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ABSTRACT: Organohalides are crucial in modern organic
synthesis, thanks to their robust and versatile reactivity in cross-
coupling and other key transformations. However, catalytic
asymmetric methods for producing enantioenriched organohalides,
particularly axially chiral vinyl halides, remain underdeveloped.
Here, we present a Cu(I)-catalyzed, highly enantioselective radical
alkyne 1,2-halofunctionalization, utilizing custom-designed triden-
tate anionic N,N,N-ligands with bulky peripheral substituents. This
method efficiently employs (hetero)aryl and alkyl sulfonyl
chlorides, as well as α-carbonyl alkyl bromides, as radical
precursors and utilizes a diverse range of 2-amino and 2-oxy aryl
terminal alkynes as substrates to produce highly enantioenriched
axially chiral vinyl halides. The reaction is scalable to gram
quantities, and the vinyl halides can be further transformed into axially chiral thiourea, pyridyl carboxamide, and quinolyl
sulfonamide compounds, some of which show significant potential in asymmetric catalysis. Both experimental and theoretical
mechanistic studies support an enantioselective halogen atom transfer mechanism. This method opens an avenue for accessing
axially chiral organohalides, facilitating their broad applications in various related fields.
KEYWORDS: axially chiral vinyl halides, enantioselective halogen atom transfer, copper catalysis, vinyl radicals, asymmetric 1,
2-difunctionalization of terminal alkynes

■ INTRODUCTION
Atom transfer, one of the prototypical and important
elementary radical reactions,1 is involved in many useful
radical transformations, such as atom transfer radical addition/
polymerization,2 which has found numerous applications in
organic synthesis and medicinal and material sciences (Figure
1A). Despite the recent enormous development of radical
asymmetric catalysis,3 investigations of chemocatalytic enan-
tioselective atom transfer reactions have only met with limited
success using chiral Lewis acid catalysis,4 organocatalysis,5 or
transition metal catalysis.3a,d,e,6 Of particular note is the
incompatibility of almost all these chiral catalytic systems
with vinyl radical species in spite of their excellent and well-
investigated reactivity toward hydrogen,7 halogen,8 and
chalcogen9 atom transfer. The major challenge likely stems
from their inherently much higher reactivity (corresponding
C−H bond dissociation energy (BDE): ∼98−110 kcal/mol10)
than most alkyl radicals (corresponding C−H BDE: <90 kcal/
mol10) that have been successfully accommodated,3k,l which
renders the stereochemical control more difficult (Figure 1A).

In this regard, radical addition to alkynes provides
convenient access to vinyl radicals since direct single-electron
reduction of vinyl halides is much more difficult than that of
their alkyl counterparts.11 Thus, a number of nonenantiose-
lective radical alkyne functionalization methodologies,12

particularly those under transition-metal catalysis,13 have
been developed for the rapid and convenient access to
structurally complex and diverse molecules given the ready
availability of both alkynes and various radical precursors and
the usually robust radical alkyne addition.12b Nonetheless,
enantioselective versions of these reactions have only sparsely
been achieved,14 and none of them have so far allowed for the
realization of enantioselective intermolecular atom transfer
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Figure 1. Motivation and development of Cu(I)-catalyzed enantioselective radical 1,2-halofunctionalization of terminal alkynes. Ar, aryl; XAT,
halogen atom transfer; rt, room temperature; ee, enantiomeric excess; and PG, protecting group.

Table 1. Effect of Chiral Ligandsa

Entry L* Yield (%) Ee (%)

1 L1 10 5
2 L2 40 20
3 L3 21 28
4 L4 35 40
5 L5 47 77
6 L6 45 93
7 L7 68 94
8b L7 80 93

aReaction conditions: NS1 (0.050 mmol), S1 (1.5 equiv), [Cu(MeCN)4]PF6 (10 mol %), L* (10 mol %), and K3PO4 (3.0 equiv) in DME (1.0
mL) at rt for 24 h under argon. Yield of N1 is based on 1H NMR analysis of the crude products using dibromomethane as an internal standard; Ee
of N1 is based on chiral HPLC analysis. bNS1 (0.20 mmol) in DME/MTBE (v/v 1/3, 4.0 mL) for 5 d. Boc, tert-butyloxycarbonyl; Tol, p-tolyl;
DME, 1, 2-dimethoxyethane; MTBE, methyl tert-butyl ether.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.4c06672
ACS Catal. 2025, 15, 502−513

503

https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c06672?fig=tbl1&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c06672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reactions with vinyl radicals. Thus, the development of a novel
catalytic system is highly desirable and is in great demand.

Our group has long been investigating asymmetric radical
reactions using chiral copper catalysis.15 Recently, we disclosed
the development of tailor-made N,N,N-ligands for copper-
catalyzed enantioselective alkynyl-group transfer by tertiary
alkyl radicals.16 Long-spreading side arms are deliberately
introduced to these ligands to elicit highly efficient stereo-
discrimination of motifs in tertiary radicals, which are remote
from the copper center in the key enantioselective homolytic

radical substitution-type C−C bond coupling. These results
prompted us to investigate whether this strategy would
generally be applicable to transition metal-catalyzed atom
transfer reactions, particularly with the highly reactive vinyl
radicals (Figure 1B). To this end, we first envisioned that
radical addition to ortho-substituted aryl alkynes would
generate vinyl radicals and subsequent enantioselective
halogen atom transfer6a,b,g from chiral metal complexes by
these vinyl radicals might provide axially chiral vinyl
halides.17−23 In this scenario, the use of copper catalysts

Figure 2. Substrate scope for halides and 2-aminoaryl alkynes. aStandard reaction conditions: 2-aminoaryl alkyne (0.20 mmol), sulfonyl chloride
(1.5 equiv), [Cu(MeCN)4]PF6 (10 mol %), L7 (10 mol %), and K3PO4 (3.0 equiv) in DME/MTBE (v/v = 1/3, 4.0 mL) at rt for 5 days under
argon. bCuCl (10 mol %), 2-(diphenylphosphaneyl)pyridine (10 mol %), and L8 (10 mol %) were added to THF (4.0 mL) at 0 °C. cL6 (10 mol
%) in DCM/toluene (v/v = 1/3, 4.0 mL) at −10 °C. dL6 (10 mol %) in DCM (4.0 mL). eReaction conditions: NS1 (0.20 mmol), alkyl bromide
(1.5 equiv), CuBr (10 mol %), L7 (10 mol %), and K3PO4 (4.0 equiv) in THF (4.0 mL) at rt for 5 days under argon. Isolated yields are shown; Ee
is based on chiral HPLC analysis. Ac, acetyl; THF, tetrahydrofuran; DCM, dichloromethane.
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seemed to be privileged since copper(II) halides are reported
to undergo fast halogen atom transfer (XAT), which would
efficiently suppress the nonstereoselective background XAT of
vinyl radicals with organohalide starting materials.24 More
importantly, we speculated that appropriate peripheral ligand
modifications would be indispensable for achieving competent
stereodiscrimination of the ortho-substituents on the aryl rings,
which are far away from the copper centers.16 Notably, chiral
organohalides are well-established robust intermediates with
numerous synthetic applications,25 particularly in transition-
metal-catalyzed cross-coupling reactions,25a and thus, the
enantioselective synthesis of vinyl halides,26,27 if successfully
achieved, would provide a versatile synthetic hub for a diverse
range of axially chiral alkene compounds.19−21,23 Herein, we
report our efforts in developing the copper-catalyzed
enantioselective chlorine and bromine atom transfer with
vinyl radicals, thus providing axially chiral vinyl chlorides and
bromides from a broad range of aryl alkynes and diverse
sulfonyl chlorides,28 as well as α-carbonyl alkyl bromides, with
high enantioselectivity (Figure 1C).14e The synthetic potential

of this reaction was demonstrated by C(sp2)−C(sp/sp2) cross-
coupling of these vinyl chloride products followed by other
straightforward manipulations, leading to efficient axially chiral
alkene catalysts for asymmetric catalysis. Our experimental and
theoretical mechanistic results supported the radical mecha-
nism, particularly the XAT step, of the reaction.

■ RESULTS AND DISCUSSION
Reaction Development. At the beginning of the

investigation, we took 2-aminoaryl alkyne NS1 as the model
starting material, given the widely explored use of axially chiral
aryl amine compounds.29 An initial screening of ligands
employed in our previous works revealed that both oxazoline-
based N,N,P-ligand L230 (entry 2; Table 1) and N,N,N-ligand
L331 (entry 3), but Dixon’s N,N,P-ligand L115d,32 (entry 1),
afforded low yet significant enantioselectivity (for additional
ligand screening results, see Table S1). As proposed above, the
introduction of a 6-phenyl ring into the pyridine motif of L3
boosted the ee value to 40% (entry 4). Replacing the phenyl
ring with a bulkier 9-anthracenyl group greatly enhanced the ee

Table 2. Substrate Scope for 2-Oxyaryl Alkynesa

aStandard reaction conditions: 2-oxyaryl alkyne (0.20 mmol), S1 (1.5 equiv), [Cu(MeCN)4]PF6 (10 mol %), L7 (10 mol %), and K3PO4 (3.0
equiv) in EtOAc (4.0 mL) at rt for 5 d under argon. Isolated yields are shown; Ee is based on chiral HPLC analysis. b2-
(Diphenylphosphaneyl)pyridine (10 mol %) and L6 (10 mol %) in DME (4.0 mL) at 0 °C. cL6 (10 mol %) in DME (4.0 mL). dL6 (10 mol
%). eL6 (10 mol %) at 0 °C.
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Scheme 1. Synthetic Utility for the Construction of Valuable Axially Chiral Reagenta

aThe vinyl alkylation was performed after replacing the N-4-methylbenzoyl group with a N-benzyl group. bConditions: (i) K2CO3, EtOH, 60 °C,
Ar, 48 h; (ii) TFA/DCM (v/v = 1/1), rt, Ar, 12 h. cConditions for N1−5: 4-isothiocyanatobenzonitrile, DMAP, DCM, rt, Ar, 48 h; for N1−6 and
N1−7: thiophosgene, pyridine, DCM, rt; then chiral amine; for N1−8: picolinic acid, DMAP, DCC, DCM, rt, Ar, 24 h; for N1−9: quinoline-8-
sulfonyl chloride, DMAP, pyridine, DCM, 50 °C, Ar, 3 d. Phen, 9-phenanthryl; TFA, trifluoroacetic acid; DMAP, 4-dimethylaminopyridine; DCC,
N,N′-dicyclohexylcarbodiimide; DCE, 1,2-dichloroethane; dr, diastereomeric ratio.
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value to 77% (entry 5), and further switching to a
nonsymmetrically bulky 2-indolyl group ultimately gave
excellent enantioselectivity (entry 6). Nonetheless, the reaction
efficiency was generally low with these tested ligands (entries
1−6), likely due to the steric congestion around the copper
center caused by the bulky tert-butyl group on the oxazoline
ring (see Figures S1 and S2 for X-ray structures of L6 and L7).
Accordingly, a phenyl ring in place of this tert-butyl group
resulted in a substantially increased yield with almost unaltered
enantioselectivity (entry 7). Additional condition optimiza-
tions in terms of copper salts, base additives, and solvents
(Table S1) revealed the optimal conditions (entry 8) as
follows: NS1 (0.20 mmol) and S1 (1.5 equiv) in the presence
of [Cu(MeCN)4]PF6 (10 mol %), L7 (10 mol %), and K3PO4
(3.0 equiv) in mixed DME/MTBE (v/v 1/3, 4.0 mL) at rt for
5 d under argon, giving N1 in 80% yield with 93% ee. The
amount of the base additive was found to be critical for
reaction efficiency (entries 23−27). This is likely due to its
dual role in facilitating the coordination of copper salts with
chiral ligands to form the active catalyst and in neutralizing
acidic side products generated from sulfonyl chloride.
Substrate Scope. We first investigated the scope of

sulfonyl chlorides and found excellent tolerance of unsub-
stituted phenyl sulfonyl chlorides and those bearing a wide
range of functional groups with different electronic properties
on the para-, meta-, or ortho-position (N1−N12; Figure 2A).
Particularly, reactive halides (N3, N4, N9, and N10) and acidic
acetamides (N8) were well-tolerated, and nitro (N6) and
cyano (N7) groups, which are usually problematic in copper-
catalyzed radical transformations, were also compatible with
this reaction. In addition, 2-thiophenyl (N13) and 3-pyridyl
(N14)-substituted heteroaryl sulfonyl chlorides were appli-
cable to this transformation. Notably, primary (N15) and
secondary (N16−N18) alkyl sulfonyl chlorides were viable
radical precursors for this reaction. More importantly, besides
sulfonyl chlorides, alkyl bromides�but not iodides and
chlorides (Scheme S4)�also worked well under very similar
reaction conditions, delivering products N33 and N34 with
good efficiency and stereoselectivity (Figure 2B; see Table S2
for the results of condition screening). By contrast, tosyl
bromide provided only low enantioselectivity (Scheme S1),
likely due to its relatively strong nonstereoselective background
bromine atom transfer.33 As for the scope of 2-aminoaryl
alkynes (Figure 2A; see Scheme S2 for results of aryl alkynes
bearing other ortho-functionalities), a series of 6-substituted
naphthyl rings (N19−N22) were readily accommodated in
this reaction, while a 7-methoxyl group (N23) led to greatly
diminished enantioselectivity. Interestingly, a heteroaromatic
quinoline-derived alkyne proved to be effective in this reaction,
yielding N24 with excellent enantioselectivity. Furthermore,
various 5- and/or 6-substituted phenyl rings also performed
well, producing N25−N29 in high yields and excellent
enantioselectivity. Regarding the 2-amino group, both two
imide substrates (N1 and N30; see Table S3 for condition
optimizations of N30) delivered higher enantioselectivity than
an amide one (N31; see Table S4 for condition optimizations),
which in turn performed better than a urea substrate (N32).

Considering the high utility of axially chiral phenol
compounds,29 we next investigated the reaction with 2-oxyaryl
alkynes. Fortunately, excellent enantioselectivity of product O1
was observed under the aforementioned optimal conditions,
albeit with only a low yield (46% yield, 92% ee; Table S5, entry
3). These results encouraged us to further examine the effects

of ligands, solvents, and copper sources, during which a
straightforward solvent change to ethyl acetate led to not only
high reaction efficiency but also outstanding enantioselectivity
(90% yield; 92% ee; Table S5, entry 15). Accordingly, we next
explored the scope of 2-oxyaryl alkynes and found that a range
of naphthyl rings without or with additional substituents at the
4-, 5-, and 6-positions were well-tolerated (O1−O10, Table 2).
In accord with the results of 2-aminoaryl alkynes (Figure 2A),
the 7-substitution of 2-oxyaryl substrates also resulted in a
greatly decreased enantioselectivity (O11). Likewise, good
tolerance of 5- and/or 6-substitution of 2-oxyphenyl alkyne
substrates was also observed (O12 and O13). In addition, 4,6-
disubstituted 2-oxyphenyl alkynes were applicable to this
reaction, affording good enantioselectivity with high yield
(O14). As for the 2-oxy functionality, carbamate (e.g., O1)
and carbonate (O15; see Table S6 for condition optimiza-
tions), as well as carboxylic (O16) and sulfonyl ester (O17)
groups, proved to be workable in this reaction, providing the
desired products in high enantioselectivity with varied yield.
Unfortunately, internal alkynes were found to be unsuitable for
this reaction (Scheme S5). Notably, some well-crystallized
products with initially low enantioselectivity, such as O8, O13,
and O15, achieved significantly higher ee values (>92%) after
recrystallization (Scheme S6). The absolute structures of
products N1 (Figure S3), N31 (Figure S4), and O1 (Figure
S5) were all determined to be Ra by X-ray structural analysis,
and those of other products were assigned by analogy.
Synthetic Utility. To demonstrate the synthetic potential

of these axially chiral vinyl halide products, we first carried out
gram-scale reactions of both 2-aminoaryl and 2-oxyaryl alkyne
substrates NS1 (Scheme 1A) and OS1 (Scheme 1B) and still
obtained good yields with excellent enantioselectivity. Next, we
examined their thermal stability and observed marginal
racemization up to 60 °C (Scheme 1C,D; see Tables S7 and
S8 for more details). Accordingly, we managed to perform
Sonogashira and Suzuki−Miyaura coupling reactions with
these axially chiral vinyl chlorides at or below 60 °C, which
generally yielded the corresponding products N1−1, N1−2,
O1−1, and O15−1−3 with highly retained enantiopurity
(Scheme 1E). The sulfonyl alkene was also amenable to further
manipulations, delivering axially chiral tetrasubstituted alkene
N1−3. In addition, subsequent straightforward deprotection
and N-functionalization of N1−2 gave rise to axially chiral
thioureas N1−5−7, pyridinyl carboxamide N1−8, and
quinolyl sulfonamide N1−9 (Scheme 1F), which are
promising organocatalysts34 or N,N-bidentate ligands.15b

Accordingly, purely axially chiral thiourea N1−5 delivered
good diastereoselectivity and enantioselectivity in the tandem
Michael addition and cyclization reaction of enynamide SM-1
and ketimine SM-2,35 and the presence of additional chiral
amine moieties in N1−6 and N1−7 further enhanced the
stereoselectivity while greatly improving the reaction efficiency
(Scheme 1G). Notably, the stereointegrity was generally
maintained throughout the manipulation processes, thus
showcasing the high utility and versatility of our reaction as
a competent synthetic hub in preparing axially chiral alkene
reagents for asymmetric catalysis and synthesis.
Mechanistic Investigation. Control experiments in the

absence of the copper salt, chiral ligand, or base additive
confirmed that all of these components were indispensable for
the reaction (Tables S9 and S10; see Figure S6 for catalyst-
controlled regioselectivity). In the presence of either BHT
(butylated hydroxytoluene; Scheme 2A and Table S11) or
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TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl; Scheme 2B
and Table S10), the reaction was completely shut down.
Additionally, sulfonyl radical-trapped products BHT-Ts1 and
BHT-Ts2 were isolated in the reaction with BHT (Scheme 2A
and Table S11). Furthermore, the addition of another radical
trapper, phenyl diselenide, led to the formation of vinyl radical-
trapped product O1−Se (Scheme 2C). These results
supported the proposed formation of sulfonyl radicals and
their subsequent addition to alkynes, generating vinyl radicals.
Notably, vinyl radical-trapped product O1−Se was racemic
(Scheme 2C). More importantly, the addition of tosyl iodide, a
known fast iodine-atom-transfer donor,33 also resulted in
racemic iodination products O1−I and O20−I, while the
simultaneously formed chlorination products O1 and O20
were highly enantioenriched (Scheme 2D; see Scheme S3 for
additional results and discussions). These results together
strongly indicated that the in situ-formed vinyl radicals were
racemic and that the C−Cl bond coupling proceeded

enantioselectively (Scheme 2E). Subjecting racemic product
N1 to the standard conditions resulted in no enantioenrich-
ment (Scheme S7), ruling out the possibility of its kinetic
resolution through reversible chlorine atom transfer. Regarding
the key C−Cl bond formation, our preliminary density
functional theory (DFT) calculations revealed that the
presumed chlorine atom transfer pathway is energetically
more favorable than that involving the formation of Cu(III)
species14e and subsequent reductive elimination (Figure S8).
In addition, chlorine atom transfer involving TsCl proceeds
through an energetically unfavorable transition state.

Based on these mechanistic results, as well as others in
literature,36 we proposed a possible mechanism shown in
Scheme 2E. The reaction starts with the single-electron
reduction of sulfonyl chloride with Cu(I) species I, generating
Cu(II) chloride II and sulfonyl radical III (for the electro-
chemical analysis of radical precursors employed in this study,
see Figure S7). Then, III undergoes addition to the aryl alkyne,

Scheme 2. Mechanistic Experiments and Proposala

aThe yield was calculated based on the amount of S1−I. To express the yield relative to OS1, the value should be divided by 2 or 4 for reactions
using 0.50 or 0.25 equiv of S1−I, respectively. BHT, butylated hydroxytoluene; TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl; Ar, p-
acetylaminophenyl; FG, functional group.
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forming vinyl radical IV and its enantiomer ent-IV. Finally, one
of the two vinyl radical enantiomers selectively abstracts a
chlorine atom from the chiral Cu(II) chloride complex II,
leading to the axially chiral chloride product and regenerating
Cu(I) catalyst I. The remaining vinyl radical enantiomer likely
transforms to its antipode via direct epimerization or reversible
β-elimination and subsequent readdition.

■ CONCLUSIONS
In summary, we have successfully tailored tridentate anionic
N,N,N-ligands to realize highly enantioselective chlorine or
bromine atom transfer with very reactive vinyl radicals under
copper catalysis. The installation of sterically bulky groups at
the peripheral positions of these N,N,N-ligands to elicit
competent stereodiscrimination of remote motifs of the vinyl
radicals has been experimentally proven to be essential for
attaining high enantioselectivity. The reaction readily affords
an abundance of valuable enantioenriched vinyl chlorides and
bromides, thus providing a robust platform for expedient
access to a myriad of axially chiral acyclic styrene compounds.
Notably, some of these compounds exhibited superior
performance in a demonstration reaction in terms of both
the reaction efficiency and stereoselectivity, showcasing the
great potential of these axially chiral molecules in asymmetric
catalysis. These results highlight the great potential of
strategically devised multidentate anionic ligands for the
development of asymmetric radical reactions of highly reactive
carbon radicals using transition-metal catalysis, particularly
copper catalysis.

■ METHODS
General Procedure for 2-Aminoaryl Alkynes. A flame-

dried Schlenk tube equipped with a magnetic stir bar was
charged with Cu(CH3CN)4PF6 (7.45 mg, 0.020 mmol, 10 mol
%), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol,
1.0 equiv), sulfonyl chloride (0.30 mmol, 1.5 equiv), and
K3PO4 (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was
evacuated and backfilled with argon three times. Anhydrous
DME (1.0 mL) and MTBE (3.0 mL) were then added to the
mixture, and the reaction mixture was stirred at room
temperature for 5 d. Upon completion, the precipitate was
filtered off and washed with DCM. The filtrate was evaporated,
and the residue was purified by column chromatography on
silica gel to afford the desired product.
General Procedure for 2-Oxyaryl Alkynes. A flame-

dried Schlenk tube equipped with a magnetic stir bar was
charged with Cu(CH3CN)4PF6 (7.45 mg, 0.020 mmol, 10 mol
%), L7 (11.2 mg, 0.020 mmol, 10 mol %), alkyne (0.20 mmol,
1.0 equiv), sulfonyl chloride (0.30 mmol, 1.5 equiv), and
K3PO4 (127.4 mg, 0.60 mmol, 3.0 equiv). The tube was
evacuated and backfilled with argon three times. Anhydrous
EtOAc (4.0 mL) was then added to the mixture, and the
reaction mixture was stirred at room temperature for 5 d. Upon
completion, the precipitate was filtered off and washed with
DCM. The filtrate was evaporated, and the residue was purified
by column chromatography on silica gel to afford the desired
product.
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