 equiv) and 3-(trifluoromethyl)aniline N54 (48.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product 54 as a colorless oil (40.0 mg, 65% yield, 97% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.08 min, t_R (major) = 17.49 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.51 – 7.49 (m, 2H), 7.32 – 7.29 (m, 3H), 7.13 – 7.07 (m, 3H), 6.93 (s, 1H), 6.80 – 6.78 (m, 1H), 4.25 (s, 1H), 3.95 – 3.89 (m, 1H), 1.62 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 146.6, 137.1, 131.9 (q, *J* = 32.0 Hz), 130.2, 129.0, 124.7, 123.9 (q, *J* = 270.8 Hz), 120.0, 116.3, 116.1 (q, *J* = 3.8 Hz), 110.8 (q, *J* = 4.0 Hz), 56.0, 19.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.85.

HRMS (ESI) m/z calcd. for $C_{16}H_{16}F_3N_2O [M + H]^+ 309.1209$, found 309.1208.

(S)-2-((4-Acetylphenyl)amino)-N-phenylpropanamide (55)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 1-(4-aminophenyl)ethan-1-one **N55** (40.5 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **55** as a white solid (37.0 mg, 66% yield, 95% ee).

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 16.91 min, t_R (major) = 26.45 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.85 – 7.83 (m, 2H), 7.50 – 7.48 (m, 2H), 7.32 – 7.28 (m, 2H), 7.13 – 7.09 (m, 1H), 6.67 – 6.65 (m, 2H), 4.64 (s, 1H), 4.01 (q, *J* = 7.1 Hz, 1H), 2.50 (s, 3H), 1.63 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.6, 171.4, 150.3, 137.1, 130.8, 129.0, 128.7, 124.7, 120.0, 112.8, 55.3, 26.1, 19.5.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}N_2O_2$ [M + H]⁺ 283.1441, found 283.1439.

(S)-2-((3-Acetylphenyl)amino)-N-phenylpropanamide (56)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 1-(3-aminophenyl)ethan-1-one **N56** (40.5 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **56** as a white solid (34.5 mg, 61% yield, 97% ee).

HPLC analysis: Chiralcel AD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (minor) = 16.78 min, t_R (major) = 22.64 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.52 – 7.50 (m, 2H), 7.40 – 7.39 (m, 1H), 7.32 – 7.28 (m, 4H), 7.12 – 7.08 (m, 1H), 6.85 – 6.83 (m, 1H), 4.28 (s, 1H), 3.97 – 3.93 (m, 1H), 2.56 (s, 3H), 1.61 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 198.3, 171.9, 146.7, 138.2, 137.3, 129.8, 129.0, 124.5, 119.9, 119.8, 117.9, 113.4, 56.0, 26.7, 19.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{19}N_2O_2$ [M + H]⁺ 283.1441, found 283.1439.

Ethyl (S)-4-((1-oxo-1-(phenylamino)propan-2-yl)amino)benzoate (57)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and benzocaine **N57** (49.6 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **57** as a white solid (53.7 mg, 86% yield, 97% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), *t*_R (minor) = 7.45 min, *t*_R (major) = 9.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.91 – 7.89 (m, 2H), 7.49 – 7.47 (m, 2H), 7.31 – 7.27 (m, 2H), 7.12 – 7.08 (m, 1H), 6.66 – 6.64 (m, 2H), 4.54 – 4.53 (m, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.01 – 3.95 (m, 1H), 1.62 (d, J = 7.0 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 166.5, 150.0, 137.1, 131.6, 129.0, 124.7, 121.2, 120.0, 112.8, 60.5, 55.4, 19.5, 14.3.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_2O_3$ [M + H]⁺ 313.1547, found 313.1541.

(S)-2-((4-Cyanophenyl)amino)-N-phenylpropanamide (58)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 4-aminobenzonitrile **N58** (35.4 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **58** as a white solid (40.0 mg, 75% yield, 96% ee). **HPLC** analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 8.77 min, t_R (major) = 11.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.49 – 7.47 (m, 4H), 7.34 – 7.30 (m, 2H), 7.15 – 7.11 (m, 1H), 6.69 – 6.67 (m, 2H), 4.59 (s, 1H), 4.01 – 3.95 (m, 1H), 1.64 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 149.6, 137.0, 133.9, 129.1, 124.9, 120.0, 119.6, 113.6, 101.7, 55.3, 19.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{16}N_{3}O [M + H]^+ 266.1288$, found 266.1286.

(S)-2-((4-Nitrophenyl)amino)-N-phenylpropanamide (59)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.20 mmol, 1.0 equiv) and 4-nitroaniline **N59** (41.4 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product **59** as a yellowish solid (23.4 mg, 41% yield, 83% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) =9.10 min, t_R (major) =16.52 min.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 8.05 – 7.99 (m, 2H), 7.63 – 7.59 (m, 2H), 7.54 – 7.52 (m, 1H), 7.33 – 7.29 (m, 2H), 7.09 – 7.04 (m, 1H), 6.70 – 6.68 (m, 2H), 4.33 – 4.18 (m, 1H), 1.47 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.4, 153.7, 138.7, 136.4, 128.8, 126.2, 123.6, 119.4, 52.4, 18.6.

HRMS (ESI) m/z calcd. for C₁₅H₁₆N₃O₃ [M+H]⁺ 286.1186, found 286.1184.

(S)-2-((3-(Methylsulfonyl)phenyl)amino)-N-phenylpropanamide (60)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 3-(methylsulfonyl)aniline **N60** (51.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **60** as a white solid (48.9 mg, 77% yield, 97% ee).

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 12.88 min, t_R (major) = 16.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.51 – 7.49 (m, 2H), 7.37 – 7.33 (m, 1H), 7.32 – 7.26 (m, 4H), 7.11 – 7.07 (m, 1H), 6.85 – 6.82 (m, 1H), 4.81 – 4.80 (m, 1H), 4.01 – 3.95 (m, 1H), 3.03 (s, 3H), 1.57 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 147.4, 141.3, 137.3, 130.7, 128.9, 124.6, 120.0, 117.7, 116.9, 112.2, 55.4, 44.3, 19.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2O_3$ [M + H]⁺ 319.1111, found 319.1106.

(S)-2-((3-(Methylthio)phenyl)amino)-N-phenylpropanamide (61)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 3-(methylthio)aniline **N61** (41.7 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **61** as a white solid (45.5 mg, 80% yield, 92% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 27.80 min, t_R (minor) = 36.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.52 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.14 – 7.08 (m, 2H), 6.74 – 6.72 (m, 1H), 6.57 (s, 1H), 6.44 – 6.42 (m, 1H), 4.01 (s, 1H), 3.87 (q, *J* = 7.0 Hz, 1H), 2.43 (s, 3H), 1.59 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.1, 146.8, 139.9, 137.3, 129.8, 128.9, 124.4, 119.8, 117.6, 111.7, 110.6, 19.7, 15.5.

HRMS (ESI) m/z calcd. for $C_{16}H_{19}N_2OS [M + H]^+ 287.1213$, found 287.1217.

(S)-2-((4-(2-Hydroxyethyl)phenyl)amino)-N-phenylpropanamide (62)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and 2-(4-aminophenyl)ethan-1-ol **N62** (27.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc/CH₃OH = 50/1) to yield the product **62** as a colorless oil (51.2 mg, 90% yield, 96% ee).

HPLC analysis: Chiralcel AD (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (minor) = 21.38 min, t_R (major) = 23.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.52 – 7.50 (m, 2H), 7.30 – 7.26 (m, 2H), 7.10 – 7.04 (m, 3H), 6.63 – 6.61 (m, 2H), 3.99 (s, 1H) 3.85 – 3.76 (m, 3H), 2.75 (t, *J* = 6.6 Hz, 2H), 1.84 (s, 1H), 1.57 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 145.0, 137.4, 130.0, 129.5, 128.9, 124.4, 119.8, 114.1, 63.7, 56.4, 38.2, 19.7.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O_2$ [M + H]⁺ 285.1598, found 285.1594.

(S)-2-(Naphthalen-1-ylamino)-N-phenylpropanamide (63)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and naphthalen-1-amine **N63** (42.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **63** as a white solid (36.0 mg, 62% yield, 94% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 17.67 min, *t*_R (minor) = 20.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.95 – 7.91 (m, 1H), 7.87 – 7.83 (m, 1H), 7.56 – 7.50 (m, 2H), 7.48 – 7.46 (m, 2H), 7.38 – 7.25 (m, 4H), 7.09 – 7.05 (m, 1H), 6.63 – 6.61 (m, 1H), 4.67 (s, 1H), 4.08 (q, *J* = 7.0 Hz, 1H), 1.74 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.1, 141.3, 137.4, 134.2, 129.0, 128.9, 126.5, 126.1, 125.4, 124.4, 123.4, 119.89, 119.87, 119.4, 106.7, 56.2, 20.0.

HRMS (ESI) m/z calcd. for $C_{19}H_{19}N_2O [M + H]^+ 291.1492$, found 291.1489.

(S)-2-(Naphthalen-2-ylamino)-N-phenylpropanamide (64)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and naphthalen-2-amine **N64** (42.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **64** as a white solid (40.0 mg, 69% yield, 93% ee). **HPLC** analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, λ = 254 nm), *t*_R (major) = 15.44 min, *t*_R (minor) = 19.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.70 – 7.67 (m, 2H), 7.61 – 7.59 (m, 1H), 7.50 – 7.48 (m, 2H), 7.38 – 7.34 (m, 1H), 7.28 – 7.23 (m, 3H), 7.08 – 7.05 (m, 1H), 6.98 – 6.95 (m, 1H), 6.86 – 6.85 (m, 1H), 4.18 (s, 1H), 4.00 (q, *J* = 7.0 Hz, 1H), 1.64 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 143.9, 137.3, 134.7, 129.3, 128.9, 128.4, 127.5, 126.6, 126.4, 124.4, 123.1, 119.9, 117.6, 106.8, 56.2, 19.7.

HRMS (ESI) m/z calcd. for $C_{19}H_{19}N_2O_3$ [M + H]⁺ 291.1492, found 291.1489.

(S)-2-(Benzo[d][1,3]dioxol-5-ylamino)-N-phenylpropanamide (65)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and benzo[d][1,3]dioxol-5-amine N65 (41.1 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield the product 65 as a white solid (54.0 mg, 95% yield, 91% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major) = 37.95 min, t_R (minor) = 41.89 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.53 – 7.51 (m, 2H), 7.32 – 7.28 (m, 2H), 7.11 – 7.07 (m, 1H), 6.66 – 6.64 (m, 1H), 6.29 (d, *J* = 0.5 Hz, 1H), 6.09 – 6.07 (m, 1H), 5.86 (d, *J* = 0.5 Hz, 2H), 3.77 (q, *J* = 7.0 Hz, 1H), 3.38 (s, 1H) 1.56 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 148.5, 141.8, 141.2, 137.4, 128.9, 124.4, 119.8, 108.7, 105.6, 100.9, 97.0, 57.0, 19.7.

HRMS (ESI) m/z calcd. for $C_{16}H_{17}N_2O_3$ [M + H]⁺ 285.1234, found 285.1229.

tert-Butyl (S)-5-((1-oxo-1-(phenylamino)propan-2-yl)amino)-1*H*-indazole-1carboxylate (66)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and *tert*-butyl 5-amino-1*H*-indazole-1-carboxylate **N66** (69.9 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **66** as a white solid (50.5 mg, 66% yield, 91% ee).

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 28.02 min, t_R (minor) = 32.06 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.98 (s, 1H), 7.52 – 7.50 (m, 2H), 7.31 – 7.27 (m, 2H), 7.11 – 7.07 (m, 1H), 7.00 – 6.97 (m, 1H), 6.82 (d, J = 0.6 Hz, 1H), 4.24 (s, 1H), 3.91 (q, J = 7.0 Hz, 1H), 1.70 (s, 9H), 1.64 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 149.1, 143.0, 139.0, 137.3, 134.6, 128.9, 126.8, 124.4, 119.7, 118.8, 115.4, 102.0, 84.7, 56.7, 28.1, 19.7.

HRMS (ESI) m/z calcd. for $C_{21}H_{25}N_4O_3$ [M + H]⁺ 381.1921, found 381.1914.

tert-Butyl (S)-6-((1-oxo-1-(phenylamino)propan-2-yl)amino)-1*H*-indole-1carboxylate (67)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and *tert*-butyl 6-amino-1*H*-indole-1-carboxylate **N67** (69.6 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield the product **67** as a white solid (63.9 mg, 84% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1 mL/min, λ = 254 nm), t_R (major) = 17.56 min, t_R (minor) = 34.69 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 7.53 – 7.51 (m, 3H), 7.43 (d, *J* = 3.7 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.09 – 7.05 (m, 1H), 6.63 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.45 (d, *J* = 3.7 Hz, 1H), 4.05 (s, 1H), 3.94 (q, *J* = 7.0 Hz, 1H), 1.61 – 1.60 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 149.8, 144.1, 137.5, 136.3, 128.9, 124.2, 123.9, 121.6, 119.8, 110.9, 107.1, 100.3, 83.7, 56.7, 28.1, 19.8.

HRMS (ESI) m/z calcd. for $C_{22}H_{26}N_3O_3$ [M + H]⁺ 380.1969, found 380.1968.

(S)-N-Phenyl-2-(pyridin-3-ylamino)propanamide (68)

According to General Procedure B with 2-bromo-*N*-phenylpropanamide E1 (45.4 mg, 0.20 mmol, 1.0 equiv), pyridin-3-amine N68 (28.2 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product 68 as a yellowish oil (15.1 mg, 31% yield, 92% ee).

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 1 mL/min, λ = 254 nm), t_R (minor) = 11.83 min, t_R (major) = 26.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.27 – 7.97 (m, 2H), 7.53 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.21 – 7.08 (m, 2H), 6.95 – 6.93 (m, 1H), 3.90 (q, *J* = 7.1 Hz, 1H), 3.52 (s, 1H), 1.64 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 140.1, 137.3, 136.6, 129.0, 124.6, 124.3, 119.9, 119.8, 55.5, 19.6.

HRMS (ESI) m/z calcd. for $C_{14}H_{16}N_{3}O [M + H]^+ 242.1288$, found 242.1287.

(S)-2-((1-Methyl-1*H*-pyrazol-3-yl)amino)-*N*-phenylpropanamide (69)

According to **General Procedure B** with 2-bromo-*N*-phenylpropanamide **E1** (45.4 mg, 0.20 mmol, 1.0 equiv) and 1-methyl-1*H*-pyrazol-3-amine **N69** (29.1 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1) to yield the product **69** as a white solid (41.0 mg, 84% yield, 84% ee).

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 28.61 min, t_R (major) = 37.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 7.56 – 7.54 (m, 2H), 7.32 – 7.28 (m, 2H), 7.12 – 7.07 (m, 2H), 5.55 (d, *J* = 2.2 Hz, 1H), 4.04 (s, 1H), 3.95 (q, *J* = 7.1 Hz, 1H), 3.73 (s, 3H), 1.54 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.4, 155.5, 137.8, 131.5, 128.9, 124.1, 119.6, 91.5, 56.3, 38.6, 19.1.

HRMS (ESI) m/z calcd. for $C_{13}H_{17}N_4O [M + H]^+ 245.1397$, found 245.1395.

(S)-2-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)amino)-*N*-phenylpropanamide (70)

According to General Procedure B with 2-bromo-*N*-phenylpropanamide E1 (68.1 mg, 0.30 mmol, 1.5 equiv) and 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one N70 (40.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product 70 as a colorless oil (63.7 mg, 91% yield, 83% ee).

HPLC analysis: Chiralcel ID (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 25.40 min, t_R (major) = 34.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.66 – 7.64 (m, 2H), 7.47 – 7.40 (m, 4H), 7.32 – 7.28 (m, 3H), 7.10 – 7.06 (m, 1H), 3.87 (q, *J* = 7.1 Hz, 1H), 3.21 (s, 1H), 2.91 (s, 3H), 2.19 (s, 3H), 1.53 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 162.8, 143.1, 138.1, 134.7, 129.2, 128.8, 126.6, 124.0, 123.6, 119.7, 119.1, 58.4, 37.0, 19.8, 10.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}N_4O_2 [M + H]^+ 351.1816$, found 351.1811.

General procedure C:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*5 (10.0 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous benzene (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, alkyl bromide (0.24 mmol, 1.2 equiv), secondary aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous benzene (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 40 °C for 72 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 3). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

$$\mathbb{R}^{1} \xrightarrow{\mathsf{NHPh}}_{\mathsf{C}} + \mathbb{Ph}^{\mathsf{N}}_{\mathsf{N}} \mathbb{M}_{\mathsf{C}} \xrightarrow{\mathsf{Cul} (10 \text{ mol}\%)}_{\mathsf{Cs}_{2}\mathsf{CO}_{3} (3 \text{ equiv.}), \text{ benzene, } 40 \,^{\circ}\mathsf{C}} \xrightarrow{\mathsf{Ph}^{\mathsf{N}}_{\mathsf{N}}} \mathbb{Ph}^{\mathsf{N}}_{\mathsf{R}^{1}} \mathbb{N} \mathbb{HPh}$$

The racemates of products were prepared following the procedure: Under argon

atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), alkyl bromide (0.24 mmol, 1.2 equiv), secondary aromatic amine (0.20 mmol, 1.0 equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 40 °C for 72 or 96 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Methyl(phenyl)amino)-N-phenylbutanamide (71)

According to **General Procedure C** with 2-bromo-*N*-phenylbutanamide **E2** (57.8 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **71** as a white solid (47.2 mg, 88% yield, 96% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 8.39 min, t_R (minor) = 14.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.51 – 7.48 (m, 2H), 7.32 – 7.27 (m, 4H), 7.11 – 7.07 (m, 1H), 6.92 – 6.84 (m, 3H), 4.25 (dd, J = 9.8, 4.9 Hz, 1H), 2.91 (s, 3H), 2.36 – 2.26 (m, 1H), 1.90 – 1.78 (m, 1H), 0.88 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.9, 137.6, 129.4, 128.9, 124.3, 119.7, 118.9, 114.3, 67.0, 33.9, 21.3, 11.8.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O [M + H]^+ 269.1648$, found 269.1647.

(S)-2-(Methyl(phenyl)amino)-*N*-phenylhexanamide (72)

According to **General Procedure C** with 2-bromo-*N*-phenylhexanamide **E3** (64.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **72** as a yellowish oil (42.1 mg, 71% yield, 93% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.30 min, t_R (minor) = 9.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.51 – 7.49 (m, 2H), 7.33 – 7.28 (m, 4H), 7.12 – 7.08 (m, 1H), 6.92 – 6.85 (m, 3H), 4.33 (dd, *J* = 9.6, 4.9 Hz, 1H), 2.90 (s, 3H), 2.31 – 2.22 (m, 1H), 1.87 – 1.76 (m, 1H), 1.35 – 1.19 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 149.8, 137.6, 129.5, 129.0, 124.3, 119.7, 119.0, 114.30, 65.6, 33.9, 29.2, 27.7, 22.5, 13.9.

HRMS (ESI) m/z calcd. for C₁₉H₂₅N₂O [M+H]⁺ 297.1961, found 297.1963.

(S)-3-Methyl-2-(methyl(phenyl)amino)-N-phenylbutanamide (73)

According to **General Procedure C** with 2-bromo-3-methyl-*N*-phenylbutanamide **E4** (61.2 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **73** as a yellowish oil (28.8 mg, 51% yield, 93% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.92 min, t_R (minor) = 8.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.40 – 7.37 (m, 2H), 7.31 – 7.24 (m, 4H), 7.09 – 7.05 (m, 1H), 6.91 – 6.89 (m, 2H), 6.84 – 6.80 (m, 1H), 3.98 (d, *J* = 9.5 Hz, 1H), 2.87 (s, 3H), 2.58 – 2.46 (m, 1H), 1.14 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 150.0, 137.5, 129.6, 128.9, 124.3, 120.0, 118.3, 113.8, 70.3, 33.5, 27.8, 20.9, 19.7.

HRMS (ESI) m/z calcd. for $C_{18}H_{23}N_2O [M+H]^+ 283.1805$, found 283.1806.

(S)-3,3-Dimethyl-2-(methyl(phenyl)amino)-N-phenylbutanamide (74)

According to General Procedure C with 2-bromo-3,3-dimethyl-*N*-phenylbutanamide E5 (64.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product 74 as a yellowish oil (30.8 mg, 52% yield, 81% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.05 min, t_R (minor) = 6.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.44 – 7.42 (m, 2H), 7.33 – 7.27 (m, 4H), 7.10 – 7.06 (m, 1H), 6.94 – 6.92 (m, 2H), 6.85 – 6.81 (m, 1H), 4.34 (s, 1H), 2.99 (s, 3H), 1.20 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 150.3, 137.6, 129.5, 128.9, 124.3, 120.1, 118.1, 113.2, 70.6, 37.5, 35.9, 28.8.

HRMS (ESI) m/z calcd. for C₁₉H₂₅N₂O [M+H]⁺ 297.1961, found 297.1964.

(S)-4-Methyl-2-(methyl(phenyl)amino)-N-phenylpentanamide (75)

According to **General Procedure C** with 2-bromo-4-methyl-*N*-phenylpentanamide **E6** (64.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **75** as a yellowish oil (37.9 mg, 64% yield, 86% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 5.41 min, t_R (minor) = 8.37 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.51 – 7.48 (m, 2H), 7.33 – 7.27 (m, 4H), 7.12 – 7.07 (m, 1H), 6.92 – 6.85 (m, 3H), 4.42 (dd, J = 9.7, 4.8 Hz, 1H), 2.89 (s, 3H), 2.10 – 2.03 (m, 1H), 1.80 – 1.73 (m, 1H), 1.57 – 1.49 (m, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.80 (d, J = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 149.7, 137.6, 129.5, 129.0, 124.3, 119.7, 119.0, 114.3, 63.5, 37.0, 33.7, 25.0, 23.3, 21.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₅N₂O [M+H]⁺ 297.1961, found 297.1963.

(S)-4-(1,3-Dioxoisoindolin-2-yl)-2-(methyl(phenyl)amino)-N-phenylbutanamide (76)

According to General **Procedure C** with 2-bromo-4-(1,3-dioxoisoindolin-2-yl)-N-phenylbutanamide E7 (92.6 mg, 0.24 mmol, 1.2 equiv) and N-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **76** as a yellowish oil (64.5 mg, 78% yield, 96% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 40.12 min, t_R (minor) = 44.24 min.

¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.80 – 7.76 (m, 2H), 7.70 – 7.66 (m, 2H), 7.52 – 7.48 (m, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.19 (m, 2H), 7.11 – 7.07 (m, 1H), 6.90 – 6.87 (m, 2H), 6.82 – 6.78 (m, 1H), 4.48 (dd, J = 8.2, 5.7 Hz, 1H), 3.75 – 3.59 (m, 2H), 2.94 (s, 3H), 2.67 – 2.59 (m, 1H), 2.15 – 2.04 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 168.2, 149.3, 137.4, 133.8, 132.0, 129.5, 128.9, 124.3, 123.1, 119.7, 119.3, 114.5, 63.4, 36.0, 33.7, 27.1.

HRMS (ESI) m/z calcd. for C₂₅H₂₄N₃O₃ [M+H]⁺ 414.1812, found 414.1811.

(S)-3-Methoxy-2-(methyl(phenyl)amino)-N-phenylpropanamide (77)

According to **General Procedure C** with 2-bromo-3-methoxy-*N*-phenylpropanamide **E8** (61.7 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **77** as a yellowish oil (39.8 mg, 70% yield, 85% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.43 min, t_R (minor) = 18.03 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.52 – 7.49 (m, 2H), 7.33 – 7.26 (m, 4H), 7.12 – 7.08 (m, 1H), 6.92 – 6.85 (m, 3H), 4.50 (dd, *J* = 7.7, 4.7 Hz, 1H), 4.05 (dd, *J* = 10.5, 4.7 Hz, 1H), 3.91 (dd, *J* = 10.5, 7.8 Hz, 1H), 3.30 (s, 3H), 3.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 149.9, 137.4, 129.3, 129.0, 124.4, 119.8, 119.3, 114.8, 69.9, 65.5, 58.9, 34.8.

HRMS (ESI) m/z calcd. for $C_{17}H_{21}N_2O_2$ [M+H]⁺ 285.1598, found 285.1598.

(S)-4-(4-Bromophenoxy)-2-(methyl(phenyl)amino)-N-phenylbutanamide (78)

According to General Procedure C with 2-bromo-4-(4-bromophenoxy)-N-

phenylbutanamide **E9** (99.1 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **78** as a yellowish oil (43.9 mg, 50% yield, 95% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.30 min, t_R (minor) = 19.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.50 – 7.48 (m, 2H), 7.34 – 7.26 (m, 5H), 7.26 – 7.24 (m, 1H), 7.13 – 7.09 (m, 1H), 6.94 – 6.91 (m, 2H), 6.87 – 6.83 (m, 1H), 6.68 – 6.64 (m, 2H), 4.71 (dd, *J* = 7.9, 5.9 Hz, 1H), 4.08 – 4.03 (m, 1H), 3.94 – 3.89 (m, 1H), 2.92 (s, 3H), 2.77 – 2.68 (m, 1H), 2.24 – 2.13 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 157.6, 148.8, 137.4, 132.1, 129.5, 129.0, 124.4, 119.8, 119.4, 116.3, 114.6, 112.9, 65.2, 62.0, 35.1, 27.1.

HRMS (ESI) m/z calcd. for C₂₃H₂₄BrN₂O₂ [M+H]⁺ 439.1016, found 439.1020.

(S)-2-(Methyl(phenyl)amino)-4-(methylthio)-N-phenylbutanamide (79)

According to General **Procedure C** with 2-bromo-4-(methylthio)-*N*-phenylbutanamide **E10** (69.2 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **79** as a yellowish oil (34.6 mg, 55% yield, 93% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 14.44 min, t_R (minor) = 27.23 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.50 – 7.47 (m, 2H), 7.34 – 7.28 (m, 4H), 7.13 – 7.08 (m, 1H), 6.97 – 6.94 (m, 2H), 6.91 – 6.87 (m, 1H), 4.67 (dd, *J* = 8.3, 5.0 Hz, 1H), 2.90 (s, 3H), 2.61 – 2.50 (m, 2H), 2.48 – 2.43 (m, 1H), 2.07 – 1.98 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 149.2, 137.5, 129.5, 129.0, 124.4, 119.7, 119.3, 114.6, 63.6, 34.5, 31.4, 26.7, 15.1.

HRMS (ESI) m/z calcd. for C₁₈H₂₃N₂OS [M+H]⁺ 315.1526, found 315.1525.

Methyl (S)-4-(Methyl(phenyl)amino)-5-oxo-5-(phenylamino)pentanoate (80)

According to **General Procedure C** with methyl 4-bromo-5-oxo-5-(phenylamino)pentanoate **E11** (72.0 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **80** as a yellowish oil (58.8 mg, 90% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.41 min, t_R (minor) = 14.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.49 – 7.46 (m, 2H), 7.32 – 7.27 (m, 4H), 7.12 – 7.07 (m, 1H), 6.92 – 6.85 (m, 3H), 4.51 (dd, *J* = 8.7, 5.9 Hz, 1H), 3.58 (s, 3H), 2.88 (s, 3H), 2.59 – 2.50 (m, 1H), 2.37 (t, *J* = 7.3 Hz, 2H), 2.12 – 2.03 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 170.1, 149.2, 137.4, 129.5, 128.9, 124.3, 119.7, 119.2, 114.3, 63.9, 51.5, 34.0, 31.0, 23.0.

HRMS (ESI) m/z calcd. for C₁₉H₂₃N₂O₃ [M+H]⁺ 327.1703, found 327.1704.

(S)-N-(2,6-Dimethylphenyl)-2-(methyl(phenyl)amino)-2-phenylacetamide (81)

According to **General procedure B** with 2-chloro-*N*-(2,6-dimethylphenyl)-2-phenylacetamide **E12** (54.8 mg, 0.20 mmol, 1.0 equiv) and *N*-methylaniline N1 (32.2 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **81** as a white solid (55.8 mg, 81% yield, 94% ee).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 15.67 min, t_R (minor) = 18.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.36 – 7.28 (m, 7H), 7.08 – 7.00 (m, 5H), 6.94 – 6.90 (m, 1H), 5.51 (s, 1H), 2.73 (s, 3H), 2.11 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 150.4, 135.6, 135.1, 133.4, 129.4, 129.2, 128.5, 128.2, 128.0, 127.2, 120.1, 116.0, 70.7, 36.6, 18.6.

HRMS (ESI) m/z calcd. for $C_{23}H_{25}N_2O [M + H]^+ 345.1961$, found 345.1960.

(S)-N-(4-Methoxyphenyl)-2-(methyl(phenyl)amino)butanamide (82)

According to General **Procedure C** with 2-bromo-*N*-(4-methoxyphenyl)butanamide **E13** (65.0 mg, 0.24 mmol, 1.2 equiv), *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **82** as a colorless oil (50.7 mg, 85% yield, 96% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 11.37 min, t_R (minor) = 22.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.42 – 7.38 (m, 2H), 7.32 – 7.27 (m, 2H), 6.92 – 6.82 (m, 5H), 4.25 (dd, *J* = 9.9, 4.8 Hz, 1H), 3.78 (s, 3H), 2.91 (s, 3H), 2.37 – 2.26 (m, 1H), 1.90 – 1.78 (m, 1H), 0.88 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 156.4, 150.0, 130.7, 129.4, 121.5, 118.8, 114.2, 114.1, 67.0, 55.4, 33.9, 21.4, 11.8.

HRMS (ESI) m/z calcd. for C₁₈H₂₃N₂O₂ [M+H]⁺ 299.1754, found 299.1755.

(S)-2-(Methyl(phenyl)amino)-N-(4-(trifluoromethyl)phenyl)butanamide (83)

According to General **Procedure C** with 2-bromo-*N*-(4-(trifluoromethyl)phenyl)butanamide **E14** (74.2 mg, 0.24 mmol, 1.2 equiv), *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **83** as a colorless oil (45.7 mg, 68% yield, 95% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 6.37 min, t_R (minor) = 8.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.65 – 7.62 (m, 2H), 7.57 – 7.55 (m, 2H), 7.34 – 7.29 (m, 2H), 6.93 – 6.87 (m, 3H), 4.27 (dd, *J* = 9.6, 5.0 Hz, 1H), 2.91 (s, 3H), 2.36 – 2.25 (m, 1H), 1.91 – 1.79 (m, 1H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 149.8, 140.6, 129.5, 126.2 (q, J = 4.1 Hz), 126.0 (q, J = 32.7 Hz), 124.0 (q, J = 271.0 Hz), 119.29, 119.27, 114.4, 67.3, 34.1, 21.2, 11.8. ¹⁹F NMR (376 MHz, CDCl₃) δ –62.10.

HRMS (ESI) m/z calcd. for $C_{18}H_{20}F_3N_2O [M+H]^+ 337.1522$, found 337.1522.

tert-Butyl N-methyl-N-phenyl-L-alanylglycinate (84)

According to General procedure A with *tert*-butyl (2-bromopropanoyl)glycinate E15 (79.8 mg, 0.30 mmol, 1.5 equiv) and *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product 84 as a colorless oil (47.4 mg, 81% yield, 96% ee).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 14.44 min, t_R (major) = 29.91 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.11 (s, 1H), 6.87 – 6.82 (m, 3H), 4.38 (q, *J* = 7.0 Hz, 1H), 4.07 (dd, *J* = 18.2, 6.3 Hz, 1H), 3.85 (dd, *J* = 18.1, 5.0 Hz, 1H), 2.84 (s, 3H), 1.46 (s, 9H), 1.38 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 168.8, 149.6, 129.2, 118.8, 114.7, 82.0, 60.2, 41.8, 33.8, 28.0, 12.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{25}N_2O_3$ [M + H]⁺ 293.1860, found 293.1860.

(S)-2-(Methyl(phenyl)amino)propanamide (85)

According to **General Procedure A** with 2-bromopropanamide **E16** (45.6 mg, 0.30 mmol, 1.5 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/CH₃OH = 30/1) to yield the product **85** as a white solid (20.5 mg, 58% yield, 93% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 214$ nm), t_R (minor) = 14.25 min, t_R (major) = 18.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 6.86 – 6.82 (m, 3H), 6.51 (s, 1H), 5.80 (s, 1H), 4.36 (q, *J* = 7.0 Hz, 1H), 2.83 (s, 3H), 1.38 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.1, 149.3, 129.3, 118.8, 114.4, 59.9, 33.9, 12.0.

HRMS (ESI) m/z calcd. for $C_{10}H_{15}N_2O [M + H]^+$ 179.1179, found 179.1178.

(S)-2-((4-Bromophenyl)amino)propanamide (86)

According to **General Procedure A** with 2-bromopropanamide **E16** (30.2 mg, 0.20 mmol, 1.0 equiv) and 4-bromoaniline **N50** (51.3 mg, 0.30 mmol, 1.5 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/CH₃OH = 25/1) to yield the product **86** as a white solid (31.9 mg, 66% yield, 95% ee).

HPLC analysis: Chiralcel OD3 (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 9.53 min, t_R (minor) = 11.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 6.56 (s, 1H), 6.51 – 6.47 (m, 2H), 5.93 (s, 1H), 4.06 (s, 1H), 3.74 (q, *J* = 7.1, 2.7 Hz, 1H), 1.52 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.9, 145.4, 132.1, 115.1, 110.8, 54.7, 19.5.

HRMS (ESI) m/z calcd. for C₉H₁₂BrN₂O $[M + H]^+$ 243.0128, found 243.0127.

General procedure D:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBrSMe₂ (3.8 mg, 0.02 mmol, 10 mol %), L*9 (13.0 mg, 0.03 mmol, 15 mol %), K₃PO₄ (127.1 mg, 0.60 mmol, 3.0 equiv), Cs₂CO₃ (13.0 mg, 0.04 mmol, 0.2 equiv), and anhydrous MTBE (1.0 mL). Then, the mixture was stirred at room temperature for 3 h. After that, racemic tertiary alkyl chloride (0.20 mmol, 1.0 equiv), amine (0.24 mmol, 1.2 equiv), and anhydrous MTBE (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 4d. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel on silica gel to afford the desired product.

$$\begin{array}{c} Cl_{1} & H \\ Cl_{2} & R^{1} \\ Al^{2} & R^{1} \end{array} \xrightarrow{\mathsf{Cs}_{2} CO_{3} (3.0 \text{ equiv})} \\ CH_{3} CN, \text{ rt} \end{array} \xrightarrow{\mathsf{R}^{2}} \begin{array}{c} O \\ Ar^{3} & N \\ Ar^{2} & R^{1} \end{array} \xrightarrow{\mathsf{R}^{2}} O \\ Ar^{3} & N \\ Ar^{2} & R^{1} \end{array}$$

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cs_2CO_3 (195.5 mg, 0.60 mmol, 3.0 equiv), racemic tertiary alkyl chloride (0.20 mmol, 1.0 equiv), amine (0.24 mmol, 1.2 equiv), and anhydrous CH₃CN (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel on silica gel to afford the desired product.

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-phenylbutanamide (87)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.5 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **87** as a yellowish oil (65.3 mg, 79% yield, 88% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 11.92 min, t_R (minor) = 14.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.58 – 7.57 (m, 2H), 7.38 – 7.31 (m, 3H), 7.29 – 7.27 (m, 2H), 7.25 – 7.22 (m, 2H), 7.13 – 7.09 (m, 2H), 6.89 – 6.86 (m, 2H), 2.71 (s, 3H), 2.12 – 1.98 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 147.8, 139.8, 135.3, 135.0, 129.5, 128.5, 127.5, 127.4, 125.8, 124.6, 124.0, 117.8, 74.5, 40.1, 32.3, 9.7.

HRMS (ESI) m/z calcd. for $C_{23}H_{23}Cl_2N_2O [M + H]^+ 413.1182$, found 413.1182.

(S)-N-(3,5-Dichlorophenyl)-2-((4-methoxyphenyl)(methyl)amino)-2phenylbutanamide (88)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and 4-methoxy-*N*-methylaniline **N13** (27.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **88** as a yellowish oil (55.9 mg, 63% yield, 85% ee).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 15.04 min, t_R (minor) = 19.36 min.
¹**H NMR** (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.67 – 7.64 (m, 2H), 7.39 – 7.31 (m, 3H), 7.23 – 7.21 (m, 2H), 7.13 – 7.12 (m, 1H), 6.83 – 6.76 (m, 4H), 3.80 (s, 3H), 2.53 (s, 3H), 2.01 – 1.83 (m, 2H), 0.82 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 157.5, 140.3, 140.0, 135.3, 133.8, 129.9, 128.8, 127.5, 127.4, 123.9, 117.7, 113.5, 74.9, 55.4, 41.0, 32.0, 9.5.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}Cl_2N_2O_2$ [M + H]⁺ 443.1288, found 443.1287.

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(*m*-tolyl)amino)-2-phenylbutanamide (89)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and *N*,3-dimethylaniline **N71** (24.2 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **89** as a yellowish oil (64.1 mg, 75% yield, 90% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 10.52 min, t_R (minor) = 13.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.60 – 7.58 (m, 2H), 7.38 – 7.31 (m, 3H), 7.30 – 7.25 (m, 2H), 7.13 – 7.09 (m, 2H), 6.96 – 6.93 (m, 1H), 6.71 – 6.69 (m, 1H), 6.67 – 6.65 (m, 1H), 2.66 (s, 3H), 2.29 (s, 3H), 2.10 – 1.95 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 147.7, 139.9, 138.2, 135.3, 134.9, 129.6, 128.2, 127.4, 127.4, 126.9, 125.6, 123.9, 123.1, 117.8, 74.6, 40.3, 32.2, 21.4, 9.6.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}Cl_2N_2O [M + H]^+ 427.1338$, found 427.1337.

(S)-N-(3,5-Dichlorophenyl)-2-((4-fluorophenyl)(methyl)amino)-2-phenylbutanamide (90)

According to General procedure D with 2-chloro-N-(3,5-dichlorophenyl)-2-

phenylbutanamide E17 (82.2 mg, 0.24 mmol, 1.2 equiv) and 4-fluoro-*N*-methylaniline N15 (25.0 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product 90 as a yellowish oil (50.0 mg, 58% yield, 88% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 11.87 min, t_R (minor) = 15.16 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.63 – 7.62 (m, 2H), 7.39 – 7.32 (m, 3H), 7.23 – 7.20 (m, 2H), 7.13 – 7.12 (m, 1H), 6.97 – 6.91 (m, 2H), 6.87 – 6.81 (m, 2H), 2.59 (s, 3H), 2.03 – 1.87 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 160.4 (d, *J* = 243.7 Hz), 143.5 (d, *J* = 2.7 Hz), 139.8, 135.3, 133.8, 129.8, 128.7 (d, *J* = 8.2 Hz), 127.6, 127.5, 124.0, 117.8, 115.1 (d, *J* = 22.0 Hz), 74.8, 40.8, 32.0, 9.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –116.53.

HRMS (ESI) m/z calcd. for $C_{23}H_{22}C_{12}FN_2O [M + H]^+ 431.1088$, found 431.1088.

(S)-N-(3,5-Dichlorophenyl)-2-(ethyl(phenyl)amino)-2-phenylbutanamide (91)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and *N*-ethylaniline **N2** (24.2 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **91** as a yellowish oil (52.1 mg, 61% yield, 87% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 7.54 min, $t_{\rm R}$ (minor) = 8.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.67 – 7.64 (m, 2H), 7.39 – 7.33 (m, 3H), 7.32 – 7.27 (m, 2H), 7.26 – 7.22 (m, 3H), 7.13 – 7.12 (m, 1H), 6.92 – 6.89 (m, 2H), 2.99 – 2.90 (m, 1H), 2.64 – 2.56 (m, 1H), 1.93 – 1.79 (m, *J* = 7.2 Hz, 2H), 0.86 (t, *J* = 7.0 Hz, 3H), 0.79 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 144.3, 140.1, 135.4, 134.5, 129.9, 129.7, 128.4, 127.5, 127.4, 126.5, 123.8, 117.5, 75.4, 47.1, 31.7, 14.4, 9.4.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}C_{12}N_2O [M + H]^+ 427.1338$, found 427.1338.

(S)-2-(Butyl(phenyl)amino)-N-(3,5-dichlorophenyl)-2-phenylbutanamide (92)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and *N*-butylaniline **N72** (29.8 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **92** as a yellowish oil (47.3 mg, 52% yield, 87% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.4 mL/min, λ = 254 nm), t_R (major) = 10.21 min, t_R (minor) = 12.66 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.67 – 7.65 (m, 2H), 7.39 – 7.33 (m, 3H), 7.32 – 7.22 (m, 5H), 7.13 – 7.12 (m, 1H), 6.90 – 6.88 (m, 2H), 2.87 – 2.80 (m, 1H), 2.61 – 2.55 (m, 1H), 1.92 – 1.78 (m, *J* = 7.2 Hz, 2H), 1.40 – 1.31 (m, 1H), 1.23 – 1.08 (m, 3H), 0.80 – 0.75 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 144.5, 140.1, 135.4, 134.2, 130.0, 129.5, 128.4, 127.5, 127.3, 126.5, 123.8, 117.4, 75.4, 52.7, 31.8, 30.8, 20.5, 14.0, 9.4.

HRMS (ESI) m/z calcd. for C₂₆H₂₉Cl₂N₂O $[M + H]^+$ 455.1651, found 455.1651.

Ethyl (*S*)-*N*-(1-((3,5-dichlorophenyl)amino)-1-oxo-2-phenylbutan-2-yl)-*N*-phenylglycinate (93)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and ethyl phenylglycinate **N12** (35.8 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **93** as a yellowish oil (49.5 mg, 51% yield, 91% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 11.26 min, t_R (major) = 12.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 10.84 (s, 1H), 7.63 – 7.60 (m, 4H), 7.36 – 7.32 (m, 2H), 7.29 – 7.26 (m, 1H), 7.13 – 7.09 (m, 2H), 7.02 – 7.01 (m, 1H), 6.84 – 6.81 (m, 1H), 6.64 –

6.61 (m, 2H), 4.46 – 4.21 (m, 4H), 2.23 – 2.14 (m, 1H), 2.05 – 1.96 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 172.3, 145.7, 140.7, 139.4, 134.9, 128.9, 128.1, 127.2, 123.5, 120.9, 118.2, 117.9, 72.6, 62.4, 51.1, 34.5, 14.2, 9.7.

HRMS (ESI) m/z calcd. for $C_{26}H_{27}Cl_2N_2O_3$ [M + H]⁺ 485.1393, found 485.1394.

(S)-N-(3,5-Dichlorophenyl)-2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-phenylbutanamide (94)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and 1,2,3,4-tetrahydroquinoline **N25** (26.6 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **94** as a yellowish oil (62.4 mg, 71% yield, 90% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 11.24 min, t_R (major) = 13.32 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.61 – 7.58 (m, 2H), 7.32 – 7.27 (m, 2H), 7.25 – 7.24 (m, 1H), 7.23 – 7.21 (m, 2H), 7.07 – 7.05 (m, 1H), 7.03 – 7.01 (m, 1H), 6.77 – 6.73 (m, 1H), 6.68 – 6.64 (m, 1H), 6.28 – 6.25 (m, 1H), 3.62 – 3.52 (m, J = 5.6 Hz, 2H), 3.03 – 2.86 (m, 2H), 2.52 – 2.36 (m, J = 7.3 Hz, 2H), 2.18 – 2.12 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 143.8, 139.24, 139.18, 135.0, 129.2, 128.4, 128.0, 127.1, 126.0, 124.2, 118.8, 118.4, 117.1, 72.5, 45.8, 33.0, 28.3, 24.4, 10.2. **HRMS** (ESI) m/z calcd. for C₂₅H₂₅Cl₂N₂O [M + H]⁺ 439.1338, found 439.1339.

(S)-N-(3,5-Dichlorophenyl)-2-(2,3-dihydro-4*H*-benzo[*b*][1,4]thiazin-4-yl)-2-phenylbutanamide (95)

According to General procedure D with 2-chloro-N-(3,5-dichlorophenyl)-2-phenylbutanamide E17 (82.2 mg, 0.24 mmol, 1.2 equiv) and 3,4-dihydro-2H-

benzo[*b*][1,4]thiazine N27 (30.2 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product 95 as a yellowish oil (59.5 mg, 65% yield, 87% ee).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 16.89 min, t_R (major) = 20.72 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.54 – 7.51 (m, 2H), 7.37 – 7.27 (m, 4H), 7.27 – 7.26 (m, 2H), 7.03 – 7.02 (m, 1H), 6.83 – 6.77 (m, 2H), 6.57 – 6.52 (m, 1H), 3.70 – 3.55 (m, 2H), 3.39 – 3.26 (m, 2H), 2.67 – 2.51 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 145.3, 139.3, 138.9, 135.1, 128.4, 128.4, 128.0, 127.6, 126.5, 125.4, 124.2, 121.3, 120.2, 118.0, 74.0, 47.2, 32.6, 31.0, 10.1.

HRMS (ESI) m/z calcd. for $C_{24}H_{23}Cl_2N_2OS [M + H]^+ 457.0903$, found 457.0902.

(S)-N-(3,5-Dichlorophenyl)-2-phenyl-2-(2,3,4,5-tetrahydro-1*H*-benzo[*b*]azepin-1-yl)butanamide (96)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylbutanamide **E17** (82.2 mg, 0.24 mmol, 1.2 equiv) and 2,3,4,5-tetrahydro-1*H*-benzo[*b*]azepine **N28** (29.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **96** as a yellowish oil (49.9 mg, 55% yield, 90% ee).

HPLC analysis: Chiralcel IC (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 12.47 min, t_R (minor) = 15.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.51 – 7.48 (m, 2H), 7.41 – 7.39 (m, 2H), 7.37 – 7.33 (m, 2H), 7.31 – 7.26 (m, 1H), 7.21 – 7.17 (m, 1H), 7.08 – 7.07 (m, 1H), 6.97 – 6.89 (m, 3H), 3.37 – 3.23 (m, 2H), 3.01 – 2.93 (m, 2H), 2.33 (q, *J* = 7.4 Hz, 2H), 1.85 – 1.60 (m, 4H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 147.7, 139.5, 139.4, 137.7, 135.3, 130.4, 129.0, 127.8, 127.4, 126.4, 124.2, 123.5, 123.3, 117.8, 75.7, 52.3, 35.1, 33.5, 29.1, 25.3, 10.1. **HRMS** (ESI) m/z calcd. for C₂₆H₂₇Cl₂N₂O [M + H]⁺ 453.1495, found 453.1496.

(S)-2-Phenyl-2-(o-tolylamino)-N-(4-(trifluoromethyl)phenyl)butanamide (97)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and *o*-toluidine **N29** (25.7 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **97** as a yellowish oil (44.4 mg, 54% yield, 92% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 11.02 min, t_R (major) = 11.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.50 (s, 4H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.4 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 6.36 (d, J = 8.1 Hz, 1H), 4.97 (s, 1H), 2.67 (dq, J = 14.8, 7.4 Hz, 1H), 2.47 (dq, J = 14.6, 7.3 Hz, 1H), 2.38 (s, 3H), 0.67 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 141.8, 140.7, 140.6, 130.7, 129.3, 128.1, 126.8, 126.13 (q, *J* = 32.7 Hz), 126.12 (q, *J* = 3.8 Hz), 125.8, 124.0 (q, *J* = 269.8 Hz), 123.6, 119.4, 118.7, 113.8, 67.3, 25.5, 17.8, 7.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.15.

HRMS (ESI) m/z calcd. for $C_{24}H_{24}F_{3}N_{2}O [M + H]^{+} 413.1835$, found 413.1832

(S)-2-((2-Ethylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (98)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2-ethylaniline **N73** (29.0 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **98** as a yellowish oil (53.7 mg, 63% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 9.13 min, t_R (major) = 11.26 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.49 (s, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.36 - 7.32 (m, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 6.95 - 6.84 (m, 1H), 6.74

(t, *J* = 7.3 Hz, 1H), 6.34 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 1H), 2.76 – 2.64 (m, 3H), 2.48 (dq, *J* = 14.5, 7.2 Hz, 1H), 1.41 (t, *J* = 7.5 Hz, 3H), 0.70 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 141.2, 140.8, 140.5, 129.3, 129.1, 128.5, 128.1, 126.5, 126.14 (q, *J* = 32.5 Hz), 126.08 (q, *J* = 3.8 Hz), 125.9, 124.0 (q, *J* = 269.9 Hz), 119.5, 118.7, 113.8, 67.2, 25.8, 24.3, 13.1, 7.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.14.

HRMS (ESI) m/z calcd. for $C_{25}H_{26}F_3N_2O [M + H]^+ 427.1992$, found 427.1990.

(S)-2-((2-Isopropylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butan amide (99)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2-isopropylaniline **N30** (32.4 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **99** as a colorless oil (48.5 mg, 55% yield, 83% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (minor) = 8.08 min, $t_{\rm R}$ (major) = 11.23 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.49 (s, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 6.33 (d, J = 8.1 Hz, 1H), 5.31 (s, 1H), 3.13 (hept, J = 6.8 Hz, 1H), 2.70 (dq, J = 14.7, 7.4 Hz, 1H), 2.48 (dq, J = 14.5, 7.2 Hz, 1H), 1.41 (dd, J = 12.1, 6.7 Hz, 6H), 0.72 (t, J = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 172.3, 140.9, 140.5, 140.4, 133.6, 129.4, 128.1, 126.2, 126.17 (q, J = 32.6 Hz), 126.12 (q, J = 3.7 Hz), 126.0, 125.6, 124.0 (q, J = 269.9 Hz), 119.5, 118.8, 114.1, 67.3, 27.9, 26.0, 22.7, 22.5, 7.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.15.

HRMS (ESI) m/z calcd. for $C_{26}H_{28}F_3N_2O [M + H]^+ 441.2148$, found 441.2145.

(S)-2-((2-(*tert*-butyl)phenyl)amino)-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide (100)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2-(*tert*-butyl)aniline **N39** (35.8 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **100** as a colorless oil (45.5 mg, 50% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 7.29 min, t_R (minor) = 8.05 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.69 (d, J = 7.5 Hz, 2H), 7.52 – 7.41 (m, 6H), 7.35 – 7.29 (m, 2H), 6.81 (t, J = 7.3 Hz, 1H), 6.64 (t, J = 7.2 Hz, 1H), 6.17 (d, J = 8.1 Hz, 1H), 5.73 (s, 1H), 2.77 (dq, J = 14.7, 7.4 Hz, 1H), 2.48 (dq, J = 14.5, 7.2 Hz, 1H), 1.62 (s, 9H), 0.86 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 141.6, 141.1, 140.4, 134.0, 129.5, 128.1, 126.7, 126.41, 126.39, 126.3 (q, *J* = 32.6 Hz), 126.2 (q, *J* = 3.7 Hz) 123.9 (q, *J* = 269.9 Hz), 119.5, 117.5, 114.1, 67.7, 34.3, 30.0, 29.7, 8.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.20.

HRMS (ESI) m/z calcd. for $C_{27}H_{30}F_3N_2O [M + H]^+ 455.2305$, found 455.2304.

(S)-2-((2,6-Dimethylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (101)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2,6-dimethylaniline **N40** (29.1 mg, 0.24 mmol, 1.2 equiv) for 164 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **101** as a yellowish oil (55.9 mg, 66% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 12.29 min, t_R (major) = 13.12 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.29 – 7.22 (m, 3H), 6.90 (d, *J* = 7.4 Hz, 2H), 6.82 – 6.78 (m, 1H), 4.71 (s, 1H), 2.45 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.28 (dq, *J* = 14.5, 7.4 Hz, 1H), 2.17 (s, 6H), 0.81 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.7, 142.5, 141.1, 140.6, 130.8, 129.3, 128.3, 127.7, 126.9, 126.3 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.5 Hz), 124.1 (q, *J* = 269.9 Hz), 122.8, 119.0, 70.1, 30.0, 20.4, 8.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.08.

HRMS (ESI) m/z calcd. for $C_{25}H_{26}F_3N_2O [M + H]^+ 427.1992$, found 427.1990.

(S)-2-((2,6-Diethylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (102)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2,6diethylaniline **N41** (35.8 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **102** as a colorless oil (66.4 mg, 73% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 8.06 min, t_R (minor) = 9.18 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.76 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.25 – 7.16 (m, 3H), 6.91 (s, 3H), 4.58 (s, 1H), 2.57 – 2.29 (m, 6H), 1.13 (t, *J* = 7.5 Hz, 6H), 0.90 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.5, 140.7, 140.6, 140.5, 138.0, 128.0, 127.5, 127.4, 126.6, 126.3 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.6 Hz), 124.1 (q, *J* = 269.9 Hz), 123.8, 119.1, 71.0, 30.7, 25.9, 15.0, 8.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.08.

HRMS (ESI) m/z calcd. for $C_{27}H_{30}F_3N_2O [M + H]^+ 455.2305$, found 455.2303.

(S)-2-((2,6-Diisopropylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (103)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2,6diisopropylaniline **N42** (42.6 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **103** as a colorless oil (70.2 mg, 70% yield, 90% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), t_R (major) = 7.18 min, t_R (minor) = 8.29 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.18 – 7.13 (m, 5H), 7.02 – 6.94 (m, 3H), 4.31 (s, 1H), 3.02 (hept, J = 6.8 Hz, 2H), 2. 45 – 2.27 (m, 2H), 1.19 (d, J = 6.8 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H), 0.97 (d, J = 6.8 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 143.4, 140.80, 140.78, 139.7, 138.6, 127.9, 127.8, 127.3, 126.4 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.5 Hz), 124.7, 124.1 (q, *J* = 269.9 Hz), 123.2, 119.0, 71.9, 32.4, 28.8, 23.9, 23.4, 9.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.07.

HRMS (ESI) m/z calcd. for $C_{29}H_{34}F_{3}N_{2}O [M + H]^{+} 483.2618$, found 483.2615.

(S)-2-((2-Ethyl-6-methylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (104)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2-ethyl-6-methylaniline **N34** (32.4 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **104** as a colorless oil (55.7 mg, 63% yield, 88% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min, λ = 254 nm), $t_{\rm R}$ (major) = 8.57 min, $t_{\rm R}$ (minor) = 10.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.36 (m, 2H), 7.27 – 7.19 (m, 3H), 6.94 – 6.83 (m, 3H), 4.67 (s, 1H), 2.60 – 2.26 (m, 4H), 2.13 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100MHz, CDCl₃) δ 173.6, 141.6, 140.9, 140.7, 137.4, 131.4, 129.1, 128.2, 127.6, 127.2, 126.9, 124.1 (q, *J* = 269.8 Hz), 126.3 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.5 Hz) 123.3, 119.1, 70.5, 30.3, 25.8, 20.6, 14.9, 8.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.08.

HRMS (ESI) m/z calcd. for $C_{26}H_{28}F_3N_2O [M + H]^+ 441.2148$, found 441.2145.

(S)-2-Phenyl-2-((2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)-N-(4-(trifluoromethyl)phenyl)butanamide (105)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 2-Aminophenylboronic acid pinacol ester **N74** (52.6 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **105** as a brown oil (45.1 mg, 43% yield, 82% ee). **HPLC** analysis: Chiralcel IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 5.18 min, t_R (minor) = 5.92 min.

¹**H** NMR (400 MHz, CDCl3) δ 8.90 (s, 1H), 7.78 – 7.73 (m, 3H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.28 (m, 1H), 7.22 – 7.17 (m, 2H), 6.81 – 6.77 (m, 1H), 6.52 (d, *J* = 8.3 Hz, 1H), 2.58 – 2.45 (m, 2H), 1.44 (s, 6H), 1.38 (s, 6H), 0.57 (t, *J* = 7.3 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl3) δ 172.9, 150.9, 140.9, 140.2, 137.4, 132.7, 128.6, 127.6, 126.0 (q, *J* = 3.7 Hz), 125.8 (q, *J* = 32.6 Hz), 125.7, 124.1 (q, *J* = 269.7 Hz), 119.4, 118.5, 114.5, 84.1, 68.0, 26.3, 25.2, 24.7, 7.3.

¹⁹**F NMR** (376 MHz, CDCl3) δ –62.11.

HRMS (ESI) m/z calcd. for $C_{29}H_{33}BF_3N_2O_3 [M + H]^+ 525.2531$, found 525.2530.

(S)-2-Phenyl-2-(m-tolylamino)-N-(4-(trifluoromethyl)phenyl)butanamide (106)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and *m*-toluidine **N75** (25.7 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **106** as a colorless oil (44.0 mg, 53% yield, 88% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 9.39 min, t_R (minor) = 10.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.70 – 7.66 (m, 2H), 7.52 – 7.47 (m, 4H), 7.43 – 7.39 (m, 2H), 7.34 – 7.29 (m, 1H), 7.01 (t, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 7.3 Hz, 1H), 6.51 (s, 1H), 6.41 (dd, *J* = 8.1, 2.4 Hz, 1H), 4.81 (s, 1H), 2.64 (dq, *J* = 14.8, 7.4 Hz, 1H), 2.46 (dq, *J* = 14.6, 7.3 Hz, 1H), 2.22 (s, 3H), 0.72 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 143.9, 140.6, 140.4, 139.1, 129.1, 129.0, 128.0, 126.1 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.6 Hz), 125.9, 124.0 (q, *J* = 269.9 Hz), 120.5, 119.4, 117.2, 113.1, 67.5, 25.7, 21.5, 7.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.11.

HRMS (ESI) m/z calcd. for $C_{24}H_{24}F_3N_2O [M + H]^+ 413.1835$, found 413.1830.

(S)-2-((4-Nitrophenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (107)

According to **General procedure D** with 2-chloro-2-phenyl-*N*-(4-(trifluoromethyl)phenyl)butanamide **E18** (68.2 mg, 0.20 mmol, 1.0 equiv) and 4nitroaniline **N76** (33.1 mg, 0.24 mmol, 1.2 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to yield the product **107** as a yellow oil (38.0 mg, 43% yield, 88% ee). **HPLC** analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 7.50 min, t_R (minor) = 12.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.51 – 7.40 (m, 5H), 7.23 (s, 1H), 6.56 (s, 1H), 6.40 (d, J = 8.9 Hz, 2H), 2.74 (dq, J = 14.7, 7.4 Hz, 1H), 2.48 (dq, J = 14.3, 7.1 Hz, 1H), 0.93 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 149.7, 139.9, 139.7, 138.5, 130.1, 129.1, 126.8 (q, J = 32.5 Hz), 126.31 (q, J = 3.6 Hz), 126.28, 126.0, 123.8 (q, J = 270.0 Hz), 119.6, 113.4, 66.7, 26.4, 7.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.30.

HRMS (ESI) m/z calcd. for $C_{23}H_{21}F_3N_3O_3$ [M + H]⁺ 444.1530, found 444.1524.

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-phenylpentanamide (108)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-phenylpentanamide **E19** (85.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **108** as a yellowish oil (56.4 mg, 66% yield, 90% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 8.14 min, t_R (minor) = 10.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.58 – 7.55 (m, 2H), 7.37 – 7.27 (m, 5H), 7.25 – 7.22 (m, 2H), 7.13 – 7.09 (m, 2H), 6.89 – 6.86 (m, 2H), 2.72 (s, 3H), 2.04 – 1.90 (m, 2H), 1.42 – 1.31 (m, 1H), 1.24 – 1.15 (m, 1H), 0.79 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.1, 147.8, 139.8, 135.6, 135.3, 129.4, 128.5, 127.6, 127.4, 125.5, 124.5, 124.0, 117.8, 74.1, 41.5, 40.0, 18.3, 14.3.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}Cl_2N_2O [M + H]^+ 427.1338$, found 427.1337.

(S)-N-(3,5-Dichlorophenyl)-5,5,5-trifluoro-2-(methyl(phenyl)amino)-2-phenylpentanamide (109)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-5,5,5-trifluoro-2-phenylpentanamide **E20** (98.5 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **109** as a yellowish oil (56.8 mg, 59% yield, 88% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 6.95 min, t_R (minor) = 13.48 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.63 – 7.61 (m, 2H), 7.41 – 7.33 (m, 3H), 7.30 – 7.25 (m, 2H), 7.22 – 7.15 (m, 4H), 6.92 – 6.89 (m, 2H), 2.65 (s, 3H), 2.33 – 2.13 (m, 3H), 2.01 – 1.86 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 146.9, 139.4, 135.5, 133.9, 129.2, 128.8, 128.1, 128.0, 126.8 (q, *J* = 274.5 Hz), 126.6, 125.7, 124.5, 118.0, 73.0, 40.2, 30.6 (q, *J* = 2.7 Hz), 30.3 (q, *J* = 28.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –66.62.

HRMS (ESI) m/z calcd. $C_{24}H_{22}Cl_2F_3N_2O$ for $[M + H]^+$ 481.1056, found 481.1056.

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2,4-diphenylbutanamide (110)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2,4diphenylbutanamide **E21** (100.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **110** as a yellowish oil (59.7 mg, 61% yield, 86% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 17.43 min, t_R (minor) = 22.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.62 – 7.59 (m, 2H), 7.40 – 7.32 (m, 5H), 7.23 – 7.16 (m, 4H), 7.13 – 7.09 (m, 3H), 7.00 – 6.97 (m, 2H), 6.93 – 6.89 (m, 2H), 2.73 (s, 3H), 2.70 – 2.65 (m, 1H), 2.52 – 2.44 (m, 1H), 2.37 – 2.25 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 147.6, 141.4, 139.7, 135.3, 135.3, 129.4, 128.6, 128.4, 128.2, 127.7, 127.7, 126.0, 125.9, 125.0, 124.2, 117.9, 74.0, 40.6, 40.4, 31.2. HRMS (ESI) m/z calcd. C₂₉H₂₇Cl₂N₂O for [M + H]⁺ 489.1495, found 489.1493.

(S)-N-(3,5-Dichlorophenyl)-4-methoxy-2-(methyl(phenyl)amino)-2-phenylbutanamide (111)

According to General procedure D with 2-chloro-N-(3,5-dichlorophenyl)-4-methoxy-2-phenylbutanamide E22 (89.5 mg, 0.24 mmol, 1.2 equiv) and N-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product 111 as a yellowish oil (40.2 mg, 54% yield, 88% ee).

HPLC analysis: Chiralcel IF (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 20.03 min, t_R (major) = 24.86 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.61 (d, J = 1.8 Hz, 2H), 7.39 – 7.34 (m, 3H), 7.29 – 7.22 (m, 4H), 7.15 – 7.11 (m, 2H), 6.92 – 6.89 (m, 2H), 3.34 – 3.22 (m, 2H), 3.16 (s, 3H), 2.66 (s, 3H), 2.39 – 2.32 (m, 1H), 2.27 – 2.19 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 147.6, 139.8, 135.4, 135.1, 129.2, 128.6, 127.79, 127.77, 126.5, 125.1, 124.2, 117.9, 72.7, 69.2, 58.6, 40.3, 38.6.

HRMS (ESI) m/z calcd. $C_{24}H_{25}Cl_2N_2O_2$ for $[M + H]^+$ 443.1288, found 443.1287.

(S)-2-Cyclohexyl-N-(3,5-dichlorophenyl)-2-(methyl(phenyl)amino)-2phenylacetamide (112)

According to General procedure D with 2-chloro-2-cyclohexyl-N-(3,5-dichlorophenyl)-2-phenylacetamide E23 (95.2 mg, 0.24 mmol, 1.2 equiv) and N-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product 112 as a yellowish oil (64.5 mg, 69% yield, 95% ee).

HPLC analysis: Chiralcel IB (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm),

 $t_{\rm R}$ (minor) = 10.38 min, $t_{\rm R}$ (major) = 11.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.61 – 7.58 (m, 2H), 7.34 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 7.22 – 7.19 (m, 2H), 7.12 – 7.08 (m, 2H), 7.02 – 6.99 (m, 2H), 2.72 (s, 3H), 2.30 – 2.27 (m, 1H), 2.02 – 1.97 (m, 1H), 1.76 – 1.72 (m, 1H), 1.64 – 1.56 (m, 3H), 1.11 – 0.97 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 148.4, 139.4, 136.0, 135.3, 130.0, 128.5, 127.2, 127.1, 125.8, 124.6, 124.0, 117.9, 77.8, 44.4, 40.9, 30.5, 29.3, 26.9, 26.7, 26.3. **HRMS** (ESI) m/z calcd. C₂₇H₂₉Cl₂N₂O for [M + H]⁺ 467.1651, found 467.1652.

(S)-N-(3,5-Dichlorophenyl)-2-(3-methoxyphenyl)-2-(methyl(phenyl)amino)butanamide (113)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-(3-methoxyphenyl)butanamide **E24** (89.4 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **113** as a yellowish oil (56.8 mg, 64% yield, 92% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 13.76 min, t_R (minor) = 16.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.58 – 7.55 (m, 2H), 7.28 – 7.22 (m, 3H), 7.13 – 7.08 (m, 2H), 6.93 – 6.85 (m, 5H), 3.77 (s, 3H), 2.73 (s, 3H), 2.07 – 2.02 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 159.0, 147.8, 139.8, 137.0, 135.3, 128.5, 128.4, 125.5, 124.5, 124.0, 122.0, 117.9, 115.9, 112.4, 74.4, 55.2, 40.1, 32.4, 9.7.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}Cl_2N_2O_2$ [M + H]⁺ 443.1288, found 443.1287.

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-(m-tolyl)butanamide (114)

According to General procedure D with 2-chloro-N-(3,5-dichlorophenyl)-2-(m-

tolyl)butanamide E25 (86.2 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product 114 as a yellowish oil (43.6 mg, 51% yield, 90% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 9.39 min, t_R (minor) = 11.13 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.57 (s, 1H), 7.58 – 7.56 (m, 2H), 7.26 – 7.21 (m, 3H), 7.14 – 7.09 (m, 4H), 7.05 – 7.02 (m, 1H), 6.90 – 6.88 (m, 2H), 2.70 (s, 3H), 2.35 (s, 3H), 2.11 – 1.97 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 147.9, 139.9, 137.0, 135.2, 134.9, 130.3, 128.4, 128.2, 127.4, 126.4, 125.8, 124.6, 123.9, 117.8, 74.5, 40.2, 32.1, 21.7, 9.7.

HRMS (ESI) m/z calcd. for $C_{24}H_{25}C_{12}N_2O [M + H]^+ 427.1338$, found 427.1337.

(S)-2-(4-(*tert*-Butyl)phenyl)-N-(3,5-dichlorophenyl)-2-(methyl(phenyl)amino)butanamide (115)

According to **General procedure D** with 2-(4-(*tert*-butyl)phenyl)-2-chloro-*N*-(3,5-dichlorophenyl)butanamide **E26** (95.8 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **115** as a yellowish oil (59.2 mg, 63% yield, 86% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (minor) = 9.15 min, t_R (major) = 11.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.58 – 7.55 (m, 2H), 7.37 – 7.34 (m, 2H), 7.27 – 7.18 (m, 4H), 7.13 – 7.08 (m, 2H), 6.92 – 6.88 (m, 2H), 2.72 (s, 3H), 2.12 – 1.98 (m, 2H), 1.33 (s, 9H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 150.2, 148.1, 139.9, 135.2, 131.9, 129.2, 128.5, 125.6, 124.4, 124.4, 123.9, 117.8, 74.3, 40.3, 34.4, 32.0, 31.3, 9.7.

HRMS (ESI) m/z calcd. for $C_{27}H_{31}Cl_2N_2O [M + H]^+ 469.1808$, found 469.1809.

(S)-N-(3,5-Dichlorophenyl)-2-(3-fluorophenyl)-2-(methyl(phenyl)amino)butanamide (116)

According to **General procedure D** with 2-chloro-*N*-(3,5-dichlorophenyl)-2-(3-fluorophenyl)butanamide **E27** (86.6 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 96 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15/1) to yield the product **116** as a yellowish oil (50.0 mg, 58% yield, 90% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 99/1, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 10.63 min, t_R (minor) = 12.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.58 – 7.55 (m, 2H), 7.34 – 7.24 (m, 3H), 7.15 – 7.11 (m, 2H), 7.07 – 7.00 (m, 3H), 6.89 – 6.87 (m, 2H), 2.72 (s, 3H), 2.02 (q, *J* = 7.4 Hz, 2H), 0.87 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 171.4, 162.2 (d, J = 243.2 Hz), 147.4, 139.6, 137.8 (d, J = 6.6 Hz), 135.3, 128.8 (d, J = 8.0 Hz), 128.6, 125.6, 125.18 (d, J = 2.8 Hz), 124.8, 124.2, 117.9, 116.70 (d, J = 22.8 Hz), 114.4 (d, J = 20.8 Hz), 74.2, 39.9, 32.8, 9.6. ¹⁹F NMR (376 MHz, CDCl₃)δ –113.0 (s, 1F).

HRMS (ESI) m/z calcd. for $C_{23}H_{22}Cl_2FN_2O [M + H]^+ 431.1088$, found 431.1088.

6. Procedure for synthetic applications

Catalyst-controlled stereoselectivity in the N-alkylation of amine and chiral alkyl bromide.

(R)-2-(Methyl(phenyl)amino)-N-phenylpropanamide ((R)-1)

According to **General Procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.1 mg, 0.30 mmol, 1.5 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product (*R*)-**1** as a yellowish oil (45.8 mg, 90% yield, 95% ee).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 7.19 min, t_R (major) = 9.20 min.

Methyl N-methyl-N-phenyl-L-alanyl-L-phenylalaninate (S)-117

According to General procedure A with methyl (2-bromopropanoyl)-*L*-phenylalaninate E28 (94.2 mg, 0.30 mmol, 1.5 equiv) and *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*S*)-117 as a yellowish oil (40.8 mg, 60% yield, >20:1 d.r.).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.23 – 7.19 (m, 3H), 7.08 – 7.06 (m, 1H), 7.04 – 6.99 (m, 2H), 6.88 – 6.84 (m, 1H), 6.78 – 6.75 (m, 2H), 4.92 – 4.87 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 1H), 3.72 (s, 3H), 3.15 – 3.10 (m, 1H), 3.05 – 3.00 (m, 1H), 2.73 (s, 3H), 1.34 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 172.0, 149.7, 135.7, 129.2, 129.1, 128.6, 127.1, 119.0, 114.8, 60.2, 52.7, 52.3, 37.8, 33.3, 12.3.

HRMS (ESI) m/z calcd. for $C_{20}H_{25}N_2O_3$ [M + H]⁺ 341.1860, found 341.1860.

Methyl N-methyl-N-phenyl-D-alanyl-L-phenylalaninate (R)-117

According to **General procedure A** with methyl (2-bromopropanoyl)-*L*-phenylalaninate **E28** (94.2 mg, 0.30 mmol, 1.5 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*R*)-**117** as a yellowish oil (37.4 mg, 55% yield, 10:1 d.r.).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 5H), 7.08 – 7.05 (m, 2H), 7.02 – 6.96 (m, 1H), 6.86 – 6.81 (m, 1H), 6.79 – 6.75 (m, 2H), 4.92 – 4.84 (m, 1H), 4.28 (q, *J* = 7.0 Hz, 1H), 3.72 (s, 3H), 3.22 – 3.10 (m, 1H), 3.05 – 2.97 (m, 1H), 2.51 (s, 3H), 1.35 – 1.28 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 171.9, 149.4, 135.9, 129.2, 129.0, 128.6, 127.1, 118.9, 114.8, 60.3, 52.9, 52.3, 37.6, 33.8, 11.8.

HRMS (ESI) m/z calcd. for $C_{20}H_{25}N_2O_3$ [M + H]⁺ 341.1860, found 341.1859.

(S)-2-((R)-2-Methylindolin-1-yl)-N-phenylpropanamide (S)-118

According to **General procedure A** with 2-bromo-*N*-phenylpropanamide **E1** (68.4 mg, 0.30 mmol, 1.5 equiv) and (*R*)-2-methylindoline **N77** (26.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*S*)-**118** as a yellowish oil (48.2 mg, 86% yield, 13:1 d.r.).

¹**H NMR** (400 MHz, CDCl₃) δ 8.79 (s, 1H), 7.54 – 7.51 (m, 2H), 7.33 – 7.29 (m, 2H), 7.14 – 7.07 (m, 3H), 6.80 – 6.76 (m, 1H), 6.53 – 6.51 (m, 1H), 4.25 (q, *J* = 7.2 Hz, 1H), 3.98 – 3.89 (m, 1H), 3.27 – 3.21 (m, 1H), 2.75 – 2.68 (m, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.34 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 151.0, 137.5, 129.3, 129.0, 127.5, 124.6, 124.2, 119.5, 119.3, 107.8, 57.2, 56.5, 37.6, 21.2, 11.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_2O [M + H]^+ 281.1648$, found 281.1647.

(R)-2-((R)-2-Methylindolin-1-yl)-N-phenylpropanamide (R)-118

According to General procedure A with 2-bromo-*N*-phenylpropanamide E1 (68.4 mg, 0.30 mmol, 1.5 equiv) and (*R*)-2-methylindoline N77 (26.6 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product (*R*)-118 as a yellowish oil (49.3 mg, 88% yield, 15:1 d.r.).

¹**H** NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 7.53 – 7.50 (m, 2H), 7.32 – 7.28 (m, 2H), 7.12 – 7.07 (m, 2H), 7.01 – 6.97 (m, 1H), 6.78 – 6.74 (m, 1H), 6.41 – 6.39 (m, 1H), 3.92 (q, J = 7.0 Hz, 1H), 3.76 – 3.67 (m, 1H), 3.26 – 3.20 (m, 1H), 2.78 – 2.71 (m, 1H), 1.45 (d, J = 6.0 Hz, 3H), 1.39 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 148.0, 137.6, 130.2, 128.9, 127.1, 124.6, 124.2, 119.8, 119.7, 111.0, 59.7, 55.9, 37.2, 20.0, 7.9.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_2O [M + H]^+ 281.1648$, found 281.1646.

(S)-2-(2H-Benzo[d][1,2,3]triazol-2-yl)-N,2-diphenylbutanamide (119)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*9 (13.0 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous benzene (2.0 mL).

Then, the mixture was stirred at room temperature for 3 h. After that, 2-chloro-*N*,2-diphenylbutanamide **E29** (57.8 mg, 0.20 mmol, 1.0 equiv) and 1*H*-benzo[*d*][1,2,3]triazole **N78** (28.6 mg, 0.24 mmol, 1.2 equiv) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **119** as a white solid (57.6 mg, 81% yield, 91% ee).

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (minor) = 15.53 min, t_R (major) = 19.52 min.

¹**H** NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 7.97 – 7.92 (m, 2H), 7.58 – 7.55 (m, 2H), 7.47 – 7.43 (m, 2H), 7.33 – 7.27 (m, 5H), 7.13 – 7.08 (m, 3H), 3.19 – 3.03 (m, 2H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.1, 143.7, 140.7, 137.5, 128.9, 128.5, 128.3, 127.3, 126.1, 124.7, 120.2, 118.3, 81.5, 32.3, 9.5.

HRMS (ESI) m/z calcd. for $C_{22}H_{21}N_{4}O [M + H]^+ 357.1710$, found 357.1709.

The synthesis of vicinal diamine 120

To a solution of 1 (25.4 mg, 0.10 mmol, 1.0 equiv) in anhydrous THF (2.0 mL) was added LiAlH₄ (0.16 mL, 0.40 mmol, 4.0 equiv, 2.5 M in THF) dropwise at 0 °C. Then the reaction mixture was heated at reflux for 12 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to yield the product **120** as a yellowish oil (19.0 mg, 79% yield, 92% ee).

(S)-N²-Methyl-N^I, N²-diphenylpropane-1,2-diamine (120)

HPLC analysis: Chiralcel ADH (*n*-hexane/*i*-PrOH = 97/3, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 7.16 min, t_R (minor) = 7.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.20 – 7.15 (m, 2H), 6.90 – 6.87 (m, 2H), 6.80 – 6.76 (m, 1H), 6.73 – 6.69 (m, 1H), 6.62 – 6.58 (m, 2H), 4.25 – 4.16 (m, 1H), 3.97 (s, 1H), 3.25 – 3.13 (m, 2H), 2.70 (s, 3H), 1.14 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)δ 150.8, 148.1, 129.2, 129.2, 117.8, 117.4, 114.5, 112.9, 53.8, 46.8, 29.6, 14.2.

HRMS (ESI) m/z calcd. for $C_{16}H_{21}N_2$ [M + H]⁺ 241.1699, found 241.1698.

The synthesis of amino alcohol 121

To a solution of 1 (25.4 mg, 0.1 mmol, 1.0 equiv) in CH₃CN (2.0 mL) was added Boc₂O

(109.0 mg, 0.5 mmol, 5.0 equiv) and DMAP (25.8 mg, 0.2 mmol, 2.0 equiv) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution (1.0 M, 5 mL) and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was used in the next step without further purification. To a solution of the above crude product in CH₃OH (2.0 mL) was added NaBH₄ (15.2 mg, 0.4 mmol, 4.0 equiv) slowly at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred for 1 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to yield the product **121** as a yellowish oil (13.8 mg, 85% yield, 96% ee).

(S)-2-(Methyl(phenyl)amino)propan-1-ol (121)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.69 min, t_R (minor) = 12.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 6.95 – 6.91 (m, 2H), 6.83 – 6.79 (m, 1H), 4.09 – 4.00 (m, 1H), 3.66 – 3.58 (m, 2H), 2.72 (s, 3H), 2.17 (s, 1H), 1.03 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.2, 129.1, 118.4, 115.3, 63.6, 57.2, 29.9, 12.2. HRMS (ESI) m/z calcd. for C₁₀H₁₆NO [M + H]⁺ 166.1226, found 166.1226.

The synthesis of carbon chain-elongated building block 122

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with oxalyl chloride (22.8 mg, 0.18 mmol, 1.8 equiv) in CH₂Cl₂ (0.5 mL) at -78 °C was added DMSO (15.6 mg, 0.20 mmol, 2.0 equiv) dropwise. After stirring for 30 min a solution of the amino alcohol **121** (16.5 mg, 0.10 mmol, 1.0 equiv) in CH₂Cl₂ (0.5 mL) was added over 15 min. The mixture was warmed to -45 °C and stirring was continued for 1 h at this temperature, then triethylamine (50.6 mg, 0.50 mmol, 5.0 equiv) was added. The reaction mixture was brought to 0 °C and maintained for 15 min, then Ethyl (triphenylphosphoranylidene)acetate (41.8 mg, 0.12 mmol, 1.2 equiv) in benzene (0.5 mL) was added and the resulting solution was stirred for 15 h at room temperature. After completion (monitored by TLC), the reaction was quenched by saturated NH4Cl solution (10 mL) and extracted with CH₂Cl₂ three times. The combined organic phase was washed

with brine, dried over Na₂SO₄, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product **122** as a yellowish oil (15.6 mg, 67% yield, 96% ee).

Ethyl (*S*,*E*)-4-(methyl(phenyl)amino)pent-2-enoate (122)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 10.23 min, t_R (minor) = 13.48 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.00 (dd, *J* = 15.8, 4.1 Hz, 1H), 6.80 – 6.72 (m, 3H), 5.90 (dd, *J* = 15.8, 2.0 Hz, 1H), 4.63 – 4.57 (m, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.76 (s, 3H), 1.34 (d, *J* = 6.9 Hz, 3H), 1.29 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃)δ 166.4, 149.5, 149.3, 129.2, 121.4, 117.3, 113.4, 60.4, 54.6, 31.9, 16.0, 14.2.

HRMS (ESI) m/z calcd. for $C_{14}H_{20}NO_2 [M + H]^+ 234.1489$, found 234.1484.

7. Mechanistic studies

Preparation and characterization of Cu(II)L*5 complex

According to the literature reported procedure⁶, to a solution of $Cu(OAc)_2$ (36.2 mg, 0.20 mmol) in methanol (4 mL), L*5 (33.3 mg, 0.10 mmol) was added and stirred overnight. Then the solution was concentrated in vacuo, the residue dissolved in CH₂Cl₂ (10 mL) and filtered. The crude reaction product was recrystallized from dichloromethane/hexane to obtain pure product Cu(II)L*5 complex.

The catalytic activity of Cu(II)L*5 complex

$$Et \xrightarrow{Br} NHPh + Ph \xrightarrow{N} Me \xrightarrow{Cu(II)L*5 \text{ complex } (10 \text{ mol } \%)}{Cs_2CO_3 (3.0 \text{ equiv}), \text{ benzene, } 40 ^{\circ}C} \xrightarrow{Me O} Ph \xrightarrow{N, ... NHPh}_{Et} NHPh$$

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(II)L*5 complex (11.2 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), 2-bromo-*N*-phenylbutanamide **E2** (57.8 mg, 0.24 mmol, 1.2 equiv), *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at 40 °C for 72 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 3). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product **67** (85%, 96% ee).

The non-linear effect of catalyst

According to **General Procedure C** with 2-bromo-*N*-phenylbutanamide **E2** (57.8 mg, 0.24 mmol, 1.2 equiv) and *N*-methylaniline **N1** (21.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by column chromatography on silica gel The ee values of products were then determined by HPLC, which indicated a linear relationship between ee values of products and corresponding catalysts. The catalyst L*5 with different ee values

Entry	Catalyst ee (%)	Product ee (%)
1	99	97
2	60	49
3	20	18
4	0	-1
5	-20	-15
6	-60	-58
7	-99	-97

were prepared by mixing L*5 (99% ee) and (*R*)-L*5 (99% ee) in appropriate ratios.

Radical clock experiments

With N1: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-2-cyclopropyl-*N*-phenylacetamide **E30** (76.2 mg, 0.30 mmol, 1.5 equiv), *N*-methylaniline N1 (21.4 mg, 0.20 mmol, 1.0 equiv), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was purified by flash column

chromatography or preparative thin-layer chromatography on silica gel to to yield the product **123** as a colorless oil (7.3 mg, 9% yield based on **E30**, 97% ee), **124** as a colorless oil (12.5 mg, 24% yield) and **125** as a colorless oil (26.4 mg, 34% yield).

Without N1: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-2-cyclopropyl-*N*-phenylacetamide **E30** (50.8 mg, 0.20 mmol, 1.0 equiv) anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to to yield the product **124** as a colorless oil (21.8 mg, 63% yield) and **125** as a colorless oil (9.1 mg, 18% yield).

(S)-2-Cyclopropyl-2-(methyl(phenyl)amino)-N-phenylacetamide (123)

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.8 mL/min, $\lambda = 254$ nm), t_R (major) = 11.11 min, t_R (minor) = 16.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.55 – 7.51 (m, 2H), 7.32 – 7.25 (m, 4H), 7.12 – 7.06 (m, 1H), 6.91 – 6.86 (m, 3H), 3.46 (d, *J* = 9.5 Hz, 1H), 3.05 (s, 3H), 1.34 – 1.26 (m, 1H), 0.89 – 0.82 (m, 1H), 0.63 – 0.49 (m, 2H), 0.22 – 0.16 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 150.3, 137.6, 129.3, 128.9, 124.2, 119.6, 119.4, 115.0, 72.1, 34.8, 11.4, 5.7, 2.6.

HRMS (ESI) m/z calcd. for $C_{18}H_{21}N_2O [M + H]^+ 281.1648$, found 281.1645.

(E)-N-Phenylpenta-2,4-dienamide (124)

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.61 – 7.58 (m, 2H), 7.35 – 7.28 (m, 3H), 7.12 – 7.09 (m, 1H), 6.47 – 6.37 (m, 1H), 6.08 (d, *J* = 15.0 Hz, 1H), 5.56 (d, *J* = 17.0, 1.3 Hz, 1H), 5.45 (d, *J* = 10.0, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 142.3, 138.0, 134.6, 129.0, 125.0, 124.9, 124.4, 120.0.

HRMS (ESI) m/z calcd. for C₁₁H₁₂NO [M + H]⁺ 174.0913, found 174.0912.

(E)-5-Bromo-N-phenylpent-2-enamide (125)

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.93 – 6.85 (m, 1H), 6.06 (d, *J* = 15.3 Hz, 1H), 3.43 (t, *J* = 6.8 Hz, 2H), 2.76 (q, *J* = 6.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.5, 141.7, 137.8, 129.0, 126.4, 124.5, 120.1, 35.0, 30.2. HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNO [M + H]⁺ 254.0175, found 254.0173.

Alkyl radical deuterium atom abstraction from THF-d₈.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.4 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and THF- d_8 (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-3,3-dimethyl-*N*-phenylbutanamide E5 (54.0 mg, 0.20 mmol, 1.0 equiv) and THF- d_8 (0.5 mL) were sequentially added into the mixture and the reaction mixture was stirred at 40 °C for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 126-*d* as a white solid (3.1 mg, 8% yield).

2-d-3,3-Dimethyl-N-phenylbutanamide (126-d)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.35 – 7.29 (m, 2H), 7.13 – 7.08 (m, 1H), 7.04 (s, 1H), 2.23 (s, 1H), 1.11 (s, 9H). **HRMS** (ESI) m/z calcd. for C₁₂H₁₇DNO [M + H]⁺ 193.1446, found 193.1449.

EPR (electron paramagnetic resonance) for the detection of radical intermediate during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.9 mg, 0.005 mmol, 10 mol %), L*3 (3.9 mg, 0.0075 mmol, 15 mol %), Cs_2CO_3 (48.9 mg, 0.15 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-*N*-phenylpropanamide E1 (11.4 mg, 0.05 mmol, 1.0 equiv), and anhydrous 1,4-dioxane (0.5 mL) were sequentially added into the mixture without amine and the reaction mixture was stirred at rt for 4 h. Next, 5,5-dimethyl-1-pyrroline *N*-oxide DMPO (2.0 equiv) was added and the reaction mixture was stirred at rt for another 10 min. The resulting reaction mixture was analyzed by EPR. Spin trapping experiments support the intermediacy of carbon-centered radicals in the alkylation reaction. Persistent nitroxyl radical 127 was formed.

Time-course experiments for electron-rich *p*-anisidine compared to unsubstituted aniline

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (7.6 mg, 0.04 mmol, 10 mol %), L*3 (30.9 mg, 0.06 mmol, 15 mol %), Cs₂CO₃ (392.0 mg, 1.20 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (4.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-*N*-phenylpropanamide **E1** (91.2 mg, 0.40 mmol, 1.0 equiv), aromatic amines (0.60 mmol, 1.5 equiv), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature. Taking 0.5 mL of the reaction solution at regular intervals. The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The yields were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Competition experiments with paired aromatic amines possessing distinct electronic properties (OMe, H, and CF₃ at the *para* position)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.8 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-*N*-phenylpropanamide E1 (45.4 mg, 0.20 mmol, 1.0 equiv), both two different aromatic amines, and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the yields were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Further KIE (kinetic isotope effect) experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (11.4 mg, 0.06 mmol, 10 mol %), L*3 (46.3 mg, 0.09 mmol, 15 mol %), Cs₂CO₃ (588.0 mg, 1.80 mmol, 3.0 equiv), and anhydrous THF (6.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-bromo-*N*-phenylpropanamide E1 (136.9 mg, 0.20 mmol, 1.0 equiv), N53 (96.6 mg, 0.60 mmol, 1.0 equiv) or N53-*d* (99.6 mg, 0.60 mmol, 1.0 equiv), and anhydrous THF (6.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature. Taking 0.5 mL of the reaction solution at regular intervals. The reaction

mixture was diluted with 10 mL EtOAc and washed with brine (10 mL \times 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The yields of **53/53-d** were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Competition experiments with aliphatic and aromatic amine

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), L*3 (15.8 mg, 0.03 mmol, 15 mol %), Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h. After that, 2-chloro-*N*-phenylpropanamide E1' (36.7 mg, 0.20 mmol, 1.0 equiv), both BnNH₂ (21.4 mg, 0.20 mmol, 1.0 equiv) and PhNH₂ (18.6 mg, 0.20 mmol, 1.0 equiv) or (4-(aminomethyl)aniline (24.4 mg, 0.20 mmol, 1.0 equiv)), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h. Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 mL × 4). The organic layer was dried with anhydrous Na₂SO₄ and filtered through a pad of celite. The organic solvent was evaporated and the yields were based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

(S)-2-((4-Aminobenzyl)amino)-N-phenylpropanamide (129)

According to General procedure A with 2-chloro-*N*-phenylpropanamide E1' (36.7 mg, 0.20 mmol, 1.0 equiv) and 4-(aminomethyl)aniline N79 (24.4 mg, 0.20 mmol, 1.0 equiv) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH = 10/1) to yield the product **129** as a yellowish oil (38.8 mg, 72% yield, 89% ee).

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (major) = 19.98 min, t_R (minor) = 27.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.62 – 7.56 (m, 2H), 7.36 – 7.30 (m, 2H), 7.12 – 7.08 (m, 3H), 6.66 (d, *J* = 7.8 Hz, 2H), 3.74 – 3.65 (m, 2H), 3.34 (q, *J* = 7.0 Hz, 1H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 137.9, 129.2, 129.0, 123.9, 119.3, 115.3, 58.3, 52.4, 19.7. HRMS (ESI) m/z calcd. for C₁₆H₂₀N₃O [M + H]⁺ 270.1601, found 270.1595.

The deprotonation of aromatic amine using Cs₂CO₃ as base

In the glove box, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with dry Cs₂CO₃ (195.5 mg, 0.60 mmol, 3.0 equiv), aromatic amines (0.20 mmol, 1.0 equiv) and anhydrous DMSO- d_6 (3.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 12 h. The crude solvents were detected on ¹H NMR analysis.

S104

8. Computational studies

Computational Methods

All of the DFT calculations were carried out with the Gaussian 16 series of programs⁷. The B3LYP-D3 functional⁸⁻¹⁰ with a Becke-Johnson (BJ) damping function¹¹ and the standard 6-31G(d) basis set (SDD basis set for Cu atom) was used for geometry optimizations. Harmonic vibrational frequency calculations were performed for all stationary points to determine whether they are local minima or transition structures and to derive thermochemical corrections for the enthalpies and free energies. The M06¹² functional with the 6-311+G(d,p) basis set (SDD basis set for Cu atom) was used to calculate the single-point energies and give more accurate energy information. The solvent effects were considered by single-point calculations of the gas-phase stationary points with the SMD solvation model¹³ in 1,4-dioxane solvent.

Discussion on the possible Cu intermediates

In order to identify the most stable Cu(III) intermediate, we resorted to calculation methods. As such, we have carried out preliminary density functional theory (DFT) studies using the reaction of substrate **E1** and ligand **L*5** (81% yield and 92% ee, Table 1) as the model system (Figure S5). The proposed Cu(III) intermediates include three possibilities: the N,C-bound intermediate **Int-130**-singlet, the N,O-bound intermediate **Int-131**-singlet, and the O,C-bound intermediate **Int-132**-singlet (a similar structure was proposed by Kürti¹⁴). The DFT studies show that the singlet state **Int-131**-singlet and **Int-132**-singlet are less stable than **Int-130**-singlet by 34.3 kcal/mol and 10.8 kcal/mol, respectively. It should be noted that more evidence is needed to support the proposed **Int-130**-singlet and further study is still ongoing in our laboratory.

Absolute energies and Cartesian coordinates for DFT-optimized compounds and transition states. Values are given in Hartree.

Int-B1

B3LYP-D3(BJ)/6-31G(d) SCF energy: -4621.287967 a.u. B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.576683 B3LYP-D3(BJ)/6-31G(d) Thermal correction to Gibbs free energy: 0.473837 M06/6-311+G(d,p) SCF energy in solution: -4623.178529 a.u.

С	-1.11422200	-1.10450000	-0.60865100
Ċ	0.23672500	-1.36777200	-0.59444500
С	1.15509000	-0.40779400	-1.10414400
С	0.64220000	0.78887400	-1.69431200
С	-0.75455000	1.03162800	-1.68197000
С	-1.61375100	0.10891000	-1.13579200
Н	-1.78479800	-1.86169200	-0.21739500
С	1.57110300	1.68808700	-2.26831400
Н	-1.12587100	1.95895500	-2.11047700
Н	-2.68340100	0.29775800	-1.11920300
С	2.91227500	1.38323000	-2.26624900
С	3.33852000	0.21730500	-1.59945300
Н	1.20594100	2.61289900	-2.70811400
Н	3.64776800	2.04358500	-2.71308900
Н	4.38894200	-0.03749000	-1.49899200
Ν	2.49826000	-0.62063400	-1.01551400
S	0.71595800	-3.05582900	-0.16235400
0	-0.46244700	-3.64938500	0.52411200
0	1.08336000	-3.67596700	-1.45247500
Ν	1.93125200	-2.86291600	0.87456100
С	2.20287900	-3.98633700	1.77519300
С	2.16748300	-5.39844200	1.15594000
С	3.61242400	-3.77779300	2.35406800
Н	1.46482800	-3.98031900	2.59630000
С	2.45955700	-6.45843200	2.22742400
Н	2.90357900	-5.44290200	0.34448500
Н	1.18463700	-5.58187700	0.71630100
С	3.86435700	-4.77043300	3.49798400
Н	4.31844600	-3.98983800	1.54411000
С	3.79055600	-6.20284000	2.94613300
Н	2.45995000	-7.45917500	1.77651400
Н	1.64566800	-6.44962100	2.96799200
Н	4.84672300	-4.59967800	3.95216700
Н	3.11383400	-4.63964400	4.29000100
Н	3.93711500	-6.92918500	3.75687100
Н	4.61719300	-6.34660100	2.23654500
Ν	3.85659800	-2.34270100	2.66387300
С	5.26722400	-2.08677200	2.98687600
Н	5.41393800	-1.00987400	3.07607400
Н	5.55656500	-2.56276300	3.93585200
Н	5.88685000	-2.45925500	2.16911200
С	2.99395100	-1.80250100	3.72329800
Н	3.24544800	-2.23345900	4.70435700
Н	3.13068300	-0.71995800	3.75900600
Н	1.94970700	-2.01765900	3.49619900
Cu	3.33606300	-1.45767200	0.74756400
С	1.11460100	3.22398200	1.18944600

С	2.34642300	2.57884200	1.17598900
С	2.45308600	1.20278700	1.49198000
С	1.25866000	0.53149300	1.82607600
С	0.02929900	1.18606800	1.84260000
С	-0.05850700	2.54033000	1.52381600
Н	1.07066300	4.28030200	0.92968600
Н	3.24384500	3.12795500	0.92922600
Н	1.29009000	-0.53289400	2.02642600
Н	-0.86597000	0.61898600	2.08381600
Н	-1.01801600	3.05142100	1.52992600
Ν	3.64900300	0.47605200	1.37804100
С	4.83983600	1.14605600	1.59881200
0	4.92712100	2.25861500	2.16712300
С	6.04200800	0.47892300	1.12099400
С	7.38339700	1.06862000	1.37410400
Н	8.01744300	0.38000900	1.95639200
Н	7.92711700	1.25162500	0.43419000
Н	7.28158800	2.01050000	1.91964900
Н	5.96474400	-0.45384800	0.57189000
Br	5.32385400	-2.59476300	-0.58119100

Int-130-singlet

B3LYP-D3(BJ)/6-31G(d) SCF energy: -4621.299015 a.u. B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.577478 B3LYP-D3(BJ)/6-31G(d) Thermal correction to Gibbs free energy: 0.475797 M06/6-311+G(d,p) SCF energy in solution: -4623.198158 a.u.

С	0.29993300	-3.01059800	-1.35173100
С	1.44657100	-2.24530600	-1.35540700
С	1.35082900	-0.82102100	-1.38940100
С	0.05079000	-0.21830800	-1.42422500
С	-1.10635500	-1.03986400	-1.42635900
С	-0.98129800	-2.40840900	-1.38862000
Н	0.40702700	-4.08874400	-1.32709800
С	-0.01331200	1.19732000	-1.42872000
Н	-2.08587200	-0.56743000	-1.45003600
Н	-1.86605100	-3.03933500	-1.38545600
С	1.14968800	1.92988700	-1.38789700
С	2.38447900	1.23736300	-1.33827900
Н	-0.98628600	1.68334600	-1.45637600
Н	1.13760000	3.01566600	-1.38266200
Н	3.32233600	1.77978900	-1.25847200
Ν	2.48439400	-0.07550400	-1.34338800
S	3.05322100	-3.10727600	-1.22542900
0	2.65982400	-4.53270500	-1.31257100
0	3.90913800	-2.57082400	-2.29200200
Ν	3.65846400	-2.76551900	0.23271000
С	2.97482100	-3.45928400	1.34048600
С	3.51155000	-4.87583200	1.60492900
----	------------	-------------	-------------
С	3.13014800	-2.65325100	2.64118100
Н	1.89666700	-3.55290500	1.12042600
С	2.70389900	-5.55070800	2.72262200
Н	4.56953900	-4.78892800	1.88220800
Н	3.45135700	-5.45342200	0.68129400
С	2.22171600	-3.26151100	3.72044400
Н	4.17092300	-2.75958700	2.96261200
С	2.67427200	-4.70412400	4.00275900
Н	3.11142100	-6.54685200	2.93941900
Н	1.67213200	-5.70545500	2.37098100
Н	2.26867600	-2.67578200	4.64503100
Н	1.17333800	-3.25942900	3.38824600
Н	2.01969200	-5.16524700	4.75487900
Н	3.68343600	-4.67130400	4.43549600
Ν	2.99257900	-1.18785500	2.40086700
С	3.39725500	-0.41540000	3.59038400
Н	3.34487300	0.64731900	3.35685100
Н	2.73014200	-0.61816400	4.44179500
Н	4.42852400	-0.67328100	3.83755900
С	1.64595000	-0.78106800	1.97912100
Н	0.92261700	-0.85856900	2.80577500
Н	1.68041700	0.25793700	1.64153100
Н	1.30454900	-1.40397500	1.15482300
Cu	4.40422700	-1.02649000	0.78450600
С	5.96219500	2.78532800	3.61242000
С	6.02637300	1.90363400	2.53758900
С	4.93862500	1.79842700	1.65168300
С	3.80507100	2.60049100	1.86668800
С	3.75099500	3.48683700	2.94227600
С	4.83021100	3.58086400	3.82317400
Н	6.80093900	2.84546800	4.30185200
Н	6.88137500	1.25688400	2.38792700
Н	2.96879500	2.50547600	1.17994100
Н	2.86464900	4.09890300	3.09510600
Н	4.79107200	4.26584500	4.66676400
Ν	4.90397700	0.87347600	0.59821100
С	6.01033100	0.60257000	-0.16697900
0	7.04777400	1.24384900	-0.30388600
С	5.68303000	-0.72134500	-0.77213400
С	6.75363100	-1.73819100	-0.99386600
Н	6.31150700	-2.70417000	-1.24264700
Н	7.36165900	-1.40507400	-1.85124200
Н	7.39919500	-1.82901100	-0.11872100

Н	4.87462100	-0.71441100	-1.50128600
Br	6.49263100	-1.73279200	2.53833600

Int-131-singlet

B3LYP-D3(BJ)/6-31G(d) SCF energy: -4621.250571 a.u. B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.576151 B3LYP-D3(BJ)/6-31G(d) Thermal correction to Gibbs free energy: 0.472952 M06-2X/6-311+G(d,p) SCF energy in solution: -4623.140723 a.u.

С	0.41862800	-2.68435400	-1.49614600
С	1.56388100	-1.91675700	-1.55841100
С	1.46688800	-0.49082600	-1.53754500
С	0.16308700	0.10318800	-1.45198000
С	-0.98994900	-0.72089400	-1.38847000
С	-0.86224700	-2.08914900	-1.40976500
Η	0.52829200	-3.76201400	-1.52526400
С	0.08661100	1.51755100	-1.41474600
Η	-1.96800200	-0.24956400	-1.31858900
Η	-1.74310300	-2.72388200	-1.36061600
С	1.24234300	2.25869400	-1.45446800
С	2.48120200	1.57591600	-1.52744000
Η	-0.88993300	1.99314400	-1.34934000
Η	1.22434300	3.34397600	-1.42068800
Н	3.41236900	2.13632700	-1.53716500
Ν	2.59660000	0.26486000	-1.57037800
S	3.16496400	-2.79834500	-1.54227600
0	2.75613500	-4.20694800	-1.76256700
0	4.02464400	-2.17392700	-2.54961200
Ν	3.77035500	-2.60151100	-0.05843100
С	3.05608200	-3.35329500	0.99058900
С	3.50573700	-4.81743700	1.13200800
С	3.27847000	-2.67738300	2.35474100
Н	1.97030500	-3.36262500	0.78420100
С	2.66672900	-5.52492100	2.20713900
Н	4.56985400	-4.81720800	1.39862200
Н	3.39858900	-5.31570000	0.16749400
С	2.35069600	-3.30158500	3.40360500
Н	4.31652000	-2.87438900	2.64071400
С	2.70833700	-4.79019600	3.55540300
Н	3.00768400	-6.56079500	2.33527500
Н	1.62243900	-5.58114500	1.86249100
Н	2.46097900	-2.79261900	4.36880300
Η	1.29860800	-3.19877300	3.09978000
Н	2.03362600	-5.27081400	4.27710400
Н	3.72284400	-4.86033600	3.97061700
Ν	3.23037000	-1.19816500	2.22597400
С	3.75798200	-0.49885900	3.41079200
Н	3.85600900	0.56064300	3.16333300
Н	3.08203300	-0.61272000	4.27284600
Н	4.74854300	-0.90010800	3.63524600

С	1.91737600	-0.65500000	1.85245800
Н	1.21854300	-0.68770100	2.70239100
Н	2.04740400	0.38170800	1.53217300
Н	1.49640700	-1.22572900	1.02692700
Cu	4.54988300	-0.90281500	0.66628400
С	6.49144800	-0.43303600	-4.14174600
С	5.97346900	0.08217400	-2.96094100
С	6.28669700	-0.53310900	-1.73220000
С	7.06652100	-1.71075700	-1.71651500
С	7.56732500	-2.22099100	-2.90457600
С	7.28937700	-1.58156500	-4.11903300
Н	6.24435200	0.03681700	-5.09074300
Н	5.29601700	0.92751900	-2.96861000
Н	7.24455100	-2.17657800	-0.75077800
Н	8.16828900	-3.12643600	-2.89282900
Н	7.67302600	-1.99246300	-5.04986200
Ν	5.87755200	-0.07073500	-0.50317000
С	5.41951700	1.19769900	-0.21976400
0	4.49751600	1.12767800	0.71411100
С	5.94042300	2.37076200	-0.72438800
С	5.67545600	3.68047500	-0.05343700
Н	4.94466000	4.30284200	-0.59834700
Н	5.25813700	3.50317600	0.94426300
Н	6.58947500	4.28428800	0.04023700
Н	6.61105300	2.32684900	-1.57425600
Br	6.68323200	-2.09542300	2.16869600

Int-132-singlet

B3LYP-D3(BJ)/6-31G(d) SCF energy: -4621.284884 a.u. B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.577271 B3LYP-D3(BJ)/6-31G(d) Thermal correction to Gibbs free energy: 0.474312 M06/6-311+G(d,p) SCF energy in solution: -4623.179483 a.u.

С	0.34151600	-2.58503700	-1.38373100
С	1.61252000	-2.05797700	-1.30364200
С	1.79595400	-0.64204000	-1.29054100
С	0.64151600	0.20245600	-1.37196600
С	-0.64991700	-0.37735200	-1.46877200
С	-0.79467900	-1.74449400	-1.46926700
Н	0.23676400	-3.66374900	-1.38755300
С	0.85057700	1.60344500	-1.32027400
Н	-1.51617200	0.27748300	-1.53025900
Н	-1.78315300	-2.19083600	-1.53503400
С	2.12582000	2.09624500	-1.17539100
С	3.19977000	1.17751700	-1.08220200
Н	-0.00759000	2.26898800	-1.38375500
Н	2.32036500	3.16273800	-1.11870500
Н	4.21538800	1.52641900	-0.91532500

N	3.04617100	-0.12960000	-1.14659300
S	3.01565900	-3.22422300	-1.18118600
0	2.34893600	-4.54414500	-1.23964200
0	3.93724200	-2.86510200	-2.26778100
Ν	3.71940300	-3.01135500	0.25782800
С	2.93438300	-3.50731900	1.40903900
С	3.18546100	-4.99006300	1.72092500
С	3.29221500	-2.69370800	2.66672500
Н	1.85514200	-3.38849900	1.20945000
С	2.31584200	-5.44045900	2.90408900
Н	4.25151400	-5.10880800	1.95078600
Н	2.96504400	-5.58046200	0.82945300
С	2.34618400	-3.06760400	3.81427400
Н	4.31130400	-2.97775200	2.94921600
С	2.52630400	-4.55900100	4.14394400
Н	2.52377800	-6.49002200	3.14941900
Н	1.25678400	-5.39350000	2.60649600
Н	2.56293200	-2.46045500	4.70126500
Н	1.30021600	-2.87365700	3.53498900
Н	1.83861200	-4.85520100	4.94754500
Н	3.54587800	-4.70955600	4.52340500
Ν	3.40815800	-1.24458300	2.34456300
С	4.07984100	-0.47297500	3.40656600
Н	4.30339700	0.52391100	3.01797200
Н	3.44056300	-0.38079800	4.29856600
Н	5.02407900	-0.96397500	3.65021700
С	2.12899200	-0.61168000	2.00353800
Н	1.48782100	-0.50215400	2.89166900
Н	2.32098000	0.38075500	1.58860600
Н	1.59805800	-1.20402000	1.26031600
Cu	4.74486600	-1.43729300	0.70650300
С	8.75353100	2.21900700	2.75248200
С	8.21329300	1.24203600	1.92090400
С	8.17701500	1.44289100	0.52530200
С	8.70656300	2.63340200	0.00137800
С	9.23655100	3.61020400	0.84461700
С	9.26332400	3.41140300	2.22630500
Н	8.77762800	2.04644700	3.82659900
Н	7.82902900	0.30840600	2.32337900
Н	8.69416300	2.77322900	-1.07635800
Н	9.63683400	4.52816900	0.41801000
Н	9.68244500	4.16961300	2.88381700
Ν	7.71669900	0.44733200	-0.35083400
С	6.57520900	-0.09815300	-0.14109000

0	5.63845700	0.23192300	0.74084900
С	6.05203600	-1.30194800	-0.83379000
С	6.90820200	-2.50667300	-1.05110100
Н	6.30849700	-3.33789700	-1.42448300
Н	7.66473700	-2.24164300	-1.80805900
Н	7.42471000	-2.78912000	-0.13126400
Н	5.27668000	-1.11305300	-1.57390400
Br	6.77743300	-2.54940400	2.51331600

9. References

1. Zhang, Y.-F.; Dong, X.-Y.; Cheng, J.-T.; Yang, N.-Y.; Wang, L.-L.; Wang, F.-L.; Luan, C.; Liu, J.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Enantioconvergent Cu-Catalyzed Radical C–N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. *J. Am. Chem. Soc.* **2021**, *143*, 15413–15419.

2. Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C–N Cross-Couplings Induced by Visible Light. *Science* 2016, *351*, 681–684.

3. Tanasova, M.; Yang, Q.; Olmsted, C. C.; Vasileiou, C.; Li, X.; Anyika, M.; Borhan, B. An Unusual Conformation of α -Haloamides due to Cooperative Binding with Zincated Porphyrins. *Eur. J. Org. Chem.* **2009**, 2009, 4242–4253.

4. Wang, F.-L.; Yang, C.-J.; Liu, J.-R.; Yang, N.-Y.; Dong, X.-Y.; Jiang, R.-Q.; Chang, X.-Y.; Li, Z.-L.; Xu. G.-X.; Yuan, D.-L.; Zhang, Y.-S.; Gu, Q.-S.; Hong, X.; Liu, X.-Y. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent C(*sp*³)–C(*sp*) Cross-Coupling of Tertiary Electrophiles with Alkynes. *Nat. Chem.* **2022**, *14*, 949–957.

5. Chen, C.; Fu, G. C. Copper-Catalysed Enantioconvergent Alkylation of Oxygen Nucleophiles. *Nature* **2023**, *618*, 301–307.

6. Chen, J.-J.; Fang, J.-H.; Du, X.-Y.; Zhang, J.-Y.; Bian, J.-Q.; Wang, F.-L.; Luan, C.; Liu, W.-L.; Liu, J.-R.; Dong, X.-Y.; Li, Z.-L.; Gu, Q.-S.; Dong Z.; Liu, X.-Y. Enantioconvergent Cu-Catalysed *N*-Alkylation of Aliphatic Amines. *Nature* **2023**, *618*, 294–300.

7. Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

8. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

9. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789.

10. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *ab initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

11. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465.

12. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

13. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.

14. Zhou, Z.; Behnke, N. E.; Kürti, L. Copper-Catalyzed Synthesis of Hindered Ethers from α -Bromo Carbonyl Compounds. *Org. Lett.* **2018**, *20*, 5452–5256.

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -17: fl (ppm)

— -124.37

 $\begin{array}{c} 7.52\\ 7.52\\ 7.53\\$

- -58.27

S151

S154

S157

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

S192

8.839 7.751 7.751 7.749

8.832 7.749

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

8.88 8.28 7.56 7.56 7.56 7.56 7.56 7.56 7.55

8.59
7.53
7.53
7.53
7.53
7.53
7.53
7.53
7.53
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.73
7.74
7.75
7.75
7.75
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.74
7.75
7.75
7.75
7.75
7.75
7.75
7.75
<li

10 -60 -70 f1 (ppm) -10 -20 -30 -40 -50 -110 0 -80 -90 -100 -120 -130

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 fl (ppm)

---62.08

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 fl (ppm)

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 fl (ppm)

— -62.08

8.8.8 7.7.7 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.7.6 7.7.7 7.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 fl (ppm)

S243

— -66.62

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 $\begin{array}{c} 7.7\\ 7.72\\$

 $\begin{array}{c} 7.7.7\\ 7.7.7.7\\ 7.7.7.7\\ 7.7.7.7\\ 7.7.7.7\\ 7$

78.8
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.751
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.752
7.7

11. HPLC spectra

PDA Ch1 254nm

FDA	<u>UNI 20</u>	41111		
Peak	# Ret.	Time	Area	Area%
1	9.	370	1998079	98.314
2	12.	305	34273	1.686

PDA Chi 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.163	7302944	49.778	
2	9.185	7368152	50.222	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.193	55270	2.269
2	9.202	2380865	97.731

PDA Multi 1 254nm, 4nm

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.291	10829776	98.430
2	14.509	172754	1.570

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.545	9276405	98.912
2	14.732	102069	1.088

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.286	4601573	49.948
2	17.245	4611163	50.052
mAU			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.317	187243	1.541
2	17.250	11959951	98.459

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.968	1519561	49.982
2	9.895	1520680	50.018

I	PDA Ch	1 254nm		
	Peak#	Ret. Time	Area	Area%
[1	8.926	19844274	98.325
ſ	2	9.870	338004	1.675

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.731	1852188	49.935
2	14.914	1857026	50.065

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.733	20187810	98.257
2	14.952	358066	1.743

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.264	62207	0.940
2	16.728	6553118	99.060

Peak#	Ret. Time	Area	Area%
1	12.114	2619248	50.004
2	13.297	2618849	49.996

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.105	9734067	97.770
2	13.295	222068	2.230

Peak Table

]	PDA Ch	1 254nm		
ſ	Peak#	Ret. Time	Area	Area%
[1	9.104	3967324	49.972
	2	12.406	3971756	50.028

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.106	10111451	98.501
2	12.429	153885	1.499

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.463	34236431	98.431
2	14.660	545861	1.569

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.205	4962851	50.024
2	17.967	4958102	49.976
mAII			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.247	7834121	98.240
2	18.049	140343	1.760

min

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.189	1057410	98.151
2	23.880	19924	1.849

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.442	25756989	93.926
2	13.840	1665605	6.074

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.120	8391910	96.883
2	17.637	269974	3.117

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.820	5389063	97.332
2	19.262	147740	2.668

PDA	Ch	1 254	1nm				
Pea	k#	Ret.	Time	Area		Area%	
1		10.	028	1654270	04	49.601	
2	2	18.	132	168086	19	50.399	

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	10.055	13528582	98.393	
2	18.259	220997	1.607	

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	10.267	10002093	98.541	
2	17.207	148050	1.459	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.600	262611	2.198
2	15.041	11686542	97.802

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	10.491	11165273	98.821	
2	12.580	133190	1.179	

 $\frac{1}{2}$

500

0

Ó

 $\frac{1}{4}$

 $\frac{1}{3}$

5.277

 $\overline{6}$

 $\frac{1}{7}$

8

9

min

 $\frac{1}{5}$

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.072	26662601	94.611	
2	11.778	1518735	5.389	

检测器	A Ch2 240ni	m	
Peak#	Ret. Time	Area	Area%
1	7.409	754937	49.859
9	8 804	750203	50 141

mV

检测器A Ch2 240nm					
Peak#	Ret. Time	Area	Area%		
1	7.387	1014543	3.333		
2	8.732	29423355	96.667		

检测器A Ch2 240nm				
Peak#	Ret. Time	Area	Area%	
1	8.059	1495854	50.420	
2	10.438	1470962	49.580	

mV

mV

检测器A Ch2 240nm					
Peak#	Ret. Time	Area	Area%		
1	8.081	628082	4.876		
2	10.416	12254028	95.124		

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	14.841	6860444	99.110			
2	23.801	61581	0.890			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.263	45023910	97.039
2	23.061	1374000	2.961

检测器A Ch1 254nm Peak# Ret. Time Area

Peak#	Ret. Time	Area	Area%
1	15.233	40536258	97.377
2	21.198	1092068	2.623

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.763	8315740	49.782
2	21.974	8388579	50.218
mAU			

PDA	Ch1	254nm
i Dii	UIII.	20 mm

L	Peak#	Ret. Time	e Area	Area%
[1	12.812	12368693	98.003
[2	22.234	252013	1.997

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.186	13272665	98.300
2	25.358	229474	1.700

	PDA Chi 254nm				
	Peak#	Ret.	Time	Area	Area%
	1	14.	099	2306466	50.164
	2	17.	704	2291426	49.836
_					

Peak Table

Peak#	Ret. Time	Area	Area%
1	14.058	17549273	95.212
2	17.682	882598	4.788

Peak#	Ret. Time	Area	Area%
1	12.790	3170694	97.783
2	14.558	71889	2.217

Peak	Ta	ble
------	----	-----

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.462	2645872	49.878		
2	8.548	2658777	50.122		

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.384	3663683	97.581
2	8.312	90803	2.419

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.318	1671492	50.015
2	15.386	1670522	49.985
	-		

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.268	18780201	93.979
2	15.358	1203156	6.021

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.454	4309950	49.640
2	5.810	4372416	50.360

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.486	14397770	98.030
9	5.847	280325	1 070

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.058	5355561	49.781
2	12.111	5402698	50.219

mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	8.048	17669302	96.406
2	12.121	658689	3.594

	Peak#	Ret. Time	Area	Area%
	1	11.161	736692	49.507
	2	12.053	751359	50.493
_				

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.157	7006054	96.935
2	12.086	221501	3.065

PDA Ch2 270nm					
Peak#	Ret. Time	Area	Area%		
1	7.120	776132	49.966		
2	12.709	777196	50.034		

Peak Table

PDA Ch2 270nm						
Peak#	Ret. Time	Area	Area%			
1	7.064	17731095	94.899			
2	12.571	953015	5.101			

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.146	11165433	49.727
2	12.199	11287837	50.273

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.161	21049004	93.973
2	12.241	1349986	6.027

Peak Table

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	14.692	2869275	50.052				
2	16.688	2863313	49.948				

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.620	19530215	93.898
2	16.674	1269170	6.102

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.336	345095	2.370
2	7.481	14215048	97.630

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	9.713	20659970	98.315				
2	11.441	354058	1.685				

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	6.005	10271286	49.738			
2	6.806	10379291	50.262			
	0,000	100.0201	00.202			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.016	3011026	97.966
2	6.820	62514	2.034

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	5.819	1129317	50.466				
2	7.341	1108467	49.534				

Peak Table PDA Ch1 254nm

*ί*Ρr 0 || Н NHPh Мe 42

D:\duxuanyi\HPLC-1data\IA3-9010-08-duxy-n6-95-11-(

2023/4/12 21:27:22

Peak#	Ret. Time	Area	Area%
1	5.804	27537239	95.641
2	7.325	1255089	4.359

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	12.100	471155	4.071				
2	13.373	11101247	95.929				

Peak Table

Detect	or A Ch1 2	254nm	
Peak#	Ret. Time	Area	Area%
1	15.295	146447232	97.334
2	19.606	4011362	2.666

Detector A Ch1 254nm

Detector A Chi 25 Hill					
	Peak#	Ret.	Time	Area	Area%
	1	15.	349	51805978	96.940
	2	18.	199	1635404	3.060

10

Peak Table

0

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.806	1524134	50.249
2	20.430	1509051	49.751

5

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.763	6951817	93.429
2	20.428	488932	6.571

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	9.797	685047	2.241
2	12.473	29884164	97.759

Detector A Ch1 254nm

Detect	OF A	Uni 2	Jahlin	
Peak#	Ret.	Time	Area	Area%
1	14.	648	747067	2.195
2	16.	869	33284285	97.805

Peak#	Ret. Time	Area	Area%
1	14.659	6264869	94.946
2	17.078	333492	5.054

PDA Ch	1 Zə4nm		
Peak#	Ret. Time	Area	Area%
1	12.689	47264	2.083
2	16.065	2222253	97.917

Peak Table

ł	PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%	
	1	11.329	2461894	49.700	
	2	12.251	2491646	50.300	

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.300	6367282	96.090
2	12 245	259067	3 910

Detector A Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	14.	468	1729741	2.427
2	18.	106	69549677	97.573

I DA OI	1 204111		
Peak#	Ret. Time	Area	Area%
1	10.326	579402	1.347
2	13.737	42445124	98.653

J	Detect	or A	Ch1 2	254nm	
	Peak#	Ret.	Time	Area	Area%
ĺ	1	15.	085	338079	1.668
[2	17.	491	19924648	98.332

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.913	393575	2.329
2	26.448	16507176	97.671

IDA OI	1 204111			
Peak#	Ret. Time	Area	Area%	
1	16.781	142859	1.624	
2	22.644	8655992	98.376	

检测器	则器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	7.446	101219	1.398			
2	9.018	7140419	98.602			

PDA UNI 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.770	165420	1.890	
2	11.921	8586065	98.110	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.078	4664357	49.963
2	16.491	4671176	50.037

D.	1	-	1 1	1
Pe	ak.	a	h	P
	COLL		~ .	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.099	440773	8.615
2	16.519	4675545	91.385

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	12.876	818210	1.739
2	16.830	46243167	98.261

Peak#	Ret. Time	Area	Area%
1	27.800	36526882	96.145
2	36.475	1464433	3.855

I DA CH	1 2041111		
Peak#	Ret. Time	Area	Area%
1	21.381	660744	1.847
2	23.675	35120608	98.153

Detect	or A Ch1 2	54nm	
Peak#	Ret. Time	Area	Area%
1	17.668	56357470	97.301
2	20.787	1563478	2.699

PDA UN	1 234nm		
Peak#	Ret. Time	Area	Area%
1	15.445	141433283	96.579
2	19 956	5009872	3 421

FDA UI	1 2341111		
Peak#	Ret. Time	Area	Area%
1	37.951	149954649	95.528
2	41.893	7019324	4.472

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.023	17989280	95.473
2	32.057	853070	4. 527

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.562	7525137	95.028
2	34.686	393765	4.972

Detector A Ch1 254nm

Detect	or n onr z	/0 mm	
Peak#	Ret. Time	Area	Area%
1	11.828	126791	4.015
2	26.441	3031161	95.985

检测器	A Ch1 254n	m	
Peak#	Ret. Time	Area	Area%
1	28.608	978067	7.936
2	37.398	11346983	92.064

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	25.396	847139	8.688
2	34.094	8903910	91.312

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.391	29967214	97.897
2	14.477	643720	2.103

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.304	28575324	96.280
2	9.209	1104118	3.720

Peak Table

Р	DA Ch	1 254nm		
F	°eak#	Ret. Time	Area	Area%
	1	6.942	9479317	49.865
	2	8.551	9530745	50.135

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.918	19191015	96.576
2	8.547	680441	3.424

Peak Table

<u>检测器A Ch1 254nm</u>

Peak#	Ret. Time	Area	Area%
1	5.046	13458742	90.554
2	6.789	1403876	9.446

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.406	18066819	92.817
2	8.371	1398113	7.183

PDA Ch	1 254	1nm		
Peak#	Ret.	Time	Area	Area%
1	39.	770	3449070	50.312
2	45.	033	3406270	49.688
ATT				

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	40.121	28563629	97.958
2	44 240	595561	2 042

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.434	20837793	92.532
2	18.031	1681776	7.468

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.286	5293707	49.830
2	19.685	5329828	50.170
ATT			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.302	14001066	97.690
2	19.726	331119	2.310

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.440	15377019	96.608
2	27.234	539978	3.392

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.410	5190742	94.951
2	14.813	276020	5.049

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	15.	668	9778324	49.802	
2	18.	919	9856204	50.198	

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	15.671	2876703	96.925				
2	18.818	91263	3.075				

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.374	74546398	97.804		
2	22.765	1674184	2.196		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.372	39611044	97.629
2	8.436	962111	2.371

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.172	3079600	49.748
2	30.193	3110797	50.252

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.436	517517	2.213
2	29.910	22869863	97.787

Peak#	Ret. Time	Area	Area%		
1	14.250	1143269	3.628		
2	18.138	30369360	96.372		

I DA OL	1 20411		
Peak#	Ret. Time	Area	Area%
1	9.528	22850461	97.618
2	11.829	557579	2.382

D I	1 7	n 1		
Poo	7	0	h I	
F ea	n	а.		
* ~ ~			~ ~	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.945	2716409	49.852
2	14.271	2732510	50.148
4	14.271	2102010	50.140

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.922	20986995	94.062
2	14.214	1324852	5.938

D I	1 7	n 1		
POO	2	0	h	
1 ea	n l	a	υ.	LE
			-	_

<u>PDA Ch</u>	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.060	4215941	50.114
2	19.364	4196823	49.886

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.043	15164922	92.673
2	19.364	1199055	7.327

S353

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.830	18893123	50.019
2	13.810	18878415	49.981

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.518	20620995	94.863
2	13.305	1116661	5.137

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.931	3327483	49.709
2	15.197	3366507	50.291

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.871	10590261	93.813
2	15.161	698481	6.187

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.544	20032053	93.376
2	8,388	1421043	6.624

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.726	33060607	48.720
2	11.518	34797171	51.280

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.208	40418324	93.394
2	12.659	2859021	6.606

Р	еак	Table	Э

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	11.909	2466852	48.708
2	13.160	2597707	51.292

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.258	326220	4.269	
2	12.241	7315197	95.731	

Peak	Ta	b]	le
------	----	----	----

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.268	6448319	49.690	
2	13.512	6528686	50.310	

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.240	722125	4.865	
2	13.320	14120562	95.135	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.148	10731727	49.839
2	21.386	10801085	50.161

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.891	741183	6.576		
2	20.722	10530597	93.424		

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	12.630	8168819	49.890	
2	15.855	8204832	50.110	

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.470	21037812	94.861
2	15.458	1139729	5.139

	PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%	
	1	11.225	5475700	49.840	
	2	12.029	5510922	50.160	
m	AU				

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	11.019	367119	4.067
2	11.805	8659023	95.933

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.131	401765	5.156		
2	11 260	7300830	Q1 811		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.077	277870	8.620
2	11.226	2945562	91.380

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.286	7041517	94.898		
2	8.054	378609	5.102		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.309	576929	49.953		
2	13.226	578013	50.047		
AU					

Peak Table

PDA	Ch1	254nm
1 1011	VIII.	To time

Peak#	Ret. Time	Area	Area%
1	12.290	440896	5.018
2	13.123	8345873	94.982

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.055	9058155	94.921
2	9 175	484703	5 079

49.755 50.245 mAU 300 PDA Multi 1 254nm,4nm 7.175 200-103 100-8.293 0-2.5 5.0 7.5 10.0 12.5 15.0 min 0.0

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.175	1842081	94.859
2	8.293	99825	5.141

PDA Multi 1 254nm, 4nm

Peak Table

PDA	Ch1	254nr
1 1/1	- UIII	20111

Peak#	Ret. Time	Area	Area%
1	8.544	47232786	48.061
2	10.481	51044944	51.939

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8.573	1566865	5.853
2	10.091	25205150	94.147

检测器A Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	5.184	3239926	90.961		
2	5.920	321969	9.039		

检测器A	Ch1	254nm
------	-----	-------

Peak#	Ret. Time	Area	Area%
1	9.394	9116024	94.096
2	10.309	572016	5.904

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	7.499	4124804	93.916
2	12.930	267200	6. 0 84

D 1	1. 7	n 1	1. 1	
Pea	K I	12	n	\mathbf{P}
i cu	n 1	L CL	<u> </u>	LU

PDA Ch1 2	254nm		
Peak# Re	t. Time	Area	Area%
1	8.663	4328891	50.884
2 1	10.848	4178460	49.116

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.144	63120743	94.938
2	10.385	3365207	5.062

D		n 1		
Peal	k '	a	h	P
r ou			. ,	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.149	1031348	50.025
2	13.988	1030334	49.975

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	6.954	11968169	94.000
2	13.478	763866	6.000

PDA Chi 254nm					
Peak#	Ret. Time	Area	Area%		
1	19.372	6557095	50.084		
2	25.406	6535218	49.916		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.433	48797241	93.265
2	22.839	3523909	6.735

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.079	13907920	49.996
2	25.129	13909964	50.004

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.029	145534	6.117
2	24.859	2233627	93.883

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.332	16585452	49.392
2	11.371	16993668	50.608
2	11.371	16993668	50.608

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.377	426656	2.641
2	11.383	15727289	97.359

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.042	17712220	49.568
2	16.909	18021191	50.432

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.761	91901026	95.779
2	16.830	4049885	4.221

n		n 1		
200	7	0	h I	0
I ea	n l			

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.050	10676800	50.424
2	10.806	10497369	49.576

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.386	11705583	95.184
2	11.129	592240	4.816

D 1	1 7	n 1		
Peal	K	a	h l	P
$1 \circ c_0$			<u> </u>	r 🗸

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.479	1148247	49.073
2	11.311	1191626	50.927
	11.011	1101020	00.021

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.146	1679299	6.845
2	11.038	22854871	93.155

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.226	34228320	48.957
2	11.670	35687001	51.043

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.629	13838125	94.924
2	12.060	740026	5.076

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.439	2107415	50.054
2	19, 392	2102873	49,946

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.527	316744	4.477
2	19.518	6758693	95.523

 PDA Ch1
 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 7.161
 1605906
 96.182

 2
 7.924
 63748
 3.818

S383

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.666	4631552	49.908
2	12.908	4648715	50.092

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.685	3539216	98.033
2	12.949	71008	1.967

PDA Ch1 254nm

1	IDA OI	1 20 11111		
	Peak#	Ret. Ti	me Area	Area%
	1	10.225	5 5307150	97.664
	2	13.483	3 126933	2.336

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.099	528060	50.112
2	16.724	525706	49.888

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	11.112	7549434	98.255			
2	16.776	134071	1.745			

检测器	A Ch1	254n	m
Peak#	Ret.	Time	Area

Peak#	Ret.	Time	Area	Area%
1	19.	980	4709144	94.510
2	27.	675	273557	5.490