Supporting Information for

Synthesis of Axially Chiral Vinyl Halides via Cu(I)-Catalyzed Enantioselective Radical 1,2-Halofunctionalization of Terminal Alkynes

Jun-Bin Tang,^{†,‡,¶} Jun-Qian Bian,^{†,‡,¶} Zhihan Zhang,^{†,¶} Yong-Feng Cheng,[†] Li Qin,[†] Qiang-Shuai Gu,^{†,*} Peiyuan Yu,^{†,*} Zhong-Liang Li,^{§,*} and Xin-Yuan Liu^{†,‡,*}

[†]Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China

[‡]Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China

[§]Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan 523000, China

[¶]These authors contributed equally: Jun-Bin Tang, Jun-Qian Bian, Zhihan Zhang.

*To whom correspondence should be addressed. E-mail: guqs@sustech.edu.cn; yupy@sustech.edu.cn; lizl@gbu.edu.cn; liuxy3@sustech.edu.cn

Table of Contents

Figures S1–S6
Tables S1–S11
Schemes S1–S7
General information
Procedures for the synthesis of substrates
Procedures for the synthesis of chiral ligands61
General procedure for the synthesis of racemates65
Procedures for the asymmetric chlorine atom transfer radical addition of alkynes65
Gram-scale reactions and procedures for synthetic applications103
Mechanism experiments
Mechanism experiments 119 Computational study 133
Mechanism experiments
Mechanism experiments

Figure S1. The X-ray structure of L6 (CCDC 2259801, 50% probability ellipsoids). Boc, tertbutoxycarbonyl; 'Bu, tert-butyl.

Figure S2. The X-ray structure of L7 (CCDC 2259802, 50% probability ellipsoids). Ph, phenyl.

Figure S3. The X-ray structure of product **N1** (CCDC 2259803, 50% probability ellipsoids). Ts, *p*-methylbenzenesulfonyl.

Figure S4. The X-ray structure of product N31 (CCDC 2259804, 50% probability ellipsoids).

Figure S5. The X-ray structure of product O1 (CCDC 2259805, 50% probability ellipsoids). ^{*i*}Pr, isopropyl.

Figure S6. The results of bis- and mono-alkyne substrates. $R = C(O)N^iPr_2$. ${}^a[Cu(MeCN)_4]BF_4$ (5.0 mol %), 2,9-dimethylphenanthroline (10 mol %), blue LEDs (light-emitting diodes, 450 nm), CHCl₃, rt, argon, 4 d. ${}^{b}90\%$ ee. ${}^{c}88\%$. ${}^{d}54\%$ ee. ${}^{e}35\%$ ee. ${}^{f}92\%$ ee. Rt, room temperature; Ee, enantiomeric excess.

	Boc N O	le + TsCl	[Cu] (10 m L7 (10 mo additive (3.0 Solvent, rt, a	ol %) Ts l %) equiv) rgon, 24 h		Me
	NS1	S1			N1	
-	NH N N Boc-N	PPh ₂ PPh ₂		Et Ph ₂ P	Ph Ph	PO Ph
	L7	L9	L10	L11	L12	T (0/1)0
Entry	[Cu]	lıgand	Additive	Solvent	Yield $(\%)^{b}$	Ee (%) ^c
1	$Cu(CH_3CN)_4PF_6$	L9	K ₃ PO ₄	DME	Trace	N.d.
2	$Cu(CH_3CN)_4PF_6$	L10	K ₃ PO ₄	DME	0	N.d.
3	$Cu(CH_3CN)_4PF_6$		K ₃ PO ₄ K PO	DME	0	N.a. N.a
4	$Cu(CH_3CN)_4PF_6$		K_3PO_4	DME 14 Dioxana	0 50	N.d. 02
5	$Cu(CH_2CN)_4FF_6$	L7 L7	$K_3 PO_4$	THF	55	92 94
7	$Cu(CH_2CN)_4PF_6$	L7 L7	K ₃ PO ₄	PhCl	0	N d
8	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	DMF	ů	N.d.
9	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	CH ₃ CN	0	N.d.
10	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	MTBE	84	90
11	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	DCM	65	92
12	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	Toluene	50	92
13 ^d	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	DME/MTBE	73	94
14^e	$Cu(CH_3CN)_4PF_6$	L7	Na ₃ PO ₄	DME/MTBE	65	91
16 ^e	Cu(CH ₃ CN) ₄ PF ₆	L7	Li ₃ PO ₄	DME/MTBE	60	92
16 ^e	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₂ CO ₃	DME/MTBE	55	92
17^e	Cu(CH ₃ CN) ₄ PF ₆	L7	^t BuOK	DME/MTBE	0	N.d.
18^{e}	Cu(CH ₃ CN) ₄ BF ₄	L7	K ₃ PO ₄	DME/MTBE	60	93
19^{e}	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	DME/MTBE	78	93
20^{e}	CuCl	L7	K ₂ PO ₄	DME/MTBE	75	90
21^{e}	CuCN	L7	K ₂ PO ₄	DME/MTBE	0	N.d.
22^{e}	CuCF ₃ ·PPh ₃ ·Phen	L7	K ₂ PO	DME/MTRF	0 0	N.d.
22 23 ^{e,f}	Cu(CH ₃ CN) ₄ PF ₆	L7	131 04	DME/MTBE	10	93
25 21e,g	$Cu(CH_2CN)_4PF_6$	L7		DME/MTRE	24	93
24 8 75e.h	$Cu(CH_2CN)$, DE	L' I 7	K DO		24 20	02
25 ⁰⁰	$Cu(CH_3CN)_{41}\Gamma_6$	17	K ₃ PO ₄		30 42	03
20°	$Cu(CH_2CN)$, DE	L/ I7	K ₃ PO ₄		43 51	95 07
21.0			K 3PO4	DIVIE/IVLIBE	.)]	74

Table S1. Screening of other reaction conditions with NS1^a

^{*a*}Reaction conditions: **NS1** (19.3 mg, 0.050 mmol, 1.0 equiv), **S1** (14.3 mg, 0.075 mmol, 1.5 equiv), [Cu] (10 mol %), **L7** (2.79 mg, 10 mol %), additive (0.15 mmol, 3.0 equiv) in dry solvent (1.0 mL) at rt for 24 h under argon. ^{*b*}Yield based on ¹H NMR (nuclear magnetic resonance) analysis of the crude product using CH₂Br₂ as an internal standard. ^{*c*}Ee values based on HPLC (high-performance liquid chromatography) analysis. ^{*d*}DME/MTBE = 1/1. ^{*e*}DME/MTBE = 1/3. ^{*f*}Without K₃PO₄. ^{*g*}K₃PO₄ (0.5 equiv). ^{*h*}K₃PO₄ (1.0 equiv). ^{*i*}K₃PO₄ (2.0 equiv). ^{*j*}K₃PO₄ (4.0 equiv). THF, tetrahydrofuran; DMF, *N*,*N*-dimethylformamide; MTBE, methyl *tert*-butyl ether; DCM, dichloromethane; DME, dimethoxyethane; Phen, 1,10-phenanthroline.

NS1	Boc N N N N N N N N N N N N N N N N N N N	OMe	[Cu] (10 mol %) L* (10 mol %) additive (4.0 equiv) THF, rt, argon, 5 d	Meo Hme Meo	N33
L*	Ph NH N Ph L4 L5	E		NH N Ph Boc-N L7	N Ph
Entry	/ [Cu]	L*	Additive	Yield(%) ^b	$Ee(\%)^c$
1	Cu(CH ₃ CN) ₄ PF ₆	L4	K ₃ PO ₄	23	46
2	Cu(CH ₃ CN) ₄ PF ₆	L5	K ₃ PO ₄	0	N.d.
3	Cu(CH ₃ CN) ₄ PF ₆	L6	K ₃ PO ₄	0	N.d.
4	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	53	80
5	Cu(CH ₃ CN) ₄ PF ₆	L8	K ₃ PO ₄	Trace	N.d.
6	CuCN	L7	K ₃ PO ₄	60	81
7	CuTc	L7	K ₃ PO ₄	0	N.d.
8	CuBH ₄ (PPh ₃) ₂	L7	K ₃ PO ₄	70	75
9	CuCF ₃ PPh ₃ •Phen	L7	K ₃ PO ₄	60	20
10	CuBr•CH ₃ SCH ₃	L7	K ₃ PO ₄	10	73
11	CuBr	L7	K ₃ PO ₄	64	87
12	CuBr	L7	Na ₃ PO ₄	56	83
13	CuBr	L7	Li ₃ PO ₄	0	N.d.
14	CuBr	L7	(^t BuO) ₂ Mg	70	83
15^{d}	CuBr	L7	K ₃ PO ₄	21	88
16 ^d	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	13	90

Table S2. Screening of reaction conditions for asymmetric bromide atom Transfer radical addition of alkyne^{*a*}

^{*a*}Reaction conditions: **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv), **A1** (90.7 mg, 0.30 mmol, 1.5 equiv), [Cu] (10 mol %), **L*** (10 mol %), additive (4.0 equiv) in dry THF (4.0 mL) at rt for 5 d under argon. ^{*b*}Isolated yield. ^{*c*}Ee values based on HPLC analysis. ^{*d*}Conducted at 0 °C. Me, methyl; Tc, thiophene-2-carboxylate; N,d., not determined.

(NBoc ₂ + NS13	TsCl3 S1	[Cu] (10 mol %) L* (10 mol %) additive (3.0 equiv) olvent, rt, argon, 5 d	Ts C N30	I ∠NBoc₂
	H O N ⁷ Bu Boc-N L5		O NH N Boc-N	Ph L7	NH N Ph L8
L9-1	NMe ₂ PCy ₂	N P L10-rac			
Entry	[Cu]	L*	Solvent	Yield $(\%)^b$	Ee (%) ^c
1	Cu(CH ₃ CN) ₄ PF ₆	L5	DCM	35	82
2	Cu(CH ₃ CN) ₄ PF ₆	L6	DCM	0	N.d.
3	Cu(CH ₃ CN) ₄ PF ₆	L7	DCM	0	N.d.
4	Cu(CH ₃ CN) ₄ PF ₆	L8	DCM	62	86
5	$Cu(CH_3CN)_4PF_6$	L8	Toluene	60	86
6	$Cu(CH_3CN)_4PF_6$		EtOAc	50	86
0	$Cu(CH_3CN)_4PF_6$		1,4-Dioxane	45 54	80
ð	$Cu(CH_3CN)_4PF_6$	Lð 1 8	DIVIE	30 70	00 87
7 10	$Cu(CH_2CN)_4FF_6$	L0 [.8	тиг тиг	68	86
10	CuCN	LQ LQ		0	Nd
11	CuCl	LS	THE	80	88
12 12d	CuCl	18		00 24	07
13" 1 Ade		10 10		20	92
14 ^{a,c}				22	92
15"	CuCi	Lð	THF	6/	90

Table S3. Screening of reaction conditions with NS13^a

^{*a*}Reaction conditions: **NS13** (73.5 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), [Cu] (10 mol %), **L*** (10 mol %), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv) in dry solvent (4.0 mL) at rt for 5 d under argon. ^{*b*}Isolated yield. ^{*c*}Ee values based on HPLC analysis. ^{*d*}Conducted at 0 °C. ^{*e*}10 mol % **L9-rac** as additional additive. ^{*f*}10 mol % **L10-rac** as additional additive. Cy, cyclohexyl; Et, ethyl; Ac, acetyl.

Table S4. Screening of reaction conditions with NS7^a

^{*a*}Reaction conditions: **NS7** (62.7 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), Cu(CH₃CN)₄PF₆ (7.45 mg, 10 mol %), L* (10 mol %), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv) in dry solvent (4.0 mL) at rt for 5 d under argon. ^{*b*}Isolated yield. ^{*c*}Ee values based on HPLC analysis. ^{*d*}DCM/toluene = 1/3. ^{*e*}Conducted at 0 °C. ^{*f*}Conducted at -10 °C. *T*, reaction temperature.

	OS1	+ TsCl - S1	[Cu] ([:] L* (1 additive Solvent, r	10 mol %) 0 mol %) (3.0 equiv) t, argon, 24 h		ⁱ Pr ₂
		N Boc-N	N Bu L6	N Boc-N L7		Ph L8
Entry	[Cu]	L*	Additive	Solvent	Yield $(\%)^b$	Ee (%) ^c
1	Cu(CH ₃ CN) ₄ PF ₆	L5	K ₃ PO ₄	DME	60	67
2	$Cu(CH_3CN)_4PF_6$	L6	K ₃ PO ₄	DME	40	88
3	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	DME	46	92
4	$Cu(CH_3CN)_4PF_6$		K ₃ PO ₄	DME	50	77
5	$Cu(CH_3CN)_4PF_6$	L7 17	K ₃ PO ₄		61	90
07	$Cu(CH_3CN)_4PF_6$ $Cu(CH_2CN)_4PF_6$		K ₃ PO ₄ K ₂ PO ₄	MIBE	65 50	89
8	$Cu(CH_3CN)_4FF_6$	L7 17	K ₃ FO ₄	DCM	30 26	89
9	$Cu(CH_3CN)_4PF_6$	L7 L7	K_3PO_4	EtOAc	20 84	92
10	$Cu(CH_3CN)_4BF_4$	L7 L7	K ₂ PO ₄	EtOAc	75	92
11	CuCN	L7	K ₃ PO	EtoAc	60	90
12	CuCF ₃ ·PPh ₂ ·Phen	L7	K ₂ DO	Eto Ac	0	N d
12	Cu(CH ₂ CN) ₄ PE ₆	L7	K3FU4	EtOAc	65	92
13	$Cu(CH_2CN)_4PF_6$	17	K ₂ CO ₃	EtOAc	05	N d
14 15d	$Cu(CH_3CN)_4\Gamma_6$	17	BUOK	EtOAc EtOAc	0	02
15" 1 <i>cef</i>	$Cu(CH_3CN)_4FF_6$		K_3PO_4	EtOAc	90	92
16°	$Cu(CH_3CN)_4PF_6$		K ₃ PO ₄	EtOAc	59	80
17 ^{e,g}	$Cu(CH_3CN)_4PF_6$	L7 1 -	K ₃ PO ₄	EtOAc	45	85
18 ^{<i>e</i>,<i>h</i>}	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	EtOAc	40	90
19 ^{e,i}	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	EtOAc	39	92
$20^{e,j}$	$Cu(CH_3CN)_4PF_6$	L7	K ₃ PO ₄	EtOAc	35	91
$21^{e,k}$	Cu(CH ₃ CN) ₄ PF ₆	L7	K ₃ PO ₄	EtOAc	29	92

Table S5. Screening of reaction conditions with OS1^a

^{*a*}Reaction conditions: **OS1** (14.8 mg, 0.050 mmol, 1.0 equiv), **S1** (14.3 mg, 0.075 mmol, 1.5 equiv), [Cu] (10 mol %), **L*** (10 mol %), additive (0.15 mmol, 3.0 equiv) in dry solvent (1.0 mL) at rt for 24 h under argon. ^{*b*}Yield based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard. ^{*c*}Ee values based on HPLC analysis. ^{*d*}**OS1** (59.2 mg, 0.20 mmol, 1.0 equiv), **S1** (14.3 mg, 0.30 mmol, 1.5 equiv), Cu(CH₃CN)₄PF₆ (10 mol %), **L7** (10 mol %), K₃PO₄ (0.60 mmol, 3.0 equiv) in dry EtOAc (4.0 mL) at rt for 5 d under argon. ^{*e*}**OS1** (59.2 mg, 0.20 mmol, 1.0 equiv), **S1** (14.3 mg, 0.30 mmol, 1.5 equiv), Cu(CH₃CN)₄PF₆ (10 mol %), **L7** (10 mol %), K₃PO₄ (0.60 mmol, 3.0 equiv) in dry EtOAc at rt for 24 h under argon. ^{*f*}EtOAc (1.0 mL). ^{*g*}EtOAc (2.0 mL). ^{*h*}EtOAc (3.0 mL). ^{*i*}EtOAc (4.0 mL). ^{*j*}EtOAc (4.0 mL), 4Å MS (50 mg). ^{*k*}EtOAc (4.0 mL), H₂O (1.0 equiv).

os)) 15	Me Me + Ts(Me	Cu(CH ₃ C L* addit Solver	N) ₄ PF ₆ (10 mol %) (10 mol %) (ive (3.0 equiv) nt, rt, argon, 5 d	Ts Cl 0.0 015	O Me I Me O Me
	N T Bu	N Boc-N		NHN Ph Boc-NL7		NH O Ph
	NMe ₂ PCy ₂					
L9-rac		L	10-rac	I	E (0.())	
_	Entry	L*	Solvent	Yield $(\%)^{b}$	Ee (%) ^c	
	1	L5	DCM	35	55	
	2	L6	DCM	40	86	
	3	L7	DCM	33	82	
	4		DCM Taluana	39 62	68 87	
	5 6	L0 I.6	Toluene EtOA a	02 56	8/ 87	
	7	LU	1 4-Diovana	JU Trace	o/ N A	
	8	LO	DMF	81	87	
	9	LG	THE	80	86	
	10^d	Lo	DME	24	90	
	11 <i>d</i> ,e	16	DME	2 7 22	92	
	11 ²⁰				92	
	12 <u>""</u>		DME	44	91	

Table S6. Screening of reaction conditions with OS15^a

^{*a*}Reaction conditions: **OS15** (53.6 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), Cu(CH₃CN)₄PF₆ (7.45 mg, 10 mol %), L* (10 mol %), K₃PO₄ (127. 4 mg, 0.60 mmol, 3.0 equiv) in dry solvent (4.0 mL) at rt for 5 d under argon. ^{*b*}Isolated yield. ^{*c*}Ee values based on HPLC analysis. ^{*d*}Conducted at 0 °C. ^{*e*}10 mol % **L9-rac** as additional additive. ^{*f*}10 mol % **L10-rac** as additional additive.

Ts Cl Boc CH ₃ N N O O N1, 93% ee		Racemization ► Toluene, <i>T</i> , argon		Ts Cl Boc CH ₃ N O		
Т	24 h	48 h	72 h	96 h	120 h	
60 °C	93% ee	93% ee	93% ee	93% ee	93% ee	
2° 08	90% ee	88% ee	88% ee	82% ee	78% ee	
100 °C	78% ee	66% ee	54% ee	45% ee	34% ee	

Table S7. Racemization experiments with N1^a

^{*a*}Reaction conditions: N1 (57.6 mg, 0.10 mmol) in dry toluene (2.0 mL) at corresponding reaction temperature (T) under argon. Ee values based on HPLC analysis.

Ts Cl O N ⁱ Pr ₂		Racem Toluene,	ization ────────────────────────────────────	Ts Cl O N [/] Pr ₂	
01, 9	91% ee			01	
Т	24 h	48 h	72 h	96 h	120 h
60 °C	91% ee	91% ee	91% ee	91% ee	90% ee
80 °C	83% ee	83% ee	77% ee	75% ee	70% ee

Table S8. Racemization experiments with O1^a

^{*a*}Reaction conditions: Dissolved **O1** (48.6 mg, 0.10 mmol) in dry toluene (2.0 mL) at corresponding reaction temperature (T) under argon. Ee values based on HPLC analysis.

	N′Pr₂ ∣ ⊃	+ TsC	Cu(C	CH ₃ CN)₄PF ₆ (10 L7 (10 mol %) K ₃ PO₄ (3.0 equi EtOAc, rt, argon,	mol %) Ts v) 5 d	
OS1 , 1.0 eq	uiv	S1 , 1.5	equiv			01
Entry	[Cu]	L7	K ₃ PO ₄	TEMPO	Yield $(\%)^b$	Ee (%) ^c
1	_	+	+	—	0	N.d.
2	+	-	+	_	0	N.d.
3	+	+	_	_	6	91
4	+	+	+	1.0 equiv	0	N.d.

Table S9. Control experiments with OS1^a

^aReaction conditions: **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.075 mmol, 1.5 equiv), Cu(CH₃CN)₄PF₆ (7.45 mg, 10 mol %), **L7** (11.2 mg, 10 mol %), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv) in dry EtOAc (4.0 mL) at rt for 5 d. ^bIsolated yield. ^cEe values based on HPLC analysis.

Boc N O	CH	l ₃ + Tsi	Cu(CH ₃ L K ₃ CI	CN) ₄ PF ₆ (10 mol % - 7 (10 mol %) PO ₄ (3.0 equiv)		Boc N O
NS1		:	S1		N1	
Entry	[Cu]	L7	K ₃ PO ₄	TEMPO	Yield $(\%)^b$	Ee (%) ^c
1	_	+	+	_	0	N.d.
2	+	_	+	_	0	N.d.
3	+	+	_	_	12	93
4	+	+	+	1.0 equiv	0	N.d.

Table S10. Control experiments with NS1^a

^{*a*}Reaction conditions: **NS1** (77.1 mg, 0.20 mmol), **S1** (57.2 mg, 0.075 mmol), Cu(CH₃CN)₄PF₆ (7.45 mg, 10 mol %), **L7** (11.2 mg, 10 mol %), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv) in dry DME (1.0 mL) and MTBE (3.0 mL) at rt for 5 d. ^{*b*}Isolated yield. ^{*c*}Ee values based on HPLC analysis.

Table S11. Control experiments of NS1 with BHT

BHT, butylated hydroxytoluene.

Scheme S1. The results with tosyl bromide (S1-Br).

Tol, *p*-tolyl.

Scheme S3. The results of OS1 with S8 or S1-I under standard conditions.

^{*a*}The yield was calculated based on the amount of **S1-I**. To express the yield relative to **OS1**, the value should be divided by 2 or 4 for reactions using 0.50 or 0.25 equiv of **S1-I**, respectively.

The reaction of **S1-1** in the absence of a copper catalyst showed comparable efficiency under daylight conditions (Scheme S3E). This observation strongly suggests the existence of a copper-independent reaction pathway. Interestingly, this pathway was completely suppressed when the reaction was carried out in the dark (Scheme S3E), resembling a previously reported light-initiated radical chain iodosulfonylation reaction.¹

When the reaction was performed in the dark with the addition of the copper catalyst, the reaction efficiency was fully restored in terms of both reaction time and yield (Scheme S3C). This result suggests the presence of a copper-initiated radical chain iodosulfonylation pathway. Further evidence for this pathway comes from the observation that the reaction efficiency was largely retained even with a significant reduction in copper catalyst loading (Scheme S3D). Based on these findings, we propose that the reaction of **S1-1** proceeds via a radical chain mechanism that can be initiated by either copper salts or light (Scheme S3F).

To further investigate the light-initiated radical chain pathway, we conducted a crossover experiment in the dark, which yielded results comparable to those obtained under daylight (Scheme S3B). This indicates that the fast iodine atom transfer from **S1-I** to vinyl radicals occurs under both conditions, leading to racemic vinyl iodide products. These findings confirm the racemic nature of the vinyl radical species formed in situ.

Scheme S4. The results of NS1 with A3 or A4 under standard conditions.

Scheme S5. Reactivity of Internal Alkyne O20

^{*a*}Recrystallization method: The axially chiral vinyl halide product (0.050 mmol) was dissolved in DCM (0.20 mL). *n*-Hexane (5.0 mL) was then added to the solution. The resulting mixture was stored in a refrigerator at -30 °C for 4 h. After recrystallization, the solid was collected by filtration, and the ee value was determined using chiral HPLC analysis.

Scheme S7. Control Experiments with Racemic N1

Scheme S8. The results of the crossover experiment of OS1 with TsI and S8 under dark condition

^aThe yield was based on the amount of TsI.

General information

All reactions were carried out under an argon atmosphere using Schlenk techniques unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Cu(CH₃CN)₄PF₆, Cu(CH₃CN)₄BF₄, and CuCl were purchased from Bide Pharmatech Ltd. K₃PO₄ was purchased from Accela ChemBio Co., Ltd. Anhydrous 1,2-dimethoxyethane (DME), 2-methoxy-2-methylpropane (MTBE), and ethyl acetate (EtOAc) were purchased from Shanghai Energy-Chemical Reagent Co. Ltd, which were directly used without further treatment. Dichloromethane (CH₂Cl₂) and tetrahydrofuran (THF) were purified and dried using a solvent-purification system that contained activated alumina under argon. Anhydrous toluene (Tol) was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd, which was treated by 4 Å Molecular sieves and distilled after refluxing with sodium and benzophenone. Other solvents and reagents were purchased from Aladdin, J&K Scientific, Tansoole, and Bidepharm. An oil bath was employed for reactions that needed heating, and the temperature of the oil bath was denoted. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved using UV light (254 nm), iodine, or basic KMnO4 indicator.

NMR spectra were recorded on Bruker DRX-400 and DPX-600 spectrometers at 400 or 600 MHz for ¹H NMR and 100 or 150 MHz for ¹³C NMR, respectively, in CDCl₃ with tetramethylsilane (TMS) as an internal standard. The chemical shifts were expressed in ppm, and coupling constants were given in Hz. Data for ¹H NMR were recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet, m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR were reported as chemical shifts (δ , ppm). HRMS measurements were performed with a Thermo Q Exactive mass spectrometer with an orbitrap mass analyzer. X-ray diffraction was measured on a Bruker D8 VENTURE diffractometer with MoK α ($\lambda = 0.71073$) radiation.

Procedures for the synthesis of substrates

Procedure A for the synthesis of naphthylamine-derived alkynes NS1-7:

To a mixture of substituted naphthalen-2-amine (10 mmol, 1.0 equiv) and Na₂CO₃ (2.12 g, 20 mmol, 2.0 equiv) in THF/H₂O (20 mL/2 mL) was added I₂ (5.58 g, 22 mmol, 1.1 equiv). The mixture was stirred at room temperature overnight and then extracted with EtOAc (10 mL \times 3). The combined organic layers were washed with saturated Na₂S₂O₃ solution (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give substituted

1-iodo-naphthalen-2-amine.

Synthesis of acyl-protected substituted 2-iodonamide³

To a solution of substituted 2-iodoaniline (10.5 mmol, 1.05 equiv) and triethylamine (2.04 mL, 15 mmol, 1.5 equiv) in THF (15 mL) was slowly added a solution of 4methylbenzoyl chloride (1.55 g, 10.0 mmol, 1.0 equiv) in THF (5 mL) at 0 °C, which resulted in a colorless precipitate. After the reaction mixture was stirred for 24 h at room temperature, the formed triethylammonium chloride was removed by filtration. The combined organic layers were concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give substituted acyl-protected 2-iodonamide.

Synthesis of substituted N-(1-ethynylnaphthalen-2-yl)-4-methylbenzamide⁴

To a mixture of acyl-protected substituted 2-iodonamide (5.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (175 mg, 0.25 mmol, 5.0 mol %), CuI (96.0 mg, 0.50 mmol, 10 mol %), and Et₃N (1.04 mL, 7.5 mmol, 1.5 equiv) in dry THF (15 mL) was slowly added trimethylsilylacetylene (1.04 mL, 7.5 mmol, 1.5 equiv) under argon. After the reaction mixture was stirred at 80 °C for 24 h, it was treated with standard aqueous work-up and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the silylated arylacetylenes.

The mixture of silvlated arylacetylenes and K_2CO_3 (1.38 g, 10 mmol, 2.0 equiv) dissolved in MeOH (10 mL) and DCM (5 mL) was stirred at room temperature until the starting silvlated acetylenes disappeared. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration of the solid, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel

chromatography to provide the substituted *N*-(1-ethynylnaphthalen-2-yl)-4-methylbenzamide.

Synthesis of substituted *tert*-butyl (1-ethynylnaphthalen-2-yl)(4methylbenzoyl)carbamate⁵

A solution of substituted *N*-(1-ethynylnaphthalen-2-yl)-4-methylbenzamide (2.0 mmol, 1.0 equiv) in THF (10 mL) was treated with Et₃N (0.4 mL, 3.0 mmol, 1.5 equiv), 4-DMAP (49.6 mg, 0.20 mmol, 10 mol %), and Boc₂O (0.70 mL, 2.75 mmol, 1.1 equiv), and the reaction mixture was stirred at 60 °C for 48 h. The reaction mixture was cooled to room temperature, washed with aqueous KHSO₄, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by silica gel chromatography to provide the Boc-protected substituted naphthylamine-derived alkynes.

Synthesis of acyl-protected substituted N-(2-bromophenyl)-4-methylbenzamide

To a solution of substituted 2-bromoaniline (10.5 mmol, 1.05 equiv) and triethylamine (2.04 mL, 15 mmol, 1.5 equiv) in THF (15 mL) was slowly added a solution of 4methylbenzoyl chloride (1.55 g, 10.0 mmol, 1.0 equiv) in THF (5 mL) at 0 °C, which resulted in a colorless precipitate. After the reaction mixture was stirred for 24 h at room temperature, the formed triethylammonium chloride was removed by filtration. The combined organic layers were concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give substituted N-(2bromophenyl)-4-methylbenzamide.

Synthesis of substituted N-(2-ethynylphenyl)-4-methylbenzamide⁵

To a mixture of substituted *N*-(2-bromophenyl)-4-methylbenzamide (5.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (175 mg, 0.25 mmol, 5.0 mol %), CuI (96.0 mg, 0.50 mmol, 10 mol %), and ^{*i*}Pr₂NH (10 mL) in dry DMF (10 mL) was slowly added trimethylsilylacetylene (1.04 mL, 7.5 mmol, 1.5 equiv) under argon. After the reaction mixture was stirred at 120 °C for 48 h, it was treated with standard aqueous work-up and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the silylated arylacetylenes.

The mixture of silylated arylacetylenes and K_2CO_3 (1.38 g, 10 mmol, 2.0 equiv) dissolved in MeOH (10 mL) and DCM (5 mL) was stirred at room temperature until the starting silylated acetylenes disappeared. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography to provide the substituted *N*-(2-ethynylphenyl)-4-methylbenzamide.

Synthesis of substituted tert-butyl (2-ethynylphenyl)(4-methylbenzoyl)carbamate

A solution of substituted *N*-(2-ethynylphenyl)-4-methylbenzamide (2.0 mmol, 1.0 equiv) in THF (10 mL) was treated with Et₃N (0.40 mL, 3.0 mmol, 1.5 equiv), 4-DMAP (49.6 mg, 0.20 mmol, 10 mol %), and Boc₂O (0.70 mL, 2.75 mmol, 1.1 equiv) and the reaction mixture was stirred at 60 °C for 48 h. Upon completion, the reaction mixture was cooled to room temperature, washed with aqueous KHSO₄, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, filtrated, and concentrated. The residue was purified by silica gel chromatography to provide the Boc-protected alkynes.

Procedure C for the synthesis of tert-butyl (tert-butoxycarbonyl)(1ethynylnaphthalen-2-yl)carbamate **NS13**:

Synthesis of *tert*-butyl (1-iodonaphthalen-2-yl)carbamate⁷

To a solution of 1-iodonaphthalen-2-amine (5.38 g, 20 mmol, 1.0 equiv) in THF (2.0 M) was added NaHMDS (22.0 mL, 44.0 mmol, 2.2 equiv) at 0 °C. The reaction was stirred at 0 °C for 30 min before a solution of Boc₂O (5.05 mL, 22 mmol, 1.1 equiv) in THF (1.0 M) was added dropwise. The reaction mixture was stirred at 0 °C for 15 min before warming to room temperature over 30 min. The reaction mixture was then concentrated in vacuo before being partitioned between EtOAc and 1.0 N HCl (aq). The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure to afford the crude *N*-Boc aniline. The residue was purified by flash silica gel column chromatography to give *tert*-butyl (1-iodonaphthalen-2-yl)carbamate.

Synthesis of tert-butyl (1-ethynylnaphthalen-2-yl)carbamate

To a mixture of *tert*-butyl (1-iodonaphthalen-2-yl)carbamate (1.85 g, 5.0 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2$ (175 mg, 0.25 mmol, 5.0 mol %), CuI (96.0 mg, 0.50 mmol, 10 mol %), and Et₃N (1.04 mL, 7.5 mmol, 1.5 equiv) in dry THF (15 mL) was slowly

added trimethylsilylacetylene (1.04 mL, 7.5 mmol, 1.5 equiv). After the reaction mixture was stirred at room temperature for 48 h, it was treated with standard aqueous work-up and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the silylated arylacetylenes.

The mixture of silylated arylacetylenes and K₂CO₃ (1.38 g, 10 mmol, 2.0 equiv) dissolved in MeOH (10 mL) and DCM (5 mL) was stirred at room temperature until the starting silylated acetylenes disappeared. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography to provide the *tert*-butyl (1-ethynylnaphthalen-2-yl)carbamate.

Synthesis of tert-butyl (tert-butoxycarbonyl)(1-ethynylnaphthalen-2-yl)carbamate

A solution of *tert*-butyl (1-ethynylnaphthalen-2-yl)carbamate (534.0 mg, 2.0 mmol, 1.0 equiv) in THF (10 mL) was treated with Et₃N (0.40 mL, 3.0 mmol, 1.5 equiv), 4-DMAP (49.6 mg, 0.20 mmol, 10 mol %), and Boc₂O (0.70 mL, 2.2 mmol, 1.1 equiv) and the reaction mixture was stirred at 60 °C for 48 h. The reaction mixture was cooled to room temperature, washed with aqueous KHSO₄, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by silica gel chromatography to provide the Boc-protected alkyne NS13.
Procedure D for the synthesis of tert-butyl (tert-butoxycarbonyl)(1ethynylnaphthalen-2-yl)carbamate **NS14**:

Synthesis of 1,1-diethyl-3-(1-iodonaphthalen-2-yl)urea⁸

To a solution of 1-iodonaphthalen-2-amine (2.69 g, 10.0 mmol, 1.0 equiv) in THF (20.0 mL) was slowly added NaH (60% dispersion in oil, 600 mg, 15.0 mmol, 1.5 equiv,) at 0 °C and the resulting solution was stirred at 0 °C for 30 min. Then, a solution of diethylcarbamoyl chloride (1.63 g, 12.0 mmol, 1.2 equiv) in THF (10 mL) was added dropwise via cannula to the reaction vessel. The reaction was warmed to room temperature, stirred overnight, and quenched with several drops of water. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give the desired product.

Further transformation of this product to alkyne **NS14** was conducted according to general procedure A.

tert-Butyl (1-ethynylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (NS1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS1** (0.62 g, 80% yield) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.2 Hz, 1H), 7.94 – 7.83 (m, 2H), 7.78 – 7.71 (m, 2H), 7.60 – 7.51 (m, 2H), 7.34 (d, J = 8.7 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 3.63 (s, 1H), 2.40 (s, 3H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 172.4, 152.9, 142.4, 140.4, 134.1, 134.0, 132.4, 130.0, 128.8(2), 128.7(7), 128.3, 127.5, 127.1, 126.6, 126.3, 118.8, 87.8, 83.6, 78.4, 27.7, 21.8. HRMS (ESI) *m/z* calcd. for C₂₅H₂₄NO₃ [M + H]⁺ 386.1751, found 386.1747.

tert-Butyl (1-ethynyl-6-methylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (NS2)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS2** (0.66 g, 82% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.63 (s, 1H), 7.42 (dd, J = 8.6, 1.8 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.23 (d, J = 7.9 Hz, 2H), 3.62 (s, 1H), 2.53 (s, 3H), 2.41 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 172.4, 153.0, 142.3, 139.7, 136.9, 134.1, 132.6, 132.4, 129.7, 129.3, 128.8(1), 128.7(8), 127.3, 126.4, 126.3, 118.6, 87.4, 83.5, 78.6, 27.7, 21.7(4), 21.7(1).

HRMS (ESI) m/z calcd. for C₂₆H₂₅NO₃Na [M + Na]⁺ 422.1727, found 422.1722.

tert-Butyl (1-ethynyl-6-phenylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (NS3)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS3** (637.0 mg, 69% yield) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.7 Hz, 1H), 8.04 (d, J = 1.8 Hz, 1H), 7.96 – 7.66 (m, 6H), 7.48 (t, J = 7.7 Hz, 2H), 7.43 – 7.32 (m, 2H), 7.25 – 7.19 (m, 2H), 3.65 (s, 1H), 2.40 (s, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 152.9, 142.4, 140.6, 140.3, 139.8, 133.9, 133.3, 132.6, 130.2, 129.0, 128.8(2), 128.7(8), 127.8, 127.5, 127.2, 127.1, 126.8, 126.0, 118.7, 87.8, 83.6, 78.3, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₁H₂₇NO₃Na [M + Na]⁺484.1883, found 484.1882.

tert-Butyl (6-bromo-1-ethynylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (NS4)

The Sonogashira coupling for the synthesis of **NS4** was conducted at room temperature. The final product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS4** (0.65 g, 70% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 8.9 Hz, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.82 – 7.72 (m, 3H), 7.65 (dd, J = 8.9, 2.0 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.28 – 7.19 (m, 2H), 3.65 (s, 1H), 2.41 (s, 3H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 172.3, 152.8, 142.5, 140.7, 133.8, 132.6, 130.8, 130.2, 128.9(2), 128.8(9), 128.8(6), 128.8, 128.4, 127.6, 121.4, 119.1, 88.3, 83.8, 77.9, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₂₅H₂₃NO₃Br [M + H]⁺ 464.0856 found 464.0852.

Methyl 6-(*N*-(*tert*-butoxycarbonyl)-4-methylbenzamido)-5-ethynyl-2-naphthoate (NS5)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **NS5** (0.51g, 57% yield) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 1.6 Hz, 1H), 8.41 (d, J = 8.8 Hz, 1H), 8.16 (dd, J = 8.8, 1.7 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 3.99 (s, 3H), 3.67 (s, 1H), 2.42 (s, 3H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.0, 152.7, 142.6, 142.4, 136.4, 133.8, 131.6, 131.2, 128.9, 128.8, 128.6, 127.3, 127.0, 126.9, 119.0, 88.4, 83.9, 77.9, 52.5, 27.7, 21.8. HRMS (ESI) *m/z* calcd. for C₂₇H₂₅NO₅Na [M + Na]⁺ 466.1625, found 466.1625.

tert-Butyl (1-ethynyl-7-methoxynaphthalen-2-yl)(4-methylbenzoyl)carbamate (NS6)

The reaction mixture was purified by silica gel column chromatography (petroleum

ether/ethyl acetate = 8/1) to afford **NS6** (556.8 mg, 67% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.2 Hz, 3H), 7.65 (d, J = 2.6 Hz, 1H), 7.25 – 7.17 (m, 4H), 3.96 (s, 3H), 3.66 (s, 1H), 2.41 (s, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 159.1, 153.0, 142.3, 140.9, 135.7, 134.0, 129.8, 129.7, 128.8, 128.7, 127.8, 123.9, 119.8, 117.5, 104.8, 87.6, 83.5, 78.7, 55.5, 27.7, 21.7. HRMS (ESI) *m*/*z* calcd. for C₂₆H₂₅NO₄Na [M + Na]⁺ 438.1676, found 438.1673.

N-(1-Ethynylnaphthalen-2-yl)-2,4,6-trimethylbenzamide (NS7)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS7** (1.41 g, 90% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (d, *J* = 9.0 Hz, 1H), 8.33 (s, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 9.1 Hz, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.53 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 6.94 (s, 2H), 3.84 (s, 1H), 2.45 (s, 6H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 139.4, 139.2, 134.9, 134.5, 133.5, 130.3, 130.2, 128.6, 128.3, 127.7, 125.6, 125.6, 119.4, 106.4, 89.9, 77.7, 21.3, 19.5. HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₀NO [M + H]⁺ 314.1539, found 314.1537.

tert-Butyl (2-ethynyl-3-methylphenyl)(4-methylbenzoyl)carbamate (NS8)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS8** (0.55 g, 78% yield) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.31 – 7.23 (m, 1H), 7.23 – 7.17 (m, 3H), 7.07 (d, J = 7.8 Hz, 1H), 3.41 (s, 1H), 2.48 (s, 3H), 2.39 (s, 3H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 152.9, 142.5, 142.1, 141.6, 134.1, 129.2, 129.0, 128.7, 128.6, 126.1, 121.7, 86.3, 83.3, 78.9, 27.6, 21.7, 20.9.

HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₃NO₃Na [M + Na]⁺ 372.1570, found 372.1568.

tert-Butyl (4-chloro-2-ethynyl-3-methylphenyl)(4-methylbenzoyl)carbamate (NS9)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS9** (0.70 g, 90% yield) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 8.5 Hz, 1H), 3.48 (s, 1H), 2.57 (s, 3H), 2.41 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 152.6, 142.3, 140.3, 140.1, 134.2, 133.7, 130.0, 128.7, 128.6, 127.2, 123.5, 87.0, 83.6, 78.5, 27.5, 21.7, 18.8.

HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₂ClNO₃Na [M + Na]⁺ 406.1180, found 406.1176.

tert-Butyl (3-chloro-2-ethynylphenyl)(4-methylbenzoyl)carbamate (NS10)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS10** (0.55 g, 74% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 2H), 7.39 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.16 (dd, J = 7.9, 1.1 Hz, 1H), 3.51 (s, 1H), 2.39 (s, 3H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) *δ* 171.8, 152.3, 142.9, 142.4, 137.3, 133.5, 129.7, 128.8, 128.7, 128.6, 127.4, 122.1, 87.6, 83.7, 77.0, 27.5, 21.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₀ClNO₃Na [M + Na]⁺ 392.1024, found 392.1021.

tert-Butyl (3-chloro-2-ethynyl-4-methylphenyl)(4-methylbenzoyl)carbamate (NS11)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS11** (0.54 g, 70% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.70 – 7.65 (m, 2H), 7.28 – 7.17 (m, 3H), 7.06 (d, J = 8.1 Hz, 1H), 3.49 (s, 1H), 2.39 (s, 6H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 172.0, 152.6, 142.4, 140.6, 137.1, 136.7, 133.7, 131.1, 128.8, 128.6, 126.9, 122.1, 87.1, 83.7, 77.6, 27.6, 21.7, 20.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₂ClNO₃Na [M + Na]⁺ 406.1180, found 406.1176.

tert-Butyl (4-ethynyl-2,3-dihydro-1*H*-inden-5-yl)(4-methylbenzoyl)carbamate (NS12)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **NS12** (0.54 g, 72% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.67 (m, 2H), 7.23 (dd, *J* = 7.9, 4.7 Hz, 3H), 7.01 (d, *J* = 7.9 Hz, 1H), 3.31 (s, 1H), 3.03 (t, *J* = 7.5 Hz, 2H), 2.94 (t, *J* = 7.6 Hz, 2H), 2.41 (s, 3H), 2.16 – 2.08 (m, 2H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 153.2, 149.1, 144.3, 142.1, 139.2, 134.3, 128.8,

128.7, 126.7, 125.3, 117.9, 84.6, 83.3, 79.0, 33.2, 33.0, 27.6, 25.1, 21.7.

HRMS (ESI) m/z calcd. for C₂₄H₂₅NO₃Na [M + Na]⁺ 398.1727, found 398.1723.

tert-Butyl (tert-butoxycarbonyl)(1-ethynylnaphthalen-2-yl)carbamate (NS13)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **NS13** (0.63 g, 85% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 8.2 Hz, 1H), 7.84 (t, J = 8.7 Hz, 2H), 7.70 – 7.47 (m, 2H), 7.27 (d, J = 8.6 Hz, 1H), 3.65 (s, 1H), 1.37 (s, 18H).

¹³C NMR (100 MHz, CDCl₃): *δ* 151.1, 140.6, 133.7, 132.1, 129.3, 128.2, 127.2, 126.8, 126.5, 126.3, 118.4, 87.4, 82.8, 77.8, 27.9.

HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₅NO₄Na [M + Na]⁺ 390.1676, found 390.1673.

1,1-Diethyl-3-(1-ethynylnaphthalen-2-yl)urea (NS14)

The reaction mixture was purified by silica gel column chromatography (petroleum

ether/ethyl acetate = 10/1) to afford **NS14** (0.93 g, 70% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 9.2 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.80 (dd, *J* = 18.0, 8.6 Hz, 2H), 7.67 (s, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 3.93 (s, 1H), 3.45 (q, *J* = 7.2 Hz, 4H), 1.30 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 141.9, 133.6, 130.2, 129.1, 128.3, 127.4, 125.1, 124.6, 118.8, 103.7, 88.9, 78.9, 42.0, 14.0. HRMS (ESI) *m/z* calcd. for C₁₇H₁₉N₂O [M + H]⁺ 267.1492, found 267.1489.

tert-Butyl (5-ethynylquinolin-6-yl)(4-methylbenzoyl)carbamate (NS15)

CH₃

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford **NS15** (0.39 g, 51% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.96 (dd, J = 4.3, 1.7 Hz, 1H), 8.65 (d, J = 8.6 Hz, 1H), 8.16 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 9.0 Hz, 1H), 7.50 (dd, J= 8.5, 4.2 Hz, 1H), 7.34 – 7.17 (m, 2H), 3.66 (s, 1H), 2.42 (s, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 152.7, 151.4, 147.1, 142.6, 140.8, 134.9, 133.8, 131.6, 130.1, 129.4, 128.9, 128.8, 122.3, 119.1, 88.3, 83.9, 77.3, 27.7, 21.8. HRMS (ESI) *m/z* calcd. For C₂₄H₂₂N₂O₃Na [M + Na]⁺ 409.1523, found 409.1524.

Procedure E for the synthesis of naphthol-derived alkynes OS1–11 and OS18:

Synthesis of substituted 1-iodo-2-naphthol⁹

To a stirred solution of conc. H_2SO_4 (1.1 mL, 21 mmol, 1.5 equiv) in MeOH (40 mL) were sequentially added substituted naphthalen-2-ol (13.8 mmol, 1.0 equiv), KI (2.54 g, 15 mmol, 1.1 equiv), and H_2O_2 (30% aq. solution, 7.50 mL, 28 mmol, 2.0 equiv) at 0 °C. The mixture was stirred for an additional 75 min at 0 °C and poured into DCM (100 mL). The organic layer was separated, washed with sat. aq. NaHSO₃ solution (10 mL) and H_2O (80 mL), dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The crude product was then purified by flash column chromatography to

afford the desired substituted 1-iodo-2-naphthol.

Synthesis of substituted 1-iodonaphthalen-2-yl diisopropylcarbamate⁸

To a solution of substituted 1-iodo-2-naphthol (10.0 mmol, 1.0 equiv) in THF (20.0 mL) was slowly added NaH (60% dispersion in oil, 600 mg, 15.0 mmol, 1.5 equiv) at 0 °C and the resulting solution was stirred at 0 °C for 30 min. Then, a solution of diisopropylcarbamic chloride (1.96 g, 12.0 mmol, 1.2 equiv) in THF (10 mL) was added dropwise via cannula to the reaction vessel. The reaction mixture was warmed to room temperature, stirred overnight, and quenched with several drops of water. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give substituted 1-iodonaphthalen-2-yl diisopropylcarbamate.

Synthesis of substituted 1-ethynylnaphthalen-2-yl diisopropylcarbamate^{4,10}

To a mixture of substituted 1-iodonaphthalen-2-yl diisopropylcarbamate (5.0 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (175 mg, 0.25 mmol, 5 mol %), CuI (48 mg, 0.50 mmol, 10 mol %), and ^{*i*}Pr₂NH (7.5 mL) in dry THF (7.5 mL) was slowly added trimethylsilylacetylene (1.04 mL, 7.5 mmol, 1.5 equiv) under argon atmosphere. Then, the reaction mixture was stirred at 80 °C for 72 h, treated with a saturated NH₄Cl aqueous solution, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the residue was purified by silica gel column chromatography to afford the silylated arylacetylenes.

The mixture of silylated arylacetylenes and KF (580 mg, 10.0 mmol, 2.0 equiv) dissolved in DMF (15.0 mL) and H_2O (0.3 mL) was stirred at room temperature until the starting silylated acetylenes disappeared. Then, the mixture was extracted with EtOAc and dried over anhydrous Na₂SO₄. After filtration, the organic layer was

concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give alkynes.

Procedure F for the synthesis of naphthol-derived alkynes OS12–14:

OS-Br1 is commercially available. **OS-Br2** and **OS-Br3** were synthesized according to the literature.¹¹

Synthesis of substituted 2-((trimethylsilyl)ethynyl)phenol¹²

To a solution of substituted 2-bromophenol (10 mmol, 1.0 equiv), Pd₂(dba)₃ (229 mg, 0.25 mmol, 2.5 mol %), CuI (192 mg, 0.10 mmol, 10 mol %), and X-Phos (477 mg, 0.10 mmol, 10 mol %) in a mixture of toluene/^{*i*}Pr₂NH (1/1 v/v, 40 mL) placed in a sealed tube was slowly added trimethylsilylacetylene (2.08 mL, 15 mmol, 1.5 equiv).

The resulting solution was stirred at 100 °C for 72 h until the starting material disappeared. The catalyst was removed by filtration over silica gel using DCM as the eluent, and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography to afford the silylated arylacetylenes.

Synthesis of substituted 2-((trimethylsilyl)ethynyl)phenol

To a solution of substituted 2-((trimethylsilyl)ethynyl)phenol (5.0 mmol, 1.0 equiv) in THF (10.0 mL) was slowly added NaH (60% dispersion in oil, 300 mg, 7.5 mmol, 1.5 equiv) at 0 °C and the resulting solution was stirred at 0 °C for 30 min. Then, a solution of diisopropylcarbamic chloride (981 mg, 6.0 mmol, 1.2 equiv) in THF (5 mL) was added dropwise via cannula to the reaction vessel. The reaction was warmed to room temperature, stirred overnight, and quenched with several drops of water. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica column chromatography give substituted 2gel to ((trimethylsilyl)ethynyl)phenyl diisopropylcarbamate.

The mixture of silylated arylacetylenes (5.0 mmol, 1.0 equiv) and KF (508.3 mg, 8.75 mmol, 1.75 equiv) dissolved in DMF (15.0 mL) and H₂O (0.32 mL, 17.5 mmol, 3.50 equiv) was stirred at room temperature until the starting silylated acetylenes disappeared. Then, the mixture was extracted with EtOAc and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give alkynes.

Synthesis of *tert*-butyl (1-iodonaphthalen-2-yl) carbonate⁸

A round bottom flask was charged with 1-iodo-2-naphthol (2.70 g, 10.0 mmol, 1.0 equiv), 4-DMAP (122.2 mg, 1.0 mmol, 10 mol %), DCM (30 mL), and Et₃N (2.08 mL, 15.0 mmol, 1.5 equiv). Boc₂O (2.53 mL, 11.0 mmol, 1.1 equiv) was added to the reaction vessel, and the reaction was stirred until the bubbling subsided (about 15 min). The solution was transferred to a separatory funnel, and KHSO₄ solution (0.5 M, 20 mL) was added. The layers were separated, and the aqueous layer was extracted with DCM (3x20 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by flash chromatography to give *tert*-butyl (1-iodonaphthalen-2-yl) carbonate.

Synthesis of tert-butyl (1-ethynylnaphthalen-2-yl) carbonate

To a mixture of *tert*-butyl (1-iodonaphthalen-2-yl) carbonate (1.85 g, 5.0 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (175 mg, 0.25 mmol, 5 mol %), CuI (48 mg, 0.10 mmol, 10 mol %), and Et₃N (1.04 mL, 7.5 mmol, 1.5 equiv) in dry THF (7.5 mL) was slowly added trimethylsilylacetylene (1.04 mL, 7.5 mmol, 1.5 equiv) under argon atmosphere.

Then, the reaction mixture was stirred at room temperature for 48 h. Upon completion, the reaction mixture was treated with saturated NH₄Cl aqueous solution and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the residue was purified by silica gel column chromatography to afford the silylated arylacetylenes. The mixture of silylated arylacetylenes and KF (580 mg, 10.0 mmol, 2.0 equiv) dissolved in DMF (15.0 mL) and H₂O (0.3 mL) was stirred at room temperature until the starting silylated acetylenes disappeared. Then, the mixture was extracted with EtOAc and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give *tert*-butyl (1-ethynylnaphthalen-2-yl) carbonate.

Procedure H for the synthesis of alkyne OS16:

Synthesis of 1-iodonaphthalen-2-yl 4-methylbenzoate¹³

A round bottom flask was charged with 1-iodo-2-naphthol (2.70 g, 10.0 mmol, 1.0 equiv), 4-DMAP (122.2 mg, 1.0 mmol, 10 mol %), DCM (20 mL), and Et₃N (2.08 mL, 15.0 mmol, 1.5 equiv). Then, the resulting solution was stirred at 0 °C, and a solution of 4-methylbenzoyl chloride (12.0 mmol, 1.2 equiv) in DCM (10 mL) was added dropwise via cannula to the reaction vessel. The reaction was warmed to room temperature and stirred overnight. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give the acyl-protected product. Then, alkyne **OS16** was prepared by following procedure

Procedure I for the synthesis of alkyne OS17:

G.

Synthesis of 1-iodonaphthalen-2-yl 4-methylbenzenesulfonate^{14a}

A round-bottom flask was charged with 1-iodo-2-naphthol (2.70 g, 10.0 mmol, 1.0 equiv), DCM (20 mL), and Et₃N (3.0 mL, 15.0 mmol, 1.5 equiv). Then, the reaction mixture was stirred at 0 °C, and a solution of 4-methylbenzenesulfonyl chloride (2.28 g, 12.0 mmol, 1.2 equiv) in DCM (10 mL) was added dropwise via cannula to the reaction vessel. The reaction was warmed to room temperature and stirred overnight. Upon completion, the reaction mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to give the desired product. Subsequently, alkyne **OS17** was prepared by following procedure G.

1-Ethynylnaphthalen-2-yl diisopropylcarbamate (OS1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS1** (1.30 g, 88% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, J = 8.4 Hz, 1H), 7.89 – 7.78 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 8.9 Hz, 1H), 4.31 – 3.95 (m, 2H), 3.62 (s, 1H), 1.52 – 1.21 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 153.1, 152.3, 134.3, 130.9, 130.0, 128.2, 127.4, 126.0, 125.9, 122.1, 112.0, 86.8, 77.7, 46.9, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₂ [M + H]⁺ 296.1645, found 296.1643.

1-Ethynyl-6-methylnaphthalen-2-yl diisopropylcarbamate (OS2)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS2** (1.40 g, 90% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 8.5 Hz, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.58 (s, 1H), 7.38 (dd, J = 8.5, 1.7 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 4.22 – 3.98 (m, 2H), 3.58 (s, 1H), 2.49 (s, 3H), 1.40 – 1.31 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 153.2, 151.7, 135.6, 132.5, 131.1, 129.6, 129.3, 127.3, 125.8, 122.0, 111.8, 86.4, 77.9, 46.9, 21.6, 20.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₂ [M + H]⁺ 310.1802, found 310.1798.

1-Ethynyl-6-phenylnaphthalen-2-yl diisopropylcarbamate (OS3)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS3** (1.54 g, 83% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.82 (dd, J = 8.7, 1.9 Hz, 1H), 7.71 (dd, J = 7.4, 1.7 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.41 – 7.32 (m, 2H), 4.24 – 3.95 (m, 2H), 3.62 (s, 1H), 1.47 – 1.28 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 153.1, 152.4, 140.8, 138.7, 133.6, 131.2, 130.2, 129.0, 127.6, 127.5, 127.0, 126.6, 126.1, 122.5, 112.0, 86.7, 77.7, 46.9, 21.6, 20.7.
HRMS (ESI) *m/z* calcd. for C₂₅H₂₆NO₂ [M + H]⁺ 372.1958, found 372.1953.

6-Bromo-1-ethynylnaphthalen-2-yl diisopropylcarbamate (OS4)

The Sonogashira coupling for the synthesis of **OS4** was conducted at room temperature. The final product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS4** (1.46 g, 78% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 8.9 Hz, 1H), 7.99 (d, J = 2.0 Hz, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.62 (dd, J = 8.9, 2.0 Hz, 1H), 7.35 (d, J = 8.9 Hz, 1H), 4.17 – 3.93 (m, 2H), 3.62 (s, 1H), 1.51 – 1.23 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 152.8, 152.5, 132.9, 132.0, 130.7, 130.2, 128.9, 127.8, 123.3, 120.0, 112.4, 87.2, 77.2, 47.0, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₁BrNO₂ [M + H]⁺ 374.0750, found 374.0748.

1-Ethynyl-6-methoxynaphthalen-2-yl diisopropylcarbamate (OS5)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **OS5** (1.31 g, 80% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, J = 9.1 Hz, 1H), 7.72 (d, J = 8.9 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.23 (dd, J = 9.1, 2.6 Hz, 1H), 7.12 (d, J = 2.6 Hz, 1H), 4.16 – 4.01 (m, 2H), 3.90 (s, 3H), 3.59 (s, 1H), 1.41 – 1.26 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 157.7, 153.3, 150.6, 132.1, 129.6, 128.7, 127.5, 122.4, 120.0, 112.0, 106.3, 86.4, 77.8, 55.4, 46.9, 46.7, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₃ [M + H]⁺ 326.1751, found 326.1746.

6-Cyano-1-ethynylnaphthalen-2-yl diisopropylcarbamate (OS6)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 15/1) to afford **OS6** (1.28 g, 80% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.36 (dd, J = 8.7, 2.9 Hz, 1H), 8.20 (s, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.67 (dd, J = 8.7, 1.7 Hz, 1H), 7.46 (d, J = 8.9 Hz, 1H), 4.19 – 3.99 (m, 2H), 3.68 (s, 1H), 1.50 – 1.23 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 154.6, 152.4, 135.9, 134.2, 130.2, 129.8, 127.9, 127.4,

124.1, 119.0, 112.7, 109.6, 88.0, 76.6, 47.1, 21.6, 20.6. HRMS (ESI) *m*/*z* calcd. for C₂₀H₂₁N₂O₂ [M + H]⁺ 321.1598, found 321.1593.

Methyl 6-((diisopropylcarbamoyl)oxy)-5-ethynyl-2-naphthoate (OS7)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **OS7** (1.48 g, 84% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H), 8.34 (d, J = 8.8 Hz, 1H), 8.13 (dd, J = 8.8, 1.7 Hz, 1H), 7.94 (d, J = 8.9 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 4.29 – 4.00 (m, 2H), 3.98 (s, 3H), 3.65 (s, 1H), 1.50 – 1.26 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 167.1, 154.1, 152.7, 136.7, 131.3, 131.2, 130.0, 127.6, 126.8, 126.3, 123.0, 112.3, 87.3, 77.2, 52.4, 47.0, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₄NO₄ [M + H]⁺ 354.1700, found 354.1696.

Methyl 6-((diisopropylcarbamoyl)oxy)-5-ethynyl-1-naphthoate (OS8)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **OS8** (1.45 g, 82% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.98 (d, J = 9.5 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.18 (dd, J = 7.2, 1.3 Hz, 1H), 7.58 (dd, J = 8.4, 7.3 Hz, 1H), 7.45 (d, J = 9.4 Hz, 1H), 4.23 – 4.03 (m, 2H), 3.99 (s, 3H), 3.64 (s, 1H), 1.49 – 1.23 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 167.8, 152.8, 152.6, 135.0, 131.2, 130.2, 129.0, 128.2, 127.5, 126.1, 123.7, 112.5, 87.3, 77.5, 52.4, 47.0, 46.9, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₄NO₄ [M + H]⁺ 354.1700, found 354.1694.

1-Ethynyl-4-phenylnaphthalen-2-yl diisopropylcarbamate (OS9)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS9** (1.45 g, 78% yield) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H)., 7.62 – 7.55 (m, 1H), 7.55 – 7.40 (m, 6H), 7.31 (s, 1H), 4.18 – 4.04 (m, 2H), 3.66 (s, 1H), 1.51 – 1.27 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 153.0, 151.7, 142.6, 139.7, 134.8, 130.1, 129.4, 128.4, 127.8, 127.3, 126.6, 126.4, 126.0, 123.0, 111.5, 86.9, 77.8, 47.0, 46.7, 21.7, 20.7. HRMS (ESI) *m/z* calcd. for C₂₅H₂₆NO₂ [M + H]⁺ 372.1958, found 372.1956.

1-Ethynyl-4-methylnaphthalen-2-yl diisopropylcarbamate (OS10)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS10** (1.25 g, 81% yield) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.52 (td, J = 7.6, 6.9, 1.2 Hz, 1H), 7.20 (s, 1H), 4.16 – 3.92 (m, 2H), 3.59 (s, 1H), 2.70 (s, 3H), 1.38 (d, J = 21.4 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 153.1, 151.8, 137.4, 134.3, 130.2, 127.0, 126.5, 125.7, 124.4, 122.7, 110.1, 86.1, 77.8, 46.8, 46.7, 21.5, 20.6, 19.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₂ [M + H]⁺ 310.1802, found 310.1799.

1-Ethynyl-7-methylnaphthalen-2-yl diisopropylcarbamate (OS11)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS11** (1.24 g, 80% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.29 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.24 (d, *J* = 8.9 Hz, 1H), 4.15 – 3.97 (m, 2H), 3.60 (s, 1H), 2.53 (s, 3H), 1.55 – 1.18 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): *δ* 153.1, 152.5, 137.4, 134.5, 129.7, 129.1, 128.2, 128.0, 125.0, 121.0, 111.3, 86.5, 77.9, 46.8, 22.0, 21.6, 20.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₂ [M + H]⁺ 310.1802, found 310.1796.

1-Ethynyl-5,6,7,8-tetrahydronaphthalen-2-yl diisopropylcarbamate (OS12)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS12** (1.14 g, 76% yield) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.04 (d, J = 8.3 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 4.20 – 3.98 (m, 2H), 3.40 (s, 1H), 2.94 – 2.61 (m, 4H), 1.83 – 1.69 (m, 4H), 1.45 – 1.17 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 153.3, 151.2, 141.0, 134.2, 130.2, 119.6, 116.0, 86.0, 78.2, 46.6, 29.4, 28.3, 22.8, 21.5, 20.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₆NO₂ [M + H]⁺ 300.1958, found 300.1955.

2-Ethynyl-3-methylphenyl diisopropylcarbamate (OS13)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS13** (0.97 g, 75% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, J = 15.2, 7.3 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 8.2 Hz, 1H), 4.20 – 3.91 (m, 2H), 3.40 (s, 1H), 2.45 (s, 3H), 1.40 – 1.24 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) *δ* 153.3, 142.7, 129.1, 127.5, 126.3, 120.1, 116.7, 85.6, 78.3, 46.8, 21.6, 20.8, 20.6.

HRMS (ESI) m/z calcd. for C₁₆H₂₂NO₂ [M + H]⁺260.1645, found 260.1643.

2-Ethynyl-3,5-dimethylphenyl diisopropylcarbamate (OS14)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS14** (0.98 g, 72% yield) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 6.87 (s, 1H), 6.80 (s, 1H), 4.20 – 3.91 (m, 2H), 3.34 (s, 1H), 2.41 (s, 3H), 2.30 (s, 3H), 1.42 – 1.18 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 153.2(0), 153.1(6), 142.2, 139.6, 127.3, 120.7, 113.6,

84.8, 78.5, 46.7, 21.5, 20.6.

HRMS (ESI) m/z calcd. for C₁₇H₂₄NO₂ [M + H]⁺ 274.1802, found 274.1799.

1-Ethynylnaphthalen-2-yl diisopropylcarbamate (OS15)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS15** (1.24 g, 92% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): *δ* 8.34 (d, *J* = 8.4 Hz, 1H), 7.86 (t, *J* = 8.0 Hz, 2H), 7.60 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.51 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.33 (d, *J* = 8.9 Hz, 1H), 3.72 (s, 1H), 1.60 (s, 9H)

¹³C NMR (100 MHz, CDCl₃): *δ* 151.5, 151.4, 134.1, 131.2, 130.4, 128.3, 127.7, 126.4, 126.1, 120.9, 112.3, 87.7, 84.2, 76.6, 27.8.

HRMS (ESI) *m*/*z* calcd. for C₁₇H₁₆O₃Na [M + Na]⁺ 291.0992, found 291.0990.

1-Ethynylnaphthalen-2-yl 4-methylbenzoate (OS16)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS16** (1.03 g, 72% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.1 Hz, 2H), 7.90 (dd, J = 11.3, 8.5 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 3.58 (s, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 151.8, 144.7, 134.3, 131.3, 130.6, 130.3, 129.5, 128.4, 127.7, 126.7, 126.4, 126.1, 121.5, 112.3, 87.4, 76.8, 22.0. HRMS (ESI) *m*/*z* calcd. for C₂₀H₁₅O₂ [M + H]⁺ 287.1067, found 287.1065.

1-Ethynylnaphthalen-2-yl 4-methylbenzenesulfonate (OS17)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS17** (1.37 g, 85% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.3 Hz, 1H), 7.88 – 7.77 (m, 4H), 7.62 – 7.49 (m, 2H), 7.42 (d, J = 9.0 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 3.43 (s, 1H), 2.44 (s, 3H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 149.5, 145.6, 134.1, 132.9, 131.5, 130.4, 129.9, 129.0, 128.3, 127.9, 126.9, 126.4, 121.3, 113.4, 87.5, 76.1, 21.9.

HRMS (ESI) m/z calcd. for C₁₉H₁₅O₃S [M + H]⁺ 323.0736, found 323.0735.

1,6-Diethynylnaphthalen-2-yl diisopropylcarbamate (OS18)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **OS18** (1.24 g, 90% yield) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.6 Hz, 1H), 8.00 (d, J = 1.5 Hz, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.61 (dd, J = 8.7, 1.7 Hz, 1H), 7.35 (d, J = 8.9 Hz, 1H), 4.26 – 3.97 (m, 2H), 3.62 (s, 1H), 3.16 (s, 1H), 1.49 – 1.21 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 153.1, 152.8, 134.1, 132.5, 130.3, 130.1, 129.8, 126.2, 122.9, 119.6, 112.3, 87.1, 83.7, 78.0, 77.3, 47.0, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NO₂ [M + H]⁺ 320.1645, found 320.1640.

1,7-Diethynylnaphthalen-2-yl diisopropylcarbamate (OS19)

The reaction mixture was purified by silica gel column chromatography (petroleum

ether/ethyl acetate = 10/1) to afford **OS19** (0.81 g, 50% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.79 (dd, *J* = 11.7, 8.7 Hz, 2H), 7.52 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.35 (d, *J* = 8.9 Hz, 1H), 4.29 – 3.83 (m, 2H), 3.65 (s, 1H), 3.19 (s, 1H), 1.52 – 1.14 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.9, 152.9, 133.9, 130.5, 130.3, 129.7, 128.7, 128.4, 123.1, 121.1, 112.0, 87.4, 84.0, 78.3, 47.0, 21.6, 20.7.

HRMS (ESI) m/z calcd. for C₂₁H₂₂NO₂ [M + H]⁺ 320.1645, found 320.1640.

The internal alkyne **OS20** was synthesized according to the reported literature.^{14b}

1-(Prop-1-yn-1-yl)naphthalen-2-yl diisopropylcarbamate (OS20) CH₃

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **OS20** as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.53 (t, J = 7.0 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.20 (s, 1H), 3.93–3.48 (m, 2H), 2.29 (s, 3H), 1.53–1.20 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 153.2, 134.2, 128.6, 127.8(0), 127.7(9), 126.3, 125.8, 125.1, 124.5, 105.1, 97.9, 72.4, 20.8, 5.1.

HRMS (ESI) m/z calcd. for C₂₀H₂₄NO₂ [M + H]⁺ 310.1802, found 310.1800.

6-Ethynylnaphthalen-2-yl diisopropylcarbamate (OS1')

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS1'** (1.23 g, 83% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.79 (d, *J* = 8.9 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.57 (d, *J* = 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.31 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.31 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.51 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.51 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.51 (dd, *J* = 8.9 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.51 (dd, J = 8.5, 1.6 Hz, 1

Hz, 1H), 4.26 – 3.90 (m, 2H), 3.14 (s, 1H), 1.52 – 1.15 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 150.1, 133.7, 132.2, 130.6, 129.2, 129.1, 127.8, 122.7, 118.9, 118.5, 84.1, 77.5, 47.1, 46.4, 21.7, 20.6. HRMS (ESI) *m*/*z* calcd. for C₁₉H₂₁NO₂Na [M + Na]⁺ 318.1465, found 318.1461.

7-Ethynylnaphthalen-2-yl diisopropylcarbamate (OS1'')

O N[/]Pr₂

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **OS1''** (1.24 g, 84% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.78 (dd, J = 14.7, 8.7 Hz, 2H), 7.60 – 7.43 (m, 2H), 7.31 (dd, J = 8.8, 2.3 Hz, 1H), 4.30 – 3.85 (m, 2H), 3.15 (s, 1H), 1.51 – 0.97 (s, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 153.8, 149.8, 133.5, 131.9, 130.8, 129.1, 128.1, 127.9, 123.0, 120.0, 118.4, 84.1, 77.8, 47.1, 46.4, 21.7, 20.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₁NO₂Na [M + Na]⁺ 318.1465, found 318.1461.

The radical precursors A1 and A2 were synthesized according to the reported literature.¹⁵ The radical precursors A3 and A4 were commercially available.

For the synthesis of A1: To a stirred solution of 3,5-dimethoxyaniline (1.53 g, 10 mmol, 1.0 equiv) and triethylamine (4.17 mL, 3.03 g, 30 mmol, 3.0 equiv) in anhydrous DCM (100 mL) was added 2-bromoisobutyryl bromide (1.23 mL, 2.29 g, 10 mmol, 1.0 equiv) dropwise at 0 °C. After the addition was completed, the reaction was allowed to return to room temperature and stirred overnight. Then, the mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford A1 as a white solid.

For the synthesis of **A2**: To a solution of 3,5-dichlorophenol (1.62 g, 10 mmol, 1.0 equiv) and Et₃N (2.08 mL, 15 mmol, 1.5 equiv) in THF (30 mL) was added 2-bromoisobutyryl bromide (1.8 mL, 15 mmol, 1.5 equiv) dropwise under argon for 5 min at 0 °C. The reaction mixture was stirred at room temperature for 12 h and then filtrated through a short pad of silica. The filtrate was concentrated in vacuo, and the residue was diluted in DCM (60 mL) and washed with 0.1 M HCl aq. solution (40 mL) and sat. NaHCO₃ solution (40 mL) sequentially. The organic layer was dried over anhydrous Na₂SO₄,

filtrated, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to afford A2 as a white solid.

2-Bromo-*N*-(3,5-dimethoxyphenyl)-2-methylpropanamide (A1)

¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 6.78 (d, J = 2.3 Hz, 2H), 6.26 (t, J = 2.2 Hz, 1H), 3.77 (s, 6H), 2.03 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 170.1, 161.1, 139.2, 98.1, 97.5, 63.1, 55.5, 32.6.

HRMS (ESI) m/z calcd. for C₁₂H₁₇BrNO₃ [M + H]⁺ 302.0386, found 302.0388.

3,5-Dichlorophenyl 2-bromo-2-methylpropanoate (A2)

¹H NMR (400 MHz, CDCl₃): δ 7.28 (t, J = 1.9 Hz, 1H), 7.10 (d, J = 1.9 Hz, 2H), 2.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 169.6, 151.4, 135.5, 126.8, 120.5, 54.8, 30.6.

HRMS (ESI) m/z calcd. for C₁₀H₁₀BrCl₂O₂ [M + H]⁺ 310.9236, found 310.9236.

Procedures for the synthesis of chiral ligands Procedures for the synthesis of chiral ligand L7

Synthesis of (S)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)aniline: Under argon atmosphere, a dry 100 mL round-bottom flask equipped with a magnetic stir bar was charged with 2-aminobenzonitrile (1.18 g, 10 mmol, 1.0 equiv), (S)-2-amino-2phenylethan-1-ol (1.65 g, 12 mmol, 1.2 equiv), dry ZnCl₂ (2.72 g, 20 mmol, 2.0 equiv), and chlorobenzene (40 mL). Then, the reaction mixture was refluxed for 36 h before being quenched with H₂O, EtOAc, and 2 mL ethylenediamine. The reaction mixture was extracted with EtOAc and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired amine as a white solid.

Synthesis of (S)-6-bromo-N-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide: Under atmospheric condition, a dry 50 mL round-bottom flask equipped with a magnetic stir bar was charged with (S)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)aniline (1.19 g, 5.0 mmol, 1.0 equiv), 6-bromopicolinic acid (1.52 g, 7.5 mmol, 1.5 equiv), EDCI (1.92 g, 10 mmol, 2.0 equiv), 4-DMAP (0.61 g, 5.0 mmol, 1.0 equiv), and DCM (20 mL), and then the mixture was stirred at room temperature for 24 h. Upon completion, the reaction mixture was extracted with DCM and dried over anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired product as a white solid.

Synthesis of L7 (Suzuki-Miyaura coupling): A flame-dried 100 mL Schlenk tube

equipped with a magnetic stir bar was charged with $Pd(PPh_3)_4$ (432 mg, 0.40 mmol, 10 mol %), *(S)*-6-bromo-N-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide (1.60 g, 4.0 mmol, 1.0 equiv), (1-(*tert*-butoxycarbonyl)-1*H*-indol-2-yl)boronic acid (1.68 g, 6.4 mmol, 1.6 equiv), and K₂CO₃ (3.32 g, 24.0 mmol, 6.0 equiv). The tube was evacuated and backfilled with argon three times, then analytically pure THF (24.0 mL) and H₂O (8 mL) were added into the mixture, and the reaction mixture was stirred at 80 °C for 48 h. Upon completion, the precipitate was filtered off and washed by EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired chiral ligand L7 as a white solid. Chiral ligands L4, L5, L6, and L8 were prepared following procedures similar to those of chiral ligand L7, using corresponding chiral amino alcohols and aryl boronic acids.

(S)-N-(2-(4-(tert-Butyl)-4,5-dihydrooxazol-2-yl)phenyl)-6-phenylpicolinamide (L4)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford L4 (1.44 g, 90% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 13.64 (s, 1H), 8.99 (dd, J = 8.5, 1.1 Hz, 1H), 8.22 (dd, J = 7.3, 1.2 Hz, 1H), 8.19 – 8.08 (m, 2H), 8.02 – 7.81 (m, 3H), 7.65 – 7.40 (m, 4H), 7.15 (td, J = 7.6, 1.2 Hz, 1H), 4.34 – 4.17 (m, 2H), 4.11 (dd, J = 10.0, 6.3 Hz, 1H), 0.54 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 164.6, 162.7, 156.2, 151.4, 139.8, 138.7, 138.1, 132.3, 129.6, 129.4, 128.7, 127.7, 122.9, 122.8, 121.4, 120.6, 114.9, 76.1, 67.4, 34.2, 25.4.
HRMS (ESI) *m/z* calcd. for C₂₅H₂₆N₃O₂ [M + H]⁺ 400.2020, found 400.2015.

(S)-N-(2-(4-(tert-Butyl)-4,5-dihydrooxazol-2-yl)phenyl)-6-phenylpicolinamide (L5)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford L5 (1.48 g, 74% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 13.29 (s, 1H), 9.01 (dd, J = 8.6, 1.1 Hz, 1H), 8.58 (s, 1H), 8.50 (dd, J = 7.9, 1.1 Hz, 1H), 8.18 – 8.02 (m, 3H), 7.76 (dd, J = 7.8, 1.7 Hz, 1H),

7.72 – 7.62 (m, 3H), 7.55 – 7.44 (m, 3H), 7.43 – 7.32 (m, 2H), 7.08 (td, J = 7.6, 1.2 Hz, 1H), 3.69 – 3.51 (m, 2H), 2.68 (dd, J = 9.8, 6.8 Hz, 1H), 0.00 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 161.9, 156.9, 151.3, 139.0, 137.6, 134.9, 132.0, 131.5(8), 131.5(6), 130.4, 130.3, 129.9, 129.3, 128.6, 128.4, 127.8, 126.7, 126.2, 126.0, 125.9, 125.4, 125.3, 123.0, 121.8, 120.8, 115.9, 75.2, 67.4, 33.2, 24.7. HRMS (ESI) *m*/*z* calcd. for C₃₃H₃₀N₃O₂ [M + H]⁺ 500.2333, found 500.2328.

tert-Butyl (S)-2-(6-((2-(4-(*tert*-butyl)-4,5-dihydrooxazol-2-yl)phenyl)carbamoyl)pyridin-2-yl)-1*H*-indole-1-carboxylate (L6)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **L6** (2.07 g, 96% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 13.82 (s, 1H), 9.07 (d, J = 9.7 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8.22 (d, J = 9.5 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.72 (dd, J = 7.7, 1.1 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.51 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.39 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.29 (td, J = 7.5, 1.1 Hz, 1H), 7.12 (td, J = 7.6, 1.2 Hz, 1H), 6.84 (s, 1H), 4.22 (dd, J = 9.9, 8.5 Hz, 1H), 4.13 (dd, J = 8.5, 6.2 Hz, 1H), 3.97 (dd, J = 9.9, 6.2 Hz, 1H), 1.19 (s, 9H), 0.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 164.1, 162.2, 151.9, 150.6, 150.0, 139.5, 139.0, 138.1,
137.7, 132.1, 129.4, 128.9, 125.3, 125.2, 123.2, 122.8, 121.4, 121.3, 120.2, 115.1, 114.9,
111.5, 83.6, 75.4, 67.7, 33.7, 27.6, 25.0.

HRMS (ESI) m/z calcd. for C₃₂H₃₅N₄O₄ [M + H]⁺ 539.2653, found 539.2652.

tert-Butyl (S)-2-(6-((2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)carbamoyl)pyridin-2-yl)-1*H*-indole-1-carboxylate (L7)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford L7 (2.10 g, 94% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 14.21 (s, 1H), 9.15 (d, *J* = 8.5 Hz, 1H), 8.28 (d, *J* = 6.8 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.01 – 7.87 (m, 2H), 7.64 – 7.52 (m, 2H), 7.40 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 8.4 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.0 Hz, 1H), 6.93 – 6.74 (m, 3H), 6.60 (d, J = 7.3 Hz, 2H), 6.53 (s, 1H), 5.49 (dd, J = 10.1, 7.3 Hz, 1H), 4.69 (dd, J = 10.2, 8.1 Hz, 1H), 4.06 (dd, J = 8.1, 7.3 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 163.7, 152.1, 150.2, 150.0, 142.0, 139.8, 138.4, 137.8, 137.5, 132.6, 129.7, 128.8, 127.9, 126.5, 125.6, 125.4, 125.1, 122.9, 122.8, 121.2, 121.2, 120.2, 114.8, 114.7, 111.5, 83.5, 73.7, 69.4, 27.6. HRMS (ESI) *m/z* calcd. for C₃₄H₃₁N₄O₄ [M + H]⁺ 559.2340, found 559.2340.

(S)-6-(Phenanthren-9-yl)-N-(2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide (L8)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **L8** (1.45 g, 70% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 14.20 (s, 1H), 9.19 (d, J = 8.5 Hz, 1H), 8.70 (d, J = 8.3 Hz, 1H), 8.65 (d, J = 8.3 Hz, 1H), 8.39 (d, J = 7.7 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 8.01 (t, J = 7.7 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.74 – 7.53 (m, 6H), 7.50 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 6.61 – 6.44 (m, 3H), 6.40 – 6.29 (m, 2H), 4.29 (ddd, J = 34.0, 10.2, 7.5 Hz, 2H), 3.82 (t, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 163.5, 158.1, 150.6, 141.5, 139.9, 137.9, 136.5, 132.6, 131.4, 130.8, 130.6, 130.4, 129.5, 129.0, 128.8, 127.7, 127.5, 127.1, 126.9, 126.8, 126.5, 126.5, 126.2, 125.2, 122.8(2), 122.7(6), 122.6, 121.2, 120.3, 114.8, 73.3, 69.1. HRMS (ESI) *m/z* calcd. for C₃₅H₂₆N₃O₂ [M + H]⁺ 520.2020, found 520.2019.

General procedure for the synthesis of racemates

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (3.73 mg, 0.010 mmol, 10 mol %), L11-rac (2.10 mg, 0.010 mmol, 10 mol %), alkyne (0.10 mmol, 1.0 equiv), sulfonyl chloride (0.15 mmol, 1.5 equiv), and K₃PO₄ (63.7 mg, 0.30 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Toluene (2.0 mL) was added to the mixture, and the reaction mixture was stirred at 80 °C for 24 h. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedures for the asymmetric chlorine atom transfer radical addition of alkynes

Procedure I:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol, 1.0 equiv), sulfonyl chloride (0.30 mmol, 1.5 equiv), and K_3PO4 (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous DME (1.0 mL) and MTBE (3.0 mL) were added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure II:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuCl (1.97 mg, 0.020 mmol, 10 mol %), L8 (10.4 mg, 0.020 mmol, 10 mol %), L10-rac (5.26 mg, 0.020 mmol, 10 mol %), NS13 (73.5 mg, 0.20 mmol, 1.0 equiv), S1 (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO4 (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous THF (4.0 mL) was added to the mixture, and the reaction mixture was stirred at 0 °C for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure III:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L6 (10.8 mg, 0.020 mmol, 10 mol %), NS7 (62.7 mg, 0.20 mmol, 1.0 equiv), S1 (57.2 mg, 0.30 mmol, 1.5 equiv) and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous DCM (1.0 mL) and toluene (3.0 mL) were added to the mixture, and the reaction mixture was stirred at -10 °C for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure IV:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L6 (10.8 mg, 0.020 mmol, 10 mol %), NS14 (53.3 mg, 0.20 mmol, 1.0 equiv), S1 (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous DCM (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure V:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(CH₃CN)₄PF₆ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol, 1.0 equiv), sulfonyl chloride (0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure VI:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), **L6** (10.8 mg, 0.020 mmol, 10 mol %), **OS15** (53.7 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous DME (4.0 mL) was added to the mixture, and the reaction mixture was stirred at 0 °C for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure VII:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), **L6** (10.8 mg, 0.020 mmol, 10 mol %), **OS16** (57.2 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure VIII:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), **L6** (10.8 mg, 0.020 mmol, 10 mol %), **OS17** (64.4 mg, 0.20 mmol, 1.0 equiv), **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at 0 °C for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

Procedure IX:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuBr (2.84 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol, 1.0 equiv), radical precursor (0.30 mmol, 1.5 equiv), and K₃PO₄ (169.4 mg, 0.80 mmol, 4.0 equiv). The tube was evacuated and backfilled with argon three times. Anhydrous THF (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

tert-Butyl (*S_a*,*E*)-(1-(1-chloro-2-tosylvinyl)naphthalen-2-yl)(4methylbenzoyl)carbamate (N1)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column

chromatography (petroleum ether/ethyl acetate = 5/1) to afford N1 (92.2 mg, 80% yield, 93% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.09 – 7.57 (m, 5H), 7.57 – 7.33 (m, 5H), 7.33 – 7.03 (m, 3H), 6.85 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H), 2.18 (s, 3H), 1.32 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): *δ* 172.6, 152.7, 144.4, 143.1, 141.2, 137.1, 136.0, 135.5, 133.8, 133.7, 132.5, 129.7, 129.5, 129.3, 128.9, 128.5, 128.3, 127.9, 127.0, 126.8(1), 126.7(6), 125.0, 84.0, 28.1, 27.7, 21.5.

HRMS (ESI) m/z calcd. for C₃₂H₃₁ClNO₅S [M + H]⁺ 576.1606, found 576.1605.

HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.00 min, t_R (major) = 15.83 min, 93% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-(phenylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N2)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S2** (53.0 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N2** (84.3 mg, 75% yield, 95% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 8.08 – 7.72 (m, 4H), 7.71 – 7.36 (m, 6H), 7.36 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.21 – 7.05 (m, 3H), 2.44 (s, 3H), 1.44 – 1.22 (br, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 152.7, 143.0, 142.1, 138.9, 136.1, 134.7, 133.6, 133.3, 132.4, 131.2, 129.3, 128.9, 128.6, 128.4, 128.3, 127.8, 127.2, 126.9, 124.8, 83.9, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₁H₂₉ClNO₅S [M + H]⁺ 562.1449, found 562.1446. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 19.14 min, t_R (minor) = 24.80 min, 95% ee.

tert-Butyl (*S_a,E*)-(1-(2-((4-bromophenyl)sulfonyl)-1-chlorovinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N3)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S3** (76.7 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 7/1) to afford **N3** (95.0 mg, 74% yield, 93% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.13 – 7.58 (m, 5H), 7.58 – 7.46 (m, 3H), 7.46 – 7.26 (m, 4H), 7.20 – 6.99 (m, 3H), 2.44 (s, 3H), 1.27 (br, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 173.0, 152.6, 143.2, 142.4, 137.2, 136.3, 135.2, 133.6, 132.4, 131.7, 131.3, 129.9, 129.5, 128.9, 128.8, 128.5, 127.8, 127.4, 127.1, 124.7, 84.1, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₁H₂₈BrClNO₅S [M + H]⁺ 640.0555, found 640.0550. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.55 min, t_R (major) = 17.57 min, 93% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-((4-iodophenyl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N4)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S4** (90.8 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **N4** (88.1 mg, 64% yield, 92% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 8.10 – 7.51 (m, 6H), 7.49 (d, J = 8.7 Hz, 1H), 7.47 – 7.27 (m, 5H), 7.25 – 7.05 (m, 3H), 2.46 (s, 3H), 1.37 – 1.20 (br, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 152.6, 143.2, 142.2, 137.6, 136.5, 135.3, 133.6,

132.3, 131.3, 129.6, 129.0, 128.6, 127.8, 127.5, 127.2, 124.7, 101.7, 84.0, 27.7, 21.9. HRMS (ESI) *m*/*z* calcd. for C₃₁H₂₈ClNIO₅S [M + H]⁺ 688.0416 found 688.0412 HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 12.96 min, t_R (major) = 19.53 min, 92% ee. *tert*-Butyl (*S_a*,*E*)-(1-(1-chloro-2-((4-methoxyphenyl)sulfonyl)vinyl)naphthalen-2yl)(4-methylbenzoyl)carbamate (N5)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S5** (62.0 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **N5** (99.5 mg, 84% yield, 94% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.12 – 7.63 (m, 4H), 7.62 – 7.38 (m, 5H), 7.29 (s, 2H), 7.16 (s, 2H), 6.47 (d, J = 8.9 Hz, 2H), 3.67 (s, 3H), 2.43 (s, 3H), 1.29 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 173.2, 163.4, 152.7, 143.1, 141.0, 140.2, 136.3, 135.8, 134.9, 133.7, 132.5, 131.1, 130.7, 130.2, 129.4, 128.9, 128.2, 127.9, 127.1, 126.8, 125.0, 113.7, 84.0, 55.5, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₂H₃₁ClNO₆S [M + H]⁺ 592.1555, found 592.1550.

HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 13.26 min, t_R (major) = 21.33 min, 94% ee.

tert-Butyl (S_a, E) -(1-(1-chloro-2-((4-nitrophenyl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N6) O_2N

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S6** (66.5 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N6** (48.0 mg, 40% yield, 91% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.55 (m, 8H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.42 – 7.11 (m, 6H), 2.45 (s, 3H), 1.28 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 172.9, 152.8, 149.5, 143.5, 137.0, 135.3, 133.6, 132.2, 131.6, 130.0, 129.6, 129.0, 128.3, 127.9, 127.3, 124.6, 123.4, 123.0, 84.3, 27.7, 21.8. HRMS (ESI) *m*/*z* calcd. for C₃₁H₂₈ClN₂O₇S [M + H]⁺ 607.1300, found 607.1298.
HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 15.61 min, t_R (major) = 25.33 min, 91% ee.

$tert-Butyl \qquad (S_a,E)-(1-(1-chloro-2-((4-cyanophenyl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N7)$

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S7** (60.5 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **N7** (63.0 mg, 54% yield, 92% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.15 – 7.73 (m, 4H), 7.73 – 7.51 (m, 4H), 7.49 (d, J = 8.6 Hz, 1H), 7.46 – 7.26 (m, 3H), 7.23 – 7.06 (m, 3H), 2.45 (s, 3H), 1.27 (br, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 152.5, 143.4, 142.3, 141.9, 136.8, 135.0, 133.6, 133.0, 132.2, 131.7, 131.5, 129.4, 129.1, 129.0, 128.5, 127.9, 127.3, 124.6, 117.0, 116.4, 84.3, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₂H₂₈ClN₂O₅S [M + H]⁺ 587.1402, found 587.1395. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 17.13 min, t_R (major) = 38.43 min, 92% ee.

tert-Butyl (*S_a*,*E*)-(1-(2-((4-acetamidophenyl)sulfonyl)-1-chlorovinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N8)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S8** (70.1 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/2) to afford **N8** (85.0 mg, 69% yield, 94% ee) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.26–7.99 (m, 1H), 7.98–7.60 (m, 4H), 7.60–7.27 (m, 5H), 7.26–6.95 (m, 5H), 2.63–2.27 (m, 3H), 1.92 (s, 3H), 1.44–1.08 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 172.5, 169.4, 152.6, 143.4, 141.2, 135.8, 134.8, 133.8, 133.5, 132.5, 131.3, 130.1, 129.3, 129.0, 128.4, 127.6, 127.1, 124.7, 118.9, 84.3, 27.6, 24.5, 21.8.

HRMS (ESI) m/z calcd. for C₃₃H₃₂ClN₂O₆S [M + H]⁺ 619.1664, found 619.1661. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 21.39 min, t_R (major) = 23.70 min, 94% ee.

tert-Butyl (*S_a*,*E*)-(1-(1-chloro-2-((2-chlorophenyl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N9)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S9** (63.3 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N9** (47.7 mg, 40% yield, 92% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) *δ* 8.28 – 7.27 (m, 11H), 7.25 – 7.15 (m, 1H), 7.04 (s, 2H), 6.84 (s, 1H), 2.44 (s, 3H), 1.38 – 1.16 (br, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 173.3, 152.5, 144.2, 143.2, 136.5, 134.0, 132.3, 131.9, 131.0, 129.6, 128.9, 128.2, 127.7, 127.1, 126.9, 126.3, 124.9, 83.8, 27.7, 21.8.
HRMS (ESI) *m*/*z* calcd. for C₃₁H₂₈Cl₂NO₅S [M + H]⁺ 596.1060, found 596.1054.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 16.66 min, t_R (minor) = 19.04 min, 92% ee.

tert-Butyl (S_a, E) -(1-(2-((3-bromophenyl)sulfonyl)-1-chlorovinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N10)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S10** (76.7 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N10** (97.5mg, 76% yield, 91% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.05 – 7.71 (m, 4H), 7.68 (s, 1H), 7.65 – 7.35 (m, 5H),

7.35 – 7.26 (m, 2H), 7.23 – 7.07 (m, 2H), 6.86 (s, 1H), 2.43 (s, 3H), 1.30 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 173.0, 152.6, 143.1, 140.3, 136.3, 134.8, 133.6, 132.3, 131.6, 131.2, 129.8, 129.4, 128.9, 128.4, 127.7, 127.4, 127.1, 124.4, 122.6, 84.0, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₃₁H₂₈BrClNO₅S [M + H]⁺ 640.0555, found 640.0552. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.30 min, t_R (major) = 16.04 min, 91% ee.

tert-Butyl (S_a, E) -(1-(1-chloro-2-((3-methoxyphenyl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N11)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S11** (62.0 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N11** (83.0mg, 70% yield, 94% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.21 – 7.60 (m, 5H), 7.59 – 7.26 (m, 5H), 7.24 – 7.01 (m, 3H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.71 (s, 1H), 3.65 (s, 3H), 2.42 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 173.0, 159.3, 152.6, 142.9, 142.1, 139.9, 136.1, 134.9, 133.6, 132.4, 131.2, 129.6, 129.4, 128.9, 128.3, 127.8, 127.1, 126.9, 124.8, 120.6, 120.3, 112.4, 83.9, 55.5, 27.6, 21.8.

HRMS (ESI) m/z calcd. for C₃₂H₃₁ClNO₆S [M + H]⁺ 592.1555, found 592.1551. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 12.29 min, t_R (major) = 16.88 min, 94% ee.

Methyl (S_a, E) -3-((2-(N-(*tert*-butoxycarbonyl)-4-methylbenzamido)naphthalen-1-yl)-2-chlorovinyl)sulfonyl)benzoate (N12)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S12** (70.4 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column

chromatography (petroleum ether/ethyl acetate = 4/1) to afford N12 (85.6mg, 69% yield, 91% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 8.10 –7.58(m, 6H), 7.57 – 7.27 (m, 5H), 7.24 – 7.02 (m, 3H), 3.90 (s, 3H), 2.43 (s, 3H), 1.30 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) *δ* 172.9, 165.0, 152.6, 143.2, 142.7, 139.2, 136.3, 134.8, 134.0, 133.6, 132.7, 132.3, 131.3, 130.7, 129.4, 128.9, 128.5, 128.3, 127.8, 127.2, 127.0, 124.6, 84.0, 52.5, 27.6, 21.8.

HRMS (ESI) m/z calcd. for C₃₃H₃₁ClNO₇S [M + H]⁺ 620.1504, found 620.1500.

HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 12.66 min, t_R (major) = 17.51 min, 91% ee.

tert-Butyl (S_a, E) -(1-(1-chloro-2-(thiophen-2-ylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N13)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S13** (54.8 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **N13** (91.5 mg, 81% yield, 94% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.8 Hz, 1H), 7.97 – 7.72 (m, 3H), 7.72 – 7.59 (m, 1H), 7.59 – 7.43 (m, 3H), 7.39 (d, J = 5.0 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.25 – 7.13 (m, 1H), 6.69 (s, 1H), 2.44 (s, 3H), 1.32 (br, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 173.0, 152.7, 143.0, 142.1, 140.0, 135.8, 135.4, 134.4, 133.5, 132.5, 131.2, 129.9, 129.2, 128.9, 128.4, 127.8, 127.7, 127.4, 127.0, 124.8, 84.0, 27.7, 21.8.

HRMS (ESI) m/z calcd. for C₂₉H₂₇ClNO₅S₂ [M + H]⁺ 568.1014, found 568.1006.

HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 14.64 min, t_R (major) = 17.01 min, 94% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-(pyridin-3-ylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N14)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S14** (53.3 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford **N14** (52.0 mg, 46% yield, 92% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.33 (s, 1H), 8.09 – 7.62 (m, 5H), 7.61 – 7.36 (m, 4H), 7.36 – 7.28 (m, 1H), 7.24 – 7.09 (s, 1H), 6.87 (s, 1H), 2.44 (s, 3H), 1.36 – 1.16 (br, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 173.0, 153.3, 152.6, 149.3, 143.3, 136.2, 135.2, 134.8, 133.5, 132.3, 131.6, 129.3, 129.0, 128.4, 127.8, 127.2, 124.4, 122.8, 84.1, 27.7, 21.8. HRMS (ESI) *m/z* calcd. for C₃₀H₂₇ClN₂O₅SNa [M +Na]⁺ 585.1221, found 585.1222. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.69 min, t_R (major) = 15.36 min, 92% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-(ethylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N15)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S15** (38.6 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **N15** (83 mg, 81% yield, 93% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.7 Hz, 1H), 8.00 – 7.93 (m, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 7.7 Hz, 2H), 7.66 – 7.55 (m, 2H), 7.44 (d, J = 8.7 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.20 – 6.94 (m, 1H), 3.07 – 2.53 (m, 2H), 2.46 (s, 3H), 1.28 (s, 10H), 1.14 – 0.81 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) *δ* 172.4, 152.7, 143.1, 134.9, 133.5, 132.5, 131.4, 129.9, 129.0, 128.9, 128.4, 127.8, 127.3, 127.1, 124.9, 83.9, 49.0, 27.6, 21.8.

HRMS (ESI) m/z calcd. for C₂₇H₂₉ClNO₅S [M + H]⁺ 514.1449, found 514.1447.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 19.60 min, t_R (minor) = 35.09 min, 93% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-(isopropylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N16)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S16** (42.8 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **N16** (44.5 mg, 42% yield, 96% ee) as a pale-yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.07 – 7.79 (m, 5H), 7.66 – 7.52 (m, 2H), 7.43 (d, J = 8.7 Hz, 1H), 7.31 (d, J = 7.9 Hz, 2H), 7.03 (s, 1H), 3.03 (d, J = 80.9 Hz, 1H), 2.45 (s, 3H), 1.34 – 1.22 (br, 11H), 1.14 – 0.68 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 172.4, 152.8, 144.0, 143.2, 133.5(4), 133.5(0), 132.5, 131.4, 130.1, 129.1, 128.5, 127.6, 127.1, 125.1, 83.9, 54.8, 27.7, 21.8, 15.5, 13.5. HRMS (ESI) *m*/*z* calcd. for C₂₈H₃₁ClNO₅S [M + H]⁺ 528.1606, found 528.1603.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 15.22 min, t_R (minor) = 20.72 min, 96% ee.

tert-Butyl (S_{a}, E) -(1-(1-chloro-2-(cyclopentylsulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N17)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S17** (50.6 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **N17** (60.0 mg, 54% yield, 96% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 8.04 – 7.88 (m, 3H), 7.86 (d, J = 7.9 Hz, 2H), 7.65 – 7.53 (m, 2H), 7.43 (d, J = 8.7 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.10 – 6.92 (m, 1H), 3.53 – 2.97 (m, 1H), 2.46 (s, 3H), 2.13 – 1.35 (m, 8H), 1.28 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 172.3, 152.7, 143.3, 134.8, 133.6, 132.5, 131.3, 131.2, 129.1, 129.0, 128.4, 127.6, 127.4, 127.1, 125.1, 83.8, 63.0, 27.7, 27.4, 25.9, 25.5, 24.9, 21.8.

HRMS (ESI) m/z calcd. for C₃₀H₃₃ClNO₅S [M + H]⁺ 554.1762, found 554.1760. HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 22.79 min, t_R (minor) = 31.31 min, 96% ee.

 $tert-Butyl (S_{a},E)-(1-(1-chloro-2-((tetrahydro-2H-pyran-4-yl)sulfonyl)vinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N18)$

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S18** (55.4 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford **N18** (51.3mg, 45% yield, 95% ee) as a pale-yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.89 (m, 3H), 7.84 (d, *J* = 7.8 Hz, 2H), 7.66 – 7.54 (m, 2H), 7.43 (d, *J* = 8.7 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.01 (s, 1H), 3.87 (s, 1H), 3.56 (s, 1H), 3.06 (td, *J* = 11.5, 2.7 Hz, 1H), 2.94 (s, 1H), 2.45 (s, 1H), 1.92 – 1.48 (m, 4H), 1.27 (s, 9H), 1.05 (d, *J* = 12.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 172.6, 152.5, 144.6, 143.5, 134.5, 133.7, 132.4, 131.6, 129.9, 129.5, 129.2, 128.9, 128.4, 127.8, 127.2, 127.1, 125.1, 84.0, 66.4, 65.4, 59.6, 27.7, 26.3, 22.6, 21.8.

HRMS (ESI) m/z calcd. for C₃₀H₃₃ClNO₆S [M + H]⁺ 570.1712, found 570.1707.

HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 15.80 min, t_R (major) = 23.35 min, 95% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-tosylvinyl)-6-methylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (N19)

According to **Procedure I** with **NS2** (79.9 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N19** (76.7 mg, 65% yield, 95% ee) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.54 (m, 5H), 7.46 (d, J = 8.7 Hz, 3H), 7.38 –

7.27 (m, 2H), 7.25 – 7.04 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 2.51 (s, 3H), 2.44 (s, 3H), 2.19 (s, 3H), 1.41 – 1.18 (br, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 173.2, 152.8, 144.3, 143.1, 141.9, 136.7, 136.0, 135.2, 134.4, 133.8, 132.7, 130.5, 129.4, 129.2, 128.9, 128.5, 127.9, 127.3, 124.8, 83.9, 29.8, 27.7, 21.8, 21.6, 21.5.

HRMS (ESI) m/z calcd. for C₃₃H₃₂ClNO₅SNa [M + Na]⁺ 612.1582, found 612.1579. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 31.03 min, t_R (minor) = 54.59 min, 95% ee.

tert-Butyl (*S_a,E*)-(1-(1-chloro-2-tosylvinyl)-6-phenylnaphthalen-2-yl)(4-methylbenzoyl)carbamate (N20)

According to **Procedure I** with **NS3** (92.3 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N20** (85.0 mg, 65% yield, 94% ee) as a yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 8.12 – 7.76 (m, 4H), 7.71 (d, *J* = 7.6 Hz, 3H), 7.59 – 7.46 (m, 5H), 7.46 – 7.36 (m, 2H), 7.36 – 7.27 (m, 2H), 7.19 (s, 1H), 6.87 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H), 2.14 (s, 3H), 1.47 – 1.18 (br, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 173.1, 152.7, 144.4, 143.1, 141.5, 140.4, 139.6, 135.9, 135.5, 13378, 131.3, 129.4, 129.2, 129.1, 128.9, 128.5, 127.9, 127.5, 126.8, 126.0, 125.6, 84.0, 27.7, 21.8, 21.5.

HRMS (ESI) m/z calcd. for C₃₈H₃₄ClNO₅SNa [M +Na]⁺ 674.1738, found 674.1738. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 16.67 min, t_R (major) = 23.83 min, 94% ee.

tert-Butyl (*S_a,E*)-(6-bromo-1-(1-chloro-2-tosylvinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N21)

According to **Procedure I** with NS4 (92.9 mg, 0.20 mmol, 1.0 equiv) and S1 (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column

chromatography (petroleum ether/ethyl acetate = 6/1) to afford N21 (70.7 mg, 54%) yield, 92% ee) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.08 – 7.79 (m, 5H), 7.53 (d, J = 8.8 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.35 - 7.27 (m, 2H), 7.15 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H), 2.24 (s, 3H), 1.33 – 1.19 (br, 9H).

¹³C NMR (126MHz, CDCl₃) δ 172.9, 152.5, 148.2, 144.6, 143.2, 140.9, 135.7, 133.5, 131.6, 130.5, 130.2, 130.0, 129.3, 128.9, 128.4, 126.6, 121.1, 84.1, 27.7, 21.8, 21.6. HRMS (ESI) m/z calcd. for C₃₂H₂₉BrClNO₅SNa [M + Na]⁺ 676.0531, found 676.0528. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 21.94 min, t_R (minor) = 34.27 min, 92% ee.

Methyl (S_a,E)-6-(N-(tert-butoxycarbonyl)-4-methylbenzamido)-5-(1-chloro-2tosylvinyl)-2-naphthoate (N22)

MeO₂C

According to Procedure I with NS5 (88.6 mg, 0.20 mmol, 1.0 equiv) and S1 (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford N22 (63.4 mg, 50%) yield, 88% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 8.58 (s, 1H), 8.22 – 7.60 (m, 5H), 7.57 (d, J = 8.7 Hz, 1H), 7.53 - 7.27 (m, 4H), 7.15 (s, 1H), 6.89 (d, J = 7.8 Hz, 2H), 4.00 (s, 3H), 2.43 (s, 3H), 2.18 (s, 3H), 1.30 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 172.7, 166.7, 152.5, 144.6, 143.2, 140.8, 138.3, 135.9, 135.4, 133.4, 132.2, 131.7, 131.1, 129.4, 128.9, 128.3, 126.6, 125.3, 84.2, 52.5, 27.7, 21.8, 21.5.

HRMS (ESI) m/z calcd. for C₃₄H₃₂ClNO₇SNa [M + Na]⁺656.1480, found 656.1479. HPLC condition: Chiralcel IND, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.8 mL/min. λ = 254 nm, t_R (minor) = 21.10 min, t_R (major) = 40.72 min, 88% ee.

tert-Butyl (S_a,E)-(1-(1-chloro-2-tosylvinyl)-7-methoxynaphthalen-2-yl)(4methylbenzoyl)carbamate (N23)

According to Procedure I with NS6 (83.0 mg, 0.20 mmol, 1.0 equiv) and S1 (57.2 mg,

0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford N23 (84.9 mg, 70% yield, 56% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃): δ 8.10 – 7.58 (m, 4H), 7.56 – 6.96 (m, 7H), 6.85 (d, J = 8.1 Hz, 2H), 3.79 (s, 3H), 2.43 (s, 3H), 2.19 (s, 3H), 1.31 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ 173.5, 158.4, 152.7, 144.5, 143.0, 142.3, 137.3, 135.38, 134.5, 133.8, 130.8, 129.8, 129.4, 129.2, 129.0, 128.9, 128.5, 119.4, 103.5, 83.9, 55.4, 27.7, 21.8, 21.5.

HRMS (ESI) m/z calcd. for C₃₃H₃₃ClNO₆S [M + H]⁺ 606.1712 found 606.1709. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 25.70 min, t_R (minor) = 33.23 min, 56% ee.

tert-Butyl (*Sa,E*)-(5-(1-chloro-2-tosylvinyl)quinolin-6-yl)(4methylbenzoyl)carbamate (N24)

According to **Procedure I** with **NS15** (77.3 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford **N24** (83.7 mg, 82% yield, 90% ee) as a yellow solid.

¹H NMR (500 MHz, CDCl₃): δ 8.92 (s, 1H), 8.52 – 8.01 (m, 1H), 8.04 – 7.49 (m, 4H), 7.50 – 7.00 (m, 6H), 6.87 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 2.20 (s, 3H), 1.30 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 172.8, 152.4, 150.9, 146.9, 144.7, 143.2, 139.8, 136.3, 135.8, 133.4, 133.1, 132.5, 131.8, 129.4, 128.9, 128.4, 125.5, 121.9, 84.2, 27.7, 21.8, 21.5.

HRMS (ESI) m/z calcd. For C₃₁H₃₀ClN₂O₅S [M + H]⁺ 577.1558, found 577.1568. HPLC condition: Chiralcel IH, n-hexane/i-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.27 min, t_R (major) = 19.26 min, 90% ee.

tert-Butyl (*S_a,E*)-(2-(1-chloro-2-tosylvinyl)-3-methylphenyl)(4-methylbenzoyl)carbamate (N25)

CH₂ T۹ Boc Me Ö

According to **Procedure I** with **NS8** (69.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **N25** (87.5mg, 81% yield, 92% ee) as a pale-yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.95 – 7.38 (m, 5H), 7.38 – 7.27 (m, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.21 – 6.73 (m, 4H), 2.68 – 2.06 (m, 9H), 1.38 – 1.10 (m, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 171.8, 152.8, 144.9, 144.2, 142.7, 142.4, 142.0, 137.9, 137.1, 136.2, 133.7, 132.6, 130.4, 129.8, 129.4, 128.8, 128.5, 128.0, 83.3, 27.6, 21.7, 20.0.

HRMS (ESI) m/z calcd. for C₂₉H₃₀ClNO₅SNa [M + Na]⁺ 562.1425, found562.1422. HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 20.82 min, t_R (minor) = 32.27 min, 92% ee.

tert-Butyl (*S_a,E*)-(4-chloro-2-(1-chloro-2-tosylvinyl)-3-methylphenyl)(4-methylbenzoyl)carbamate (N26)

According to **Procedure I** with **NS9** (76.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **N26** (100.0 mg, 87% yield, 90% ee) as a pale-yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.65 (m, 2H), 7.65 – 7.38 (m, 3H), 7.35 – 7.27 (m, 1H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.12 (s, 1H), 7.04 – 6.78 (m, 2H), 2.58 – 2.32 (m, 6H), 2.27 (s, 1H), 2.04 (s, 1H), 1.63 (s, 1H), 1.37 – 1.11 (br, 9H).

¹³C NMR (126 MHz, CDCl₃) *δ* 171.7, 152.6, 145.4, 144.6, 143.2, 142.6, 141.7, 141.2, 136.6, 136.4, 136.0, 135.1, 134.5, 133.9, 133.5, 131.2, 129.8, 129.5, 129.3, 128.9, 128.6, 128.1, 84.1, 27.7, 21.8, 17.9.

HRMS (ESI) *m*/*z* calcd. for C₂₉H₂₉Cl₂NO₅SNa [M + Na]⁺ 596.1036, found 596.1032.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 19.31 min, t_R (major) = 25.18 min, 90% ee.

tert-Butyl (*S_a,E*)-(3-chloro-2-(1-chloro-2-tosylvinyl)phenyl)(4methylbenzoyl)carbamate (N27)

According to **Procedure I** with **NS10** (74.0 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **N27** (78.5 mg, 70% yield, 90% ee) as a pale-yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.53 (m, 4H), 7.48 (d, *J* = 6.9 Hz, 2H), 7.40 – 7.27 (m, 2H), 7.25 – 6.89 (m, 3H), 6.85 (s, 1H), 2.41 (s, 6H), 1.47-1.06 (br, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 172.5, 152.5, 145.1, 143.0, 139.8, 139.3, 136.7, 133.2, 131.1, 129.8, 129.3, 129.1, 128.9, 128.4, 84.1, 27.6, 21.8, 21.7.

HRMS (ESI) m/z calcd. for C₂₈H₂₇Cl₂NO₅SNa [M + Na]⁺ 582.0879, found 582.0878. HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 20.70 min, t_R (minor) = 38.73 min, 90% ee.

tert-Butyl (*S_a,E*)-(3-chloro-2-(1-chloro-2-tosylvinyl)-4-methylphenyl)(4-methylbenzoyl)carbamate (N28)

According to **Procedure I** with **NS11** (76.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N28** (72.2 mg, 73% yield, 84% ee) as a pale-yellow oil.

¹H NMR (600 MHz, CDCl₃): δ 7.96 – 7.45 (m, 4H), 7.46 – 6.96 (m, 6H), 6.85 (s, 1H), 2.68 – 2.10 (m, 9H), 1.30 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): *δ* 173.0, 152.6, 144.9, 143.0, 140.6, 136.8, 133.4, 133.2, 132.4, 131.6, 129.7, 129.2, 128.9, 128.6, 128.4, 84.1, 27.6, 21.8, 21.7, 20.5.

HRMS (ESI) *m*/*z* calcd. for C₂₉H₉Cl₂NO₅SNa [M + Na]⁺ 596.1036, found 596.1031.

HPLC condition: Chiralcel INB, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 12.32 min, t_R (minor) = 14.35 min, 84% ee.

tert-Butyl (*S_a,E*)-(4-(1-chloro-2-tosylvinyl)-2,3-dihydro-1H-inden-5-yl)(4-methylbenzoyl)carbamate (N29)

According to **Procedure I** with **NS12** (75.1 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N29** (95.8 mg, 84% yield, 86% ee) as a colorless oil.

¹H NMR (600 MHz, CDCl₃): *δ* 7.97 – 7.39 (m, 4H), 7.34 (s, 1H), 7.29 – 7.02 (m, 4H), 7.02 – 6.65 (m, 2H), 2.92 (s, 3H), 2.56 – 1.77 (m, 9H), 1.22 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): *δ* 172.2, 153.0, 144.5, 142.4, 136.7, 134.1, 132.5, 131.6, 130.5, 129.5, 128.9, 128.7, 128.4, 126.7, 83.4, 33.0, 32.1, 27.6, 25.1, 21.7, 21.6.

HRMS (ESI) m/z calcd. for C₃₁H₃₃ClNO₅S [M + H]⁺ 566.1762, found 566.1761.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 26.90 min, t_R (major) = 29.34 min, 86% ee.

tert-Butyl (*S_a,E*)-(*tert*-butoxycarbonyl)(1-(1-chloro-2-tosylvinyl)naphthalen-2-yl)carbamate (N30)

According to **Procedure II** with **NS13** (73.5 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **N30** (0 °C: 74.8 mg, 67% yield, 91% ee; rt: 52.4 mg, 47% yield, 92% ee, according to **Procedure I**) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.8 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.65 – 7.34 (m, 6H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.08 (s, 1H), 2.34 (s, 3H), 1.50 (s, 9H), 1.44 (s, 9H).

 13 C NMR (100 MHz, CDCl₃): δ 151.9, 144.8, 141.1, 136.9, 135.4, 133.7, 132.4, 130.8, 130.1, 129.6, 129.4, 128.3(9), 128.3(6), 127.8, 127.0, 126.7, 125.1, 83.8, 83.4, 77.4, 28.0, 21.6.

HRMS (ESI) m/z calcd. for C₂₉H₃₂ClNO₆SNa [M + Na]⁺ 580.1531, found 580.1529. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 16.92 min, t_R (minor) = 24.46 min, 91% ee. (*S_a,E*)-*N*-(1-(1-chloro-2-tosylvinyl)naphthalen-2-yl)-2,4,6-trimethylbenzamide (N31)

According to **Procedure III** with **NS7** (62.7 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N31** ($-10 \, ^\circ$ C: 81.0 mg, 80% yield, 86% ee; rt: 23.2 mg, 23% yield, 71% ee, according to **Procedure I**) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 8.9 Hz, 1H), 8.10 (s, 1H), 7.94 (d, J = 8.9 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.37 (s, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 7.03 (dd, J = 8.4, 1.1 Hz, 1H), 7.00 – 6.90 (m, 4H), 6.61 (d, J = 8.4 Hz, 2H), 2.49 (s, 6H), 2.34 (s, 3H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 169.7, 144.7, 139.0, 137.4, 134.7, 134.4, 134.4, 133.2, 131.6, 130.9, 129.1, 129.0, 128.6, 128.1, 127.7, 127.1, 125.6, 123.8, 123.5, 122.5, 21.3, 21.2, 19.3.

HRMS (ESI) m/z calcd. for C₂₉H₂₇ClNO₃S [M + H]⁺ 504.1395, found 504.1394. HPLC condition: Chiralcel INA, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 9.52 min, t_R (major) = 17.98 min, 86% ee.

(S_a,E)-3-(1-(1-chloro-2-tosylvinyl)naphthalen-2-yl)-1,1-diethylurea (N32)

According to **Procedure IV** with **NS14** (53.3 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford **N32** (36.6 mg, 40% yield, 77% ee; 21.9 mg, 24% yield, 44% ee, according to **Procedure I**) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 9.0 Hz, 1H), 7.81 (d, *J* = 9.0 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.45 (s, 1H), 7.30 – 7.23 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.05 – 6.97 (m, 3H)6.60 (d, *J* = 8.1 Hz, 2H), 3.57 (dq, *J* = 14.4, 7.1 Hz, 2H), 3.36 (dq, *J* = 14.5, 7.2 Hz, 2H), 2.05 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) *δ* 154.6, 146.0, 144.7, 137.3, 135.4, 134.4, 131.2, 129.9, 129.2, 129.0, 128.0, 127.9, 126.8, 124.8, 123.6, 123.5, 120.2, 41.8, 21.4, 14.0.

HRMS (ESI) m/z calcd. for C₂₄H₂₆ClN₂O₃S [M + H]⁺ 457.1347, found 457.1342. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.7 mL/min. λ = 254 nm, t_R (minor) = 17.80 min, t_R (major) = 44.14 min, 77% ee.

tert-Butyl (*Sa,E*)-(1-(1-bromo-4-((3,5-dimethoxyphenyl)amino)-3,3-dimethyl-4oxobut-1-en-1-yl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N33)

According to **Procedure IX** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **A1** (90.7 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N33** (88.0 mg, 64% yield, 87% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.11 (dd, J = 8.4, 1.2 Hz, 1H), 7.97 – 7.52 (m, 7H), 7.33 (d, J = 8.7 Hz, 1H), 7.04 (s, 2H), 6.68 (s, 1H), 6.43 (s, 2H), 6.14 (t, J = 2.3 Hz, 1H), 3.70 (s, 6H), 2.32 (s, 3H), 1.24 (s, 3H), 1.19 (s, 9H), 0.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.1, 160.5, 152.4, 142.8, 142.4, 139.6, 135.2, 133.9, 133.3, 132.9, 131.6, 130.2, 128.7, 128.4(6), 128.4(2), 127.5(2), 127.4(8), 127.1, 125.8, 98.4, 97.0, 84.0, 55.4, 49.0, 27.6, 25.7, 21.7.

HRMS (ESI) m/z calcd. For C₃₇H₄₀BrN₂O₆ [M + H]⁺ 687.2064, found 687.2061.

HPLC condition: Chiralcel IF, n-hexane/i-PrOH = 60/50, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 16.48 min, t_R (minor) = 19.16min, 87% ee.

3,5-Dichlorophenyl(Sa,E)-4-bromo-4-(2-(N-(tert-butoxycarbonyl)-4-
methylbenzamido)naphthalen-1-yl)-2,2-dimethylbut-3-enoate(N34)

According to **Procedure IX** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **A2** (93.6 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **N34** (83.7 mg, 60% yield, 84% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.1 Hz, 1H), 8.01 – 7.74 (m, 4H), 7.66 – 7.52 (m, 2H), 7.38 (d, J = 8.7 Hz, 1H), 7.30 – 7.10 (m, 4H), 6.75 (d, J = 10.9 Hz, 2H),

2.36 (s, 3H), 1.21 (s, 9H), 1.09 (s, 3H), 0.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.9, 152.5, 151.3, 142.5, 140.4, 135.7, 135.3, 134.8, 134.0, 133.9, 132.8, 131.6, 130.2, 128.8, 128.7, 128.5, 128.0, 127.5, 127.1, 126.0, 125.7, 120.7, 115.1, 114.6, 83.6, 47.7, 27.7, 25.0, 22.4, 21.8.

HRMS (ESI) *m/z* calcd. For C₃₅H₃₂BrCl₂NO₅Na [M + Na]⁺ 718.0733, found 718.0730. HPLC condition: Chiralcel IC, n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 12.15 min, t_R (minor) = 15.15 min, 84% ee.

Ethyl (*Sa,E*)-4-(2-(N-(tert-butoxycarbonyl)-4-methylbenzamido)naphthalen-1-yl)-4-iodo-2,2-dimethylbut-3-enoate (N35)

According to **Procedure IX** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **A4** (72.6 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **N35** (82.8 mg, 66% yield, 0% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 7.8 Hz, 2H), 7.89 (dd, J = 8.5, 3.2 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.35 – 7.27 (m, 3H), 6.89 (s, 1H), 4.02 – 3.61 (m, 2H), 2.45 (s, 3H), 1.26 (s, 9H), 1.14 (t, J = 7.1 Hz, 3H), 0.73 (s, 3H), 0.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.0, 172.5, 152.4, 149.9, 142.8, 136.9, 134.6, 134.1, 132.9, 130.8, 129.4, 128.9, 128.3, 128.2, 127.0, 126.3, 88.4, 83.5, 61.0, 49.6, 27.9, 23.7, 22.6, 21.9, 14.2.

HRMS (ESI) *m*/*z* calcd. For C₃₁H₃₄INO₅Na [M + Na]⁺ 650.1374, found 650.1376. HPLC condition: Chiralcel IE, n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min. λ = 238 nm, t_R (major) = 19.77 min, t_R (minor) = 23.61 min, 0% ee.

tert-Butyl-(*Sa,E*)-(1-(1-bromo-2-tosylvinyl)naphthalen-2-yl)(4-methylbenzoyl)carbamate (N1-Br)

According to **Procedure I** with **NS1** (77.1 mg, 0.20 mmol, 1.0 equiv) and **S1-Br** (70.5 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N1-Br** (90.7 mg, 73%)

yield, 34% ee) as a yellow solid.

¹H NMR (500 MHz, CDCl₃): δ 8.14 – 7.64 (m, 4H), 7.62 – 7.16 (m, 9H), 6.85 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H), 2.18 (s, 3H), 1.32 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 173.1, 152.7, 144.4, 143.2, 138.4, 137.6, 135.8, 133.9, 132.5, 131.0, 129.5, 129.3, 128.9, 128.5, 128.0, 126.9, 125.1, 84.0, 27.7, 21.8, 21.6. HRMS (ESI) *m*/*z* calcd. For C₃₂H₃₀BrNSO₅Na [M + Na]⁺ 642.0920, found 642.0931. HPLC condition: Chiralcel IE, n-hexane/i-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 11.43 min, t_R (major) = 20.74 min, 34% ee.

Methyl (Sa,E)-1-(1-chloro-2-tosylvinyl)-2-naphthoate (AP1)

According to **Procedure IV** with **AS1** (42.0 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **AP1** (65.8 mg, 82% yield, 51% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.84 (dd, J = 8.3, 1.2 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.56 (t, J = 7.0 Hz, 1H), 7.44 (t, J = 8.3 Hz, 1H), 7.21 – 7.13 (m, 3H), 6.92 (d, J = 7.8 Hz, 2H), 3.89 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 146.2, 144.4, 136.7, 135.0, 133.6, 132.3, 130.6, 129.5, 129.4, 128.2(9), 128.2(7), 127.8, 127.7, 126.5, 126.0, 125.6, 52.5, 21.6. HRMS (ESI) *m*/*z* calcd. For C₂₁H₁₇ClO₄Na [M + Na]⁺ 423.0428, found 423.0431. HPLC condition: Chiralcel IE, n-hexane/i-PrOH = 50/50, flow rate 0.6 mL/min. $\lambda = 254$ nm, t_R (minor) = 19.87 min, t_R (major) = 22.04 min, 51% ee.

(*Sa*,*E*)-1-(1-Chloro-2-tosylvinyl)-2-isopropylnaphthalene (AP2)

According to **Procedure I** with **AS2** (38.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford **AP2** (75.4 mg, 98% yield, 52% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.32 – 7.17 (m, 3H), 7.17 – 7.09 (m, 2H), 6.85 (d, J = 8.0 Hz, 2H), 3.37 (p, J = 6.8 Hz, 1H), 2.23 (s, 3H), 1.50 (d, J = 6.7 Hz, 3H), 1.27 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): *δ* 146.3, 145.2, 144.5, 136.3, 134.0, 131.8, 130.8, 129.3, 129.2, 128.2, 128.0, 126.8, 125.4, 124.5, 123.7, 31.7, 24.7, 22.4, 21.6.

HRMS (ESI) m/z calcd. for C₂₂H₂₁ClO₂SNa [M + Na]⁺ 407.0843, found 407.0848.

HPLC condition: Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.3 mL/min. λ = 254 nm, t_R (minor) = 20.33 min, t_R (major) = 22.80 min, 52% ee.

(Sa,E)-1-(1-Chloro-2-tosylvinyl)-2-phenylnaphthalene (AP3)

According to **Procedure I** with **AS3** (45.7 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **AP3** (67.1 mg, 80% yield, 43% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.64 (dt, J = 7.7, 1.5 Hz, 3H), 7.56 – 7.36 (m, 6H), 7.19 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.87 (s, 1H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 145.3, 144.7, 140.5, 139.5, 136.9, 133.2, 132.5, 130.4, 129.7, 129.6, 129.4, 128.5, 128.3, 128.2, 127.8(4), 127.8(0), 127.3, 126.2, 125.0, 21.7. HRMS (ESI) *m/z* calcd. for C₂₅H₁₉ClO₂SNa [M + Na]⁺ 441.0686, found 441.0690.

HPLC condition: Chiralcel AD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min. λ = 254 nm, t_R (minor) = 17.88 min, t_R (major) = 19.13 min, 43% ee.

(S_a,E)-1-(1-Chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1)

According to **Procedure V** with **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1** (87.5 mg, 90% yield, 92% ee) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 7.4 Hz, 1H), 7.52 – 7.32 (m, 4H), 7.29 – 7.24 (m, 2H), 7.22 (s, 1H), 6.89 (d, J = 8.0 Hz, 2H), 4.12 (p, J = 6.8 Hz, 1H), 3.89 (p, J = 7.1 Hz, 1H), 2.23 (s, 3H), 1.47 – 1.09 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 152.2, 146.6, 144.5, 142.6, 136.2, 134.9, 131.6, 131.26, 130.7, 130.5, 130.2, 129.3, 128.3, 128.2, 127.2, 125.7, 124.2, 122.5, 121.9, 47.09, 46.6, 21.6, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₆H₂₉ClNO₄S [M + H]⁺ 486.1500, found 486.1501. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 230 nm, t_R (major) = 15.86 min, t_R (minor) = 17.83 min, 92% ee.

 (S_a, E) -1-(1-Chloro-2-tosylvinyl)-6-methylnaphthalen-2-yl diisopropylcarbamate (O2)

According to **Procedure V** with **OS2** (61.9 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O2** (77.0 mg, 77% yield, 90% ee) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 9.0 Hz, 1H), 7.55 (s, 1H), 7.38 (dd, J = 8.8, 5.4 Hz, 2H), 7.28 – 7.27 (m, 1H), 7.26 (s, 1H), 7.22 – 7.17 (m, 2H), 6.90 (d, J = 8.0 Hz, 2H), 4.18 – 4.04 (m, 1H), 3.94 – 3.81 (m, 1H), 2.48 (s, 3H), 2.24 (s, 3H), 1.37 – 1.25 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.3, 145.9, 144.4, 142.9, 136.3, 135.4, 134.8, 130.9, 130.6, 129.4, 129.2, 128.3, 128.2, 127.2, 124.1, 122.4, 121.8, 47.1, 46.5, 21.5(6), 21.5(5), 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₇H₃₁ClNO4S [M + H]⁺ 500.1657, found 500.1654.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 19.61 min, t_R (minor) = 24.68 min, 90% ee.

(S_a,E)-1-(1-Chloro-2-tosylvinyl)-6-phenylnaphthalen-2-yl diisopropylcarbamate (O3)

According to **Procedure V** with **OS3** (74.3 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O3** (78.7 mg, 70% yield, 92% ee) as a pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 1.8 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.63 (dd, J = 8.7, 1.9 Hz, 1H), 7.56 – 7.46 (m, 4H), 7.43 – 7.37 (m, 1H), 7.34 – 7.28 (m, 2H), 7.26 (s, 1H), 6.90 (d, J = 8.1 Hz, 2H), 4.25 – 4.04 (m, 1H), 4.00 – 3.83 (m, 1H), 2.18 (s, 3H), 1.40 – 1.28 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 146.7, 144.5, 142.5, 140.5, 138.5, 136.2, 135.1, 131.5, 131.0, 129.3, 129.1, 128.2, 127.7, 127.4, 126.8, 126.0, 124.8, 122.9, 121.9, 47.1, 46.6, 21.6, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₃₂H₃₃ClNO₄S [M + H]⁺ 562.1813, found 562.1810.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 23.70 min, t_R (minor) = 35.11 min, 92% ee.

(*S_a,E*)-6-Bromo-1-(1-chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O4)

According to **Procedure V** with **OS4** (74.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **O4** (104.2 mg, 92% yield, 92% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 2.0 Hz, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.40 (dd, J = 8.9, 2.0 Hz, 1H), 7.32 – 7.20 (m, 4H), 6.92 (d, J = 8.1 Hz, 2H), 4.15 – 3.87 (m, 2H), 2.28 (s, 3H), 1.35 – 1.26 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 152.0, 147.0, 144.8, 142.0, 136.2, 135.4, 131.7, 130.5, 130.2, 130.2, 129.4, 128.7, 128.2, 125.9, 123.8, 122.2, 119.7, 47.2, 46.7, 21.6, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₆H₂₈ClNO₄SBr [M + H]⁺ 564.0605, found 564.0600.

HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 30.51 min, t_R (minor) = 35.68 min, 92% ee.

(*S_a,E*)-1-(1-Chloro-2-tosylvinyl)-6-methoxynaphthalen-2-yl diisopropylcarbamate (O5)

According to **Procedure V** with **OS5** (65.0 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **OS** (68.1 mg, 64% yield, 92% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 9.0 Hz, 1H), 7.39 (dd, J = 10.3, 9.0 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.22 (s, 1H), 7.11 (d, J = 2.6 Hz, 1H), 7.05 (dd, J = 9.1, 2.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 2H), 4.19 – 4.04 (m, 1H), 3.98 – 3.84 (m, 4H), 2.28 (s, 4H), 1.40 – 1.23 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 157.6, 152.4, 144.9, 144.5, 142.8, 136.3, 134.8, 132.0, 130.0, 129.3, 128.2, 125.7, 125.3, 123.0, 122.0, 119.9, 106.3, 55.5, 47.0, 46.5, 21.6, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₇H₃₁ClNO₅S [M + H]⁺ 516.1606, found 516.1605.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 28.95 min, t_R (minor) = 34.97 min, 92% ee.

(*S_a,E*)-1-(1-Chloro-2-tosylvinyl)-6-cyanonaphthalen-2-yl diisopropylcarbamate (O6)

According to **Procedure V** with **OS6** (64.0 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **O6** (98.1 mg, 95% yield, 87% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.54 – 7.50 (m, 1H), 7.34 – 7.22 (m, 3H), 7.01 (d, J = 8.0 Hz, 2H), 4.13 – 3.86 (m, 2H), 2.31 (s, 3H), 1.45 – 1.15 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 151.6, 149.1, 145.0, 141.3, 136.4, 135.4, 134.1, 132.0, 131.5, 129.6(0), 129.5(5), 128.1, 127.8, 125.6, 124.6, 122.6, 109.3, 47.3, 46.8, 21.6, 21.3, 21.2, 20.6, 20.4.

HRMS (ESI) m/z calcd. for C₂₇H₂₈ClN₂O₄S [M + H]⁺ 511.1453, found 511.1451. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 16.42 min, t_R (major) = 21.38 min, 87% ee.

Methyl (*S_a,E*)-5-(1-chloro-2-tosylvinyl)-6-((diisopropylcarbamoyl)oxy)-2naphthoate (O7)

According to **Procedure V** with **OS7** (70.6 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **O7** (101.0 mg, 93% yield, 80% ee) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 1.6 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.93 (dd, J = 8.8, 1.7 Hz, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.27 (s, 1H), 7.24 (d, J = 5.3 Hz, 2H), 6.92 (d, J = 8.1 Hz, 2H), 4.21 – 4.08 (m, 1H), 3.99 (s, 3H), 3.95 – 3.84 (m, 1H), 2.23 (s, 3H), 1.36 – 1.24 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 151.9, 148.6, 144.8, 142.0, 136.3, 135.3, 132.5(4),
132.5(0), 131.2, 129.8, 129.4, 128.2, 127.3, 126.6, 124.5, 123.5, 122.2, 52.5, 47.3, 46.7,
21.5, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₈H₃₁ClNO₆S [M + H]⁺ 544.1555, found 544.1555.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 33.96 min, t_R (minor) = 41.15 min, 80% ee.

Methyl (*S_a,E*)-5-(1-chloro-2-tosylvinyl)-6-((diisopropylcarbamoyl)oxy)-1naphthoate (O8)

According to **Procedure V** with **OS8** (70.6 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **O8** (98.0 mg, 90% yield, 82% ee) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, J = 9.5 Hz, 1H), 8.10 (dd, J = 7.3, 1.2 Hz, 1H), 7.69 (d, J = 8.4, 1H), 7.55 (d, J = 9.5 Hz, 1H), 7.39 (dd, J = 8.5, 7.3 Hz, 1H), 7.25 (d, J= 7.5 Hz, 3H), 6.89 (d, J = 8.0 Hz, 2H), 4.16 – 4.04 (m, 1H), 4.01 (s, 3H), 3.96 – 3.83 (m, 1H), 2.21 (s, 3H), 1.39 – 1.22 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 152.0, 146.9, 144.6, 142.0, 136.0, 135.5, 130.9, 129.7, 129.4, 129.3, 129.2, 128.7, 128.2, 127.6, 126.0, 124.1, 122.2, 52.5, 47.1, 46.7, 21.5, 21.3, 21.2, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₈H₃₁ClNO₆S [M + H]⁺ 544.1555, found 544.1555.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 32.94 min, t_R (minor) = 40.17 min, 82% ee.

(S_a, E) -1-(1-Chloro-2-tosylvinyl)-4-phenylnaphthalen-2-yl diisopropylcarbamate (O9)

According to **Procedure V** with **OS9** (74.2 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O9** (90.0 mg, 80% yield, 92% ee) as a pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 1H), 7.56 – 7.42 (m, 6H), 7.41 – 7.30 (m, 5H), 7.25 (s, 1H), 6.88 (d, *J* = 8.0 Hz, 2H), 4.21 – 4.06 (m, 1H), 4.00 – 3.84 (m, 1H), 2.19 (s, 3H), 1.31 (d, *J* = 6.7 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.1, 146.0, 144.5, 143.9, 142.4, 139.4, 136.0, 135.2, 130.6, 130.1, 129.2, 128.4, 128.3, 128.0, 127.1, 126.5, 125.7, 124.6, 123.3, 121.2, 47.0, 46.6, 21.6, 21.4, 21.3, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₃₂H₃₃ClNO4S [M + H]⁺ 562.1813, found 562.1809. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 80/20, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 32.63 min, t_R (major) = 34.32 min, 92% ee.

(S_a, E) -1-(1-Chloro-2-tosylvinyl)-4-methylnaphthalen-2-yl diisopropylcarbamate (O10)

According to **Procedure V** with **OS10** (61.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O10** (82.0 mg, 82% yield, 91% ee) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.42 – 7.32 (m, 1H), 7.31 – 7.24 (m, 3H), 7.20 (s, 1H), 6.88 (d, J = 8.1 Hz, 2H), 4.18 – 4.03 (m, 1H), 3.98 – 3.83 (m, 1H), 2.71 (s, 3H), 2.23 (s, 3H), 1.39 – 1.24 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 146.1, 144.3, 142.8, 138.7, 136.1, 134.7, 130.2, 130.0, 129.1, 128.1, 126.9, 125.4, 124.8, 124.4, 122.9, 120.2, 47.0, 46.5, 21.5, 21.2, 21.1, 20.6, 20.4, 19.8.

HRMS (ESI) m/z calcd. for C₂₇H₃₁ClNO₄S [M + H]⁺ 500.1657, found 500.1655. HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (minor) = 14.7 1min, t_R (major) = 18.60 min, 91% ee.

(S_a,E)-1-(1-Chloro-2-tosylvinyl)-7-methylnaphthalen-2-yl diisopropylcarbamate (O11)

According to **Procedure V** with **OS11** (61.8 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **O11** (30 mg, 30% yield, 60% ee) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.9 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.24 – 7.19 (m, 4H), 7.07 (s, 1H), 6.86 (d, J = 8.1 Hz, 2H), 4.21 –

4.06 (m, 1H), 4.02 – 3.48 (m, 1H), 2.36 (s, 3H), 2.23 (s, 3H), 1.37 – 1.30 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 146.9, 144.3, 143.3, 137.0, 136.3, 135.0, 131.0, 130.2, 129.1, 129.0, 128.2, 128.1, 127.8, 123.2, 121.5, 121.2, 47.1, 46.6, 21.9, 21.6, 21.4, 21.3, 20.7, 20.5.

HRMS (ESI) m/z calcd. for C₂₇H₃₁ClNO4S [M + H]⁺ 500.1657, found 500.1657. HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 18.38 min, t_R (major) = 22.40 min, 60% ee.

(*S_a,E*)-1-(1-Chloro-2-tosylvinyl)-5,6,7,8-tetrahydronaphthalen-2-yl diisopropylcarbamate (O12)

According to **Procedure V** with **OS12** (59.9 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **O12** (83.2 mg, 84% yield, 74% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.45 (m, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.96 (s, 1H), 3.93 – 3.62 (m, 1H), 2.73 – 2.67 (m, 2H), 2.64 – 2.45 (m, 2H), 2.41 (s, 3H), 1.76 – 1.60 (m, 4H), 1.32 – 1.21 (m, 6H), 1.16 – 1.08 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 152.3, 145.7, 144.9, 144.7, 137.1, 136.1, 134.2, 132.9,
131.7, 129.7, 128.4, 126.2, 120.6, 46.9, 46.1, 29.4, 26.5, 22.6, 22.4, 21.8, 21.0, 20.9,
20.7, 20.4.

HRMS (ESI) m/z calcd. for C₂₆H₃₃ClNO4S [M + H]⁺ 490.1813, found 490.1808. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (minor) = 19.55 min, t_R (major) = 21.44 min, 74% ee.

(S_a,E)-2-(1-Chloro-2-tosylvinyl)-3-methylphenyl diisopropylcarbamate (O13)

According to **Procedure V** with **OS13** (51.9 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O13** (72.0 mg, 80%)

yield, 83% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.3 Hz, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.05 (dd, J = 16.4, 7.9 Hz, 2H), 6.97 (s, 1H), 3.91 – 3.78 (m, 1H), 3.78 – 3.65 (m, 1H), 2.40 (s, 3H), 2.22 (s, 3H), 1.33 – 1.19 (m, 6H), 1.19 – 1.02 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 152.0, 148.1, 144.9, 144.7, 137.8, 137.2, 132.9, 130.6, 129.8, 128.2, 126.9, 126.6, 120.8, 47.0, 46.1, 21.8, 21.0, 20.9, 20.6, 20.4, 19.3. HRMS (ESI) *m*/*z* calcd. for C₂₃H₂₉ClNO₄S [M + H]⁺ 450.1500, found 450.1496. HPLC condition: Chiralcel IG, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 12.52 min, t_R (minor) = 14.82 min, 83% ee.

(S_a,E)-2-(1-Chloro-2-tosylvinyl)-3,5-dimethylphenyl diisopropylcarbamate (O14)

According to **Procedure V** with **OS14** (54.7 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1) to afford **O14** (82.1 mg, 88% yield, 81% ee) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.94 (s, 1H), 6.87 (d, J = 16.0 Hz, 2H), 3.89 – 3.64 (m, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 2.19 (s, 3H), 1.33 – 1.20 (m, 6H), 1.11 – 1.07 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 152.1, 147.9, 145.1, 144.8, 141.2, 137.4, 137.3, 132.8, 129.7, 128.3, 127.6, 124.1, 121.3, 46.9, 46.1, 21.8, 21.5, 21.0, 20.9, 20.7, 20.4, 19.2. HRMS (ESI) *m*/*z* calcd. for C₂₄H₃₁ClNO4S [M + H]⁺ 464.1657, found 464.1652. HPLC condition: Chiralcel IH, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 10.41 min, t_R (minor) = 12.37 min, 81% ee.

(S_a,E)-tert-Butyl (1-(1-chloro-2-tosylvinyl)naphthalen-2-yl) carbonate (O15)

According to **Procedure VI** with **OS15** (53.7 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O15** (0 °C: 40.4 mg, 44% yield, 90% ee; rt: 60.0 mg, 61% yield, 84% ee, according to **Procedure V**) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 7.5 Hz, 1H), 7.48 – 7.34 (m, 5H), 7.23 (s, 1H), 6.92 (d, J = 7.7 Hz, 2H), 2.23 (s, 3H), 1.58 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 151.0, 145.7, 144.5, 140.9, 136.1, 134.9, 131.5, 130.9, 130.0, 129.3, 128.3, 128.1, 127.5, 126.0, 124.4, 122.1, 121.2, 84.1, 27.7, 21.5. HRMS (ESI) *m/z* calcd. For C₂₄H₂₃ClO₄SNa [M + Na]⁺ 481.0847, found 481.0845. HPLC condition: Chiralcel IE, n-hexane/i-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 12.61 min, t_R (minor) = 16.26 min, 90% ee.

$(S_{a},E)-1-(1-Chloro-2-tosylvinyl)naphthalen-2-yl 4-methylbenzoate (O16)$ Ts Cl CH₃

According to **Procedure VII** with **OS16** (57.2 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **O16** (rt: 66.8 mg, 70% yield, 80% ee; 63.9 mg, 67% yield, 78% ee, according to **Procedure V**) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 2H), 7.97 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.55 (dd, *J* = 17.1, 8.6 Hz, 2H), 7.51 – 7.41 (m, 2H), 7.32 (dd, *J* = 10.5, 8.2 Hz, 4H), 7.24 (s, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 2.47 (s, 1H), 2.25 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.4, 145.9, 144.9, 144.7, 141.7, 136.3, 134.9, 131.7, 131.1, 130.6, 130.3, 129.5, 129.4(7), 128.4, 128.1, 127.6, 126.2, 126.1, 124.4, 122.5, 121.6, 22.0, 21.6.

HRMS (ESI) m/z calcd. for C₂₇H₂₂ClO₄S [M + H]⁺ 477.0922, found 477.0919.

HPLC condition: Chiralcel IF, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 17.96 min, t_R (major) = 25.87 min, 80% ee.

(S_a,E)-1-(1-Chloro-2-tosylvinyl)naphthalen-2-yl 4-methylbenzenesulfonate (O17)

According to **Procedure VIII** with **OS17** (64.4 mg, 0.20 mmol, 1.0 equiv) and **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **O17** (0 °C: 35.6 mg, 34% yield, 83% ee; rt: 21.5 mg, 21% yield, 60% ee, according to **Procedure V**) as a pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 9.1 Hz, 1H), 7.88 – 7.78 (m, 3H), 7.69 – 7.62 (m, 1H), 7.58 – 7.46 (m, 3H), 7.43 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.08 (t, J = 4.1 Hz, 3H), 2.43 (s, 3H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.8, 144.9, 144.2, 140.4, 136.5, 134.6, 133.3, 132.3, 131.5, 130.6, 130.0, 129.7, 128.5(3), 128.4(8), 128.1(1), 128.0(7), 126.6, 124.9, 123.1, 119.7, 21.9, 21.7.

HRMS (ESI) m/z calcd. for C₂₆H₂₂ClO₅S₂ [M + H]⁺ 513.0592, found 513.0589. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 230 nm, t_R (major) = 37.81 min, t_R (minor) = 41.24 min, 83% ee.

(Sa,E)-1-(1-Bromo-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1-Br)

According to **Procedure V** with **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv) and **S1-Br** (70.5 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1-Br** (99.7 mg, 94% yield, 23% ee) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 9.0 Hz, 1H), 7.77 (dd, J = 7.8, 1.5 Hz, 1H), 7.52 – 7.32 (m, 5H), 7.30 – 7.22 (m, 2H), 6.88 (d, J = 8.0 Hz, 2H), 4.29 – 3.68 (m, 2H), 2.22 (s, 3H), 1.47 – 1.15 (m, 12H).

 13 C NMR (100 MHz, CDCl₃) δ 152.0, 146.1, 144.5, 138.0, 136.1, 132.3, 131.1, 130.8, 129.9, 129.3, 128.3, 128.2, 127.1, 125.7, 124.4, 123.3, 122.6, 47.2, 46.6, 21.6, 21.4, 21.2, 20.7, 20.5.

HRMS (ESI) m/z calcd. for C₂₆H₂₉BrNO₄S [M + H]⁺ 530.0995, found 530.0991.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ =

238 nm, t_R (major) = 22.03 min, t_R (minor) = 25.25 min, 23% ee.

(Sa,E)-1-(1-Iodo-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1-I)

According to **Procedure V** with **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv) and **S1-I** (84.6 mg, 0.30 mmol, 1.5 equiv) in place of sulfonyl chloride, the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1-I** (103.9 mg, 90% yield, 0% ee) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 9.0 Hz, 1H), 7.77 (dd, J = 6.9, 2.2 Hz, 1H), 7.66 (s, 1H), 7.53 – 7.34 (m, 4H), 7.30 – 7.18 (m, 2H), 6.86 (d, J = 8.1 Hz, 2H), 4.29 – 3.74 (m, 2H), 2.21 (s, 3H), 1.48 – 1.25 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 151.6, 144.7, 144.5, 144.3, 135.9, 130.9, 130.5, 129.3, 129.1, 128.3, 128.1, 126.8, 126.3, 125.7, 124.5, 122.8, 107.0, 47.3, 46.5, 21.6, 21.5, 21.3, 20.8, 20.6.

HRMS (ESI) m/z calcd. for C₂₆H₂₉INO₄S [M + H]⁺ 578.0856, found 578.0856.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_R (major) = 24.60 min, t_R (minor) = 29.87 min, 0% ee.

(*Sa,E*)-1-(2-((4-Acetamidophenyl)sulfonyl)-1-chlorovinyl)naphthalen-2-yl diisopropylcarbamate (O20)

According to **Procedure V** with **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv) and **S8** (70.1 mg, 0.30 mmol, 1.5 equiv), the product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford **O20** (69.8 mg, 66% yield, 90% ee) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 9.0 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.51 – 7.28 (m, 4H), 7.25 – 7.14 (m, 5H), 4.31 – 3.68 (m, 2H), 2.03 (s, 3H), 1.46 – 1.23 (m, 12H).

 13 C NMR (100 MHz, CDCl₃) δ 168.8, 152.5, 146.5, 143.1, 142.7, 134.6, 133.3, 131.4, 130.7, 130.2, 129.3, 128.3, 127.5, 125.9, 124.1, 122.3, 122.1, 118.8, 47.1, 46.7, 24.7,

21.4, 21.2, 20.7, 20.5.

HRMS (ESI) m/z calcd. for C₂₇H₃₀ClN₂O₅S [M + H]⁺ 529.1558, found 529.1555. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_R (minor) = 21.09 min, t_R (major) = 27.43 min, 90% ee.

Synthesis of racemic O20-I

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with alkyne **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv) and sodium 4-acetamidobenzenesulfinate (44.2 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with argon three times, toluene (1.0 mL) was added to the mixture, and the reaction mixture was stirred at 80 °C for 24 h. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(*E*)-1-(2-((4-Acetamidophenyl)sulfonyl)-1-iodovinyl)naphthalen-2-yl diisopropylcarbamate (O20-I)

AcHN

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford **O20-I** (28.5 mg, 23% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.9 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.63 (s, 1H), 7.50 – 7.32 (m, 5H), 7.28 – 7.16 (m, 4H), 4.35 – 3.71 (m, 2H), 2.13 (s, 3H), 1.46 – 1.25 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 151.7, 147.8, 145.2, 144.7, 144.1, 142.8, 133.4, 130.9, 130.7, 129.6, 129.2, 128.2, 127.0, 126.3, 125.9, 124.5, 122.8, 107.2, 47.3, 46.6, 24.8, 21.5, 21.3, 20.8, 20.7.

HRMS (ESI) m/z calcd. for C₂₇H₃₀IN₂O₅S [M + H]⁺ 621.0915, found 621.0913.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_{R1} = 23.24 min, t_{R2} = 29.31 min.

Gram-scale reactions and procedures for synthetic applications Gram-scale reaction of NS1

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (149.0 mg, 0.40 mmol, 10 mol %), L7 (224.0 mg, 0.40 mmol, 10 mol %), alkyne NS1 (1.54 g, 4.0 mmol, 1.0 equiv), sulfonyl chloride S1 (1.15 g, 6.0 mmol, 1.5 equiv), and K₃PO₄ (2.55 g, 12.0 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous DME (15 mL) and MTBE (45 mL) were added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product N1 in 71% yield and 92% ee.

Gram-scale reaction of OS1

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (149.0 mg, 0.40 mmol, 10 mol %), L7 (224.0 mg, 0.40 mmol, 10 mol %), alkyne **OS1** (1.18 g, 4.0 mmol, 1.0 equiv), sulfonyl chloride **S1** (1.15 g, 6.0 mmol, 1.5 equiv), and K₃PO₄ (2.55 g, 12.0 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (60 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 7 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated, and the residue was purified by column chromatography on silica gel to afford the desired product **O1** in 72% yield and 90% ee.

Sonogashira coupling of axially chiral sulfone-containing styrene

Procedure a: Sonogashira coupling of N1

To a mixture of chiral sulfone-containing styrene N1 (115.2 mg, 0.20 mmol, 1.0 equiv, 93% ee), 'Bu₃P-Pd-G2 (20.5 mg, 0.040 mmol, 20 mol %), CuI (15.2 mg, 0.080 mmol, 40 mol %), and K₂CO₃ (110.5 mg, 0.80 mmol, 4.0 equiv) in dry CH₃CN (4 mL) was added ethynylbenzene (44 μ L, 0.40 mmol, 2.0 equiv). After the reaction mixture was stirred at 60 °C under argon for 48 h, it was treated with standard aqueous work-up and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the desired product N1-1.

tert-Butyl (*S_a*,*Z*)-(4-methylbenzoyl)(1-(4-phenyl-1-tosylbut-1-en-3-yn-2yl)naphthalen-2-yl)carbamate (N1-1)

The product mixture was purified by silica gel column chromatography (petroleum ether/dichloromethane/ethyl acetate = 10/10/1) to afford **N1-1** (75.0 mg, 60% yield, 90% ee) as a yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 8.03 – 7.71 (m, 4H), 7.68 – 7.01 (m, 14H), 6.99 – 6.84 (m, 2H), 2.37 (s, 3H), 2.23 (s, 3H), 1.35 (br, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 173.0, 153.0, 144.1, 142.7, 138.5, 136.5, 133.8, 132.6, 132.0, 129.8, 129.5, 129.3, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.0, 126.6, 125.6, 121.5, 86.7, 83.8, 83.7, 27.7, 27.0, 21.8, 21.6.

HRMS (ESI) m/z calcd. for C₄₀H₃₆NO₅S [M + H]⁺ 642.2309, found 642.2307.

HPLC condition: Chiralcel INA, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 12.60 min, t_R (major) = 15.26 min, 90% ee.

Suzuki-Miyaura coupling of axially chiral sulfone-containing styrene

Procedure b: Suzuki-Miyaura coupling of N1

To a mixture of chiral sulfone-containing styrene N1 (922 mg, 1.6 mmol, 1.0 equiv, 93% ee), phenylboronic acid (392 mg, 3.2 mmol, 2.0 equiv), 'Bu₃P-Pd-G2 (164 mg, 0.32 mmol, 20 mol%), and Li₂CO₃ (355 mg, 4.8 mmol, 3.0 equiv) was added DCE/H₂O (4/1, 32 mL). The reaction was stirred at 60 °C under argon for 48 h. Upon completion, the reaction mixture was extracted with EtOAc. The organic layer was dried over Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the desired product N1-2.

tert-Butyl (*S_a*,*Z*)-(4-methylbenzoyl)(1-(1-phenyl-2-tosylvinyl)naphthalen-2yl)carbamate (N1-2)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford N1-2 (940 mg, 95% yield, 93% ee) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 7.97 (d, J = 8.2 Hz, 1H), 7.92 – 7.76 (m, 1H), 7.57 (s, 2H), 7.50 (d, J = 8.7 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.38 – 6.96 (m, 9H), 6.96 – 6.90 (m, 3H), 2.37 (s, 3H), 2.22 (s, 3H), 1.47 – 0.82 (br, 9H).

¹³C NMR (150 MHz, CDCl₃): *δ* 172.0, 152.7, 146.2, 143.7, 142.6, 137.2, 135.2, 133.2, 132.3, 130.6, 130.2, 129.5, 129.4, 128.5, 128.4, 128.2, 128.1, 127.9, 126.7, 126.4, 126.1, 83.2, 77.4, 27.5, 21.7, 21.5.

HRMS (ESI) m/z calcd. for C₃₈H₃₆NO₅S [M + H]⁺ 618.2309, found 618.2308.

HPLC condition: Chiralcel INA, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 11.92 min, t_R (minor) = 14.46 min, 93% ee.

To a mixture of chiral sulfone-containing styrene **O1** (97.2 mg, 0.20 mmol, 1.0 equiv, 92% ee), phenylboronic acid (49 mg, 0.40 mmol, 2.0 equiv), PEPPSI Pd-SIPR (27.3 mg, 0.040 mmol, 20 mol %), and Li₂CO₃ (44.3 mg, 0.60 mmol, 3.0 equiv) was added CH₃CN/H₂O (4/1, 4.0 mL) under argon. Then, the reaction was stirred at room temperature for 72 h. Upon completion, the reaction mixture was extracted with EtOAc. The organic layer was dried over Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the desired product **O1-1**.

(S_a,Z)-1-(1-Phenyl-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1-1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **O1-1** (98.0 mg, 93% yield, 89% ee) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.9 Hz, 1H), 7.77 (d, J = 9.4 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.42 – 7.25 (m, 5H), 7.28 – 7.18 (m, 5H), 7.15 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 6.86 (d, J = 8.2 Hz, 2H), 4.01 (p, J = 6.8 Hz, 1H), 3.58 (p, J = 6.8 Hz, 1H), 2.22 (s, 3H), 1.18 (dd, J = 17.9, 6.8 Hz, 6H), 1.00 (dd, J = 15.8, 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 152.3, 148.4, 146.7, 143.7, 137.2, 136.7, 131.8, 130.85, 130.7, 130.5, 129.8, 129.0, 128.8, 128.0, 127.9, 127.5, 126.6, 125.1(8), 125.1(5), 122.9, 122.8, 47.0, 45.9, 21.5, 21.0, 20.9, 20.5, 20.1.

HRMS (ESI) m/z calcd. for C₃₂H₃₄NO₄S [M + H]⁺ 528.2203, found 528.2203.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 19.87 min, t_R (major) = 24.75 min, 89% ee.

To a mixture of chiral sulfone-containing styrene **O15** (91.8 mg, 0.20 mmol, 1.0 equiv, 87% ee), aryl boronic acid (0.40 mmol, 2.0 equiv), PEPPSI Pd-SIPR (27.3 mg, 0.040 mmol, 20 mol %), and Li₂CO₃ (44.3 mg, 0.60 mmol, 3.0 equiv) was added DCE/H₂O (4/1, 4.0 mL) under argon. The reaction was stirred at room temperature under argon for 72 h. Upon completion, the reaction mixture was extracted with EtOAc. The organic layer was dried over Na₂SO₄ and filtered. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford **the** desired product.

(Sa,Z)-tert-Butyl (1-(1-phenyl-2-tosylvinyl)naphthalen-2-yl) carbonate (O15-1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **O15-1** (80.2 mg, 80% yield, 86% ee) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.34 – 7.15 (m, 10H), 6.88 (d, J = 8.0 Hz, 2H), 2.23 (s, 3H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 151.3, 146.8, 146.1, 143.7, 137.3, 137.1, 131.7, 131.0(9), 131.0(8), 130.4, 130.1, 129.1, 128.9, 128.1, 128.0, 127.5, 126.9, 125.6, 125.4, 123.2, 121.6, 83.5, 27.6, 21.6.

HRMS (ESI) m/z calcd. for C₃₀H₂₈O₅SNa [M + Na]⁺ 523.1550, found 523.1551.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 18.03min, t_R (minor) = 24.96 min, 86% ee.

(*S_a,Z*)-*tert*-Butyl (1-(1-(phenanthren-9-yl)-2-tosylvinyl)naphthalen-2-yl) carbonate (O15-2)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O15-2** (85.0 mg, 70% yield, 86% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (ddd, J = 8.0, 6.4, 2.1 Hz, 2H), 8.59 (d, J = 8.4 Hz, 1H), 7.95 – 7.83 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.70 (tt, J = 7.1, 5.3 Hz, 2H), 7.64 – 7.52 (m, 2H), 7.50 – 7.42 (m, 5H), 7.42 – 7.34 (m, 2H), 7.19 (s, 1H), 7.03 (d, J = 8.0 Hz, 2H), 2.31 (s, 3H), 1.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 151.2, 146.2, 144.2, 144.0, 137.2, 136.2, 134.7, 132.6, 131.4, 131.3, 130.6, 130.5, 130.1, 129.6, 129.3(4), 129.3(1), 128.9, 128.3, 128.1, 127.9, 127.3(4), 127.3(1), 127.0, 126.9, 126.3, 125.7(9), 125.7(5), 125.5, 123.4, 122.4, 121.6, 83.3, 27.2, 21.7.

HRMS (ESI) m/z calcd. for C₃₈H₃₂O₅SNa [M + Na]⁺ 623.1863, found 623.1861. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 23.43 min, t_R (minor) = 33.93 min, 86% ee.

(*S_a*,*Z*)-1-(1-([1,1':3',1''-Terphenyl]-5'-yl)-2-tosylvinyl)naphthalen-2-yl *tert*-butyl carbonate (O15-3)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O15-3** (116.8 mg, 90% yield, 86% ee) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 9.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 1.7 Hz, 1H), 7.55 – 7.45 (m, 8H), 7.44 – 7.38 (m, 5H), 7.38 – 7.32 (m, 5H), 7.22 (t, J = 7.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 2H), 2.26 (s, 3H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 151.6, 146.7, 146.2, 143.8, 142.5, 140.4, 138.5, 137.0,
131.8, 131.6, 131.2, 130.3, 129.2, 129.0, 128.3, 128.2, 128.1, 127.9, 127.4, 127.1, 125.7,
125.43, 125.2, 123.1, 121.7, 83.6, 27.6, 21.6.

HRMS (ESI) m/z calcd. for C₄₂H₃₆O₅SNa [M + Na]⁺ 675.2176, found 675.2176. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 21.77 min, t_R (major) = 23.49 min, 86% ee.

Procedure e: Removal of the protecting group from axially chiral sulfone-containing styrene

To a 25 mL Schlenk bottle containing a mixture of N1-2 (988.4 mg, 1.6 mmol, 1.0 equiv, 93% ee) and K₂CO₃ (2.21 g, 16 mmol, 10.0 equiv) was added EtOH (32 mL) under argon. Then, the reaction bottle was sealed and heated to 60 °C for 48 h. Upon completion, the solvent was removed, and the residue was dissolved in water. The aqueous solution was extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by silica-gel column chromatography to afford N1-2-Boc.

tert-Butyl (*S_a*,*Z*)-(1-(1-phenyl-2-tosylvinyl)naphthalen-2-yl)carbamate (N1-2-Boc)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **N1-2-Boc** (723 mg, 91% yield, 91% ee) as a pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.02 (s, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.51 (s, 1H), 7.36 – 7.21 (m, 5H), 7.18 (t, J = 7.5 Hz, 1H), 7.06 (s, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.88 (t, J = 7.6 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 8.1 Hz, 2H), 2.06 (s, 3H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 153.8, 150.2, 143.8, 136.5, 135.7, 134.2, 133.1, 130.8, 130.5, 130.4, 129.8, 129.1, 128.8, 127.8, 127.6, 127.2, 126.3, 124.6, 124.6, 80.6, 28.3, 21.3.

HRMS (ESI) m/z calcd. for C₃₀H₃₀NO₄S [M + H]⁺ 500.1890, found 500.1890.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 24.50 min, t_R (minor) = 27.84 min, 91% ee.

N1-2-Boc, 91% ee

N1-4, 98%, 91% ee

To a 50 mL Schlenk bottle containing a mixture of N1-2-Boc (500.0 mg, 1.0 mmol, 1.0 equiv, 91% ee) and DCM (8.0 mL) was added TFA (8.0 mL) under argon. Then, the reaction bottle was sealed and stirred at room temperature for 12 h. Upon completion, the reaction mixture was poured into a saturated NaHCO₃ solution. The mixture was extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by silica-gel column chromatography to afford N1-4.

(S_a,Z)-1-(1-Phenyl-2-tosylvinyl)naphthalen-2-amine (N1-4)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford N1-4 (392.3 mg, 98% yield, 91% ee) as a yellow solid.¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.3 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.47 (s, 1H), 7.37 – 7.30 (m, 3H), 7.30 – 7.24 (m, 2H), 7.10 (d, J = 8.3 Hz, 2H), 7.08 – 6.99 (m, 2H), 6.86 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 6.65 (dd, J = 8.3, 2.4 Hz, 3H), 4.06 (s, 2H), 2.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 150.6, 143.6, 142.4, 136.6, 136.1, 132.6, 131.7, 130.7, 130.4, 129.1, 128.8, 127.8, 127.7, 127.6, 127.3, 126.5, 123.3, 122.1, 118.6, 112.9, 21.41. HRMS (ESI) *m/z* calcd. for C₂₅H₂₂NO₂S [M + H]⁺ 400.1366, found 400.1364. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 21.65 min, t_R (minor) = 23.00 min, 91% ee.

Procedure f: Preparation of chiral tetrasubstituted alkene

To a mixture of chiral sulfone-containing styrene N1-2-Boc (499.0 mg, 0.10 mmol, 1.0 equiv), Cs₂CO₃ (652.0 mg, 0.20 mmol, 2.0 equiv), and TBAI (36.8 mg, 0.10 mmol, 1.0 equiv) in anhydrous DMF (5.0 mL) was added BnBr (0.25 mL, 0.21 mmol, 2.1 equiv) under argon. The reaction was stirred at room temperature for 24 h. Upon completion, the mixture was diluted with EtOAc and subsequently washed with water, followed by brine. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography on silica gel to afford the desired product N1-2-Bn (96% yield, 90% ee) as a yellow solid.¹⁶

Chiral sulfone-containing styrene **N1-2-Bn** (58.9 mg, 0.10 mmol, 1.0 equiv) was dissolved in THF (2.0 mL) under argon. The solution was cooled to -78 °C, and ^{*n*}BuLi (1.0 M in THF, 100 µL, 0.10 mmol, 1.0 equiv) was added dropwise at -78 °C. After 15 min, HMPA (18 µL, 0.10 mmol, 1.0 equiv) was added dropwise, followed by BnBr (12 µL, 0.10 mmol, 1.0 equiv) added all at once. The mixture was allowed to warm to room temperature and stirred for 24 h. Upon completion, the reaction was quenched with brine, followed by extraction with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and filtered. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **N1-3**.¹⁷

tert-Butyl (*Sa*,*Z*)-benzyl(1-(1,3-diphenyl-2-tosylprop-1-en-1-yl)naphthalen-2yl)carbamate (N1-3)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford N1-3 (42.8 mg, 63% yield, 90% ee) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.60 – 7.43 (m, 4H), 7.41 – 7.37 (m, 1H), 7.33 – 7.23 (m, 4H), 7.21 – 7.08 (m, 9H), 7.04 (d, J = 8.0 Hz, 2H), 6.86 (dd, J = 6.7, 2.9 Hz, 2H), 6.52 (d, J = 8.6 Hz, 1H), 5.52 (d, J = 14.1 Hz, 1H), 4.92 (d, J = 14.1 Hz, 1H), 4.24 (d, J = 16.3 Hz, 1H), 3.93 (d, J = 16.4 Hz, 1H), 2.34 (s, 3H), 1.31 (s, 3H), 0.82 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 154.9, 149.1, 144.5, 142.3, 139.7, 138.7, 138.5, 136.5, 135.3, 132.5, 132.4, 130.1, 129.9, 129.4, 129.3, 128.7, 128.4(0), 128.3(6), 128.3(3), 128.2(9), 128.2, 128.0(0), 127.9(7), 127.3, 126.5, 126.2, 126.0, 125.8, 79.5, 51.2, 36.52, 128.2(9), 128.2(9), 128.2(9), 127.9(7), 127.3(126.5), 126.2(9), 127.9(7), 127.9(7), 127.3(126.5), 126.9(9), 127.9(7),

27.9, 21.7

HRMS (ESI) m/z calcd. for C₄₄H₄₁NO₄NaS [M + Na]⁺ 702.2649, found 702.2648. HPLC condition: Chiralcel IA, *n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min. λ = 254 nm, t_R (minor) = 13.94 min, t_R (major) = 16.29 min, 90% ee.

Procedure g: Transformations of the amino group on axially chiral sulfone-containing styrene

To a 10 mL Schlenk bottle containing a mixture of (Sa,Z)-1-(1-phenyl-2-tosylvinyl)naphthalen-2-amine N1-4 (79.9 mg, 0.20 mmol, 1.0 equiv, 91% ee), 4-isothiocyanatobenzonitrile (48.0 mg, 0.30 mmol, 1.5 equiv), and 4-DMAP (24.4 mg, 0.20 mmol, 1.0 equiv) was added DCM (4.0 mL) under argon. Then, the reaction bottle was sealed and stirred at room temperature for 48 h. Upon completion, the reaction mixture was concentrated. The crude residue was purified by silica-gel column chromatography to afford the desired product N1-5.

(*S_a*,*Z*)-1-(4-Cyanophenyl)-3-(1-(1-phenyl-2-tosylvinyl)naphthalen-2-yl)thiourea (N1-5)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford N1-5 (91.8 mg, 82% yield, 91% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.31 (s, 1H), 7.95 (d, *J* = 8.8 Hz, 1H), 7.77 (t, *J* = 8.1 Hz, 2H), 7.59 (s, 4H), 7.49 – 7.38 (m, 3H), 7.40 – 7.31 (m, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.05 – 6.94 (m, 3H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 2H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.7, 150.9, 144.5, 142.2, 136.1, 135.9, 133.9, 133.2, 132.2, 131.4, 130.8, 130.5, 130.2, 129.4, 129.3, 129.1, 128.2, 127.6, 127.4, 127.0, 126.5, 126.3, 125.3, 123.4, 118.8, 108.5, 21.5.

HRMS (ESI) m/z calcd. for C₃₃H₂₆N₃O₂S₂ [M + H]⁺ 560.1461, found 560.1458.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ =

254 nm, t_R (minor) = 38.15 min, t_R (major) = 47.28 min, 91% ee.

To a solution of (Sa,Z)-1-(1-phenyl-2-tosylvinyl)naphthalen-2-amine N1-4 (80.0 mg, 0.20 mmol, 1.0 equiv, 91% ee) and pyridine (49 µL, 0.60 mmol, 3.0 equiv) in DCM (4 mL) was added CSCl₂ (55.2 mg, 0.48 mmol, 2.4 equiv). The reaction mixture was stirred at room temperature for 1 h. Upon completion, DCM and CSCl₂ were removed under high vacuum. To a solution of the resulting residue in DCM (4 mL) was added (1*S*,2*S*)-*N*1,*N*1-dimethylcyclohexane-1,2-diamine (85.3 mg, 0.60 mmol, 3.0 equiv). The mixture was stirred at room temperature for 2 h. Upon completion, DCM was removed and the residue was purified by silica gel column chromatography to afford the desired product N1-6.

1-((*1S*,*2S*)-2-(Dimethylamino)cyclohexyl)-3-(1-((*Sa*,*Z*)-1-phenyl-2tosylvinyl)naphthalen-2-yl)thiourea (N1-6)

The product mixture was purified by silica gel column chromatography (DCM/MeOH = 40:1 to 20:1) to afford **N1-6** (71.0 mg, 60% yield) as a single optically pure diastereomer and white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.05 (s, 1H), 7.95 – 7.79 (m, 2H), 7.70 (d, J = 8.2 Hz, 1H), 7.46 – 7.34 (m, 3H), 7.35 – 7.21 (m, 3H), 7.08 (d, J = 7.9 Hz, 2H), 7.01 – 6.91 (m, 1H), 6.88 (d, J = 8.6 Hz, 1H), 6.71 (d, J = 7.9 Hz, 2H), 3.86 (s, 1H), 2.65 – 2.36 (m, 2H), 2.20 (s, 6H), 2.12 (s, 3H), 1.90 – 1.76 (m, 2H), 1.73 – 1.62 (m, 1H), 1.46 – 1.31 (m, 1H), 1.31 – 1.11 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 181.0, 144.0, 136.5, 136.0, 134.7, 131.6, 131.2, 131.0, 130.8, 129.4, 129.1, 129.1, 128.0, 127.6, 127.5, 127.3, 126.5, 125.6, 125.2, 66.7, 55.8, 40.0, 32.4, 25.1, 24.6, 21.8, 21.4.

HRMS (ESI) m/z calcd. for C₃₄H₃₈N₃O₂S₂ [M + H]⁺ 584.2400, found 584.2405.

To a solution of (Sa,Z)-1-(1-phenyl-2-tosylvinyl)naphthalen-2-amine N1-4 (80.0 mg, 0.20 mmol, 1.0 equiv) and pyridine (49 µL, 0.60 mmol, 3.0 equiv) in DCM (4 mL) was added CSCl₂ (55.2 mg, 0.48 mmol, 2.4 equiv). The reaction mixture was stirred at room temperature for 1 h. Upon completion, DCM and CSCl₂ were removed under high vacuum. To a solution of the resulting residue in DCM (4 mL) was added (*S*)-(6-methoxyquinolin-4-yl)((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methanamine (194.0 mg, 0.60 mmol, 3.0 equiv). The mixture was stirred at room temperature for 2 h. Upon completion, DCM was removed, and the residue was purified by silica gel column chromatography to afford the desired product N1-7.

1-((1*S*)-(6-Methoxyquinolin-4-yl)((5*S*)-5-vinylquinuclidin-2-yl)methyl)-3-(1-((*Sa*,*Z*)-1-phenyl-2-tosylvinyl)naphthalen-2-yl)thiourea (N1-7)

The product mixture was purified by silica gel column chromatography (DCM/MeOH = 40:1 to 20:1) to afford N1-7 (104.1 mg, 68% yield) as a single optically pure diastereomer and pale-yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.26 – 7.57 (m, 6H), 7.51 – 6.78 (m, 13H), 6.64 (d, J = 7.9 Hz, 2H), 6.01 (s, 1H), 5.78 – 5.53 (m, 1H), 5.10 – 4.78 (m, 2H), 3.98 (s, 3H), 3.66 – 2.23 (m, 8H), 2.12 (s, 3H), 1.40 (t, J = 11.9 Hz, 1H), 0.94 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 182.0, 157.8, 150.5, 147.7, 144.7, 144.0, 140.7, 136.2, 136.1, 134.6, 131.7, 131.5, 130.9, 129.4, 129.1, 128.9, 128.0, 127.6, 127.4(5), 127.4(2), 126.6, 125.7, 125.3, 121.9, 115.1, 102.9, 61.7, 56.0, 55.6, 53.6, 41.9, 39.3, 27.4, 25.8, 21.4.

HRMS (ESI) m/z calcd. for C₄₆H₄₅N₄O₃S₂ [M + H]⁺ 765.2928, found 765.2934.

To a 10 mL Schlenk bottle containing a mixture of (Sa,Z)-1-(1-phenyl-2-tosylvinyl)naphthalen-2-amine N1-4 (79.9 mg, 0.20 mmol, 1.0 equiv, 91% ee), picolinic acid (36.9 mg, 0.30 mmol, 1.5 equiv), DCC (61.9 mg, 0.30 mmol, 1.5 equiv), and 4-DMAP (9.8 mg, 0.080 mmol, 40 mol %) was added DCM (4.0 mL) under argon. Then, the reaction bottle was sealed and stirred at room temperature for 24 h. Upon completion, the reaction mixture was concentrated. The crude residue was purified by silica-gel column chromatography to afford the desired product N1-8.

(*S_a*,*Z*)-*N*-(1-(1-Phenyl-2-tosylvinyl)naphthalen-2-yl)picolinamide (N1-8)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford N1-8 (96.8 mg, 96% yield, 91% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 10.38 (s, 1H), 8.55 (d, J = 4.7 Hz, 1H), 8.48 (d, J = 9.0 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.61 (s, 1H), 7.44 – 7.18 (m, 7H), 7.14 – 7.04 (m, 4H), 6.64 (d, J = 8.1 Hz, 2H), 2.08 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 162.7, 149.7, 149.7, 148.3, 143.9, 137.4, 136.7, 136.2,
133.5, 133.1, 131.0, 130.8, 130.7, 130.1, 129.1, 128.9, 127.9, 127.8, 127.4, 126.7, 126.4,
125.1, 125.0, 122.3(3), 122.2(5), 121.6, 21.4.

HRMS (ESI) m/z calcd. for C₃₁H₂₅N₂O₃S [M + H]⁺ 505.1580, found 505.1577. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (minor) = 46.85 min, t_R (major) = 56.67 min, 91% ee.

To a 10 mL Schlenk bottle containing a mixture of (Sa,Z)-1-(1-phenyl-2-

tosylvinyl)naphthalen-2-amine N1-4 (79.9 mg, 0.20 mmol, 1.0 equiv, 91% ee), quinoline-8-sulfonyl chloride (68.0 mg, 0.30 mmol, 1.5 equiv), 4-DMAP (9.8 mg, 0.080 mmol, 40 mol %), and pyridine (100 μ L, 1.2 mmol, 6.0 equiv) was added DCM (4.0 mL) under argon. Then, the reaction bottle was sealed and stirred at 50 °C for 72 h. Upon completion, the reaction mixture was quenched with saturated NH4Cl solution, extracted with DCM, dried over Na₂SO₄, and concentrated in vacuo. The crude residue was purified by silica-gel column chromatography to afford the desired product N1-9.

(*S_a,Z*)-*N*-(1-(1-Phenyl-2-tosylvinyl)naphthalen-2-yl)quinoline-8-sulfonamide (N1-9)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford N1-9 (70.9 mg, 60% yield, 90% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 9.13 (dd, J = 4.2, 1.7 Hz, 1H), 8.12 (dd, J = 7.2, 1.4 Hz, 1H), 8.04 (dd, J = 8.4, 1.8 Hz, 1H), 7.92 – 7.82 (m, 2H), 7.70 (dd, J = 8.3, 1.4 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.52 (dd, J = 8.3, 4.3 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.05 – 6.92 (m, 4H), 6.82 – 6.74 (m, 3H), 6.59 (t, J = 7.5 Hz, 4H), 6.47 (d, J = 8.5 Hz, 1H), 2.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.9, 148.4, 143.9, 143.2, 138.6, 136.5, 135.9, 135.7, 133.9, 133.1, 131.8, 131.3, 130.6, 130.2, 130.1, 129.0, 128.9, 128.5, 128.4, 127.8, 127.6, 126.4, 126.3, 126.1, 125.4, 125.3, 125.2, 122.4, 21.4.

HRMS (ESI) m/z calcd. for C₃₄H₂₇N₂O₄S₂ [M + H]⁺ 591.1407, found 591.1403.

HPLC condition: Chiralcel OD-3, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 14.48 min, t_R (minor) = 20.42 min, 90% ee.

Application of chiral organocatalysts in the enantioselective tandem Michael addition and cyclization reaction of enynamide and ketimine¹⁸

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 2methylene-4-phenyl-N-(quinolin-8-yl)but-3-ynamide **SM-1** (29.8 mg, 0.10 mmol, 1.0 equiv), 1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one **SM-2** (36.3 mg, 0.15 mmol, 1.5 equiv), MgSO4 (30.0 mg, 0.25 mmol, 2.5 equiv), and chiral catalyst (0.010 mmol, 10 mol %). Then, DCE (1.0 mL) was added to the mixture. The reaction mixture was stirred at room temperature for 24 h. Upon completion, it was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel to afford the desired product.

(*3R*, *3'R*, *5'S*)-1-Methyl-2-oxo-3'-(phenylethynyl)-N-(quinolin-8-yl)-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3'-carboxamide (P-1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2/1) to afford **P-1** (50.3 mg, 93% yield, 98% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.59 (dd, J = 5.6, 3.4 Hz, 1H), 8.49 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.88 (d, J = 6.3 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.51 – 7.41 (m, 2H), 7.42 – 7.32 (m, 5H), 7.16 (t, J = 7.6 Hz, 1H), 6.63 (d, J = 7.8 Hz, 1H), 4.61 – 4.41 (m, 1H), 3.97 (t, J = 12.0 Hz, 1H), 2.95 (s, 3H), 2.77 (dd, J = 12.2, 6.0 Hz, 1H), 2.67 (d, J = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 164.5, 148.0, 145.4, 138.4, 136.2, 134.0 131.9, 130.8, 129.3, 128.7, 127.8, 127.3, 125.8 (q, J = 280.0 Hz), 125.31, 122.3, 121.9, 121.6, 116.5, 108.6, 89.7, 86.9, 77.4, 71.3, 59.5, 58.5 (q, J = 32.2 Hz), 35.3, 26.3.

¹⁹F NMR (376 MHz, CDCl₃): δ –74.9.

HRMS (ESI) m/z calcd. for C₃₁H₂₃F₃N₄O₂Na [M + Na]⁺ 563.1665, found 563.1670.

HPLC condition: Chiralcel AD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min. λ = 254 nm, t_R (minor) = 8.05 min, t_R (major) = 16.67 min, 98% ee.

Mechanism experiments

Procedures for the trapping experiment of **NS1** *with TEMPO:*

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne NS1 (77.1 mg, 0.20 mmol, 1.0 equiv), sulfonyl chloride S1 (57.2 mg, 0.30 mmol, 1.5 equiv), TEMPO (31.2 mg, 0.20 mmol, 1.0 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous DME (1.0 mL) and MTBE (3.0 mL) were added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. No formation of N1 was detected through TLC monitoring.

Procedures for the trapping experiment of NS1 with BHT:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(CH₃CN)₄PF₆ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne NS1 (77.1 mg, 0.20 mmol, 1.0 equiv), sulfonyl chloride S1 (57.2 mg, 0.30 mmol, 1.5 equiv), BHT (220.0 mg, 2.0 mmol, 10.0 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous DME (1.0 mL) and MTBE (3.0 mL) were added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford BHT-Ts1 (18% yield) and BHT-Ts2 (8% yield). No formation of N1 was detected through TLC monitoring.

2,6-di-tert-Butyl-4-methyl-4-tosylcyclohexa-2,5-dien-1-one (BHT-Ts1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) to afford **BHT-Ts1** (13.4 mg, 18% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.64 (s, 2H), 2.36 (s, 3H), 1.81 (s, 3H), 1.10 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 151.3, 145.4, 135.8, 130.7, 130.4, 128.9, 65.9, 35.3, 29.1, 21.8, 18.6. HRMS (ESI) *m*/*z* calcd. for C₂₂H₃₀SO₃Na [M + Na]⁺ 397.1808, found 397.1804.

2,6-di-tert-Butyl-4-methylphenyl 4-methylbenzenesulfonate (BHT-Ts2)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30/1) to afford **BHT-Ts2** (6.0 mg, 8% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.08 (s, 2H), 2.45 (s, 3H), 2.31 (s, 3H), 1.34 (s, 18H).

¹³C NMR (100 MHz, CDCl₃): δ 144.8(0), 144.7(6), 140.8, 134.8, 134.3, 129.7, 128.8, 128.6, 36.9, 32.9, 21.8, 21.3.

HRMS (ESI) m/z calcd. for C₂₂H₃₀SO₃Na [M + Na]⁺ 397.1808, found 397.1803.

Procedures for the trapping experiment of OS1 with TEMPO:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(CH₃CN)₄PF₆ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv), sulfonyl chloride **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), TEMPO (31.2 mg, 0.20 mmol, 1.0 equiv), and K₃PO₄ (127.4

mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. No formation of **O1** was detected through TLC monitoring.

Procedures for the trapping experiment of **OS1** with BHT:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv), sulfonyl chloride **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), BHT (220.0 mg, 2.0 mmol, 10.0 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated, and the residue was purified by column chromatography on silica gel to afford the **BHT-Ts1** (8.2 mg, 11% yield) and **BHT-Ts2** (5.2 mg, 7% yield). No formation of **O1** was detected through TLC monitoring.

Procedures for the trapping experiment of OS1 with Ph-Se-Se-Ph:

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne **OS1** (59.1 mg, 0.20 mmol, 1.0 equiv), sulfonyl chloride **S1** (57.2 mg, 0.30 mmol, 1.5 equiv), Ph-Se-Se-Ph (187.3 mg, 0.60 mmol, 3.0 equiv), and K₃PO4 (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the **O1-Se**. No formation of

O1 was detected through TLC monitoring.

(E)-1-(1-(Phenylselanyl)-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1-Se)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1-Se** (9.7 mg, 16% yield, 0% ee) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 9.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.51 (d, J = 8.3 Hz, 1H), 7.45 – 7.31 (m, 5H), 7.30 – 7.26 (m, 1H), 7.16 – 7.06 (m, 2H), 6.80 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.21 – 3.85 (m, 2H), 2.19 (s, 3H), 1.58 – 1.14 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.7, 151.3, 145.7, 143.5, 137.4, 137.0, 130.7, 130.6, 130.3, 130.2, 129.0, 128.1, 127.9, 127.8, 126.6, 126.3, 125.3, 125.0, 122.5, 121.8, 47.0, 46.5, 21.5(1), 21.4(9), 21.3, 20.8, 20.7.

HRMS (ESI) m/z calcd. for C₃₂H₃₄NO₄SSe [M + H]⁺ 608.1368, found 608.1366. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 50/50, flow rate 0.6 mL/min. λ = 254 nm, t_R (major) = 9.07 min, t_R (minor) = 14.49 min, 0% ee.

Experimental procedures for the crossover experiment of **OS1** with **TsI** (**S1-I**, 0.50 equiv) and **S8** (1.0 equiv):

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(CH₃CN)₄PF₆ (3.68 mg, 0.010 mmol, 10 mol %), L7 (5.60 mg, 0.010 mmol, 10 mol %), alkyne **OS1** (29.6 mg, 0.10 mmol, 1.0 equiv), 4-methylbenzenesulfonyl iodide (**TsI**, **S1-I**) (14.1 mg, 0.050 mmol, 0.5 equiv), **S8** (23.4 mg, 0.10 mmol, 1.0 equiv), and

K₃PO₄ (63.6 mg, 0.30 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (2.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 2 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated, and the reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford the **O1** and **O1-I** mixture. The remaining reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford the **O20** and **O20-I** mixture. The yield was determined based on the ¹H NMR analysis of the product mixtures using CH₂Br₂ as an internal standard. HPLC conditions for the O1 and O1-I mixture: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. $\lambda = 238$ nm, t_R (major O1) = 22.70 min, t_R (minor O1) = 25.89 min, 90% ee; t_R (major O1-I) = 24.40 min, t_R (minor O1-I) = 29.58 min, 0% ee. HPLC conditions for the O20 and O20-I mixture: Chiralcel IE, n-hexane/i-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_R (minor **O20**) = 20.91min, t_R (major **O20**) $= 27.07 \text{ min}, 90\% \text{ ee}; t_{R} \text{ (major O20-I)} = 23.23 \text{ min}, t_{R} \text{ (minor O20-I)} = 29.30 \text{ min}, 0\%$ ee.

Experimental procedures for the crossover experiment of **OS1** with **TsI** (**S1-I**, 0.25 equiv) and **S8** (1.0 equiv):

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (3.68 mg, 0.010 mmol, 10 mol %), L7 (5.60 mg, 0.010 mmol, 10 mol %), alkyne **OS1** (29.6 mg, 0.10 mmol, 1.0 equiv), 4-methylbenzenesulfonyl iodide (**TsI**, **S1-I**) (7.0 mg, 0.025 mmol, 0.25 equiv), **S8** (23.4 mg, 0.10 mmol, 1.0 equiv), and K₃PO₄ (63.6 mg, 0.30 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (2.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 2 d. Upon completion, the

precipitate was filtered off and washed by DCM. The filtrate was evaporated, and the reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford the **O1** and **O1-I** mixture. The remaining reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/1) to afford the **O20** and **O20-I** mixture. The yield was determined based on the ¹H NMR analysis of the product mixtures using CH₂Br₂ as an internal standard. HPLC conditions for the **O1** and **O1-I** mixture: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_R (major **O1**) = 23.35 min, t_R (minor **O1**) = 26.67 min, 89% ee; t_R (major **O1-I**) = 25.08 min, t_R (minor **O1-I**) = 30.53 min, 0% ee. HPLC condition of **O20** and **O20-I** mixture: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 238 nm, t_R (minor **O20**) = 21.23min, t_R (major **O20**) = 27.65 min, 90% ee; t_R (major **O20-I**) = 23.63 min, t_R (minor **O20-I**) = 29.97 min, 0% ee.

Control experiments of alkynes with TsCl under standard reaction conditions

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(CH_3CN)_4PF_6$ (7.45 mg, 0.020 mmol, 10 mol %), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol, 1.0 equiv), sulfonyl chloride S1 (57.2 mg, 0.30 mmol, 1.5 equiv), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was evacuated and backfilled with argon three times, anhydrous EtOAc (4.0 mL) was added to the mixture, and the reaction mixture was stirred at room temperature for 5 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the

residue was purified by column chromatography on silica gel to afford the product.

Control experiments of alkynes with TsCl under photocatalytic conditions

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with Cu(CH₃CN)₄BF₄ (3.14 mg, 0.010 mmol, 5 mol %), 2,9-dimethyl-1,10-phenanthroline (**dmp**) (4.17 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol, 1.0 equiv), and sulfonyl chloride **S1** (57.2 mg, 0.30 mmol, 1.5 equiv). The tube was evacuated and backfilled with argon three times, and anhydrous CHCl₃ (2.0 mL) was added to the mixture. The reaction mixture was irradiated with Blue LEDs (450 nm) and stirred at room temperature for 4 d. Upon completion, the precipitate was filtered off and washed by DCM. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

(*S_a,E*)-1-(1-Chloro-2-tosylvinyl)-6-ethynylnaphthalen-2-yl diisopropylcarbamate (O18)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O18** (27.2 mg, 26% yield, 90% ee) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.84 (d, *J* = 9.0 Hz, 1H), 7.49 (d, *J* = 9.0

Hz, 1H), 7.36 (d, J = 1.7 Hz, 2H), 7.28 – 7.20 (m, 3H), 6.90 (d, J = 8.0 Hz, 2H), 4.21 – 3.79 (m, 2H), 2.26 (s, 3H), 3.17 (s, 1H), 1.39 – 1.20 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 147.5, 144.8, 142.1, 136.1, 135.3, 132.3, 131.0, 130.1, 129.9, 129.8, 129.3, 128.1, 124.3, 123.4, 122.0, 119.4, 83.4, 78.2, 47.1, 46.6, 21.5, 21.3, 21.2, 20.6, 20.4. HRMS (ESI) *m*/*z* calcd. for C₂₈H₂₉ClNO4S [M + H]⁺ 510.1500, found 515.1498. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. $\lambda =$ 254 nm, t_R (major) = 23.27 min, t_R (minor) = 28.16 min, 90% ee.

(*E*)-6-(1-Chloro-2-tosylvinyl)-1-ethynylnaphthalen-2-yl diisopropylcarbamate (O18')

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O18'** (15.3 mg, 15% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.7 Hz, 1H), 7.89 (d, J = 1.8 Hz, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.50 – 7.34 (m, 4H), 7.10 (d, J = 8.1 Hz, 2H), 7.04 (s, 1H), 4.29 – 3.92 (m, 2H), 3.64 (s, 1H), 2.35 (s, 3H), 1.47 – 1.28 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 153.8, 152.8, 147.6, 144.9, 137.5, 135.1, 132.0, 131.6, 130.7, 129.7, 129.6, 127.9, 126.6, 126.1, 123.2, 112.3, 87.3, 77.4, 47.1, 46.9, 21.7, 20.7. HRMS (ESI) *m*/*z* calcd. for C₂₈H₂₉ClNO4S [M + H]⁺ 510.1500, found 515.1500.

1,6-Bis((S_a,E)-1-chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O18'')

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **O18''** (5.6 mg, 4% yield, 88% ee) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.54 (d, J = 9.0 Hz, 1H), 7.47 – 7.25 (m, 6H), 7.22 (s, 1H), 7.10 (d, J = 8.1 Hz, 2H), 7.06 (s, 1H), 7.03 (d, J = 8.1 Hz, 2H), 4.20 – 3.82 (m, 2H), 2.31 (s, 3H), 2.30 (s, 3H), 1.38 – 1.24 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 148.2, 147.3, 145.0, 141.7, 137.3, 136.3, 135.0, 132.4, 131.9, 131.4, 131.0, 129.8, 129.7(4), 129.6(8), 129.4, 128.3, 127.9, 126.6, 124.3, 123.6, 122.3, 47.2, 46.8, 21.7(3), 21.7(0), 21.4, 21.3, 20.6, 20.5. HRMS (ESI) *m*/*z* calcd. for C₃₅H₃₆Cl₂NO₆S₂ [M + H]⁺ 700.1361, found 700.1354. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 99.39 min, t_R (minor) = 122.68 min, 88% ee.

(*Sa,E*)-1-(1-Chloro-2-tosylvinyl)-7-ethynylnaphthalen-2-yl diisopropylcarbamate (O19)

The reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O19** (21.5 mg, 21% yield, 54% ee) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 9.0 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 9.0 Hz, 1H), 7.43 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.40 (s, 1H), 7.26 (d, *J* = 3.3 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 2H), 4.39 – 3.77 (m, 2H), 3.15 (s, 1H), 2.25 (s, 3H), 1.41 – 1.23 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 152.1, 147.6, 144.7, 142.4, 136.1, 135.6, 131.0, 130.2, 129.5, 129.4, 128.4, 128.3(3), 128.3(1),128.1, 123.6, 121.7, 120.9, 83.6, 78.5, 47.2, 46.8, 21.6, 21.4, 21.3, 20.6, 20.5.

HRMS (ESI) m/z calcd. for C₂₈H₂₉ClNO4S [M + H]⁺ 510.1500, found 515.1499. HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 17.79 min, t_R (minor) = 18.86 min, 54% ee.

(*E*)-7-(1-Chloro-2-tosylvinyl)-1-ethynylnaphthalen-2-yl diisopropylcarbamate (O19')

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O19'** (3.2 mg, 3% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 8.14 (s, 1H), 7.82 (dd, J = 13.9, 8.7 Hz, 2H), 7.47 – 7.39 (m, 4H), 7.06 (d, J = 9.0 Hz, 3H), 4.25 – 3.98 (m, 2H), 3.63 (s, 1H), 2.31 (s, 3H), 1.47 – 1.24 (m, 12H).

¹³C NMR (126 MHz, CDCl₃): δ 153.0, 152.8, 147.6, 144.9, 137.3, 133.3, 133.2, 132.2, 131.3, 129.7(1), 129.6(8), 128.3, 128.0, 126.9, 125.6, 124.0, 112.9, 87.7, 47.1, 46.9, 29.8, 21.7, 20.6.

HRMS (ESI) m/z calcd. for C₂₈H₂₉ClNO₄S [M + H]⁺ 510.1500, found 515.1500.

1,7-Bis((Sa,E)-1-chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O19'')

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford **O19''** (7.0 mg, 5% yield, 35% ee) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 9.0 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.37 – 7.28 (m, 3H), 7.21 (s, 1H), 7.06 (d, J = 8.1 Hz, 2H), 6.99 (s, 1H), 6.92 (d, J = 8.0 Hz, 2H), 4.35 – 3.69 (m, 2H), 2.30 (s, 3H), 2.21 (s, 3H), 1.40 – 1.27 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 152.0, 147.6, 146.9, 144.9, 144.6, 140.9, 137.2, 136.0, 135.4, 132.9, 132.2, 131.2, 130.8, 129.7, 129.5, 129.2, 128.2, 128.1, 127.9, 125.5, 125.3, 124.5, 122.8, 47.3, 46.7, 21.7, 21.6, 21.4, 21.2, 20.6, 20.5.
HRMS (ESI) *m/z* calcd. for C₃₅H₃₆Cl₂NO₆S₂ [M + H]⁺ 700.1361, found 700.1354.

HPLC condition: Chiralcel IE, *n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min. λ = 254 nm, t_R (major) = 65.66 min, t_R (minor) = 74.5 min, 35% ee.

(E)-6-(1-Chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1')

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1'** (17.5 mg, 18% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 7.87 (s, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.60 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 4.25 – 3.89 (m, 2H), 2.32 (s, 3H), 1.63 – 1.09 (m,

12H).

¹³C NMR (126 MHz, CDCl₃): δ 153.6, 150.8, 148.1, 144.7, 137.6, 134.7, 131.6, 130.9, 130.0, 129.7, 129.6, 129.4, 127.9, 127.6, 125.7, 122.9, 118.4, 47.1, 46.3, 21.7, 21.6, 20.6.

HRMS (ESI) *m/z* calcd. for C₂₆H₂₈ClNNaO₄S [M + Na]⁺ 508.1320, found 508.1322.

(E)-7-(1-Chloro-2-tosylvinyl)naphthalen-2-yl diisopropylcarbamate (O1'')

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5/1) to afford **O1''** (21.4 mg, 22% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 7.85 – 7.79 (m, 2H), 7.76 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.39 (dd, J = 8.8, 2.3 Hz, 1H), 7.32 (dd, J = 8.5, 1.8 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 4.30 – 3.86 (m, 2H), 2.32 (s, 3H), 1.49 – 1.18 (m, 12H).

¹³C NMR (126 MHz, CDCl₃): δ 153.7, 150.0, 147.9, 144.7, 137.6, 132.7, 132.1, 131.8, 131.6, 129.6, 129.0(3), 128.9(7), 127.9, 127.8, 124.7, 124.0, 119.3, 47.1, 46.4, 21.7, 21.6, 20.6.

HRMS (ESI) m/z calcd. for C₂₆H₂₈ClNNaO₄S [M + Na]⁺ 508.1320, found 508.1322.

(E)-1-(1-Chloro-2-tosylvinyl)naphthalene (UP1)

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **UP1** (35.1 mg, 51% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 6.0, 3.5 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.52 – 7.39 (m, 4H), 7.33 (t, J = 6.9, 1H), 7.15 (d, J = 8.3 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 147.0, 144.3, 136.4, 134.8, 133.3, 131.3, 131.0, 129.2, 129.1, 128.4, 127.8(8), 127.8(5), 126.8, 126.3, 124.9, 124.6, 21.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₅ClNaO₂S [M + Na]⁺ 365.0373, found 365.0372.

(E)-2-(1-Chloro-2-tosylvinyl)naphthalene (UP1')

The product mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 8/1) to afford **UP1'** (33.0 mg, 48% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.94 – 7.73 (m, 4H), 7.62 – 7.50 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 8.5, 1.8 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.03 (s, 1H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): *δ* 148.1, 144.7, 137.6, 134.1, 132.2, 131.5(9), 131.5(5), 129.6, 129.6, 128.9, 128.0, 127.9(4), 127.8(9), 127.8(7), 127.0, 125.2, 21.7.

HRMS (ESI) m/z calcd. for C₁₉H₁₅ClNaO₂S [M + Na]⁺ 365.0373, found 365.0372.

Electrochemical analysis results of radical precursors

Cyclic voltammetry (CV) was performed using a CHI 650E potentiostat with a threeelectrode cell configuration. The setup consisted of a glassy carbon working electrode, an Ag/AgCl reference electrode, and a platinum counter electrode. The test solution was prepared by dissolving the radical precursor sample (2.0 mg) in 4.0 mL of a 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) solution in CH₃CN, which served as the supporting electrolyte. The measurements were conducted at a scan rate of 0.1 V s⁻¹. Ferrocene (E1/2 = +0.40 V vs. SCE)¹⁹ was added at the end of the measurements as an internal standard, except for TsI, to calibrate the potential scale. All potential values are reported relative to the saturated calomel electrode (SCE).

Figure S7. Cyclic voltammetry and reduction potential values of radical precursors. Applicable precursors generally have reduction potentials higher than -1.6 V, while inapplicable precursors exhibit reduction potentials well below -2.0 V. Cyclic voltammetry measurements were performed by dissolving each sample (2.0 mg) in a 0.10 M solution of tetrabutylammonium hexafluorophosphate (TBAPF₆) in CH₃CN (4.0 mL) and analyzing the solution at a scan rate of 0.1 V s⁻¹. All data, except for TsI,

were calibrated using ferrocene as an internal standard, with a redox potential of +0.40 V vs SCE (saturated calomel electrode).

Computational study

Computational Details

All of the calculations were performed using the Gaussian 16 program.²⁰ Conformational searches on the transition states and intermediates were extensively performed using Grimme's programs xTB 6.3 and CREST 2.10.2.²¹ Structures were optimized at the (U)B3LYP level of density functional theory²² with Grimme's D3(BJ) dispersion correction²³ in gas phase. For optimizations, Ahlrichs's Def2TZVP basis set was used for Cu,²⁴ while Pople's 6-31G(d) basis set was applied for all other atoms.²⁵ Frequency calculations have been performed to verify the optimized structures as local minima or transition states and to obtain Gibbs free energy at 298 K. To reduce error caused by the breakdown of the harmonic oscillator approximation, Truhlar's quasiharmonic correction was used to compute molecular entropies by setting all positive frequencies that are less than 100 cm⁻¹ to 100 cm⁻¹.²⁶ Intrinsic reaction coordinate (IRC) calculations were carried out to make sure that every transition state links relevant intermediates.²⁷ The electronic energies were further refined by carrying out singlepoint energy calculations using M. Head-Gordon's long-range corrected hybrid density functional (U) ω B97X-D.²⁸ The Def2TZVP and 6-311+G(d,p) basis set was applied for Cu²⁴ and non-metal atoms,²⁵ respectively. The PCM solvation model with DCM as the solvent was employed to account for the solvation effect.²⁹ The three-dimensional (3D) structures were depicted using CYLview and VMD software.

Computational results

Figure S8. Energy profiles comparing the Cl atom transfer pathways and the reductive elimination pathway. The relative free energies and enthalpies (in parentheses) are provided in kcal/mol. For vinyl ligands occupying the Cu(II) complex on either the top or bottom side, the reductive elimination transition states are significantly less stable than the Cl atom transfer transition state (TS_{CIAT-f}). In addition, the Cl atom transfer involving TsCl proceeds through an energetically unfavorable transition state ($TS_{CIAT-TsCl}$).

Cartesian coordinates of computed species

CAT				6	-0.21102900	-4.27088800	-2.22939800
E =	-3473.56793286	G = -3473.059095		1	-0.16927400	-5.26935000	-2.65477600
8	0.57020000	-2.07917100	1.53292700	6	-1.42669900	-3.60371000	-2.10918800
8	-2.18245500	3.50310600	1.02147700	1	-2.37131100	-4.03331400	-2.41819500
8	-3.79492100	-2.24401300	-1.75205200	6	-5.08852100	0.04857100	-0.66968700
8	1.46065000	-0.19359500	2.46144800	1	-5.27418500	-0.90516100	-1.14121600
7	2.24470200	-1.01956000	0.46530200	6	-6.13749300	0.87621800	-0.30632700
7	-0.30702800	-1.71742700	-1.15316600	1	-7.15734400	0.55217200	-0.49931500
7	-2.67736100	-0.40908500	-0.77960800	6	-5.89916100	2.11510800	0.30000200
7	-0.98506000	1.75311900	0.32092700	1	-6.72050900	2.76544000	0.58458400
6	-1.42962500	-1.10525400	2.63164700	6	-4.59168000	2.50321900	0.52928600
1	-0.91755600	-0.20695300	2.97835000	1	-4.39171500	3.46078700	0.99267000
1	-2.23548800	-1.34215900	3.33494700	6	-0.81572000	3.96291800	1.10257500
1	-1.87826600	-0.90667100	1.65431600	1	-0.65501700	4.37313100	2.10103800
6	-0.47874700	-2.29884200	2.56020100	1	-0.67579800	4.74963000	0.35473900
6	1.38372900	-1.02941400	1.58092600	6	-1.19654500	-3.53551700	2.02382000
6	2.09292700	-1.68914400	-0.77266000	1	-1.65716400	-3.32603900	1.05483700
6	0.87134400	-2.36967800	-1.22710500	1	-1.98304400	-3.83727000	2.72238500
6	-1.44466900	-2.32343200	-1.55643800	1	-0.49577500	-4.36788800	1.90549700
6	-2.79465500	-1.61735700	-1.36983700	29	-0.67529000	0.06878800	-0.47324400
6	-3.73416100	0.40716500	-0.44277500	6	1.12316300	2.90129000	-0.22662700
6	-3.49183100	1.68673900	0.17879500	6	0.79952800	3.16298200	-1.56464700
6	-2.17614300	2.25202100	0.48160700	6	2.46409500	2.78609500	0.13997700
6	0.03123900	2.70590200	0.79969700	6	1.80632200	3.30459000	-2.51703000
1	0.47585400	2.29238300	1.71187800	1	-0.24355000	3.23115600	-1.86162900
6	0.20570200	-2.58608700	3.89625200	6	3.47545400	2.92203200	-0.81269100
1	0.91118000	-3.41735800	3.79313100	1	2.71869100	2.55805200	1.16978900
1	-0.54966100	-2.86789100	4.63741000	6	3.14761600	3.18122700	-2.14246300
1	0.74113400	-1.70687800	4.25846900	1	1.54503600	3.49919500	-3.55346200
6	3.24054000	-1.52924800	-1.50019000	1	4.51134000	2.79629400	-0.51595800
1	3.38469000	-1.89034000	-2.50924200	1	3.93191700	3.27744100	-2.88806900
6	4.16398100	-0.74632100	-0.72768200				
6	5.47058800	-0.29330100	-0.96177300				
1	5.96580500	-0.51177100	-1.90344200	IM1			
6	6.11896400	0.42349300	0.03615000	E =	-3933.81771771	G = -3933.30907	
1	7.13290200	0.77764700	-0.12541900	8	-2.66769800	-2.28376300	-0.38239600
6	5.47969900	0.68813400	1.26238000	8	3.95140800	2.27487000	-1.47908800
1	6.01029600	1.24199700	2.03141700	8	2.92374700	-2.97152500	2.02530000
6	4.17834300	0.26180800	1.51504500	8	-4.59390500	-1.43831900	-1.26213500
1	3.68202600	0.47241100	2.45207100	7	-3.28459400	-0.19890000	0.16930100
6	3.52545400	-0.44191400	0.50016200	7	-0.03769700	-1.20316100	1.19308600
6	0.95161600	-3.65549800	-1.77187800	7	2.54663100	-1.26087400	0.46010100
1	1.91186200	-4.15693400	-1.80806500	7	2.10284400	1.17068900	-0.90632400

6	-2.60646800	-3.18635200	-2.67265000	1	5.86958100	1.01707300	-1.76530600	
1	-3.56148200	-2.77450600	-3.00125400	6	2.87012800	3.17889600	-1.82553800	
1	-2.40264900	-4.10119600	-3.24009000	1	2.82842700	3.24583600	-2.91629500	
1	-1.81575900	-2.45918300	-2.87791700	1	3.10043100	4.15470100	-1.39698200	
6	-2.62787300	-3.52307700	-1.18188600	6	-1.29736400	-4.13633900	-0.74669700	
6	-3.59724800	-1.35025000	-0.57541300	1	-0.47272400	-3.46589400	-1.00604700	
6	-2.12183200	0.00853300	0.94484200	1	-1.14475800	-5.09457100	-1.25316800	
6	-1.33495800	-1.09089200	1.52540800	1	-1.28302600	-4.30671500	0.33422100	
6	0.74316200	-2.11753900	1.80236000	29	0.97390200	-0.28876900	-0.29619100	
6	2.20683000	-2.16388700	1.42842900	17	-0.57729100	-0.04838400	-1.91093700	
6	3.85366500	-1.14571600	-0.01709300	6	1.07442800	3.21677500	0.01566700	
6	4.27146400	0.01320000	-0.74569000	6	1.52279700	2.88161000	1.29825800	
6	3.38985400	1.13114000	-1.02758000	6	0.14812500	4.25380800	-0.13267500	
6	1.60627600	2.51400700	-1.21972700	6	1.05188100	3.57496500	2.41454300	
1	0.80557300	2.42338500	-1.95719400	1	2.23169000	2.06971300	1.42553000	
6	-3.81288700	-4.40336800	-0.78774500	6	-0.30623900	4.96145500	0.97981500	
1	-3.80479200	-4.59412100	0.29101700	1	-0.22669100	4.50174600	-1.12234900	
1	-3.74426000	-5.36573700	-1.30635000	6	0.14022600	4.62061200	2.25833300	
1	-4.75652600	-3.92563900	-1.05807800	1	1.40264600	3.30048700	3.40534800	
6	-1.97803000	1.34019800	1.20383600	1	-1.01745400	5.77185000	0.84844000	
1	-1.19397600	1.78052900	1.80415600	1	-0.22197900	5.16437500	3.12594800	
6	-3.07071700	2.03298800	0.57219600					
6	-3.44378500	3.38275800	0.51507500					
1	-2.84699100	4.13213800	1.02234500					
6	-4.58099300	3.73261800	-0.20274800	IM3.f				
1	-4.88420000	4.77436700	-0.25867500	E =	-5695.16800074	G = -5694.193921		
6	-5.34660400	2.75307000	-0.86007400	8	-4.21103000	-0.51267700	-2.27869100	
1	-6.22941700	3.05167000	-1.41804400	8	-1.06243800	4.70999700	2.93758000	
6	-5.00682300	1.40288800	-0.80878600	8	0.62182800	2.89459300	-3.04845700	
1	-5.59270300	0.64614800	-1.31035500	8	-5.92362700	-1.81865200	-1.53156400	
6	-3.86876900	1.05891500	-0.07754300	7	-3.85988000	-1.85376800	-0.51344600	
6	-1.90051700	-1.94728700	2.48042000	7	-1.34482000	0.49007100	-1.33709400	
1	-2.94952400	-1.83314700	2.72853000	7	-0.53518600	3.05248700	-1.00715700	
6	-1.10913700	-2.91094300	3.09165200	7	-1.50268900	2.92477600	1.67555100	
1	-1.53520700	-3.58002200	3.83334000	6	-6.13260700	1.00115300	-2.54510500	
6	0.24260400	-2.99463500	2.75569300	1	-6.89644300	0.30331400	-2.19964200	
1	0.92336300	-3.70670400	3.20534600	1	-6.59186600	1.70873900	-3.24417100	
6	4.82552100	-2.15679200	0.17350000	1	-5.74242500	1.55521900	-1.68652400	
1	4.54381700	-3.03867800	0.72566000	6	-4.99195400	0.27278300	-3.25519500	
6	6.11695700	-2.02817800	-0.31770400	6	-4.78458300	-1.40436700	-1.47532500	
1	6.82130500	-2.83896900	-0.15150800	6	-2.53578800	-1.39102300	-0.33814700	
6	6.51921500	-0.88571900	-1.01613200	6	-1.76002500	-0.78442300	-1.43484700	
1	7 53149100	-0 78914900	-1.39508600	6	-0.56571100	1.01777100	-2.30222700	
1	7.55147100	0.70714700	1109000000					

6	-0.12574200	4.33808600	-0.66084200	16	5.00728000	-2.71694200	-1.65588800
6	-0.33924000	4.85562200	0.65813200	8	1.04275500	-1.80926700	-0.22981500
6	-0.98682500	4.11076600	1.72204800	8	1.55998300	-2.33771900	1.93358400
6	-1.94370900	2.52733500	3.03597900	8	6.16850400	-2.64765500	-2.55867300
1	-2.94947500	2.11469900	2.95735300	8	4.60579300	-4.01081900	-1.06670300
6	-5.47767800	-0.65856900	-4.36464400	7	0.88129400	-3.95778600	0.45128800
1	-4.63065800	-1.18264900	-4.82069100	6	1.54637300	-0.52931500	-0.14434100
1	-5.97682900	-0.07199500	-5.14341900	6	3.73556600	1.66414300	-2.28564500
1	-6.18293200	-1.39392600	-3.97302800	1	3.99209100	0.98517100	-3.09239900
6	-2.07957800	-1.78202900	0.88590900	6	1.18567300	0.36236600	0.86652500
1	-1.09114900	-1.60007300	1.27289700	1	0.53519600	0.03760100	1.66482200
6	-3.13849500	-2.49945700	1.54778200	6	1.19551500	-2.69950100	0.82467300
6	-3.24221800	-3.12007200	2.80133900	6	2.90702600	1.20465900	-1.24413700
1	-2.40321200	-3.11719800	3.48854500	6	2.42845800	-0.16487700	-1.19086100
6	-4.43735600	-3.74064500	3.14561000	6	1.69073400	1.64878900	0.84727800
1	-4.53312100	-4.22455900	4.11319800	1	1.41123700	2.34217200	1.63042500
6	-5.52532500	-3.74844800	2.25548700	6	2.81654800	-1.10930000	-2.11512800
1	-6.44957000	-4.23843100	2.54735500	6	5.89203100	-0.34316500	-0.58824600
6	-5.44911100	-3.14556400	1.00164800	1	6.43789200	-0.21836400	-1.51693400
1	-6.28337100	-3.14714700	0.31515700	6	5.19214400	-1.52489900	-0.34456600
6	-4.24363600	-2.53029300	0.66059000	6	5.84086600	0.67341300	0.36111600
6	-1.40659000	-1.56836700	-2.54108900	1	6.35153000	1.61203000	0.16651600
1	-1.76136200	-2.59099900	-2.58774500	6	4.47366400	-1.71376800	0.83409400
6	-0.60638000	-1.02950000	-3.53899600	1	3.93480200	-2.63666900	1.00176100
1	-0.31416000	-1.63099300	-4.39436700	6	4.21825900	2.95865800	-2.28050300
6	-0.17439200	0.28951600	-3.41824200	1	4.85354800	3.30063500	-3.09208400
1	0.46219400	0.77573400	-4.14611600	6	2.55036700	2.09633500	-0.19185600
6	0.52138700	5.20523700	-1.57715800	6	4.41713100	-0.67999400	1.76272800
1	0.70154900	4.84420100	-2.57537100	1	3.79839100	-0.80288400	2.64575900
6	0.94365900	6.47449800	-1.21425700	6	3.88116400	3.84162700	-1.23413900
1	1.43375900	7.09355800	-1.96116200	1	4.25184700	4.86211700	-1.24515300
6	0.74891400	6.96261200	0.08137500	6	5.08271100	0.53094100	1.53170400
1	1.08219500	7.95617900	0.36338800	6	3.56635500	-2.06127600	-2.58332600
6	0.10329900	6.15283300	0.99702300	1	3.44782400	-2.59007000	-3.52765800
1	-0.07845400	6.50673100	2.00407200	6	0.45026100	-4.31745100	-0.91970900
6	-1.92750900	3.88322300	3.76074000	1	0.44754700	-3.38594500	-1.48019300
1	-2.91438700	4.35478500	3.78319900	6	1.03264600	-5.04485500	1.44839300
1	-1.50343600	3.84992800	4.76399600	1	0.75669200	-5.95128900	0.90515600
6	-3.95072500	1.26659200	-3.76803300	6	3.05703200	3.41867600	-0.21246500
1	-3.59347800	1.89569800	-2.94756600	1	2.76607500	4.10096600	0.58109300
1	-4.39492100	1.90842500	-4.53523200	6	-0.97824500	-4.87465600	-0.90948300
1	-3.09497400	0.74262300	-4.20446300	1	-1.04162400	-5.82659900	-0.37091000
29	-1.78599900	1.89333900	0.04731800	1	-1.30959100	-5.06252500	-1.93742100
17	-3.91646500	1.33672500	0.58080500	1	-1.66940500	-4.16958200	-0.43998500

6	0.05162100	-4.88883100	2.61459300	6	3.60505700	3.71779700	10.00530900
1	-0.97796800	-4.81735000	2.25118600	6	0.87241400	4.69485600	6.40012200
1	0.28458200	-3.99036400	3.19045000	6	1.18952800	4.33692400	7.74516700
1	0.12411400	-5.75685100	3.27925200	6	2.93111800	3.56731000	5.69058500
6	2.48814400	-5.20434800	1.90355800	1	3.60426000	3.27205100	4.89023000
1	2.59415000	-6.12866700	2.48232300	6	0.32114100	4.74852200	8.87133000
1	2.78932400	-4.36546800	2.53453600	6	0.26647800	1.27920300	7.14140100
1	3.16164900	-5.25274900	1.04215100	1	0.96019200	0.91207000	7.88995100
6	1.44867400	-5.26595400	-1.59201800	6	-0.85731200	1.99794800	7.53539600
1	1.46285800	-6.25263300	-1.11540800	6	0.48830700	1.07381700	5.78694100
1	2.46124200	-4.85548500	-1.56331100	1	1.37634300	0.53525600	5.46843900
1	1.15732800	-5.41610200	-2.63802900	6	-1.77425300	2.47772900	6.60542400
6	4.96367400	1.66505200	2.51777200	1	-2.65463200	3.01846700	6.93703700
1	3.96802100	1.67563100	2.97368900	6	-0.59132600	5.70338400	4.75219300
1	5.12444200	2.63085700	2.02960200	1	-1.49309400	6.25694500	4.50867700
1	5.69905700	1.56995400	3.32726300	6	1.74934000	4.28287400	5.36051700
6	-0.99253300	1.48772700	3.59422100	6	-1.53375600	2.26419400	5.25461100
6	-1.36781600	0.14049700	3.62685000	1	-2.22931400	2.65815400	4.51922000
6	0.29232500	1.84952500	4.02121400	6	0.26970400	5.27834600	3.71577800
6	-0.46350600	-0.82847100	4.06596600	1	0.02551600	5.50827300	2.68307900
1	-2.35736800	-0.14805600	3.28424500	6	-0.39574000	1.57581600	4.82687100
6	1.19360600	0.87991500	4.45916600	6	-0.61338500	4.04791000	9.50945000
1	0.59721500	2.89277300	3.99627800	1	-1.17161800	4.46962700	10.34010300
6	0.81918700	-0.46468400	4.47471900	6	2.32484000	2.74228900	11.89203000
1	-0.75008800	-1.87414800	4.07231100	1	1.73879900	2.37572500	11.05282100
1	2.18950600	1.17324300	4.77917900	6	4.51816500	3.97459500	12.23932700
1	1.52504800	-1.22777300	4.78524800	1	4.18512400	3.66863000	13.23475700
				6	1.41565000	4.58703600	4.01663400
				1	2.08720500	4.26168200	3.22622000
				6	1.44297400	3.71234600	12.67963700
01				1	1.94930800	4.09915900	13.57211900
E =	-2221.579142	G = -2221.142405		1	0.53115800	3.20037800	13.00403400
17	0.60231000	6.39764600	9.42191700	1	1.15725400	4.56216300	12.05066100
16	-1.10689600	2.35059900	9.25501400	6	4.55828700	5.50471300	12.22506800
8	2.53102600	3.20924400	9.30165300	1	4.91300100	5.87560100	11.26142900
8	4.49789000	4.32904100	9.45462300	1	5.23347200	5.86273400	13.00975500
8	-2.54069200	2.35578300	9.52806700	1	3.56170000	5.91678100	12.41446800
8	-0.21259600	1.49832600	10.03543400	6	5.89107400	3.34477100	11.99996500
7	3.49847200	3.43210200	11.32169300	1	5.82790000	2.25339400	12.06107200
6	2.33773700	3.62913300	8.01150900	1	6.59785700	3.69208600	12.76122200
6	-0.29969600	5.41717100	6.06160300	1	6.27477000	3.62188900	11.01551700
1	-0.97536700	5.73414400	6.85009100	6	2.73794100	1.52231300	12.71617100
6	3.22776100	3.24669200	6.98607300	1	3.37827400	0.85950600	12.12603100
1	4.12791000	2.70538400	7.24977100	1	1.84162300	0.96417800	13.00402700

1	3.27107900	1.79169300	13.63510500	6	-6.01258600	1.86937800	2.31688100
6	-0.13182100	1.36964700	3.35837600	1	-5.82178600	2.76384400	2.89142200
1	0.93993700	1.27259000	3.15998300	6	-5.23658500	1.55344400	1.19970100
1	-0.51133500	2.20991300	2.76966600	6	-2.71879900	3.05934200	-2.14598200
1	-0.62116400	0.45714700	2.99732500	1	-3.51372400	3.76096200	-1.92119700
				6	-1.78877500	3.31727800	-3.14372400
IM4	-f-b			1	-1.83446600	4.24148200	-3.71232100
E =	-5695.15028274	G = -5694.175537		6	-0.81139200	2.36130500	-3.42067600
8	-2.32936300	3.59097800	0.69618600	1	-0.07836000	2.48398000	-4.20761600
8	-0.80638800	-4.80267700	-0.77986600	6	2.31116500	-1.91696400	-3.03238800
8	0.87317300	0.24206300	-4.02861300	1	2.57377500	-0.97030100	-3.47530500
8	-4.10171900	3.99598100	2.07014600	6	3.13373300	-3.02087800	-3.20322500
7	-4.13891000	2.22537000	0.61853300	1	4.04938300	-2.91129300	-3.77802800
7	-1.68786700	0.94565600	-1.68910800	6	2.81405500	-4.25167700	-2.62404700
7	0.27137900	-0.90812100	-2.09395400	1	3.47008700	-5.10845000	-2.74126500
7	-1.34805500	-2.63283300	-0.64914500	6	1.63743700	-4.36721400	-1.89851500
6	-1.34466700	5.00720600	2.47339000	1	1.36136400	-5.31133100	-1.44512800
1	-2.25563400	5.10587800	3.06325900	6	-1.99365500	-4.77276500	0.05425500
1	-0.71928500	5.89328000	2.63064400	1	-1.68091800	-4.99552700	1.07871400
1	-0.77525300	4.13797400	2.81071400	1	-2.68075700	-5.53604500	-0.31156200
6	-1.65723600	4.88814700	0.98277300	6	-0.36907200	4.79645300	0.16769800
6	-3.54134900	3.34730500	1.20929600	1	0.29885500	4.03889300	0.57899800
6	-3.69913200	1.45859500	-0.48762800	1	0.15666700	5.75545100	0.21038600
6	-2.64707100	1.85189900	-1.43316000	1	-0.58080400	4.55991000	-0.87813400
6	-0.79614700	1.19214600	-2.66436500	29	-0.73225400	-0.67434500	-0.40793200
6	0.22326100	0.12896200	-2.98322900	17	-1.90272000	-0.33559100	1.47334200
6	1.10841200	-2.00212800	-2.29469300	16	2.06653900	2.02857400	1.99900700
6	0.77157900	-3.27298700	-1.73757500	8	3.17507400	0.24513400	-0.93310000
6	-0.48733100	-3.51136900	-1.03998300	8	5.34270700	0.62308400	-0.30040400
6	-2.51791900	-3.32291000	-0.10058700	8	1.29709800	2.95556700	2.84897700
1	-2.75950300	-2.87861100	0.86819900	8	3.15578900	2.55513500	1.15408300
6	-2.54155700	6.02519800	0.46782900	7	4.29535200	2.01688900	-1.79615200
1	-2.74507800	5.90019300	-0.60168500	6	3.08498000	-0.88907800	-0.17494000
1	-2.01766200	6.97702500	0.60340400	6	0.64006700	-2.48563500	2.19162200
1	-3.48686600	6.07061000	1.01072400	1	-0.12788100	-1.72759000	2.26750700
6	-4.49429100	0.35796800	-0.61681000	6	4.08758000	-1.87815200	-0.21470100
1	-4.39606500	-0.38713200	-1.39224200	1	4.96486600	-1.71015900	-0.82156500
6	-5.47145700	0.38429700	0.43456000	6	4.37411700	0.96395600	-0.96111600
6	-6.51909600	-0.47857700	0.78512100	6	1.76341200	-2.25599200	1.36477100
1	-6.70477300	-1.37003800	0.19632600	6	1.92628400	-1.04356900	0.59789300
6	-7.29681200	-0.16849500	1.89374100	6	3.92813300	-3.03646900	0.50218600
1	-8.11246300	-0.82575100	2.18232000	1	4.69041000	-3.80905700	0.45540900
6	-7.04101700	0.98971500	2.64914600	6	0.91562600	-0.02179800	0.53696200
1	-7.66241600	1.21222400	3.51194400	6	1.89758000	0.18006600	4.00937800

1	0.92278600	0.61440900	4.20416200	6	-4.98338400	-3.55990400	-0.54391700
6	2.71398800	0.71063200	3.00870900	6	-4.71402200	-2.66064300	-3.16551400
6	2.35246700	-0.91789900	4.73065800	1	-2.61747400	-2.44495600	-2.70676600
1	1.72188600	-1.34898700	5.50329000	6	-6.10266500	-3.48477800	-1.37228700
6	3.97228500	0.18117500	2.73043400	1	-5.09439000	-3.88963400	0.48654500
1	4.58099700	0.59822600	1.93582500	6	-5.97140200	-3.02946100	-2.68647600
6	0.51100400	-3.66589300	2.89704100	1	-4.60310300	-2.30089200	-4.18453700
1	-0.36152200	-3.81562300	3.52699800	1	-7.07840200	-3.77101500	-0.98932100
6	2.78088700	-3.25682200	1.30778800	1	-6.84402000	-2.96031900	-3.32936900
6	4.40482100	-0.92203600	3.46365400				
1	5.37489600	-1.35745800	3.24120200				
6	1.50418200	-4.66623400	2.82201900	IM4.	-f-t		
1	1.38955800	-5.59140400	3.37951900	E =	-5695.15188186	G = -5694.176134	
6	3.60213800	-1.49409100	4.45809200	8	4.41871800	0.13647100	-2.11232300
6	0.82831000	1.22462800	0.95927600	8	2.25592900	-4.07660500	0.09348700
1	-0.02990800	1.86946100	0.80781900	8	-0.48548200	0.07391300	-3.73393300
6	3.06202700	2.38226100	-2.52845700	8	4.97023800	-1.38915500	-0.51189900
1	2.34570200	1.59478800	-2.31969400	7	4.42401800	0.77353200	0.04227000
6	5.46301500	2.92771800	-1.88607900	7	1.90681400	1.22599100	-1.43447500
1	5.13773300	3.71616400	-2.56889100	7	0.15827200	-0.82257600	-1.67416900
6	2.62287100	-4.45676000	2.04417000	7	1.79160700	-1.90228400	0.34258800
1	3.40353000	-5.21051300	1.98114000	6	3.37031900	-1.91561200	-2.99491300
6	3.30702800	2.39001200	-4.03986700	1	3.70385000	-2.60512500	-2.21878100
1	3.99884900	3.18453800	-4.34194900	1	3.21335900	-2.48007800	-3.91989700
1	2.36023700	2.54362900	-4.56455000	1	2.41724700	-1.47841300	-2.69341100
1	3.71339100	1.42896200	-4.36881500	6	4.39508000	-0.81192700	-3.24750600
6	6.66972900	2.23147000	-2.52430900	6	4.61892600	-0.27721700	-0.86568100
1	6.40459500	1.81523500	-3.50215200	6	3.81229400	2.02261200	-0.21422100
1	7.02971600	1.42405800	-1.88323000	6	2.80571500	2.21139900	-1.26287700
1	7.48227000	2.95274300	-2.66655700	6	0.99040500	1.33644000	-2.40066900
6	5.79728600	3.58716900	-0.54360600	6	0.10572600	0.13932400	-2.65432600
1	6.55702600	4.36171000	-0.69953200	6	-0.16942500	-2.14481500	-1.96144100
1	6.18411300	2.85252300	0.16423100	6	0.55483600	-3.21147900	-1.35018100
1	4.90832700	4.04484200	-0.10317600	6	1.54841100	-2.99444800	-0.30481900
6	2.47737000	3.70009800	-2.00972400	6	2.67087400	-2.21792700	1.48499700
1	3.12174300	4.55590000	-2.24157200	1	3.47258200	-1.48434400	1.54036600
1	2.34219200	3.65122200	-0.92700200	6	5.80721900	-1.35327200	-3.46580400
1	1.50497000	3.87858000	-2.48061000	1	6.13111000	-1.94897500	-2.61071100
6	4.04604300	-2.73355400	5.19252100	1	6.51368700	-0.53010200	-3.61582600
1	5.13007200	-2.87007000	5.13056100	1	5.82105000	-1.98474700	-4.36067900
1	3.57118600	-3.62104100	4.75629300	6	4.12492800	2.88437900	0.79805700
1	3.76451000	-2.69598300	6.25034600	1	3.71594300	3.87914200	0.90929500
6	-3.71880100	-3.19756100	-1.02096000	6	4.92405500	2.17771200	1.76146500
6	-3.59173700	-2.74828000	-2.33894500	6	5.47798200	2.53643900	2.99789600

1	5.34084200	3.54016900	3.38948500	8	-5.31236400	-0.39320300	-0.88272500
6	6.19799000	1.58512800	3.71120500	8	-2.68086200	0.60171300	4.00527300
1	6.62730700	1.84457000	4.67439700	8	-4.05638100	-0.44626900	2.13053700
6	6.38065600	0.28804800	3.19924000	7	-4.48148200	-2.45415900	-0.30828500
1	6.95385100	-0.43565400	3.77151900	6	-2.79350400	0.52843600	-1.22204300
6	5.84055700	-0.09610700	1.97235300	6	-0.48182200	3.25863700	-0.08476300
1	5.98408100	-1.09070700	1.57329200	1	0.05506700	2.76288300	0.71614500
6	5.09631100	0.85693100	1.27505500	6	-3.45904300	1.17180900	-2.28458100
6	2.76926400	3.37563000	-2.03762700	1	-4.21561100	0.63099600	-2.83500800
1	3.51694400	4.14589800	-1.88218000	6	-4.38603100	-1.16657300	-0.69630900
6	1.78752800	3.50270200	-3.01960700	6	-1.47071500	2.54336500	-0.80282300
1	1.73459800	4.40101300	-3.62687900	6	-1.80589500	1.18457300	-0.48260400
6	0.89451700	2.45724500	-3.22856700	6	-3.15132200	2.47632600	-2.58987400
1	0.12887600	2.48133000	-3.99300100	1	-3.66405400	2.97260600	-3.40928600
6	-1.14185100	-2.48695700	-2.92776800	6	-1.10561200	0.47201900	0.55408800
1	-1.70847500	-1.69265300	-3.38519800	6	-2.74123200	3.22471300	2.44104900
6	-1.33501000	-3.80451300	-3.31848700	1	-1.97787900	3.09431500	3.20067100
1	-2.07925100	-4.02406500	-4.07922800	6	-3.44790100	2.11994900	1.96385900
6	-0.59470500	-4.84257000	-2.74428500	6	-3.03231400	4.48121300	1.92121200
1	-0.75074900	-5.87185400	-3.05119400	1	-2.48236300	5.34829600	2.27670600
6	0.32940600	-4.54015400	-1.75709800	6	-4.44463200	2.24880600	0.99821300
1	0.90476900	-5.32674200	-1.28423100	1	-4.97253800	1.37525800	0.63251500
6	3.21328800	-3.60557300	1.08389200	6	-0.19500300	4.56706400	-0.40925400
1	4.18782600	-3.53511700	0.59654300	1	0.56948900	5.10098700	0.14751700
1	3.23023300	-4.32963800	1.89838900	6	-2.17027100	3.19828600	-1.86157900
6	3.95455200	0.08243400	-4.40532200	6	-4.71609300	3.51682700	0.48950400
1	4.63645400	0.93134100	-4.51558200	1	-5.47827600	3.62709000	-0.27671800
1	2.94424200	0.46579300	-4.23835600	6	-0.88313800	5.21948900	-1.45730500
1	3.95742500	-0.49165000	-5.33709200	1	-0.64479700	6.25085700	-1.70186100
29	0.74266500	-0.18730200	0.07984200	6	-4.01231400	4.64405800	0.93146500
17	1.51967700	0.91359100	1.83141900	6	-1.44994800	0.09120600	1.77112300
6	1.88424500	-2.20908600	2.78134800	1	-0.82002400	-0.45514600	2.46393500
6	0.57717800	-2.70488000	2.83918500	6	-3.30726200	-3.32712200	-0.07992800
6	2.46765900	-1.68844400	3.93941900	1	-2.45943500	-2.81409500	-0.52713700
6	-0.14399600	-2.66329400	4.03315700	6	-5.82804500	-2.97721900	0.03936900
1	0.10233000	-3.09166400	1.94263100	1	-5.63595300	-3.98058700	0.42502400
6	1.75246700	-1.65505400	5.13564700	6	-1.85206800	4.54533900	-2.16844200
1	3.47023300	-1.27113100	3.89015000	1	-2.38853800	5.03571900	-2.97688900
6	0.44189900	-2.13455100	5.18437100	6	-3.46922800	-4.66916900	-0.80205600
1	-1.16721300	-3.02715700	4.05785500	1	-3.69110600	-4.51787200	-1.86187900
1	2.20952100	-1.23009100	6.02482300	1	-4.26133800	-5.28515400	-0.36329700
1	-0.12504500	-2.08393400	6.10905600	1	-2.53330600	-5.22942100	-0.73099300
16	-3.01746700	0.50146100	2.57584300	6	-6.70640600	-3.11389100	-1.20909800
8	-3.05622200	-0.77906500	-0.89375100	1	-7.66099400	-3.58272100	-0.94491500

1	-6.21573500	-3.73553200	-1.96560900	1	-5.46984700	0.07929700	-2.15781500
1	-6.90986000	-2.13069800	-1.63940600	6	-2.68201200	-2.16079600	-0.60675100
6	-6.51455200	-2.19025600	1.16076500	6	-3.21279600	0.78782400	1.57364200
1	-7.41683700	-2.72986000	1.47157800	1	-4.29059100	0.67170800	1.50952500
1	-6.80030400	-1.19338100	0.82300800	6	-5.03306400	-1.75130100	-1.08369900
1	-5.85176200	-2.07838600	2.02097600	1	-6.07311300	-2.05861500	-1.02605900
6	-3.02675200	-3.51493600	1.41488600	6	-2.46563500	-0.12327800	2.32974200
1	-2.90187700	-2.54852500	1.90515600	6	-0.29250600	1.99474900	-1.75156600
1	-2.11620100	-4.11134900	1.54594600	1	0.04789700	2.58586800	-2.60020000
1	-3.84661900	-4.04478700	1.91382300	6	3.24725900	0.90640600	-0.01003000
6	-4.27250700	6.00252200	0.33174200	1	2.18765000	1.08478600	-0.15292100
1	-4.24384500	6.78953600	1.09311800	6	4.80734500	-1.10308100	0.10918600
1	-5.24693100	6.04159100	-0.16482100	1	5.43033700	-0.21937300	0.26701300
1	-3.50566100	6.23930300	-0.41591300	6	-4.04374800	-2.54771100	-0.54384500
				1	-4.29527200	-3.48737500	-0.05878500
				6	3.98050000	1.62969400	-1.14240600
				1	5.06985900	1.54122200	-1.05813600
viny	l-rdc			1	3.72210400	2.69281800	-1.11216400
E =	-1761.30851372	G = -1760.875203		1	3.67500000	1.22799800	-2.11400000
16	-0.38622900	3.01806400	-0.23533100	6	5.32410000	-1.81450700	-1.14621400
8	1.24908000	-0.74352500	-0.55330700	1	4.73616800	-2.71072200	-1.35351400
8	2.51125000	-2.64816700	-0.37418800	1	6.37008400	-2.10700400	-1.00174800
8	-1.27104200	4.15832000	-0.52462500	1	5.27070200	-1.14965000	-2.01457900
8	0.99328600	3.25500300	0.23543900	6	4.90748300	-1.97254300	1.36762100
7	3.44138900	-0.56176400	-0.08299700	1	4.56690600	-1.41738400	2.24795700
6	0.01506700	-1.32969500	-0.62374000	1	5.94940100	-2.26910200	1.53180700
6	-3.37094300	-0.13959400	-1.79758100	1	4.30001700	-2.87358900	1.26259500
1	-3.10854900	0.79533500	-2.28257000	6	3.61763100	1.45235900	1.37212700
6	-0.32761500	-2.55877700	-0.04727600	1	3.09582800	0.89686600	2.15937700
1	0.44788400	-3.17080900	0.38938800	1	3.31126000	2.50043800	1.43255900
6	2.43347800	-1.43211900	-0.32893000	1	4.69378700	1.39494700	1.57155100
6	-2.34644600	-0.92635000	-1.23387300	6	-3.13720400	-1.26482500	3.04920600
6	-0.96180900	-0.48714300	-1.22481100	1	-2.55586900	-2.18673500	2.94061800
6	-1.65049300	-2.96218300	-0.04095700	1	-4.13929300	-1.44743500	2.65067800
1	-1.91870000	-3.91054500	0.41588400	1	-3.23250700	-1.05977800	4.12315800
6	-0.58119400	0.72896600	-1.73733000				
6	-0.43328000	1.04751000	1.68624300				
1	0.64464000	1.15315900	1.70835000				
6	-1.20019100	1.90875500	0.90183300	TSci	AT-f		
6	-1.07363300	0.03691800	2.39540300	E =	-5695.15556948	G = -5694.177021	
1	-0.48317000	-0.66102800	2.98283700	8	-4.22358300	-1.72200600	-1.38308700
6	-2.58897000	1.80291500	0.85376800	8	-3.09440500	4.20555200	-0.59711800
1	-3.16132300	2.48593000	0.23587800	8	-0.12879400	0.29072200	-4.40048100

8 -5.12170000

-0.57680800

0.37325100

-1.72258900

6 -4.69164900

-0.54068600

7	-3.41268300	-2.08023200	0.68041700	1	1.68789600	4.45478200	-4.24750300
7	-1.39028200	-1.39887400	-1.53545100	6	0.14087600	5.19116000	-2.93460900
7	-0.78692300	1.10568200	-2.31029500	1	0.37601500	6.23924200	-3.08957300
7	-2.46471200	2.08887000	-0.23147000	6	-0.89141000	4.82299900	-2.08645400
6	-4.62535000	0.45944300	-2.46299500	1	-1.46989400	5.57860500	-1.56807600
1	-5.00776500	0.96577500	-1.57568200	6	-4.12664100	3.66809000	0.26765000
1	-5.07409400	0.92395500	-3.34750800	1	-5.03187900	3.54706800	-0.33537000
1	-3.54278300	0.60132100	-2.51423600	1	-4.30546400	4.38600900	1.06803900
6	-4.98053700	-1.02661100	-2.44860600	6	-4.47327000	-1.72120500	-3.71087100
6	-4.33091800	-1.37327000	-0.10356900	1	-4.65716300	-2.79858400	-3.65597400
6	-2.27438400	-2.79780800	0.24199000	1	-3.40061700	-1.55798300	-3.84138300
6	-1.66798600	-2.64034300	-1.08426700	1	-4.99455200	-1.32193900	-4.58635300
6	-0.87663100	-1.24577500	-2.76714800	29	-1.36539200	0.45693400	-0.51960200
6	-0.55324100	0.15179900	-3.24721500	17	-0.71011900	-0.15477700	1.53051400
6	-0.47627400	2.44250400	-2.53183000	6	-3.01977300	2.33381300	2.16816400
6	-1.19550000	3.46823100	-1.85125900	6	-2.20837100	3.37991800	2.61977100
6	-2.25188000	3.18414900	-0.88725500	6	-3.30515700	1.27164900	3.02509400
6	-3.55540500	2.31957300	0.75440900	6	-1.68010300	3.35409700	3.90874600
1	-4.28729000	1.51722100	0.65662700	1	-1.98474900	4.21314100	1.95944300
6	-6.47516800	-1.27393000	-2.24546900	6	-2.77717300	1.23948100	4.31516000
1	-6.83117700	-0.80101400	-1.32928900	1	-3.91814800	0.45362300	2.66892900
1	-6.67935100	-2.34854200	-2.19429900	6	-1.96016500	2.27891700	4.75819600
1	-7.02881500	-0.86107900	-3.09551100	1	-1.04993400	4.17015400	4.25145100
6	-1.78493900	-3.53102700	1.28319300	1	-2.99301100	0.39153800	4.95871500
1	-0.87808800	-4.11662800	1.24337700	1	-1.54073200	2.25602700	5.76005400
6	-2.59902300	-3.27291500	2.43931600	16	4.04512900	-0.73544700	2.93517200
6	-2.55100700	-3.72276400	3.76583600	8	1.93431100	1.20840100	-0.33912300
1	-1.76657900	-4.40209500	4.08633000	8	3.92695300	1.89643500	-1.22226100
6	-3.52405300	-3.28550900	4.65676400	8	4.22349700	-1.63964000	4.08390600
1	-3.49860700	-3.61960100	5.68972900	8	4.51930500	0.65989900	3.00954600
6	-4.55102700	-2.42254800	4.23351400	7	2.80960900	3.18452300	0.32162600
1	-5.31057400	-2.10757500	4.94305500	6	2.06796200	-0.05015000	-0.86939200
6	-4.62017000	-1.95820600	2.92098300	6	1.73335900	-3.58473700	0.36164600
1	-5.41250900	-1.29939700	2.59318600	1	1.50816400	-3.41469600	1.40927400
6	-3.61614200	-2.36942600	2.04339200	6	2.32979600	-0.26589100	-2.22754700
6	-1.37972800	-3.77194200	-1.85169000	1	2.45791000	0.58662500	-2.87810000
1	-1.60676900	-4.75214900	-1.44992900	6	2.98490500	2.11091500	-0.47360600
6	-0.84667200	-3.61300600	-3.12779700	6	1.95336200	-2.46759800	-0.47258700
1	-0.62788300	-4.48117000	-3.74117300	6	1.93177700	-1.11677500	0.03767600
6	-0.61216800	-2.32835000	-3.60449700	6	2.43039900	-1.55484700	-2.70632300
1	-0.20965600	-2.12395800	-4.58841600	1	2.62816300	-1.72246700	-3.76064900
6	0.55789200	2.84861000	-3.40452500	6	1.75984400	-0.84700700	1.39187500
1	1.09152700	2.08909600	-3.95487900	6	4.82567300	-2.88183100	1.40817500
6	0.86970300	4.18859400	-3.58413500	1	4.56864600	-3.48352200	2.27296200

6	4.73901400	-1.49227200	1.47907300	TS _{RE-}	f-b		
6	5.22567000	-3.46858800	0.21022600	E =	-5695.12996997	G = -5694.155452	
1	5.27501500	-4.55098300	0.13467500	8	-2.34872800	3.57305600	0.72077200
6	5.06229900	-0.68578200	0.38837100	8	-0.00518500	-4.60490600	-1.34445400
1	4.98451700	0.39142300	0.45603800	8	0.77962600	0.75153600	-4.51629400
6	1.81594800	-4.86854700	-0.14110700	8	-4.18133000	3.84728500	2.04880600
1	1.64916700	-5.71832800	0.51477300	7	-4.08014300	2.12144800	0.54467400
6	2.24878600	-2.67665400	-1.85227900	7	-1.65231600	1.15356100	-1.96243400
6	5.44358600	-1.29003500	-0.80412600	7	0.43115300	-0.49911800	-2.56771300
1	5.64642400	-0.66336500	-1.66713300	7	-0.87920200	-2.55529400	-1.07353100
6	2.13257600	-5.08225300	-1.50040300	6	-1.46470300	4.97578500	2.55943000
1	2.20631200	-6.09513600	-1.88593600	1	-2.39034500	4.97839300	3.13501600
6	5.51848000	-2.68580300	-0.91378500	1	-0.91787800	5.90335400	2.76249700
6	2.25625500	-0.68554800	2.58461100	1	-0.83047800	4.14602800	2.88270700
1	1.68739600	-0.45610800	3.48167600	6	-1.74512400	4.89222800	1.05996100
6	1.66204600	3.33097000	1.25049300	6	-3.56453500	3.25867200	1.18389600
1	0.96189600	2.53592900	1.00157000	6	-3.59310000	1.44740700	-0.60294600
6	3.89398500	4.19398600	0.37365900	6	-2.63542100	1.98787700	-1.57490400
1	3.57118900	4.89979500	1.14177000	6	-0.84039800	1.50608800	-2.97687500
6	2.34017200	-4.00545900	-2.33666500	6	0.22812400	0.52913200	-3.42693500
1	2.57573200	-4.15922300	-3.38658800	6	1.38088300	-1.47704500	-2.83194000
6	0.95631100	4.67120900	1.02620900	6	1.21386000	-2.81916400	-2.37030600
1	0.65226000	4.78298200	-0.01679800	6	0.06577300	-3.26764600	-1.59012700
1	1.58848900	5.52373900	1.29809900	6	-1.81982700	-3.43959500	-0.38067100
1	0.06430700	4.71464000	1.65636400	1	-1.93937600	-3.08735500	0.64736800
6	4.00576500	4.95585500	-0.95125600	6	-2.67208200	6.00526900	0.56927800
1	4.74468300	5.76011000	-0.86028000	1	-2.85986000	5.90321600	-0.50507000
1	3.04186100	5.39671100	-1.22660100	1	-2.18880300	6.97318400	0.73741000
1	4.32029600	4.28161400	-1.75103300	1	-3.62328900	5.99639100	1.10359200
6	5.22852500	3.59739600	0.83892800	6	-4.25097100	0.25801000	-0.73431600
1	5.92907200	4.40803900	1.06996400	1	-4.09518700	-0.45082100	-1.53461500
1	5.66816300	2.97147400	0.06026400	6	-5.18294000	0.13485700	0.35071400
1	5.09075600	2.98848500	1.73781800	6	-6.09444500	-0.86597800	0.71524400
6	2.09453800	3.14059200	2.70760300	1	-6.18236500	-1.76369900	0.11343800
1	2.65734600	2.21312600	2.83216200	6	-6.86163300	-0.68200900	1.85875700
1	1.20466700	3.10073600	3.34484500	1	-7.57323600	-1.44590400	2.15955400
1	2.72415600	3.96860200	3.05532400	6	-6.73001000	0.48412800	2.63430000
6	5.90027700	-3.32633700	-2.22375200	1	-7.34337600	0.60616200	3.52249100
1	6.98653300	-3.29839300	-2.37852900	6	-5.83699700	1.49708500	2.28986100
1	5.43716100	-2.79762700	-3.06380400	1	-5.74313800	2.39782500	2.87910400
1	5.58185700	-4.37217800	-2.26203900	6	-5.07063400	1.30735000	1.13819500
				6	-2.80769100	3.24074800	-2.17896900
				1	-3.61528300	3.88529300	-1.85156700
				6	-1.96019800	3.61335800	-3.21565700
1	-2.08423100	4.57497500	-3.70527700	6	0.15423700	-3.68341100	3.28071000
----	-------------	-------------	-------------	---	-------------	-------------	-------------
6	-0.96945200	2.72657700	-3.63685700	1	-0.61247000	-3.80058100	4.04104200
1	-0.30316300	2.94036900	-4.46304800	6	2.18722800	-3.34631500	1.38655600
6	2.57846500	-1.18371200	-3.52676900	6	4.05800200	-1.16886600	3.63157300
1	2.71178500	-0.18333000	-3.90580800	1	4.94458800	-1.71263500	3.31792100
6	3.54718900	-2.14741300	-3.75945500	6	1.01045400	-4.76319900	2.97515900
1	4.45185800	-1.86978500	-4.29434700	1	0.88886500	-5.71659700	3.48103300
6	3.36735300	-3.46373700	-3.31855200	6	3.27955800	-1.66270800	4.68509000
1	4.12085900	-4.22230900	-3.50660200	6	0.59193900	1.33722900	1.43005900
6	2.20709200	-3.78341900	-2.63399500	1	-0.24031000	2.02693700	1.35577800
1	2.04917400	-4.79150100	-2.27181500	6	2.91992400	2.35184100	-2.28811900
6	-1.08343200	-4.80473100	-0.40227600	1	2.19313300	1.54623600	-2.23496800
1	-0.63873200	-5.05311500	0.56571500	6	5.32965300	2.69366500	-1.53349400
1	-1.69881000	-5.63102300	-0.76127400	1	5.09059900	3.53002500	-2.19366000
6	-0.44462800	4.88067500	0.26212900	6	2.01757400	-4.58666700	2.05068700
1	0.23415700	4.10912200	0.62938700	1	2.70841000	-5.39371600	1.82179200
1	0.06052400	5.84532200	0.37111700	6	3.29459800	2.55343800	-3.76054800
1	-0.63771400	4.70206000	-0.79879800	1	3.88947400	3.45988400	-3.91737900
29	-0.73515500	-0.48177300	-0.91270600	1	2.38120900	2.62884400	-4.35436200
17	-1.63272200	-0.38942500	1.17786000	1	3.86191600	1.69896000	-4.14112000
16	1.94984700	2.04242200	2.37874200	6	6.47998300	1.90604600	-2.16987700
8	2.73108100	0.31239500	-0.55752800	1	6.20088000	1.54490600	-3.16521400
8	4.95173500	0.39168600	0.00424900	1	6.74549700	1.04964500	-1.54640600
8	1.27786800	3.00345100	3.27352800	1	7.36034900	2.55036300	-2.27268400
8	3.02857100	2.50941500	1.49274800	6	5.69904200	3.28318000	-0.16805700
7	4.08036500	1.89163700	-1.49390300	1	6.52976900	3.98688300	-0.29477200
6	2.56185500	-0.87887800	0.08715900	1	6.00570800	2.50083100	0.52762600
6	0.28794300	-2.46994700	2.63539700	1	4.84953700	3.81182600	0.27045600
1	-0.35995800	-1.65083900	2.90644600	6	2.29329500	3.60455000	-1.67264000
6	3.46145000	-1.94141200	-0.13344400	1	2.97673500	4.46059200	-1.72220000
1	4.28038200	-1.79659700	-0.82124500	1	2.04684200	3.42623700	-0.62482000
6	4.02485700	0.85069800	-0.64552400	1	1.38057600	3.86825800	-2.21718900
6	1.27963000	-2.27241900	1.64459000	6	3.62170600	-2.97149000	5.34944300
6	1.44500100	-1.02560800	0.93249500	1	4.69078700	-3.19314700	5.27373100
6	3.26116500	-3.14825500	0.48021300	1	3.07668400	-3.79159700	4.86505600
1	3.93252700	-3.97629800	0.27335300	1	3.34402400	-2.97053400	6.40859000
6	0.52296000	0.07321800	1.03595500	6	-3.18019600	-3.45795000	-1.05262100
6	1.76343500	0.21769900	4.40990600	6	-3.36481100	-2.96614300	-2.34851400
1	0.87638800	0.76983200	4.70193900	6	-4.27199000	-4.00816100	-0.37177500
6	2.54351200	0.66346300	3.34069800	6	-4.62279500	-3.02330800	-2.95236200
6	2.14283200	-0.94057200	5.07873100	1	-2.52286600	-2.52696000	-2.87315000
1	1.53916900	-1.30375500	5.90599900	6	-5.52538000	-4.08018500	-0.97909600
6	3.70162300	-0.00626200	2.95083200	1	-4.14100800	-4.37670600	0.64329800
1	4.29008200	0.34831500	2.11201900	6	-5.70543300	-3.58267800	-2.27225400

1	-4.75447600	-2.63165700	-3.95711700	1	-5.60616900	-0.40320000	2.05413800
1	-6.36326300	-4.51346900	-0.43965000	6	-4.40337200	-1.93147900	1.11269100
1	-6.68296500	-3.62877700	-2.74346100	6	-2.03260000	-2.81165500	-2.92759600
				1	-2.57611900	-3.74921600	-2.96204200
				6	-1.16892000	-2.43224100	-3.95159300
TSRI	E-f-t			1	-1.00482600	-3.09078500	-4.79914800
E =	-5695.13140468	G = -5694.156434		6	-0.53579800	-1.19483800	-3.88402300
8	-4.32115700	-0.12500100	-1.91427900	1	0.12516700	-0.82727100	-4.65796200
8	-2.61540200	3.98745500	1.31796500	6	0.36723800	3.82049200	-2.45917300
8	0.45274300	1.37515000	-3.72660200	1	0.95547600	3.29456800	-3.19348700
8	-4.93171700	0.70991000	0.11783400	6	0.27229600	5.20373300	-2.49855900
7	-3.92453700	-1.34786100	-0.07338700	1	0.81451800	5.74525700	-3.26982600
7	-1.56888500	-0.76881900	-1.76520400	6	-0.49404300	5.90048100	-1.56079000
7	-0.37182200	1.65729700	-1.54107900	1	-0.56640800	6.98316000	-1.58865000
7	-1.91116200	1.90428100	0.89911800	6	-1.15412500	5.17952900	-0.58014100
6	-3.82252700	2.27861300	-2.18720300	1	-1.74985500	5.69568800	0.16226700
1	-4.18235700	2.61908200	-1.21591200	6	-3.38188800	3.15996800	2.22644700
1	-3.90580400	3.10515200	-2.90065600	1	-4.41516200	3.13531400	1.86848100
1	-2.76990100	2.00600900	-2.09683800	1	-3.33153900	3.61261400	3.21751100
6	-4.63101300	1.09044800	-2.70185600	6	-4.17418900	0.68747500	-4.10288300
6	-4.42948200	-0.14333000	-0.59181700	1	-4.69019800	-0.22085000	-4.42949500
6	-3.11292800	-2.29508600	-0.73869100	1	-3.09666200	0.50184800	-4.12028600
6	-2.22016400	-1.94262900	-1.84756900	1	-4.39953700	1.49138000	-4.81049000
6	-0.75764400	-0.39302600	-2.76223300	29	-0.83470500	0.43756200	0.01698600
6	-0.13130300	0.98831200	-2.70425200	17	-1.03644300	-1.26870200	1.46875900
6	-0.33096500	3.04606200	-1.49789100	6	-1.82045400	1.41523200	3.30756300
6	-1.09131000	3.77140900	-0.51855700	6	-0.58421800	2.04447900	3.48744000
6	-1.86440600	3.14730000	0.55258700	6	-2.21844100	0.42488500	4.20974100
6	-2.70680800	1.77280900	2.13195200	6	0.24854000	1.68111800	4.54630200
1	-3.45366000	0.99202700	1.98751300	1	-0.25526400	2.79600600	2.77642000
6	-6.13875200	1.33227600	-2.65143000	6	-1.38894100	0.06023500	5.27030300
1	-6.45972200	1.56803700	-1.63516400	1	-3.16229600	-0.09170300	4.05420200
1	-6.68143900	0.44788900	-3.00170400	6	-0.15028900	0.68239800	5.43829200
1	-6.39455800	2.17331800	-3.30481800	1	1.21529800	2.16241000	4.66287600
6	-3.11831600	-3.46085900	-0.02495000	1	-1.70029300	-0.72560700	5.95264100
1	-2.50622600	-4.32159600	-0.25483200	1	0.50729400	0.38375500	6.24911900
6	-3.91474000	-3.26295400	1.15553200	16	3.35066100	-0.79674900	2.37461000
6	-4.22603000	-4.07760200	2.25335400	8	2.50409500	0.96267400	-0.66346500
1	-3.84848800	-5.09478900	2.30576500	8	4.72503000	0.92569000	-1.22194100
6	-5.02093400	-3.55942800	3.26896600	8	3.29725900	-1.18556400	3.79397100
1	-5.26594100	-4.17530900	4.12924900	8	4.20321500	0.32668800	1.95181500
6	-5.51675200	-2.24504800	3.19551000	7	3.83891400	2.71305300	-0.08754900
1	-6.14216000	-1.86535300	3.99830600	6	2.29337800	-0.27018200	-1.21565600
6	-5.22307500	-1.41235200	2.11654900	6	0.61238600	-3.51654600	-0.29477300

1	0.22495800	-3.29687600	0.68940100	6	2.75589500	3.262054	400 2.087700	00
6	2.78130800	-0.59299300	-2.49773000	1	2.82207900	2.224291	2.414449	00
1	3.32283600	0.15722000	-3.05386700	1	1.86998900	3.729575	500 2.532084	00
6	3.79333400	1.51183400	-0.69269700	1	3.63598700	3.793378	300 2.468072	.00
6	1.30513500	-2.50821600	-1.00617900	6	4.63097000	-5.644789	-1.050937	00
6	1.53336000	-1.18992100	-0.47151700	1	4.78821700	-6.552213	-0.458388	00
6	2.55990300	-1.84499100	-3.01397100	1	5.50979400	-5.492237	-1.685078	00
1	2.93361200	-2.09243500	-4.00362700	1	3.77156600	-5.824243	-1.708393	00
6	1.05191800	-0.75877300	0.81177000					
6	3.33471200	-3.47781500	1.80180200					
1	2.76281500	-3.57865800	2.71803100	TSCL	AT-TsCl			
6	3.79113800	-2.22208900	1.39873400	E =	-3041.0346620	6 G = -3040.48	83083	
6	3.63166900	-4.58388400	1.01280600	16	-0.59315900	-1.18062700	-2.18222100	
1	3.27707200	-5.56638700	1.31202500	8	-0.68328000	2.51281400	-0.43214800	
6	4.55073800	-2.05556100	0.24165500	8	0.47369500	3.19479800	1.41137500	
1	4.89109300	-1.07047400	-0.05745800	8	-0.28458000	-2.59934500	-2.44483200	
6	0.43605500	-4.77299300	-0.83789700	8	-0.20375800	-0.15109700	-3.16249600	
1	-0.08925100	-5.53294300	-0.26609400	7	1.53796300	3.00376100	-0.62437200	
6	1.84441700	-2.83333000	-2.28903900	6	-1.64304400	1.94536100	0.36828200	
6	4.83055900	-3.17691600	-0.53558500	6	-2.43760600	-1.35203700	1.99107100	
1	5.40638900	-3.05607500	-1.44875700	1	-1.52428700	-1.90435200	1.79704200	
6	0.94342500	-5.08471700	-2.11725200	6	-2.79551600	2.67561000	0.68061300	
1	0.79166900	-6.07523100	-2.53650100	1	-2.85771200	3.70602200	0.34903800	
6	4.37049600	-4.44868000	-0.17135000	6	0.49399500	2.92740900	0.22688700	
6	1.62662800	-0.46048800	1.96592200	6	-2.54066900	-0.02024000	1.53482800	
1	1.09497900	-0.09430400	2.83654900	6	-1.49872200	0.60230800	0.75610200	
6	2.66968300	3.35166300	0.56081500	6	-3.82216500	2.07420200	1.37939000	
1	1.79875800	2.79215200	0.22643100	1	-4.72200000	2.63560300	1.61480600	
6	5.16201900	3.37758400	0.03630700	6	-0.35913500	-0.10995000	0.35754100	
1	4.95940500	4.27076600	0.63053900	6	-2.96004900	0.20710700	-2.07680900	
6	1.64035500	-4.12910200	-2.82387400	1	-2.40327800	1.02094900	-2.52715700	
1	2.04856500	-4.35358500	-3.80600600	6	-2.33450300	-1.01724400	-1.84545400	
6	2.50316900	4.80138400	0.09615000	6	-4.28858200	0.36289100	-1.69335400	
1	2.54510100	4.87099600	-0.99178900	1	-4.77904800	1.31979800	-1.84596800	
1	3.26422100	5.46323700	0.52385700	6	-3.01539400	-2.08478200	-1.26072900	
1	1.52475300	5.17075900	0.41432800	1	-2.50402000	-3.02659600	-1.09506200	
6	5.68288800	3.83357600	-1.33097600	6	-3.47999900	-1.94001100	2.67879000	
1	6.61153100	4.40161700	-1.20521300	1	-3.38679200	-2.96421100	3.02740200	
1	4.95131000	4.47621300	-1.83172100	6	-3.72575000	0.72424300	1.81540000	
1	5.88711900	2.97043400	-1.96832600	6	-4.34425800	-1.90985100	-0.88741500	
6	6.18648700	2.54230300	0.81155800	1	-4.87814900	-2.72667900	-0.41073400	
1	7.07500500	3.15565500	1.00161900	6	-4.66578700	-1.21757100	2.93669000	
1	6.48409800	1.66019000	0.24318400	1	-5.47961200	-1.69086700	3.47804600	
1	5.77446200	2.20744200	1.76568900	6	-4.99380100	-0.68400700	-1.08429900	

6	0.19797700	-0.80252200	-0.60200100
1	1.19500900	-1.22791400	-0.55686500
6	1.48213400	2.51160300	-2.01883000
1	0.52029500	2.01855500	-2.13043700
6	2.81535600	3.56153500	-0.11394500
1	3.47110600	3.58317200	-0.98821700
6	-4.78148100	0.09111200	2.51835500
1	-5.68450200	0.65949300	2.72475400
6	2.55655600	1.45245400	-2.28557600
1	3.56859100	1.87319000	-2.29451300
1	2.36749700	0.98994900	-3.25844700
1	2.51505000	0.66704800	-1.52793200
6	3.45427400	2.65021300	0.93857000
1	2.83075400	2.59040600	1.83177700
1	4.43961900	3.03645900	1.22154500
1	3.58290500	1.63681700	0.55038700
6	2.65343900	5.00612600	0.37078500
1	2.21758900	5.63124700	-0.41622900
1	3.63433400	5.41754200	0.63308700
1	2.01076000	5.04994900	1.25201500
6	1.54727300	3.67461200	-3.01331700
1	0.73408500	4.38398000	-2.82857900
1	1.45196300	3.29702200	-4.03708200
1	2.49788500	4.21638100	-2.94320700
6	-6.42660200	-0.49862200	-0.65458500
1	-6.64928100	0.55593700	-0.46461600
1	-6.63791300	-1.06159500	0.25940700
1	-7.11997500	-0.84849900	-1.43025100
16	3.37703200	-1.26491800	2.51645100
8	3.18181800	-2.29549000	3.54725500
8	4.43765800	-0.25003800	2.61018200
6	4.07261500	-1.37129000	-0.14059800
1	4.64776300	-0.47366500	0.05544500
6	3.43765200	-2.03615100	0.90540600

6	3.94035400	-1.88038400	-1.43301400
1	4.42722900	-1.36845000	-2.25795400
6	2.67136100	-3.18355700	0.68807500
1	2.17204200	-3.66759200	1.52006700
6	2.54802900	-3.66863000	-0.60921300
1	1.93819500	-4.54743500	-0.79638700
6	3.16671200	-3.01949000	-1.69097600
6	2.94926800	-3.51583500	-3.09575800
1	3.59363100	-2.99502600	-3.80985500
1	1.90516400	-3.35053600	-3.38560000
1	3.14903200	-4.59068900	-3.17278600
17	1.28425400	-0.23316700	2.04740100

TsCl

E =	-1279.7301043	4 $G = -1279.63$	36817
16	1.65354200	0.00020900	-0.50145900
8	2.07167100	-1.27649000	-1.06645500
8	2.07164400	1.27729500	-1.06559600
6	-0.77517200	1.22074500	-0.17532400
1	-0.22465400	2.15146700	-0.25153500
6	-0.10731000	0.00011700	-0.26773900
6	-2.15441300	1.20709200	0.00835300
1	-2.69142300	2.14867500	0.08048800
6	-0.77502600	-1.22058400	-0.17600000
1	-0.22439600	-2.15119900	-0.25267100
6	-2.15431500	-1.20720400	0.00768400
1	-2.69120100	-2.14889100	0.07928800
6	-2.86246100	-0.00014100	0.10127300
6	-4.36047400	-0.00010300	0.27072800
1	-4.70105700	0.88455700	0.81751500
1	-4.70222100	-0.88993900	0.80824800
1	-4.86098400	0.00543400	-0.70628100
17	2.33104500	-0.00055400	1.52299000

NMR spectra

113.29 113.29

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

- 3.67 - 2.43 - 1.29

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S162

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S164

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 $\begin{array}{c} 7.83\\ 7.78\\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

$\begin{array}{c} 7.88\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.778\\ 7.778\\ 7.758\\ 7.7$

 $\begin{array}{c} 7.38\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.75\\$

N30 400 MHz, CDCl₃

S187

 $\begin{array}{c} 7.99\\ 7.798\\ 7.798\\ 7.788\\ 7.788\\ 7.788\\ 7.888\\ 7.788\\ 7.888\\ 7.888\\ 7.788\\ 7.888\\ 7.788\\ 7.888\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.77\\ 7.788\\ 7.75$

 $\begin{array}{c} 7.96\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.65\\ 7.75\\ 7.65\\ 7.75\\$

$\begin{array}{c} 7.88\\ 7.77\\ 7.77\\ 7.77\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.46\\ 7.42\\ 7.42\\ 7.46\\ 7.42\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\$

400 MHz, CDCl₃

$\begin{array}{c} 7.95\\ 7.794\\ 7.798\\ 7.798\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.788\\ 7.758\\ 7.7$

7.20 7.7.87 7.7.87 7.7.87 7.7.87 7.7.33 7.7.23 7.7.73 7.7.

Ph Ts √NⁱPr₂ 0 Ö

O1-1 400 MHz, CDCl₃

-1.37

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

$\begin{array}{c} 7.68\\ 7.753\\ 7.7$

 $\begin{array}{c} 7.91\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\$

9.9.25 9.1144 9.11

$\begin{array}{c} 7.81\\ 7.73\\ 7.77\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.75\\$

S234

Detec	tor A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	10.990	9522509	49.740
2	15.846	9621930	50.260

Detector A Ch2 254nm				
Peak#	Ret. Time	Area	Area%	
1	10.998	231530	3.321	
2	15.831	6739893	96.679	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.947	55743398	49.718
2	18.613	56375876	50.282

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.765	7276367	49.894	
2	18, 179	7307268	50, 106	

Detector A Ch2 254nm				
Peak#	Ret. Time	Area	Area%	
1	19.095	37492144	49.951	
2	24.674	37565899	50.049	

Peak Table

Detector A Ch2 254nm				
Peak#	Ret. Time	Area	Area%	
1	19.142	12346703	97.338	
2	24.803	337634	2.662	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.551	27114267	50.197
2	17.560	26901814	49.803

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.550	537458	3.286
2	17 569	15818664	96 714

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.406	72691974	49.670
2	18.758	73658660	50.330

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.956	2346011	3.977
2	19.533	56637486	96.023

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	13.304	12508667	49.265	
2	21.502	12881893	50.735	

Peak	Tab	le
------	-----	----

PDA Ch			
Peak#	Ret. Time	Area	Area%
1	13.259	813881	3.090
2	21.331	25525860	96.910

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.639	1933405	51.123
2	25.524	1848452	48.877

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.605	636021	4.564	
2	25.331	13299917	95.436	

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	17.187	3270238	53.958
2	38.932	2790450	46.042

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	17.126	1994510	4.238
2	38.432	45067244	95.762

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	21.295	6466330	49.654
2	23.652	6556497	50.346

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	21.392	224123	3.197
2	23,698	6785282	96,803

Detect	or A	Ch2 2	254nm	
Peak#	Ret.	Time	Area	Area%
1	16.	661	19713279	50.663
2	18.	992	19197693	49.337

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	16.663	7212399	95.778
2	19.043	317899	4.222
mV

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	11.268	15950296	49.724
2	15.968	16127090	50.276

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	11.296	105737	4.452
2	16.038	2269461	95.548

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	12.429	1594038	49.358
2	17,125	1635526	50.642

Detector A Ch2 2			254nm	
	Peak#	Ret. Time	Area	Area%
	1	12.292	117928	3.199
	2	16.875	3568019	96.801

mV

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	12.690	27310636	49.309
2	17.567	28076264	50.691

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	12.658	1326123	4.359
2	17.514	29093405	95.641

Peak Table

Į	Detect	or A Ch2	254nm	
[Peak#	Ret. Time	Area	Area%
	1	14.605	5652637	49.617
	2	16.987	5739907	50.383

mV

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	14.635	123642	3.146
2	17.008	3806907	96.854

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.590	3649550	48.589
2	15.237	3861520	51.411

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	11.690	66723	4.232
	2	15, 363	1510002	95, 768

Detector A Ch2 254nm				
Peak#	Ret. Time	Area	Area%	
1	19.380	14089517	49.898	
2	34.157	14147306	50.102	

Peak Table

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	19.604	15749206	96.301
2	35.089	604866	3.699

Detector A Ch2 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.182	8928467	50.459		
2	20.618	8765859	49.541		

Peak Table

Detector A Ch2 254nm					
	Peak#	Ret. 7	Time	Area	Area%
	1	15.2	17	2988097	97.808
	2	20.7	21	66952	2.192

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.077	14358138	50.202
2	31.475	14242371	49.798

Peak Table

PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	22.	790	11301828	97.877
ſ	2	31.	310	245179	2.123

mV

Detector A Ch2 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.830	2137315	50.801		
2	23.381	2069923	49.199		

Peak Table

Detect	or A	Ch2 2	254nm	
Peak#	Ret.	Time	Area	Area%
1	15.	797	129381	2.294
2	23.	351	5509630	97.706

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	30.763	3821149	48.623
2	55.676	4037539	51.377

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	31.031	11586921	97.587		
2	54, 592	286527	2,413		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.641	2719322	50.248		
2	23.935	2692509	49.752		

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	16.669	2044922	3.169			
2	23, 826	62493406	96, 831			

PDA Ch1 254nm					
]	Peak#	Ret.	Time	Area	Area%
Γ	1	22.	533	14376948	48.387
Γ	2	35.	086	15335765	51.613

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.944	57093244	95.882
2	34.271	2451865	4.118

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.292	6668482	51.142
2	41.239	6370620	48.858

Peak	Ta	ble
------	----	-----

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.100	1011838	6.185
2	40.724	15348753	93, 815

Peak Table

Detector A Ch2 254nm					
Peak#	Ret. Time	Area	Area%		
1	25.942	3658980	50.339		
2	33.529	3609673	49.661		

Peak Table

Detector A Ch2 254nm						
Peak#	Ret. Time	e Area	Area%			
1	25.698	1527085	78.041			
2	33, 229	429698	21.959			

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	11.	160	25755165	50.925	
2	18.9	963	24819779	49.075	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.265	319155	4.903
2	19.256	6190246	95.097

PDA Ch	n1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.131	1543793	5.161
2	23.462	28366007	94.839

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.884	843224	49.140
2	32, 259	872743	50, 860

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.819	1451899	96.219
2	32.270	57053	3.781

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.396	13454534	49.931
2	25.433	13491706	50.069

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	19.313	684803	5.021		
2	25.181	12953552	94.979		

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.639	1986849	51.503
2	38.542	1870868	48.497

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.696	1108717	94.855
2	38.728	60138	5.145

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	12.273	5311974	49.753
2	14.290	5364670	50.247

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.316	2156002	92.084
2	14.349	185331	7.916

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	26.685	4176575	50.032
2	29, 135	4171221	49,968

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	26.903	239945	7.246
2	29.341	3071259	92.754

mAU

Peak Table

PDA Ch1 254nm

IDA UIII 204IIIII				
	Peak#	Ret. Time	Area	Area%
	1	16.955	12048111	51.559
	2	24.456	11319578	48.441

Peak Table

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	16.916	8307989	95.637		
2	24.459	379050	4.363		

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.570	2980207	49.589
2	18.198	3029559	50.411

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.520	620271	6.898	
2	17.982	8371482	93.102	

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.026	10555741	50.144
2	45.030	10495055	49.856

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	17.798	669374	11.698	
2	44.140	5052890	88.302	

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.514	38172517	50.010		
2	19.186	38156642	49.990		

Peak Table

PDA	PDA Ch1 254nm					
Pea	ak#	Ret.	Time	Area	Area%	
	1	16.	477	2238994	93.723	
	2	19.	159	149957	6.277	

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.380	26081177	50.219		
2	15.443	25853515	49.781		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.153	17458902	92.246		
2	15.148	1467621	7.754		

Detect	or A Ch1 2	238nm	
Peak#	Ret. Time	Area	Area%
1	19.736	14422152	49.605
2	23.551	14651551	50.395

Peak Table

Detector A Ch1 238nm					
Peak#	Ret. Time	Area	Area%		
1	19.774	14975259	50.148		
2	23.609	14886680	49.852		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.289	36771572	50.685
2	20,824	35777589	49.315

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.432	22128607	33.030		
2	20.740	44867091	66.970		

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.016	21977848	49.293
2	22.240	22608061	50.707

Peak Table

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	19.872	3894153	24.280			
2	22.035	12144364	75.720			

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	20.353	15769163	49.365		
2	22.843	16174622	50.635		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	20.331	19106640	23.758		
2	22.804	61315924	76.242		

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.794	20982132	43.857
2	19.034	26860114	56.143

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.882	8119032	28.375
2	19.130	20494514	71.625

Peak Table

Detector A Ch2 254nm			
Peak#	Ret. Time	Area	Area%
1	15.877	11847772	50.181
2	17.784	11762511	49.819

Detector A Ch2 2			54nm	
Peak#	Ret.	Time	Area	Area%
1	15.	863	2249314	95.933
2	17.	832	95350	4.067

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.147	7199570	50.042
2	23.962	7187429	49.958

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.607	6083875	95.015
2	24.679	319186	4.985

Peak Table

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	23.549	65411591	49.160
	2	34.377	67648251	50,840

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.696	44084033	95.880
2	35.114	1894451	4.120

Peak Table

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	30.332	12111343	49.897
	2	34.677	12161489	50.103

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	30.	512	5766098	95.732
2	35.	678	257087	4.268

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	29.142	22982516	49.478
	2	35.019	23467904	50.522

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	28.947	2270340	95.825
2	34.965	98925	4.175

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	16.301	81754074	49.384
2	21.289	83792300	50.616

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	16.416	1668466	6.429		
2	21.381	24284307	93.571		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	33.232	83595351	50.140
2	40.347	83128628	49.860

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	33.962	42852148	90.722
2	41.154	4382594	9.278

PDA	Ch1	254nm

Peak#	Ret.	Time	Area	Area%
1	32.	444	38813929	50.136
2	39.	101	38603113	49.864

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	32.936	5481958	90.923		
2	40.165	547248	9.077		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	38.137	6680785	96.312
2	46.360	255823	3.688

Peak Table

Detect	or A Ch2 2	54nm	
Peak#	Ret. Time	Area	Area%
1	32.023	18527915	48.720
2	34.238	19501720	51.280

Detector A Ch2 254nm					
Peak#	Ret. Time	Area	Area%		
1	32.625	821288	4.034		
2	34.317	19538408	95.966		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	14.751	850333	50.235		
2	18.678	842377	49.765		

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Λrea	Λrea%		
1	14.714	67307	4.535		
2	18.602	1416913	95.465		

Peak Table

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	17.401	36860391	49.228	
2	21.442	38017051	50.772	

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.376	82694	20.059
2	22.399	329569	79.941

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.505	831567	49.890
2	21.387	835234	50.110

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	19.546	167988	12.970	
2	21.438	1127253	87.030	

Peak Table

Detector A Ch2 254nm					
Peak#	Ret. Time	e Area	Area%		
1	12.665	11234058	49.048		
2	14.958	11670093	50.952		

Г	eak	Table

Detect	or A Ch2 2	54nm	
Peak#	Ret. Time	Area	Area%
1	12.523	12773014	91.678
2	14.819	1159481	8.322

PDA Ch1 254nm					
Peak#	Ret.	Time	Area	Area%	
1	12.	232	8482517	98.351	
2	14.	942	142263	1.649	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.458	837346	51.226
2	12.432	797254	48.774

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.412	4007763	90.410
2	12.370	425099	9.590

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.482	10845357	49.878		
2	15.950	10898425	50.122		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.611	4396173	94.799
2	16.262	241180	5.201

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.769	6526687	98.152
2	16.559	122893	1.848

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	18.196	15550968	50.057			
2	26.762	15515408	49.943			

Peak Table

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	17.957	6631937	10.027			
2	25.871	59510825	89.973			

Peak Table

PDA Ch2 230nm					
Peak#	Ret. Time	Area	Area%		
1	38.419	5421610	50.062		
2	41.919	5408177	49.938		

PDA Ch2 230nm					
Peak#	Ret. Time	Area	Area%		
1	37.808	1743411	91.518		
2	41.237	161573	8.482		

Detector A Ch1 238nm					
Peak#	Ret. Time	Area	Area%		
1	22.158	12599876	49.642		
2	25.406	12781788	50.358		

Detect	or A Ch1 2	238nm	
Peak#	Ret. Time	Area	Area%
1	22.031	22442658	61.476
2	25.251	14063577	38.524

Peak Table

Detector A Ch1 238nm						
Peak#	Ret. Time	Area	Area%			
1	24.379	4188387	50.569			
2	29.528	4094139	49.431			

Peak Table

Detector A Ch1 238nm					
Peak#	Ret. Time	Area	Area%		
1	24.600	2887924	49.694		
2	29.870	2923433	50.306		

Peak Table

Detector A Ch1 238nm					
Peak#	Ret.	Time	Area	Area%	
1	20.	971	7831236	48.510	
2	27.	286	8312343	51.490	

Peak Table

Detector A Ch1 238nm					
Peak#	Ret. Time	Area	Area%		
1	21.086	624871	4.802		
2	27.429	12387690	95.198		

Detector A Ch1 238nm					
Peak#	Ret. Time	Area	Area%		
1	23.239	3179821	49.953		
2	29.311	3185741	50.047		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	12.552	9797278	49.736
2	15.224	9901370	50.264

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	12.600	211489	5.244		
2	15.255	3821696	94.756		

mAU 2000 PDA Multi 1 254nm,4nm ^{⊃h}Boc CH₃ Ts 11.969 1500-|| 0 14.4241000rac-N1-2 500-0 10 15 5 20 25 min Ó

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	11.969	35927055	50.570
	2	14.424	35116584	49.430

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	11.922	45291749	96.354
2	14.457	1713893	3.646

mAU 25-PDA Multi 1 254nm, 4nm Ph 20-Ts NⁱPr₂ 15-19.849Ô 24.755 rac-01-1 10-5-0-10 15 25 20 5 30 min Ó

PDA Ch	1 254nr	n		
Peak#	Ret. T	ime	Area	Area%
1	19.84	19	357699	50.414
2	24.75	55	351822	49.586

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	19.867	48208	5.405
2	24.748	843775	94.595

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.154	3442773	49.986
2	25.151	3444736	50.014

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	18.025	6012278	93.185	
2	24.956	439702	6.815	

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.011	3522058	49.869
2	33.053	3540614	50.131

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.427	921260	92.948
2	33.933	69893	7.052

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.658	13018659	50.196
2	23.362	12916830	49.804

PDA Ch	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	21.772	122060	7.236			
2	23.489	1564744	92.764			

Detector A Ch2 254nm						
Peak#	Ret. Time	Area	Area%			
1	24.605	6565729	50.232			
2	27.801	6505093	49.768			

Peak Table

Detect	or A Ch2		
Peak#	Ret. Time	Area	Area%
1	24.502	23467804	95.621
2	27.842	1074745	4.379

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.862	16694408	49.599
2	16.243	16964318	50.401

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.935	1304368	4.899
2	16.290	25323438	95.101

Detect	or A Ch2 2	254nm	
Peak#	Ret. Time	Area	Area%
1	21.756	17309440	49.906
2	23.111	17374767	50.094

mV

Peak Table

Detector A Ch2 254nm					
Peak#	Ret. T	ime	Area	Area%	
1	21.64	6	11430451	95.411	
2	22.99	95	549721	4.589	

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	37.755	16571792	50.434
2	46.990	16286380	49.566

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	38.148	139854	4.359
2	47.282	3068569	95.641

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	48.506	4742642	49.526
2	59.618	4833371	50.474

Peak Table

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	46.847	1010478	4.497		
2	56.669	21460277	95.503		

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.591	43581821	50.283
2	19.877	43091716	49.717

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	14.476	64537152	95.026
2	20.419	3378219	4.974

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	8.048	442120	50.517
2	16 852	433073	49 483

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	8.048	21327	0.651		
2	16.669	3253110	99.349		

mAU

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.050	2361271	49.889
2	14.459	2371795	50.111

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	9.074	604129	50.836
2	14.494	584254	49.164

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.390	2191582	49.042
2	28.215	2277210	50.958

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.273	13559561	95.121	
2	28.158	695494	4.879	

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	99.100	28025954	49.516
2	120.353	28573491	50.484

PDA Ch	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	99.392	11480185	93.918		
2	122.676	743465	6.082		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	17.719	31875263	50.023		
2	18.739	31845695	49.977		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	17.789	12313424	77.339		
2	18.857	3608000	22.661		

Peak Table

PDA Ch	1 254nm		
Peak#	Ret. Time	Area	Area%
1	66.843	54103501	50.140
2	75.415	53801673	49.860

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	65.657	21225196	67.446		
2	74.746	10244496	32.554		

Peak Table

Detector A Ch1 238nm

Peak#	Ret. Time	Area	Area%
1	22.707	2592347	9.690
2	24.355	10689409	39.957
3	25.856	2887846	10.795
4	29.454	10582547	39.558

Detector A Ch1 238nm				
Peak#	Ret. Time	Area	Area%	
1	22.697	4188971	48.161	
2	24.397	2154471	24.770	
3	25.892	231594	2.663	
4	29.579	2122789	24,406	

Peak	Tab	16
------	-----	----

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	25.998	311720	6.249
2	27.775	2285460	45.814
3	29.541	16774	0.336
4	33.984	2374632	47.601

Peak Table

Detector A Ch1 238nm			
Peak#	Ret. Time	Area	Area%
1	23.348	1498092	25.885
2	25.079	2074051	35.836
3	26.670	97118	1.678
4	30. 527	2118311	36.601

mAU

Peak Table

PDA Ch1 254nm

Peak#	Ret. Tim	ne Area	Area%
1	25.870	361134	17.104
2	27.692	867139	41.069
3	29.569	15739	0.745
4	33.945	867428	41.082

Peak Table

Detector A Ch1 238nm			
Peak#	Ret. Time	Area	Area%
1	20.860	6114433	37.481
2	23.218	1881580	11.534
3	27.057	6382619	39.125
4	29.264	1934845	11.860

Peak Table

Peak#	Ret. Time	Area	Area%
1	20.914	555655	3.135
2	23.234	2341154	13.209
3	27.065	12503222	70.543
4	29.296	2324121	13.113

Peak Table

Peak#	Ret. Time	Area	Area%
1	23.489	676917	3.743
2	26.242	1991950	11.013
3	33.974	13328040	73.688
4	36, 590	2090189	11.556

mV

Peak Table

Detector A Ch1 238nm

Peak#	Ret. Time	Area	Area%
1	21.234	1196536	3.972
2	23.632	2499123	8.295
3	27.645	23854514	79.180
4	29.965	2576788	8.553

Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	22.486	842433	3.635
2	25.057	2482203	10.711
3	31.619	17284844	74.585
4	34.061	2565129	11.069

References

(1) Truce, W. E.; Wolf, G. C. Adducts of sulfonyl iodides with acetylenes. *J. Org. Chem.* **1971**, *36*, 1727–1732.

(2) Liang, Y.; Ji, J.; Zhang, X.; Jiang, Q.; Luo, J.; Zhao, X. Enantioselective construction of axially chiral amino sulfide vinyl arenes by chiral sulfide-catalyzed electrophilic carbothiolation of alkynes. *Angew. Chem., Int. Ed.* **2020**, *59*, 4959–4964.

(3) van Dijk, T.; Burck, S.; Rong, M. K.; Rosenthal, A. J.; Nieger, M.; Slootweg, J. C.; Lammertsma, K. Facile synthesis of phosphaamidines and phosphaamidinates using nitrilium ions as an imine synthon. *Angew. Chem., Int. Ed.* **2014**, *53*, 9068–9071.

(4) He, M.-X.; Mo, Z.-Y.; Wang, Z.-Q.; Cheng, S.-Y.; Xie, R.-R.; Tang, H.-T.; Pan, Y.-M. Electrochemical synthesis of 1-naphthols by intermolecular annulation of alkynes with 1,3-dicarbonyl compounds. *Org. Lett.* **2020**, *22*, 724–728.

(5) Jin, W.; Trzupek, J. D.; Rayl, T. J.; Broward, M. A.; Vielhauer, G. A.; Weir, S. J.; Hwang, I.; Boger, D. L. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. *J. Am. Chem. Soc.* **2007**, *129*, 15391–15397.

(6) Chiu, H.-C.; Tonks, I. A. Trimethylsilyl-protected alkynes as selective crosscoupling partners in titanium-catalyzed [2+2+1] pyrrole synthesis. *Angew. Chem., Int. Ed.* **2018**, *57*, 6090–6094.

(7) Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. Visible-light-induced radical carbo-cyclization/*gem*-diborylation through triplet energy transfer between a gold catalyst and aryl iodides. *J. Am. Chem. Soc.* **2020**, *142*, 10485–10493.

(8) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. Suzuki–Miyaura coupling of aryl carbamates, carbonates, and sulfamates. *J. Am. Chem. Soc.* **2009**, *131*, 17748–17749.

(9) Tietze, L. F.; Hungerland, T.; Eichhorst, C.; Düfert, A.; Maaß, C.; Stalke, D. Efficient synthesis of helical tetrasubstituted alkenes as potential molecular switches: a

two-component palladium-catalyzed triple domino process. Angew. Chem., Int. Ed. 2013, 52, 3668–3671.

(10) Liu, Y.; Ma, S. Benzofurans or isochromenes via the ring-opening cyclization of cyclopropene derivatives with organolithiums. *Org. Lett.* **2012**, *14*, 720–723.

(11) Pearce-Higgins, R.; Hogenhout, L. N.; Docherty, P. J.; Whalley, D. M.; Chuentragool, P.; Lee, N.; Lam, N. Y. S.; McGuire, T. M.; Valette, D.; Phipps, R. J. An enantioselective Suzuki–Miyaura coupling to form axially chiral biphenols. *J. Am. Chem. Soc.* **2022**, *144*, 15026–15032.

(12) García-Rubín, S.; González-Rodríguez, C.; García-Yebra, C.; Varela, J. A.;
Esteruelas, M. A.; Saá, C. Dihydrobiphenylenes through ruthenium-catalyzed [2+2+2]
cycloadditions of *ortho*-alkenylarylacetylenes with alkynes. *Angew. Chem., Int. Ed.* **2014**, *53*, 1841–1844.

(13) Matt, C.; Kölblin, F.; Streuff, J. Reductive C–O, C–N, and C–S cleavage by a zirconium catalyzed hydrometalation/ β -elimination approach. *Org. Lett.* **2019**, *21*, 6983–6988.

(14) (a) Ge, Q.-Q.; Qian, J.-S.; Xuan, J. Electron donor–acceptor complex enabled decarboxylative sulfonylation of cinnamic acids under visible-light irradiation. *J. Org. Chem.* **2019**, *84*, 8691–8701; (b) Zuo, H.; Irran, E.; Klare, H. F. T.; Oestreich, M. Angew. Chem. Int. Ed. **2024**, *63*, e202401599.

(15) (a) Leitch, J. A.; McMullin, C. L.; Paterson, A. J.; Mahon, M. F.; Bhonoah, Y.;
Frost, C. G. Ruthenium-catalyzed *para*-selective C–H alkylation of aniline derivatives. *Angew. Chem., Int. Ed.* 2017, 56, 15131–15135. (b) Tang, C.; Zhang, R.; Zhu, B.; Fu,
J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. Directed copper-catalyzed intermolecular
Heck-type reaction of unactivated olefins and alkyl halides. *J. Am. Chem. Soc.* 2018, 140, 16929–16935.

(16) Aurelio, L.; Flynn, B. L.; Scammells, P. J. New methodology for the N-alkylation of 2-amino-3-acylthiophenes. *Org. Biomol. Chem.* **2011**, *9*, 4886–4902.

(17) Edwards, G. L.; Sinclair, D. J. Alkylation of vinyl sulfones as a route to 2-

alkylidene tetrahydrofurans. Tetrahedron Lett. 1999, 40, 3933-3934.

(18) Hao, Y.; Li, Z.-H.; Ma, Z.-G.; Liu, R.-X.; Ge, R.-T.; Li, Q.-Z.; Ding, T.-M.; Zhang, S.-Y. Axially chiral styrene-based organocatalysts and their application in asymmetric cascade Michael/cyclization reaction. *Chem. Sci.* **2023**, *14*, 9496–9502.

(19) Connelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. *Chem. Rev.* **1996**, *96*, 877–910.

(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, **2016**.

(21) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. *J. Chem. Theory Comput.* 2019, *15*, 1652–1671.

(22) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange.*J. Chem. Phys.* 1993, *98*, 5648–5652.

(23) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(24) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

(25) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* **1980**, *72*, 650–654.

(26) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

(27) Fukui, K. The path of chemical reactions — the IRC approach. Acc. Chem. Res.1981, 14, 363–368.

(28) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620.

(29) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. *J. Chem. Phys.* **2010**, *132*, 114110.