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Synthesis of chiral germanium center
enabled by poly-deborylative alkylation
and desymmetrization

Ke Wang, Xin-Yuan Liu & Zhe Dong

Chiral germanium centers are historically undervalued due to their extremely
limited synthetic accessibility. Although germanium shares similar chemical
properties with silicon, synthesizing chiral germanium centers proves sig-
nificantly more challenging. To facilitate rapid access to chiral germanium
centers, we develop two synthetic strategies: deborylative alkylation of ger-
manium chlorides and copper-catalyzed diol desymmetrization. The α-boryl
carbanion is demonstrated to be an exceptional coupling partner for germa-
nium chloride, yielding 1,3-prochiral diols, which subsequently undergo
copper-catalyzed desymmetrization to afford chiral germanium centers. By
combining these two synthetic methodologies, we successfully transform
simple germanium tetrachloride into a chiral germanium center inmerely four
steps, representing a significant advancement inmain-group element chirality.
Additionally, this strategy efficiently facilitates the construction of chiral
silicon-stereogenic centers as well. Subsequent deoxygenative cross-coupling
reactions of the chiral germanium products further expand the scope of
organogermanium chemistry, revealing entirely new synthetic possibilities.

Point chirality is the most common chiral elements existing in nature.
Among all the different point chirality categories, tetrasubstituted
carbons are the most common chiral centers occurring in nature1.
Owing to their abundance and essential biological functions, sig-
nificant progress has been made in the asymmetric synthesis of chiral
carbon centers through both enantiospecific and enantioconvergent
transformations2. A key advantage in constructing chiral carbon cen-
ters is the wide availability of structurally diverse prochiral substrates
suitable for asymmetric3. (Fig.1a)

In sharp contrast, other group 14 elements such as silicon and
germanium solely exist in the inorganic salt form4. Consequently, the
direct transformation of inorganic silicon and germanium compounds
into their corresponding organic derivatives has become an attractive
synthetic goal5. Silicon tetrachloride and germanium tetrachloride
have proven to be reactive enough for polysubstitution reactions with
organolithium or organomagnesium reagents6. This straightforward
methodology positions SiCl4 and GeCl4 as the principal precursors for

organosilicon and organogermanium compounds6,7. To synthetically
access the corresponding chiral silicon/germanium-stereogenic center
with the same sequence, the four chloride atoms need to be dis-
tinguished site-selectively and enantioselectively. Due to the broad
industrial application of organosilicons, such site-reactivity can be
achieved by carefully controlling reaction stoichiometry and
conditions8. Consequently the complex dichloro silane becomes a key
intermediate for enantioselective desymmetrization9 (Fig. 1b).
Recently, catalytic enantioselective displacement of silicon chloride to
access chiral silicon center was also reported by Song and
coworkers10,11. Meanwhile, Oestreich and Wu also reported a highly
controllable stepwise functionalization of polysilane’s Si-H bond to
provide a general and quick access to silanes with four different
substitutions12,13.

However, organogermanium compounds have proven sig-
nificantly more challenging to synthesize, primarily due to the unique
chemical reactivity associated with germanium tetrachloride. Unlike
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its silicon analog, reactions between GeCl4 and Grignard reagents
consistently yield mixtures containing varying degrees of substitution
along with undesired halogen exchange as byproduct6. Furthermore,
the nature of organometallic reagents employed restricts the func-
tional groups that can be successfully introduced into organogerma-
nium compounds. Consequently, achieving a general synthetic route
to a racemic germanium center bearing four distinct substituents
remains an unresolved challenge.

To date, all chiral germanium centers have been prepared exclu-
sively through desymmetrization strategies or chiral resolution
methods14–16 (Fig. 1c). Zhou and He independently reported transition-
metal-catalyzed desymmetrizations of dihydrogermanes, achieving
high enantioselectivity17,18. In contrast, the enzymatic desymmetriza-
tion of germanium-containing 1,3-diols was initially reported by Tacke
in 1994; however, this approach delivered only moderate enantios-
electivity (50% ee) and was limited to a single substrate19.

The lack of general access to highly enantioenriched chiral ger-
manium centers clearly limits the understanding of the germanium
element’s own intrinsic chemistry20,21 and distinct properties22–24, such as
the conformational stability of corresponding chiral germanium cations,
anions, and radicals5. Basedonprevious literature, differentiating among
the four chlorides in GeCl4 to achieve stepwise functionalization with
high chemoselectivity and enantioselectivity remains exceedingly chal-
lenging using current synthetic methodologies.

Therefore, our goal is to develop rapid and general synthetic
access to highly functionalized chiral germanium centers by strategi-
cally decoupling reactivity and selectivity considerations (Fig. 1c). If
global displacement of chlorides can be accomplished with pre-

installed functional groups at the nucleophile site, this approach
would uniquely enable late-stage differentiation and facilitate sub-
sequent enantioselective desymmetrization. Such a concise and
straightforward synthetic strategywould represent a versatile solution
for constructing chiral organogermanium centers and significantly
expand the chemical space accessible tomain-group element chirality.

Results and discussion
We selected the phenylgermanium trichloride 1 as the standard sub-
strate for the optimization. Organoboron compounds were chosen as
coupling partners due to their structural diversity and excellent
functional group compatibility25. Given the necessity of performing
this coupling reaction three times at the germanium center, we pre-
ferred a transition metal-free coupling pathway due to its inherent
robustness26. Unfortunately, when simple alkyl or aryl boronic esters
were employed as nucleophiles, no desired products were formed.We
hypothesized that the corresponding borates might not possess suf-
ficient nucleophilicity to react with germanium chloride27. Inspired by
the seminal work of Morken and coworkers28, we thought α-boryl
carbanion should be nucleophilic enough to react with germanium
chloride29. The remaining boronic ester would be an ideal synthetic
handle for further derivatization30,31. Indeed, we found that gem-
diboronmethane 2 acted as an effective coupling partner, producing
the desired trialkylation product 3 (Fig. 2a). A control experiment
revealed that potassium tertbutoxide proved to be the optimal base
for this transformation, which was particularly surprising given the
oxyphilic nature of germanium chloride6. Our rationalewas that all the
tert-butoxide anions in the solution actually were tightly bonded to
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Fig. 1 | Synthesis chiral chiral group 14 element center. a Chiral carbon centers
can be readily synthesized asymmetrically, primarily due to the wide availability of
suitable starting materials. b Chiral silicon centers can be prepared by combining
stepwise chloride displacement with desymmetrization strategies. c The reported
synthetic routes for germanium centers substituted with four distinct carbon
groups have thus far been limited. d A rapid synthesis approach for chiral

germanium centers has been developed by strategically decoupling reactivity and
selectivity issues. e Deborylative alkylation of poly-germanium chlorides, followed
by copper-catalyzed enantioselective desymmetrization of prochiral 1,3-diols, has
been successfully achieved. This methodology provides efficient access to syn-
thetic intermediates and chiral germanium products characterized by high func-
tional group tolerance and excellent enantioselectivity.
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organoboron 2 to form the corresponding ate complex32. Consistent
with this observation, pre-mixing the base and organoboron 2 at 60 °C
significantly improved both reaction yield and reproducibility. Alter-
native bases and solvents provided lower coupling efficiencies.
Encouraged by this trialkylation reaction, we then directly used

germanium tetrachloride 4 as the electrophile. With slightly modified
stoichiometry, we isolated the tetraalkylation product 5 in 76% yield,
effectively converting an inorganic germanium source into an organic
germanium intermediate suitable for further functionalization. Intri-
guingly, this methodology also efficiently transformed tin tetra-
chloride into the corresponding tetra-boronic esters with a yield of
66%. In stark contrast, silicon tetrachloride failed to yield any desired
products. (See supporting information Figure S6 for details).

With these polyboronic ester 3 and 5 in hand, we next moved to
distinguish these boronic esters to access the prochiral germanium
center, which could be directly used in the enantioselective
desymmetrization33 (vide infra).Mono-selective Suzuki-Miyaura coupling
can be achieved with palladium/RuPhos system to give mono-arylation
product 6 and 7 with moderate yield34 (Fig.2b). Alternatively, global
peroxide oxidation of 3 would give the germanium-containing triol, fol-
lowed by selective mono-silylation to give prochiral 1,3-diol 8. Next, we
attempted todistinguish symmetric fourboronic esters in thecompound
5. However, previous Pd/RuPhos reaction conditions gave a complicated
reaction mixture. We then applied Morken’s method to transfer the
boronic ester to organozinc via transmetallation35, then followed by
palladium/CPhos catalyzed the Negishi coupling36. Surprisingly, we only
isolatedmono-protodeborylation product 9 as the sole product. Control
experiments confirmed that both zinc salts and the palladium catalyst
were crucial for achieving mono-protodeborylation. Subsequent treat-
mentof compound9under thePd/RuPhoscatalytic conditions smoothly
produced the mono-arylation product 10 (Fig. 2b). These synthetic
sequences clearly demonstrate the polyborylative product can serve as a
linchpin intermediate to synthesize structurally diverse organogerma-
nium compounds.

With the optimized reaction conditions in hand, we started to test
the scope of this deborylative alkylation reaction (Fig. 3). We first
started with differently substituted organogermanium trichloride (11-
14) and organogermaniumdichloride(15-34).Wewere glad to find that
the alkyl (11-13), alkenyl (14, 28-30), aryl (19-28, 33), alkynyl (31) sub-
stitutions all work smoothly under the exact same conditions,
regardless of whether they were trichlorides or dichlorides. The more
hindered ortho-substituted arene (25) on the germanium site didn’t
hurt this transformation. This method could be easily scaled up to
80mmolwithout changing any conditions (19). For organogermanium
monochloride, we found that lithium bis(trimethylsilyl)amide gave a
cleaner reaction and much higher isolation yield (35-49). More inter-
estingly, the hydrogermanium chloride (50, 51) was also well-
tolerated. Additionally, silicon dichloride substrates (52) smoothly
coupled under the standard conditions. Finally, we tested the scope of
alkyl boronic ester: benzyl boronic ester (53) smoothly yielded the
benzylation product. Tertiary α-borylcarbanion (54) gave a quaternary
carbon directly connected to quaternary germanium center, such a
hindered product was quite challenging to synthesize through the
traditionalmethods. The triborylated alkanes with different functional
groups also coupled well (55-62)37; they can also participate in double
alkylation of germanium dichloride to give tetra-boronic ester con-
taining organogermanium (64). Remarkably, even tetraborylative
methane underwent selective mono-deborylative alkylation with ger-
manium chloride(63).

After establishing the robust and quick synthetic route to these
prochiral germanium centers, our next goal was to synthesize the
chiral germanium center via desymmetrization steps. Initially, apply-
ing Morken group’s protocol38 to desymmetrize 1,3-diboronic ester 19
didn’t give fruitful results, mainly due to the opened transmetallation
step. Motivated by previous successes in the desymmetrization of 1,3-
diols39–42, we directly converted 19 to the corresponding diol 65 via
peroxide oxidation. Subsequently, we focused on the copper-
catalyzed 1,3-diol desymmetrization (Fig. 4a). Although the carbon
analog’s desymmetrization was achieved with a copper(II) catalyst and
PyBOX ligand (L6) before ( > 80% ee)39, we found traditional PyBOX
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BuOK (2.25mmol, 4.5 equiv) in THF (0.10M), 48 h, under argon at 60 °C, all the
yield listed were isolated yields. b the yield in bracket was determined by 1H-NMR
analysis. c the poly boronic esters could be differentiated by selective transme-
tallation; see supplementary information synthetic application for experimental
details. THF, tetrahydrofuran; KHMDS, potassium bis(trimethylsilyl)amide; DCM,
dichloromethane; TBSCl, tert-butyldimethylsilyl chloride; RuPhos, 2-dicyclohex-
ylphosphino-2’,6’-di-i-propoxy-1,1’-biphenyl, CPhos, 2-dicyclohexylphosphino-2’,6’-
bis(dimethylamino)−1,1’-biphenyl.

Article https://doi.org/10.1038/s41467-025-60397-x

Nature Communications |         (2025) 16:5013 3

www.nature.com/naturecommunications


ligand only gave 54% ee (L6). This sharp loss of enantioselectivity was
due to the germanium atom’s large size, which directly influenced the
key transition state’s conformation9. So we further engineered the
ligand from pyridine-bisoxazoline scaffold L6 to pyridine-

bisimidazoline L8-L12. We were pleased to discover that the intro-
duction of an aryl group on the nitrogen atom of the imidazoline
moiety provided an additional structural handle for tuning the ligand
geometry43, with the mesityl group providing identical steric
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hindrance (L8). Mono-benzoyl-protected chiral germanium product
67 could be isolated with 87% yield and 91% ee. To further enhance
enantioselectivity, we examined various acid chloride coupling part-
ners. Electron-rich aromatic acid chlorides consistently provided

higher enantioselectivity compared to their electron-deficient coun-
terparts (69-71). Optimal enantioselectivity was achieved with ortho-
substituted aromatic acid chlorides (68, 80), reaching up to 97% ee,
which represents the state-of-the-art for constructing chiral
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germanium centers. Conversely, alkyl carboxylic acid chloride 79
exhibited significantly lower enantioselectivity.

Next, we aimed to demonstrate the general applicability of our
method in synthesizing structurally diverse germanium centers.(80-
89) Both alkyl and aryl substitutions exhibited remarkably broad
substrate scope. The current method consistently delivered enan-
tioselectivity exceeding 94% ee, provided germanium-stereogenic
center with one sp2 substitution and three sp3 substitutions, irrespec-
tive of their steric and electronic properties. Interestingly, an increase
in alkyl chain length correlated positively with improved enantios-
electivity (80-83), indicating that steric factors were not the sole
determinants of high enantioselectivity, although they certainlyplayed
a beneficial role. When we added an ortho methyl substitution on the

arene 86, the ee was significantly higher than its para analog 88. This
method can even distinguish two sp2 substitutions 89 or two sp3

substitutions 97 with slightly decreased enantioselectivity. To provide
a direct comparative reference with previously published 1,3-diol
desymmetrizationmethods,we evaluated the analogous carbon-based
substrate 91, achieving the formation of a chiral quaternary carbon
center with outstanding enantioselectivity (99% ee)44. To our best
knowledge, this catalytic system represents a universal solution for 1,3-
diol desymmetrization.

To further demonstrate the synthetic versatility of this debor-
ylative alkylation/desymmetrization strategy, we next applied this
methodology to construct chiral silicon centers (Fig. 5a). We were
pleased to find that the deborylative alkylation proceeded smoothly
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Fig. 5 | Desymmetrization of silicon containing 1,3-diols enabled copper cata-
lysis and mechanism study of the copper catalyzed desymmetrization step.
a The dichlorosilane could be successfully double alkylated with diboronmethane.
After thehydrogenperoxide oxidation, the resulting siliconcontaining 1,3-diols can
be desymmetrized by copper catalysis to form chiral silicon center with excellent
enantioselectivity. All yields are isolated for the copper catalyzed

desymmetrization step unless otherwise noted. Enantiomeric excess was deter-
mined by chiral HPLC analysis. Experiments typically run with 1.0 equiv. of silicon
containing 1,3-diol, 1.5 equiv of acid chloride and 1.2 equiv. of diisopropylethyla-
mine on 0.2mmol scale. For deborylative 1,3-diols synthesis, see supporting
information for details. b Hammett’s linear free energy relationship study c non-
liner effect study of the copper catalyzed desymmetrization step.
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even with commercially available silicon dichloride, facilitating rapid
access to starting materials suitable for copper-catalyzed desymme-
trization. Under our optimized reaction conditions, selective differ-
entiation of the twooxygen atoms in the prochiral 1,3-diol successfully
generated silicon-stereogenic chiral centers with excellent enantios-
electivity. The alkyl substitution on the silicon center exhibited broad
substrate scope, ranging from methyl (92, 101), primary alkyl (93, 95-
99), secondary alkyl (94), to tertiary alkyl (101).Weobserved a positive
correlation between increased steric bulk of the alkyl substituent and
higher enantioselectivity. Additionally, substituents such as cyclopro-
pyl (94), allyl silane (98), and aryl chloride groups (100) were well-
tolerated.

To gain deeper mechanistic insight into the copper-catalyzed
desymmetrization reaction, we conducted a series of physical
organic chemistry studies. To exclude the possibility of secondary
kinetic resolution, we closely monitored the enantiomeric purity of
the product throughout the entire reaction process. The enantio-
meric excess (ee) remained constant over the full 16h reaction per-
iod, confirming that secondary kinetic resolution did not occur45.
Further, through systematic analysis of benzoyl chloride coupling
partners possessing diverse electronic characteristics (Fig. 5b), we
established that the enantiomeric ratio of the desymmetrization
product correlated linearly with traditional Hammett substituent
constants46.

Additionally, we performed a non-linear effect study using our
newly developed pyridine-bisimidazoline ligand L8. Although a non-
linear effect has previously been observed in Cu-PyBOX systems47, our
copper(II) triflate/pyridine-bisimidazoline ligand system surprisingly
exhibited no non-linear effect under the established reaction condi-
tions (Fig. 5c). This indicates a 1:1 stoichiometric complex between
copper(II) triflate and the pyridine-bisimidazoline ligand as the cata-
lytically active species. The observed linear free-energy relationship,
coupled with its negative slope, strongly suggests an ionic pathway
rather than an open-shell radical intermediate for this copper-
catalyzed desymmetrization42,48. Based on these collective mechan-
istic investigations, we have proposed a detailed catalytic cycle, pre-
sented in supplementary Fig. S5.

Equipped with the deborylative alkylation and desymmetriza-
tion methods, we successfully developed a direct synthetic route
from GeCl4 to chiral germanium centers in four to five chemical
steps. (Fig. 6a) For instance, GeCl4 can be converted into 1,3-diol 102
and 103 in three chemical steps. (vide supra) Subsequently, copper-
catalyzed desymmetrization converted these diols into chiral ger-
manium products 104 and 105, each with outstanding enantios-
electivity ( > 99% ee). A similar sequence allowed the synthesis of
compound 107, bearing four distinct sp3 substitutions on the ger-
manium center, in merely four steps. Alternatively, two sequential
nucleophilic substitutions involving PhMgBr and t-BuLi would con-
vert GeCl4 to Pht-BuGeCl249, then following our current methods, we
could also access 109 with > 99% ee. (Fig. 5b) The residual alcohol
functionality resulting from the desymmetrization step provided
versatile handles for further derivatization via cross-coupling reac-
tions (Fig. 5d). Utilizing MacMillan’s NHC-mediated deoxygenation
approach50, we successfully incorporated sensitive functional
groups, such as aldehydes (110) or heterocycles (114), thereby
expanding the chemical space available for medicinal chemistry
applications. Particularly noteworthy is compound 100, whose silyl-
protected alcohol group was readily amenable to subsequent deox-
ygenative transformations (Fig. 5c).Moreover, the alcohol group also
facilitated traditional post-functionalizations, including tosylation
(101) for potential SN2 substitutions, Mitsunobu reactions (103) for
nitrogen incorporation, or Swern oxidation followed by hydrazone
formation (102). Importantly, throughout these functionalization
steps, the original high enantiomeric excess remained fully pre-
served. Additionally, chiral phosphate 115 was conveniently

synthesized by coupling our chiral germanium-containing products
with chiral phosphor chloride, further illustrating the synthetic utility
of our strategy.

We successfully developed two robust synthetic methods:
deborylative alkylation and copper-catalyzed diol desymmetrization—
that significantly advanced the synthesis of chiral germanium centers.
By merging these methodologies, rapid and general access to chiral
germanium centers has become synthetically facile. These develop-
ments open avenues for the exploration and application of organo-
germanium chemistry, particularly regarding the stereochemical
manipulation of germanium cations, anions, and radicals. Further
studies into enantiospecific transformations of these chiral germa-
nium compounds are ongoing.

Methods
General procedure of deborylative alkylation of
dichlorogermanane
In an argon-filled glovebox, 2 (536.0mg, 2.0mmol, 4.0 equiv), potas-
sium tert-butoxide (252.5mg, 2.25mmol, 4.5 equiv) in tetrahydrofuran
(5.0mL) were added to a 20mL vial equipped with a magnetic stirring
bar. The reaction mixture was stirred at 60 °C for 1 h. dichlor-
ogermanane (0.50mmol, 1.0 equiv) was added and The reaction
mixture was stirred at 60 °C for 48 h. The reaction was quenched with
water (20.0mL) and, the solution was extracted with ethyl acetate
(3 × 15.0mL). The combined organic layers were washed with water,
brine, dried over anhydrous sodiumsulfate, and concentrated under
reduced pressure. The residue was purified by flash chromatography
on silica gel to afford corresponding alkyl germanium compound. The
alkyl germanium compound was transferred to a 25mL round bottom
flask and cooled to 0 °C (ice/water) and charged with 5M sodium
hydroxide (8.5 equiv), and 30% hydrogen peroxide (0.85mL) and tet-
rahydrofuran (5.0mL). The reaction was gradually warmed to room
temperature and allowed to stir for 4 h at which time the vial was
cooled to 0 °C and saturated aqueous sodium thiosulfate was added
dropwise over 5min. The reaction mixture was diluted with ethyl
acetate and the aqueous and organic layers were separated. The aqu-
eous layer was extracted with ethyl acetate (3 × 20.0mL) and the
combined organics were dried over sodium sulfate, and concentrated
under reduced pressure. The residue was purified by flash chromato-
graphy on silica gel to afford corresponding prochiral bis(hydrox-
ymethyl)germane. (For other class of chloro-organogermanes
deborylative alkylation reactions, see supporting information for
detailed reaction conditions).

General procedure of desymmetrization of germanium con-
taining 1,3-diols enabled copper catalysis
In an argon-filled glovebox, Cu(OTf)2 (7.2mg, 0.02mmol), L8 (12.1mg,
0.02mmol) in freshly distilled chloroform (2.0mL) were added to a
20mL oven-dried Schlenk tube equipped with a magnetic stirring bar,
and then the mixture was stirred at 25 °C for 3 h. To the generated
catalyst solution, a solution of the corresponding bis(hydroxymethyl)
germane (0.2mmol, 1.0 equiv) in distilled dichloromethane (2.0mL)
and distilled n-hexane (2.0mL) was added to the above generated
catalyst solution, and the mixture was stirred at 25 °C for 10min. After
cooling down the above reaction mixture to -80 °C, a solution of aryl/
alkyl acyl chloride (0.3mmol, 1.5 equiv) and N,N-diisopropylethyla-
mine (31.0mg, 0.24mmol, 1.2 equiv) in distilled chloroform (2.0mL)
was finally added dropwise at -80 °C. The reaction mixture was then
allowed to stir at -80 °C for 16 h. The reactionwasquenchedwithwater
(20.0mL) and, the solution was extracted with ethyl acetate
(3 × 15.0mL). The combined organic layers were washed with water,
brine, dried over anhydrous sodium sulfate, and concentrated under
reduced pressure. The residue was purified by flash chromatography
on silica gel to afford corresponding germanium stereoscopic
compound.
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Fig. 6 | Direct synthesis of structurally diverse chiral organogermanium from
simple germanium tetrachloride. aGermanium tetrachloride could be selectively
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anuniversal approaches to access the chiral germaniumcenter with great structure
diversity.b Post-functionalization of the chiral germanane80. For detailed reaction
conditions, see the synthetic application section in the supporting information.
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Data availability
The data supporting the findings of this study are available within the
paper and its Supplementary Information. Crystallographic data are
available free of charge from theCambridgeCrystallographicDatabase
Centre (CCDC) under CCDC 2432397 (for (+)-73 derivative). These
data can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All
data are available from the corresponding author upon request.
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