Supporting Information for

Copper-Catalyzed Enantioconvergent Radical \mathbf{N}-Alkylation of Diverse (Hetero)aromatic Amines

Xuan-Yi Du, ${ }^{\dagger, \hbar, \|, \S}$ Jia-Heng Fang, ${ }^{\dagger, \hbar, \|, \S}$ Ji-Jun Chen, ${ }^{\ddagger, \|, \S}$ Boming Shen, ${ }^{\ddagger, \S}$ Wei-Long Liu, ${ }^{\ddagger, \|}$ Jia-Yong Zhang, ${ }^{\ddagger, l}$ Xue-Man Ye, ${ }^{\ddagger, l}$ Ning-Yuan Yang, ${ }^{\ddagger, l}$ Qiang-Shuai Gu, ${ }^{£}$ Zhong-Liang Li, ${ }^{\#, *}$ Peiyuan Yu, ${ }^{\ddagger, *}$ and Xin-Yuan Liu ${ }^{\ddagger, I, *}$
\dagger School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
*Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
'Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
${ }^{\text {E }}$ Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
\#Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000, China
${ }^{s}$ These authors contributed equally: Xuan-Yi Du, Jia-Heng Fang, Ji-Jun Chen, and Boming Shen.
Correspondence to: lizl@gbu.edu.cn, yupy@sustech.edu.cn, liuxy3@sustech.edu.cn

Table of contents

\qquad
2. Figures for experimentsS10
3. General information S16
4. Synthesis of α-carbonyl alkyl halide substrates S17
5. Enantioconvergent N-alkylation of primary and secondary aromatic amines S25
6. Procedure for synthetic applications S89
7. Mechanistic studies S95
8. Computational studies S105
9. References S113
10. NMR spectra S115
11. HPLC spectra S264

1. Tables for experiments

Brief summary of condition optimizations

Secondary aromatic amine N1 with α-methyl secondary alkyl halide: We started the condition using $\mathrm{CuI}, \mathrm{L}^{*} 1$ as the catalyst, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base in 1,4 -dioxane at $45^{\circ} \mathrm{C}$. The initial screening of alkyl halide indicated bromide was more efficient than chloride (Table S1). Then a series of ligands were strategically tested and $\mathbf{L} * \mathbf{3}$ stood out to provide the highest yield with the best enantioselectivity. Next, the solvent was varied and 1,4-dioxane performed the best (Table S2). The subsequent copper salt screening revealed CuI was the optimal one (Table S3). Further investigations on the amine-to-alkyl bromide ratio (Table S4) led to the optimal conditions.
Secondary aromatic amine N1 with $\boldsymbol{\alpha}$-alkyl secondary alkyl bromide E2: Due to the increased steric bulkiness of alkyl bromides, sterically less congested $\mathrm{N}, \mathrm{N}, \mathrm{N}$-ligand $\mathbf{L} * \mathbf{5}$ became superior for this reaction (Table S5). Among common solvents, benzene delivered slightly better enantioselectivity than 1,4-dioxane while the yield remained comparable (Table S6). Further investigations on the amine-to-alkyl bromide ratio led to the optimal conditions (Table S7).
Secondary aromatic amine $\mathbf{N} 1$ with tertiary alkyl chloride E17: The planar tridentate $\mathrm{N}, \mathrm{N}, \mathrm{N}-$ ligand $\mathbf{L} * \mathbf{9}$ delivered promising enantioselectivity. Further changing the solvent from 1,4-dioxane to MTBE greatly enhanced the enantioselectivity. The use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ in place of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ provided slightly superior enantioselectivity but with greatly diminished yield. Interestingly, the addition of an additional catalytic amount of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ rescued the reaction while slightly boosting the enantioselectivity. (Table S8).

Table S1. Reaction condition optimization with secondary aromatic amine: screening of different alkyl halides

Reaction conditions: $\mathbf{E}(0.075 \mathrm{mmol}), \mathbf{N} \mathbf{1}(0.050 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{1}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in 1,4-dioxane $(1.0 \mathrm{~mL})$ for 72 h under argon. The yields of 1 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S2. Reaction condition optimization with secondary aromatic amine: screening of different solvents

Reaction conditions: E1 $(0.075 \mathrm{mmol}), \mathbf{N} 1(0.050 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 3(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in solvent (1.0 mL) at rt for 72 h under argon. The yields of 1 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S3. Reaction condition optimization with secondary aromatic amine: screening of different copper salts

Reaction conditions: E1 (0.075 mmol$), \mathbf{N} 1(0.050 \mathrm{mmol}),[\mathrm{Cu}](10 \mathrm{~mol} \%), \mathbf{L} * \mathbf{3}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in 1,4-dioxane $(1.0 \mathrm{~mL})$ at rt for 72 h under argon. The yields of 1 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S4. Reaction condition optimization with secondary aromatic amine: screening of starting materials loading

Reaction conditions: $\mathbf{E} 1, \mathbf{N} 1, \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 3(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in 1,4-dioxane (1.0 mL) at rt for 72 h under argon. The yields of $\mathbf{1}$ were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S5. Reaction condition optimization with α-carbonyl- α-alkyl alkyl bromide: screening of different ligands

Reaction conditions: E2 (0.075 mmol), $\mathbf{N 1}(0.050 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L}^{*}(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in 1,4-dioxane $(1.0 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ for 72 h under argon. The yields of 71 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis. ${ }^{a}$ At room temperature.

Table S6. Reaction condition optimization with α-carbonyl- α-alkyl alkyl bromide: screening of different solvents

Entry	Solvent	Yield (\%)	ee (\%)
1	1,4 -dixoane	78	93
2	MTBE	74	95
3	CPME	81	95
4	${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$	78	56
5	$\mathrm{Et}_{2} \mathrm{O}$	69	95
6	DME_{7}	THF	51
88			
8	benzene	64	93
9	PhMe	95	96
10	PhCF_{3}	89	96
11	PhF	87	94

Reaction conditions: E2 (0.075 mmol$), \mathbf{N 1}(0.050 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 5(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in solvent (1.0 mL) at $40{ }^{\circ} \mathrm{C}$ for 72 h under argon. The yields of 71 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S7. Reaction condition optimization with α-carbonyl- α-alkyl alkyl bromide: screening of starting materials loading

	 N1	$\frac{\mathrm{Cul}(10 \mathrm{~mol} \%), \mathrm{L} * 5(15 \mathrm{~mol} \%)}{\mathrm{Cs}_{2} \mathrm{CO}_{3} \text { (3.0 equiv.), benzene, } 40}$		 L*5
Entry	E2 (equiv)	N1 (equiv)	Yield (\%)	ee (\%)
1	1.5	1.0	95	96
2	1.2	1.0	93	96
3	1.0	1.0	86	96
4	1.0	1.5	88	95

Reaction conditions: E2, N1, $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathbf{L} * 5(15 \mathrm{~mol} \%)$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) in benzene (1.0 mL) at $40^{\circ} \mathrm{C}$ for 72 h under argon. The yields of 71 were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis.

Table S8. Reaction condition optimization with α-carbonyl- α-phenyl alkyl chloride: screening of different ligands

				 L*5		
Entry	[Cu]	L*	Base	Solvent	Yield (\%)	ee (\%)
1	CuI	L*1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1,4-dioxane	70	6
2	CuI	L*3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1,4-dioxane	70	1
3	CuI	L*5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1,4-dioxane	74	2
4	CuI	L*9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1,4-dioxane	78	35
5	CuI	L*9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MTBE	75	60
6	CuI	L*9	$\mathrm{K}_{3} \mathrm{PO}_{4}$	MTBE	67	80
7^{a}	CuI	L*9	$\mathrm{K}_{3} \mathrm{PO}_{4} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$	MTBE	71	82
8^{a}	$\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$	L*9	$\mathrm{K}_{3} \mathrm{PO}_{4} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$	MTBE	72	88

Reaction conditions: E17 (0.060 mmol), $\mathbf{N 1}\left(0.050 \mathrm{mmol}, 1.0\right.$ equiv), CuI ($10 \mathrm{~mol} \%$), $\mathbf{L}^{*}(15 \mathrm{~mol} \%)$, and Base (3.0 equiv) in anhydrous solvent $(1.0 \mathrm{~mL})$ at rt for 96 h under argon. The yields of $\mathbf{8 7}$ were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5$-trimethoxybenzene as an internal standard. The ee value was based on HPLC analysis. ${ }^{a} \mathrm{~K}_{3} \mathrm{PO}_{4} / \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 / 0.20$ equiv) are used.

2. Figures for experiments

Metalaxyl

Metholachlor

TRPM8 antagonist

DprE1 inhibitor

Figure S1. Importance of chiral aromatic amines featuring an α-stereocenter.

58

Figure S2. The X-ray structure of 58.

Figure S3. The X-ray structure of 71.

119

Figure S4. The X-ray structure of 119.

Figure S5. DFT calculations on the relative stability of possible Cu intermediates.

Figure S6. Time-course experiments for electron-rich p-anisidine compared to unsubstituted aniline.

3. General information

Most of reactions were carried out under argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Diphenylphosphoryl azide and oxalyl chloride were purchased from Adamas. DCM and THF were purified and dried using a solvent-purification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were purchased from Bide Pharmatech Ltd. Anhydrous 1,4-dioxane, THF and benzene were purchased from J\&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$). As the eluent, the petroleum ether (PE), $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by use of UV light (254 nm), iodine on silica gel or basic KMnO_{4} indicator. NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 or 150 MHz for ${ }^{13} \mathrm{C}$ NMR and 376 MHz for ${ }^{19} \mathrm{~F}$ NMR, respectively, in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, DMSO- d_{6}, or THF- d_{8} with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t , triplet; q, quarter; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (ee) was determined using Agilent high-performance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

4. Synthesis of $\boldsymbol{\alpha}$-carbonyl alkyl halide substrates

According to the literature reported procedure ${ }^{1,2,3,4,5,6}, \alpha$-carbonyl alkyl halide substrates were synthesized.

2-Bromo- N-phenylpropanamide (E1)

E1
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,137.1,129.0,125.0,120.0,45.2,22.9$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$228.0019, found 228.0016.

2-Bromo- N-phenylbutanamide (E2)

E2
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16$ (m, 1H), $4.45(\mathrm{dd}, J=7.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.6, 137.1, 129.1, 125.0, 120.0, 53.9, 29.4, 11.8.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$242.0175, found 242.0174.

2-Bromo-N-phenylhexanamide (E3)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.326(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.23(\mathrm{~m}$, $4 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,137.1,128.8,124.9,120.5,50.5,35.1,29.3,21.9,13.7$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 270.0488$, found 270.0487.
2-Bromo-3-methyl- N-phenylbutanamide (E4)

E4
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14$ (m, 1H), $4.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,137.0,129.1,125.0,120.1,61.7,32.6,21.0,18.5$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$256.0332, found 256.0331.

2-Bromo-3,3-dimethyl- N -phenylbutanamide (E5)

E5
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12$ (m, 1H), $4.26(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.0,137.0,129.0,124.9,120.1,64.3,35.4,27.6$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 270.0488$, found 270.0488.

2-Bromo-4-methyl- N-phenylpentanamide (E6)

E6
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.46-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,137.2,129.1,124.9,120.0,50.6,44.6,26.4,22.6,21.1$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 270.0488$, found 270.0489.

2-Bromo-4-(1,3-dioxoisoindolin-2-yl)- N-phenylbutanamide (E7)

E7
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 2 \mathrm{H})$, $2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.4,165.9,137.1,134.1,131.8,129.0,124.9,123.4,119.9,47.4$, 35.9, 34.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 387.0339$, found 387.0336.

2-Bromo-3-methoxy- N -phenylpropanamide (E8)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,137.2,128.9,124.9,120.1,73.4,59.3,47.6$.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$258.0124, found 258.0125.

2-Bromo-4-(4-bromophenoxy)- N-phenylbutanamide (E9)

${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d 6) $\delta 10.43(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 2 \mathrm{H})$, $2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 166.6,157.5,138.5,132.2,128.9,123.9,119.3,116.8,112.2$, 65.3, 46.5, 33.52.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 411.9542$, found 411.9536.

2-Bromo-4-(methylthio)- N-phenylbutanamide (E10)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.6,137.0,129.0,125.0,120.1,49.3,34.3,31.5,15.2$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNOS}[\mathrm{M}+\mathrm{H}]^{+}$288.0052, found 288.0053.
Methyl 4-bromo-5-oxo-5-(phenylamino)pentanoate (E11)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.60-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.7,166.1,137.0,129.1,125.0,120.0,51.9,49.9,31.4,30.6$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 300.0230$, found 300.0231 .

2-Chloro- N -(2,6-dimethylphenyl)-2-phenylacetamide (E12)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,136.6,135.3,132.7,129.2,129.0,128.3,127.7,127.6,62.2$, 18.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$274.0993, found 274.0991.

2-Bromo-N-(4-methoxyphenyl)butanamide (E13)

E13
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (s, 1H), $7.45-7.41$ (m, 2H), $6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.41$ (dd, J $=7.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,156.9,130.2,121.9,114.2,55.5,54.0,29.4,11.8$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$272.0281, found 272.0275.

2-Bromo- N-(4-(trifluoromethyl)phenyl)butanamide (E14)

E14
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}$ $=7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,140.2,126.8(\mathrm{q}, J=33.0 \mathrm{~Hz}), 126.3(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.9$ (q, $J=270.0 \mathrm{~Hz}$), 119.6, 53.4, 29.2, 11.8.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 310.0049$, found 310.0043.
tert-Butyl (2-bromopropanoyl)glycinate (E15)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}$, 2 H), 1.90 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49$ (s, 9H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,168.4,82.7,44.4,42.6,28.0,23.0$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NaBrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$288.0206, found 288.0208 .
2-Chloro- N-(3,5-dichlorophenyl)-2-phenylbutanamide (E17)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-$ $7.32(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,139.5,138.9,135.2,128.6,126.1,124.7,118.1,79.1,34.9$, 9.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 342.0214$, found 342.0211 .

2-Chloro-2-phenyl- N-(4-(trifluoromethyl)phenyl)butanamide (E18)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.41-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,140.2,139.8,128.7,128.6,126.7(\mathrm{q}, J=32.4 \mathrm{~Hz}), 126.3$ $(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.2,123.9(\mathrm{q}, J=296.2 \mathrm{~Hz}), 119.5,79.2,34.9,9.4$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.18$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 342.0867$, found 342.0865.

2-Chloro- N -(3,5-dichlorophenyl)-2-phenylpentanamide (E19)

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,139.9,138.9,135.3,128.7,128.6,126.1,124.8,118.1,78.4$, 43.8, 18.3, 13.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 356.0370$, found 356.0370.

2-Chloro- N -(3,5-dichlorophenyl)-5,5,5-trifluoro-2-phenylpentanamide (E20)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38$ $(\mathrm{m}, 3 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24$ $-2.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,138.6,138.1,135.4,129.3,129.1,126.7(\mathrm{q}, J=276.1 \mathrm{~Hz})$, $125.8,125.1,118.2,76.0,34.8(\mathrm{q}, ~ J=3.2 \mathrm{~Hz}), 30.3(\mathrm{q}, J=29.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-66.10$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 410.0088$, found 410.0078 .

2-Chloro- N -(3,5-dichlorophenyl)-2,4-diphenylbutanamide (E21)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.0,140.7,139.5,138.9,135.4,128.9,128.8,128.5,126.2$, 126.1, 124.9, 118.2, 78.0, 43.9, 31.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 418.0527$, found 418.0525.
2-Chloro-N-(3,5-dichlorophenyl)-4-methoxy-2-phenylbutanamide (E22)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.96$ $(\mathrm{m}, 1 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,139.6,138.9,135.3,128.83,128.78,126.0,124.8,118.2$, 75.7, 68.9, 58.7, 40.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 372.0319$, found 372.0316.
2-Chloro-2-cyclohexyl- N -(3,5-dichlorophenyl)-2-phenylacetamide (E23)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.49$ $-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.11(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,139.0,138.0,135.3,128.43,128.38,126.6,124.7,118.2$, 84.6, 47.5, 29.2, 26.9, 26.2, 26.1 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 396.0683$, found 396.0682.
2-Chloro- N-(3,5-dichlorophenyl)-2-(3-methoxyphenyl)butanamide (E24)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10$ $(\mathrm{m}, 3 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.2,159.7,141.0,138.9,135.3,129.7,124.7,118.4,118.1$, 113.5, 112.8, 78.9, 55.3, 34.8, 9.3.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 372.0319$, found 372.0318 .

2-Chloro- N -(3,5-dichlorophenyl)-2-(m-tolyl)butanamide (E25)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}$, $4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,139.5,139.0,138.5,135.3,129.5,128.6,126.8,124.8$, 123.3, 118.1, 79.3, 34.8, 21.6, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 356.0370$, found 356.0369 .
2-(4-(Tert-butyl)phenyl)-2-chloro-N-(3,5-dichlorophenyl)butanamide (E26)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ ($\mathrm{s}, 1 \mathrm{H}$), $7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,151.8,139.0,136.7,135.3,125.9,125.6,124.8,118.1,79.3$, 34.8, 34.6, 31.2, 9.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 398.0840$, found 398.0838.
2-Chloro-N-(3,5-dichlorophenyl)-2-(3-fluorophenyl)butanamide (E27)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,162.7(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 142.1(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 138.8,135.4$, 130.3 (d, $J=8.3 \mathrm{~Hz}$), $125.0,121.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 118.3,115.7(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=24.0$ Hz), 78.4, 35.1, 9.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.4$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+} 360.0120$, found 360.0115 .

5. Enantioconvergent N-alkylation of primary and secondary aromatic amines

General procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 3(15.4 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, alkyl bromide ($0.30 \mathrm{mmol}, 1.5$ equiv), secondary aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous 1,4-dioxane $(2.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), alkyl bromide ($0.30 \mathrm{mmol}, 1.5$ equiv), secondary aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous 1,4-dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Methyl(phenyl)amino)- N-phenylpropanamide (1)

According to General Procedure A with 2-bromo- N-phenylpropanamide E1 $\mathbf{(6 8 . 1 \mathrm { mg } \text { , }}$
0.30 mmol , 1.5 equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{1}$ as a yellowish oil ($45.3 \mathrm{mg}, 89 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.37 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.30 \mathrm{~min}$.
A gram-scale experiment: According to General Procedure A with 2-bromo- N phenylpropanamide E1 ($2.05 \mathrm{mg}, 9.0 \mathrm{mmol}, 1.5$ equiv) and N-methylaniline $\mathbf{N} 1(642.9 \mathrm{mg}$, $6.0 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product $\mathbf{1}$ as a white solid ($1.21 \mathrm{~g}, 79 \%$ yield, 92% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,149.4,137.6,129.4,129.0,124.2,119.6,115.3,61.5$, 34.3, 11.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$255.1492, found 255.1491 .

(S)-2-(Ethyl(phenyl)amino)- N-phenylpropanamide (2)

2
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 ($68.1 \mathrm{mg}, 0.30$ mmol, 1.5 equiv) and N-ethylaniline $\mathbf{N} 2(24.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{2}$ as a yellowish oil ($41.7 \mathrm{mg}, 78 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.29 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.51 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.32-$ $3.23(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,147.3,137.6,129.4,129.0,124.2,120.2,119.5$, 117.4, 62.2, 42.7, 13.6, 12.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.1648, found 269.1646.
(S)-2-(Isopropyl(phenyl)amino)- N -phenylpropanamide (3)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , 0.30 mmol , 1.5 equiv) and N-isopropylaniline $\mathbf{N} \mathbf{3}(27.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=20 / 1$) to yield the product $\mathbf{3}$ as a yellowish oil ($31.6 \mathrm{mg}, 56 \%$ yield, 98% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=13.54 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27$ $-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{q}, J=6.0,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,145.7,137.7,129.04,128.98,124.2,120.2,119.6$, 118.8, 55.2, 49.4, 21.7, 19.2, 14.1 .

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1805, found 283.1802.

(S)-2-(Isobutyl(phenyl)amino)- N-phenylpropanamide (4)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-isobutylaniline $\mathbf{N} 4(29.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 4 as a colorless oil ($42.7 \mathrm{mg}, 72 \%$ yield, 97% ee). HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.32 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.25 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12$ - 7.08 (m, 1H), 7.01 - 6.97 (m, 3H), 4.06 (q, J = 7.0 Hz, 1H), 3.07-3.02 (m, 1H), 2.83 $2.77(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.7, 148.1, 137.8, 129.2, 129.0, 124.1, 121.8, 120.5, 119.2, 65.1, 56.8, 26.1, 20.7, 20.6, 11.9.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1959.
(S)-2-((3,3-Dimethylbutyl)(phenyl)amino)- N-phenylpropanamide (5)

5
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-(3,3-dimethylbutyl)aniline $\mathbf{N} 5(35.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 5 as a yellowish oil $(48.0 \mathrm{mg}, 74 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=8.92 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.12$ - $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,147.5,137.6,129.3,129.0,124.2,120.0,119.6$, 117.3, 62.6, 44.8, 41.3, 30.0, 29.3, 12.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 325.2274$, found 325.2271.

(S)-2-((Cyclopropylmethyl)(phenyl)amino)-N-phenylpropanamide (6)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N -(cyclopropylmethyl)aniline $\mathbf{N 6}(29.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{6}$ as a yellowish oil $(53.0 \mathrm{mg}, 90 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $n \mathrm{~nm}), t_{\mathrm{R}}($ major $)=12.73 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.95 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-$ $3.33(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.62-$ 0.54 (m, 2H), $0.29-0.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,147.9,137.7,129.2,129.0,124.1,120.3,119.3$, 117.6, 62.5, 53.7, 12.4, 9.9, 4.9, 4.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$295.1805, found 295.1801.

(S)-2-(Cyclohexyl(phenyl)amino)- N-phenylpropanamide (7)

7
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv), N-cyclohexylaniline $\mathbf{N} 7(35.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=30 / 1$) to yield the product 7 as a yellowish oil ($36.1 \mathrm{mg}, 56 \%$ yield, 98% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.26 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26$ $-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.28(\mathrm{~m}$, 1H), $1.20-1.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,145.8,137.7,129.03,128.96,124.2,120.0,119.5$, 118.4, 58.5, 55.9, 32.5, 29.9, 26.4, 25.8, 25.7, 14.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 323.2118$, found 323.2115 .

(S)-2-(Benzyl(phenyl)amino)-N-phenylpropanamide (8)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-benzylaniline $\mathbf{N 8}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=20 / 1$) to yield the product $\mathbf{8}$ as a yellowish oil ($36.3 \mathrm{mg}, 55 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=12.10 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.92-6.86(\mathrm{~m}, 3 \mathrm{H}), 4.59-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,147.6,138.5,137.5,129.4,128.9,128.8,127.3$, 127.0, 124.2, 120.0, 119.6, 116.4, 61.3, 52.4, 12.8.

HRMS (ESI) m/z calcd. forC $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 331.1805$, found 331.1801.
(S)-2-(Allyl(phenyl)amino)- N -phenylpropanamide (9)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-allylaniline $\mathbf{N} 9(26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=20 / 1$) to yield the product 9 as a yellowish oil ($39.8 \mathrm{mg}, 71 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.11 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.43 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.12$ - $7.07(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 3 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.84(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,147.5,137.6,134.2,129.3,129.0,124.2,120.0$, 119.6, 117.6, 116.6, 61.6, 50.9, 12.6 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1646.
(S)-N-Phenyl-2-(phenyl(3-phenylprop-2-yn-1-yl)amino)propanamide (10)

10
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-(3-phenylprop-2-yn-1-yl)aniline $\mathbf{N 1 0}(41.4 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{1 0}$ as a yellowish oil $(43.2 \mathrm{mg}$, 61% yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.46 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.66 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.09$ $-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,147.0,137.6,131.7,129.4,128.9,128.5,128.3$, 124.2, 122.3, 120.4, 119.7, 116.2, 85.2, 85.1, 60.9, 39.4, 13.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 355.1805$, found 355.1800.

(S)-2-((2-(Benzyloxy)ethyl)(phenyl)amino)-N-phenylpropanamide (11)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-(2-(benzyloxy)ethyl)aniline $\mathbf{N} 11(45.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 11 as a yellowish oil $(44.9 \mathrm{mg}, 60 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.25 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 9 \mathrm{H}), 7.04$ $-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 3 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,147.3,138.1,137.3,129.2,128.7,128.5,127.9$, $127.8,123.8,120.6,119.8,118.4,73.3,66.8,64.1,47.7,12.8$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$375.2067, found 375.2064.

Ethyl (S)-N-(1-oxo-1-(phenylamino)propan-2-yl)-N-phenylglycinate (12)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and ethyl phenylglycinate $\mathbf{N} 12(35.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) to yield the product 12 as a yellowish oil ($44.4 \mathrm{mg}, 68 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=17.19 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.88 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.39-$ $4.29(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.08(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,171.7,146.3,138.4,129.5,128.8,123.8,119.6$, 119.1, 113.0, 62.2, 61.1, 49.4, 15.2, 14.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 327.1703$, found 327.1700.

(S)-2-((4-Methoxyphenyl)(methyl)amino)- N -phenylpropanamide (13)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 4-methoxy- N -methylaniline $\mathbf{N 1 3}(27.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 13 as a yellowish oil $(49.6 \mathrm{mg}, 87 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=8.44 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.84 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ - $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 4 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,153.8,143.5,137.7,128.9,124.1,119.5,118.0$, 114.6, 63.0, 55.6, 35.4, 11.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$285.1598, found 285.1596.
(S)-2-(Methyl(p-tolyl)amino)-N-phenylpropanamide (14)

According to General Procedure A with 2-bromo- N-phenylpropanamide E1 $(68.1 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) and $N, 4$-dimethylaniline $\mathbf{N} 14(24.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) to yield the product 14 as a yellowish oil $(45.6 \mathrm{mg}, 85 \%$ yield, 94% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.12 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.64 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,147.2,137.7,129.9,129.3,129.0,124.2,119.5$, 115.8, 62.0, 34.6, 20.3, 11.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.1648, found 269.1646.

(S)-2-((4-Fluorophenyl)(methyl)amino)- N-phenylpropanamide (15)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 4-fluoro- N-methylaniline $\mathbf{N} 15$ ($25.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 15 as a yellowish oil $(44.1 \mathrm{mg}, 81 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.82 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.26 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}$, $3 \mathrm{H}), 1.39$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,157.1(\mathrm{~d}, J=238 \mathrm{~Hz}), 145.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 137.6$, $129.0,124.30,119.6,117.3(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 62.6,35.2,11.2$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.37$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$273.1398, found 273.1395.

(S)-2-((4-Chlorophenyl)(methyl)amino)- N-phenylpropanamide (16)

16
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 4-chloro- N-methylaniline $\mathbf{N} 16$ ($28.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 16 as a yellowish oil ($50.8 \mathrm{mg}, 88 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.26 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26$ $-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,147.9,137.5,129.2,129.0,124.6,124.4,119.6$, 116.4, 61.6, 34.6, 11.4.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$289.1102, found 289.1099.
(S)-2-((4-Bromophenyl)(methyl)amino)- N-phenylpropanamide (17)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv), 4-bromo- N -methylaniline $\mathbf{N 1 7}$ ($37.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=5 / 1$) to yield the product 17 as a yellowish oil ($58.0 \mathrm{mg}, 87 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $n \mathrm{~nm}), t_{\mathrm{R}}($ major $)=10.27 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.21 \mathrm{~min}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 170.8,148.3,137.5,132.1,129.0,124.4,119.6,116.8$, 111.8, 61.5, 34.6, 11.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 333.0597$, found 333.0593.
(S)-2-((2-Methoxyphenyl)(methyl)amino)-N-phenylpropanamide (18)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 2-methoxy- N -methylaniline $\mathbf{A 1 3 2}$ ($27.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 18 as a yellowish oil $(50.6 \mathrm{mg}, 89 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.60 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.04 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11$ $-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,152.8,140.1,138.6,129.0,123.9,123.6,121.2$, $120.9,118.9,110.9,61.9,55.2,34.7,10.1$.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$285.1598, found 285.1593.

(S)-2-(Methyl(o-tolyl)amino)-N-phenylpropanamide (19)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and $N, 2$-dimethylaniline $\mathbf{N 1 9}(24.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) to yield the product 19 as a colorless oil ($46.7 \mathrm{mg}, 87 \%$ yield, 98% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.49 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.58 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}$, $3 \mathrm{H}), 2.43$ (s, 3H), 1.31 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,149.6,137.8,133.2,131.5,129.0,126.9,124.8$, 124.1, 122.5, 119.3, 63.6, 38.2, 18.9, 12.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 269.1648$, found 269.1647.

(S)-2-((2-(tert-Butyl)phenyl)(methyl)amino)-N-phenylpropanamide (20)

20
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 2-(tert-butyl)- N-methylaniline $\mathbf{N} 20(32.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 20 as a colorless oil $(47.8 \mathrm{mg}, 77 \%$ yield, 98% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=5.28 \mathrm{~min}, t_{\mathrm{R}}($ major $)=6.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 1.17$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,149.4,146.3,138.0,129.1,127.6,127.3,126.7$, 126.4, 124.1, 119.0, 67.6, 47.8, 35.6, 31.8, 18.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 311.2118$, found 311.2110.
(S)-2-((2,6-Diisopropylphenyl)(methyl)amino)- N-phenylpropanamide (21)

21
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 $(68.1 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) and 2,6-diisopropyl- N -methylaniline $\mathbf{N} 21(30.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 21 as a yellowish oil $(53.5 \mathrm{mg}, 79 \%$ yield, 89% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=9.07 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.78 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 2H), $7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,149.2,147.8,142.4,137.9,129.2,127.3,125.1$, 124.2, 123.6, 119.2, 65.7, 43.3, 29.1, 28.6, 25.5, 24.5, 23.8, 23.4, 19.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 339.2431$, found 339.2422.

(S)-2-(tert-Butyl(phenyl)amino)-N-phenylpropanamide (22)

22
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-(tert-butyl)aniline $\mathbf{N} 22(29.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) to yield the product 22 as a yellowish oil ($39.7 \mathrm{mg}, 67 \%$ yield, 93% ee).
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=240$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=7.39 \mathrm{~min}, t_{\mathrm{R}}($ major $)=8.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}$, $9 \mathrm{H}), 1.17$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.7, 144.7, 137.8, 131.6, 129.1, 128.2, 126.1, 124.0, 119.0, 57.8, 57.0, 29.2, 18.4.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1954.
(S)-2-(tert-Butyl(2,6-dimethylphenyl)amino)- N -phenylpropanamide (23)

23

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-(tert-butyl)-2,6-dimethylaniline $\mathbf{N} 23(34.5 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) to yield the product 23 as a colorless oil $(46.1 \mathrm{mg}, 71 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=240$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=8.08 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.42 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.14$ - $7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 1.21 (s, 9H), $1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,143.9,140.4,140.0,137.9,129.3,129.2,128.4$, $125.9,124.0,119.0,60.0,58.2,30.1,22.1,21.7,20.7$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{2} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 347.2094$, found 347.2087.

(S)-2-(Ethyl(naphthalen-2-yl)amino)- N-phenylpropanamide (24)

24
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-ethylnaphthalen-2-amine $\mathbf{N} 24$ ($34.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 24 as a yellowish oil $(25.5 \mathrm{mg}, 40 \%$ yield, 98% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.84 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.80 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45$ - 7.41 (m, 1H), $7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.25$ (m, 3H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,145.0,137.6,134.4,129.2,129.0,128.6,127.4$, 126.7, 126.5, 124.3, 123.8, 119.6, 119.5, 112.7, 62. 4, 42.7, 13.5, 12.7 .

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 319.1805$, found 319.1803.

(S)-2-(3,4-Dihydroquinolin-1(2H)-yl)-N-phenylpropanamide (25)

25
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 $(68.1 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) and 1,2,3,4-tetrahydroquinoline $\mathbf{N} 25$ ($26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{2 5}$ as a colorless oil ($53.3 \mathrm{mg}, 95 \%$ yield, 94% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.26 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.06 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10$ $-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ 3.17 (m, 2H), $2.91-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.97$ (m, 2H), 1.48 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,144.2,137.6,129.9,128.9,127.1,124.5,124.2$, 119.5, 118.4, 112.7, 59.1, 45.7, 27.8, 22.7, 11.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1646.

(S)-2-(2,3-Dihydro-4H-benzo[b][1,4]oxazin-4-yl)-N-phenylpropanamide (26)

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 $(68.1 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) and 3,4-dihydro-2H-benzo[b][1,4]oxazine $\mathbf{N} 26(27.0 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 26 as a colorless oil (48.4 $\mathrm{mg}, 86 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.23 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.20 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.27$ (m, 2H), 1.49 (d, J=7.0 Hz, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,145.3,137.4,133.1,129.0,124.4,121.5,120.3$, 119.6, 117.1, 114.1, 65.0, 59.1, 43.9, 11.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1441, found 283.1437.
(S)-2-(2,3-Dihydro-4H-benzo[b][1,4]thiazin-4-yl)-N-phenylpropanamide (27)

27
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 3,4-dihydro- 2 H -benzo $[b][1,4]$ thiazine $\mathbf{N} 27(30.2 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 27 as a colorless oil (53.7 $\mathrm{mg}, 90 \%$ yield, $96 \% \mathrm{ee}$).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=12.81 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16$ $-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}$, $1 \mathrm{H}), 1.51$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,143.3,137.5,129.0,127.9,125.8,124.3,122.3$, 120.2, 119.4, 115.0, 59.4, 45.3, 27.9, 11.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$299.1213, found 299.1209.
(S)-N-Phenyl-2-(2,3,4,5-tetrahydro-1H-benzo[b]azepin-1-yl)propanamide (28)

28
According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and $2,3,4,5$-tetrahydro- 1 H -benzo[b]azepine $\mathbf{N} 28(29.4 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 28 as a colorless oil (52.4 $\mathrm{mg}, 89 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=13.19 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.20$ $-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-$ $3.19(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,150.8,137.7,136.5,130.6,129.0,127.1,124.0$, $122.9,119.2,119.0,61.5,50.2,36.2,30.5,25.9,13.2$.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$295.1805, found 295.1801.

General procedure B:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 3(15.8 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, alkyl bromide ($0.20 \mathrm{mmol}, 1.0$ equiv), primary aromatic amine ($0.30 \mathrm{mmol}, 1.5$ equiv), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine ($10 \mathrm{~mL} \times 4$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}\left(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), alkyl bromide ($0.20 \mathrm{mmol}, 1.0$ equiv), primary aromatic amine ($0.30 \mathrm{mmol}, 1.5$ equiv), and anhydrous 1,4 -dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 or 96 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-N-phenyl-2-(o-tolylamino)propanamide (29)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg ,
$0.20 \mathrm{mmol}, 1.0$ equiv) and o-toluidine $\mathbf{N} 29(32.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 29 as a white solid ($43.2 \mathrm{mg}, 85 \%$ yield, 90% ee). HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16$ $-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.53(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,144.5,137.4,130.4,128.9,127.5,124.4,122.6$, 119.9, 119.4, 111.6, 56.2, 20.1, 17.6 .

HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$255.1492, found 255.1490 .
(S)-2-((2-Isopropylphenyl)amino)- N-phenylpropanamide (30)

30
According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-isopropylaniline $\mathbf{N} 30(40.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{3 0}$ as a colorless oil ($37.7 \mathrm{mg}, 67 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=12.79 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.56 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23$ $-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.58(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, $3.91(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,143.2,137.4,133.0,128.9,127.1,125.3,124.4$, 119.8, 119.8, 112.3.56.4, 27.4, 22.6, 22.4, 20.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1805, found 283.1801.

(S)-2-((2-(Difluoromethoxy)phenyl)amino)- N-phenylpropanamide (31)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-(difluoromethoxy)aniline $\mathbf{N} 31$ ($47.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel
(petroleum ether/EtOAc $=5 / 1$) to yield the product 31 as a white $\operatorname{solid}(53.3 \mathrm{mg}, 87 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=7.38 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.31 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12$ - 7.07 (m, 3H), $6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.59$ (t, $J=73.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $4.46(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,138.5,138.46(\mathrm{t}, J=2.4 \mathrm{~Hz}), 137.3,129.0,126.8$, 124.5, 119.7, 119.2, 116.6 ($\mathrm{t}, J=260.2 \mathrm{~Hz}$), 113.2, 55.9, 19.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.06$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.1253, found 307.1253.
(S)-2-((2-Methoxyphenyl)amino)- N-phenylpropanamide (32)

According to General procedure B with 2-bromo- N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-methoxyaniline $\mathbf{N} 32(37.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 32 as a yellowish solid ($40.5 \mathrm{mg}, 75 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=12.27 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10$ - $7.06(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,146.9,137.5,136.3,128.9,124.2,121.4,119.8$, 119.0, 111.7, 109.5, 56.3, 55.4, 19.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.1441, found 271.1440.
(S)-2-((2-Methyl-4-(trifluoromethoxy)phenyl)amino)- N-phenylpropanamide (33)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 $(45.6 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-methyl-4-(trifluoromethoxy)aniline $\mathbf{N 3 3}(57.4 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.5 equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 33 as a colorless oil $(49.4 \mathrm{mg}$, 73% yield, 96% ee).

HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=5.49 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=5.85 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-$ $3.86(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,143.2,141.7(\mathrm{q}, ~ J=1.4 \mathrm{~Hz}), 137.2,129.0,124.6$, $124.0,123.5,141.7$ (q, $J=254.2 \mathrm{~Hz}$), 120.2, 119.9, 111.8, 56.3, 20.0, 17.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.27$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 339.1315$, found 339.1314 .

(S)-2-((2-Ethyl-6-methylphenyl)amino)- N-phenylpropanamide (34)

According to General procedure B with 2-bromo- N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-ethyl-6-methylaniline $\mathbf{N} 34(40.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 34 as a yellowish oil $(41.8 \mathrm{mg}, 74 \%$ yield, 93% ee).
HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=8.05 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.12 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}$, $1 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,143.5,137.6,135.1,129.4,129.3,129.0,127.1$, 124.3, 123.1, 119.5, 59.3, 24.4, 19.6, 19.0, 14.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1805, found 283.1803.

(S)-2-((2-Bromo-6-methylphenyl)amino)- N -phenylpropanamide (35)

According to General procedure B with 2-bromo- N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-bromo-6-methylaniline $\mathbf{N} 35$ ($55.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 35 as a colorless oil ($39.3 \mathrm{mg}, 59 \%$ yield, 94% ee).

HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.16 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,143.5,137.6,131.2,131.1,130.9,129.1,124.4$, 124.0, 119.5, 117.7, 58.9, 19.6, 19.4.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$333.0597, found 333.0596.
(S)-2-((4-(tert-butyl)-2,6-dimethylphenyl)amino)-N-phenylpropanamide (36)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(tert-butyl)-2,6-dimethylaniline $\mathbf{N 3 6}(35.5 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.5 equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 36 as a yellowish oil (46.7 $\mathrm{mg}, 72 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=7.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.57 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,145.5,141.6,137.6,129.0,128.4,126.3,124.2$, 119.3, 58.7, 33.9, 31.4, 20.0, 19.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 325.2274$, found 325.2272 .
(S)-2-(Mesitylamino)-N-phenylpropanamide (37)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2,4,6-trimethylaniline $\mathbf{N} 37(40.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 37 as a yellowish solid ($42.4 \mathrm{mg}, 75 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$
$\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.16 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.24 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,141.6,137.6,132.2,130.0,129.03,129.01,124.3$, 119.4, 58.9, 20.5, 19.7, 18.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 283.1805$, found 283.1804.
(S)-2-((2-(Dimethylamino)phenyl)amino)- N -phenylpropanamide (38)

38
According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-Amino-N,N-dimethylaniline $\mathbf{N 3 8}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 38 as a yellowish solid (36.8 $\mathrm{mg}, 65 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.62 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.67 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H})$, 3.79 (q, J=7.1 Hz, 1H), 2.71 (s, 6H), 1.63 (d, J=7.1 Hz, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,141.7,141.0,137.4,128.9,125.2,124.3,119.70$, 119.66, 119.3, 111.9, 56.7, 44.4, 19.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$284.1757, found 284.1757.
(S)-2-((2-(tert-butyl)phenyl)amino)-N-phenylpropanamide (39)

39
According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-(tert-butyl)aniline $\mathbf{N} 39(44.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 39 as a white solid ($40.3 \mathrm{mg}, 68 \%$ yield, 95% ee).
HPLC analysis: Chiralcel ADH (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$
$\mathrm{nm}), t_{\mathrm{R}}($ minor $)=6.33 \mathrm{~min}, t_{\mathrm{R}}($ major $)=7.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.13$
$-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,144.6,137.4,134.2,128.9,127.6,126.5,124.4$, 119.7, 119.4, 113.3, 56.6, 34.2, 30.3, 20.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1960.
(S)-2-((2,6-Dimethylphenyl)amino)- N-phenylpropanamide (40)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2,6-dimethylaniline $\mathbf{N} 40(36.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{4 0}$ as a colorless oil ($30.0 \mathrm{mg}, 56 \%$ yield, 97% ee). HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.71 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.44 \mathrm{~min}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,144.2,137.6,129.4,129.0,128.9,124.3,122.8$, 119.5, 58.7, 19.9, 18.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.1648, found 269.1645.

(S)-2-((2,6-Diethylphenyl)amino)-N-phenylpropanamide (41)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2,6-diethylaniline $\mathbf{N 4 1}(44.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 41 as a colorless oil $(42.1 \mathrm{mg}, 71 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=6.02 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.82 \mathrm{~min}$.
A gram-scale experiment: According to General Procedure A with 2-bromo-N-
phenylpropanamide E1 ($1.37 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ equiv) and 2,6-diethylaniline $\mathbf{N 4 1}(1.34 \mathrm{~g}$, $9.0 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 37 as a colorless oil ($1.33 \mathrm{~g}, 75 \%$ yield, 90% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.15$ $-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}$, $1 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,142.8,137.6,135.7,129.0,127.0,124.3,123.5$, 119.5, 60.0, 24.5, 19.3, 14.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1960.

(S)-2-((2,6-Diisopropylphenyl)amino)- N-phenylpropanamide (42)

According to General procedure B with 2-bromo- N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2,6-diisopropylaniline $\mathbf{N 4 2}(53.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{4 2}$ as a white $\operatorname{solid}(44.1 \mathrm{mg}, 68 \%$ yield, 91\% ee).
HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \boldsymbol{\lambda}=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=5.80 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.32 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16$ $-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.18$ (hept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,141.6,140.6,137.6,129.0,124.32,124.27,123.9$, 119.4, 61.1, 28.0, 24.1, 24.0, 18.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$325.2274, found 325.2274.
(S)-N-Phenyl-2-(phenylamino)propanamide (43)

43
According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and aniline $\mathbf{N} 43(27.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 43 as a white solid ($42.5 \mathrm{mg}, 88 \%$ yield, 92% ee).

HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.10 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.37 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 2 \mathrm{H})$, $3.95(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,146.4,137.4,129.5,128.9,124.4,119.81,119.76$, 114.0, 56.4, 19.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$241.1335, found 241.1331.

(S)-2-((3-Acetamidophenyl)amino)- N -phenylpropanamide (44)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and N-(3-aminophenyl)acetamide $\mathbf{N 4 4}(45.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product 44 as a white solid ($56.0 \mathrm{mg}, 94 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.61 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.38(\mathrm{~m}, 1 \mathrm{H}), 4.08$ $(\mathrm{s}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,168.6,147.1,139.1,137.4,130.0,128.9,124.4$, 119.9, 110.9, 109.4, 105.5, 56.2, 24.6, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$298.1550, found 298.1546.
(S)-2-((3-Methoxyphenyl)amino)- N -phenylpropanamide (45)

45
According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 3-methoxyaniline $\mathbf{N} 45(36.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=2 / 1$) to yield the product 45 as a white solid ($44.5 \mathrm{mg}, 82 \%$ yield, 94% ee). HPLC analysis: Chiralcel IC (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.35 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.20 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.41-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.27(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.88$ (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,160.8,147.8,137.4,130.3,128.9,124.4,119.8$, 106.6, 104.9, 100.2, 56.2, 55.1, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.1441, found 271.1439.
(S)-2-((4-Methoxyphenyl)amino)- N-phenylpropanamide (46)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-methoxyaniline $\mathbf{N} 46(36.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 46 as a white solid ($45.6 \mathrm{mg}, 84 \%$ yield, 87% ee). HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=16.76 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.43 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.59(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,153.4,140.3,137.5,128.9,124.3,119.7,115.1$, 114.9, 57.0, 55.6, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.1441, found 271.1438.

(S)-N-Phenyl-2-((4-(trifluoromethoxy)phenyl)amino)propanamide (47)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(trifluoromethoxy)aniline $\mathbf{N} 47$ ($53.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 47 as a colorless oil $(45.0 \mathrm{mg}, 69 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=9.80 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.47 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.9(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,145.1,142.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 137.2,129.0,124.6$, $122.6,120.6(\mathrm{q}, J=254.3 \mathrm{~Hz}$), 119.9, 114.4, 56.4, 19.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.40$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 325.1158$, found 325.1152 .

(S)-N-Phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)amino)propanamide (48)

According to General Procedure E with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline $\mathbf{N 4 8}$ $(65.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 48 as a colorless oil ($50.0 \mathrm{mg}, 68 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=14.65 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.87 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.31$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,148.8,137.3,136.5,128.9,124.5,119.9,113.0,83.4$, 55.8, 24.8, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 367.2187$, found 367.2182.

(S)-2-((4-(tert-Butyl)phenyl)amino)- N-phenylpropanamide (49)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(tert-butyl)aniline $\mathbf{N 4 9}(44.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=5 / 1$) to yield the product 49 as a white solid ($48.1 \mathrm{mg}, 81 \%$ yield, 90% ee). HPLC analysis: Chiralcel IC (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 05$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.66 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.08 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,144.1,142.6,137.5,128.9,126.3,124.3,119.8$, 113.7, 56.6, 34.0, 31.4, 19.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1957.

(S)-2-((4-Bromophenyl)amino)- N -phenylpropanamide (50)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-bromoaniline $\mathbf{N} 50(51.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel to yield the product $50(54.0 \mathrm{mg}, 85 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.69 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.07 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.58 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,145.3,137.2,132.2,129.0,124.6,119.9,115.4$, 111.6, 56.1, 19.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 319.0441$, found 319.0441.

(S)-2-((2-Fluorophenyl)amino)- N-phenylpropanamide (51)

According to General procedure B with 2-bromo-N-phenylpropanamide E1 (45.6 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 2-fluoroaniline $\mathbf{N} 51(33.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=5 / 1$) to yield the product 51 as a white solid ($35.6 \mathrm{mg}, 69 \%$ yield, 92% ee). HPLC analysis: Chiralcel IA3 (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.63$ $(\mathrm{m}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,151.6(\mathrm{~d}, J=239.3 \mathrm{~Hz}), 137.3,134.8(\mathrm{~d}, J=11.7$ Hz), 129.0, $125.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.5,119.8,119.4(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=18.6$ $\mathrm{Hz}), 113.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 56.1$, 19.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-135.04$.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 259.1241$, found 259.1240.

(S)-2-((4-Iodophenyl)amino)- N-phenylpropanamide (52)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-iodoaniline $\mathbf{N} 52(65.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=3 / 1$) to yield the product 52 as a white solid ($58.9 \mathrm{mg}, 80 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=14.47 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.11 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.46-6.44(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,145.9,138.1,137.2,129.0,124.6,119.8,116.0,81.1$, 56.1, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16 \mathrm{IN}}^{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 367.0302$, found 367.0296 .
(S)-N-Phenyl-2-((4-(trifluoromethyl)phenyl)amino)propenamide (53)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(trifluoromethyl)aniline $\mathbf{N} 53$ ($48.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 120 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 53 as a colorless oil ($37.8 \mathrm{mg}, 61 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=10.33 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.74 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,148.9,137.1,129.0,126.9(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.7$, $124.5(\mathrm{q}, J=269.0 \mathrm{~Hz}), 121.5(\mathrm{q}, J=33.0 \mathrm{~Hz}), 119.9,113.3,55.8,19.6$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.43$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$309.1209, found 309.1209.

(S)-N-Phenyl-2-((3-(trifluoromethyl)phenyl)amino)propanamide (54)

54
According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 3-(trifluoromethyl)aniline $\mathbf{N} 54$ ($48.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 54 as a colorless oil $(40.0 \mathrm{mg}, 65 \%$ yield, 97% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.08 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.49 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.13$ - 7.07 (m, 3H), 6.93 (s, 1H), $6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}), 1.62$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,146.6,137.1,131.9(\mathrm{q}, J=32.0 \mathrm{~Hz}), 130.2,129.0$, $124.7,123.9(\mathrm{q}, J=270.8 \mathrm{~Hz}), 120.0,116.3,116.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 110.8(\mathrm{q}, J=4.0 \mathrm{~Hz})$, 56.0, 19.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.85$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$309.1209, found 309.1208.

(S)-2-((4-Acetylphenyl)amino)-N-phenylpropanamide (55)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 1-(4-aminophenyl)ethan-1-one $\mathbf{N} 55(40.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 55 as a white solid ($37.0 \mathrm{mg}, 66 \%$ yield, 95% ee).
HPLC analysis: Chiralcel AD3 (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.91 \mathrm{~min}, t_{\mathrm{R}}($ major $)=26.45 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.63$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,171.4,150.3,137.1,130.8,129.0,128.7,124.7$, 120.0, 112.8, 55.3, 26.1, 19.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1441, found 283.1439.
(S)-2-((3-Acetylphenyl)amino)- N -phenylpropanamide (56)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 1-(3-aminophenyl)ethan-1-one $\mathbf{N} 56(40.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 56 as a white solid ($34.5 \mathrm{mg}, 61 \%$ yield, 97% ee).
HPLC analysis: Chiralcel AD3 (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=16.78 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.64 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32$ - $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H})$, $2.56(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,171.9,146.7,138.2,137.3,129.8,129.0,124.5$, 119.9, 119.8, 117.9, 113.4, 56.0, 26.7, 19.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1441, found 283.1439.

Ethyl (S)-4-((1-oxo-1-(phenylamino)propan-2-yl)amino)benzoate (57)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and benzocaine $\mathbf{N} 57(49.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 57 as a white solid ($53.7 \mathrm{mg}, 86 \%$ yield, 97% ee). HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=7.45 \mathrm{~min}, t_{\mathrm{R}}($ major $)=9.02 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31$ - 7.27 (m, 2H), $7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,166.5,150.0,137.1,131.6,129.0,124.7,121.2$, 120.0, 112.8, 60.5, 55.4, 19.5, 14.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$313.1547, found 313.1541.
(S)-2-((4-Cyanophenyl)amino)- N-phenylpropanamide (58)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-aminobenzonitrile $\mathbf{N 5 8}(35.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 58 as a white solid ($40.0 \mathrm{mg}, 75 \%$ yield, 96% ee). HPLC analysis: Chiralcel ID (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=8.77 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.92 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15$ $-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,149.6,137.0,133.9,129.1,124.9,120.0,119.6$, 113.6, 101.7, 55.3, 19.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 266.1288$, found 266.1286 .
(S)-2-((4-Nitrophenyl)amino)- N -phenylpropanamide (59)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (68.1 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-nitroaniline $\mathbf{N 5 9}(41.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=2 / 1$) to yield the product 59 as a yellowish solid ($23.4 \mathrm{mg}, 41 \%$ yield, 83% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=9.10 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.52 \mathrm{~min}$.
${ }^{1}$ H NMR (400 MHz, DMSO-d6) $\delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.33-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , DMSO-d6) $\delta 171.4,153.7,138.7,136.4,128.8,126.2,123.6,119.4$, 52.4, 18.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$286.1186, found 286.1184 .
(S)-2-((3-(Methylsulfonyl)phenyl)amino)- N-phenylpropanamide (60)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 3-(methylsulfonyl)aniline $\mathbf{N} 60(51.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product 60 as a white $\operatorname{solid}(48.9 \mathrm{mg}, 77 \%$ yield, 97% ee).
HPLC analysis: Chiralcel ID (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=12.88 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.83 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32$ $-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,147.4,141.3,137.3,130.7,128.9,124.6,120.0$, 117.7, 116.9, 112.2, 55.4, 44.3, 19.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 319.1111$, found 319.1106 .

(S)-2-((3-(Methylthio)phenyl)amino)- N-phenylpropanamide (61)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 3-(methylthio)aniline $\mathbf{N 6 1}(41.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 61 as a white solid ($45.5 \mathrm{mg}, 80 \%$ yield, 92% ee). HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=27.80 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=36.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14$ - $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.44-6.42(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.87$ (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,146.8,139.9,137.3,129.8,128.9,124.4,119.8$, 117.6, 111.7, 110.6, 19.7, 15.5 .

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$287.1213, found 287.1217.
(S)-2-((4-(2-Hydroxyethyl)phenyl)amino)- N-phenylpropanamide (62)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 2-(4-aminophenyl)ethan-1-ol $\mathbf{N} 62(27.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}=50 / 1$) to yield the product 62 as a colorless oil ($51.2 \mathrm{mg}, 90 \%$ yield, 96% ee).
HPLC analysis: Chiralcel AD (n-hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=21.38 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10$ $-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}) 3.85-3.76(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,145.0,137.4,130.0,129.5,128.9,124.4,119.8$, 114.1, 63.7, 56.4, 38.2, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$285.1598, found 285.1594.
(S)-2-(Naphthalen-1-ylamino)- N-phenylpropanamide (63)

63
According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and naphthalen-1-amine $\mathbf{N 6 3}(42.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 63 as a white solid ($36.0 \mathrm{mg}, 62 \%$ yield, 94% ee). HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=17.67 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.79 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.56$ $-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.61$ $(\mathrm{m}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,141.3,137.4,134.2,129.0,128.9,126.5,126.1$, 125.4, 124.4, 123.4, 119.89, 119.87, 119.4, 106.7, 56.2, 20.0.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$291.1492, found 291.1489.
(S)-2-(Naphthalen-2-ylamino)- N-phenylpropanamide (64)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and naphthalen-2-amine $\mathbf{N 6 4}(42.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 64 as a white solid ($40.0 \mathrm{mg}, 69 \%$ yield, 93% ee). HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.44 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.96 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.50$ - 7.48 (m, 2H), $7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.95$ $(\mathrm{m}, 1 \mathrm{H}), 6.86-6.85(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,143.9,137.3,134.7,129.3,128.9,128.4,127.5$, 126.6, 126.4, 124.4, 123.1, 119.9, 117.6, 106.8, 56.2, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$291.1492, found 291.1489.

(S)-2-(Benzo[d][1,3]dioxol-5-ylamino)-N-phenylpropanamide (65)

65
According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and benzo[d][1,3]dioxol-5-amine $\mathbf{N 6 5}(41.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=2 / 1$) to yield the product 65 as a white solid ($54.0 \mathrm{mg}, 95 \%$ yield, 91\% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=37.95 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=41.89 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11$ $-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}) 1.56(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,148.5,141.8,141.2,137.4,128.9,124.4,119.8$, 108.7, 105.6, 100.9, 97.0, 57.0, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$285.1234, found 285.1229.
tert-Butyl (S)-5-((1-oxo-1-(phenylamino)propan-2-yl)amino)-1H-indazole-1carboxylate (66)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 $(45.4 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) and tert-butyl 5 -amino- $1 H$-indazole-1-carboxylate $\mathbf{N} 66(69.9 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 66 as a white solid ($50.5 \mathrm{mg}, 66 \%$ yield, 91% ee).
HPLC analysis: Chiralcel ID (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=28.02 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.06 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.52-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=$ $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,149.1,143.0,139.0,137.3,134.6,128.9,126.8$, 124.4, 119.7, 118.8, 115.4, 102.0, 84.7, 56.7, 28.1, 19.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$381.1921, found 381.1914.

```
tert-Butyl
carboxylate (67) carboxylate (67)
```

(S)-6-((1-oxo-1-(phenylamino)propan-2-yl)amino)-1H-indole-1-

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and tert-butyl 6-amino- 1 H -indole-1-carboxylate $\mathbf{N 6 7}$ ($69.6 \mathrm{mg}, 0.30$ mmol, 1.5 equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to yield the product 67 as a white solid (63.9 $\mathrm{mg}, 84 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=17.56 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=34.69 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.60(\mathrm{~m}$, 12 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,149.8,144.1,137.5,136.3,128.9,124.2,123.9$, 121.6, 119.8, 110.9, 107.1, 100.3, 83.7, 56.7, 28.1, 19.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 380.1969$, found 380.1968.
(S)-N-Phenyl-2-(pyridin-3-ylamino)propanamide (68)

According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv), pyridin-3-amine $\mathbf{N 6 8}(28.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product 68 as a yellowish oil ($15.1 \mathrm{mg}, 31 \%$ yield, 92% ee).
HPLC analysis: Chiralcel ID (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=11.83 \mathrm{~min}, t_{\mathrm{R}}($ major $)=26.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.27-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}$, 1 H), 1.64 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,140.1,137.3,136.6,129.0,124.6,124.3,119.9$, 119.8, 55.5, 19.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$242.1288, found 242.1287.

(S)-2-((1-Methyl-1H-pyrazol-3-yl)amino)-N-phenylpropanamide (69)

69
According to General Procedure B with 2-bromo- N-phenylpropanamide E1 (45.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) and 1-methyl-1 H -pyrazol-3-amine $\mathbf{N} 69(29.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to yield the product 69 as a white $\operatorname{solid}(41.0 \mathrm{mg}, 84 \%$ yield, 84% ee).
HPLC analysis: Chiralcel ID (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=28.61 \mathrm{~min}, t_{\mathrm{R}}($ major $)=37.40 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,155.5,137.8,131.5,128.9,124.1,119.6,91.5,56.3$, 38.6, 19.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N} 4 \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$245.1397, found 245.1395 .
(S)-2-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino)- N phenylpropanamide (70)

According to General Procedure B with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and 4 -amino-1,5-dimethyl-2-phenyl-1,2-dihydro- 3 H -pyrazol-3-one N70 ($40.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (EtOAc) to yield the product 70 as a colorless oil (63.7 mg , 91% yield, 83% ee).
HPLC analysis: Chiralcel ID (n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=25.40 \mathrm{~min}, t_{\mathrm{R}}($ major $)=34.09 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.32$
$-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,162.8,143.1,138.1,134.7,129.2,128.8,126.6$, 124.0, 123.6, 119.7, 119.1, 58.4, 37.0, 19.8, 10.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$351.1816, found 351.1811.

General procedure C:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 5(10.0 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous benzene (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, alkyl bromide (0.24 mmol, 1.2 equiv), secondary aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine $(10 \mathrm{~mL} \times 3)$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon
atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}\left(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), alkyl bromide ($0.24 \mathrm{mmol}, 1.2$ equiv), secondary aromatic amine ($0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous benzene (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 72 or 96 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

(S)-2-(Methyl(phenyl)amino)- N -phenylbutanamide (71)

According to General Procedure C with 2-bromo-N-phenylbutanamide E2 (57.8 mg, 0.24 mmol, 1.2 equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 71 as a white solid ($47.2 \mathrm{mg}, 88 \%$ yield, 96% ee). HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=8.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.11$ - 7.07 (m, 1H), $6.92-6.84(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.36-$ $2.26(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,149.9,137.6,129.4,128.9,124.3,119.7,118.9$, 114.3, 67.0, 33.9, 21.3, 11.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.1648, found 269.1647.
(S)-2-(Methyl(phenyl)amino)- N -phenylhexanamide (72)

According to General Procedure C with 2-bromo- N-phenylhexanamide E3 (64.6 mg , $0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 72 as a yellowish oil ($42.1 \mathrm{mg}, 71 \%$ yield, 93% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=6.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.21 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{dd}, J=9.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.31-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,149.8,137.6,129.5,129.0,124.3,119.7,119.0$, 114.30, 65.6, 33.9, 29.2, 27.7, 22.5, 13.9.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1963.
(S)-3-Methyl-2-(methyl(phenyl)amino)- N -phenylbutanamide (73)

73
According to General Procedure C with 2-bromo-3-methyl-N-phenylbutanamide E4 $(61.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 73 as a yellowish oil ($28.8 \mathrm{mg}, 51 \%$ yield, 93% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=6.92 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.55 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.09$ $-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}$, $3 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,150.0,137.5,129.6,128.9,124.3,120.0,118.3$, 113.8, 70.3, 33.5, 27.8, 20.9, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1805, found 283.1806.

(S)-3,3-Dimethyl-2-(methyl(phenyl)amino)-N-phenylbutanamide (74)

According to General Procedure \mathbf{C} with 2-bromo-3,3-dimethyl- N-phenylbutanamide E5 ($64.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 74 as a yellowish oil $(30.8 \mathrm{mg}, 52 \%$ yield, 81% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=5.05 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.79 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.10$ $-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 1.20$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,150.3,137.6,129.5,128.9,124.3,120.1,118.1$, 113.2, 70.6, 37.5, 35.9, 28.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1964.
(S)-4-Methyl-2-(methyl(phenyl)amino)- N-phenylpentanamide (75)

According to General Procedure \mathbf{C} with 2-bromo-4-methyl- N-phenylpentanamide E6 $(64.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N -methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 75 as a yellowish oil $(37.9 \mathrm{mg}, 64 \%$ yield, 86% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=5.41 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.37 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.12$ - $7.07(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.42(\mathrm{dd}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.10-$ $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,149.7,137.6,129.5,129.0,124.3,119.7,119.0$, 114.3, 63.5, 37.0, 33.7, 25.0, 23.3, 21.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1961, found 297.1963.
(S)-4-(1,3-Dioxoisoindolin-2-yl)-2-(methyl(phenyl)amino)-N-phenylbutanamide (76)

According to General Procedure \mathbf{C} with 2-bromo-4-(1,3-dioxoisoindolin-2-yl)-Nphenylbutanamide E7 ($92.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column
chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 76 as a yellowish oil ($64.5 \mathrm{mg}, 78 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=40.12 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=44.24 \mathrm{~min}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.52$ - 7.48 (m, 2H), $7.32-7.27$ (m, 2H), $7.24-7.19$ (m, 2H), $7.11-7.07$ (m, 1H), $6.90-6.87$ (m, 2H), $6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,168.2,149.3,137.4,133.8,132.0,129.5,128.9$, 124.3, 123.1, 119.7, 119.3, 114.5, 63.4, 36.0, 33.7, 27.1.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$414.1812, found 414.1811.

(S)-3-Methoxy-2-(methyl(phenyl)amino)- N -phenylpropanamide (77)

According to General Procedure \mathbf{C} with 2-bromo-3-methoxy- N -phenylpropanamide E8 $(61.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 77 as a yellowish oil $(39.8 \mathrm{mg}, 70 \%$ yield, 85% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.03 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{dd}, J=7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.5,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=10.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,149.9,137.4,129.3,129.0,124.4,119.8,119.3$, 114.8, 69.9, 65.5, 58.9, 34.8.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$285.1598, found 285.1598.
(S)-4-(4-Bromophenoxy)-2-(methyl(phenyl)amino)- N-phenylbutanamide (78)

According to General Procedure \mathbf{C} with 2-bromo-4-(4-bromophenoxy)- N -
phenylbutanamide E9 ($99.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}$ (21.4 mg , $0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 78 as a yellowish oil ($43.9 \mathrm{mg}, 50 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.30 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.73 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.26$ $-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.64$ $(\mathrm{m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~s}$, 3 H), $2.77-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,157.6,148.8,137.4,132.1,129.5,129.0,124.4$, $119.8,119.4,116.3,114.6,112.9,65.2,62.0,35.1,27.1$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 439.1016$, found 439.1020.

(S)-2-(Methyl(phenyl)amino)-4-(methylthio)- N-phenylbutanamide (79)

According to General Procedure \mathbf{C} with 2-bromo-4-(methylthio)-N-phenylbutanamide $\mathbf{E 1 0}$ ($69.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 79 as a yellowish oil $(34.6 \mathrm{mg}, 55 \%$ yield, 93% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=14.44 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=27.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.13$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=8.3,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,149.2,137.5,129.5,129.0,124.4,119.7,119.3$, 114.6, 63.6, 34.5, 31.4, 26.7, 15.1.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 315.1526$, found 315.1525 .

Methyl (S)-4-(Methyl(phenyl)amino)-5-oxo-5-(phenylamino)pentanoate (80)

According to General Procedure \mathbf{C} with methyl 4-bromo-5-oxo-5(phenylamino)pentanoate E11 ($72.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1$ ($21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 80 as a yellowish oil ($58.8 \mathrm{mg}, 90 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.41 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.81 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.12$ - 7.07 (m, 1H), $6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{dd}, J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (s, 3H), $2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,170.1,149.2,137.4,129.5,128.9,124.3,119.7$, 119.2, 114.3, 63.9, 51.5, 34.0, 31.0, 23.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$327.1703, found 327.1704.
(S)-N-(2,6-Dimethylphenyl)-2-(methyl(phenyl)amino)-2-phenylacetamide (81)

According to General procedure \mathbf{B} with 2-chloro- N-(2,6-dimethylphenyl)-2phenylacetamide E12 ($54.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and N-methylaniline $\mathrm{N} 1(32.2 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{8 1}$ as a white solid ($55.8 \mathrm{mg}, 81 \%$ yield, 94% ee).
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=15.67 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.82 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.94$ - $6.90(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,150.4,135.6,135.1,133.4,129.4,129.2,128.5$, 128.2, 128.0, 127.2, 120.1, 116.0, 70.7, 36.6, 18.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 345.1961$, found 345.1960 .
(S)-N-(4-Methoxyphenyl)-2-(methyl(phenyl)amino)butanamide (82)

82
According to General Procedure \mathbf{C} with 2-bromo-N-(4-methoxyphenyl)butanamide E13 $(65.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=20 / 1$) to yield the product 82 as a colorless oil ($50.7 \mathrm{mg}, 85 \%$ yield, 96% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.37 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.76 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.92$ $-6.82(\mathrm{~m}, 5 \mathrm{H}), 4.25(\mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.26(\mathrm{~m}$, $1 \mathrm{H}), 1.90-1.78$ (m, 1H), 0.88 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,156.4,150.0,130.7,129.4,121.5,118.8,114.2$, 114.1, 67.0, 55.4, 33.9, 21.4, 11.8.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.1754, found 299.1755 .
(S)-2-(Methyl(phenyl)amino)-N-(4-(trifluoromethyl)phenyl)butanamide (83)

According to General Procedure \mathbf{C} with 2-bromo-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 4}(74.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), N methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 83 as a colorless oil ($45.7 \mathrm{mg}, 68 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), \mathrm{t}_{\mathrm{R}}($ major $)=6.37 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.44 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34$ - 7.29 (m, 2H), $6.93-6.87(\mathrm{~m}, 3 \mathrm{H}), 4.27$ (dd, $J=9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ ($\mathrm{s}, 3 \mathrm{H}), 2.36-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,149.8,140.6,129.5,126.2(\mathrm{q}, J=4.1 \mathrm{~Hz}), 126.0(\mathrm{q}$, $J=32.7 \mathrm{~Hz}), 124.0(\mathrm{q}, J=271.0 \mathrm{~Hz}), 119.29,119.27,114.4,67.3,34.1,21.2,11.8$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.10$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$337.1522, found 337.1522.

According to General procedure A with tert-butyl (2-bromopropanoyl)glycinate E15 ($79.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{8 4}$ as a colorless oil $(47.4 \mathrm{mg}, 81 \%$ yield, 96% ee).
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=14.44 \mathrm{~min}, t_{\mathrm{R}}($ major $)=29.91 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 3 \mathrm{H}), 4.38$
$(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=18.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=18.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (s, 3H), 1.46 (s, 9H), 1.38 (d, J = 7.1 Hz, 3H).
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,168.8,149.6,129.2,118.8,114.7,82.0,60.2,41.8$, 33.8, 28.0, 12.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$293.1860, found 293.1860.
(S)-2-(Methyl(phenyl)amino)propanamide (85)

According to General Procedure A with 2-bromopropanamide E16 (45.6 mg, 0.30 mmol , 1.5 equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=30 / 1\right)$ to yield the product 85 as a white solid ($20.5 \mathrm{mg}, 58 \%$ yield, 93% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}), t_{R}($ minor $)=14.25 \mathrm{~min}, t_{R}($ major $)=18.14 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.80$ (s, 1H), $4.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,149.3,129.3,118.8,114.4,59.9,33.9,12.0$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$179.1179, found 179.1178.
(S)-2-((4-Bromophenyl)amino)propanamide (86)

86

According to General Procedure A with 2-bromopropanamide E16 (30.2 mg, 0.20 mmol , 1.0 equiv) and 4-bromoaniline $\mathbf{N} 50(51.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=25 / 1\right)$ to yield the product 86 as a white solid ($31.9 \mathrm{mg}, 66 \%$ yield, 95% ee).
HPLC analysis: Chiralcel OD3 (n-hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=9.53 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.83 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.51-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.93$ $(\mathrm{s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{q}, J=7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9,145.4,132.1,115.1,110.8,54.7,19.5$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 243.0128$, found 243.0127.

General procedure D:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuBr} \mathrm{SMe}_{2}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(13.0 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($127.1 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(13.0 \mathrm{mg}, 0.04 \mathrm{mmol}$, 0.2 equiv), and anhydrous MTBE (1.0 mL). Then, the mixture was stirred at room temperature for 3 h . After that, racemic tertiary alkyl chloride ($0.20 \mathrm{mmol}, 1.0$ equiv), amine ($0.24 \mathrm{mmol}, 1.2$ equiv), and anhydrous MTBE (1.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 4d. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), racemic tertiary alkyl chloride (0.20 mmol , 1.0 equiv), amine ($0.24 \mathrm{mmol}, 1.2$ equiv), and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL}$) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel on silica gel to afford the desired product.
(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-phenylbutanamide (87)

According to General procedure \mathbf{D} with 2-chloro- N-(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.5 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 87 as a yellowish oil ($65.3 \mathrm{mg}, 79 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=11.92 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.21 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H})$, $2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,147.8,139.8,135.3,135.0,129.5,128.5,127.5$, 127.4, 125.8, 124.6, 124.0, 117.8, 74.5, 40.1, 32.3, 9.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 413.1182$, found 413.1182 .

(S)-N-(3,5-Dichlorophenyl)-2-((4-methoxyphenyl)(methyl)amino)-2phenylbutanamide (88)

According to General procedure \mathbf{D} with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-methoxy- N-methylaniline N13 ($27.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 88 as a yellowish oil ($55.9 \mathrm{mg}, 63 \%$ yield, 85% ee).
HPLC analysis: Chiralcel IF (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=15.04 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.36 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23$ $-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.01$ $-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,157.5,140.3,140.0,135.3,133.8,129.9,128.8$, 127.5, 127.4, 123.9, 117.7, 113.5, 74.9, 55.4, 41.0, 32.0, 9.5.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 443.1288$, found 443.1287.
(S)-N-(3,5-Dichlorophenyl)-2-(methyl(m-tolyl)amino)-2-phenylbutanamide (89)

According to General procedure \mathbf{D} with 2-chloro- N-(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $N, 3$-dimethylaniline $\mathbf{N} 71$ ($24.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 89 as a yellowish oil ($64.1 \mathrm{mg}, 75 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=10.52 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.30 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30$ - 7.25 (m, 2H), $7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.65$ $(\mathrm{m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,147.7,139.9,138.2,135.3,134.9,129.6,128.2$, 127.4, 127.4, 126.9, 125.6, 123.9, 123.1, 117.8, 74.6, 40.3, 32.2, 21.4, 9.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.1338$, found 427.1337.
(S)-N-(3,5-Dichlorophenyl)-2-((4-fluorophenyl)(methyl)amino)-2-phenylbutanamide (90)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2-
phenylbutanamide $\mathbf{E 1 7}$ ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 4-fluoro- N-methylaniline $\mathbf{N} 15$ ($25.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 90 as a yellowish oil ($50.0 \mathrm{mg}, 58 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ major $)=11.87 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.16 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,160.4(\mathrm{~d}, J=243.7 \mathrm{~Hz}), 143.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 139.8$, $135.3,133.8,129.8,128.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 127.6,127.5,124.0,117.8,115.1(\mathrm{~d}, J=22.0$ Hz), 74.8, 40.8, 32.0, 9.5.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.53$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{C}_{12} \mathrm{FN} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 431.1088$, found 431.1088 .
(S)-N-(3,5-Dichlorophenyl)-2-(ethyl(phenyl)amino)-2-phenylbutanamide (91)

According to General procedure \mathbf{D} with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-ethylaniline $\mathbf{N} 2(24.2 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 91 as a yellowish oil ($52.1 \mathrm{mg}, 61 \%$ yield, 87% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=7.54 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.39 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.99-$ $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,144.3,140.1,135.4,134.5,129.9,129.7,128.4$, 127.5, 127.4, 126.5, 123.8, 117.5, 75.4, 47.1, 31.7, 14.4, 9.4.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.1338$, found 427.1338 .
(S)-2-(Butyl(phenyl)amino)-N-(3,5-dichlorophenyl)-2-phenylbutanamide (92)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-butylaniline $\mathbf{N} 72(29.8 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 92 as a yellowish oil ($47.3 \mathrm{mg}, 52 \%$ yield, 87% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=10.21 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.66 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.61-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 3 \mathrm{H})$, $0.80-0.75(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,144.5,140.1,135.4,134.2,130.0,129.5,128.4$, $127.5,127.3,126.5,123.8,117.4,75.4,52.7,31.8,30.8,20.5,14.0,9.4$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 455.1651$, found 455.1651.

Ethyl (S)-N-(1-((3,5-dichlorophenyl)amino)-1-oxo-2-phenylbutan-2-yl)-Nphenylglycinate (93)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and ethyl phenylglycinate $\mathbf{N 1 2}$ ($35.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 93 as a yellowish oil ($49.5 \mathrm{mg}, 51 \%$ yield, 91% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=11.26 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.24 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.64-$
$6.61(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.21(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,172.3,145.7,140.7,139.4,134.9,128.9,128.1$, 127.2, 123.5, 120.9, 118.2, 117.9, 72.6, 62.4, 51.1, 34.5, 14.2, 9.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 485.1393$, found 485.1394.
(S)-N-(3,5-Dichlorophenyl)-2-(3,4-dihydroquinolin-1(2H)-yl)-2-phenylbutanamide (94)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 1,2,3,4-tetrahydroquinoline $\mathbf{N} \mathbf{2 5}(26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 94 as a yellowish oil ($62.4 \mathrm{mg}, 71 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=11.24 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.32 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.73$ $(\mathrm{m}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.28-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.52(\mathrm{~m}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.36(\mathrm{~m}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,143.8,139.24,139.18,135.0,129.2,128.4,128.0$, 127.1, 126.0, 124.2, 118.8, 118.4, 117.1, 72.5, 45.8, 33.0, 28.3, 24.4, 10.2.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 439.1338$, found 439.1339 .
(S)-N-(3,5-Dichlorophenyl)-2-(2,3-dihydro-4H-benzo[b][1,4]thiazin-4-yl)-2phenylbutanamide (95)

According to General procedure \mathbf{D} with 2-chloro- N-(3,5-dichlorophenyl)-2phenylbutanamide E17 ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 3,4-dihydro- 2 H -
benzo[b][1,4$]$ thiazine $\mathbf{N} 27$ ($30.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 95 as a yellowish oil ($59.5 \mathrm{mg}, 65 \%$ yield, 87% ee).
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=16.89 \mathrm{~min}, t_{\mathrm{R}}($ major $)=20.72 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.27$ $-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.52(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.55$ $(\mathrm{m}, 2 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,145.3,139.3,138.9,135.1,128.4,128.4,128.0$, $127.6,126.5,125.4,124.2,121.3,120.2,118.0,74.0,47.2,32.6,31.0,10.1$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 457.0903$, found 457.0902.

(S)-N-(3,5-Dichlorophenyl)-2-phenyl-2-(2,3,4,5-tetrahydro-1H-benzo[b]azepin-1yl)butanamide (96)

According to General procedure \mathbf{D} with 2-chloro- N -(3,5-dichlorophenyl)-2phenylbutanamide $\mathbf{E 1 7}$ ($82.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and 2,3,4,5-tetrahydro- 1 H benzo[b]azepine $\mathbf{N} 28(29.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product $\mathbf{9 6}$ as a yellowish oil ($49.9 \mathrm{mg}, 55 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IC (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ major $)=12.47 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.46 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.89$ $(\mathrm{m}, 3 \mathrm{H}), 3.37-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.60$ (m, 4H), 0.95 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,147.7,139.5,139.4,137.7,135.3,130.4,129.0$, $127.8,127.4,126.4,124.2,123.5,123.3,117.8,75.7,52.3,35.1,33.5,29.1,25.3,10.1$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 453.1495$, found 453.1496 .
(S)-2-Phenyl-2-(o-tolylamino)-N-(4-(trifluoromethyl)phenyl)butanamide (97)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}$ ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and o-toluidine $\mathbf{N} 29(25.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 97 as a yellowish oil ($44.4 \mathrm{mg}, 54 \%$ yield, 92% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=11.02 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.80 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 4 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47$ (dq, $J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,141.8,140.7,140.6,130.7,129.3,128.1,126.8$, $126.13(\mathrm{q}, J=32.7 \mathrm{~Hz}), 126.12(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.8,124.0(\mathrm{q}, J=269.8 \mathrm{~Hz}), 123.6,119.4$, 118.7, 113.8, 67.3, 25.5, 17.8, 7.5 .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.15$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 413.1835$, found 413.1832
(S)-2-((2-Ethylphenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (98)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}$ ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2ethylaniline $\mathbf{N 7 3}$ ($29.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 98 as a yellowish oil ($53.7 \mathrm{mg}, 63 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=9.13 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.26 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 4 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.74$
$(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{dq}, J$ $=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,141.2,140.8,140.5,129.3,129.1,128.5,128.1$, $126.5,126.14(\mathrm{q}, J=32.5 \mathrm{~Hz}), 126.08(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 125.9,124.0(\mathrm{q}, J=269.9 \mathrm{~Hz}), 119.5$, $118.7,113.8,67.2,25.8,24.3,13.1,7.7$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.14$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.1992$, found 427.1990 .
(S)-2-((2-Isopropylphenyl)amino)-2-phenyl- N-(4-(trifluoromethyl)phenyl)butan amide (99)

According to General procedure D with 2-chloro-2-phenyl- N -(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2isopropylaniline N30 ($32.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 99 as a colorless oil ($48.5 \mathrm{mg}, 55 \%$ yield, 83% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=8.08 \mathrm{~min}, t_{R}($ major $)=11.23 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 4 \mathrm{H}), 7.44(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.70 (dq, $J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=12.1,6.7 \mathrm{~Hz}$, $6 \mathrm{H}), 0.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,140.9,140.5,140.4,133.6,129.4,128.1,126.2$, 126.17 (q, $J=32.6 \mathrm{~Hz}), 126.12(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.0,125.6,124.0(\mathrm{q}, J=269.9 \mathrm{~Hz})$, $119.5,118.8,114.1,67.3,27.9,26.0,22.7,22.5,7.8$.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.15$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 441.2148$, found 441.2145 .
(S)-2-((2-(tert-butyl)phenyl)amino)-2-phenyl- N-(4(trifluoromethyl)phenyl)butanamide (100)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2-(tertbutyl)aniline $\mathbf{N 3 9}$ ($35.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{1 0 0}$ as a colorless oil ($45.5 \mathrm{mg}, 50 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=7.29 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.05 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 6 \mathrm{H})$, $7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}$, 9H), $0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,141.6,141.1,140.4,134.0,129.5,128.1,126.7$, $126.41,126.39,126.3(\mathrm{q}, J=32.6 \mathrm{~Hz}), 126.2(\mathrm{q}, J=3.7 \mathrm{~Hz}) 123.9(\mathrm{q}, J=269.9 \mathrm{~Hz}), 119.5$, 117.5, 114.1, 67.7, 34.3, 30.0, 29.7, 8.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.20$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 455.2305$, found 455.2304.

(S)-2-((2,6-Dimethylphenyl)amino)-2-phenyl-N-(4-

 (trifluoromethyl)phenyl)butanamide (101)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide E18 ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and $2,6-$ dimethylaniline $\mathbf{N} 40$ ($29.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 164 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 101 as a yellowish oil ($55.9 \mathrm{mg}, 66 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}(\mathrm{minor})=12.29 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.12 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.78$ $(\mathrm{m}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dq}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ ($\mathrm{s}, 6 \mathrm{H}$), $0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,142.5,141.1,140.6,130.8,129.3,128.3,127.7$, $126.9,126.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 124.1(\mathrm{q}, J=269.9 \mathrm{~Hz}), 122.8,119.0$, 70.1, 30.0, 20.4, 8.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.08$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$427.1992, found 427.1990.

(S)-2-((2,6-Diethylphenyl)amino)-2-phenyl-N-(4-

 (trifluoromethyl)phenyl)butanamide (102)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide E18 ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2,6diethylaniline $\mathbf{N 4 1}$ ($35.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{1 0 2}$ as a colorless oil ($66.4 \mathrm{mg}, 73 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ major $)=8.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.18 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.29(\mathrm{~m}$, 6 H), $1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,140.7,140.6,140.5,138.0,128.0,127.5,127.4$, $126.6,126.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=32.6 \mathrm{~Hz}), 124.1(\mathrm{q}, J=269.9 \mathrm{~Hz}), 123.8$, 119.1, 71.0, 30.7, 25.9, 15.0, 8.8.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.08$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 455.2305$, found 455.2303.

(S)-2-((2,6-Diisopropylphenyl)amino)-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide (103)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide E18 ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2,6diisopropylaniline $\mathbf{N} 42$ ($42.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{1 0 3}$ as a colorless oil ($70.2 \mathrm{mg}, 70 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=7.18 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.29 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.18-7.13$ (m, 5H), $7.02-6.94$ (m, 3H), 4.31 (s, 1H), 3.02 (hept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2$. $45-2.27$ (m, 2H), 1.19 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.03$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.8 \mathrm{~Hz}$, 6 H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,143.4,140.80,140.78,139.7,138.6,127.9,127.8$, $127.3,126.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 124.7,124.1(\mathrm{q}, J=269.9 \mathrm{~Hz}), 123.2$, 119.0, 71.9, 32.4, 28.8, 23.9, 23.4, 9.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.07.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 483.2618$, found 483.2615 .

(S)-2-((2-Ethyl-6-methylphenyl)amino)-2-phenyl- N -(4(trifluoromethyl)phenyl)butanamide (104)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2-ethyl-6methylaniline $\mathbf{N} 34$ ($32.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product $\mathbf{1 0 4}$ as a colorless oil ($55.7 \mathrm{mg}, 63 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=8.57 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.09 \mathrm{~min}$.
> ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 2.60-$ $2.26(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
> ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,141.6,140.9,140.7,137.4,131.4,129.1,128.2$, $127.6,127.2,126.9,124.1(\mathrm{q}, J=269.8 \mathrm{~Hz}), 126.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=32.5 \mathrm{~Hz})$ 123.3, 119.1, 70.5, 30.3, 25.8, 20.6, 14.9, 8.7.
> ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.08$.
> HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 441.2148$, found 441.2145.
> (S)-2-Phenyl-2-((2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)-N-(4(trifluoromethyl)phenyl)butanamide (105)

According to General procedure D with 2-chloro-2-phenyl- N -(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 2Aminophenylboronic acid pinacol ester $\mathbf{N} 74(52.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether $/ E t O A c=20 / 1$) to yield the product $\mathbf{1 0 5}$ as a brown oil ($45.1 \mathrm{mg}, 43 \%$ yield, 82% ee). HPLC analysis: Chiralcel IB (n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ major $)=5.18 \mathrm{~min}, \mathrm{tR}_{\mathrm{R}}($ minor $)=5.92 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H})$, $6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}$, $6 \mathrm{H}), 0.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 172.9,150.9,140.9,140.2,137.4,132.7$, 128.6, 127.6, $126.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.8(\mathrm{q}, J=32.6 \mathrm{~Hz}), 125.7,124.1(\mathrm{q}, J=269.7 \mathrm{~Hz}), 119.4,118.5$, 114.5, 84.1, 68.0, 26.3, 25.2, 24.7, 7.3.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-62.11$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 525.2531$, found 525.2530.
(S)-2-Phenyl-2-(m-tolylamino)- N-(4-(trifluoromethyl)phenyl)butanamide (106)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}$ ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and m-toluidine N75 ($25.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 106 as a colorless oil ($44.0 \mathrm{mg}, 53 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=9.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.31 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.43$ $-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (s, 1H), $6.41(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dq, $J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,143.9,140.6,140.4,139.1,129.1,129.0,128.0$, $126.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0(\mathrm{q}, J=32.6 \mathrm{~Hz}), 125.9,124.0(\mathrm{q}, J=269.9 \mathrm{~Hz}), 120.5,119.4$, 117.2, 113.1, 67.5, 25.7, 21.5, 7.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.11.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 413.1835$, found 413.1830.
(S)-2-((4-Nitrophenyl)amino)-2-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (107)

According to General procedure D with 2-chloro-2-phenyl-N-(4(trifluoromethyl)phenyl)butanamide $\mathbf{E 1 8}$ ($68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and 4 nitroaniline N76 ($33.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to yield the product 107 as a yellow oil $(38.0 \mathrm{mg}, 43 \%$ yield, 88% ee).

HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=7.50 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.93 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.74(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,149.7,139.9,139.7,138.5,130.1,129.1,126.8$ (q, $J=32.5 \mathrm{~Hz}), 126.31(\mathrm{q}, J=3.6 \mathrm{~Hz}), 126.28,126.0,123.8(\mathrm{q}, J=270.0 \mathrm{~Hz}), 119.6,113.4$, 66.7, 26.4, 7.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.30$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 444.1530$, found 444.1524 .
(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-phenylpentanamide (108)

108
According to General procedure \mathbf{D} with 2-chloro- N -(3,5-dichlorophenyl)-2phenylpentanamide E19 ($85.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}$ (21.4 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 108 as a yellowish oil ($56.4 \mathrm{mg}, 66 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=8.14 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.38 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25$ - 7.22 (m, 2H), $7.13-7.09$ (m, 2H), $6.89-6.86(m, 2 H), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,147.8,139.8,135.6,135.3,129.4,128.5,127.6$, $127.4,125.5,124.5,124.0,117.8,74.1,41.5,40.0,18.3,14.3$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.1338$, found 427.1337.
(S)-N-(3,5-Dichlorophenyl)-5,5,5-trifluoro-2-(methyl(phenyl)amino)-2phenylpentanamide (109)

According to General procedure \mathbf{D} with 2-chloro- N -(3,5-dichlorophenyl)-5,5,5-trifluoro-2-phenylpentanamide $\mathbf{E 2 0}$ ($98.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1(21.4$ $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 109 as a yellowish oil ($56.8 \mathrm{mg}, 59 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=6.95 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30$ $-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.13(\mathrm{~m}, 3 \mathrm{H})$, $2.01-1.86(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,146.9,139.4,135.5,133.9,129.2,128.8,128.1$, $128.0,126.8(\mathrm{q}, J=274.5 \mathrm{~Hz}), 126.6,125.7,124.5,118.0,73.0,40.2,30.6(\mathrm{q}, J=2.7 \mathrm{~Hz})$, 30.3 (q, $J=28.7 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-66.62$.
HRMS (ESI) m / z calcd. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 481.1056$, found 481.1056 .

(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2,4-diphenylbutanamide (110)

According to General procedure D with 2-chloro-N-(3,5-dichlorophenyl)-2,4diphenylbutanamide E21 ($100.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1$ (21.4 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 110 as a yellowish oil ($59.7 \mathrm{mg}, 61 \%$ yield, 86% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=17.43 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.84 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.23$ $-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$, $2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,147.6,141.4,139.7,135.3,135.3,129.4,128.6$, 128.4, 128.2, 127.7, 127.7, 126.0, 125.9, 125.0, 124.2, 117.9, 74.0, 40.6, 40.4, 31.2.

HRMS (ESI) m / z calcd. $\mathrm{C}_{29} \mathrm{H}_{2} 7 \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 489.1495$, found 489.1493 .
(S)-N-(3,5-Dichlorophenyl)-4-methoxy-2-(methyl(phenyl)amino)-2phenylbutanamide (111)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-4-methoxy-2phenylbutanamide E22 ($89.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 111 as a yellowish oil ($40.2 \mathrm{mg}, 54 \%$ yield, 88% ee).
HPLC analysis: Chiralcel IF (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=20.03 \mathrm{~min}, t_{R}($ major $)=24.86 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.16$ (s, 3H), $2.66(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,147.6,139.8,135.4,135.1,129.2,128.6,127.79$, 127.77, 126.5, 125.1, 124.2, 117.9, 72.7, 69.2, 58.6, 40.3, 38.6.

HRMS (ESI) m / z calcd. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+} 443.1288$, found 443.1287.

(S)-2-Cyclohexyl- N -(3,5-dichlorophenyl)-2-(methyl(phenyl)amino)-2-

 phenylacetamide (112)

According to General procedure \mathbf{D} with 2-chloro-2-cyclohexyl- N-(3,5-dichlorophenyl)-2-phenylacetamide $\mathbf{E 2 3}$ ($95.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}$ (21.4 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 112 as a yellowish oil ($64.5 \mathrm{mg}, 69 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IB (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$),
$t_{\mathrm{R}}($ minor $)=10.38 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.38 \mathrm{~min}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30$ - 7.27 (m, 1H), $7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H})$, $2.30-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.11-$ 0.97 (m, 5H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,148.4,139.4,136.0,135.3,130.0,128.5,127.2$, 127.1, 125.8, 124.6, 124.0, 117.9, 77.8, 44.4, 40.9, 30.5, 29.3, 26.9, 26.7, 26.3.

HRMS (ESI) m / z calcd. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 467.1651$, found 467.1652.

(S)-N-(3,5-Dichlorophenyl)-2-(3-methoxyphenyl)-2(methyl(phenyl)amino)butanamide (113)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2-(3methoxyphenyl)butanamide E24 ($89.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1$ ($21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product $\mathbf{1 1 3}$ as a yellowish oil ($56.8 \mathrm{mg}, 64 \%$ yield, 92% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=13.76 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.83 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13$ $-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 0.87$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,159.0,147.8,139.8,137.0,135.3,128.5,128.4$, $125.5,124.5,124.0,122.0,117.9,115.9,112.4,74.4,55.2,40.1,32.4,9.7$.
HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 443.1288$, found 443.1287.
(S)-N-(3,5-Dichlorophenyl)-2-(methyl(phenyl)amino)-2-(m-tolyl)butanamide (114)

According to General procedure D with 2-chloro- N-(3,5-dichlorophenyl)-2-(m -
tolyl)butanamide E25 ($86.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 114 as a yellowish oil ($43.6 \mathrm{mg}, 51 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=9.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.13 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14$ $-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.11$ $-1.97(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,147.9,139.9,137.0,135.2,134.9,130.3,128.4$, 128.2, 127.4, 126.4, 125.8, 124.6, 123.9, 117.8, 74.5, 40.2, 32.1, 21.7, 9.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.1338$, found 427.1337.

(S)-2-(4-(tert-Butyl)phenyl)-N-(3,5-dichlorophenyl)-2(methyl(phenyl)amino)butanamide (115)

According to General procedure D with 2-(4-(tert-butyl)phenyl)-2-chloro-N-(3,5dichlorophenyl)butanamide E26 ($95.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1$ ($21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 115 as a yellowish oil ($59.2 \mathrm{mg}, 63 \%$ yield, 86% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ minor $)=9.15 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.04 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27$ $-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H})$, $1.33(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,150.2,148.1,139.9,135.2,131.9,129.2,128.5$, 125.6, 124.4, 124.4, 123.9, 117.8, 74.3, 40.3, 34.4, 32.0, 31.3, 9.7.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 469.1808$, found 469.1809 .
(S)-N-(3,5-Dichlorophenyl)-2-(3-fluorophenyl)-2-(methyl(phenyl)amino)butanamide (116)

According to General procedure D with 2-chloro- N -(3,5-dichlorophenyl)-2-(3fluorophenyl)butanamide $\mathbf{E} 27$ ($86.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and N-methylaniline $\mathbf{N} 1$ ($21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 96 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=15 / 1$) to yield the product 116 as a yellowish oil ($50.0 \mathrm{mg}, 58 \%$ yield, 90% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{\mathrm{R}}($ major $)=10.63 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.06 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15$ $-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,162.2(\mathrm{~d}, J=243.2 \mathrm{~Hz}), 147.4,139.6,137.8(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}), 135.3,128.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.6,125.6,125.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 124.8,124.2$, $117.9,116.70(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 114.4(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 74.2,39.9,32.8$, 9.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.0(\mathrm{~s}, 1 \mathrm{~F})$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 431.1088$, found 431.1088 .

6. Procedure for synthetic applications

Catalyst-controlled stereoselectivity in the N -alkylation of amine and chiral alkyl bromide.

(R)-2-(Methyl(phenyl)amino)-N-phenylpropanamide ((R)-1)

(R)-1

According to General Procedure A with 2-bromo-N-phenylpropanamide E1 (68.1 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) to yield the product $(R)-\mathbf{1}$ as a yellowish oil $(45.8 \mathrm{mg}, 90 \%$ yield, 95% ee).
HPLC analysis: Chiralcel IA (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=7.19 \mathrm{~min}, t_{\mathrm{R}}($ major $)=9.20 \mathrm{~min}$.

Methyl N-methyl-N-phenyl-L-alanyl-L-phenylalaninate (S)-117

(S)-117

According to General procedure A with methyl (2-bromopropanoyl)-L-phenylalaninate E28 ($94.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $(S)-117$ as a yellowish oil ($40.8 \mathrm{mg}, 60 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.06(\mathrm{~m}$, $1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.87(\mathrm{~m}, 1 \mathrm{H})$, $4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,172.0,149.7,135.7,129.2,129.1,128.6,127.1$, 119.0, 114.8, 60.2, 52.7, 52.3, 37.8, 33.3, 12.3.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 341.1860$, found 341.1860.

Methyl N-methyl-N-phenyl-D-alanyl-L-phenylalaninate (\boldsymbol{R})-117

According to General procedure A with methyl (2-bromopropanoyl)-L-phenylalaninate E28 ($94.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $(R)-117$ as a yellowish oil ($37.4 \mathrm{mg}, 55 \%$ yield, $10: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.28(\mathrm{~m}$, 3 H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,171.9,149.4,135.9,129.2,129.0,128.6,127.1$, $118.9,114.8,60.3,52.9,52.3,37.6,33.8,11.8$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 341.1860$, found 341.1859.

(S)-2-((R)-2-Methylindolin-1-yl)-N-phenylpropanamide (S)-118

(S)-118

According to General procedure A with 2-bromo-N-phenylpropanamide E1 (68.4 mg , $0.30 \mathrm{mmol}, 1.5$ equiv) and (R)-2-methylindoline $\mathbf{N} 77(26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $(S)-118$ as a yellowish oil ($48.2 \mathrm{mg}, 86 \%$ yield, 13:1 d.r.).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.51(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,151.0,137.5,129.3,129.0,127.5,124.6,124.2$, $119.5,119.3,107.8,57.2,56.5,37.6,21.2,11.1$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1647.
(R)-2-((R)-2-Methylindolin-1-yl)- N-phenylpropanamide (\boldsymbol{R})-118

(R)-118

According to General procedure A with 2-bromo- N-phenylpropanamide E1 $(68.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.5$ equiv) and (R)-2-methylindoline $\mathbf{N} 77(26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $(R)-118$ as a yellowish oil $(49.3 \mathrm{mg}$, 88% yield, 15:1 d.r.).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.41-6.39(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,148.0,137.6,130.2,128.9,127.1,124.6,124.2$, 119.8, 119.7, 111.0, 59.7, 55.9, 37.2, 20.0, 7.9.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1646.
(S)-2-(2H-Benzo[d][1,2,3]triazol-2-yl)-N,2-diphenylbutanamide (119)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 9(13.0 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous benzene (2.0 mL).

Then, the mixture was stirred at room temperature for 3 h . After that, 2-chloro- $N, 2-$ diphenylbutanamide $\mathbf{E 2 9}$ ($57.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and $1 H$-benzo[d][$1,2,3]$ triazole N78 ($28.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h , the reaction mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product 119 as a white solid ($57.6 \mathrm{mg}, 81 \%$ yield, 91% ee).
HPLC analysis: Chiralcel IG (n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ minor $)=15.53 \mathrm{~min}, t_{\mathrm{R}}($ major $)=19.52 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 3.19-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.06$ ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,143.7,140.7,137.5,128.9,128.5,128.3,127.3$, 126.1, 124.7, 120.2, 118.3, 81.5, 32.3, 9.5.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$357.1710, found 357.1709.

The synthesis of vicinal diamine 120

To a solution of $\mathbf{1}(25.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (2.0 mL) was added $\mathrm{LiAlH}_{4}\left(0.16 \mathrm{~mL}, 0.40 \mathrm{mmol}, 4.0\right.$ equiv, 2.5 M in THF) dropwise at $0^{\circ} \mathrm{C}$. Then the reaction mixture was heated at reflux for 12 h . After completion (monitored by TLC), the reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5 / 1$) to yield the product $\mathbf{1 2 0}$ as a yellowish oil ($19.0 \mathrm{mg}, 79 \%$ yield, 92% ee).
(S)- N^{2}-Methyl- N^{1}, N^{2}-diphenylpropane-1,2-diamine (120)

120
HPLC analysis: Chiralcel ADH (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=97 / 3$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=7.16 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.92 \mathrm{~min}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 1 \mathrm{H})$, 3.97 (s, 1H), $3.25-3.13$ (m, 2H), 2.70 (s, 3H), 1.14 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8,148.1,129.2,129.2,117.8,117.4,114.5,112.9$, 53.8, 46.8, 29.6, 14.2.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$241.1699, found 241.1698.

The synthesis of amino alcohol 121

To a solution of $\mathbf{1}\left(25.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}$
$\left(109.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 5.0\right.$ equiv) and DMAP ($25.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred for 1 h . After completion (monitored by TLC), the reaction was quenched with HCl aqueous solution $(1.0 \mathrm{M}, 5 \mathrm{~mL})$ and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was used in the next step without further purification. To a solution of the above crude product in $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(15.2 \mathrm{mg}, 0.4 \mathrm{mmol}$, 4.0 equiv) slowly at $0^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to room temperature and stirred for 1 h . After completion (monitored by TLC), the reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=3 / 1$) to yield the product 121 as a yellowish oil ($13.8 \mathrm{mg}, 85 \%$ yield, 96% ee).
(S)-2-(Methyl(phenyl)amino)propan-1-ol (121)

HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.69 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.95 \mathrm{~min}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}$, $1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.2, 129.1, 118.4, 115.3, 63.6, 57.2, 29.9, 12.2 .
HRMS (ESI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$166.1226, found 166.1226 .

The synthesis of carbon chain-elongated building block 122

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with oxalyl chloride ($22.8 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.8$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) at $-78^{\circ} \mathrm{C}$ was added DMSO ($15.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) dropwise. After stirring for 30 min a solution of the amino alcohol $121\left(16.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ was added over 15 min . The mixture was warmed to $-45^{\circ} \mathrm{C}$ and stirring was continued for 1 h at this temperature, then triethylamine ($50.6 \mathrm{mg}, 0.50 \mathrm{mmol}, 5.0$ equiv) was added. The reaction mixture was brought to $0^{\circ} \mathrm{C}$ and maintained for 15 min , then Ethyl (triphenylphosphoranylidene) acetate ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) in benzene (0.5 mL) was added and the resulting solution was stirred for 15 h at room temperature. After completion (monitored by TLC), the reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was washed
with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc =10/1) to yield the product $\mathbf{1 2 2}$ as a yellowish oil ($15.6 \mathrm{mg}, 67 \%$ yield, 96% ee).

Ethyl (S,E)-4-(methyl(phenyl)amino)pent-2-enoate (122)

122
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \boldsymbol{\lambda}=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=10.23 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.48 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=15.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $-6.72(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{dd}, J=15.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,149.5,149.3,129.2,121.4,117.3,113.4,60.4,54.6$, 31.9, 16.0, 14.2 .

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$234.1489, found 234.1484.

7. Mechanistic studies

Preparation and characterization of $\mathbf{C u}(\mathrm{II}) \mathrm{L} * 5$ complex

According to the literature reported procedure ${ }^{6}$, to a solution of $\mathrm{Cu}(\mathrm{OAc})_{2}(36.2 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in methanol $(4 \mathrm{~mL}), \mathbf{L} * 5(33.3 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and stirred overnight. Then the solution was concentrated in vacuo, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered. The crude reaction product was recrystallized from dichloromethane/hexane to obtain pure product $\mathrm{Cu}(\mathrm{II}) \mathbf{L} * 5$ complex.

The catalytic activity of $\mathbf{C u}(\mathrm{II}) \mathrm{L} * 5$ complex

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{II}) \mathbf{L} * 5$ complex ($11.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), 2-bromo- N-phenylbutanamide $\mathbf{E 2}$ ($57.8 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), N-methylaniline $\mathbf{N} \mathbf{1}(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and anhydrous benzene $(4.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine $(10 \mathrm{~mL} \times 3)$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The organic solvent was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product $67(85 \%, 96 \%$ ee $)$.

The non-linear effect of catalyst

According to General Procedure C with 2-bromo-N-phenylbutanamide E2 (57.8 mg, 0.24 mmol, 1.2 equiv) and N-methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by column chromatography on silica gel The ee values of products were then determined by HPLC, which indicated a linear relationship between ee values of products and corresponding catalysts. The catalyst $\mathbf{L} * 5$ with different ee values
were prepared by mixing $\mathbf{L} * \mathbf{5}(99 \%$ ee $)$ and $(R)-\mathbf{L} * \mathbf{5}(99 \%$ ee $)$ in appropriate ratios.

Entry	Catalyst ee (\%)	Product ee (\%)
$\mathbf{1}$	99	97
$\mathbf{2}$	60	49
$\mathbf{3}$	20	18
$\mathbf{4}$	0	-1
$\mathbf{5}$	-20	-15
$\mathbf{6}$	-60	-58
$\mathbf{7}$	-99	-97

Radical clock experiments

With N1: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), L*3 (15.4 mg , $0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous $1,4-$ dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo-2-cyclopropyl- N -phenylacetamide $\mathbf{E 3 0}$ ($76.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv), N methylaniline $\mathbf{N} 1(21.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h. Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column
chromatography or preparative thin-layer chromatography on silica gel to to yield the product $\mathbf{1 2 3}$ as a colorless oil ($7.3 \mathrm{mg}, 9 \%$ yield based on $\mathbf{E 3 0}, 97 \%$ ee), $\mathbf{1 2 4}$ as a colorless oil ($12.5 \mathrm{mg}, 24 \%$ yield) and $\mathbf{1 2 5}$ as a colorless oil ($26.4 \mathrm{mg}, 34 \%$ yield).
Without N1: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 3(15.4$ $\mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo-2-cyclopropyl- N -phenylacetamide $\mathbf{E 3 0}$ ($50.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at rt for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to to yield the product $\mathbf{1 2 4}$ as a colorless oil ($21.8 \mathrm{mg}, 63 \%$ yield) and $\mathbf{1 2 5}$ as a colorless oil $(9.1 \mathrm{mg}$, 18% yield).

(S)-2-Cyclopropyl-2-(methyl(phenyl)amino)- N -phenylacetamide (123)

HPLC analysis: Chiralcel IA (n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=11.11 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.78 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}$, $1 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.49(\mathrm{~m}, 2 \mathrm{H}), 0.22-0.16(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,150.3,137.6,129.3,128.9,124.2,119.6,119.4$, 115.0, 72.1, 34.8, 11.4, 5.7, 2.6.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1645.

(E)-N-Phenylpenta-2,4-dienamide (124)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.12$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=17.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45(\mathrm{~d}, J=10.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,142.3,138.0,134.6,129.0,125.0,124.9,124.4$, 120.0.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$174.0913, found 174.0912.

(E)-5-Bromo- N-phenylpent-2-enamide (125)

125
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,141.7,137.8,129.0,126.4,124.5,120.1,35.0,30.2$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$254.0175, found 254.0173.

Alkyl radical deuterium atom abstraction from THF- \boldsymbol{d}_{8}.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 3(15.4 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}\left(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\right.$ equiv), and THF- $d_{8}(0.5 \mathrm{~mL})$. Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo-3,3-dimethyl- N phenylbutanamide E5 ($54.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and THF- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 72 h . Upon completion (monitored by TLC), the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to yield the product 126-d as a white solid ($3.1 \mathrm{mg}, 8 \%$ yield).

2-d-3,3-Dimethyl-N-phenylbutanamide (126-d)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$.
HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{DNO}[\mathrm{M}+\mathrm{H}]^{+}$193.1446, found 193.1449.

EPR (electron paramagnetic resonance) for the detection of radical intermediate during the reaction

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L}^{*} 3(3.9 \mathrm{mg}, 0.0075 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (0.5 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo- N phenylpropanamide E1 ($11.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), and anhydrous 1,4 -dioxane (0.5 mL) were sequentially added into the mixture without amine and the reaction mixture was stirred at rt for 4 h . Next, 5,5-dimethyl-1-pyrroline N-oxide DMPO (2.0 equiv) was added and the reaction mixture was stirred at rt for another 10 min . The resulting reaction mixture was analyzed by EPR. Spin trapping experiments support the intermediacy of carboncentered radicals in the alkylation reaction. Persistent nitroxyl radical $\mathbf{1 2 7}$ was formed.

Time-course experiments for electron-rich \boldsymbol{p}-anisidine compared to unsubstituted aniline

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(7.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L} * 3(30.9 \mathrm{mg}, 0.06 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($392.0 \mathrm{mg}, 1.20 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (4.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo- N phenylpropanamide E1 ($91.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv), aromatic amines ($0.60 \mathrm{mmol}, 1.5$ equiv), and anhydrous 1,4 -dioxane (4.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature. Taking 0.5 mL of the reaction solution at regular intervals. The reaction mixture was diluted with 10 mL EtOAc and washed with brine ($10 \mathrm{~mL} \times 4$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The yields were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Competition experiments with paired aromatic amines possessing distinct electronic properties (OMe, H, and CF_{3} at the para position)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L} * 3(15.8 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo- N phenylpropanamide $\mathbf{E} 1(45.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), both two different aromatic amines, and anhydrous 1,4-dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine (10 $\mathrm{mL} \times 4$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The organic solvent was evaporated and the yields were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Further KIE (kinetic isotope effect) experiments

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(11.4 \mathrm{mg}, 0.06 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L}^{*} \mathbf{3}(46.3 \mathrm{mg}, 0.09 \mathrm{mmol}$, $15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(588.0 \mathrm{mg}, 1.80 \mathrm{mmol}, 3.0$ equiv), and anhydrous THF (6.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2-bromo- N phenylpropanamide E1 ($136.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), $\mathbf{N} 53(96.6 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.0$ equiv) or N53-d ($99.6 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.0$ equiv), and anhydrous THF (6.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature. Taking 0.5 mL of the reaction solution at regular intervals. The reaction
mixture was diluted with 10 mL EtOAc and washed with brine $(10 \mathrm{~mL} \times 4)$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The yields of 53/53-d were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5trimethoxybenzene as an internal standard.

Competition experiments with aliphatic and aromatic amine

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L}^{* 3}(15.8 \mathrm{mg}, 0.03 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), and anhydrous 1,4-dioxane (2.0 mL). Then, the mixture was stirred at room temperature for 1 h . After that, 2 -chloro- N phenylpropanamide E1' ($36.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), both $\mathrm{BnNH}_{2}(21.4 \mathrm{mg}, 0.20$ mmol, 1.0 equiv) and $\mathrm{PhNH}_{2}(18.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) or (4 -(aminomethyl)aniline ($24.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv)), and anhydrous 1,4 -dioxane (2.0 mL) were sequentially added into the mixture and the reaction mixture was stirred at room temperature for 72 h . Upon completion (monitored by TLC), The reaction mixture was diluted with 10 mL EtOAc and washed with brine ($10 \mathrm{~mL} \times 4$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of celite. The organic solvent was evaporated and the yields were based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

(S)-2-((4-Aminobenzyl)amino)- N -phenylpropanamide (129)

According to General procedure A with 2-chloro- N-phenylpropanamide E1' $(36.7 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) and 4-(aminomethyl)aniline $\mathbf{N} 79(24.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) for 72 h , the reaction mixture was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right)$ to yield the product $\mathbf{1 2 9}$ as a yellowish oil $(38.8 \mathrm{mg}, 72 \%$ yield, 89% ee).
HPLC analysis: Chiralcel ODH (n-hexane $/ i-\mathrm{PrOH}=75 / 25$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), t_{\mathrm{R}}($ major $)=19.98 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=27.68 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12$ - $7.08(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,137.9,129.2,129.0,123.9,119.3,115.3,58.3$, 52.4, 19.7.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 270.1601$, found 270.1595 .

The deprotonation of aromatic amine using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base

In the glove box, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with dry $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv), aromatic amines (0.20 mmol, 1.0 equiv) and anhydrous DMSO- $d_{6}(3.0 \mathrm{~mL})$ were sequentially added into the mixture and the reaction mixture was stirred at rt for 12 h . The crude solvents were detected on ${ }^{1} \mathrm{H}$ NMR analysis.

4-OMe-PhNH2-DMSO. 10. fid

\qquad
duxy-n7-49-cru-1. 1. fid

$\begin{array}{llllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 \\ \text { fl (ppm) }\end{array}$
duxy-n7-47-cru-2-dmso. I. fid

 \rightarrow
duxy-n7-47-source-dmso. 1. fid

8. Computational studies

Computational Methods

All of the DFT calculations were carried out with the Gaussian 16 series of programs ${ }^{7}$. The B3LYP-D3 functional ${ }^{8-10}$ with a Becke-Johnson (BJ) damping function ${ }^{11}$ and the standard $6-31 \mathrm{G}(\mathrm{d})$ basis set (SDD basis set for Cu atom) was used for geometry optimizations. Harmonic vibrational frequency calculations were performed for all stationary points to determine whether they are local minima or transition structures and to derive thermochemical corrections for the enthalpies and free energies. The M06 ${ }^{12}$ functional with the $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set (SDD basis set for Cu atom) was used to calculate the singlepoint energies and give more accurate energy information. The solvent effects were considered by single-point calculations of the gas-phase stationary points with the SMD solvation model ${ }^{13}$ in 1,4-dioxane solvent.

Discussion on the possible $\mathbf{C u}$ intermediates

In order to identify the most stable $\mathrm{Cu}(\mathrm{III})$ intermediate, we resorted to calculation methods. As such, we have carried out preliminary density functional theory (DFT) studies using the reaction of substrate $\mathbf{E 1}$ and ligand $\mathbf{L} * 5(81 \%$ yield and 92% ee, Table 1) as the model system (Figure S 5). The proposed $\mathrm{Cu}(\mathrm{III})$ intermediates include three possibilities: the N,C-bound intermediate Int-130-singlet, the N,O-bound intermediate Int-131-singlet, and the O,C-bound intermediate Int-132-singlet (a similar structure was proposed by Kürti ${ }^{14}$). The DFT studies show that the singlet state Int-131-singlet and Int-132-singlet are less stable than Int-130-singlet by $34.3 \mathrm{kcal} / \mathrm{mol}$ and $10.8 \mathrm{kcal} / \mathrm{mol}$, respectively. It should be noted that more evidence is needed to support the proposed Int-130-singlet and further study is still ongoing in our laboratory.

Absolute energies and Cartesian coordinates for DFT-optimized compounds and transition states. Values are given in Hartree.

Int-B1

B3LYP-D3(BJ)/6-31G(d)•SCF energy: -4621.287967 a.u.
B3LYP-D3(BJ)/6-31G(d).Thermal correction to enthalpy: 0.576683
B3LYP-D3(BJ)/6-31G(d)•Thermal correction to Gibbs free energy: 0.473837
M06/6-311+G(d,p)•SCF energy in solution: -4623.178529 a.u.

C	-1.11422200	-1.10450000	-0.60865100
C	0.23672500	-1.36777200	-0.59444500
C	1.15509000	-0.40779400	-1.10414400
C	0.64220000	0.78887400	-1.69431200
C	-0.75455000	1.03162800	-1.68197000
C	-1.61375100	0.10891000	-1.13579200
H	-1.78479800	-1.86169200	-0.21739500
C	1.57110300	1.68808700	-2.26831400
H	-1.12587100	1.95895500	-2.11047700
H	-2.68340100	0.29775800	-1.11920300
C	2.91227500	1.38323000	-2.26624900
C	3.33852000	0.21730500	-1.59945300
H	1.20594100	2.61289900	-2.70811400
H	3.64776800	2.04358500	-2.71308900
H	4.38894200	-0.03749000	-1.49899200
N	2.49826000	-0.62063400	-1.01551400
S	0.71595800	-3.05582900	-0.16235400
O	-0.46244700	-3.64938500	0.52411200
O	1.08336000	-3.67596700	-1.45247500
N	1.93125200	-2.86291600	0.87456100
C	2.20287900	-3.98633700	1.77519300
C	2.16748300	-5.39844200	1.15594000
C	3.61242400	-3.77779300	2.35406800
H	1.46482800	-3.98031900	2.59630000
C	2.45955700	-6.45843200	2.22742400
H	2.90357900	-5.44290200	0.34448500
H	1.18463700	-5.58187700	0.71630100
C	3.86435700	-4.77043300	3.49798400
H	4.31844600	-3.98983800	1.54411000
C	3.79055600	-6.20284000	2.94613300
H	2.45995000	-7.45917500	1.77651400
H	1.64566800	-6.44962100	2.96799200
H	4.84672300	-4.59967800	3.95216700
H	3.11383400	-4.63964400	4.29000100
H	3.93711500	-6.92918500	3.75687100
H	4.61719300	-6.34660100	2.23654500
N	3.85659800	-2.34270100	2.66387300
C	5.26722400	-2.08677200	2.98687600
H	5.41393800	-1.00987400	3.07607400
H	5.55656500	-2.56276300	3.93585200
H	5.88685000	-2.45925500	2.16911200
C	2.99395100	-1.80250100	3.72329800
H	3.24544800	-2.23345900	4.70435700
H	3.13068300	-0.71995800	3.75900600
H	1.94970700	-2.01765900	3.49619900
Cu	3.33606300	-1.45767200	0.74756400
C	1.11460100	3.22398200	1.18944600

C	2.34642300	2.57884200	1.17598900
C	2.45308600	1.20278700	1.49198000
C	1.25866000	0.53149300	1.82607600
C	0.02929900	1.18606800	1.84260000
C	-0.05850700	2.54033000	1.52381600
H	1.07066300	4.28030200	0.92968600
H	3.24384500	3.12795500	0.92922600
H	1.29009000	-0.53289400	2.02642600
H	-0.86597000	0.61898600	2.08381600
H	-1.01801600	3.05142100	1.52992600
N	3.64900300	0.47605200	1.37804100
C	4.83983600	1.14605600	1.59881200
O	4.92712100	2.25861500	2.16712300
C	6.04200800	0.47892300	1.12099400
C	7.38339700	1.06862000	1.37410400
H	8.01744300	0.38000900	1.95639200
H	7.92711700	1.25162500	0.43419000
H	7.28158800	2.01050000	1.91964900
H	5.96474400	-0.45384800	0.57189000
Br	5.32385400	-2.59476300	-0.58119100

Int-130-singlet
B3LYP-D3(BJ)/6-31G(d) SCF energy: -462 1.299015 a.u.
B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.577478
B3LYP-D3(BJ)/6-31G(d)•Thermal correction to Gibbs free energy: 0.475797
M06/6-311+G(d,p) SCF energy in solution: -4623.198158 a.u.

C	0.29993300	-3.01059800	-1.35173100
C	1.44657100	-2.24530600	-1.35540700
C	1.35082900	-0.82102100	-1.38940100
C	0.05079000	-0.21830800	-1.42422500
C	-1.10635500	-1.03986400	-1.42635900
C	-0.98129800	-2.40840900	-1.38862000
H	0.40702700	-4.08874400	-1.32709800
C	-0.01331200	1.19732000	-1.42872000
H	-2.08587200	-0.56743000	-1.45003600
H	-1.86605100	-3.03933500	-1.38545600
C	1.14968800	1.92988700	-1.38789700
C	2.38447900	1.23736300	-1.33827900
H	-0.98628600	1.68334600	-1.45637600
H	1.13760000	3.01566600	-1.38266200
H	3.32233600	1.77978900	-1.25847200
N	2.48439400	-0.07550400	-1.34338800
S	3.05322100	-3.10727600	-1.22542900
O	2.65982400	-4.53270500	-1.31257100
O	3.90913800	-2.57082400	-2.29200200
N	3.65846400	-2.76551900	0.23271000
C	2.97482100	-3.45928400	1.34048600

C	3.51155000	-4.87583200	1.60492900
C	3.13014800	-2.65325100	2.64118100
H	1.89666700	-3.55290500	1.12042600
C	2.70389900	-5.55070800	2.72262200
H	4.56953900	-4.78892800	1.88220800
H	3.45135700	-5.45342200	0.68129400
C	2.22171600	-3.26151100	3.72044400
H	4.17092300	-2.75958700	2.96261200
C	2.67427200	-4.70412400	4.00275900
H	3.11142100	-6.54685200	2.93941900
H	1.67213200	-5.70545500	2.37098100
H	2.26867600	-2.67578200	4.64503100
H	1.17333800	-3.25942900	3.38824600
H	2.01969200	-5.16524700	4.75487900
H	3.68343600	-4.67130400	4.43549600
N	2.99257900	-1.18785500	2.40086700
C	3.39725500	-0.41540000	3.59038400
H	3.34487300	0.64731900	3.35685100
H	2.73014200	-0.61816400	4.44179500
H	4.42852400	-0.67328100	3.83755900
C	1.64595000	-0.78106800	1.97912100
H	0.92261700	-0.85856900	2.80577500
H	1.68041700	0.25793700	1.64153100
H	1.30454900	-1.40397500	1.15482300
Cu	4.40422700	-1.02649000	0.78450600
C	5.96219500	2.78532800	3.61242000
C	6.02637300	1.90363400	2.53758900
C	4.93862500	1.79842700	1.65168300
C	3.80507100	2.60049100	1.86668800
C	3.75099500	3.48683700	2.94227600
C	4.83021100	3.58086400	3.82317400
H	6.80093900	2.84546800	4.30185200
H	6.88137500	1.25688400	2.38792700
H	2.96879500	2.50547600	1.17994100
H	2.86464900	4.09890300	3.09510600
H	4.79107200	4.26584500	4.66676400
N	4.90397700	0.87347600	0.59821100
C	6.01033100	0.60257000	-0.16697900
O	7.04777400	1.24384900	-0.30388600
C	5.68303000	-0.72134500	-0.77213400
C	6.75363100	-1.73819100	-0.99386600
H	6.31150700	-2.70417000	-1.24264700
H	7.36165900	-1.40507400	-1.85124200
H	7.39919500	-1.82901100	-0.11872100

H	4.87462100	-0.71441100	-1.50128600
Br	6.49263100	-1.73279200	2.53833600

Int-131-singlet

B3LYP-D3(BJ)/6-31G(d)•SCF energy: -4621.250571 a.u.
B3LYP-D3(BJ)/6-31G(d) Thermal correction to enthalpy: 0.576151
B3LYP-D3(BJ)/6-31G(d)•Thermal correction to Gibbs free energy: 0.472952
M06-2X/6-311+G(d,p)•SCF energy in solution: -4623.140723 a.u.

C	0.41862800	-2.68435400	-1.49614600
C	1.56388100	-1.91675700	-1.55841100
C	1.46688800	-0.49082600	-1.53754500
C	0.16308700	0.10318800	-1.45198000
C	-0.98994900	-0.72089400	-1.38847000
C	-0.86224700	-2.08914900	-1.40976500
H	0.52829200	-3.76201400	-1.52526400
C	0.08661100	1.51755100	-1.41474600
H	-1.96800200	-0.24956400	-1.31858900
H	-1.74310300	-2.72388200	-1.36061600
C	1.24234300	2.25869400	-1.45446800
C	2.48120200	1.57591600	-1.52744000
H	-0.88993300	1.99314400	-1.34934000
H	1.22434300	3.34397600	-1.42068800
H	3.41236900	2.13632700	-1.53716500
N	2.59660000	0.26486000	-1.57037800
S	3.16496400	-2.79834500	-1.54227600
O	2.75613500	-4.20694800	-1.76256700
O	4.02464400	-2.17392700	-2.54961200
N	3.77035500	-2.60151100	-0.05843100
C	3.05608200	-3.35329500	0.99058900
C	3.50573700	-4.81743700	1.13200800
C	3.27847000	-2.67738300	2.35474100
H	1.97030500	-3.36262500	0.78420100
C	2.66672900	-5.52492100	2.20713900
H	4.56985400	-4.81720800	1.39862200
H	3.39858900	-5.31570000	0.16749400
C	2.35069600	-3.30158500	3.40360500
H	4.31652000	-2.87438900	2.64071400
C	2.70833700	-4.79019600	3.55540300
H	3.00768400	-6.56079500	2.33527500
H	1.62243900	-5.58114500	1.86249100
H	2.46097900	-2.79261900	4.36880300
H	1.29860800	-3.19877300	3.09978000
H	2.03362600	-5.27081400	4.27710400
H	3.72284400	-4.86033600	3.97061700
N	3.23037000	-1.19816500	2.22597400
C	3.75798200	-0.49885900	3.41079200
H	3.85600900	0.56064300	3.16333300
H	3.08203300	-0.61272000	4.27284600
H	4.74854300	-0.90010800	3.63524600

C	1.91737600	-0.65500000	1.85245800
H	1.21854300	-0.68770100	2.70239100
H	2.04740400	0.38170800	1.53217300
H	1.49640700	-1.22572900	1.02692700
Cu	4.54988300	-0.90281500	0.66628400
C	6.49144800	-0.43303600	-4.14174600
C	5.97346900	0.08217400	-2.96094100
C	6.28669700	-0.53310900	-1.73220000
C	7.06652100	-1.71075700	-1.71651500
C	7.56732500	-2.22099100	-2.90457600
C	7.28937700	-1.58156500	-4.11903300
H	6.24435200	0.03681700	-5.09074300
H	5.29601700	0.92751900	-2.96861000
H	7.24455100	-2.17657800	-0.75077800
H	8.16828900	-3.12643600	-2.89282900
H	7.67302600	-1.99246300	-5.04986200
N	5.87755200	-0.07073500	-0.50317000
C	5.41951700	1.19769900	-0.21976400
O	4.49751600	1.12767800	0.71411100
C	5.94042300	2.37076200	-0.72438800
C	5.67545600	3.68047500	-0.05343700
H	4.94466000	4.30284200	-0.59834700
H	5.25813700	3.50317600	0.94426300
H	6.58947500	4.28428800	0.04023700
H	6.61105300	2.32684900	-1.57425600
Br	6.68323200	-2.09542300	2.16869600

Int-132-singlet
B3LYP-D3(BJ)/6-31G(d).SCF energy: -4621.284884 a.u.
B3LYP-D3(BJ)/6-31G(d)•Thermal correction to enthalpy: 0.577271
B3LYP-D3(BJ)/6-31G(d)•Thermal correction to Gibbs free energy: 0.474312
M06/6-311+G(d,p)•SCF energy in solution: -4623.179483 a.u.

C	0.34151600	-2.58503700	-1.38373100
C	1.61252000	-2.05797700	-1.30364200
C	1.79595400	-0.64204000	-1.29054100
C	0.64151600	0.20245600	-1.37196600
C	-0.64991700	-0.37735200	-1.46877200
C	-0.79467900	-1.74449400	-1.46926700
H	0.23676400	-3.66374900	-1.38755300
C	0.85057700	1.60344500	-1.32027400
H	-1.51617200	0.27748300	-1.53025900
H	-1.78315300	-2.19083600	-1.53503400
C	2.12582000	2.09624500	-1.17539100
C	3.19977000	1.17751700	-1.08220200
H	-0.00759000	2.26898800	-1.38375500
H	2.32036500	3.16273800	-1.11870500
H	4.21538800	1.52641900	-0.91532500

N	3.04617100	-0.12960000	-1.14659300
S	3.01565900	-3.22422300	-1.18118600
O	2.34893600	-4.54414500	-1.23964200
O	3.93724200	-2.86510200	-2.26778100
N	3.71940300	-3.01135500	0.25782800
C	2.93438300	-3.50731900	1.40903900
C	3.18546100	-4.99006300	1.72092500
C	3.29221500	-2.69370800	2.66672500
H	1.85514200	-3.38849900	1.20945000
C	2.31584200	-5.44045900	2.90408900
H	4.25151400	-5.10880800	1.95078600
H	2.96504400	-5.58046200	0.82945300
C	2.34618400	-3.06760400	3.81427400
H	4.31130400	-2.97775200	2.94921600
C	2.52630400	-4.55900100	4.14394400
H	2.52377800	-6.49002200	3.14941900
H	1.25678400	-5.39350000	2.60649600
H	2.56293200	-2.46045500	4.70126500
H	1.30021600	-2.87365700	3.53498900
H	1.83861200	-4.85520100	4.94754500
H	3.54587800	-4.70955600	4.52340500
N	3.40815800	-1.24458300	2.34456300
C	4.07984100	-0.47297500	3.40656600
H	4.30339700	0.52391100	3.01797200
H	3.44056300	-0.38079800	4.29856600
H	5.02407900	-0.96397500	3.65021700
C	2.12899200	-0.61168000	2.00353800
H	1.48782100	-0.50215400	2.89166900
H	2.32098000	0.38075500	1.58860600
H	1.59805800	-1.20402000	1.26031600
Cu	4.74486600	-1.43729300	0.70650300
C	8.75353100	2.21900700	2.75248200
C	8.21329300	1.24203600	1.92090400
C	8.17701500	1.44289100	0.52530200
C	8.70656300	2.63340200	0.00137800
C	9.23655100	3.61020400	0.84461700
C	9.26332400	3.41140300	2.22630500
H	8.77762800	2.04644700	3.82659900
H	7.82902900	0.30840600	2.32337900
H	8.69416300	2.77322900	-1.07635800
H	9.63683400	4.52816900	0.41801000
H	9.68244500	4.16961300	2.88381700
N	7.71669900	0.44733200	-0.35083400
C	6.57520900	-0.09815300	-0.14109000

O	5.63845700	0.23192300	0.74084900
C	6.05203600	-1.30194800	-0.83379000
C	6.90820200	-2.50667300	-1.05110100
H	6.30849700	-3.33789700	-1.42448300
H	7.66473700	-2.24164300	-1.80805900
H	7.42471000	-2.78912000	-0.13126400
H	5.27668000	-1.11305300	-1.57390400
Br	6.77743300	-2.54940400	2.51331600

9. References

1. Zhang, Y.-F.; Dong, X.-Y.; Cheng, J.-T.; Yang, N.-Y.; Wang, L.-L.; Wang, F.-L.; Luan, C.; Liu, J.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J. Am. Chem. Soc. 2021, 143, 15413-15419.
2. Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light. Science 2016, 351, 681-684.
3. Tanasova, M.; Yang, Q.; Olmsted, C. C.; Vasileiou, C.; Li, X.; Anyika, M.; Borhan, B. An Unusual Conformation of α-Haloamides due to Cooperative Binding with Zincated Porphyrins. Eur. J. Org. Chem. 2009, 2009, 4242-4253.
4. Wang, F.-L.; Yang, C.-J.; Liu, J.-R.; Yang, N.-Y.; Dong, X.-Y.; Jiang, R.-Q.; Chang, X.-Y.; Li, Z.-L.; Xu. G.-X.; Yuan, D.-L.; Zhang, Y.-S.; Gu, Q.-S.; Hong, X.; Liu, X.-Y. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent C $\left(s p^{3}\right)-\mathrm{C}(s p)$ Cross-Coupling of Tertiary Electrophiles with Alkynes. Nat. Chem. 2022, 14, 949-957.
5. Chen, C.; Fu, G. C. Copper-Catalysed Enantioconvergent Alkylation of Oxygen Nucleophiles. Nature 2023, 618, 301-307.
6. Chen, J.-J.; Fang, J.-H.; Du, X.-Y.; Zhang, J.-Y.; Bian, J.-Q.; Wang, F.-L.; Luan, C.; Liu, W.L.; Liu, J.-R.; Dong, X.-Y.; Li, Z.-L.; Gu, Q.-S.; Dong Z.; Liu, X.-Y. Enantioconvergent CuCatalysed N-Alkylation of Aliphatic Amines. Nature 2023, 618, 294-300.
7. Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
8. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
9. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
10. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
11. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465.
12. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215-241.
13. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396.
14. Zhou, Z.; Behnke, N. E.; Kürti, L. Copper-Catalyzed Synthesis of Hindered Ethers from α Bromo Carbonyl Compounds. Org. Lett. 2018, 20, 5452-5256.
15. NMR spectra

[^0]

f /1 ||

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | $\underset{1}{90}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

190
$\begin{array}{llllllllll}80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\end{array}$

	$\stackrel{\square}{6}$	б'	$\stackrel{\square}{6}$
Nべ¢	¢்	i	$\stackrel{\text { ® }}{ }$
		\|	\|

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								110			80	70	60	50	40	30	20	10	0

[^1]

$\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 10 & 10 & 0 & -1 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

 f1 (ppm)

$\left.\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\sim}{100} \\ \text { f1 }(\mathrm{ppm})\end{array}\right)$

[^2]

\[

$$
\begin{gathered}
\hat{C} \\
\text { C } \\
\text { ín }
\end{gathered}
$$
\]

[^3]

$\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

$$
\underbrace{o-\infty}
$$

$$
\stackrel{\bar{\sigma}}{\stackrel{\rightharpoonup}{r}}
$$

$$
\begin{aligned}
& 8 . \\
& i \\
& i
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{\infty} \\
& ? \\
& ?
\end{aligned}
$$

$\begin{array}{llllllllllllllllllllllllllllll}1 & 1 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180\end{array}$

[^4]

[^5]

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

$\begin{array}{lllllllllllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180\end{array}$

[^6]

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (p										

$\underbrace{\infty}$
5

1

65

[^7]

[^8]

[^9]

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

[^10]

[^11]

[^12]

	$\stackrel{ \pm}{\square}$	万玉ynoraty	Noco
E	-0		$\stackrel{\text { N }}{\text { No }}$
I	11	-	-

N
à
i

| 1 | |
| :--- |
| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

[^13]

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\int 1$

$: 00$	190	180	170	160	150	140	130	120	110	100 $\mathrm{fl}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0

[^14](10)

[^15](300

| 100 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |
| $\mathrm{fl}(\mathrm{ppm})$ | |

$$
\begin{aligned}
& \text { Coses) } \\
& \begin{array}{llllllllllllllllllllllll}
10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140
\end{array}
\end{aligned}
$$

[^16](30

(900

[^17](900

(10)

108

108

[^18]

[^19]

								1					1			1			
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^20]

[^21]

180	170	160	150	140	130	120	110	100	$\begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$	80	70	60	50	40	30	20	10

(S)-118

\qquad

(S)-118

[^22]

等
$\stackrel{n}{2}$

90	180	170	160	150	140	130	120	110	100	$\begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$	80	70	60	50	40	30	20	10

[^23]

11. HPLC spectra

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.306	4265646	50.010
2	12.213	4264025	49.990

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.370	1998079	98.314
2	12.305	34273	1.686

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.163	7302944	49.778
2	9.185	7368152	50.222

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	7.193	55270	2.269
2	9.202	2380865	97.731

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area $\%$
1	10.070	6062281	49.852
2	15.333	6098395	50.148

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	9.291	10829776	98.430
2	14.509	172754	1.570

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	13.505	1579746	49.950
2	14.645	1582937	50.050

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.545	9276405	98.912
2	14.732	102069	1.088

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	12.286	4601573	49.948
2	17.245	4611163	50.052

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.317	187243	1.541
2	17.250	11959951	98.459

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.968	1519561	49.982
2	9.895	1520680	50.018

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area $\%$
1	8.926	19844274	98.325
2	9.870	338004	1.675

maU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.731	1852188	49.935
2	14.914	1857026	50.065

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.733	20187810	98.257
2	14.952	358066	1.743

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	15.225	1270447	49.934
2	16.697	1273824	50.066

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	15.264	62207	0.940
2	16.728	6553118	99.060

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.114	2619248	50.004
2	13.297	2618849	49.996

mAU

Peak Table
PDA Ch 1254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	12.105	9734067	97.770
2	13.295	222068	2.230

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.104	3967324	49.972
2	12.406	3971756	50.028

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.106	10111451	98.501
2	12.429	153885	1.499

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.438	8109151	49.697
2	14.586	8207978	50.303

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.463	34236431	98.431
2	14.660	545861	1.569

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.205	4962851	50.024
2	17.967	4958102	49.976

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.247	7834121	98.240
2	18.049	140343	1.760

mAU

Peak Table
PDA Chl $254 n \mathrm{~m}$

Peak\#	Ret. Time	Area	Area\%
1	17.130	3016540	49.956
2	23.800	3021830	50.044

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	17.189	1057410	98.151
2	23.880	19924	1.849

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.465	13464507	49.658
2	13.831	13650183	50.342

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.442	25756989	93.926
2	13.840	1665605	6.074

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.131	5179980	49.732
2	17.625	5235870	50.268

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.120	8391910	96.883
2	17.637	269974	3.117

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.647	8581532	49.682
2	20.076	8691263	50.318

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.820	5389063	97.332
2	19.262	147740	2.668

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.028	16542704	49.601
2	18.132	16808619	50.399

mAU

Peak Table
PDA Ch1 254 nm

Peak:	Ret. Time	Area	Area\%
1	10.055	13528582	98.393
2	18.259	220997	1.607

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.251	11114164	49.923
2	17.139	11148283	50.077

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.267	10002093	98.541
2	17.207	148050	1.459

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	12.453	18806980	49.898
2	14.944	18883761	50.102

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	12.600	262611	2.198
2	15.041	11686542	97.802

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.460	358223	49.906
2	12.501	359575	50.094

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.491	11165273	98.821
2	12.580	133190	1.179

Peak Table
检测器A Ch1 254nm

Peak\＃	Ret．Time	Area	Area\％
1	5.273	4410693	49.816
2	6.242	4443344	50.184

mV

Peak Table
检测器A Ch1 $254 n m$

Peak\＃	Ret．Time	Area	Area\％
1	5.277	216216	0.904
2	6.242	23714554	99.096

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.082	6825565	49.969
2	11.754	6834073	50.031

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.072	26662601	94.611
2	11.778	1518735	5.389

Peak Table
检测器A Ch2 240nm

Peak\＃	Ret．Time	Area	Area\％
1	7.409	754937	49.859
2	8.804	759203	50.141

mV

Peak Table

| 检测器A Ch2 240nm |
| :--- | :---: | :---: | :---: |
| Peak\＃ Ret．Time Area Area\％
 1 7.387 1014543 3.333
 2 8.732 29423355 96.667 |

Peak Table
检测器A Ch2 240nm

Peak\＃	Ret．Time	Area	Area\％
1	8.059	1495854	50.420
2	10.438	1470962	49.580

mV

Peak Table

检测器A Ch2 240nm						
Peak\＃	Ret．Time	Area	Area\％			
1	8.081	628082	4.876			
2	10.416	12254028	95.124			

$m A U$

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.033	2620395	50.010
2	24.158	2619362	49.990

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	14.841	6860444	99.110
2	23.801	61581	0.890

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.285	9324991	49.824
2	22.894	9390738	50.176

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	11.263	45023910	97.039
2	23.061	1374000	2.961

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	14.939	27475857	49.884
2	20.571	27604103	50.116

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	15.233	40536258	97.377
2	21.198	1092068	2.623

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.763	8315740	49.782
2	21.974	8388579	50.218

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.812	12368693	98.003
2	22.234	252013	1.997

mAU

Peak Table
PDA Ch 1254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	13.200	3692970	50.023
2	25.248	3689598	49.977

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.186	13272665	98.300
2	25.358	229474	1.700

mAU

Peak Table
PDA Chl 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.099	2306466	50.164
2	17.704	2291426	49.836

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.058	17549273	95.212
2	17.682	882598	4.788

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.677	5388649	49.950
2	14.389	5399436	50.050

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.790	3170694	97.783
2	14.558	71889	2.217

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.462	2645872	49.878
2	8.548	2658777	50.122

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.384	3663683	97.581
2	8.312	90803	2.419

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.318	1671492	50.015
2	15.386	1670522	49.985

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.268	18780201	93.979
2	15.358	1203156	6.021

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	5.454	4309950	49.640
2	5.810	4372416	50.360

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	5.486	14397770	98.030
2	5.847	289325	1.970

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.058	5355561	49.781
2	12.111	5402698	50.219

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	8.048	17669302	96.406
2	12.121	658689	3.594

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.161	736692	49.507
2	12.053	751359	50.493

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.157	7006054	96.935
2	12.086	221501	3.065

mAU

Peak Table
PDA Ch2 270nm

Peak\#	Ret. Time	Area	Area\%
1	7.120	776132	49.966
2	12.709	777196	50.034

Peak Table
PDA Ch2 270nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.064	17731095	94.899
2	12.571	953015	5.101

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.146	11165433	49.727
2	12.199	11287837	50.273

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.161	21049004	93.973
2	12.241	1349986	6.027

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.692	2869275	50.052
2	16.688	2863313	49.948

mAl

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.620	19530215	93.898
2	16.674	1269170	6.102

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	6.373	4438844	50.476
2	7.563	4355071	49.524

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.336	345095	2.370
2	7.481	14215048	97.630

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.713	10839097	49.882
2	11.435	10890385	50.118

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.713	20659970	98.315
2	11.441	354058	1.685

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.005	10271286	49.738
2	6.806	10379291	50.262

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	6.016	3011026	97.966
2	6.820	62514	2.034

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	5.819	1129317	50.466
2	7.341	1108467	49.534

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	5.804	27537239	95.641
2	7.325	1255089	4.359

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.406	15480797	50.276
2	13.380	15310665	49.724

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.100	471155	4.071
2	13.373	11101247	95.929

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.456	39820511	50.207
2	19.543	39491840	49.793

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	15.295	146447232	97.334
2	19.606	4011362	2.666

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.339	46306082	49.738
2	18.157	46793420	50.262

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.349	51805978	96.940
2	18.199	1635404	3.060

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	16.806	1524134	50.249
2	20.430	1509051	49.751

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.763	6951817	93.429
2	20.428	488932	6.571

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.038	18662188	49.109
2	13.552	19339384	50.891

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.797	685047	2.241
2	12.473	29884164	97.759

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.663	13665923	50.164
2	16.912	13576336	49.836

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.648	747067	2.195
2	16.869	33284285	97.805

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.717	1367007	49.576
2	17.158	1390400	50.424

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.659	6264869	94.946
2	17.078	333492	5.054

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.689	8240026	49.864
2	15.974	8284960	50.136

nAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.689	47264	2.083
2	16.065	2222253	97.917

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.329	2461894	49.700
2	12.251	2491646	50.300

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.300	6367282	96.090
2	12.245	259067	3.910

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	14.561	36188063	50.002
2	18.168	36185209	49.998

mV

Peak Table
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.468	1729741	2.427
2	18.106	69549677	97.573

mAU

Peak Table

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.326	579402	1.347
2	13.737	42445124	98.653

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.072	4057844	49.964
2	17.505	4063745	50.036

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.085	338079	1.668
2	17.491	19924648	98.332

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	16.869	3300373	50.383
2	26.572	3250228	49.617

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	16.913	393575	2.329
2	26.448	16507176	97.671

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.769	8497771	50.198
2	22.634	8430771	49.802

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.781	142859	1.624
2	22.644	8655992	98.376

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	7.430	3269203	50.524
2	9.024	3201334	49.476

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	7.446	101219	1.398
2	9.018	7140419	98.602

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.712	5221940	50.120
2	11.972	5196902	49.880

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.770	165420	1.890
2	11.921	8586065	98.110

mAU

Peak Table
PDA Ch1 254 nm

Peak $=$	Ret. Time	Area	Area $\%$
1	9.078	4664357	49.963
2	16.491	4671176	50.037

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.099	440773	8.615
2	16.519	4675545	91.385

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.485	8163017	49.921
2	16.527	8188879	50.079

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area
1	12.876	818210	1.739
2	16.830	46243167	98.261

mAU

Peak Table

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	27.800	36526882	96.145
2	36.475	1464433	3.855

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	21.233	8212455	50.102
2	23.881	8179049	49.898

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	21.381	660744	1.847
2	23.675	35120608	98.153

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.634	17012598	49.902
2	20.802	17079695	50.098

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.668	56357470	97.301
2	20.787	1563478	2.699

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	15.469	63145372	49.290
2	19.914	64965811	50.710
mAU			

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.445	141433283	96.579
2	19.956	5009872	3.421

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	38.296	29659145	50.174
2	42.155	29453338	49.826

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	37.951	149954649	95.528
2	41.893	7019324	4.472

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	27.874	18408196	49.940
2	31.257	18452298	50.060

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	28.023	17989280	95.473
2	32.057	853070	4.527

mAU

Peak Table
PDA Ch1 254 nm

Peak $=$	Ret. Time	Area	Area $\%$
1	17.528	4478376	49.994
2	34.508	4479390	50.006

mAU

Peak Table
PDA Ch 1254 nm

Peak	Ret. Time	Area	Area $\%$
1	17.562	7525137	95.028
2	34.686	393765	4.972

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.451	7232965	50.146
2	26.201	7190715	49.854

mV

Peak Table
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.828	126791	4.015
2	26.441	3031161	95.985

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	26.697	21214385	50.104
2	37.493	21126658	49.896

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	28.608	978067	7.936
2	37.398	11346983	92.064

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	25.121	5014627	50.002
2	34.391	5014314	49.998

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	25.396	847139	8.688
2	34.094	8903910	91.312

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.375	9314825	49.966
2	14.399	9327616	50.034

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.391	29967214	97.897
2	14.477	643720	2.103

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.326	8878656	50.170
2	9.226	8818465	49.830

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.304	28575324	96.280
2	9.209	1104118	3.720

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	6.942	9479317	49.865
2	8.551	9530745	50.135

maU PDA Multi 1254nm, 4nm
Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	6.918	19191015	96.576
2	8.547	680441	3.424

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area $\%$
1	5.057	4457018	50.444
2	6.798	4378492	49.556

mAU

Peak Table
检测器A Ch1 254 nm

Peak	Ret．Time	Area	Area\％
1	5.046	13458742	90.554
2	6.789	1403876	9.446

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	5.406	10677067	49.506
2	8.364	10890016	50.494

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	5.406	18066819	92.817
2	8.371	1398113	7.183

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	39.770	3449070	50.312
2	45.033	3406270	49.688

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	40.121	28563629	97.958
2	44.240	595561	2.042

mAU

Peak Table

Peak\#	Ret. Time	Area	Area\%
1	10.482	1643745	50.112
2	18.064	1636379	49.888

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.434	20837793	92.532
2	18.031	1681776	7.468

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.286	5293707	49.830
2	19.685	5329828	50.170

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.302	14001066	97.690
2	19.726	331119	2.310

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area $\%$
1	14.551	1243883	50.188
2	27.482	1234578	49.812

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	14.440	15377019	96.608
2	27.234	539978	3.392

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.390	5582456	49.778
2	14.775	5632191	50.222

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.410	5190742	94.951
2	14.813	276020	5.049

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.668	9778324	49.802
2	18.919	9856204	50.198

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.671	2876703	96.925
2	18.818	91263	3.075

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area\%
1	11.343	19548161	49.561
2	22.568	19894307	50.439

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.374	74546398	97.804
2	22.765	1674184	2.196

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.386	7090840	49.958
2	8.426	7102800	50.042

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	6.372	39611044	97.629
2	8.436	962111	2.371

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.172	3079600	49.748
2	30.193	3110797	50.252

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area $\%$
1	14.436	517517	2.213
2	29.910	22869863	97.787

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.238	11472820	49.787
2	18.186	11570805	50.213

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.250	1143269	3.628
2	18.138	30369360	96.372

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.698	6436262	49.952
2	11.900	6448740	50.048

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.528	22850461	97.618
2	11.829	557579	2.382

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.945	2716409	49.852
2	14.271	2732510	50.148

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.922	20986995	94.062
2	14.214	1324852	5.938

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	15.060	4215941	50.114
2	19.364	4196823	49.886

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	15.043	15164922	92.673
2	19.364	1199055	7.327

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.830	18893123	50.019
2	13.810	18878415	49.981

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.518	20620995	94.863
2	13.305	1116661	5.137

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.931	3327483	49.709
2	15.197	3366507	50.291

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.871	10590261	93.813
2	15.161	698481	6.187

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Area	Area $\%$
1	7.643	2677940	49.254
2	8.430	2759038	50.746

maU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	7.544	20032053	93.376
2	8.388	1421043	6.624

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.726	33060607	48.720
2	11.518	34797171	51.280

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.208	40418324	93.394
2	12.659	2859021	6.606

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.909	2466852	48.708
2	13.160	2597707	51.292

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.258	326220	4.269
2	12.241	7315197	95.731

mAU

Peak Table
PDA Ch1 254 nm

Peak\#\#	Ret. Time	Area	Area $\%$
1	11.268	6448319	49.690
2	13.512	6528686	50.310

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	11.240	722125	4.865
2	13.320	14120562	95.135

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.148	10731727	49.839
2	21.386	10801085	50.161

mAU

Peak Table
PDA Ch1 254nm
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	16.891	741183	6.576
2	20.722	10530597	93.424

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	12.630	8168819	49.890
2	15.855	8204832	50.110

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.470	21037812	94.861
2	15.458	1139729	5.139

mAU

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.225	5475700	49.840
2	12.029	5510922	50.160

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.019	367119	4.067
2	11.805	8659023	95.933

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.150	1499518	50.169
2	11.237	1489389	49.831

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.131	401765	5.156
2	11.260	7390830	94.844

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.019	5400249	50.170
2	11.143	5363634	49.830

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.077	277870	8.620
2	11.226	2945562	91.380

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.294	1962465	50.142
2	8.050	1951361	49.858

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.286	7041517	94.898
2	8.054	378609	5.102

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	12.309	576929	49.953
2	13.226	578013	50.047

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	12.290	440896	5.018
2	13.123	8345873	94.982

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.043	16670845	49.705
2	9.159	16868845	50.295

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.055	9058155	94.921
2	9.175	484703	5.079

Peak Table
PDA Ch 1254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.186	2134124	49.755
2	8.301	2155147	50.245

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.175	1842081	94.859
2	8.293	99825	5.141

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	8.544	47232786	48.061
2	10.481	51044944	51.939

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	8.573	1566865	5.853
2	10.091	25205150	94.147

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	5.175	5732241	49.611
2	5.908	5822087	50.389

mV

Peak Table
检测器A Ch1 254nm

Peak\＃	Ret．Time	Area	Area\％
1	5.184	3239926	90.961
2	5.920	321969	9.039

mV

Peak Table
检测器A Ch1 254 nm

Peak\＃	Ret．Time	Area	Area\％
1	9.273	43931340	49.549
2	10.183	44730306	50.451

mV

Peak Table

检测器A Ch1 254nm				
Peak\＃	Ret．Time	Area		
1	9.394	9116024		
2	10.309	572016		

Peak Table

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.499	4124804	93.916
2	12.930	267200	6.084

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.663	4328891	50.884
2	10.848	4178460	49.116

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	8.144	63120743	94.938
2	10.385	3365207	5.062

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.149	1031348	50.025
2	13.988	1030334	49.975

mAU

Peak Table
PDA Ch1 254nm
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	6.954	11968169	94.000
2	13.478	763866	6.000

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	19.372	6557095	50.084
2	25.406	6535218	49.916

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	17.433	48797241	93.265
2	22.839	3523909	6.735

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	20.079	13907920	49.996
2	25.129	13909964	50.004

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	20.029	145534	6.117
2	24.859	2233627	93.883

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.332	16585452	49.392
2	11.371	16993668	50.608

maU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%
1	10.377	426656	2.641
2	11.383	15727289	97.359

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	14.042	17712220	49.568
2	16.909	18021191	50.432

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.761	91901026	95.779
2	16.830	4049885	4.221

maU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.050	10676800	50.424
2	10.806	10497369	49.576

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.386	11705583	95.184
2	11.129	592240	4.816

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	9.479	1148247	49.073
2	11.311	1191626	50.927

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	9.146	1679299	6.845
2	11.038	22854871	93.155

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area $\%$
1	10.226	34228320	48.957
2	11.670	35687001	51.043

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	10.629	13838125	94.924
2	12.060	740026	5.076

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	15.439	2107415	50.054
2	19.392	2102873	49.946

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.527	316744	4.477
2	19.518	6758693	95.523

mAU

Peak Table
PDA Chl 254 nm

Peak\#	Ret. Time	Area	Area\%
1	7.127	4679468	49.875
2	7.868	4703007	50.125

mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.161	1605906	96.182
2	7.924	63748	3.818

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.666	4631552	49.908
2	12.908	4648715	50.092

mAU

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Area	Area\%
1	11.685	3539216	98.033
2	12.949	71008	1.967

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.036	5189872	49.757
2	13.239	5240488	50.243

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	10.225	5307150	97.664
2	13.483	126933	2.336

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.099	528060	50.112
2	16.724	525706	49.888

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	11.112	7549434	98.255
2	16.776	134071	1.745

Peak Table

Peak\＃	Ret．Time	Area	Area\％
1	20.060	5820179	50.827
2	27.708	5630878	49.173

mV

Peak Table

检测器A Ch1 254 nm			
Peak\＃	Ret．Time	Area	Area\％
1	19.980	4709144	94.510
2	27.675	273557	5.490

[^0]:

[^1]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{llllllll}100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 20 & 10 & 0\end{array}$

[^2]: $\left.\begin{array}{llllllllllllllllllll}\therefore 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f l}{100}(\mathrm{ppm})\end{array}\right)$

[^3]: $\begin{array}{llllllllllllllllllllllll}-20 & -25 & -30 & -35 & -40 & -45 & -50 & -55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 & -13\end{array}$ f1 (ppm)

[^4]:

[^5]:

[^6]: | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 |
 | :--- |
 | (1) | | | | | | | | | | | | | | | | | | | |

[^7]:

[^8]:

[^9]: $\begin{array}{lllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^10]: $\begin{array}{lllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl} \\ (\mathrm{ppm})\end{array}\end{array}$

[^11]:

[^12]:

[^13]:

[^14]: $\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \\ \text { f1 (ppm) }\end{array}$

[^15]:

[^16]: $\left.\begin{array}{lllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ f 1(\mathrm{ppm})\end{array}\right)$

[^17]: $\left.\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

[^18]: $\begin{array}{llllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & \\ & & & & & & & & & \mathrm{fl}(\mathrm{ppm}) & 80\end{array}$

[^19]:

[^20]: $\begin{array}{lllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl})\end{array}\end{array}$

[^21]:

[^22]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^23]: $\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

