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Abstract

The asymmetric radical carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and 

arylamines provides expedient access to value-added chiral α-tertiary N-arylamines but has been less 

recognized. The challenge arises mainly from the difficult reaction initiation inherent in alkyl halides and the 

construction of fully substituted chiral C–N bonds from sterically congested tertiary alkyl radicals. We herein 

report a copper-catalyzed asymmetric three-component radical carboamination of acrylamides by utilizing an 

anionic chiral N,N,N-ligand under mild conditions. The ligand is essential to initiate the reaction through 

enhancing the reducing capability of copper and enable the enantiocontrol over tertiary alkyl radicals. The 

substrate scope is broad, covering an array of acrylamides, aryl- and heteroaryl- amines as well as alkyl halides 

and sulfonyl chlorides with good functional group tolerance. When combined with the follow-up 
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transformation, this strategy provides a versatile platform for accessing structurally diverse chiral α-tertiary N-

arylamine building blocks of interest in organic synthesis.

Keywords

Asymmetric catalysis; copper; alkenes; radical reactions; chiral amines

Introduction

Chiral amines are valuable building blocks in organic synthesis and key structural elements in numerous natural 

products, pharmaceuticals, and functional materials.1-11 As an important subclass of this family, chiral α-tertiary 

N-arylamines are prevalent in many bioactive compounds12-16 and thus great effort has been devoted to their 

efficient synthesis (Scheme 1A). Among them, the asymmetric addition to ketimines17-25 and the N-alkylation 

of arylamines with diverse electrophiles26-32 represent the most prevalent methods for constructing chiral α-

tertiary N-arylamine scaffolds (Scheme 1B). Given the importance of the structural motifs, there is a strong 

need for the development of new synthetic methods from readily available starting materials.

Alkenes are readily available feedstocks and serve as ideal starting materials for diverse transformations in 

organic synthesis. The asymmetric intermolecular 1,2-difunctionalization of alkenes, enabling the simultaneous 

installation of two vicinal new bonds in one step, provides a powerful tool for transforming the alkene 

feedstocks into chiral complex molecules.33-43 On the other hand, the last decade has witnessed the 

renaissance of radical reactions, attributed to the gentle generation of radicals from diverse precursors under 

mild conditions.44-47 In this regard, the radical-mediated asymmetric three-component 1,2-difunctionalization 

of alkenes has spurred significant interest due to the high propensity of radicals toward the alkene moiety.48-

49, 50-56 In the well-established methodologies, the key chiral bond formation is typically achieved through the 

interaction of the nucleophile-sequestered chiral 3d transition metal with the prochiral alkyl radical derived 

from the radical alkene addition. Utilizing this strategy, we envision that the asymmetric radical 1,2-

carboamination of 1,1-disubstituted alkenes with arylamines would provide an expedient access to value-

Page 2 of 23CCS Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 This article presented here has been accepted for publication in CCS Chemistry and is posted at the

© 2024 Chinese Chemical Society.
request of the author prior to copyediting and composition.



3

added chiral α-tertiary N-arylamines (Scheme 1C). However, despite the impressive progress in the racemic 

radical alkene carboamination with arylamines, the asymmetric transformation has been less recognized.57-63 

In this context, Liu, Feng, and others have reported elegant approaches to achieve asymmetric radical 1,2-

carboazidation of disubstituted alkenes.64-67 Although the protocol provides an array of chiral α-tertiary azides, 

it takes tedious synthesis to convert the azido group into the corresponding N-arylamine moiety. Therefore, 

the development of a new catalytic system to directly achieve the asymmetric radical 1,2-carboamination of 

1,1-disubstituted alkenes with arylamines from readily available feedstocks is highly desirable.

As our continuous interest in developing asymmetric radical transformations,68-74 we have described an 

enantioconvergent C–N cross-coupling of alkyl halides with arylamines through the interaction of alkyl radicals 

with ligand-chelated Cu(II) anilide complex.75 We wonder whether an asymmetric three-component alkene 

1,2-carboamination could be achieved by merging the C–N formation with the radical alkene addition process, 

utilizing readily available alkyl halides as radical precursors. However, the two-component C–N cross-coupling 

might impede three-component alkene 1,2-carboamination. Our initial attempts using the previously used α-

carbonyl tertiary alkyl halides76-78 as radical precursors showed that the C–N cross-coupling can compete with 

the carboamination process (Scheme S1 in the Supporting Information). Given that the cyano group is easily 

converted into carbonyl and amine moieties, we chose commercially available bromoacetonitrile as the radical 

precursor. It should be noted that the redox potential of bromoacetonitrile is relatively inert (E1/2
red = –0.69 V 

vs. SCE in DMF) and the reducing capability of copper salt is too weak to initiate the radical process.79-83 Based 

on our previous study, we surmised that the multidentate chiral anionic ligand could greatly enhance the 

reducing capability of copper catalyst for reaction initiation.69 Herein, we describe a copper-catalyzed 

asymmetric 1,2-carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and arylamines, 

providing a variety of chiral α-tertiary N-arylamines. The key to the success lies in the utilization of an anionic 

chiral N,N,N-ligand, which greatly enhances the reducing capability of copper catalyst for reaction initiation 

but also achieves the enantiocontrol over the sterically congested tertiary alkyl radicals. The reaction covers a 
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wide range of arylamines, accommodating strongly coordinating heteroaryl amines, as well as 1,1-disubstituted 

acrylamides with good functional group tolerance. The scope of radical precursors is quite broad, 

encompassing not only primary alkyl bromides but also the pharmaceutically relevant trifluoromethyl group 

and the heteroatomic sulfonyl group. Further straightforward manipulation of the carboamination products 

leads to many other chiral α-tertiary N-arylamine scaffolds of interest in organic synthesis.

N
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MeO O EtO
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H

N
H

OMe

O
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HOOC
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Cl
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A. Importance of chiral -tertiary N-arylamines in bioactive molecules
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B. Reported strategies for asymmetric synthesis of chiral -tertiary N-arylamines
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SO2ArCH2 R

C(Me)(CO2Me)2

diverse radicals

Ph

O
N

N

O
O

S NH

L*

R1

R2

Het

> 50 examples, up to 97% yield, up to 95% ee
CF2COOEt

Scheme 1. Asymmetric radical 1,2-carboamination of 1,1-disubstitued alkenes.

Results and Discussion

Reaction development

At the outset, we investigated the ligand effect for the three-component model reaction of alkene 1a, 

arylamine 2a, and bromoacetonitrile 3a in the presence of CuI/Cs2CO3 in THF (Table 1). The commonly used 

neutral bisoxazoline ligand L*1 failed to initiate the reaction and alkene 1a was completely recovered. We then 
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investigated the performance of tridentate chiral anionic ligands which could greatly enhance the reducing 

capability of copper catalyst.69 Unfortunately, the previously reported N,N,P-ligand70, 84 L*2 and N,N,N-ligand71, 

85-86 L*3 in our asymmetric cross-coupling afforded a trace amount of desired product 4, though alkene 1a was 

partially consumed. We speculated that the cinchona alkaloid skeleton might be too crowded to facilitate the 

construction of the fully-substituted carbon stereocenter. We then switched to the less sterically bulky N,N,N-

ligand that performed well in the construction of a fully-substituted carbon stereocenter.71, 75 To our delight, 

the desired 1,2-carboamination product 4 was generated in 55% yield with 79% ee in the presence of oxazoline-

derived N,N,N-ligand L*4. Further investigation into the substituent on the oxazoline skeleton revealed that 

ligand L*5, bearing a phenyl substituent, significantly improved both reaction efficiency and enantioselectivity, 

delivering 4 in 78% yield with 90% ee. The control experiment by installing a methyl group at the ortho position 

of quinoline nitrogen (L*7) or removing the coordinating nitrogen (L*8) led to a trace amount of 4 and full 

recovery of alkene 1a, illustrating the substantial role of the coordinating quinoline nitrogen. Replacing L*5 

with its enantiomer L*9 provided the desired product 4 in 80% yield with 90% ee. After further optimization of 

reaction parameters, including the copper catalysts, solvents and the molar ratio of the reactants (Tables S1–

S4 in the Supporting Information), we finally identified the optimal conditions as follows: 1a (1.0 equiv), 2a (2.0 

equiv), 3a (2.0 equiv), CuI (10 mol%), L*9 (15 mol%), and Cs2CO3 (3.0 equiv) in benzene at room temperature 

for 72 h. Under the optimal conditions, the desired product 4 was obtained in 95% yield with 94% ee (Table 1).
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Table 1: Effect of ligands and optimal conditions for the model reaction.a 

Ph

O

N
O

+

Br CN

CF3

NH2F3C

CuI (10 mol%)
L* (15 mol%)

Ph O

N
NH O

NC

F3C

CF3

1a

3a

2a 4

Cs2CO3 (3.0 equiv)
THF, 30 °C

N

NH
N

OMe

O

PPh2

NHS
O

O

N

L*1, 0% L*2, trace

O

N N

O

tBu tBu

Me Me

L*8, trace

NHS
O

O

Me

NHS
O

O

N

L*9, 80%, 90% ee

Me

O
N

O
N

Ph

Ph

(95%, 94% ee)b

O
N

Ph

N

NH
N

OMe

SO

L*3, trace

NHS
O

O

N

O
N

R

L*4, R = tBu: 55%, 79% ee

L*5, R = Ph: 78%, 90% ee

L*6, R = Bn: 78%, 67% ee

L*7, trace

N

O

a Reaction conditions: 1a (0.05 mmol), 2a (0.05 mmol), 3a (0.075 mmol), CuI (10 mol%), L* (15 mol%), and 

Cs2CO3 (3.0 equiv.) in THF (1.0 mL) at 30 C for 72 h under argon; yield of 4 was based on 1H NMR analysis of 

the crude product using 1,3,5-trimethoxybenzene as an internal standard; the ee value was determined by 

HPLC analysis. b 1a (0.05 mmol), 2a (0.10 mmol), and 3a (0.10 mmol) in benzene (1.0 mL).

Scope of alkenes

With the optimized conditions in hand, we first evaluated the scope of alkenes (Table 2). A range of 

morpholine-derived 1,1-disubstituted alkenes underwent carboamination smoothly to give the desired 

products with good yield and ee. Electron-donating, -neutral, or -withdrawing groups at the para, meta, and 

ortho positions of the phenyl ring were all compatible with the reaction conditions to afford 4–14 with 90–94% 

ee. The 1- or 2-naphthyl substituent was also amenable to the process, yielding 15 and 16 with a similar ee. 

Notably, the yield was lower for the sterically congested other-substituted aryl and 1-naphthyl substrates (8 

Page 6 of 23CCS Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 This article presented here has been accepted for publication in CCS Chemistry and is posted at the

© 2024 Chinese Chemical Society.
request of the author prior to copyediting and composition.



7

and 15). Moreover, a number of medicinally relevant heteroaryl rings, such as benzo[d][1,3]dioxole (17), furan 

(18), benzofuran (19), thiophene (20), and benzothiophene (21) were all tolerated. With regard to the amidyl 

group of the alkene substrates, a gamut of tertiary amides incorporating piperidine (22), thiomorpholine (23), 

pyrrolidine (24), indoline (25), and dimethylamine (26) all worked well to provide the desired products in good 

yields with 92–95% ee. Furthermore, the substrate bearing the Weinreb amide moiety proved to be suitable 

for the reaction to result in 27, albeit with a moderate ee.

Table 2: Scope of alkenes.a

Ar

O

NR1R2 +

Br CN

CF3

NH2F3C

CuI (10 mol%)
L*9 (15 mol%)

Ar
O

NR1R2
NH

NC

F3C

CF3

1

3a

2a 4–27

Cs2CO3 (3.0 equiv)
benzene, 30 C

Ar

O

N
O

MeO Me

4, 94%, 94% ee 5, 80%, 94% ee 6, 76%, 93% ee

iPr
9, 79%, 94% ee

Ph

10, 81%, 94% ee

Br

11, 66%, 92% ee

F3C

12, 54%, 94% ee

MeO2C

13, 69%, 94% ee

Me3Si

14, 60%, 94% ee

15, 62%, 90% ee 16, 87%, 93% ee 17, 81%, 92% ee

O

O

Ph

O

NR1R2

N

22, 62%, 95% ee

N
S

23, 80%, 93% ee

N

24, 71%, 94% ee

N

25, 74%, 92% ee

N
Me

Me

26, 75%, 94% ee

N
OMe

Me

27, 66%, 76% ee

7, 63%, 94% ee

Me

8, 39%, 94% ee

Me

19, 64%, 90% ee
O

21, 60%, 90% ee
S

18, 72%, 90% ee

O

20, 92%, 92% ee

S

a Reaction conditions: 1 (0.20 mmol), 2a (0.40 mmol), 3a (0.40 mmol), CuI (10 mol%), L*9 (15 mol%), and Cs2CO3 

(3.0 equiv.) in benzene (4.0 mL) at 30 C for 72 h under argon; the yields were isolated and the ee value was 

determined by HPLC analysis.
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Scope of aromatic amines and radical precursors

We next investigated the scope of the aromatic amines in this new asymmetric carboamination reaction (Table 

3). A variety of arylamines proceeded smoothly to give the desired products 28–40 in moderate to excellent 

yields with good ee. With regards to potentially reactive functional groups, many functionalities, such as 

halogen (28–30), trifluoromethyl (31–33), cyano (32 and 35), nitro (33, 37–39), ester (36), and sulfone (40) at 

the para or meta positions of the aryl rings were left unscathed under the standard conditions. N-heterocycles 

are key structural units in many drugs and biologically interesting molecules. We were pleased to find that a 

gamut of strongly coordinating N-heterocycles, including quinoxaline (41), pyridine (42), pyrimidine (43 and 

44), and pyrazine (45) were viable amine substrates to yield the desired products with 87–94% ee. 

Unfortunately, aniline and p-toluidine only gave rise to the desired products 46 and 47 with low ee, while 

aliphatic amine failed to afford the desired product 48. The subsequent evaluation of radical precursors further 

showcased the reaction diversity. For example, primary benzyl bromides with either electron-donating, -

neutral, or -withdrawing groups on the aryl ring were suitable for the reaction to provide 49–51 in moderate 

to good yields with excellent ee. Besides, 2-(bromomethyl)naphthalene was also a viable substrate, giving rise 

to 52 in 68% yield with 94% ee. Considering the versatility of alkynes as synthons for various C(sp2/sp3)-based 

functionalities, we examined the performance of propargyl bromide. Our finding revealed that it serves as a 

good radical precursor, leading to the formation of 53 in 63% yield with 94% ee. The subsequent investigation 

led us to identify that tertiary alkyl bromide was also compatible with the reaction. Interetingly, a pyrrolidone 

analogue 54 was obtained using BrCF2CO2Et as radical precursor. Bulkier radical precursor BrC(Me)(CO2Me)2 

yielded 55 in only moderate yield with 86% ee. Notably, the direct cross-coupling of alkyl halides with amines 

led to low yields of 50 and 55. Based on the above results, we found that less sterically crowded primary alkyl 

halides generally afforded the desired products with high yields and sterically crowded ones generally gave the 

products with low yield. In addition, we also found that Togni reagent II87 was suitable for the transformation 

to afford the pharmaceutically relevant CF3-containing product 56 with good ee. The scope of radical 
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precursors is not limited to carbon-centered ones, and sulfonyl chlorides were also applicable to this 

transformation, furnishing the alkene sulfonylamination products 57–60 in moderate to good yields with 87–

96% ee. The absolute configuration of 57 was determined to be R by X-ray analysis (Figure S1 in the Supporting 

Information) and those of other products were assigned by analogy. These results highlight the extensive 

diversity within arylamines and radical precursors.

Table 3: Scope of arylamines and radical precursors.a

Ph

O

N
O

+
CuI (10 mol%), L*9 (15 mol%)

Ph
R

O

N
NH O

1a 2 28–56

Cs2CO3 (3.0 equiv), benzene, 30 �C
Het/Ar

NH2
Het/Ar

+

3

X R

29, 74%, 88% ee

NH2

F

F

30, 97%, 90% ee

NH2

Br

Br

28, 68%, 90% ee

NH2

F

F

F

40, 46%, 88% ee

NH2

MeO2S

32, 83%, 89% ee

NH2

CF3
NC

33, 65%, 86% ee

NH2

CF3
O2N

31, 66%, 86% ee

NH2

F3C

34, 64%, 70% ee

NH2

F3CO

35, 88%, 88% ee

NH2

NC

36, 54%, 86% ee

NH2

CO2Me

MeO2C

37, 95%, 93% ee

NH2

NO2

O2N

38, 82%, 90% ee

NH2

NO2

39, 85%, 86% ee

NH2

O2N

41, 57%, 87% ee

NH2

N

N

N

42, 64%, 92% ee

NH2

N

N

43, 66%, 94% ee

NH2

Cl
N

N

45, 67%, 93% ee

NH2

BrN

N

44, 62%, 90% ee

NH2

F3C

NC

aryl- and heteroarylamines

radical precursors

Br

49, 63%, 93% ee

Br

50, 55%, 94% ee

MeO

Br

51, 72%, 93% ee

O2N

Br

52, 68%, 94% ee

Br
TMS

53, 63%, 94% ee

55, 51%, 86% ee

Br

MeEtO2C

EtO2C I
O

O

CF3

56, 61%, 84% ee

S
Cl

OO

57, 67%, 87% ee

S
Cl

OO

58, 85%, 95% ee

MeO

S
Cl

OO

59, 82%, 96% ee

Me

S
Cl

OO

60, 55%, 94% ee

O2N

46, 48%, 36% ee

NH2

47 24%, 14% ee

NH2

Me

48, 0%

NH2

54, 82%, 95% ee

Br

FF

EtO2C
O

CF3

F3C

F
F

ON
N

O

Ph

a Reaction conditions: 1a (0.20 mmol), 2 (0.40 mmol), 3 (0.40 mmol), CuI (10 mol%), L*9 (15 mol%), and Cs2CO3 

(3.0 equiv.) in benzene (4.0 mL) at 30 C for 72 h under argon; the yields were isolated and the ee value was 

determined by HPLC analysis.

Synthetic utility
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To show the preparative utility of the strategy, a gram-scale reaction was carried out to afford the desired 

product 4 without a significant decrease in efficiency (Scheme 2A). The most important application is that it 

provides an opportunity to generate other valuable chiral α-tertiary N-arylamine building blocks. For example, 

the carboamination product 4 was easily converted into chiral 1,4-diamine 61 and -amino amide 62 through 

straightforward reduction or hydrolysis of the cyano group (Scheme 2B). Moreover, the carboamination 

product 49 was successfully transformed into α-amino aldehyde 63 via a simple reduction of the amide moiety. 

The further reduction of the aldehyde moiety of 63 led to chiral 1,2-amino alcohol 64 in good efficiency. To 

further showcase the synthetic potential, a Wittig reaction of 63 afforded a carbon chain-elongated building 

block 65. Notably, no apparent loss of enantiopurity was observed during all the transformations. Collectively, 

these results demonstrate the practicality of this methodology in synthesizing other α-tertiary N-arylamine 

building blocks.

Mechanistic studies

To gain insights into the reaction mechanism, a radical inhibiting experiment with (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO) showed that the reaction was completely inhibited and the TEMPO-

trapped product 66 was formed in 43% yield (Scheme 2C). This experiment indicated the generation of an alkyl 

radical from bromoacetonitrile. Further control experiments demonstrated that no product deriving from 

radical addition to alkene was observed, and complete recovery of alkene 1a was detected. This finding 

suggests that the ligand exchange of arylamine with the copper catalyst likely occurs before the single-electron 

reduction of the alkyl halide (Scheme 2C). In addition, the radical clock substrate 67 afforded the desired 

product 68 together with the corresponding radical cyclization product 69 under the typical conditions (Scheme 

2D). This experiment provided strong support for the formation of the corresponding tertiary alkyl radical 

resulting from the process of radical addition to alkene. Based on these experiments and our previous 

reports,75-78 we proposed a plausible mechanism as depicted in Scheme 2E. First, the copper(I) salt reacted 

with ligand L* and base to generate a complex I. This complex underwent a subsequent ligand exchange with 
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arylamines 2 to afford a nucleophile-sequestered copper(I) intermediate II, which reacted with radical 

precursors 3 to give an R radical and a copper(II) complex III via a single-electron reduction process. The R 

radical added to the terminal position of alkenes 1 and gave rise to a tertiary alkyl radical IV, which then 

interacted with complex III to deliver the desired carboamination products 4−59 and regenerated the copper(I) 

species I for the next catalytic cycle. In the case of aromatic amines with electron-neutral or -donating groups, 

a direct nucleophilic attack on the carbocation species V by aromatic amines might exist in the key C–N 

formation step, leading to dramatically decreased enantioselectivity (Scheme 2E). 
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Scheme 2. Synthetic utility and mechanistic discussion. Boc2O, di-tert-butyl dicarbonate.
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Conclusion

In sum, we have developed a copper-catalyzed asymmetric radical 1,2-carboamination of 1,1-disubstituted 

alkenes from easily available alkyl halides and arylamines. The key to success lies in the merger of radical 

addition to alkenes and chiral C–N formation process while suppressing the direct C–N coupling of alkyl halides 

with arylamines. The utilization of a chiral N,N,N-ligand is essential to initiate the reaction through enhancing 

the reducing capability of copper and enable enantiocontrol over sterically congested tertiary alkyl radicals. 

One striking feature of this strategy is the ready accommodation of easily available acrylamides, aryl- and 

heteroaryl amines, as well as alkyl halides and sulfonyl chlorides with good functional group tolerance. This 

strategy provides expedient access to a range of chiral α-tertiary N-arylamine building blocks of interest in 

organic synthesis.
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