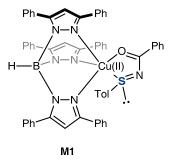
nature chemistry

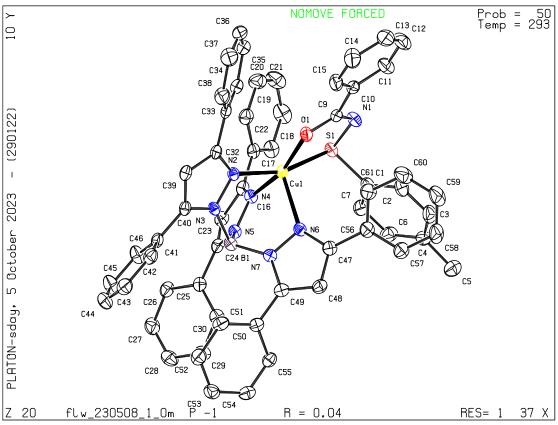
Supplementary information

https://doi.org/10.1038/s41557-025-01970-1

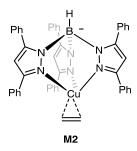
Copper-catalysed asymmetric cross-coupling reactions tolerant of highly reactive radicals

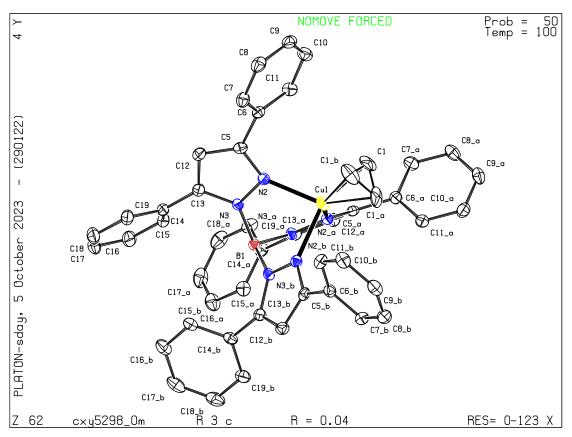
In the format provided by the authors and unedited

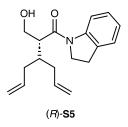

Table of contents

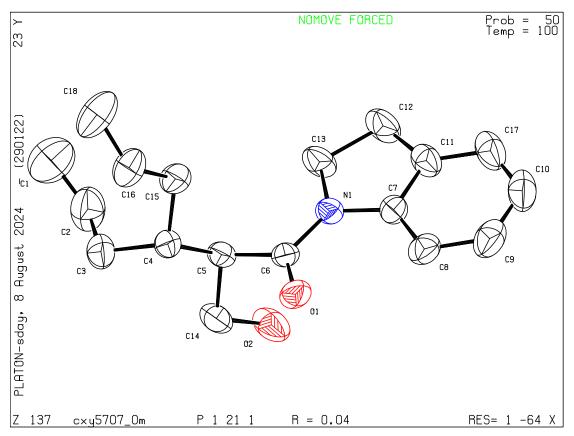

1. Supplementary figures for experiments	S1
2. Supplementary tables for experiments	S26
3. General Information	S44
4. Synthesis of γ -aminocarbonyl alcohols, H -phosphinates, and sulfenamides	S45
5. Synthesis of diverse radical precursors	S63
6. Asymmetric radical coupling between radical acceptor and diverse radical pred S76	cursors
7. Transformation	S134
8. Mechanistic studies	S147
9. Computational details	S174
10. References	S190
11. NMR spectra	S194
12. HPLC spectra	

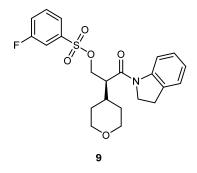
1. Supplementary figures for experiments

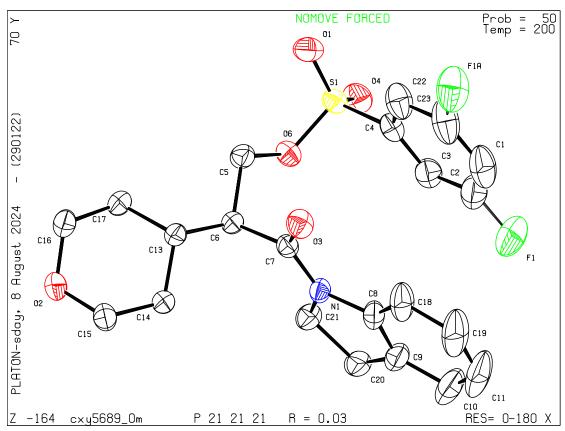


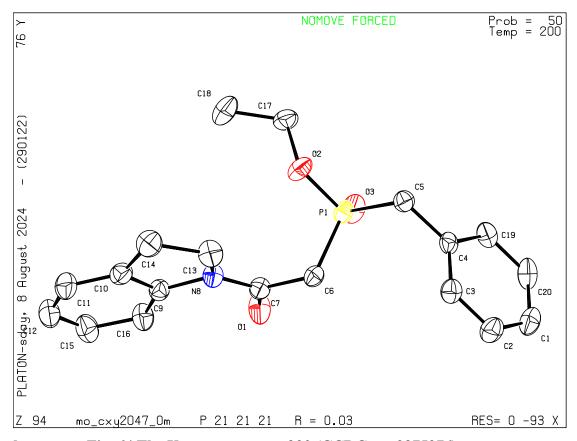

Supplementary Fig. $1 \perp$ Stereodiscrimination in elementary radical bond-forming reactions involving catalyst-bound radicals.



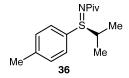

Supplementary Fig. 2 | The X-ray structure of M1 (CCDC no. 2289793).

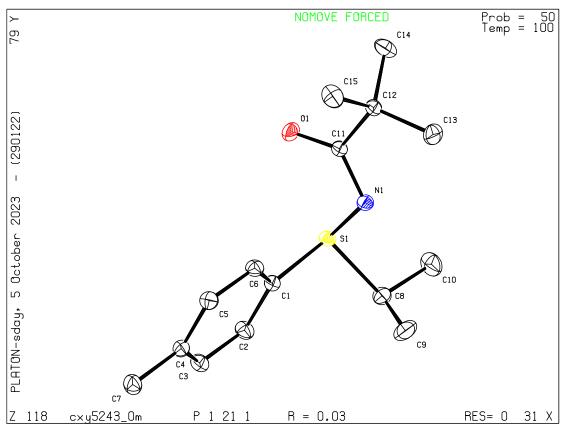



Supplementary Fig. $3 \mid The \ X$ -ray structure of M2. The corresponding monocrystal was consistent with that reported in the literature¹.

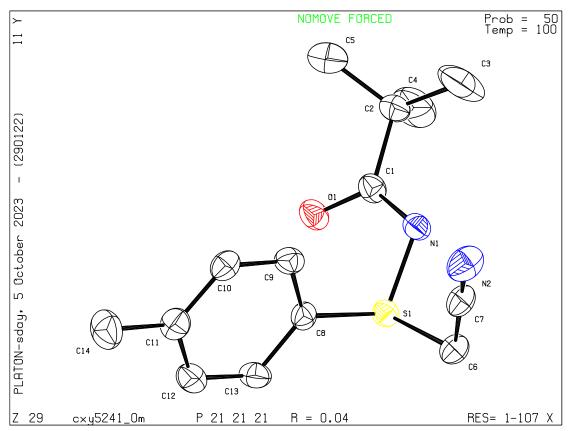


Supplementary Fig. 4 | The X-ray structure of (R)-S5 (CCDC no. 2375977).

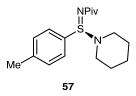


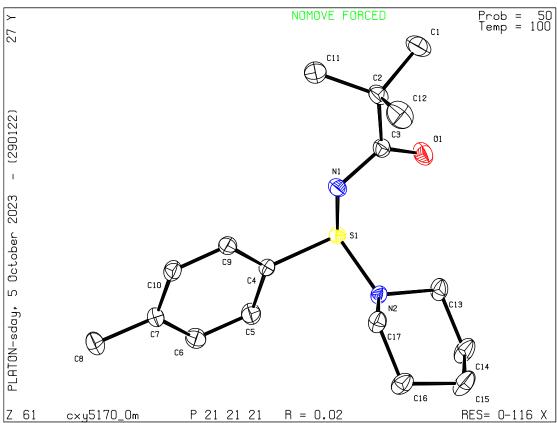


Supplementary Fig. 5 | The X-ray structure of 9 (CCDC no. 2375978).



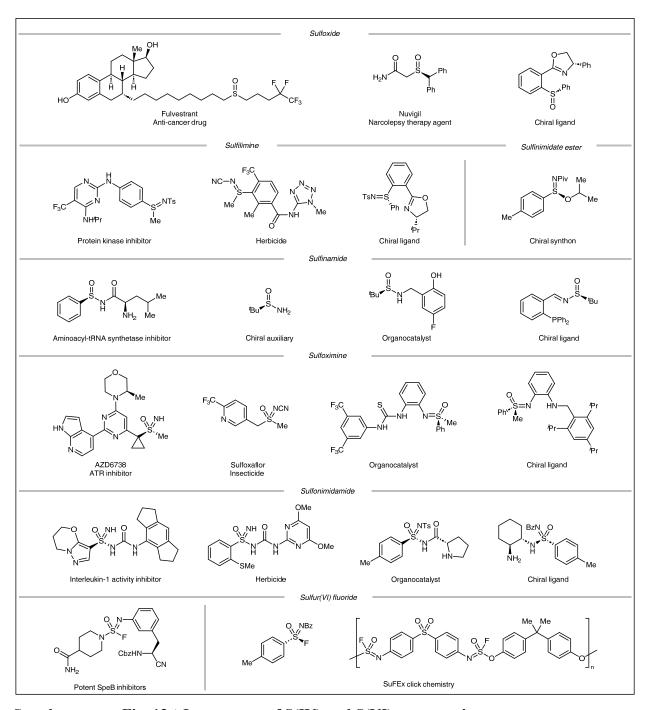
Supplementary Fig. 6 | The X-ray structure of 20 (CCDC no. 2375976).





Supplementary Fig. 7 \perp The X-ray structure of 36 (CCDC no. 2289792).

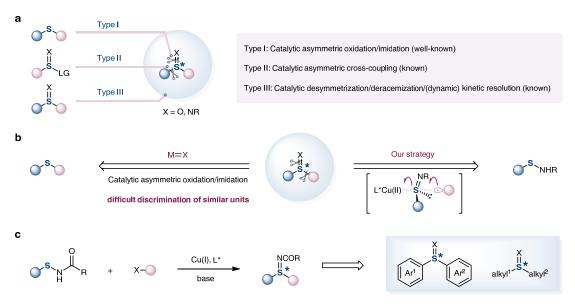
Supplementary Fig. 8 \perp The X-ray structure of 46 (CCDC no. 2289795).


Supplementary Fig. 9 | The X-ray structure of 57 (CCDC no. 2289794).

Et₃B

Supplementary Fig. 10 | Proposed mechanism for the formation of 1 and M2 from M1. According to the literature², ethyl radicals are generated from triethylborane in the presence of oxygen, as shown in equations (1-3). Under ambient conditions in air, the formation of ethylene in this system is well documented³ and attributed to the disproportionation of ethyl radicals (equation (4)). We propose that the radical substitution of M1 by ethyl radicals proceeds via transition state RS1, initially affording a labile, product-bound copper(I) complex (M1-2) (equation (5)). Subsequent ligand exchange between M1-2 and in situ formed ethylene likely yields M2 and product 1 (equation (6)). The favorable formation of 1 under similar conditions has been previously reported¹.

Supplementary Fig. 11 | The enantiospecific intramolecular homolytic substitution reaction of chiral sulfilimine. Conditions: (*R*)-116 (92% e.e., 0.355 mmol, 1.0 equiv.), TTMSS (1.420 mmol, 4.0 equiv.), Et₃B (3.550 mmol, 10 equiv.), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in benzene (2.0 mL) under air at r.t. for 2 h. TTMSS, tris(trimethylsilyl)silane.


Supplementary Fig. 12 | **The mechanistic study of O-centered radical.** ^aConditions: **S20** (0.20 mmol, 1.0 equiv.), **O1** (0.24 mmol, 1.2 equiv.), CuI (0.010 mmol, 5.0 mol%), **L4** (0.015 mmol, 7.5 mol%), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in MeCN (2.0 mL) under argon at -10 °C for 36 h. ^bConditions: **40** (0.10 mmol) in a mixed solvent of EtOAc (1.5 mL), H₂O (1.0 mL), and AcOH (0.5 mL) at r.t. for 1 h. ^cConditions: **S23** (0.10 mmol, 1.0 equiv.), **40** (99% e.e., 0.10 mmol, 1.0 equiv.), **O1** (0.12 mmol, 1.2 equiv.), CuI (0.0050 mmol, 5.0 mol%), **L4** (0.0075 mmol, 7.5 mol%), and K₃PO₄ (0.30 mmol, 3.0 equiv.) in MeCN (1.0 mL) at -10 °C for 36 h.

Supplementary Fig. 13 | Importance of S(IV) and S(VI) stereogenic centers.

Compounds possessing sulfur stereogenic centers play a pivotal role in asymmetric synthesis⁴⁻⁵ and widely exist in bioactive molecules⁶, pharmaceuticals⁷⁻⁹, and agrochemicals¹⁰⁻¹¹. However, enantioenriched S-chiral compounds are usually neglected in drug discovery¹²⁻¹³, despite their potent physicochemical and pharmacokinetic properties. Among them, sulfoxides, sulfilimines, sulfinimidate esters, sulfinamides, and sulfinamidines are representative S(IV) scaffolds that, in addition to their bioactivity, are often used as chiral ligands, auxiliaries, or catalysts^{5,14}. Moreover, they also serve as chiral synthons to access S(VI) stereogenic centers¹⁵⁻¹⁶,

such as chiral sulfoximines and sulfur(VI) fluorides. While the former have been utilized in drug discovery^{12,17-21}, the latter have been used in SuFEx click chemistry in the area of biology and polymers²²⁻²⁸. Given the importance of enantioenriched sulfur stereogenic centers, it is highly desirable to develop a robust and universal catalytic asymmetric strategy to access all sorts of chiral sulfur centers.

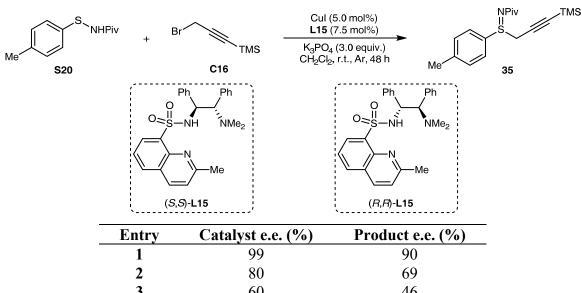
Supplementary Fig. 14 | **Asymmetric synthesis of sulfilimine and sulfinamide. a**, Of all the known catalytic asymmetric methods for S-chiral S(IV) compounds, the direct oxidation/imidation of sulfur is the most advanced and frequently employed approach. **b**, Challenges persist in obtaining S-chiral S(IV) compounds with similar S-substituents via direct oxidation/imidation. Therefore, we proposed an asymmetric radical substitution strategy for constructing S(IV) stereocenters de novo, of which the successful implementation would resolve the issue of stereodiscrimination. **c**, In this work, we disclose a copper-catalyzed enantioselective radical cross-coupling of N-acyl sulfenamides with a diverse range of aryl and alkyl halides, leading to highly enantioenriched S-chiral S(IV) compounds, particularly those bearing S-substituents of minimal differences.

S-chiral sulfilimines²⁹⁻³⁰ and sulfinamides³¹⁻³² possess S(IV)-stereogenic centers attached to nitrogen atoms. Unlike their corresponding oxygen analogues 16,33 (e.g., S-chiral sulfoxides and sulfinate esters), the asymmetric synthesis of S-chiral sulfilimines and sulfinamides has less precedent in the literature. Two strategies have been employed for their synthesis: i. enantiospecific functional group exchange from chiral S(IV) sources or chiral auxiliary-facilitated oxidation of S(II) sources; ii. asymmetric catalysis employing simple sulfide/sulfenamide starting materials (Supplementary Fig. 14a). Andersen's sulfinate³⁴ or Ellman auxiliary⁹ are commonly used in the first strategy. While they generally work well for the synthesis of chiral sulfoxides and sulfinamides, tedious steps are required to access the corresponding sulfilimines. In comparison, asymmetric imidation³⁵ represents a more straightforward way to access sulfilimines from simple sulfides. In this aspect, the two S-substituents should be stereochemically differentiated as shown in Supplementary Fig. 14b. Accordingly, all the current methods largely only provide access to the aryl alkyl sulfilimines owing to the substantial differences between aryl and alkyl groups. However, the stereochemical differentiation of two aryl or alkyl groups with similar steric hindrance and electronic properties has thus far remained difficult, rendering the catalytic asymmetric sulfide imidation challenging. In this scenario, direct asymmetric S-alkylation or arvlation would elegantly circumvent this problem. To date, the state of the art for the formation of this chiral sulfur-carbon bond has been reported by Ellman¹¹ using donor-acceptor carbenes as the alkylation reagents. Using our developed strategy, we can easily synthesize both bis-arylated and -alkylated sulfilimines in one step with excellent enantioselectivity (Supplementary Fig. 14c). More importantly, straightforward follow-up transformations can also lead to the corresponding valuable S-chiral sulfoxides, which are otherwise difficult to target using known methods. This clearly demonstrates that the current method would play a revolutionary role in the formation of chiral sulfur centers. Notably, during the preparation of this manuscript, several asymmetric catalytic methodologies for the synthesis of chiral sulfilimines from sulfenamides were independently reported³⁶⁻⁴⁵.

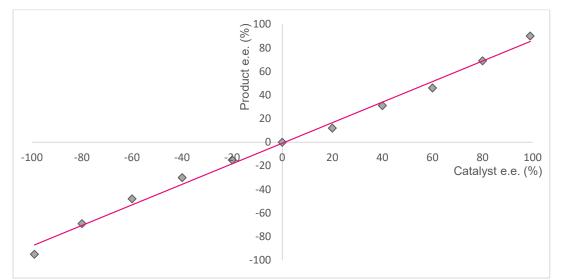
Supplementary Fig. 15 | Control experiments for sulfonyl radical in chiral C part. ^aConditions: γ-aminocarbonyl alcohol **S2** (0.20 mmol, 1.0 equiv.), sulfonyl chloride **H1** or **H3** or **H5** (0.18 mmol, 0.9 equiv.), CuI (0.010 mmol, 5.0 mol%), **L1** (0.015 mmol, 7.5 mol%), proton sponge (0.020 mmol, 10 mol%), BHT (0 or 3.0 equiv.), and Cs₂CO₃ (0.20 mmol, 1.0 equiv.) in anhydrous anhydrous CHCl₃ (1.0 mL) under argon at r.t.. ^bConditions: γ-aminocarbonyl alcohol **S2** (0.20 mmol, 1.0 equiv.), (allylsulfonyl)benzene **H4** (0.30 mmol, 1.5 equiv.), CuI (0.020 mmol, 10 mol%), **L1** (0.030 mmol, 15 mol%), proton sponge (0.020 mmol, 10 mol%), aryldiazonium tetrafluoroborate **C19** (0.40 mmol, 2.0 equiv.), and Cs₂CO₃ (0.20 mmol, 1.0 equiv.) in anhydrous anhydrous CHCl₃ (1.0 mL) under argon at 0 °C for 4 d.

Supplementary Fig. 16 | Radical trapping experiments for C- or P-center radical in chiral C part. ^aConditions: γ-aminocarbonyl alcohol S18 (0.10 mmol, 1.0 equiv.), O2 (0.10 mmol, 1.0 equiv.) and 3-ethylbenzaldehyde C1 (0.06 mmol, 0.6 equiv.), CuBH₄(PPh₃)₂ (0.010 mmol, 10 mol %), L1 (0.015 mmol, 15 mol%), BHT (0 or 3.0 equiv.), and Cs₂CO₃ (0.10 mmol, 1.0 equiv.) in anhydrous CCl₄ (1.0 mL) under argon at r.t. for 4 d. ^bConditions: γ-aminocarbonyl alcohol S2 (0.20 mmol, 1.0 equiv.), oxime phosphonate P1 (0.20 mmol, 1.0 equiv.), CuI (0.02 mmol, 10 mol%), L7 (0.03 mmol, 15 mol%), BHT (0.60 mmol, 3.0 equiv.), and Cs₂CO₃ (0.20 mmol, 1.0 equiv.) in anhydrous anhydrous ⁱPr₂O (2.0 mL) under argon at 0 °C for 8 d.

Supplementary Fig. 17 | Radical trapping experiments for C-centered radical in chiral P(V) part. ^aConditions: **S19** or **S45** (0.10 mmol, 1.0 equiv.), **C2** (0.15 mmol, 1.5 equiv.), CuBr (0.010 mmol, 10 mol%), **L2** (0.015 mmol, 15 mol%), BHT or TEMPO (0 or 2.0 equiv.), and Cs₂CO₃ (0.30 mmol, 3.0 equiv.) in anhydrous toluene (4.0 mL) under argon at r.t. for 72 h; ^bConditions: **S45** or **S19** (0.12 mmol, 1.2 equiv.), **C15** (0.10 mmol, 1.0 equiv.), CuTc (0.010 mmol, 10 mol%), **L2** (0.015 mmol, 15 mol%), H₂O (0.20 mmol, 2.0 equiv.), Cs₂CO₃ (0.20 mmol, 2.0 equiv.), and TEMPO (0 or 3.0 equiv.) in anhydrous MTBE (4.0 mL) under argon at r.t. for 72 h. BHT, butylated hydroxytoluene; TEMPO, 2,2,6,6-tetramethylpiperidinooxy; MTBE, *tert*-butyl methyl ether.


Supplementary Fig. 18 | Radical trapping experiments for N-centered radical in chiral P(V) part. Conditions: S45 or S19 (0.15 mmol, 1.5 equiv.), N1 (0.10 mmol, 1.0 equiv.), Cu(OAc)₂ (0.010 mmol, 10 mol%), L8 (0.015 mmol, 15 mol%), BHT or TEMPO (0 or 3.0 equiv.), H₂O (0.20 mmol, 2.0 equiv.), and Cs₂CO₃ (0.30 mmol, 3.0 equiv.) in anhydrous toluene (4.0 mL) under argon at r.t. for 72 h. BHT, butylated hydroxytoluene; TEMPO, 2,2,6,6-tetramethylpiperidinooxy.

Supplementary Fig. 19 | Radical trapping experiments for C-centered radical in chiral S(IV) part. ^aConditions: S20 (0.20 mmol, 1.0 equiv.), C16 (0.24 mmol, 1.2 equiv.), CuI (0.010 mmol, 5.0 mol%), L4 (0.015 mmol, 7.5 mol%), BHT or TEMPO (2.0 equiv.), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in CH₂Cl₂ (2.0 mL) under argon at r.t. for 72 h; ^bConditions: S20 (0.20 mmol, 1.0 equiv.), C24 (0.24 mmol, 1.2 equiv.), CuI (5.0 mol%), L4 (7.5 mol%), BHT or TEMPO (2.0 equiv.), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in CH₂Cl₂ (2.0 mL) under argon at r.t. for 48 h; BHT, butylated hydroxytoluene; TEMPO, 2,2,6,6-tetramethylpiperidinooxy.


Supplementary Fig. 20 | Radical trapping experiments for N/O-centered radical in chiral **S(IV) part.** ^aConditions: **S20** (0.20 mmol, 1.0 equiv.), **O1** (0.24 mmol, 1.2 equiv.), CuI (5.0 mol%), **L4** (7.5 mol%), BHT or TEMPO (10 equiv.), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in MeCN (2.0 mL) under argon at -10 °C for 36 h; ^bConditions: **S20** (0.050 mmol, 1.0 equiv.), **N4** (0.075 mmol, 1.5 equiv.), CuI (0.00250 mmol, 5.0 mol%), **L4** (0.00375 mmol, 7.5 mol%), BHT or TEMPO (2.0 equiv.), and K₃PO₄ (0.15 mmol, 3.0 equiv.) in EtOAc (0.50 mL) under argon at 40 °C for 24 h. BHT, butylated hydroxytoluene; TEMPO, 2,2,6,6-tetramethylpiperidinooxy.

Supplementary Fig. 21 | Enantioselective radical S–C coupling of carbon radicals generated by hydrogen atom abstraction of hydrogen hydrocarbon solvents. ^aConditions: **S20** (0.05 mmol, 1.0 equiv.), **O3** (0.10 mmol, 2.0 equiv.), CuI (0.0050 mmol, 10 mol%), **L10** (0.0075 mmol, 15 mol%), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in toluene (0.50 mL) under argon at r.t. for 24 h; ^bConditions: **S20** (0.05 mmol, 1.0 equiv.), **C39** (0.25 mmol, 5.0 equiv.), CuI (0.0050 mmol, 10 mol%), **L4** (0.0075 mmol, 15 mol%), and K₃PO₄ (0.15 mmol, 3.0 equiv.) in MeCN (0.5 mL) under argon at r.t. for 48 h.

Supplementary Fig. 22 | **Determination of stereocenter of 115, the poor diastereoselectivity of 115 was caused by carbon chiral center.** Conditions: **115** (0.10 mmol, 1.0 equiv.), RuCl₃ (0.005 mmol, 5.0 mol%) and NaIO₄ (0.12 mmol, 1.2 equiv.) in MeCN (1.0 mL) and H₂O (2.0 mL) under argon at -10 °C for 8 h; then "BuLi (0.15 mmol, 1.5 equiv.) and MeI (0.15 mmol, 1.5 equiv.) at r.t. for 0.5 h.

Entry	Catalyst e.e. (%)	Product e.e. (%)
1	99	90
2	80	69
3	60	46
4	40	31
5	20	12
6	0	0
7	-20	-15
8	-40	-30
9	-60	-48
10	-80	-69
11	– 99	-95

Supplementary Fig. 23 | **The non-linear effect.** The control experiments indicated a linear relationship between e.e. values of products and corresponding catalysts.

2. Supplementary tables for experiments

Supplementary Table 1 \perp Reaction condition optimization with $\gamma\text{-aminocarbonyl}$ alcohol S2 and sulfonyl chloride H1

Entry	Variations	Yield (%)	E.e. of 2 (%)	E.e. of S2 (%)	s factor
1	None	47	92	92	79
2	Without CuI	10	14	0	N.D.
3	Without L1	15	0	0	N.D.
4	Without Cs ₂ CO ₃	0	n.d.	n.d.	N.D.
5	Without CuI and L1	11	0	0	0
6	Without Proton Sponge	47	92	90	74
7	L11 instead of L1	45	83	76	25
8	L6 instead of L1	40	69	55	9
9	L12 instead of L1	20	-54	-13	4
10	L4 instead of L1	10	46	5	3
11	L8 instead of L1	4	24	0	N.D.
12	Cu(MeCN) ₄ PF ₆ instead of CuI	44	88	80	38
13	CuTc instead of CuI	43	92	84	64
14	Cu(OTf) ₂ instead of CuI	46	82	91	32
15	K ₂ CO ₃ instead of Cs ₂ CO ₃	43	92	90	74
16	K ₃ PO ₄ instead of Cs ₂ CO ₃	46	91	92	70
17	Ag ₂ CO ₃ instead of Cs ₂ CO ₃	33	92	52	40

18	MeCN instead of CHCl ₃	35	91	54	36
19	THF instead of CHCl ₃	45	90	94	67
20	PhCF ₃ instead of CHCl ₃	50	81	94	33
21	MTBE instead of CHCl ₃	43	90	88	55

Reaction conditions: **S2** (0.20 mmol, 1.0 equiv.), 3-fluorobenzenesulfonyl chloride **H1** (0.18 mmol, 0.9 equiv.), CuI (0.010 mmol, 5.0 mol%), **L1** (0.015 mmol, 7.5 mol%), Cs₂CO₃ (0.20 mmol, 1.0 equiv.) and proton sponge (0.020 mmol, 10 mol%) in CHCl₃ (1.0 mL) at r.t. for 48 h under argon. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard and the e.e. values are based on HPLC analysis. Selectivity factor (s) = In((1 - s)(1 - e.e._s)/ln[(1 - s)(1 + e.e._s)), conversion (s) = e.e.s/(e.e._s + e.e._s). N.D., not determined.

Supplementary Table 2 \perp Reaction condition optimization with $\gamma\text{-aminocarbonyl}$ alcohol S18 and aldehyde C1

Entry	Variations	Conv. (%)	Yield (%)	E.e. (%)
1	None	40	27	90
2	Without Cu(PPh ₃) ₂ BH ₄	10	0	N.D.
3	Without L1	24	11	0
4	Without O2	0	0	N.D.
5	Without Cu(PPh ₃) ₂ BH ₄ and L1	0	0	N.D.
6	CuTc instead of Cu(PPh ₃) ₂ BH ₄	55	32	55
7	Cu(OTf) ₂ instead of Cu(PPh ₃) ₂ BH ₄	26	5	5
8	CuI instead of Cu(PPh ₃) ₂ BH ₄	18	5	26
9	Cu(MeCN) ₄ PF ₆ instead of Cu(PPh ₃) ₂ BH ₄	45	25	9
10	L11 instead of L1	30	21	78
11	L12 instead of L1	40	19	-38
12	LPO instead of O2	13	0	N.D.
13	THF instead of CCl ₄	0	0	N.D.
14	CH ₂ Cl ₂ instead of CCl ₄	9	5	87
15	MTBE instead of CCl ₄	24	12	89
16	At 0 °C & 7 d	42	35	90

Reaction conditions: **S18** (0.10 mmol, 1.0 equiv.), **C1** (0.06 mmol, 0.6 equiv.), CuI (0.010 mmol, 10 mol%), **L1** (0.015 mmol, 15 mol%), and **O2** (0.10 mmol, 1.0 equiv.) in CCl₄ (2.0 mL) at r.t. for 4 d under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on chiral HPLC analysis. Conv., conversion; N.D., not determined.

Supplementary Table 3 \perp Reaction condition optimization with γ -aminocarbonyl alcohol S2 and oxime phosphonate P1

Entry	Variations	Conv. (%)	Yield (%)	E.e. (%)
1	None	27	23	80
2	Without CuI	5	0	N.D.
3	Without L7	8	0	N.D.
4	Without Cs ₂ CO ₃	9	0	N.D.
5	Without CuI and L7	0	0	N.D.
6	CuTc instead of CuI	10	5	54
7	Cu(MeCN) ₄ PF ₆ instead of CuI	5	3	70
8	L1 instead of L7	40	0	N.D.
9	L12 instead of L7	20	11	61
10	K ₂ CO ₃ instead of Cs ₂ CO ₃	20	0	N.D.
11	K ₃ PO ₄ instead of Cs ₂ CO ₃	40	25	73
12	EtOAc instead of ⁱ Pr ₂ O	15	10	55
13	PhCF ₃ instead of ⁱ Pr ₂ O	15	7	76
14	CHCl ₃ instead of ⁱ Pr ₂ O	0	0	N.D.

Reaction conditions: **S2** (0.10 mmol, 1.0 equiv.), **P1** (0.10 mmol, 1.0 equiv.), CuI (0.010 mmol, 10 mol%), L7 (0.015 mmol, 15 mol%), and Cs₂CO₃ (0.10 mmol, 1.0 equiv.) in ⁱPr₂O (1.0 mL) at 0 °C for 7 d under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on chiral HPLC analysis. N.D., not determined.

Supplementary Table 4 \perp Reaction condition optimization with H-phosphinate S19 and benzyl bromide C2

Entry	Variations	Yield (%)	E.e. (%)
1	None	68	90
2	Without CuBr	31	0
3	Without L2	30	0
4	Without Cs ₂ CO ₃	0	N.D.
5	Without CuBr and L2	31	0
6	CuI instead of CuBr	43	86
7	Cu(MeCN) ₄ PF ₆ instead of CuBr	61	71
8	CuTc instead of CuBr	15	10
9	L4 instead of L2	34	23
10	L8 instead of L2	40	26
11	L12 instead of L2	71	80
12	K ₂ CO ₃ instead of Cs ₂ CO ₃	55	86
13	K ₃ PO ₄ instead of Cs ₂ CO ₃	26	71
14	KO'Bu instead of Cs ₂ CO ₃	0	N.D.
15	THF instead of toluene	32	82
16	CH ₂ Cl ₂ instead of toluene	57	32
17	EtOAc instead of toluene	50	52
18	At 10 °C	44	89
19	At 0 °C	14	89

Reaction conditions: **S19** (0.10 mmol, 1.0 equiv.), **C2** (0.15 mmol, 1.5 equiv.), CuBr (0.010 mmol, 10 mol%), **L2** (0.015 mmol, 15 mol%), and Cs₂CO₃ (0.30 mmol, 3.0 equiv.) in toluene (4.0 mL) at r.t. for 4 d under argon. The yields are based on ³¹P NMR analysis of the crude product using PPh₃ as an internal standard. The e.e. values are based on HPLC analysis. N.D., not determined.

Supplementary Table $5 \perp$ Reaction condition optimization with H-phosphinate S19 and (3-bromoprop-1-yn-1-yl)triisopropylsilane C15

Entry	Variations	Yield (%)	E.e. (%)
1	None	60	90
2	Without CuTc	8	0
3	Without L2	33	0
4	Without Cs ₂ CO ₃	0	N.D.
5	Without CuTc and L2	15	0
6	CuI instead of CuTc	30	70
7	Cu(MeCN) ₄ BF ₄ instead of CuTc	26	63
8	CuOAc instead of CuTc	32	81
9	L4 instead of L2	6	16
10	L8 instead of L2	21	8
11	L12 instead of L2	41	80
12	K ₂ CO ₃ instead of Cs ₂ CO ₃	5	51
13	K ₃ PO ₄ instead of Cs ₂ CO ₃	4	53
14	NaO'Bu instead of Cs ₂ CO ₃	0	N.D.
15	THF instead of MTBE	40	70
16	toluene instead of MTBE	32	81
17	Without H ₂ O	6	77
18	1.0 equiv. H_2O	8	71
19	$3.0 \text{ equiv. H}_2\text{O}$	70	85
20	4.0 equiv. H_2O	72	80

Reaction conditions: S19 (0.12 mmol, 1.2 equiv.), C15 (0.10 mmol, 1.0 equiv.), CuTc (0.010 mmol, 10 mol%), L2 (0.015 mmol, 15 mol%), $\rm H_2O$ (0.20 mmol, 2.0 equiv.), and $\rm Cs_2CO_3$ (0.20 mmol, 2.0 equiv.) in MTBE (4.0 mL) at r.t. for 72 h under argon. The yields are based on $\rm ^{31}P$ NMR analysis of the crude product using PPh₃ as an internal standard. The e.e. values are based on chiral HPLC analysis. N.D., not determined.

Supplementary Table $6 \mid$ Reaction condition optimization with H-phosphinate S19 and O-benzoylhydroxylamines N1

Entry	Variations	Yield (%)	E.e. (%)
1	None	40	85
2	Without Cu(OAc) ₂	0	N.D.
3	Without L8	trace	N.D.
4	Without Cs ₂ CO ₃	0	N.D.
5	Without Cu(OAc) ₂ and L8	0	N.D.
6	CuI instead of Cu(OAc) ₂	11	60
7	CuCN instead of Cu(OAc) ₂	15	71
8	L4 instead of L8	21	72
9	L10 instead of L8	14	0
10	L13 instead of L8	16	5
11	Na ₂ CO ₃ instead of Cs ₂ CO ₃	0	N.D.
12	K ₃ PO ₄ instead of Cs ₂ CO ₃	0	N.D.
13	NaO'Bu instead of Cs ₂ CO ₃	0	N.D.
14	EtOAc instead of toluene	17	70
15	MTBE instead of toluene	25	80
16	DME instead of toluene	18	78
17	Without H ₂ O	6	56
18	1.0 equiv. H ₂ O	10	81
19	4.0 equiv. H_2O	24	82

Reaction conditions: **S19** (0.15 mmol, 1.5 equiv.), **N1** (0.10 mmol, 1.0 equiv.), Cu(OAc)₂ (0.010 mmol, 10 mol%), **L8** (0.015 mmol, 15 mol%), H₂O (0.20 mmol, 2.0 equiv.), and Cs₂CO₃ (0.30 mmol, 3.0 equiv.) in toluene (2.0 mL) at r.t. for 72 h under argon. The yields are based on ³¹P NMR analysis of the crude product using PPh₃ as an internal standard. The e.e. values are based on chiral HPLC analysis. N.D., not determined.

Supplementary Table 7 | Reaction condition optimization with sulfenamide S20 and (3-bromoprop-1-yn-1-yl)trimethylsilane C16: screening of different ligands

Entry	${f L}$	Yield (%)	E.e. (%)
1	L3	95	-98
2	L4	97	98
3	L5	96	70
4	L8	86	86
5	L9	97	94
6	L10	88	94
7	L12	81	5
8	L13	51	0
9	L14	98	86
10	L15	75	95

11	L16	94	71
12	L17	48	80
13	L18	27	15
14	L19	49	20
15	L20	50	0
16	L21	35	0
17	L22	54	0
18	L23	42	0

Reaction conditions: S20 (0.20 mmol, 1.0 equiv.), C16 (0.30 mmol, 1.5 equiv.), CuI (0.02 mmol, 10 mol%), L (0.03 mmol, 15 mol%), and K_3PO_4 (0.60 mmol, 3.0 equiv.) in CH_2Cl_2 (2.0 mL) at r.t. for 72 h under argon. The yields are based on 1H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis.

Supplementary Table 8 | Reaction condition optimization with sulfenamide S20 and (3-bromoprop-1-yn-1-yl)trimethylsilane C16: screening of copper, base, and solvent

Entry	[Cu]	Base	Solvent	Yield (%)	E.e. (%)
1	CuI	K ₃ PO ₄	CH ₂ Cl ₂	97	98
2	CuI	Cs_2CO_3	CH_2Cl_2	90	97
3	CuI	K_2CO_3	CH_2Cl_2	90	98
4	CuI	^t BuOK	CH_2Cl_2	0	N.D.
5	$CuBH_4(PPh_3)_2$	K_3PO_4	CH_2Cl_2	87	86
6	CuCN	K_3PO_4	CH_2Cl_2	90	98
7	$Cu(OTf)_2$	K_3PO_4	CH_2Cl_2	93	97
8	CuBr	K_3PO_4	CH_2Cl_2	92	98
9	CuI	K_3PO_4	MeCN	88	86
10	CuI	K_3PO_4	EtOAc	89	94
11	CuI	K_3PO_4	MTBE	90	94
12	CuI	K_3PO_4	PhCF ₃	90	96
13	CuI	K_3PO_4	DMF	30	19

Reaction conditions: **\$20** (0.20 mmol, 1.0 equiv.), **C16** (0.30 mmol, 1.5 equiv.), [Cu] (0.02 mmol, 10 mol%), **L4** (0.03 mmol, 15 mol%), and base (0.60 mmol, 3.0 equiv.) in solvent (2.0 mL) at r.t. for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. N.D., not determined.

Supplementary Table 9 | Reaction condition optimization with sulfenamide S20 and (3-bromoprop-1-yn-1-yl)trimethylsilane C16: screening of ratio and temperature

Entry	C16 (equiv.)	X	\mathbf{y}	z	Yield (%)	E.e. (%)
1	1.5	10	15	3.0	97	98
2	1.2	10	15	3.0	95	98
3	1.0	10	15	3.0	88	98
4	1.2	10	15	1.5	72	98
5	1.2	10	15	1.0	68	98
6	1.2	5	7.5	3.0	96	98
7	1.2	2.5	3.75	3.0	54	90
8 ^a	1.2	5	7.5	3.0	96	96
9 ^b	1.2	5	7.5	3.0	80	98

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **C16**, CuI (x mol%), **L4** (y mol%), and K₃PO₄ (z equiv.) in CH₂Cl₂ (2.0 mL) at r.t. for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. ^aConducted at 40 °C. ^bConducted at 10 °C.

Supplementary Table $10 \perp$ Reaction condition optimization with sulfenamide S20 and benzyl bromide C2: screening of ligand

Entry	L	Yield (%)	E.e. (%)
1	L4	89	21
2	L8	68	70
3	L9	95	93
4	L5	86	71
5	L10	89	78

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **C2** (0.24 mmol, 1.2 equiv.), CuI (0.010 mmol, 5.0 mol%), **L** (0.010 mmol, 7.5 mol%), and K_3PO_4 (0.60 mmol, 3.0 equiv.) in CH₂Cl₂ (2.0 mL) at r.t. for 8 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis.

Supplementary Table 11 | Reaction condition optimization with sulfenamide S20 and cyclohexyl iodide C31: screening of ligand and solvent

Entry	${f L}$	Solvent	Yield (%)	E.e. (%)
1	L4	CH ₂ Cl ₂	0	N.D.
2	L4	MeCN	0	N.D.
3	L4	EtOAc	21	45
4	L4	PhF	12	66
5	L4	Cyclohexane	62	72
6	L4	$^{i}\mathrm{Pr}_{2}\mathrm{O}$	60	70
7	L4	MTBE	75	73
8	L4	DME	trace	N.D.
9	L4	THF	23	68
10	L5	MTBE	95	92
11	L8	MTBE	86	88
12	L10	MTBE	82	89
13	L14	MTBE	80	83

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **C31** (0.30 mmol, 1.5 equiv.), CuI (0.02 mmol, 10 mol%), L (0.03 mmol, 15 mol%), MesN₂BF₄ (0.40 mmol, 2.0 equiv.), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in solvent (4.0 mL) at r.t. for 48 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. N.D., not determined.

Supplementary Table 12 | Reaction condition optimization with sulfenamide S1 and benzenediazonium tetrafluoroborate C19: screening of ligand and solvent

Entry	L	Solvent	Yield (%)	E.e. (%)
1	L4	PhF	15	-81
2	L8	PhF	18	-83
3	L5	PhF	20	-75
4	L3	PhF	21	86
5	L10	PhF	16	-81
6	L3	MeCN	21	28
7	L3	MTBE	6	0
8 ^a	L3	PhF	22	91
$9^{a,b}$	L3	PhF	40	94
$10^{a,c}$	L3	PhF	55	95

Reaction conditions: **S1** (0.20 mmol, 1.0 equiv.), **C19** (0.30 mmol, 1.5 equiv.), CuI (0.02 mmol, 10 mol%), **L** (0.03 mmol, 15 mol%), and K_3PO_4 (0.60 mmol, 3.0 equiv.) in solvent (2.0 mL) at r.t. for 24 h under argon. The yields are based on 1H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. aCuI , ligand, K_3PO_4 , and PhF were premixed at 50 oC under Ar for 1 h. bCuI (0.04 mmol, 20 mol%), **L3** (0.06 mmol, 30 mol%). oCuI (0.06 mmol, 30 mol%), **L3** (0.09 mmol, 45 mol%).

Supplementary Table 13 | Reaction condition optimization with sulfenamide S20 and *tert*-butyl hydroperoxide O1: screening of solvent and temperature

Entry	Solvent	Yield (%)	E.e. (%)
1	CH ₂ Cl ₂	70	52
2	EtOAc	70	34
3	PhF	83	60
4	MTBE	33	36
5	MeCN	87	65
6^{a}	MeCN	90	90
7 ^b	MeCN	97	96

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.), CuI (0.010 mmol, 5.0 mol%), **L4** (0.015 mmol, 7.5 mol%), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in solvent (2.0 mL) at r.t. for 12 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. ^aConducted at 0 °C for 18 h. ^bConducted at -10 °C for 36 h.

Supplementary Table 14 | Reaction condition optimization with sulfenamide S20 and *O*-benzoylhydroxylamines N9: screening of solvent

Entry	Solvent	Yield (%)	E.e. (%)
1	CH ₂ Cl ₂	71	85
2	EtOAc	93	98
3	PhH	48	95
4	MTBE	87	98
5	CHCl ₃	75	74
6	<i>n</i> -Hexane	0	N.D.
7	DMF	66	98
8	МеОН	6	96

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **N9** (0.30 mmol, 1.5 equiv.), CuI (0.010 mmol, 5.0 mol%), **L4** (0.015 mmol, 7.5 mol%), and K₃PO₄ (0.60 mmol, 3.0 equiv.) in solvent (2.0 mL) for 48 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. N.D., not determined.

Supplementary Table 15 | Control experiments with sulfenamide S20 and 3-(trimethylsilyl)-propargyl bromide C16:

Entry	CuI	L4	K_3PO_4	Yield (%)	E.e. (%)
1	V	V		96	98
2	$\sqrt{}$	×	$\sqrt{}$	0	N.D.
3^a	×	$\sqrt{}$	$\sqrt{}$	67	0
4	$\sqrt{}$	$\sqrt{}$	×	0	N.D.
5	×	×	$\sqrt{}$	0	N.D.

Reaction conditions: **S20** (0.20 mmol, 1.0 equiv.), **C16** (0.24 mmol, 1.2 equiv.), CuI (0.010 mmol, 5.0 mol%), **L4** (0.015 mmol, 7.5 mol%), and K₃PO₄ (0.60 mmol, 3.0 equiv.) for 72 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. ^aThis result may be caused by quaternary ammonium salt in situ generated from **L3** and **C16**, which work as phase-transfer catalysis to promote the reaction, and a similar mechanism was reported in the previous literature⁴⁶. n.d., not determined.

Supplementary Table 16 \perp Control experiments with sulfenamide S20 and bromoacetonitrile C24:

Entry	CuI	L4	K ₃ PO ₄	Yield (%)	E.e. (%)
1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	90	97
2	$\sqrt{}$	×	\checkmark	0	N.D.
3	×	\checkmark	$\sqrt{}$	0	N.D.
4	$\sqrt{}$	$\sqrt{}$	×	0	N.D.
5	×	×	$\sqrt{}$	0	N.D.

Reaction conditions: S20 (0.20 mmol, 1.0 equiv.), C24 (0.30 mmol, 1.5 equiv.), C1 (0.010 mmol, 5.0 mol%), L4 (0.015 mmol, 7.5 mol%), and K_3PO_4 (0.60 mmol, 3.0 equiv.) in CH_2Cl_2 (2.0 mL) for 48 h under argon. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard. The e.e. values are based on HPLC analysis. N.D., not determined.

.

3. General Information

Most of the reactions were carried out under an argon atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. CH₂Cl₂, THF, and DMF were purified and dried using a solventpurification system that contained activated alumina under argon. CuI was purchased from Sigma-Aldrich. K₃PO₄ was purchased from J&K Scientific. Anhydrous CH₂Cl₂, MeCN, EtOAc, MTBE, and fluorobenzene were purchased from J&K Scientific. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). As the eluent, the petroleum ether (PE), ethyl acetate (EtOAc), dichloromethane (CH₂Cl₂), and methanol (CH₃OH) were purchased from Shanghai Titan Scientific Co. Ltd without further purification. Visualization on TLC was achieved by the use of UV light (254 nm), iodine on silica gel, or basic KMnO4 indicator. NMR spectra were recorded on Bruker DRX-400 at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, and 375 MHz for ¹⁹F NMR, respectively, in CDCl₃, with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quart; p, pentet, m, multiplet), coupling constant (Hz), integration. Data for 13 C NMR are reported in terms of chemical shift (δ , ppm). Mass spectrometric data were obtained using Bruker Apex IV RTMS. Enantiomeric excess (e.e.) was determined using Agilent highperformance liquid chromatography (HPLC) with a Hatachi detector (at appropriate wavelength) or SHIMADZU LC-20AD with SPD-20AV detector or Waters instrument. Column conditions are reported in the experimental section below. X-ray diffraction was measured on a 'Bruker APEX-II CCD' diffractometer with Cu–Kα or Mo–Kα radiation.

4. Synthesis of γ-aminocarbonyl alcohols, H-phosphinates, and sulfenamides

General procedure 1:

According to the literature reported procedure⁴⁷ with slight modification. A solution of KOH (1.12 g, 20 mmol) in MeOH (20 mL) was added to a stirred solution of methyl malonate (20 mmol) in MeOH (10 mL). The reaction mixture was stirred at r.t. for 24 h and then diluted with H₂O (50 mL) and extracted with EtOAc (3 x 20 mL). The aqueous layer was acidified to pH ca. 1-2 with 6 N HCl and extracted with CH₂Cl₂ (6 x 50 mL). The combined CH₂Cl₂ extracts were dried (MgSO₄) and concentrated under reduced pressure to provide crude acid which was dissolved in CH₂Cl₂ (50 mL). Oxalyl chloride (7.62 g, 60 mmol) was added dropwise, followed by several drops of anhydrous DMF. The resulting mixture was stirred at r.t. for 3 h and then the reaction mixture was concentrated under reduced pressure to yield crude acid chloride, which was used in the next step without further purification.

Crude acid chloride (20 mmol) in anhydrous CH_2Cl_2 (20 mL) was dissolved in anhydrous CH_2Cl_2 (20 mL) and the resultant solution was cooled to 0 °C. Dry NEt₃ (3.04 g, 30 mmol) and DAMP (244.4 mg, 10 mol%) were added, followed by a solution of amine (20 mmol) in dry CH_2Cl_2 (20 mL). The reaction mixture was stirred at r.t. for 16 h. Upon completion (monitored by TLC), the reaction was quenched with H_2O , and extracted with CH_2Cl_2 three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired amide product.

According to the literature reported procedure⁴⁸ with slight modification. Sodium borohydride (3.0 equiv.) was added to a suspension of the amide (1.0 equiv.) and calcium chloride (0 or 1.5 equiv.) in MeOH (0.2 M) at 0 °C and the resulting mixture gradually warmed to r.t. and stirred overnight. Upon completion (monitored by TLC), the reaction was quenched with sat. NH4Cl (aq.), and extracted with CH₂Cl₂ three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired alcohol product.

General procedure 2:

To a solution of Ciba—Geigy reagent ethyl (1,1-diethoxyethyl)-*H*-phosphinate (4.2 g, 20 mmol, 1.0 equiv.) in anhydrous MeCN (50 mL) was added R–X (24.0 mmol, 1.2 equiv.) and Cs₂CO₃ (1.5 equiv.) at 0 °C under an argon atmosphere. Then, the reaction mixture was stirred at r.t. for

overnight. Upon completion (monitored by TLC), the reaction was quenched with H_2O and extracted with EtOAc three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the alkylation phosphinate.

According to the literature reported procedure⁴⁹ with slight modification. To a solution of alkylation phosphinate (8.0 mmol) in 20 mL of 10% ethanol in dichloromethane was added chlorotrimethylsilane (12.0 mmol, 1.5 equiv.) under Ar and the clear solution was stirred for 16 h at r.t.. The solvent was removed in vacuo and the resulting oil was purified by column chromatography on silica gel to afford the desired product.

General procedure 3:

According to the literature reported procedure 50 with slight modification. To a solution of thiol (10.0 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (0.2 M, 50 mL) was added *N*-chlorosuccinimide (NCS) (11.0 mmol, 1.1 equiv.) slowly at 0 °C under an argon atmosphere. Then, the mixture was stirred at r.t. for 0.5 h. After that, triethylamine (11.0 mmol, 1.1 equiv.) was slowly added into the mixture under an ice bath, and the reaction mixture was stirred at r.t. overnight. Upon completion (monitored by TLC), the reaction was quenched with sat. NaHCO₃ aqueous solution and extracted with EtOAc three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was directly used in the next step without further purification.

To a solution of amide (1.0 equiv.) in anhydrous THF (0.33 M) was added sodium hydride (60% in mineral oil, 1.1 equiv.) slowly at 0 $^{\circ}$ C under an argon atmosphere. The reaction mixture was stirred at r.t. for 0.5 h. To the resulting solution was added the crude residue (1.0 equiv.) slowly at 0 $^{\circ}$ C, and then the reaction mixture was stirred at r.t. overnight. Upon completion (monitored by TLC), the reaction was quenched with sat. NaHCO₃ aqueous solution, and extracted with EtOAc three times (3 \times 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure 4:

According to the literature reported procedure⁵¹ with slight modification. To a solution of pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.) in anhydrous THF (100 mL) was added sodium hydride (60% in mineral oil, 1.20 g, 30.0 mmol, 3.0 equiv.) slowly at 0 °C under an argon atmosphere. The reaction mixture was stirred at r.t. for 0.5 h. After that, disulfide (10.0 mmol, 1.0 equiv.) was slowly added into the mixture at 0 °C, and then the reaction mixture was stirred at r.t. overnight. Upon completion (monitored by TLC), the reaction was quenched with a sat. NH₄Cl aqueous solution and extracted with EtOAc three times (3 \times 50 mL). The combined organic layers were washed

with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

General procedure 5:

According to the literature reported procedure⁵² with slight modification. To a solution of disulfides (10 mmol, 1.0 equiv.) in DCE (50 mL) was added *N*-bromosuccinimide (NBS, 10.0 mmol, 1.0 equiv.) at r.t. under an argon atmosphere. The reaction mixture was refluxed overnight. Upon completion (monitored by TLC), the reaction was cooled to r.t., quenched with sat. NaHCO₃ aqueous solution, and extracted with EtOAc three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was directly used in the next step without further purification.

To a solution of pivalamide (1.0 equiv.) in anhydrous THF (0.33 M) was added sodium hydride (60% in mineral oil, 1.1 equiv.) slowly at 0 °C under an argon atmosphere. The reaction mixture was stirred at r.t. for 0.5 h. After that, to the resulting solution was added the crude product (1.0 equiv.) slowly at 0 °C. The reaction mixture was stirred at r.t. overnight. Upon completion (monitored by TLC), the reaction was quenched with sat. NH₄Cl aqueous solution and extracted with EtOAc three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel to afford the desired product.

N-(*p*-Tolylthio)benzamide (S1)

According to **General procedure 3** with methyl 4-methylbenzenethiol (1.24 g, 10 mmol, 1.0 equiv.) and benzamide (1.09 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.68 g, 69% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.78 (m, 2H), 7.59 – 7.50 (m, 1H), 7.48 – 7.37 (m, 3H), 7.34 – 7.30 (m, 2H), 7.13 – 7.09 (m, 2H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 137.5, 135.1, 133.4, 132.3, 129.8, 128.7, 127.8, 127.2, 21.2.

2-(Hydroxymethyl)-1-(indolin-1-yl)-3-methylbutan-1-one (S2)

According to **General procedure 1** with 2-isopropylmalonic acid dimethyl ester (1.74 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.05 g, 45% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, J = 8.0 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.06 – 6.99 (m, 1H), 4.24 – 4.07 (m, 2H), 3.96 (dd, J = 10.9, 7.3 Hz, 1H), 3.84 (dd, J = 10.9, 3.4 Hz, 1H), 3.17 (t, J = 8.5 Hz, 2H), 2.90 (s, 1H), 2.63 – 2.54 (m, 1H), 2.26 – 2.11 (m, 1H), 1.08 – 0.94 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 142.8, 131.7, 127.6, 124.7, 124.1, 117.7, 62.2, 53.3, 48.8, 28.3, 28.0, 21.4, 20.1.

HRMS (ESI) m/z calcd. for $C_{14}H_{20}NO_2$ [M + H]⁺ 234.1489, found 234.1489.

3-Ethyl-2-(hydroxymethyl)-1-(indolin-1-yl)pentan-1-one (S3)

According to **General procedure 1** with dimethyl 2-(pentan-3-yl)malonate (2.02 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.05 g, 40% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 7.24 – 7.14 (m, 2H), 7.09 – 6.93 (m, 1H), 4.28 – 4.16 (m, 1H), 4.16 – 4.06 (m, 1H), 4.03 – 3.91 (m, 1H), 3.78 (dt, J = 11.8, 3.7 Hz, 1H), 3.17 (q, J = 7.6, 7.0 Hz, 2H), 3.01 – 2.60 (m, 2H), 1.90 – 1.79 (m, 1H), 1.68 – 1.56 (m, 1H), 1.46 – 1.28 (m, 3H), 0.95 – 0.81 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 142.9, 131.6, 127.6, 124.7, 124.1, 117.7, 61.7, 48.9, 48.6, 40.0, 28.1, 23.2, 21.3, 11.6, 10.1.

HRMS (ESI) m/z calcd. for $C_{16}H_{24}NO_2$ [M + H]⁺ 262.1802, found 262.1802.

3-Butyl-2-(hydroxymethyl)-1-(indolin-1-yl)heptan-1-one (S4)

According to **General procedure 1** with dimethyl 2-(nonan-5-yl)malonate (2.58 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a colorless oil (0.95 g, 30% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.08 – 6.99 (m, 1H), 4.26 – 4.15 (m, 1H), 4.15 – 4.06 (m, 1H), 4.04 – 3.96 (m, 1H), 3.77 (dd, J = 11.0, 3.3 Hz, 1H), 3.25 – 3.11 (m, 2H), 2.86 (td, J = 7.8, 3.4 Hz, 1H), 2.77 (s, 1H), 1.98 – 1.85 (m, 1H), 1.59 – 1.47 (m, 1H), 1.45 – 1.06 (m, 11H), 0.93 – 0.82 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 143.0, 131.6, 127.6, 124.7, 124.1, 117.7, 61.5, 49.7, 48.5, 37.5, 31.2, 29.5, 29.3, 28.5, 28.2, 23.2, 23.1, 14.2.

HRMS (ESI) m/z calcd. for $C_{20}H_{32}NO_2$ [M + H]⁺ 318.2428, found 318.2428.

3-Allyl-2-(hydroxymethyl)-1-(indolin-1-yl)hex-5-en-1-one (S5)

According to General procedure 1 with dimethyl 2-(hepta-1,6-dien-4-yl)malonate (2.26 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.14 g, 40% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.25 – 7.14 (m, 2H), 7.08 – 6.99 (m, 1H), 5.86 – 5.70 (m, 2H), 5.15 – 4.98 (m, 4H), 4.20 – 4.04 (m, 2H), 3.99 (dd, J = 11.0, 7.3 Hz, 1H), 3.84 (dd, J = 11.0, 3.4 Hz, 1H), 3.15 (t, J = 8.4 Hz, 2H), 2.89 – 2.79 (m, 1H), 2.38 (dd, J = 12.7, 6.0 Hz, 1H), 2.20 – 2.07 (m, 4H).

¹³C **NMR** (100 MHz, CDCl₃) δ 173.9, 142.8, 136.4, 135.7, 131.7, 127.6, 124.7, 124.2, 117.7, 117.5, 117.3, 61.5, 48.6(2), 48.5(7), 37.1, 35.6, 33.9, 28.0.

HRMS (ESI) m/z calcd. for $C_{18}H_{24}NO_2$ [M + H]⁺ 286.1802, found 286.1802.

2-Cyclopentyl-3-hydroxy-1-(indolin-1-yl)propan-1-one (S6)

According to **General procedure 1** with dimethyl 2-cyclopentylmalonate (2.0 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (0.91 g, 35% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.1 Hz, 1H), 7.21 – 7.11 (m, 2H), 7.07 – 6.93 (m, 1H), 4.23 (dt, J = 10.2, 8.3 Hz, 1H), 4.17 – 4.06 (m, 1H), 3.93 (dd, J = 10.7, 7.7 Hz, 1H), 3.83 (dd, J = 10.7, 3.6 Hz, 1H), 3.14 (t, J = 8.5 Hz, 2H), 2.98 (s, 1H), 2.77 – 2.68 (m, 1H), 2.30 – 2.18 (m, 1H), 1.94 – 1.77 (m, 2H), 1.71 – 1.48 (m, 4H), 1.26 – 1.16 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 142.8, 131.8, 127.6, 124.7, 124.1, 117.6, 63.8, 52.1, 48.8, 40.3, 31.3, 30.6, 28.0, 24.9, 24.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}NO_2 [M + H]^+ 260.1645$, found 260.1645.

2-Cyclohexyl-3-hydroxy-1-(indolin-1-yl)propan-1-one (S7)

According to **General procedure 1** with dimethyl 2-cyclohexylmalonate (2.14 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.18 g, 43% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 7.24 – 7.14 (m, 2H), 7.07 – 6.99 (m, 1H), 4.22 – 4.06 (m, 2H), 3.97 (dd, J = 10.9, 7.1 Hz, 1H), 3.83 (dd, J = 10.8, 3.3 Hz, 1H), 3.16 (t, J = 8.5 Hz, 2H), 3.02 (s, 1H), 2.69 – 2.58 (m, 1H), 1.95 – 1.83 (m, 2H), 1.79 – 1.60 (m, 4H), 1.29 – 0.95 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 142.7, 131.7, 127.6, 124.7, 124.1, 117.6, 61.9, 52.4, 48.8, 37.7, 31.8, 30.5, 28.0, 26.4, 26.3.

HRMS (ESI) m/z calcd. for $C_{17}H_{24}NO_2 [M + H]^+ 274.1802$, found 274.1802.

tert-Butyl 4-(3-hydroxy-1-(indolin-1-yl)-1-oxopropan-2-yl)piperidine-1-carboxylate (S8)

According to **General procedure 1** with dimethyl 2-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)malonate (3.15 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 4/1) to afford the product as a colorless oil (1.47 g, 37% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.8 Hz, 1H), 7.23 – 7.17 (m, 2H), 7.13 – 6.94 (m, 1H), 4.26 – 4.04 (m, 4H), 3.99 – 3.91 (m, 1H), 3.90 – 3.82 (m, 1H), 3.17 (t, J = 8.5 Hz, 2H), 3.07 (s, 1H), 2.75 – 2.58 (m, 3H), 2.10 – 2.02 (m, 1H), 1.89 – 1.84 (m, 1H), 1.71 – 1.63 (m, 1H), 1.44 (s, 9H), 1.30 – 1.15 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 154.8, 142.5, 131.7, 127.6, 124.8, 124.4, 117.6, 79.6, 61.6, 51.7, 48.8, 44.98 – 42.61 (br m), 36.0, 30.7, 29.7, 28.6, 28.0.

HRMS (ESI) m/z calcd. for $C_{21}H_{30}N_2NaO_4$ [M + Na]⁺ 397.2098, found 397.2097.

3-Hydroxy-1-(indolin-1-yl)-2-(tetrahydro-2H-pyran-4-yl)propan-1-one (S9)

According to **General procedure 1** with dimethyl 2-(tetrahydro-2H-pyran-4-yl)malonate (2.16 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 4/1) to afford the product as a colorless oil (0.41 g, 15% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.0 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.09 – 6.94 (m, 1H), 4.20 (dt, J = 10.1, 8.3 Hz, 1H), 4.09 (dt, J = 10.0, 8.5 Hz, 1H), 3.99 – 3.81 (m, 4H), 3.43 – 3.24 (m, 3H), 3.16 (t, J = 8.5 Hz, 2H), 2.72 – 2.61 (m, 1H), 2.16 – 2.09 (m, 1H), 1.78 – 1.71 (m, 1H), 1.63 – 1.55 (m, 1H), 1.46 – 1.33 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 142.5, 131.7, 127.4, 124.7, 124.1, 117.5, 67.9, 67.8, 61.5, 52.1, 48.7, 35.0, 31.3, 30.6, 27.8.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}NO_3 [M + H]^+ 276.1594$, found 276.1595.

2-(4,4-Difluorocyclohexyl)-3-hydroxy-1-(indolin-1-yl)propan-1-one (S10)

According to **General procedure 1** with dimethyl 2-(4,4-difluorocyclohexyl)malonate (2.50 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.55 g, 50% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 7.7 Hz, 1H), 7.22 – 7.15 (m, 2H), 7.09 – 6.95 (m, 1H), 4.19 (dt, J = 10.1, 8.4 Hz, 1H), 4.07 (dt, J = 10.0, 8.5 Hz, 1H), 3.91 (dt, J = 10.7, 6.8 Hz, 1H), 3.83 (dt, J = 10.9, 3.2 Hz, 1H), 3.24 (s, 1H), 3.16 (t, J = 8.5 Hz, 2H), 2.70 – 2.60 (m, 1H), 2.12 – 1.92 (m, 4H), 1.83 – 1.62 (m, 3H), 1.44 – 1.27 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 142.5, 131.8, 127.6, 124.8, 124.4, 123.3 (dd, J = 242.7, 238.9 Hz), 117.6, 62.0, 51.2 (d, J = 2.3 Hz), 48.8, 35.7 (d, J = 1.5 Hz), 33.5 (ddd, J = 25.7, 22.7, 10.3 Hz), 27.9, 27.6 (d, J = 9.8 Hz), 26.4 (d, J = 10.0 Hz).

¹⁹**F NMR** (375 MHz, CDCl₃) δ –91.54 (d, J = 235.3 Hz), –102.90 (d, J = 235.6 Hz). **HRMS** (ESI) m/z calcd. for C₁₇H₂₂F₂NO₂ [M + H]⁺ 310.1613, found 310.1612.

3-Hydroxy-1-(indolin-1-yl)-2-(4-(trifluoromethyl)cyclohexyl)propan-1-one (S11)

According to **General procedure 1** with dimethyl 2-(4-(trifluoromethyl)cyclohexyl)malonate (2.82 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 7/1) to afford the product as a white solid (1.33 g, 39% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.07 – 7.00 (m, 1H), 4.18 (dt, J = 10.1, 8.4 Hz, 1H), 4.14 – 4.05 (m, 1H), 3.96 (dd, J = 11.0, 7.1 Hz, 1H), 3.84 (dd, J = 10.9, 3.3 Hz, 1H), 3.17 (t, J = 8.5 Hz, 2H), 2.99 (s, 1H), 2.69 – 2.58 (m, 1H), 2.09 – 1.85 (m, 6H), 1.40 – 1.28 (m, 2H), 1.19 – 1.00 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 173.9, 142.6, 131.7, 127.7 (q, J = 278.7 Hz), 127.6, 124.8, 124.3, 117.6, 61.8, 51.9 (d, J = 2.4 Hz), 48.8, 41.9 (q, J = 26.6 Hz), 36.8, 29.9, 28.8, 28.0, 24.9 (q, J = 2.7 Hz), 24.8 (q, J = 2.7 Hz).

¹⁹**F NMR** (375 MHz, CDCl3) δ –73.88. **HRMS** (ESI) m/z calcd. for C₁₈H₂₃F₃NO₂ [M + H]⁺ 342.1675, found 342.1675.

3-Hydroxy-1-(indolin-1-yl)-2-(4-methoxycyclohexyl)propan-1-one (S12)

According to **General procedure 1** with dimethyl 2-(4-methoxycyclohexyl)malonate (2.44 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 3/1) to afford the product as a colorless oil (1.37 g, 45% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 7.23 – 7.14 (m, 2H), 7.07 – 6.97 (m, 1H), 4.22 – 4.09 (m, 2H), 3.94 (dd, J = 10.9, 6.8 Hz, 1H), 3.85 (dd, J = 10.9, 3.2 Hz, 1H), 3.46 – 3.40 (m, 1H), 3.29 (s, 3H), 3.16 (t, J = 8.5 Hz, 2H), 3.05 (s, 1H), 2.74 – 2.59 (m, 1H), 2.01 – 1.92 (m, 2H), 1.89 – 1.84 (m, 1H), 1.73 – 1.65 (m, 1H), 1.51 – 1.33 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 142.7, 131.8, 127.6, 124.8, 124.2, 117.6, 74.8, 61.8, 55.8, 51.8, 48.8, 36.8, 29.4, 29.0, 28.0, 25.6, 24.3.

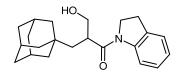
HRMS (ESI) m/z calcd. for $C_{18}H_{26}NO_3$ [M + H]⁺ 304.1907, found 304.1909.

2-Cycloheptyl-3-hydroxy-1-(indolin-1-yl)propan-1-one (S13)

According to **General procedure 1** with dimethyl 2-cycloheptylmalonate (2.28 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.10 g, 38% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.10 – 6.91 (m, 1H), 4.23 – 4.06 (m, 2H), 3.99 (dd, J = 10.9, 7.5 Hz, 1H), 3.81 (dd, J = 10.9, 3.3 Hz, 1H), 3.17 (t, J = 8.5 Hz, 2H), 2.87 (s, 1H), 2.70 (td, J = 7.9, 3.3 Hz, 1H), 2.10 – 1.99 (m, 1H), 1.96 – 1.85 (m, 1H), 1.79 – 1.68 (m, 2H), 1.66 – 1.56 (m, 3H), 1.51 – 1.39 (m, 4H), 1.37 – 1.20 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 142.9, 131.7, 127.6, 124.7, 124.1, 117.7, 62.0, 52.7, 48.7, 39.1, 33.0, 31.3, 28.4, 28.3, 28.0, 26.7, 26.4.


HRMS (ESI) m/z calcd. for $C_{18}H_{26}NO_2$ [M + H]⁺ 288.1958, found 288.1958.

2-Cyclododecyl-3-hydroxy-1-(indolin-1-yl)propan-1-one (S14)

According to **General procedure 1** with dimethyl 2-cyclododecylmalonate (2.98 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (0.72 g, 20% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.0 Hz, 1H), 7.23 – 7.13 (m, 2H), 7.06 – 6.99 (m, 1H), 4.27 – 4.17 (m, 1H), 4.15 – 4.05 (m, 1H), 3.96 (dt, J = 12.9, 6.8 Hz, 1H), 3.87 – 3.77 (m, 1H), 3.17 (t, J = 8.5 Hz, 2H), 2.90 (s, 1H), 2.82 – 2.72 (m, 1H), 2.12 – 1.99 (m, 1H), 1.66 – 1.08 (m, 22H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 142.9, 131.7, 127.6, 124.7, 124.0, 117.7, 62.3, 49.9, 48.7, 35.1, 28.1, 27.6, 25.5, 25.4, 25.3, 25.0, 23.2, 23.1(0), 23.0(6), 23.0, 22.5, 20.6. **HRMS** (ESI) m/z calcd. for C₂₃H₃₆NO₂ [M + H]⁺ 358.2741, found 358.2742.

3-(Adamantan-1-yl)-2-(hydroxymethyl)-1-(indolin-1-yl)propan-1-one (S15)

According to **General procedure 1** with dimethyl 2-((adamantan-1-yl)methyl)malonate (2.80 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (0.34 g, 10% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.0 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.05 – 6.97 (m, 1H), 4.42 – 4.28 (m, 1H), 4.20 – 4.08 (m, 1H), 3.77 (td, J = 9.7, 8.5, 4.2 Hz, 1H), 3.71 – 3.63 (m, 1H), 3.16 (t, J = 8.5 Hz, 2H), 3.03 – 2.89 (m, 2H), 1.96 – 1.89 (m, 3H), 1.82 – 1.73 (m, 1H), 1.72 – 1.64 (m, 3H), 1.62 – 1.48 (m, 6H), 1.45 – 1.36 (m, 3H), 1.14 (dd, J = 14.3, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 143.2, 131.8, 127.6, 124.7, 123.9, 117.6, 66.2, 48.5, 43.4, 43.0, 41.6, 37.1, 32.7, 28.7, 28.1.

HRMS (ESI) m/z calcd. for $C_{22}H_{30}NO_2$ [M + H]⁺ 340.2271, found 340.2271.

2-(Hydroxymethyl)-1-(indolin-1-yl)-3,3-dimethylbutan-1-one (S16)

According to **General procedure 1** with dimethyl 2-neopentylmalonate (2.02 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.17 g, 47% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.1 Hz, 1H), 7.22 – 7.12 (m, 2H), 7.06 – 6.91 (m, 1H), 4.25 (dt, J = 10.0, 8.0 Hz, 1H), 4.17 – 4.05 (m, 2H), 3.79 (dd, J = 10.3, 3.8 Hz, 1H), 3.19 – 3.05 (m, 2H), 2.86 – 2.44 (m, 2H), 1.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 143.0, 131.9, 127.4, 124.7, 123.8, 117.6, 62.2, 56.0, 49.3, 33.5, 28.5, 28.0.

HRMS (ESI) m/z calcd. for $C_{15}H_{22}NO_2$ [M + H]⁺ 248.1645, found 248.1645.

3-Hydroxy-1-(indolin-1-yl)-2-phenylpropan-1-one (S17)

According to General procedure 1 with dimethyl 2-phenylmalonate (2.08 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.07 g, 40% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (d, J = 8.1 Hz, 1H), 7.37 – 7.25 (m, 5H), 7.24 – 7.18 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.05 – 6.98 (m, 1H), 4.26 – 4.14 (m, 1H), 4.10 – 3.95 (m, 2H), 3.84 – 3.75 (m, 1H), 3.61 (td, J = 10.4, 6.6 Hz, 1H), 3.19 (s, 1H), 3.12 – 3.02 (m, 1H), 2.94 (ddd, J = 16.4, 10.5, 6.3 Hz, 1H).

¹³C **NMR** (100 MHz, CDCl₃) δ 170.9, 143.0, 135.5, 131.3, 129.2, 128.4, 127.8, 127.6, 124.7, 124.2, 117.4, 65.8, 54.9, 47.7, 28.0.

HRMS (ESI) m/z calcd. for $C_{17}H_{18}NO_2$ [M + H]⁺ 268.1332, found 268.1332.

1-(3,3-Dimethylindolin-1-yl)-2-(hydroxymethyl)-3-methylbutan-1-one (S18)

According to **General procedure 1** with 2-isopropylmalonic acid dimethyl ester (1.74 g, 10 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 7/1) to afford the product as a white solid (1.05 g, 40% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.1 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.19 – 7.12 (m, 1H), 7.12 – 7.04 (m, 1H), 4.03 – 3.80 (m, 4H), 2.77 (s, 1H), 2.62 – 2.51 (m, 1H), 2.29 – 2.12 (m, 1H), 1.35 (s, 6H), 1.09 – 0.95 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 141.3, 140.9, 127.7, 124.3, 121.9, 117.6, 63.4, 62.1, 53.0, 40.1, 28.6, 28.2, 28.1, 21.3, 20.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{24}NO_2$ [M + H]⁺ 262.1802, found 262.1801.

Ethyl (2-(indolin-1-yl)-2-oxoethyl)phosphinate (S19)

According to **General procedure 2** with ethyl (1,1-diethoxyethyl)-H-phosphinate (4.20 g, 20 mmol, 1.0 equiv.) and 2-chloro-1-(indolin-1-yl)ethan-1-one (4.70 g, 24.0 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 50/1) to afford the product as a white solid (1.21 g, 36% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.09 (m, 1.5H), 7.23 - 7.13 (m, 2H), 7.09 - 6.97 (m, 1H), 6.73 (t, J = 2.0 Hz, 0.5H), 4.64 - 3.67 (m, 4H), 3.50 - 2.58 (m, 4H), 1.37 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 4.0 Hz), 142.3, 131.6, 127.5, 124.7, 124.4, 117.2, 63.3 (d, J = 6.4 Hz), 48.9, 38.6 (d, J = 90.8 Hz), 27.8, 16.2 (d, J = 6.2 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 30.63.

HRMS (ESI) m/z calcd. for C₁₂H₁₇NO₃P [M + H]⁺ 254.0941, found 254.0940.

N-(*p*-Tolylthio)pivalamide (S20)

According to **General procedure 3** with 4-methylbenzenethiol (1.24 g, 10 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the product as a white solid (1.47 g, 66% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 2H), 7.12 – 7.05 (m, 3H), 2.30 (s, 3H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 137.0, 135.5, 129.7, 126.4, 39.9, 27.7, 21.1.

N-(Phenylthio)pivalamide (S21)

According to **General procedure 4** with 1,2-diphenyldisulfane (2.18 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on Al_2O_3 (PE/EtOAc = 5/1) to afford the product as a white solid (0.13 g, 6% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.25 – 7.15 (m, 3H), 6.90 (s, 1H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 179.9, 139.1, 129.1, 126.8, 125.2, 40.1, 27.9.

N-((4-(tert-Butyl)phenyl)thio)pivalamide (S22)

According to **General procedure 3** with 4-(*tert*-butyl)benzenethiol (1.66 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (1.11 g, 42% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.23 – 7.15 (m, 2H), 6.94 – 6.86 (m, 1H), 1.29 (s, 9H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.9, 150.3, 135.6, 126.2, 125.9, 40.0, 34.6, 31.4, 27.9.

N-((4-Methoxyphenyl)thio)pivalamide (S23)

According to **General procedure 3** with 4-methoxybenzenethiol (1.40 g, 10.0 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a pink solid (1.53 g, 64% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 6.88 – 6.82 (m, 3H), 3.79 (s, 3H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 179.9, 160.0, 131.6, 129.6, 114.7, 55.5, 39.9, 27.8.

N-((4-Acetamidophenyl)thio)pivalamide (S24)

According to **General procedure 3** with N-(4-mercaptophenyl)acetamide (2.51 g, 15.0 mmol, 1.0 equiv.) and pivalamide (0.76 g, 7.5 mmol, 0.5 equiv.), the reaction mixture was purified by column chromatography on Al₂O₃ (PE/EtOAc = 1/1) to afford the product as a white solid (0.60 g, 15% overall yield).

¹**H NMR** (400 MHz, CD₃OD) δ 7.52 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 2.10 (s, 3H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CD₃OD) δ 183.4, 171.6, 138.9, 135.4, 127.6, 121.6, 40.9, 27.9, 23.8. **HRMS** (ESI) m/z calcd. for C₁₃H₁₉N₂O₂S [M + H]⁺ 267.1162, found 267.1159.

N-((4-(Trifluoromethyl)phenyl)thio)pivalamide (S25)

According to **General procedure 3** with 4-(trifluoromethyl)benzenethiol (1.78 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (1.36 g, 49% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 6.87 (s, 1H), 1.33 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.8, 144.3 – 144.2 (m), 128.4 (q, J = 32.8 Hz), 126.0 (q, J = 3.8 Hz), 124.1 (d, J = 271.9 Hz), 123.4, 40.2, 27.9.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –62.48.

N-((3-Bromophenyl)thio)pivalamide (S26)

According to **General procedure 3** with 3-bromobenzenethiol ($5.00 \, \text{g}$, $26.4 \, \text{mmol}$, $1.0 \, \text{equiv.}$) and pivalamide ($2.40 \, \text{g}$, $23.8 \, \text{mmol}$, $0.9 \, \text{equiv.}$), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid ($2.51 \, \text{g}$, 33% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.19 – 7.09 (m, 2H), 6.87 (s, 1H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 179.8, 141.5, 130.5, 129.6, 127.1, 123.2, 123.1, 40.2, 27.9.

N-(*o*-Tolylthio)pivalamide (S27)

According to **General procedure 3** with 2-methylbenzenethiol (1.24 g, 10.0 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the product as a white solid (1.70 g, 76% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.02 (m, 4H), 6.76 (s, 1H), 2.32 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.0, 137.5, 133.7, 130.4, 126.7, 126.2, 123.5, 40.2, 27.9, 19.1.

N-(Naphthalen-2-ylthio)pivalamide (S28)

According to **General procedure 3** with naphthalene-2-thiol (1.6 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (1.71 g, 66% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.69 (m, 1H), 7.68 – 7.63 (m, 1H), 7.50 – 7.39 (m, 2H), 7.38 – 7.31 (m, 1H), 6.98 (s, 1H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.0, 136.4, 133.6, 132.4, 129.0, 127.9, 127.5, 126.9, 126.2, 124.0, 123.7, 40.2, 27.9.

N-(Thiophen-2-ylthio)pivalamide (S29)

According to **General procedure 3** with thiophene-2-thiol (2.32 g, 20.0 mmol, 1.0 equiv.) and pivalamide (1.66 g, 16.4 mmol, 0.82 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the product as a yellow solid (1.60 g, 37% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 5.3 Hz, 1H), 7.38 (d, J = 3.0 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.82 (s, 1H), 1.18 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.4, 136.8, 135.5, 132.2, 127.4, 39.9, 27.7.

N-(Methylthio)pivalamide (S30)

According to **General procedure 5** with 1,2-dimethyldisulfane (0.94 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a yellow solid (0.44 g, 30% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 6.45 (s, 1H), 2.41 (s, 3H), 1.22 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.1, 39.8, 27.8, 23.1.

HRMS (ESI) m/z calcd. for C₆H₁₄NOS [M + H]⁺ 148.0791, found 148.0786.

N-(Hexylthio)pivalamide (S31)

According to **General procedure 3** with hexane-1-thiol (1.18 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a yellow liquid (1.10 g, 51% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.42 (s, 1H), 2.73 (t, J = 7.4 Hz, 2H), 1.62 – 1.49 (m, 2H), 1.45 – 1.34 (m, 2H), 1.34 – 1.25 (m, 4H), 1.23 (s, 9H), 0.93 – 0.81 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 180.4, 39.7, 38.2, 31.3, 28.2, 27.6, 27.5, 22.4, 13.9.

N-(Benzylthio)pivalamide (S32)

According to **General procedure 3** with phenylmethanethiol (1.24 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a light yellow solid (1.39 g, 62% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.20 (m, 5H), 6.16 (s, 1H), 3.93 (s, 2H), 1.14 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.2, 136.3, 129.5, 128.6, 127.4, 42.0, 39.8, 27.7.

HRMS (ESI) m/z calcd. for $C_{12}H_{18}NOS$ [M + H]⁺ 224.1104, found 224.1098.

N-((6-Chlorohexyl)thio)pivalamide (S33)

According to **General procedure 3** with 6-chlorohexane-1-thiol (1.53 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a colorless liquid (1.08 g, 43% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.42 (s, 1H), 3.65 (t, J = 6.4 Hz, 1H), 2.71 (t, J = 7.4 Hz, 1H), 1.82 – 1.72 (m, 2H), 1.63 – 1.52 (m, 2H), 1.49 – 1.39 (m, 4H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.3, 45.1, 39.9, 38.5, 32.5, 27.9, 27.8, 27.5, 26.6.

HRMS (ESI) m/z calcd. for C₁₀H₂₁ClNOS [M + H]⁺ 252.1183, found 252.1177.

N-((5-Cyanopentyl)thio)pivalamide (S34)

According to **General procedure 3** with 6-mercaptohexanenitrile (1.29 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a brown liquid (0.96 g, 42% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.63 (s, 1H), 2.89 - 2.64 (m, 2H), 2.38 (t, J = 6.8 Hz, 2H), 1.80 - 1.44 (m, 6H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.5, 119.7, 39.8, 38.2, 27.7, 27.4, 26.7, 24.9, 17.0.

HRMS (ESI) m/z calcd. for C₁₁H₂₁N₂OS [M + H]⁺ 229.1369, found 229.1364.

N-((6-((tert-Butyldiphenylsilyl)oxy)hexyl)thio)pivalamide (S35)

According to **General procedure 3** with 6-((*tert*-butyldiphenylsilyl)oxy)hexane-1-thiol (3.73 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (2.07 g, 44% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.60 (m, 4H), 7.48 – 7.31 (m, 6H), 6.47 – 6.33 (m, 1H), 3.65 (t, J = 6.4 Hz, 1H), 2.71 (t, J = 7.4 Hz, 1H), 1.64 – 1.46 (m, 4H), 1.46 – 1.32 (m, 4H), 1.22 (s, 9H), 1.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.2, 135.6, 134.1, 129.6, 127.6, 63.8, 39.8, 38.4, 32.4, 28.5, 27.8, 27.6, 26.9, 25.4, 19.3.

HRMS (ESI) m/z calcd. for KC₂₇H₄₁NO₂SSi [M + K]⁺ 472.2700, found 472.2690.

N-(Isobutylthio)pivalamide (S36)

According to **General procedure 3** with 2-methylpropane-1-thiol (0.90 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (0.66 g, 35% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.37 (s, 1H), 2.63 (d, J = 6.8 Hz, 2H), 1.94 – 1.75 (m, 1H), 1.23 (s, 9H), 1.03 (d, J = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 180.3, 47. 8, 39.9, 27.8, 27.4, 22.0.

HRMS (ESI) m/z calcd. for C₉H₂₀NOS [M + H]⁺ 190.1260, found 190.1254.

N-(Cyclohexylthio)pivalamide (S37)

According to **General procedure 3** with cyclohexanethiol (1.16 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (1.12 g, 52% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.48 – 6.29 (s, 1H), 3.06 – 2.94 (m, 1H), 1.94 – 1.85 (m, 2H), 1.83 – 1.70 (m, 2H), 1.69 – 1.57 (m, 1H), 1.37 – 1.24 (m, 5H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.5, 48.6, 40.0, 30.9, 27.9, 25.9, 25.8.

tert-Butyl 4-(pivalamidothio)piperidine-1-carboxylate (S38)

According to **General procedure A** with *tert*-butyl 4-mercaptopiperidine-1-carboxylate (2.17 g, 10.0 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.68 g, 53% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.56 (s, 1H), 4.06 - 4.01 (m, 2H), 3.11 (tt, J = 10.8, 3.9 Hz, 1H), 2.85 (t, J = 12.3 Hz, 2H), 1.89 - 1.82 (m, 2H), 1.48 - 1.41 (m, 11H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.7, 154.7, 79.8, 46.4, 44.1 – 42.3 (br m), 40.0, 30.0, 28.5, 27.9.

N-(((3s,5s,7s)-Adamantan-1-yl)thio)pivalamide (S39)

According to **General procedure 3** with (3s,5s,7s)-adamantane-1-thiol (1.68 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the product as a white solid (1.34 g, 50% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 2.12 – 1.97 (m, 3H), 1.86 – 1.76 (m, 6H), 1.76 – 1.54 (m, 6H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.8, 50.8, 41.4, 40.1, 36.4, 29.5, 28.1.

HRMS (ESI) m/z calcd. for C₁₅H₂₆NOS [M + H]⁺ 268.1730, found 268.1723.

N-(((((3aR,5S,5aR,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d|pyran-5-yl)methyl)thio)pivalamide (S40)

According to **General procedure 3** with ((3aR,5S,5aR,8aS,8bR)-2,2,7,7-tetramethyl-tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methanethiol (2.76 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (1.24 g, 33% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.66 (s, 1H), 5.59 – 5.47 (m, 1H), 4.71 – 4.59 (m, 1H), 4.52 – 4.42 (m, 1H), 4.38 – 4.30 (m, 1H), 4.12 – 3.91 (m, 1H), 3.11 – 2.95 (m, 1H), 2.93 – 2.76 (m, 1H), 1.54 (s, 3H), 1.42 (s, 3H), 1.34 (s, 6H), 1.21 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.4, 109.3, 108.7, 96.7, 71.7, 70.9, 70.5, 67.9, 39.8, 39.4, 27.7, 26.2, 26.1, 25.0, 24.6.

HRMS (ESI) m/z calcd. for C₁₇H₃₀NO₆S [M + H]⁺ 376.1788, found 376.1791.

Methyl 3-(pivalamidothio)benzoate (S41)

According to **General procedure 3** with methyl 3-mercaptobenzoate (1.68 g, 10.0 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a white solid (0.37 g, 14% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.80 (m, 2H), 7.39 – 7.32 (m, 2H), 7.01 (s, 1H), 3.90 (s, 3H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.9, 166.6, 140.0, 131.0, 129.2, 128.6, 127.6, 125.0, 52.4, 40.2, 27.8.

HRMS (ESI) m/z calcd. for C₁₃H₁₈NO₃S [M + H]⁺ 268.1002, found 268.1003.

N-(Pyridin-4-ylthio)pivalamide (S42)

According to **General procedure 4** with 1,2-di(pyridin-4-yl)disulfane (2.20 g, 10.0 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on Al_2O_3 (PE/EtOAc = 3/1) to afford the product as a white solid (0.75 g, 36% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.26 (d, J = 5.4 Hz, 2H), 6.86 (d, J = 5.3 Hz, 2H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.6, 152.2, 148.7, 116.7, 40.1, 27.6.

N-((2-Methylfuran-3-yl)thio)pivalamide (S43)

According to **General procedure 3** with 2-methylfuran-3-thiol (1.14 g, 10.0 mmol, 1.0 equiv.) and pivalamide (0.91 g, 9.0 mmol, 0.9 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the product as a white solid (0.15 g, 7% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 1.9 Hz, 1H), 6.62 (s, 1H), 6.48 (d, J = 2.0 Hz, 1H), 2.49 (s, 3H), 1.18 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.8, 157.1, 140.9, 114.7, 114.4, 39.9, 27.8, 12.2.

N-((4,4,5,5,5-pentafluoropentyl)thio)pivalamide (S44)

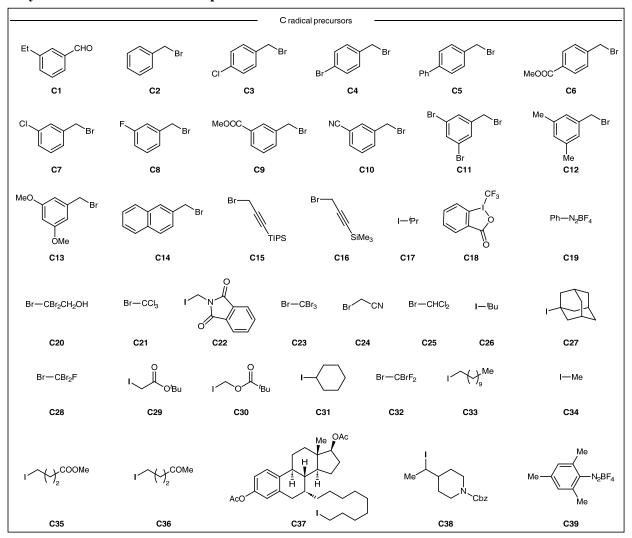
According to **General procedure 3** with 4,4,5,5,5-pentafluoropentane-1-thiol (1.94 g, 10 mmol, 1.0 equiv.) and pivalamide (1.52 g, 15.0 mmol, 1.5 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to yield the product as a yellow liquid (0.88 g, 30% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.39 (s, 1H), 2.80 (t, J = 7.0 Hz, 2H), 2.34 – 2.16 (m, 2H), 1.93 – 1.81 (m, 2H), 1.23 (s, 9H).

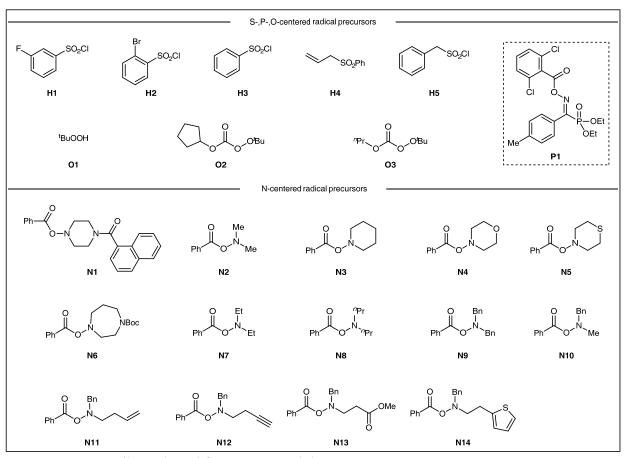
¹³C NMR (100 MHz, CDCl₃) δ 181.3, 118.9 (qt, J = 287.17 Hz, J = 34.96 Hz), 115.6 (tq, J = 251.7, J = 38.46), 39.6, 37.3, 29.0 (t, J = 21.9 Hz), 27.2, 18.5.

¹⁹F NMR (375 MHz, CDCl₃) δ -85.41, -117.94 (t, J = 18.3 Hz).

Ethyl propylphosphinate (S45)


According to **General procedure 2** with ethyl (1,1-diethoxyethyl)-*H*-phosphinate (4.20 g, 20 mmol, 1.0 equiv.) and 1-iodopropane (4.10 g, 24.0 mmol, 1.2 equiv.), the reaction mixture was purified by column chromatography on silica gel (EtOAc) to afford the product as a colorless oil (435 mg, 20% overall yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.69 (m, 0.5H), 6.44 (t, J = 2.0 Hz, 0.5H), 4.30 – 3.99 (m, 2H), 1.90 – 1.51 (m, 4H), 1.37 (t, J = 7.1 Hz, 3H), 1.09 – 1.02 (m, 3H).


¹³C **NMR** (100 MHz, CDCl₃) δ 62.3 (d, J = 6.9 Hz), 30.8 (d, J = 93.6 Hz), 16.3 (d, J = 6.1 Hz), 15.1 (d, J = 16.0 Hz), 14.5 (d, J = 2.9 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 38.58.

5. Synthesis of diverse radical precursors

C1-C18, C20-C21, C23-C35 were all purchased from commercial sources.

H1-H5, O1 were all purchased from commercial sources.

Synthesis of C-centered radical precursors Synthesis of aryldiazonium tetrafluoroborate

General procedure 6:

Aryldiazonium tetrafluoroborate was prepared from the corresponding arylamine according to the literature reported procedure⁵³. The corresponding aniline (50 mmol) was dissolved in a mixture of water (20 mL) and 50% aqueous hydrofluoroboric acid (96.5 mmol, 1.9 equiv.). To this mixture was added a solution of NaNO₂ (50 mmol in 7.5 mL of water, 1.0 equiv.) slowly at 0 °C. The resulting reaction mixture was stirred at that temperature for 30 min and the precipitate was collected by filtration. The solid product was dissolved in minimum acetone and reprecipitated using diethyl ether to afford aryldiazonium tetrafluoroborate which was dried under vacuum without further purification.

1-Phenyl-2-(tetrafluoro-λ⁵-boraneyl)diazene (C19)

 1 H NMR (400 MHz, DMSO- d_{6}) δ 8.75 – 8.56 (m, 2H), 8.30 – 8.23 (m, 1H), 8.07 – 7.90 (m, 2H).

1-Mesityl-2-(tetrafluoro-λ⁵-boraneyl)diazene (C39)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.51 (s, 2H), 2.67 (s, 6H), 2.49 (s, 3H).

Synthesis of C22:

According to the literature reported procedure⁵⁴ with slight modification. A solution of 2-chloromethyl-isoindole-1,3-dione (6.0 g, 31 mmol) and sodium iodide (3.0 equiv., 13.8 g, 92 mmol) in acetone (44 mL) was stirred at r.t. in the dark for 4 h. After the addition of pentane (100 mL), the mixture was filtered and concentrated in vacuo to afford 2-iodomethyl-isoindole-1,3-dione (C22) as a white solid (7.0 g, 25 mmol, 40%).

2-(Iodomethyl)isoindoline-1,3-dione (C22)

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.88 (m, 2H), 7.83 – 7.75 (m, 2H), 5.47 (s, 2H).

Synthesis of C36:

According to the literature reported procedure with slight modification. To a solution of a 5-chloropentan-2-one (0.60 g, 5.0 mmol, 1.0 equiv.) in dry acetone (10 mL) was added NaI (1.87 g, 12.5 mmol, 2.5 equiv.). After stirring at reflux for 12 h, the solvent was removed under reduced pressure, the residue was dissolved in water and extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the desired product **C36** as a colorless oil (742 mg, 70% yield).

5-Iodopentan-2-one (C36)

¹**H NMR** (400 MHz, CDCl₃) δ 3.32 – 3.16 (m, 2H), 2.91 – 2.52 (m, 2H), 2.24 – 2.14 (m, 3H), 2.13 – 1.99 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 207.2, 43.8, 30.2, 27.1, 6.6.

Synthesis of C37:

C37" was synthesized according to the literature⁵⁵. A solution of acetyl chloride (471.0 mg, 6.0 mmol, 6.0 equiv.) in dry CH₂Cl₂ (2.0 mL) was slowly added at 0 °C to an orange solution of C37" (519.6 mg, 1.0 mmol, 1.0 equiv.) and triethylamine (0.84 mL, 6.0 mmol, 6.0 equiv.) in dry CH₂Cl₂

(8.0 mL), which resulted in a colorless precipitate. After the reaction mixture was stirred for 24 h at r.t., the formed triethylammonium chloride was removed by filtration. The combined organic layers were dried over sodium sulfate and concentrated without further purification.

To the above concentrated organic layer in acetone (30 mL) was added NaI (1.50 g, 10.0 mmol, 10 equiv.) under argon at 60 °C. Then, the reaction mixture was stirred at 60 °C for 48 h. Upon completion, the mixture was cooled to r.t. and concentrated in vacuo. Et₂O was added and the organic phase was washed with Na₂S₂O₃, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel to afford the desired product C37 as a colorless oil.

(7*R*,8*R*,9*S*,13*S*,14*S*,17*S*)-7-(9-Iodononyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diyl diacetate (C37)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 5/1) to afford C37 as colorless oil (493.2 mg, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.84 (dd, J = 8.5, 2.6 Hz, 1H), 6.78 (d, J = 2.5 Hz, 1H), 4.70 (dd, J = 9.1, 7.8 Hz, 1H), 3.18 (t, J = 7.0 Hz, 2H), 2.90 (dd, J = 17.0, 5.4 Hz, 1H), 2.82 – 2.68 (m, 1H), 2.43 – 2.12 (m, 6H), 2.06 (s, 3H), 1.93 – 1.72 (m, 4H), 1.71 – 1.59 (m, 2H), 1.57 – 1.31 (m, 8H), 1.32 – 1.12 (m, 10H), 1.11 – 0.94 (m, 1H), 0.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 169.9, 148.5, 137.2(3), 137.1(7), 127.1, 122.5, 118.7, 82.8, 46.3, 43.0, 41.4, 38.2, 37.1, 34.6, 33.6, 33.2, 30.6, 29.9, 29.7, 29.5, 28.6, 28.2, 27.6, 27.0, 25.7, 22.9, 21.3(0), 21.2(6), 12.1, 7.5.

HRMS (ESI) m/z calcd. for C₃₁H₄₅INaO₄ [M + Na]⁺ 631.2255, found 631.2255.

Synthesis of C38:

According to the literature reported procedure⁵⁶ with slight modification. Compound **C38**" (2.61 g, 10 mmol, 1.0 equiv.) was dissolved in dry MeOH (30 mL) in a round-bottomed flask equipped with a magnetic stirrer. To the resulting solution was added NaBH₄ (491 mg, 13.0 mmol, 1.3 equiv.) at 0 °C under an argon atmosphere and the reaction mixture was stirred at r.t. for 24 h. The reaction mixture was diluted with EtOAc and washed with water, brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product. The crude product was purified by silica gel chromatography to afford the desired product **C38**'.

According to the literature reported procedure⁵⁷ with slight modification. An oven-dried round-bottom flask equipped with a stirring bar was charged with an aliphatic alcohol **C38'** (1.32 g, 5.0

mmol, 1.0 equiv.), PPh₃ (1.70 g, 6.5 mmol, 1.3 equiv.) and imidazole (443 mg, 6.5 mmol, 1.3 equiv.). The flask was evacuated and refilled with argon three times, followed by the addition of dry CH₂Cl₂ (50 mL). To the resulting solution was added I₂ (1.65 g, 6.5 mmol, 1.3 equiv.) portionwise. The reaction mixture was warmed to r.t. and allowed to stir overnight. After completion (monitored by TLC), the reaction was quenched with sat. Na₂S₂O₃ aqueous solution. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ three times (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the desired product C38.

Benzyl 4-(1-iodoethyl)piperidine-1-carboxylate (C38)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 40/1) to afford C38 as a colorless oil.

HPLC analysis: Chiralcel OD-H (n-hexane/i-PrOH = 99/1, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 18.82 min, t_R (minor) = 20.80 min.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 5H), 5.12 (s, 2H), 4.43 – 4.01 (m, 3H), 2.76 (d, J = 15.2 Hz, 2H), 1.90 (d, J = 7.0 Hz, 3H), 1.88 – 1.60 (m, 2H), 1.39 – 1.09 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.2, 136.8, 128.5, 128.0, 127.9, 67.1, 45.0, 43.8, 43.7, 36.6, 32.0 – 29.8 (m), 25.7.

HRMS (ESI) m/z calcd. for C₁₅H₂₁NIO₂ [M + H]⁺ 374.0611, found 374.0615.

High enantiomeric C38 with >99% e.e. was obtained through preparative HPLC (CHIRALPAK® OD-H, n-hexane/i-PrOH = 99/1, flow rate 1.0 mL/min).

Synthesis of N-centered radical precursors

General procedure 7:

According to the literature reported procedure⁵⁸ with slight modification. An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with appropriate benzoyl peroxide (1.0 equiv.), dipotassium hydrogen phosphate (1.5 equiv.), appropriate secondary amine (1.0 equiv.), and anhydrous *N*,*N*-dimethylformamide (0.2 M). The reaction mixture was then stirred at r.t. overnight. Upon completion (monitored by TLC), the reaction mixture was quenched with water (5.0 mL), and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel using PE/CH₂Cl₂ as the eluent to afford the corresponding *O*-carboxylhydroxylamines N1–N14. The spectroscopic data of N1–N11 is consistent with that reported in the literature, and the spectroscopic data of new compounds are shown below.

4-(1-Naphthoyl)piperazin-1-yl benzoate (N1)

According to **General procedure 7** with naphthalen-1-yl(piperazin-1-yl)methanone (481 mg, 2.0 mmol, 1.0 equiv.) and BPO (484.5 mg, 2.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 1/1) to afford the product **N1** as a white solid (389 mg, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.95 – 7.73 (m, 3H), 7.65 – 7.36 (m, 7H), 5.05 – 4.63 (m, 1H), 3.89 – 2.50 (m, 7H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 164.6, 133.6, 133.5, 129.6(3), 129.5(5), 128.9, 128.7, 128.6, 127.4, 126.7, 125.3, 124.6, 124.0, 56.7, 56.1, 45.5, 40.2.

HRMS (ESI) m/z calcd. for $C_{22}H_{20}N_2NaO_3$ [M + Na]⁺ 383.1366, found 383.1365.

O-Benzoyl-N,N-dimethylhydroxylamine (N2)

According to **General procedure 7** with dimethylamine (225 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N2** as a pare yellow liquid (340 mg, 41% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 7.86 (m, 2H), 7.66 – 7.51 (m, 1H), 7.49 – 7.37 (m, 2H), 2.90 (s, 6H).

Piperidin-1-yl benzoate (N3)

According to **General procedure 7** with piperidine (426 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N3** as a white solid (800 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.92 (m, 2H), 7.58 – 7.48 (m, 1H), 7.46 – 7.38 (m, 2H), 3.56 – 3.45 (m, 2H), 2.97 – 2.56 (m, 2H), 1.89 – 1.75 (m, 4H), 1.73 – 1.60 (m, 1H), 1.42 – 1.19 (m, 1H).

Morpholino benzoate (N4)

According to **General procedure 7** with morpholine (436 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N4** as a white solid (777 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.48 – 7.42 (m, 2H), 4.02 – 3.94 (m, 2H), 3.87 (t, J = 11.4 Hz, 2H), 3.52 – 3.40 (m, 2H), 3.05 (t, J = 8.9 Hz, 2H).

Thiomorpholino benzoate (N5)

According to **General procedure 7** with thiomorpholine (516 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N5** as a white solid (615 mg, 55% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.62 – 7.55 (m, 1H), 7.48 – 7.42 (m, 2H), 3.91 – 3.48 (m, 2H), 3.43 – 3.11 (m, 2H), 3.10 – 2.69 (m, 4H).

tert-Butyl 4-(benzoyloxy)-1,4-diazepane-1-carboxylate (N6)

According to **General procedure 7** with *tert*-butyl 1,4-diazepane-1-carboxylate (1.0 g, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N6** as a white solid (960 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 – 7.39 (m, 2H), 3.76 – 3.45 (m, 4H), 3.41 – 3.25 (m, 4H), 2.12 – 1.98 (m, 2H), 1.49 (s, 9H).

O-Benzoyl-N,N-diethylhydroxylamine (N7)

According to **General procedure 7** with diethylamine (366 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N7** as a pare yellow liquid (531 mg, 55% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 – 7.97 (m, 2H), 7.65 – 7.51 (m, 1H), 7.49 – 7.38 (m, 2H), 3.05 (q, J = 7.1 Hz, 4H), 1.19 (t, J = 7.1 Hz, 6H).

O-Benzoyl-N,N-dipropylhydroxylamine (N8)

According to **General procedure 7** with dipropylamine (506 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N8** as a pare yellow liquid (509 mg, 46% yield). **H NMR** (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.59 – 7.52 (m, 1H), 7.47 – 7.41 (m, 2H), 2.99 – 2.87 (m, 4H), 1.75 – 1.50 (m, 4H), 0.94 (t, J = 7.5 Hz, 6H).

O-Benzoyl-N,N-dibenzylhydroxylamine (N9)

According to **General procedure 7** with dibenzylamine (986 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N9** as a white solid (509 mg, 46% yield). **H NMR** (400 MHz, CDCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, J = 8.1 Hz, 2H), 7.56 – 7.41 (m, 5H), 7.40 – 7.18 (m, 8H), 4.20 (s, 4H).

O-Benzoyl-N-benzyl-N-methylhydroxylamine (N10)

According to **General procedure 7** with *N*-methylbenzylamine (606 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N10** as a white solid (736 mg, 61% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.54 – 7.46 (m, 1H), 7.46 – 7.33 (m, 4H), 7.34 – 7.21 (m, 3H), 4.15 (s, 2H), 2.92 (s, 3H).

O-Benzoyl-N-benzyl-N-methylhydroxylamine (N11)

According to **General procedure 7** with *N*-benzylbut-3-en-1-amine (807 mg, 5.0 mmol, 1.0 equiv.) and BPO (1.21 g, 5.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product **N11** as a white solid (704 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 7.81 (m, 2H), 7.55 – 7.45 (m, 1H), 7.45 – 7.32 (m, 4H), 7.32 – 7.19 (m, 3H), 5.91 – 5.70 (m, 1H), 5.09 – 4.93 (m, 2H), 4.18 (s, 2H), 3.13 – 3.00 (m, 2H), 2.44 – 2.34 (m, 2H).

O-Benzoyl-N-benzyl-N-(but-3-yn-1-yl)hydroxylamine (N12)

According to **General procedure 7** with *N*-benzylbut-3-yn-1-amine (318 mg, 2.0 mmol, 1.0 equiv.) and BPO (484.5 mg, 2.0 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1/1) to afford the product as a colorless oil (305 mg, 34% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.87 (m, 2H), 7.54 – 7.46 (m, 1H), 7.43 – 7.33 (m, 4H), 7.33 – 7.19 (m, 3H), 4.19 (s, 2H), 3.24 – 3.16 (m, 2H), 2.53 (td, J = 7.5, 2.7 Hz, 2H), 1.92 (t, J = 2.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0, 135.1, 133.0, 129.6, 129.4, 129.0, 128.4, 127.8, 81.6, 69.5, 63.4, 56.6, 17.1.

HRMS (ESI) m/z calcd. for $C_{18}H_{18}NO_2$ [M + H]⁺ 280.1332, found 280.1330.

Methyl 3-((benzoyloxy)(benzyl)amino)propanoate (N13)

According to **General procedure 7** with methyl 3-(benzylamino)propanoate (1.5 g, 7.8 mmol, 1.2 equiv.) and BPO (1.57 g, 6.5 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 8/1) to afford the product as a colorless oil (1.17 g, 36% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.88 (m, 2H), 7.57 – 7.48 (m, 1H), 7.44 – 7.35 (m, 4H), 7.34 – 7.20 (m, 3H), 4.20 (s, 2H), 3.54 (s, 3H), 3.35 (t, J = 7.1 Hz, 2H), 2.65 (t, J = 7.1 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 165.0, 135.1, 133.1, 129.7, 129.4, 128.9, 128.4(1), 128.3(9), 127.9, 63.6, 53.5, 51.6, 32.2.

HRMS (ESI) m/z calcd. for C₁₈H₁₉NNaO₄ [M + Na]⁺ 336.1206, found 336.1208.

O-Benzoyl-N-benzyl-N-(2-(thiophen-2-yl)ethyl)hydroxylamine (N14)

According to **General procedure 7** with *N*-benzyl-2-(thiophen-2-yl)ethan-1-amine (1.7 g, 7.92 mmol, 1.2 equiv.) and BPO (1.6 g, 6.6 mmol, 1.0 equiv.), the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the product as a colorless oil (1.44 g, 41% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.89 (m, 2H), 7.56 – 7.48 (m, 1H), 7.44 – 7.35 (m, 4H), 7.32 – 7.21 (m, 3H), 7.11 – 7.05 (m, 1H), 6.90 – 6.84 (m, 1H), 6.84 – 6.79 (m, 1H), 4.21 (s, 2H), 3.35 – 3.26 (m, 2H), 3.20 – 3.12 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 141.6, 135.3, 133.1, 129.7, 129.5, 129.1, 128.5, 128.4, 127.9, 126.9, 125.1, 123.6, 63.7, 59.7, 27.9.

HRMS (ESI) m/z calcd. for C₂₀H₁₉NNaO₂S [M + Na]⁺ 360.1029, found 360.1030.

Synthesis of O-centered radical precursors:

The synthesis of **O2** and **O3** was carried out according to a literature-reported procedure⁵⁹. To a solution of 2-hydroperoxy-2-methylpropane (5.5 mmol, 1.1 equiv.) was added propyl carbonochloridate (5.0 mmol, 1.0 equiv.) dropwise at 0 °C. The reaction mixture was stirred for 0.5 h. To the resulting solution was added a KOH solution (30% in water) (6.5 mmol, 1.3 equiv.) dropwise. The reaction mixture was then stirred overnight at 0 °C. Upon completion (monitored by TLC), the reaction mixture was quenched with water (20 mL), and the aqueous layer was extracted with EtOAc (3 × 20 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated to afford the crude product, which was purified by flash chromatography (PE/EtOAc = $20/1 \sim 8/1$) to afford the desired product **O2** or **O3**.

tert-Butyl propyl carbonoperoxoate (O2)

¹H NMR (400 MHz, CDCl₃) δ 5.16 (tt, J = 5.9, 2.6 Hz, 1H), 2.03 – 1.55 (m, 8H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 83.9, 82.6, 32.6, 26.0, 23.5.

tert-Butyl propyl carbonoperoxoate (O3)

¹**H NMR** (400 MHz, CDCl₃) δ 4.19 (t, J = 6.7 Hz, 1H), 1.73 (h, J = 7.2 Hz, 1H), 1.34 (s, 4H), 0.97 (t, J = 7.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 154.9, 84.1, 70.7, 25.9, 22.1, 10.1.

Synthesis of P-centered radical precursors:

According to the literature reported procedure⁶⁰ with slight modification. To a 100 mL round bottom flask equipped with a magnetic stir bar was charged with benzoyl chloride (20.1 mmol, 1.05 equiv.) and the triethyl phosphate (20 mmol, 1.0 equiv.) at 0 °C, then the mixture was stirred for 2 h to give the **PS2**, which could be used for the next step without further purification.

The above afforded **PS2** was solved with EtOH (40 mL), and to the mixture was added hydroxylamine hydrochloride (22.0 mmol, 1.1 euqiv.) and pyridine (24.0 mmol, 1.2 equiv.). Then the mixture was stirred overnight at r.t.. Quenched the reaction with 1N HCl (aq.), and extracted with EtOAc, washed by water and brine. The organic phase was collected and the solvent was removed under vacuum to give the crude product **PS1**, which could be used for the next step without further purification.

The above afforded **PS1** was solved with CH₂Cl₂ (40 mL), and to the mixture was added triethylamine (24.0 mmol, 1.2 equiv.) and 2,6-dichlorobenzoyl chloride (22.0 mmol, 1.1 equiv.) at 0 °C. Then the mixture was allowed to r.t. and stirred overnight to give the final product **P1** (7.1 g, 80% yield) after purification by chromatography.

Diethyl (E)-((((2,6-dichlorobenzoyl)oxy)imino)(p-tolyl)methyl)phosphonate (P1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.47 (m, 2H), 7.41 – 7.23 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 4.32 – 3.97 (m, 4H), 2.56 – 2.13 (m, 3H), 1.34 – 1.18 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 162.7, 162.1, 162.0, 160.4, 160.2, 141.4, 141.2, 132.5, 132.3, 132.2, 132.0, 131.7, 131.5, 129.2(9), 129.2(6), 129.2, 128.8(9), 128.8(5), 128.0(0), 127.9(5), 125.9, 125.7, 64.6 (d, J = 6.6 Hz), 63.7 (d, J = 6.3 Hz), 21.6, 21.5, 16.2 (d, J = 6.3 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 5.04, 0.31.

HRMS (ESI) m/z calcd. for C₁₉H₂₀Cl₂NNaO₅P [M + Na]⁺ 466.0348, found 466.0348.

6. Asymmetric radical coupling between radical acceptor and diverse radical precursors General Procedure A:

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L1** (9.1 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 1.0 equiv.), proton sponge (4.3 mg, 0.020 mmol, 10 mol%), γ-aminocarbonyl alcohol (0.20 mmol, 1.0 equiv.), and anhydrous CHCl₃ (1.0 mL). Then the corresponding sulfonyl chloride (0.18 mmol, 0.9 equiv.) was added and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: To a solution of γ -aminocarbonyl alcohol (0.10 mmol, 1.0 equiv.) and Et₃N (27.7 μ L, 0.20 mmol, 2.0 equiv.) in dry CH₂Cl₂ (1.0 mL) was added the corresponding sulfonyl chloride (0.11 mmol, 1.1 equiv.). After stirring for 24 h, saturated NH₄Cl (aq.) was added to the above reaction solution to quench the reaction. Then, the mixture was extracted with CH₂Cl₂ and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by silica gel column chromatography to afford the desired racemate.

General procedure B:

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBr (1.42 mg, 0.010 mmol, 10 mol%), **L2** (9.8 mg, 0.015 mmol, 15 mol%), **S19** (25.6 mg, 0.10 mmol, 1.0 equiv.), radical precursor (0.15 mmol, 1.5 equiv.), and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (4.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t.. Upon

completion, the precipitate was filtered off and washed with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBr (1.42 mg, 0.010 mmol, 10 mol%), **L-rac1** (5.6 mg, 0.015 mmol, 15 mol%), **S19** (25.6 mg, 0.10 mmol, 1.0 equiv.), radical precursor (0.15 mmol, 1.5 equiv.), and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (4.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure C:

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide S (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), L4 (7.9 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous CH₂Cl₂ (2.0 mL). Then, radical precursor (0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide S (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), L-rac2 (4.2 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous CH₂Cl₂ (2.0 mL). Then, radical precursor (0.24 mmol, 1.2 equiv.) was added to the mixture and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure D:

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L5** (10.0 mg, 0.03 mmol, 15 mol%), sulfenamide **S** (0.20 mmol, 1.0 equiv.), alkyl iodide (0.30 mmol, 1.5 equiv.), MesN₂BF₄ (**C39**, 93.6 mg, 0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by the addition of anhydrous MTBE (4.0 mL). The reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L-rac2** (8.4 mg, 0.03 mmol, 15 mol%), sulfenamide **S** (0.20 mmol, 1.0 equiv.), alkyl iodide (0.30 mmol, 1.5 equiv.), MesN₂BF₄ (93.6 mg, 0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by the addition of anhydrous MTBE (4.0 mL). The reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure E:

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.90 mg, 0.010 mmol, 5 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), sulfenamide **S** (0.20 mmol, 1.0 equiv.), *O*-benzoylhydroxylamine (0.30 mmol, 1.5 equiv.) and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous EtOAc (2.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t.. Upon

completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

The racemates of products were prepared following the procedure: An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.95 mg, 0.0050 mmol, 10 mol%), **L-rac2** (2.1 mg, 0.0075 mmol, 15 mol%), sulfenamide **S** (0.050 mmol, 1.0 equiv.), *O*-benzoylhydroxylamine (0.075 mmol, 1.5 equiv.), and K₃PO₄ (31.8 mg, 0.15 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous EtOAc (0.5 mL) was added by syringe under argon and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product.

General procedure F:

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S** (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous MeCN (2.0 mL). Then, *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at −10 °C for 36 h.

Workup method 1: the reaction was quenched with sat. aqueous NH₄Cl solution, and then extracted with EtOAc three times $(3 \times 10 \text{ mL})$. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired products sulfinimidate ester and sulfinamide.

Workup method 2: 2.0 mL of mixture solvent (AcOH: $H_2O = 1:2$) was added and the reaction mixture was stirred at r.t. for another 1 h. Then the reaction mixture was extracted with EtOAc three times (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product (sulfinamide).

The racemates of products were prepared following the procedure: Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S** (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L-rac2** (2.1 mg, 0.0075 mmol, 7.5 mol%), K_3PO_4 (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous MeCN (2.0 mL). Then, *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at -10 °C for 36 h. Upon completion (monitored by TLC), the reaction was quenched with saturated NH₄Cl aqueous solution, and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired products.

(S)-2-(Indoline-1-carbonyl)-3-methylbutyl 3-fluorobenzenesulfonate (2)

$$\begin{array}{c} \text{Cul } (5.0 \text{ mol}\%) \\ \text{L1 } (7.5 \text{ mol}\%) \\ \text{ArSO}_2\text{CI H1 } (0.9 \text{ equiv.}) \\ \text{Proton Sponge } (10 \text{ mol}\%) \\ \text{CHCl}_3, \text{Ar, r.t.} \\ \text{S2} \\ \text{(0.20 mmol)} \end{array} \qquad \begin{array}{c} \text{ArO}_2\text{SO} \\ \text{Proton Sponge } (10 \text{ mol}\%) \\ \text{CHCl}_3, \text{Ar, r.t.} \\ \text{Ar = 3-FC}_6\text{H}_4 \end{array} \qquad \begin{array}{c} \text{Ar} \\ \text{2} \\ \text{(47\% yield, 92\% e.e.)} \end{array} \qquad \begin{array}{c} \text{(A8\% yield, 92\% e.e.)} \end{array}$$

According to **General Procedure A** with **S2** (46.7 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 8/1) to afford **2** as a colorless oil (36.9 mg, 47% yield, 92% e.e.) and (*R*)-**S2** (23.3 mg, 48% yield, 92% e.e.).

HPLC analysis of **2**: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.94 min, t_R (major)= 14.19 min.

HPLC analysis of (*R*)-S2: Chiralpak IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.39 min, t_R (minor)= 14.10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.3 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.55 – 7.50 (m, 1H), 7.48 – 7.39 (m, 1H), 7.32 – 7.26 (m, 1H), 7.22 – 7.15 (m, 2H)), 7.07 – 7.01 (m, 1H), 4.38 (d, J = 7.1 Hz, 2H), 4.20 (td, J = 9.7, 7.4 Hz, 1H), 4.08 (td, J = 9.8, 7.3 Hz, 1H), 3.27 – 3.12 (m, 2H), 2.89 (q, J = 7.5 Hz, 1H), 1.97 (dq, J = 13.8, 6.8 Hz, 1H), 1.03 – 0.96 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 162.4 (d, J = 252.2 Hz), 142.7, 137.5 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.8 (d, J = 3.4 Hz), 121.2 (d, J = 21.1 Hz), 117.6, 115.4 (d, J = 24.7 Hz), 71.6, 51.1, 48.6, 29.1, 28.0, 21.0, 20.1.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –109.00.

HRMS (ESI) m/z calcd. for C₂₀H₂₃FNO₄S [M + H]⁺ 392.1326, found 392.1325.

(S)-3-Ethyl-2-(indoline-1-carbonyl)pentyl 3-fluorobenzenesulfonate (3)

According to **General Procedure A** with **S3** (52.3 mg, 0.20 mmol, 1.0 equiv.), 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) and anhydrous CHCl₃ (0.5 mL) for 96 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 10/1) to afford **3** as a colorless oil (39.4 mg, 47% yield, 94% e.e.) and (*R*)-**S3** (26.6 mg, 51% yield, 90% e.e.).

HPLC analysis of **3**: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.20 min, t_R (major)= 11.54 min.

HPLC analysis of (*R*)-S3: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.67 min, t_R (major)= 7.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.55 – 7.50 (m, 1H), 7.48 – 7.40 (m, 1H), 7.33 – 7.26 (m, 1H), 7.23 – 7.16 (m, 2H), 7.04 (td, J = 7.4, 1.1 Hz, 1H), 4.45 – 4.32 (m, 2H), 4.20 (td, J = 9.8, 7.4 Hz, 1H), 4.06 (td, J = 9.8, 7.3 Hz, 1H), 3.27 – 3.07 (m, 3H), 1.67 – 1.56 (m, 2H), 1.47 – 1.31 (m, 2H), 1.21 (dq, J = 14.5, 7.2 Hz, 1H), 0.92 – 0.82 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.8, 162.4 (d, J = 252.1 Hz), 142.8, 137.6 (d, J = 7.2 Hz), 131.6,

131.1 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.8 (d, J = 3.5 Hz), 121.2 (d, J = 21.2 Hz), 117.6, 115.4 (d, J = 24.9 Hz), 71.2, 48.4, 46.8, 41.0, 28.1, 23.1, 21.5, 11.5, 10.2.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –109.04.

HRMS (ESI) m/z calcd. for C₂₂H₂₇FNO₄S [M + H]⁺ 420.1639, found 420.1641.

(S)-3-Butyl-2-(indoline-1-carbonyl)heptyl 3-fluorobenzenesulfonate (4)

According to **General Procedure A** with **S4** (63.5 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 84 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 10/1) to afford 4 as a white solid (42.8 mg, 45% yield, 93% e.e.) and (*R*)-**S4** (30.6 mg, 48% yield, 87% e.e.).

HPLC analysis of **4**: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.03 min, t_R (major)= 15.29 min.

HPLC analysis of (*R*)-S4: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.71 min, t_R (major)= 10.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.1 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.57 – 7.50 (m, 1H), 7.47 – 7.40 (m, 1H), 7.32 – 7.25 (m, 1H), 7.22 – 7.15 (m, 2H), 7.09 – 6.99JJI (m, 1H), 4.47 – 4.39 (m, 1H), 4.33 (dd, J = 9.4, 4.0 Hz, 1H), 4.18 (td, J = 9.7, 7.2 Hz, 1H), 4.05 (td, J = 9.8, 7.2 Hz,

1H), 3.26 – 3.14 (m, 2H), 3.13 – 3.05 (m, 1H), 1.78 – 1.68 (m, 1H), 1.52 – 1.41 (m, 1H), 1.42 – 1.03 (m, 11H), 0.92 – 0.79 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 162.4 (d, J = 252.2 Hz), 142.9, 137.7 (d, J = 7.1 Hz), 131.6, 131.1 (d, J = 7.8 Hz), 127.6, 124.7, 124.1, 123.8 (d, J = 3.5 Hz), 121.2 (d, J = 21.1 Hz), 117.7, 115.4 (d, J = 24.8 Hz), 71.1, 48.4, 47.4, 38.5, 31.0, 29.4, 29.3, 28.5, 28.1, 23.1, 22.9, 14.1. ¹⁹F NMR (375 MHz, CDCl₃) δ −109.05.

HRMS (ESI) m/z calcd. for $C_{26}H_{35}FNO_4S$ [M + H]⁺ 476.2265, found 476.2269.

(S)-3-Allyl-2-(indoline-1-carbonyl)hex-5-en-1-yl 3-fluorobenzenesulfonate (5)

According to **General Procedure A** with **S5** (57.1 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 8/1) to afford **5** as a colorless oil (41.5 mg, 47% yield, 91% e.e.) and (*R*)-**S5** (27.2 mg, 48% yield, 91% e.e.).

HPLC analysis of **5**: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.38 min, t_R (major)= 11.60 min.

HPLC analysis of (*R*)-S5: Chiralpak IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.44 min, t_R (major)= 11.28 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.3 Hz, 1H), 7.67 – 7.58 (m, 1H), 7.56 – 7.50 (m, 1H), 7.48 – 7.40 (m, 1H), 7.33 – 7.26 (m, 1H), 7.23 – 7.16 (m, 2H), 7.08 – 7.01 (m, 1H), 5.78 – 5.65 (m, 2H), 5.12 – 5.02 (m, 4H), 4.45 – 4.34 (m, 2H), 4.13 (td, J = 9.6, 7.6 Hz, 1H), 4.05 (td, J = 9.7, 7.2 Hz, 1H), 3.26 – 3.06 (m, 3H), 2.39 – 2.27 (m, 1H), 2.20 – 2.07 (m, 2H), 2.02 – 1.90 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 162.4 (d, J = 252.3 Hz), 142.7, 137.5 (d, J = 7.2 Hz), 135.7, 135.0, 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.7, 124.3, 123.8 (d, J = 3.5 Hz), 121.2 (d, J = 21.2 Hz), 118.0, 117.6, 115.4 (d, J = 24.9 Hz), 70.8, 48.4, 46.5, 38.0, 35.4, 33.9, 28.0. ¹⁹**F NMR** (375 MHz, CDCl₃) δ –108.95.

HRMS (ESI) m/z calcd. for C₂₄H₂₇FNO₄S [M + H]⁺ 444.1639, found 444.1641.

(S)-2-Cyclopentyl-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenzenesulfonate (6)

According to General Procedure A with S6 (51.9 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride H1 (23.9 µL, 0.18 mmol, 0.9 equiv.) for 40 h, the product mixture

was purified by silica gel column chromatography (PE/Acetone = 8/1) to afford **6** as a white solid (40.7 mg, 49% yield, 88% e.e.) and (*R*)-**S6** (24.2 mg, 47% yield, 92% e.e.).

HPLC analysis of **6**: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.65 min, t_R (major)= 23.95 min.

HPLC analysis of (*R*)-S6: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.64 min, t_R (major)= 16.16 min.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.7 Hz, 1H), 7.64 – 7.56 (m, 1H), 7.55 – 7.48 (m, 1H), 7.46 – 7.38 (m, 1H), 7.30 – 7.24 (m, 1H), 7.22 – 7.16 (m, 2H), 7.08 – 7.01 (m, 1H), 4.41 – 4.29 (m, 2H), 4.22 (td, J = 9.7, 7.3 Hz, 1H), 4.09 (td, J = 9.8, 7.4 Hz, 1H), 3.28 – 3.11 (m, 2H), 2.99 (td, J = 9.6, 4.9 Hz, 1H), 2.08 – 1.96 (m, 1H), 1.86 – 1.75 (m, 2H), 1.68 – 1.46 (m, 4H), 1.26 – 1.13 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.8, 162.4 (d, J = 252.2 Hz), 142.7, 137.6 (d, J = 7.0 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.7 (d, J = 3.5 Hz), 121.2 (d, J = 21.1 Hz), 117.6, 115.4 (d, J = 24.9 Hz), 72.4, 49.9, 48.7, 40.4, 31.0, 30.5, 28.0, 25.0, 24.6.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –108.97.

HRMS (ESI) m/z calcd. for $C_{22}H_{25}FNO_4S$ [M + H]⁺ 418.1483, found 418.1485.

(S)-2-Cyclohexyl-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenzenesulfonate (7)

According to **General Procedure A** with **S7** (54.7 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 8/1) to afford 7 as a white solid (42.1 mg, 49% yield, 94% e.e.) and (*R*)-**S7** (25.6 mg, 47% yield, 95% e.e.).

HPLC analysis of 7: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.50 min, t_R (major)= 12.01 min.

HPLC analysis of (*R*)-S7: Chiralpak IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.12 min, t_R (minor)= 8.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.8 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.55 – 7.49 (m, 1H), 7.48 – 7.41 (m, 1H), 7.32 – 7.26 (m, 1H), 7.22 – 7.75 (m, 2H), 7.08 – 7.00 (m, 1H), 4.43 – 4.32 (m, 2H), 4.19 (td, J = 9.7, 7.4 Hz, 1H), 4.08 (td, J = 9.8, 7.3 Hz, 1H), 3.27 – 3.11 (m, 2H), 2.99 – 2.89 (m, 1H), 1.78 – 1.62 (m, 6H), 1.25 – 1.01 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 162.4 (d, J = 252.0 Hz), 142.7, 137.5 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.8 (d, J = 3.4 Hz), 121.2 (d, J = 21.1 Hz), 117.6, 115.4 (d, J = 24.8 Hz), 71.6, 50.4, 48.6, 38.7, 31.2, 30.7, 28.0, 26.21, 26.2, 26.1.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –109.03.

HRMS (ESI) m/z calcd. for $C_{23}H_{27}FNO_4S$ [M + H]⁺ 432.1639, found 432.1640.

tert-Butyl (S)-4-(3-(((3-fluorophenyl)sulfonyl)oxy)-1-(indolin-1-yl)-1-oxopropan-2-yl)piperidine-1-carboxylate (8)

According to **General Procedure A** with **S8** (74.9 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 40 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 5/1) to afford **8** as a light yellow oil (53.1 mg, 50% yield, 93% e.e.) and (*R*)-**S8** (34.3 mg, 46% yield, 92% e.e.).

HPLC analysis of **8**: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.50 min, t_R (major)= 18.06 min.

HPLC analysis of (*R*)-S8: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.65 min, t_R (major)= 10.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.5 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.55 – 7.50 (m, 1H), 7.49 – 7.38 (m, 1H), 7.34 – 7.27 (m, 1H), 7.25 – 7.14 (m, 2H), 7.09 – 7.02 (m, 1H), 4.44 – 4.30 (m, 2H), 4.25 – 3.96 (m, 4H), 3.31 – 3.09 (m, 2H), 2.97 (td, J = 9.0, 5.0 Hz, 1H), 2.62 (t, J = 12.2 Hz, 2H), 1.88 – 1.78 (m, 1H), 1.74 – 1.62 (m, 2H), 1.44 (s, 9H), 1.31 – 1.20 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 162.4 (d, J = 252.5 Hz), 154.7, 142.5, 137.5 (d, J = 7.2 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.8, 124.5, 123.8 (d, J = 3.5 Hz), 121.3 (d, J = 21.1 Hz), 117.6, 115.4 (d, J = 24.9 Hz), 79.8, 71.0, 49.8, 48.7, 44.5 – 42.3 (br m), 37.1, 30.1, 29.8, 28.5, 28.0. ¹⁹F NMR (375 MHz, CDCl₃) δ –108.82.

HRMS (ESI) m/z calcd. for $C_{27}H_{33}FN_2NaO_6S$ [M + Na]⁺ 555.1936, found 555.1937.

(S)-3-(Indolin-1-yl)-3-oxo-2-(tetrahydro-2H-pyran-4-yl)propyl 3-fluorobenzenesulfonate (9)

According to **General Procedure A** with **S9** (55.1 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 60 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 6/1) to afford **9** as a white solid (43.5 mg, 50% yield, 91% e.e.) and (*R*)-**S9** (25.9 mg, 47% yield, 95% e.e.).

HPLC analysis of **9**: Chiralpak IB (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 11.67 min, t_R (major)= 15.56 min.

HPLC analysis of (*R*)-**S9**: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 23.38 min, t_R (major)= 29.85 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.9 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.55 – 7.49 (m, 1H), 7.47 – 7.40 (m, 1H), 7.32 – 7.26 (m, 1H), 7.22 – 7.16 (m, 2H), 7.09 – 7.02 (m, 1H), 4.43 – 4.31 (m, 2H), 4.21 (td, J = 9.7, 7.4 Hz, 1H), 4.08 (td, J = 9.8, 7.4 Hz, 1H), 4.01 – 3.94 (m, 1H), 3.93 –

3.85 (m, 1H), 3.37 - 3.28 (m, 2H), 3.27 - 3.13 (m, 2H), 2.98 (td, J = 9.2, 4.8 Hz, 1H), 1.98 - 1.87 (m, 1H), 1.67 - 1.54 (m, 2H), 1.51 - 1.38 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 162.4 (d, J = 252.3 Hz), 142.5, 137.4 (d, J = 7.0 Hz), 131.7, 131.2 (d, J = 7.7 Hz), 127.6, 124.8, 124.5, 123.7 (d, J = 3.5 Hz), 121.3 (d, J = 21.2 Hz), 117.6, 115.4 (d, J = 24.8 Hz), 70.9, 67.8, 67.6, 50.1, 48.7, 35.9, 30.8, 30.7, 28.0.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –108.83.

HRMS (ESI) m/z calcd. for C₂₂H₂₅FNO₅S [M + H]⁺ 434.1432, found 434.1432.

(S)-2-(4,4-Difluorocyclohexyl)-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenzenesulfonate (10)

According to **General Procedure A** with **S10** (61.9 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 84 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 6/1) to afford **10** as a white solid (44.5 mg, 48% yield, 91% e.e.) and (*R*)-**S10** (30.4 mg, 49% yield, 92% e.e.).

HPLC analysis of **10**: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 10.27 min, t_R (major)= 20.30 min.

HPLC analysis of (*R*)-S10: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.67 min, t_R (major)= 11.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.8 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.54 – 7.49 (m, 1H), 7.48 – 7.40 (m, 1H), 7.32 – 7.26 (m, 1H),7.22 – 7.16 (m, 2H), 7.12 – 6.99 (m, 1H), 4.42 – 4.30 (m, 2H), 4.20 (td, J = 9.6, 7.5 Hz, 1H), 4.06 (td, J = 9.7, 7.4 Hz, 1H), 3.27 – 3.12 (m, 2H), 2.98 (td, J = 8.9, 5.1 Hz, 1H), 2.17 – 1.99 (m, 2H), 1.96 – 1.81 (m, 1H), 1.79 – 1.67 (m, 3H), 1.65 – 1.57 (m, 1H), 1.47 – 1.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 162.4 (d, J = 252.5 Hz), 142.5, 137.4 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.8, 124.5, 123.8 (d, J = 3.6 Hz), 122.8 (dd, J = 243.1, 239.0 Hz), 121.4 (d, J = 21.2 Hz), 117.6, 115.4 (d, J = 24.8 Hz), 71.1, 49.3 (d, J = 2.2 Hz), 48.7, 36.7 (d, J = 1.6 Hz), 33.4 (ddd, J = 25.5, 23.2, 7.1 Hz, 2C), 28.0, 27.2 (d, J = 9.9 Hz), 26.5 (d, J = 10.1 Hz). ¹⁹F NMR (375 MHz, CDCl₃) δ -91.95 (d, J = 236.7 Hz), -103.01 (d, J = 236.9 Hz), -108.79. **HRMS** (ESI) m/z calcd. for C₂₃H₂₅F₃NO₄S [M + H]⁺ 468.1451, found 468.1453.

(2S)-3-(Indolin-1-yl)-3-oxo-2-(4-(trifluoromethyl)cyclohexyl)propyl 3-fluorobenzenesulf onate (11)

According to **General Procedure A** with **S11** (68.2 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 8/1) to afford **11** as a white solid (39.9 mg, 40% yield, 92% e.e.) and (*R*)-**S11** (34.3 mg, 50% yield, 90% e.e.).

HPLC analysis of 11: Chiralpak IB (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 14.15 min, t_R (major)= 18.13 min.

HPLC analysis of (*R*)-S11: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.67 min, t_R (major)= 11.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.2 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.55 – 7.49 (m, 1H), 7.48 – 7.41 (m, 1H), 7.33 – 7.27 (m, 1H), 7.23 – 7.17 (m, 2H), 7.09 – 7.03 (m, 1H), 4.43 – 4.33 (m, 2H), 4.20 (td, J = 9.7, 7.3 Hz, 1H), 4.06 (td, J = 9.8, 7.2 Hz, 1H), 3.26 – 3.12 (m, 2H), 2.96 (td, J = 8.7, 5.2 Hz, 1H), 2.01 – 1.82 (m, 5H), 1.71 – 1.64 (m, 1H), 1.34 – 1.23 (m, 2H), 1.21 – 1.05 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 170.0, 162.4 (d, J = 252.7 Hz), 142.5, 137.4 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.7, 127.5 (q, J = 278.5 Hz), 124.8, 124.5, 123.8 (d, J = 3.6 Hz), 121.4 (d, J = 21.0 Hz), 117.6, 115.4 (d, J = 24.7 Hz), 71.1, 49.9, 48.7, 41.6 (q, J = 26.7 Hz), 37.8, 29.3, 28.9, 28.0, 24.8 – 24.6 (m, 2C).

¹⁹**F NMR** (375 MHz, CDCl₃) δ –73.92, –108.84.

HRMS (ESI) m/z calcd. for $C_{24}H_{26}F_{4}NO_{4}S$ [M + H]⁺ 500.1513, found 500.1514.

(2S)-3-(Indolin-1-yl)-2-(4-methoxycyclohexyl)-3-oxopropyl 3-fluorobenzenesulfonate (12)

According to **General Procedure A** with **S12** (60.7 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 5/1) to afford **12** as a colorless oil (44.5 mg, 48% yield, 94% e.e.) and (*R*)-**S12** (25.8 mg, 43% yield, 94% e.e.).

HPLC analysis of **12**: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.89 min, t_R (major)= 13.65 min.

HPLC analysis of (*R*)-S12: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.46 min, t_R (major)= 12.69 min.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.3 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.54 – 7.48 (m, 1H), 7.43 (td, J = 8.1, 5.2 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.23 – 7.16 (m, 2H), 7.08 – 7.01 (m, 1H), 4.46 – 4.39 (m, 1H), 4.38 – 4.31 (m, 1H), 4.22 – 4.06 (m, 2H), 3.44 – 3.37 (m, 1H), 3.27 (s, 3H), 3.20 – 3.15 (m, 1H), 2.96 (td, J = 9.7, 4.4 Hz, 1H), 1.98 – 1.82 (m, 2H), 1.76 – 1.62 (m, 2H), 1.53 – 1.30 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 162.4 (d, J = 252.2 Hz), 142.7, 137.6 (d, J = 7.3 Hz), 131.8, 131.1 (d, J = 7.8 Hz), 127.6, 124.8, 124.3, 123.8 (d, J = 3.5 Hz), 121.2 (d, J = 21.1 Hz), 117.6, 115.4 (d, J = 24.8 Hz), 74.3, 71.6, 55.8, 50.1, 48.6, 37.9, 29.1, 28.9, 28.0, 25.1, 24.5. ¹⁹F NMR (375 MHz, CDCl₃) δ −109.02.

HRMS (ESI) m/z calcd. for C₂₄H₂₉FNO₅S [M + H]⁺ 462.1745, found 462.1747.

(S)-2-Cycloheptyl-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenzenesulfonate (13)

According to **General Procedure A** with **S13** (57.5 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 84 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 6/1) to afford **13** as a white solid (43.9 mg, 49% yield, 92% e.e.) and (*R*)-**S13** (26.9 mg, 47% yield, 94% e.e.).

HPLC analysis of **13**: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.52 min, t_R (major)= 11.57 min.

HPLC analysis of (*R*)-S13: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.17 min, t_R (major) = 8.65 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.2 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.55 – 7.50 (m, 1H), 7.47 – 7.40 (m, 1H), 7.32 – 7.25 (m, 1H), 7.22 – 7.16 (m, 2H), 7.08 – 7.00 (m, 1H), 4.45 – 4.34 (m, 2H), 4.24 – 4.14 (m, 1H), 4.06 (td, J = 9.6, 7.4 Hz, 1H), 3.25 – 3.12 (m, 2H), 2.98 (td, J = 7.9, 6.0 Hz, 1H), 1.89 – 1.75 (m, 2H), 1.72 – 1.53 (m, 5H), 1.49 – 1.31 (m, 5H), 1.30 – 1.18 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 162.4 (d, J = 252.2 Hz), 142.8, 137.6 (d, J = 7.2 Hz), 131.6, 131.1 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.7 (d, J = 3.5 Hz), 121.2 (d, J = 21.2 Hz), 117.6, 115.4 (d, J = 24.8 Hz), 71.6, 50.6, 48.5, 40.0, 32.6, 31.3, 28.1(3), 28.0(9), 28.0, 26.6, 26.3. ¹⁹**F NMR** (375 MHz, CDCl₃) δ –109.04.

HRMS (ESI) m/z calcd. for C₂₄H₂₉FNO₄S [M + H]⁺ 446.1796, found 446.1797.

(S)-2-Cyclododecyl-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenzenesulfonate (14)

OH O Cul (5.0 mol%) L1 (7.5 mol%) ArSO₂Cl H1 (0.9 equiv.) Cs₂CO₃ (1.0 equiv.) Proton Sponge (10 mol%) CHCl₃, Ar, r.t. Ar =
$$3$$
-FC₆H₄ 14 (P)-S14 (0.20 mmol) (43% yield, 95% e.e.) (54% yield, 83% e.e.)

According to **General Procedure A** with **S14** (71.5 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 84 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 5/1) to afford **14** as a white solid (44.5 mg, 43% yield, 95% e.e.) and (*R*)-**S14** (38.8 mg, 54% yield, 83% e.e.).

HPLC analysis of **14**: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 8.28 min, t_R (major)= 10.31 min.

HPLC analysis of (*R*)-S14: Chiralpak IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 9.83 min, t_R (minor)= 12.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.2 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.47 (m, 1H), 7.46 – 7.37 (m, 1H), 7.30 – 7.24 (m, 1H), 7.23 – 7.16 (m, 2H), 7.08 – 7.00 (m, 1H), 4.46 – 4.33 (m, 2H), 4.26 – 4.16 (m, 1H), 4.12 – 4.01 (m, 1H), 3.27 – 3.12 (m, 2H), 3.04 (td, J = 9.3, 4.3 Hz, 1H), 1.91 – 1.80 (m, 1H), 1.55 – 1.46 (m, 1H), 1.40 – 1.20 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.4 (d, J = 252.3 Hz), 142.8, 137.6 (d, J = 7.1 Hz), 131.7, 131.1 (d, J = 7.7 Hz), 127.6, 124.7, 124.2, 123.7 (d, J = 3.4 Hz), 121.2 (d, J = 21.1 Hz), 117.7, 115.4 (d, J = 24.8 Hz), 71.9, 48.5, 47.8, 36.0, 28.1, 27.3, 25.5, 25.3, 25.2, 24.9, 23.1, 23.0(4), 23.0(1), 22.9(6), 22.4, 20.7.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –108.99.

HRMS (ESI) m/z calcd. for $C_{29}H_{39}FNO_4S$ [M + H]⁺ 516.2578, found 516.2582.

(S)-2-((Adamantan-1-yl)methyl)-3-(indolin-1-yl)-3-oxopropyl 3-fluorobenz enesulfonate (15)

According to **General Procedure A** with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L1** (18.2 mg, 0.03 mmol, 15 mol%), **S15** (67.9 mg, 0.20 mmol, 1.0 equiv.) and 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) for 96 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 5/1) to afford **15** as a white solid (34.6 mg, 35% yield, 83% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.96 min, t_R (major)= 12.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.53 – 7.46 (m, 1H), 7.44 – 7.36 (m, 1H), 7.28 – 7.23 (m, 1H), 7.22 – 7.16 (m, 2H), 7.08 – 7.02 (m, 1H), 4.30 (td, J =

9.6, 6.9 Hz, 1H), 4.25 - 4.07 (m, 3H), 3.29 - 3.12 (m, 3H), 1.96 - 1.86 (m, 3H), 1.77 - 1.66 (m, 4H), 1.61 - 1.54 (m, 3H), 1.53 - 1.45 (m, 3H), 1.44 - 1.36 (m, 3H), 1.05 (dd, J = 14.3, 3.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 162.4 (d, J = 252.5 Hz), 142.9, 137.6 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.6, 124.7, 124.2, 123.7 (d, J = 3.6 Hz), 121.2 (d, J = 21.2 Hz), 117.7, 115.3 (d, J = 24.8 Hz), 73.4, 48.4, 43.1, 42.8, 39.2, 36.9, 32.6, 28.6, 28.1.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –108.87.

HRMS (ESI) m/z calcd. for $C_{28}H_{33}FNO_4S$ [M + H]⁺ 498.2109, found 498.2110.

(S)-2-(Indoline-1-carbonyl)-3,3-dimethylbutyl 3-fluorobenzenesulfonate (16)

$$\begin{array}{c} \text{Cul } (5.0 \text{ mol}\%) \\ \text{L1 } (7.5 \text{ mol}\%) \\ \text{ArSO}_2\text{Cl H1 } (0.9 \text{ equiv.}) \\ \hline \text{Cs}_2\text{CO}_3 (1.0 \text{ equiv.}) \\ \text{Proton Sponge } (10 \text{ mol}\%) \\ \text{CHCl}_3, \text{ Ar, r.t.} \\ \text{Ar} = 3\text{-FC}_6\text{H}_4 \\ \hline (0.20 \text{ mmol}) \\ \end{array}$$

According to **General Procedure A** with **S16** (67.9 mg, 0.20 mmol, 1.0 equiv.), 3-fluorobenzenesulfonyl chloride **H1** (23.9 μ L, 0.18 mmol, 0.9 equiv.) and dry CHCl₃ (0.5 mL) for 96 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 6/1) to afford **16** as a white solid (28.7 mg, 35% yield, 87% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.63 min, t_R (major)= 8.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 7.8 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.54 – 7.48 (m, 1H), 7.44 – 7.37 (m, 1H), 7.28 – 7.22 (m, 1H), 7.21 – 7.15 (m, 2H), 7.09 – 6.91 (m, 1H), 4.50 (dd, J = 10.3, 9.3 Hz, 1H), 4.41 (dd, J = 9.3, 3.5 Hz, 1H), 4.18 (td, J = 9.7, 7.5 Hz, 1H), 4.09 (td, J = 9.7, 7.4 Hz, 1H), 3.25 – 3.10 (m, 2H), 2.96 (dd, J = 10.3, 3.5 Hz, 1H), 1.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 162.4 (d, J = 252.2 Hz), 142.8, 137.8 (d, J = 7.1 Hz), 131.7, 131.2 (d, J = 7.8 Hz), 127.5, 124.7, 124.1, 123.7 (d, J = 3.5 Hz), 121.2 (d, J = 21.2 Hz), 117.7, 115.3 (d, J = 24.8 Hz), 71.7, 53.1, 49.2, 33.9, 28.2, 28.0.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –109.00.

HRMS (ESI) m/z calcd. for $C_{21}H_{25}FNO_4S$ [M + H]⁺ 406.1483, found 406.1484.

(S)-3-(Indolin-1-yl)-3-oxo-2-phenylpropyl 2-bromobenzenesulfonate (17)

$$\begin{array}{c} \text{Cul } (10 \text{ mol}\%) \\ \textbf{L6} \ (15 \text{ mol}\%) \\ \text{ArSO}_2 \text{Cl } \textbf{H2} \ (0.9 \text{ equiv.}) \\ \hline \\ \text{Cs}_2 \text{CO}_3 \ (1.0 \text{ equiv.}) \\ \text{Proton Sponge} \ (10 \text{ mol}\%) \\ \text{CHCl}_3, \ \text{Ar, r.t.} \\ \text{Ar} = 2 \text{-BrC}_6 \text{H}_4 \\ \hline \\ (0.20 \text{ mmol}) \end{array} \qquad \begin{array}{c} \text{ArO}_2 \text{SO} \quad \text{O} \\ \text{NH} \quad \text{O} \\ \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{L6} \\ \end{array}$$

According to General Procedure A with CuI (3.8 mg, 0.02 mmol, 10 mol%), L6 (18.5 mg, 0.03 mmol, 15 mol%), S17 (53.5 mg, 0.20 mmol, 1.0 equiv.) and 2-bromobenzenesulfonyl chloride H2

(46.0 mg, 0.18 mmol, 0.9 equiv.) for 96 h, the product mixture was purified by silica gel column chromatography (PE/Acetone = 5/1) to afford 17 as a white solid (38.7 mg, 40% yield, 84% e.e.). **HPLC** analysis: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 25.89 min, t_R (major)= 29.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 8.1 Hz, 1H), 8.11 – 8.07 (m, 1H), 7.77 – 7.63 (m, 1H), 7.49 – 7.39 (m, 2H), 7.35 – 7.26 (m, 5H), 7.21 – 7.15 (m, 1H), 7.12 (d, J = 7.3 Hz, 1H), 7.05 – 6.95 (m, 1H), 4.85 (dd, J = 9.8, 8.5 Hz, 1H), 4.33 (dd, J = 9.9, 5.6 Hz, 1H), 4.24 (dd, J = 8.5, 5.6 Hz, 1H), 4.14 (td, J = 10.3, 6.6 Hz, 1H), 3.76 (td, J = 10.4, 6.2 Hz, 1H), 3.14 (ddd, J = 16.5, 10.5, 6.2 Hz, 1H), 3.00 (ddd, J = 16.5, 10.6, 6.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 142.9, 135.9, 135.7, 134.7, 133.7, 132.1, 131.3, 129.4, 128.6, 128.5, 127.7, 127.6, 124.6, 124.3, 121.1, 117.4, 72.3, 51.3, 47.7, 28.0.

HRMS (ESI) m/z calcd. for $C_{23}H_{21}BrNO_4S$ [M + H]⁺ 486.0369, found 486.0369.

2-(3,3-Dimethylindoline-1-carbonyl)-3-methylbutyl 3-ethylbenzoate (18)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol %), **L1** (18.2 mg, 0.03 mmol, 15 mol%), γ-aminocarbonyl alcohol **S18** (52.2 mg, 0.20 mmol, 1.0 equiv.), and anhydrous CCl₄ (2.0 mL). Then, **O2** (40.4 mg, 0.20 mmol, 1.0 equiv.) and 3-ethylbenzaldehyde **C1** (16.2 mg, 0.12 mmol, 0.6 equiv.) were added to the mixture and the reaction mixture was stirred at 0 °C for 7 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The filtrate was evaporated and the residue was purified by flash column chromatography (EtOAc/PE = 1/10) to afford the **18** as a colorless liquid (26.0 mg, 33% yield, 90 % e.e.).

The racemates of products were prepared following the procedure: under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (12.0 mg, 0.02 mmol, 10 mol %), **L-rac1** (11.3 mg, 0.03 mmol, 15 mol%), γ -aminocarbonyl alcohol **S18** (52.2 mg, 0.20 mmol, 1.0 equiv.), and anhydrous CCl₄ (2.0 mL). Then, **O2** (40.4 mg, 0.20 mmol, 1.0 equiv.) and 3-ethylbenzaldehyde **C1** (16.2 mg, 0.12 mmol, 0.6 equiv.) were added to the mixture and the reaction mixture was stirred at 0 °C for 7 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated *in vacuo*. The filtrate was evaporated and the residue was purified by flash column chromatography (EtOAc/PE = 1/10) to afford the desired product.

HPLC analysis: Chiralcel IA-3 (n-hexane/i-PrOH = 95/05, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 16.98 min, t_R (minor) = 12.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, J = 8.1 Hz, 1H), 7.77 – 7.64 (m, 2H), 7.35 – 7.27 (m, 1H), 7.27 – 7.18 (m, 2H), 7.15 – 7.02 (m, 2H), 4.75 (dd, J = 10.5, 4.7 Hz, 1H), 4.49 (t, J = 10.2 Hz, 1H), 3.85 (s, 2H), 2.98 – 2.88 (m, 1H), 2.52 (q, J = 7.6 Hz, 2H), 2.23 – 2.09 (m, 1H), 1.33 (s, 3H), 1.17 (s, 3H), 1.15 – 1.07 (m, 6H), 1.07 – 1.02 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 166.7, 144.5, 141.5, 140.8, 132.7, 129.9, 129.0, 128.3, 127.8, 127.0, 124.2, 121.8, 117.5, 65.7, 63.6, 51.0, 40.0, 29.5, 28.5, 28.4, 21.2, 20.3, 15.4. **HRMS** (ESI) m/z calcd. for C₂₅H₃₂NO₃+ [M + H]⁺ 394.2377, found 394.2379.

(S)-Diethyl (2-(indoline-1-carbonyl)-3-methylbutyl) phosphate (19)

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), L7 (19.4 mg, 0.03 mmol, 15 mol%), Cs₂CO₃ (65.1 mg, 0.20 mmol, 1.0 equiv.), γ -aminocarbonyl alcohol S2 (46.7 mg, 0.20 mmol, 1.0 equiv.), oxime phosphonate P1 (88.8 mg, 0.20 mmol, 1.0 equiv.), and anhydrous i Pr₂O (2.0 mL). Then the reaction mixture was stirred at 0 °C for 8 d. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (EtOAc/PE = 2/1) to afford the 19 as a light yellow oil (18.5 mg, 25% yield, 79% e.e.).

The racemates of products were prepared following the procedure: under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), **L-rac1** (11.3 mg, 0.03 mmol, 15 mol%), γ -aminocarbonyl alcohol **S2** (46.7 mg, 0.20 mmol, 1.0 equiv.), oxime phosphonate **P1** (88.8 mg, 0.20 mmol, 1.0 equiv.), and anhydrous ${}^{i}\text{Pr}_{2}\text{O}$ (2.0 mL). Then the reaction mixture was stirred at 0 °C for 8 d. Upon completion, the precipitate was filtered off and washed with EtOAc and concentrated *in vacuo*. The filtrate was evaporated and the residue was purified by flash column chromatography (EtOAc/PE = 2/1) to afford the desired product.

HPLC analysis: Chiralpak IA-3 (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 15.15 min, t_R (minor) = 21.94 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, J = 9.0 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.07 – 6.99 (m, 1H), 4.45 – 4.22 (m, 3H), 4.18 – 3.97 (m, 5H), 3.19 (t, J = 8.5 Hz, 2H), 2.95 – 2.83 (m, 1H), 2.03 (dq, J = 13.4, 6.7 Hz, 1H), 1.34 – 1.18 (m, 6H), 1.06 – 0.86 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 143.0, 131.7, 127.6, 124.7, 124.0, 117.6, 68.2 (d, J = 5.8 Hz), 64.0 (t, J = 5.5 Hz), 52.2 (d, J = 6.8 Hz), 48.7, 29.1, 28.1, 21.2, 20.2, 16.2 (dd, J = 6.8, 4.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ –1.43.

HRMS (ESI) m/z calcd. for $C_{18}H_{29}NO_5P$ [M + H]⁺ 370.1778, found 370.1778.

Ethyl (S)-benzyl(2-(indolin-1-yl)-2-oxoethyl)phosphinate (20)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and (bromomethyl)benzene **C2** (25.5 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **20** as a white solid (23.4 mg, 68% yield, 90% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 28.98 min, t_R (major) = 30.70 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.0 Hz, 1H), 7.52 – 7.09 (m, 7H), 7.04 (t, J = 7.4 Hz, 1H), 4.27 – 3.92 (m, 4H), 3.40 (d, J = 17.7 Hz, 2H), 3.15 (t, J = 8.4 Hz, 2H), 3.01 (d, J = 17.1 Hz, 2H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C **NMR** (100 MHz, CDCl₃) δ 163.5 (d, J = 4.2 Hz), 142.7, 131.7, 131.3 (d, J = 8.2 Hz), 130.2 (d, J = 5.9 Hz), 128.8 (d, J = 3.0 Hz), 127.6, 127.1 (d, J = 3.5 Hz), 124.7, 124.3, 117.4, 61.6 (d, J = 7.0 Hz), 49.1, 37.4 (d, J = 82.8 Hz), 36.8 (d, J = 89.0 Hz), 27.9, 16.7 (d, J = 5.8 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 45.56.

HRMS (ESI) m/z calcd. for C₁₉H₂₃NO₃P [M + H]⁺ 344.1410, found 344.1404.

Ethyl (S)-(4-chlorobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (21)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-(bromomethyl)-4-chlorobenzene **C3** (30.8 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the

reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **21** as a colorless oil (34.0 mg, 90% yield, 91% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 11.22 min, t_R (minor) = 14.77 min.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.1 Hz, 1H), 7.41 – 7.13 (m, 6H), 7.05 (t, J = 7.4 Hz, 1H), 4.32 – 3.92 (m, 4H), 3.38 (d, J = 17.0 Hz, 2H), 3.17 (t, J = 8.5 Hz, 2H), 3.01 (d, J = 17.5 Hz, 2H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 3.7 Hz), 142.6, 133.1 (d, J = 4.2 Hz), 131.7, 131.6 (d, J = 5.9 Hz), 129.9 (d, J = 8.2 Hz), 128.9 (d, J = 3.0 Hz), 127.6, 124.8, 124.4, 117.4, 61.7 (d, J = 6.9 Hz), 49.2, 37.4 (d, J = 83.0 Hz), 36.0 (d, J = 90.1 Hz), 28.0, 16.7 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 45.05.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₃PCl [M + H]⁺ 378.1020, found 378.1014.

Ethyl (S)-(4-bromobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (22)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-bromo-4-(bromomethyl)benzene **C4** (37.5 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **22** as a white solid (35.9 mg, 85% yield, 90% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 10.60 min, t_R (minor) = 13.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 8.1 Hz, 2H), 7.36 – 7.26 (m, 2H), 7.25 – 7.14 (m, 2H), 7.06 (t, J = 7.4 Hz, 1H), 4.30 – 3.89 (m, 4H), 3.48 – 3.26 (m, 2H), 3.17 (t, J = 8.4 Hz, 2H), 3.01 (d, J = 17.5 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 3.7 Hz), 142.6, 132.0 (d, J = 5.9 Hz), 131.9 (d, J = 3.0 Hz), 131.8, 130.4 (d, J = 8.3 Hz), 127.6, 124.8, 124.4, 121.3 (d, J = 4.4 Hz), 117.4, 61.7 (d, J = 6.9 Hz), 49.2, 37.3 (d, J = 83.2 Hz), 36.1 (d, J = 90.0 Hz), 28.0, 16.7 (d, J = 5.6 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 45.03.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₃PBr [M + H]⁺ 422.0515, found 422.0509.

Ethyl (S)-([1,1'-biphenyl]-4-ylmethyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (23)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 4-(bromomethyl)-1,1'-biphenyl **C5** (37.1 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction

mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **23** as a white solid (27.3 mg, 65% yield, 88% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 14.60 min, t_R (minor) = 16.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.1 Hz, 1H), 7.65 – 7.38 (m, 8H), 7.38 – 7.28 (m, 1H), 7.26 – 7.14 (m, 2H), 7.05 (t, J = 8.0 Hz, 1H), 4.21 – 3.98 (m, 4H), 3.45 (d, J = 17.9 Hz, 2H), 3.14 (t, J = 8.4 Hz, 2H), 3.05 (d, J = 17.2 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.6 (d, J = 3.9 Hz), 142.7, 140.7 (d, J = 1.5 Hz), 140.0 (d, J = 3.8 Hz), 131.8, 130.7 (d, J = 5.9 Hz), 130.3 (d, J = 8.1 Hz), 128.9, 127.6, 127.4(8), 127.4(5), 127.1, 124.8, 124.4, 117.4, 61.7 (d, J = 6.8 Hz), 49.2, 37.5 (d, J = 82.6 Hz), 36.4 (d, J = 90.1 Hz), 28.0, 16.7 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 45.68.

HRMS (ESI) m/z calcd. for C₂₅H₂₇NO₃P [M + H]⁺ 420.1723, found 420.1714.

Methyl (S)-4-((ethoxy(2-(indolin-1-yl)-2-oxoethyl)phosphoryl)methyl)benzoate (24)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and methyl 4-(bromomethyl)benzoate **C6** (34.5 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **24** as a white solid (37.3 mg, 93% yield, 91% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 11.82 min, t_R (minor) = 16.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.49 (dd, J = 8.3, 2.4 Hz, 2H), 7.25 – 7.16 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 4.28 – 3.96 (m, 4H), 3.91 (s, 3H), 3.48 (d, J = 18.0 Hz, 2H), 3.17 (t, J = 8.4 Hz, 2H), 3.03 (d, J = 17.4 Hz, 2H), 1.25 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.0, 163.3 (d, J = 3.8 Hz), 142.6, 136.85 (d, J = 8.4 Hz), 131.8, 130.3 (d, J = 5.7 Hz), 130.0 (d, J = 2.9 Hz), 129.1 (d, J = 3.3 Hz), 127.6, 124.8, 124.5, 117.4, 61.8 (d, J = 6.9 Hz), 52.2, 49.2, 37.6 (d, J = 83.6 Hz), 36.9 (d, J = 89.1 Hz), 28.0, 16.7 (d, J = 5.8 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 44.75.

HRMS (ESI) m/z calcd. for C₂₁H₂₅NO₅P [M + H]⁺ 402.1465, found 402.1457.

Ethyl (S)-(3-chlorobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (25)

According to **General procedure B** with H-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-(bromomethyl)-3-chlorobenzene **C7** (30.8 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **25** as a white solid (34.4 mg, 91% yield, 91% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 10.43 min, t_R (minor) = 13.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.1 Hz, 1H), 7.40 (s, 1H), 7.35 – 7.15 (m, 5H), 7.05 (t, J = 7.4 Hz, 1H), 4.33 – 3.96 (m, 4H), 3.39 (d, J = 17.7 Hz, 2H), 3.18 (t, J = 8.5 Hz, 2H), 3.03 (d, J = 17.5 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 3.8 Hz), 142.6, 134.5 (d, J = 3.5 Hz), 133.4 (d, J = 8.2 Hz), 131.8, 130.2 (d, J = 5.9 Hz), 130.0 (d, J = 3.0 Hz), 128.5 (d, J = 5.8 Hz), 127.6, 127.4 (d, J = 3.4 Hz), 124.8, 124.4, 117.4, 61.8 (d, J = 6.8 Hz), 49.2, 37.5 (d, J = 83.4 Hz), 36.4 (d, J = 89.9 Hz), 28.0, 16.7 (d, J = 5.8 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 44.94.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₃PCl [M + H]⁺ 378.1020, found 378.1016.

Ethyl (S)-(3-fluorobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (26)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-(bromomethyl)-3-fluorobenzene **C8** (28.3 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **26** as a colorless oil (24.2 mg, 67% yield, 90% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 10.14 min, t_R (minor) = 12.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 7.32 – 7.11 (m, 5H), 7.05 (t, J = 8.0 Hz, 1H), 6.95 (t, J = 8.4 Hz, 1H), 4.29 – 3.95 (m, 4H), 3.41 (d, J = 17.8 Hz, 2H), 3.18 (t, J = 8.5 Hz, 2H), 3.03 (d, J = 17.5 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 3.9 Hz), 162.9 (dd, J = 3.5, 246.3 Hz), 142.6, 133.8 (t, J = 8.2 Hz), 131.8, 130.2 (dd, J = 3.0, 8.4 Hz), 127.6, 126.0 (dd, J = 6.1, 3.0 Hz), 124.8, 124.4, 117.4, 117.2 (dd, J = 22.0, 5.8 Hz), 114.1 (dd, J = 21.0, 3.5 Hz), 61.7 (d, J = 6.9 Hz), 49.2, 37.5 (d, J = 83.4 Hz), 36.5 (dd, J = 90.1, 1.8 Hz), 28.0, 16.7 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 44.98.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –112.71.

HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₃PF [M + H]⁺ 362.1316, found 362.1309.

Methyl (S)-3-((ethoxy(2-(indolin-1-yl)-2-oxoethyl)phosphoryl)methyl)benzoate (27)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and methyl 3-(bromomethyl)benzoate **C9** (34.4 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **27** as a white solid (30.9 mg, 77% yield, 88% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 13.95 min, t_R (minor) = 17.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 1H), 8.03 (s, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.25 – 7.14 (m, 2H), 7.05 (t, J = 7.4 Hz, 1H), 4.20 – 3.98 (m, 4H), 3.87 (s, 3H), 3.46 (d, J = 17.5 Hz, 2H), 3.16 (t, J = 8.5 Hz, 2H), 3.03 (d, J = 17.4 Hz, 2H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 163.4 (d, J = 3.9 Hz), 142.7, 134.8 (d, J = 5.6 Hz), 131.9 (d, J = 8.4 Hz), 131.7, 131.2 (d, J = 6.0 Hz), 130.7 (d, J = 2.8 Hz), 128.9 (d, J = 2.9 Hz), 128.4 (d, J = 3.3 Hz), 127.6, 124.8, 124.4, 117.5, 61.8 (d, J = 6.9 Hz), 52.2, 49.2, 37.7 (d, J = 83.2 Hz), 36.6 (d, J = 89.9 Hz), 28.0, 16.6 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 44.88.

HRMS (ESI) m/z calcd. for C₂₁H₂₅NO₅P [M + H]⁺ 402.1465, found 402.1458.

Ethyl (S)-(3-cyanobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (28)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 3-(bromomethyl)benzonitrile **C10** (29.4 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **28** as a white solid (35.0 mg, 95% yield, 86% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 16.88 min, t_R (minor) = 31.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 8.1 Hz, 1H), 7.76 – 7.64 (m, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.26 – 7.17 (m, 2H), 7.07 (t, J = 6.9 Hz, 1H), 4.30 – 3.95 (m, 4H), 3.56 – 3.33 (m, 2H), 3.20 (t, J = 8.5 Hz, 2H), 3.13 – 2.90 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, J = 3.6 Hz), 142.5, 134.9 (d, J = 5.6 Hz), 133.7, 133.2 (d, J = 8.4 Hz), 131.7, 130.9 (d, J = 3.4 Hz), 129.5 (d, J = 2.9 Hz), 127.7, 124.8, 124.6, 118.6, 117.4, 112.9 (d, J = 3.0 Hz), 61.9 (d, J = 6.9 Hz), 49.2, 37.5 (d, J = 83.6 Hz), 36.1 (d, J = 89.7 Hz), 28.0, 16.7 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 44.41.

HRMS (ESI) m/z calcd. for C₂₀H₂₂N₂O₃P [M + H]⁺ 369.1363, found 369.1355.

Ethyl (S)-(3,5-dibromobenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (29)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1,3-dibromo-5-(bromomethyl)benzene **C11** (49.3 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **29** as a white solid (36.1 mg, 72% yield, 87% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 10.72 min, t_R (minor) = 19.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 8.0 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.25 – 7.15 (m, 2H), 7.06 (t, J = 7.4, 1H), 4.30 – 3.97 (m, 4H), 3.36 (dd, J = 17.5, 2.7 Hz, 2H), 3.20 (t, J = 8.5 Hz, 2H), 3.05 (dd, J = 17.7, 4.8 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, J = 3.7 Hz), 142.5, 135.4 (d, J = 8.3 Hz), 132.9 (d, J = 3.5 Hz), 132.0 (d, J = 5.9 Hz), 131.8, 127.7, 124.8, 124.5, 123.1 (d, J = 3.4 Hz), 117.5, 61.9 (d, J = 6.9 Hz), 49.3, 37.6 (d, J = 83.8 Hz), 35.9 (d, J = 89.6 Hz), 28.0, 16.7 (d, J = 5.7 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 44.20.

HRMS (ESI) m/z calcd. for C₁₉H₂₁NO₃PBr₂ [M + H]⁺ 499.9620, found 499.9611.

Ethyl (S)-(3,5-dimethylbenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (30)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-(bromomethyl)-3,5-dimethylbenzene **C12** (25.5 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **30** as a white solid (19.3 mg, 52% yield, 88% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 21.59 min, t_R (minor) = 26.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 1H), 7.25 – 7.13 (m, 2H), 7.10 – 6.95 (m, 3H), 6.87 (s, 1H), 4.24 – 3.87 (m, 4H), 3.32 (d, J = 17.8 Hz, 2H), 3.14 (t, J = 8.4 Hz, 2H), 3.02 (dd, J = 17.2, 2.9 Hz, 2H), 2.24 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C **NMR** (100 MHz, CDCl₃) δ 163.6 (d, J = 4.1 Hz), 142.7, 138.3 (d, J = 3.1 Hz), 131.7, 130.9 (d, J = 8.0 Hz), 128.8 (d, J = 3.6 Hz), 128.0 (d, J = 5.9 Hz), 127.6, 124.7, 124.3, 117.4, 61.6 (d, J = 6.9 Hz), 49.1, 37.5 (d, J = 82.4 Hz), 36.6 (d, J = 90.2 Hz), 28.0, 21.3, 16.7 (d, J = 5.8 Hz). ³¹P **NMR** (162 MHz, CDCl₃) δ 45.81.

HRMS (ESI) m/z calcd. for C₂₁H₂₇NO₃P [M + H]⁺ 372.1723, found 372.1725.

Ethyl (S)-(3,5-dimethoxybenzyl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (31)

According to **General procedure B** with *H*-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 1-(bromomethyl)-3,5-dimethoxybenzene **C13** (34.6 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **31** as a white solid (24.2 mg, 60% yield, 88% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 11.87 min, t_R (minor) = 13.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 7.24 – 7.12 (m, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.59 – 6.52 (m, 2H), 6.38 – 6.31 (m, 1H), 4.30 – 3.94 (m, 4H), 3.74 (s, 6H), 3.34 (d, J = 17.9 Hz, 2H), 3.16 (t, J = 8.5 Hz, 2H), 3.03 (d, J = 17.2 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.5 (d, J = 4.0 Hz), 161.0 (d, J = 3.0 Hz), 142.7, 133.4 (d, J = 7.7 Hz), 131.8, 127.6, 124.8, 124.3, 117.4, 108.1 (d, J = 6.0 Hz), 99.6 (d, J = 3.4 Hz), 61.7 (d, J = 6.9 Hz), 55.4, 49.1, 37.6 (d, J = 21.9 Hz), 36.8 (d, J = 28.5 Hz), 28.0, 16.7 (d, J = 5.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 45.66.

HRMS (ESI) m/z calcd. for C₂₁H₂₇NO₅P [M + H]⁺ 404.1621, found 404.1614.

Ethyl (S)-(2-(indolin-1-yl)-2-oxoethyl)(naphthalen-2-ylmethyl)phosphinate (32)

According to **General procedure B** with H-phosphinate **S19** (25.3 mg, 0.10 mmol, 1.0 equiv.) and 2-(bromomethyl)naphthalene **C14** (33.2 mg, 0.15 mmol, 1.5 equiv.) at r.t. for 4 d, the reaction mixture was purified by column chromatography on silica gel (EtOAc/MeOH = 40/1) to afford **32** as a white solid (24.7 mg, 63% yield, 85% e.e.).

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 280 nm), t_R (major) = 12.00 min, t_R (minor) = 14.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.88 – 7.67 (m, 4H), 7.58 – 7.37 (m, 3H), 7.25 – 7.19 (m, 1H), 7.15 (d, J = 6.2 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 4.27 – 3.87 (m, 4H), 3.57 (d, J = 17.9 Hz, 2H), 3.13 – 2.92 (m, 4H), 1.27 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.6 (d, J = 3.9 Hz), 142.7, 133.5 (d, J = 3.1 Hz), 132.5 (d, J = 2.6 Hz), 131.8, 129.1 (d, J = 7.8 Hz), 128.8 (d, J = 8.5 Hz), 128.4 (d, J = 2.5 Hz), 128.2 (d, J = 4.6 Hz), 127.79 – 127.65 (m, 2C), 127.6, 126.3, 126.0 (d, J = 1.8 Hz), 124.8, 124.3, 117.4, 61.7 (d, J = 6.9 Hz), 49.1, 37.6 (d, J = 47.5 Hz), 36.7 (d, J = 54.5 Hz), 27.9, 16.7 (d, J = 5.8 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 45.74. HRMS (ESI) *m/z* calcd. for C₂₃H₂₅NO₃P [M + H]⁺ 394.1567, found 394.1562.

Ethyl (2-(indolin-1-yl)-2-oxoethyl)(3-(triisopropylsilyl)prop-2-yn-1-yl)phosphinate (33)

According to **General procedure B** with *H*-phosphinate **S19** (30.4 mg, 0.12 mmol, 1.2 equiv.), CuTc (1.91 mg, 0.01 mmol, 10 mol%), (3-bromoprop-1-yn-1-yl)triisopropylsilane **C15** (26.0 μ L, 0.10 mmol, 1.0 equiv.), H₂O (3.6 μ L, 0.20 mmol, 2.0 equiv.), Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 equiv.) and anhydrous MTBE (4.0 mL) at r.t. for 3 d, the reaction mixture was purified by column chromatography on silica gel (PE/EtOAc = 1/2) to afford **33** as a white solid (24.7 mg, 60% yield, 90% e.e.).

HPLC analysis: Chiralpak IH (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.23 min, t_R (minor) = 20.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 – 8.16 (m, 1H), 7.21 - 7.13 (m, 2H), 7.07 - 6.99 (m, 1H), 4.32 - 4.14 (m, 4H), 3.40 - 2.92 (m, 6H), 1.35 (t, J = 7.0 Hz, 3H), 1.13 - 0.95 (m, 21H).

¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, J = 4.0 Hz), 142.6, 131.5, 127.5, 124.6, 124.3, 117.4, 97.6 (d, J = 11.7 Hz), 85.2 (d, J = 8.3 Hz), 62.0 (d, J = 6.9 Hz), 49.1, 36.8 (d, J = 90.1 Hz), 27.9, 22.3 (d, J = 93.0 Hz), 18.6, 16.5 (d, J = 6.2 Hz), 11.2.

³¹**P NMR** (162 MHz, CDCl₃) δ 42.26.

HRMS (ESI) m/z calcd. for C₂₄H₃₉NO₃PSi [M + H]⁺ 448.2431, found 448.2431.

Ethyl (4-(1-naphthoyl)piperazin-1-yl)(2-(indolin-1-yl)-2-oxoethyl)phosphinate (34)

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with $Cu(OAc)_2$ (1.90 mg, 0.010 mmol, 10 mol%), **L8** (7.80 mg, 0.015 mmol, 15 mol%), **S19** (37.9 mg, 0.15 mmol, 1.5 equiv.), **N1** (36.0 mg, 0.10 mmol, 1.0 equiv.), H_2O (3.6 μ L, 0.20 mmol, 2.0 equiv.) and Cs_2CO_3 (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (2.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t. for 3 d. Upon completion, the precipitate was filtered off and washed with CH_2Cl_2 . Upon completion, the precipitate was filtered off and washed with CH_2Cl_2 . The filtrate was evaporated and the residue was purified by silica gel column chromatography (EtOAc/MeOH = 20/1) to afford **34** as colorless oil (19.6 mg, 40% yield, 85% e.e.).

The racemates of products were prepared following the procedure: An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OAc)₂ (1.90 mg, 0.010 mmol, 10 mol%), **L-rac2** (4.20 mg, 0.015 mmol, 15 mol%), **S19** (37.9 mg, 0.15 mmol, 1.5 equiv.), **N1** (36.0 mg, 0.10 mmol, 1.0 equiv.), H₂O (3.6 µL, 0.20 mmol, 2.0 equiv.) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (2.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t. for 3 d. Upon completion, the precipitate was filtered off and washed with CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product *rac-*34.

HPLC analysis: Chiralcel IA (n-hexane/i-PrOH = 50/50, flow rate 0.6 mL/min, λ = 280 nm), t_R (major) = 20.11 min, t_R (minor) = 27.38 min.

¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, J = 8.0 Hz, 1H), 7.96 – 7.78 (m, 3H), 7.64 – 7.37 (m, 4H), 7.24 – 7.12 (m, 2H), 7.07 – 6.98 (m, 1H), 4.63 – 4.35 (m, 1H), 4.24 – 3.79 (m, 5H), 3.60 – 2.89 (m, 10H), 1.44 – 1.26 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 169.7, 163.3 (d, J = 4.6 Hz), 142.8, 133.9, 133.6, 131.9, 129.6, 129.4, 128.6, 127.6, 127.3, 126.6, 125.3, 124.8(3), 124.7(9), 124.3, 124.0, 117.2, 60.5 (d, J = 6.7 Hz), 49.2, 47.7, 44.8, 44.3, 42.2, 36.9 (d, J = 118.2 Hz), 28.0, 16.4 (d, J = 6.7 Hz) ³¹P NMR (375 MHz, CDCl₃) δ 23.90.

HRMS (ESI) m/z calcd. for C₂₇H₃₀N₃NaO₄P [M + Na]⁺ 514.1866, found 514.1869.

(S)-N-(p-Tolyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (35)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **35** as a colorless oil (63.4 mg, 95% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 7.06 min, t_R (major) = 10.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.97 (d, J = 15.7 Hz, 1H), 3.81 (d, J = 15.7 Hz, 1H), 2.42 (s, 3H), 1.24 (s, 9H), 0.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.7, 143.3, 130.1, 129.5, 128.3, 94.9, 93.5, 42.0, 40.2, 28.8, 21.7, -0.3.

HRMS (ESI) m/z calcd. for $C_{18}H_{28}NOSSi [M + H]^+ 334.1655$, found 334.1651.

(S)-N-(Isopropyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (36)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 2-iodopropane **C17** (51.0 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **36** as a white solid (45.2 mg, 85% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 9.33 min, t_R (major) = 14.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 3.36 – 3.29 (m, 1H), 2.38 (s, 3H), 1.29 – 1.21 (m, 12H), 1.13 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.2, 142.5, 130.1, 129.0, 128.1, 50.0, 40.4, 28.8, 21.5, 16.8, 16.1. **HRMS** (ESI) m/z calcd. for C₁₅H₂₄NOS [M + H]⁺ 266.1573, found 266.1573

(R)-N-(p-Tolyl(trifluoromethyl)- λ^4 -sulfaneylidene)pivalamide (37)

According to **General Procedure C** with *N*-(*p*-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 1-(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-3(1H)-one **C18** (94.8 mg, 0.30 mmol, 1.5 equiv.) at -10 °C for 36 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 5/1) to afford **37** as a light yellow oil (55.3 mg, 95% yield, 97% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 6.31 min, t_R (major) = 11.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 2.45 (s, 3H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.1, 145.4, 130.9, 128.5, 124.6, 124.4 (q, J = 323.7 Hz), 40.5, 28.5, 21.8.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –64.91.

HRMS (ESI) m/z calcd. for C₁₃H₁₇F₃NOS [M + H]⁺ 292.0977, found 292.0972.

(R)-N-(Phenyl(p-tolyl)- λ^4 -sulfaneylidene)benzamide (38)

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (11.4 mg, 0.06 mmol, 30 mol%), **L3** (38.8 mg, 0.09 mmol, 45 mol%) and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). Then, anhydrous fluorobenzene (PhF, 2.0 mL) was added and the reaction mixture was stirred at 50 °C for 1 h. After premixing, *N*-(*p*-tolylthio)benzamide **S1** (48.66 mg, 0.20 mmol, 1.0 equiv.) and benzenediazonium tetrafluoroborate **C19** (57.58 mg, 0.30 mmol, 1.5 equiv.) were added to the mixture under an argon atmosphere, and the reaction mixture was stirred at r.t. for 24 h. Then the reaction mixture was extracted with EtOAc three times (3 × 10 mL) and the combined organic layers were concentrated *in vacuo*. The filtrate was evaporated and the residue was purified by flash column chromatography (EtOAc/PE = 1/1) to afford the **38** as a white solid (34.5 mg, 54% yield, 95 % e.e.).

.

The racemates of products were prepared following the procedure: Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (11.4 mg, 0.06 mmol, 30 mol%), **L-rac2** (25.14 mg, 0.09 mmol, 45 mol%) and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). Then, anhydrous fluorobenzene (PhF, 2.0 mL) was added and the reaction mixture was stirred at 50 °C for 1 h. After premixing, *N-(p-*tolylthio)benzamide **S1** (48.66 mg, 0.20 mmol, 1.0 equiv.) and benzenediazonium tetrafluoroborate **C19** (57.58 mg, 0.30 mmol, 1.5 equiv.) were added under an argon atmosphere, and the reaction mixture was stirred at r.t. for 24 h. Then the reaction mixture was extracted with EtOAc three times (3 × 10 mL) and the combined organic layers were concentrated *in vacuo*. The filtrate was evaporated and the residue was purified by flash column chromatography or preparative thin-layer chromatography on silica gel to afford the desired product.

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 21.00 min, t_R (minor) = 24.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 – 8.19 (m, 2H), 7.86 – 7.77 (m, 2H), 7.74 – 7.68 (m, 2H), 7.53 – 7.35 (m, 6H), 7.32 – 7.26 (m, 2H), 2.37 (s, 3H).

¹³C **NMR** (100 MHz, CDCl₃) δ 176.7, 142.8, 136.8, 136.7, 133.2, 131.8, 130.9, 130.7, 129.9, 129.0, 128.1, 127.9, 127.8, 21.6.

HRMS (ESI) m/z calcd. for $C_{20}H_{17}NOS [M + H]^+$ 320.1104, found 320.1099.

(S)-N-((Dimethylamino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (39)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N,N-dimethylhydroxylamine **N2** (49.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 15/1) to afford the product **39** as a white solid (39.9 mg, 75% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.16 min, t_R (major) = 9.28 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.71 (m, 2H), 7.34 – 7.28 (m, 2H), 2.68 (s, 6H), 2.41 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.2, 141.9, 132.4, 129.9, 128.2, 40.9, 38.8, 28.8, 21.4. HRMS (ESI) m/z calcd. for C₁₄H₂₃N₂OS [M + H]⁺ 267.1526, found 267.1524.

(R)-tert-Butyl N-(pivaloyl)-4-methylphenylsulfinimidate (40)

According to **General Procedure F** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) for 48 h with workup method 1, the reaction mixture was purified by flash column chromatography on neutral alumina (PE/EtOAc = 3/1) to afford the product **40** as a white solid (29.5 mg, 50% yield, 99% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 6.39 min, t_R (major) = 7.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 2.42 (s, 3H), 1.55 (s, 9H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 142.6, 136.5, 129.9, 127.2, 84.8, 41.1, 29.5, 28.2, 21.5. **HRMS** (ESI) m/z calcd. for C₁₆H₂₅NNaO₂S [M + Na]⁺ 318.1498, found 318.1498.

(S)-N-(p-Tolylsulfinyl)pivalamide (40')

According to **General Procedure F** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and tert-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) for 48 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 3/1) to afford the product **40'** as a white solid (workup method 1, 19.1 mg, 40% yield, 91% e.e.; workup method 2, 45.5 mg, 95% yield, 96% e.e.). The stereoconfiguration of **40'** was matched with literature report 61 .

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 20.63 min, t_R (minor) = 23.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.52 (d, J = 7.9 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.1, 142.4, 140.9, 130.1, 124.8, 39.8, 27.1, 21.5.

HRMS (ESI) m/z calcd. for C₁₂H₁₈NO₂S [M + H]⁺ 240.1053, found 240.1049.

(R)-N-(Benzyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (41)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.), benzyl bromide **C2** (51.3 mg, 0.30 mmol, 1.5 equiv.) and **L9** (7.0 mg, 0.015 mmol, 7.5 mol%) at r.t. for 8 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 1.5/1) to afford **41** as a white solid (57.7 mg, 92% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 6.51 min, t_R (major) = 10.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 8.3 Hz, 2H), 7.31 – 7.25 (m, 1H), 7.24 – 7.15 (m, 4H), 6.90 (d, J = 7.2 Hz, 2H), 4.42 (d, J = 12.3 Hz, 1H), 4.15 (d, J = 12.3 Hz, 1H), 2.38 (s, 3H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.3, 142.7, 130.9, 130.0, 129.3, 128.6(9), 128.6(6), 128.3, 128.0, 55.4, 40.2, 28.8, 21.6.

HRMS (ESI) m/z calcd. for C₁₉H₂₄NOS [M + H]⁺ 314.1573, found 314.1567.

$(R)-N-((1,1-\text{Bibromo-}2-\text{hydroxyethyl})(p-\text{tolyl})-\lambda^4-\text{sulfaneylidene})$ pivalamide (42)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 2,2,2-tribromoethanol **C20** (84.8 mg, 0.30 mmol, 1.5 equiv.) at r.t. for 48 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 4/1) to afford **42** as a light yellow oil (72.3 mg, 85% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 85/15, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 12.98 min, t_R (major) = 22.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 6.56 (dd, J = 10.1, 5.7 Hz, 1H), 4.24 – 4.05 (m, 2H), 2.48 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 193.4, 145.2, 131.7, 129.6, 124.6, 84.8, 71.1, 41.2, 28.6, 21.9. HRMS (ESI) m/z calcd. for C₁₂H₂₀Br₂NO₂S [M + H]⁺ 423.9576, found 423.9578.

(R)-N-(p-Tolyl(trichloromethyl)- λ^4 -sulfaneylidene)pivalamide (43)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and bromotrichloromethane **C21** (47.6 mg, 0.24 mmol, 1.2 equiv.) at r.t. for 48 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 4/1) to afford **43** as a light yellow oil (50.4 mg, 74% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 8.89 min, t_R (major) = 13.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 2.46 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.5, 145.7, 130.5, 130.0, 127.8, 107.9, 41.4, 28.4, 21.9.

HRMS (ESI) m/z calcd. for C₁₃H₁₇Cl₃NOS [M + H]⁺ 340.0091, found 340.0088.

(R)-N-(((1,3-dioxoisoindolin-2-yl)methyl)(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (44)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 2-(iodomethyl)isoindoline-1,3-dione **C22** (86.1 mg, 0.30 mmol, 1.5 equiv.) for 72 h at 10 °C, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 3/2) to afford **44** as a pale yellow solid (53.5 mg, 70% yield, 89% e.e.).

HPLC analysis: Chiralpak IA-3 (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (minor) = 19.62 min, t_R (major) = 12.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 2H), 7.79 – 7.73 (m, 2H), 7.69 – 7.62 (m, 2H), 7.30 – 7.24 (m, 2H), 5.13 (d, J = 12.2 Hz, 1H), 4.99 (d, J = 12.2 Hz, 1H), 2.38 (s, 3H), 1.17 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.9, 166.2, 143.5, 134.7, 131.5, 130.5, 128.8, 127.9, 123.9, 54.9, 40.12, 28.5, 21.6.

HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₃S [M + H]⁺ 383.1424, found 383.1423.

(R)-N-(p-Tolyl(tribromomethyl)- λ^4 -sulfaneylidene)pivalamide (45)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and carbon tetrabromide **C23** (79.6 mg, 0.24 mmol, 1.2 equiv.) at r.t. for 48 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 2/1) to afford **45** as a light yellow oil (80.6 mg, 85% yield, 97% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 16.21 min, t_R (major) = 19.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 2.45 (s, 3H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.7, 145.6, 130.8, 129.7, 129.2, 56.0, 41.5, 28.5, 21.9.

HRMS (ESI) m/z calcd. for C₁₃H₁₇Br₃NOS [M + H]⁺ 471.8575, found 471.8569.

(R)-N-((Cyanomethyl)(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (46)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and bromoacetonitrile **C24** (36.0 mg, 0.30 mmol, 1.5 equiv.) at r.t. for 48 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 1.5/1) to afford **46** as a white solid (47.2 mg, 90% yield, 97% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 15.74 min, t_R (major) = 18.01 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.25 (d, J = 15.7 Hz, 1H), 3.87 (d, J = 15.7 Hz, 1H), 2.46 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.8, 144.8, 131.0, 128.1, 127.5, 110.4, 40.4, 37.8, 28.6, 21.8. **HRMS** (ESI) m/z calcd. for C₁₄H₁₉N₂OS [M + H]⁺ 263.1213, found 263.1209.

(R)-N-((Dichloromethyl)(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (47)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and bromodichloromethane **C25** (49.1 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 4/1) to afford 47 as a light yellow oil (52.1 mg, 85% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 7.49 min, t_R (major) = 12.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.29 (s, 1H), 2.47 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 145.2, 131.3, 129.9, 122.7, 78.0, 40.4, 28.5, 21.8.

HRMS (ESI) m/z calcd. for $C_{13}H_{18}Cl_2NOS$ [M + H]⁺ 306.0481, found 306.0477.

(S)-N-(tert-Butyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (48)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 2-iodo-2-methylpropane **C26** (55.2 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **48** as a colorless oil (46.0 mg, 82% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 8.74 min, t_R (major) = 13.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.26 (s, 9H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 189.9, 142.4, 129.6, 128.6, 128.3, 55.4, 40.5, 28.7, 24.3, 21.4. **HRMS** (ESI) m/z calcd. for C₁₅H₂₄NOS [M + H]⁺ 280.1730, found 280.1729.

(S)-N-(Adamantan-1-yl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (49)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 1-iodoadamantane **C27** (80.0 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **49** as a colorless oil (51.0 mg, 71% yield, 90% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 12.88 min, t_R (major) = 15.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 2.40 (s, 3H), 2.12 – 2.09 (m, 3H), 1.91 – 1.74 (m, 6H), 1.73 – 1.55 (m, 6H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.2, 142.4, 129.6, 128.9, 126.7, 57.3, 40.7, 36.6, 36.1, 29.3, 28.9, 21.6.

HRMS (ESI) m/z calcd. for C₂₂H₃₂NOS [M + H]⁺ 358.2199, found 358.2198.

(R)-N-((Dibromofluoromethyl)(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (50)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and fluorotribromomethane **C28** (81.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 120 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 3/1) to afford **50** as a light yellow oil (66.1 mg, 80% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 9.87 min, t_R (major) = 15.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 7.7 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 1.30 (s, 9H).

¹³C **NMR** (100 MHz, CDCl₃) δ 191.1, 145.5, 130.2, 130.0 (d, J = 1.2 Hz), 127.4, 103.4 (d, J = 363.5 Hz), 41.2, 28.4, 21.9.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –53.19.

HRMS (ESI) m/z calcd. for C₁₃H₁₇Br₂FNOS [M + H]⁺ 411.9376, found 411.9379.

tert-Butyl (S)-2-(N-pivaloyl-S-(p-tolyl)sulfinimidoyl)acetate (51)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and *tert*-butyl 2-iodoacetate **C29** (72.6 mg, 0.30 mmol, 1.5 equiv.) at -30 °C for 96 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 2/1) to afford **51** as colorless oil (64.1 mg, 95% yield, 93% e.e.).

HPLC analysis: Chiralcel IA (*n*-hexane/*i*-PrOH = 80/20, flow rate 0.5 mL/min, λ = 230 nm), t_R (minor) = 10.69 min, t_R (major) = 18.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.15 (d, J = 14.3 Hz, 1H), 3.64 (d, J = 12.1 Hz, 1H), 2.40 (s, 3H), 1.38 (s, 9H), 1.22 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 163.4, 143.3, 131.0, 130.5, 127.7, 83.8, 53.6, 40.0, 28.7, 28.0, 21.6.

HRMS (ESI) m/z calcd. for $C_{18}H_{28}NO_{3}S$ [M + H]⁺ 338.1784, found 338.1781.

(R)-(N-pivaloyl-S-(p-tolyl)sulfinimidoyl)methyl pivalate (52)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and iodomethyl pivalate **C30** (72.6 mg, 0.30 mmol, 1.5 equiv.) for 72 h at 10 °C, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 2/1) to afford **52** as a white solid (62.1 mg, 92% yield, 91% e.e.).

HPLC analysis: Chiralpak IA-3 (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 8.81 min, t_R (major) = 13.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.27 (q, J = 9.6 Hz, 2H), 2.41 (s, 3H), 1.24 (s, 9H), 1.14 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 176.6, 143.3, 130.5, 128.7, 127.7, 74.8, 40.2, 39.0, 28.7, 27.0, 21.6.

HRMS (ESI) m/z calcd. for $C_{18}H_{28}NO_3S$ [M + H]⁺ 338.1784, found 338.1781.

(S)-N-(Cyclohexyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (53)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and iodocyclohexane **C31** (63.0 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **53** as a colorless oil (58.1 mg, 95% yield, 92% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 10.97 min, t_R (major) = 17.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.14 – 2.98 (m, 1H), 2.40 (s, 3H), 2.18 – 1.95 (m, 1H), 1.91 – 1.72 (m, 3H), 1.71 – 1.58 (m, 1H), 1.54 – 0.90 (m, 14H).

¹³C NMR (100 MHz, CDCl₃) δ 190.2, 142.5, 130.2, 129.6, 128.1, 58.1, 40.3, 28.8, 27.0, 26.6, 25.5, 21.6.

HRMS (ESI) m/z calcd. for C₁₈H₂₈NOS [M + H]⁺ 306.1886, found 306.1885.

(R)-N-((Bromodifluoromethyl)(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (54)

According to **General Procedure C** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and dibromodifluoromethane **C32** (62.9 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 168 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 5/1) to afford **54** as a light yellow oil (50.0 mg, 71% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 7.34 min, t_R (major) = 12.26 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 2.45 (s, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 145.4, 130.6, 129.3, 125.5 (d, J = 1.4 Hz), 125.1 (dd, J = 355.7, 350.0 Hz), 40.9, 28.4, 21.8.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –44.94 (d, J = 134.9 Hz, 1F), –46.38 (d, J = 135.0 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₃H₁₇BrF₂NOS [M + H]⁺ 352.0177, found 352.0179.

(S)-N-(Methyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (55)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and 1-iodoundecane **C33** (84.7 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **55** as a colorless oil (54.4 mg, 72% yield, 92% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 9.42 min, t_R (major) = 11.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.14 – 2.78 (m, 2H), 2.38 (s, 3H), 1.64 – 1.47 (m, 2H), 1.39 – 1.09 (m, 25H), 0.86 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.3, 142.5, 131.7, 130.4, 127.1, 49.5, 40.1, 32.0, 29.6(2), 29.5(5), 29.3(7), 29.3(5), 29.1, 28.8, 28.4, 23.1, 22.8, 21.5, 14.2.

HRMS (ESI) m/z calcd. for C₂₃H₄₀NOS [M + H]⁺ 378.2825, found 378.2824.

(S)-N-(Methyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide (56)

According to **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and iodomethane **C34** (42.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **56** as a colorless oil (34.3 mg, 72% yield, 91% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 10.20 min, t_R (major) = 13.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.74 (s, 3H), 2.39 (s, 3H), 1.22 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.4, 142.6, 133.3, 130.6, 126.6, 39.9, 35.0, 28.7, 21.5.

HRMS (ESI) m/z calcd. for C₁₃H₂₀NOS [M + H]⁺ 238.1260, found 238.1259.

(S)-N-(Piperidin-1-yl(p-tolyl)- λ^4 -sulfanylidene)pivalamide (57)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and piperidin-1-yl benzoate **N3** (61.6 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 10/1) to afford the product **57** as a white solid (51.4 mg, 84% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.06 min, t_R (major) = 8.21 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 2H), 7.31 – 7.24 (m, 2H), 3.13 – 2.92 (m, 4H), 2.39 (s, 3H), 1.63 – 1.41 (m, 6H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.0, 141.6, 132.4, 129.8, 128.2, 48.6, 40.9, 28.8, 26.3, 23.7, 21.4. **HRMS** (ESI) m/z calcd. for C₁₇H₂₇N₂OS [M + H]⁺ 307.1839, found 307.1837.

(S)-N-(Morpholino(p-tolyl)- λ^4 -sulfanylidene)pivalamide (58)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **58** as a light yellow oil (56.3 mg, 91% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.56 min, t_R (major) = 13.46 min.

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 2H), 7.33 – 7.27 (m, 2H), 3.72 – 3.59 (m, 4H), 3.19 – 3.09 (m, 2H), 3.03 – 2.93 (m, 2H), 2.39 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.3, 142.2, 131.1, 130.0, 128.3, 67.0, 47.3, 40.9, 28.7, 21.4. **HRMS** (ESI) m/z calcd. for C₁₆H₂₅N₂O₂S [M + H]⁺ 309.1631, found 309.1630.

(S)-N-(Thiomorpholino(p-tolyl)- λ^4 -sulfanylidene)pivalamide (59)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and thiomorpholino benzoate **N5** (67.0 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 6/1) to afford the product **59** as a yellow oil (59.8 mg, 92% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.01 min, t_R (major) = 7.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 2H), 7.33 – 7.27 (m, 2H), 3.44 – 3.24 (m, 4H), 2.62 (t, J = 5.1 Hz, 4H), 2.40 (s, 3H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.1, 142.1, 131.8, 130.0, 128.3, 49.9, 40.9, 28.7, 28.1, 21.4. **HRMS** (ESI) m/z calcd. for C₁₆H₂₅N₂OS₂ [M + H]⁺ 325.1403, found 325.1400.

tert-Butyl (S)-4-(N-pivaloyl-S-(p-tolyl)sulfinimidoyl)-1,4-diazepane-1-carboxylate (60)

According to **General procedure E** with *N*-(*p*-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and *tert*-butyl 4-(benzoyloxy)-1,4-diazepane-1-carboxylate **N6** (96.1 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 6/1) to afford the product **60** as a colorless oil (80.1 mg, 95% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 4.31 min, t_R (major) = 8.76 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.69 (m, 2H), 7.31 – 7.24 (m, 2H), 3.57 – 3.14 (m, 8H), 2.38 (s, 3H), 1.81 – 1.52 (m, 2H), 1.40 (d, J = 16.6 Hz, 9H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.1, 155.2, 155.0, 142.0, 132.9, 129.9, 128.2, 79.7(3), 79.6(5), 50.9, 50.6, 50.3, 49.3, 48.3, 47.8, 46.0, 45.6, 40.8, 29.3, 29.0, 28.7, 28.5, 28.4, 21.4.

HRMS (ESI) m/z calcd. for C₂₂H₃₆N₃O₃S [M + H]⁺ 422.2472, found 422.2468.

(S)-N-((Diethylamino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (61)

According to **General procedure** E with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N,N-diethylhydroxylamine **N7** (58.0 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 15/1) to afford the product **61** as a colorless oil (53.0 mg, 90% yield, 94% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.32 min, t_R (major) = 9.12 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.71 (m, 2H), 7.29 – 7.24 (m, 2H), 3.19 (dq, J = 14.2, 7.1 Hz, 2H), 3.04 (dq, J = 14.4, 7.2 Hz, 2H), 2.39 (s, 3H), 1.26 (s, 9H), 1.11 (t, J = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 191.7, 141.5, 133.5, 129.8, 128.3, 43.6, 40.7, 28.7, 21.4, 14.3.

HRMS (ESI) m/z calcd. for C₁₆H₂₇N₂OS [M + H]⁺ 295.1839, found 295.1837.

(S)-N-((Dipropylamino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (62)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N,N-dipropylhydroxylamine **N8** (66.4 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 15/1) to afford the product **62** as a light yellow oil (58.1 mg, 90% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.22 min, t_R (major) = 7.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 2H), 7.30 – 7.24 (m, 2H), 3.10 (ddd, J = 14.4, 8.9, 5.8 Hz, 2H), 2.88 (ddd, J = 13.8, 9.0, 6.5 Hz, 2H), 2.39 (s, 3H), 1.64 – 1.41 (m, 4H), 1.26 (s, 9H), 0.80 (t, J = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 191.8, 141.6, 133.6, 129.8, 128.4, 51.5, 40.7, 28.8, 22.2, 21.4, 11.5. **HRMS** (ESI) m/z calcd. for C₁₈H₃₁N₂OS [M + H]⁺ 323.2152, found 323.2150.

(S)-N-((Dibenzylamino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (63)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N,N-dibenzylhydroxylamine **N9** (95.2 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 10/1) to afford the product **63** as a colorless oil (78.2 mg, 93% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.81 min, t_R (major) = 8.89 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.32 – 7.19 (m, 8H), 7.19 – 7.13 (m, 4H), 4.24 (d, J = 14.2 Hz, 2H), 4.02 (d, J = 14.2 Hz, 2H), 2.39 (s, 3H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 142.0, 137.1, 133.0, 129.9, 129.4, 128.5(2), 128.4(5), 127.7, 52.6, 41.0, 28.9, 21.5.

HRMS (ESI) m/z calcd. for C₂₆H₃₁N₂OS [M + H]⁺ 419.2152, found 419.2150.

(S)-N-((Benzyl(methyl)amino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (64)

According to **General procedure E** with *N*-(*p*-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and *O*-benzoyl-*N*-benzyl-*N*-methylhydroxylamine **N10** (72.4 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 10/1) to afford the product **64** as a colorless oil (63.8 mg, 93% yield, 96% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.70 min, t_R (major) = 13.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.38 – 7.22 (m, 7H), 4.51 (d, J = 14.3 Hz, 1H), 4.08 (d, J = 14.2 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 3H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.2, 142.0, 137.3, 132.8, 130.0, 128.7, 128.6, 128.4, 127.7, 57.8, 41.0, 33.7, 28.9, 21.5.

HRMS (ESI) m/z calcd. for C₂₀H₂₇N₂OS [M + H]⁺ 343.1839, found 343.1837.

(S)-N-((Benzyl(but-3-en-1-yl)amino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (65)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N-benzyl-N-(but-3-en-1-yl)hydroxylamine **N11** (84.4 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 3/1) to afford the product **65** as a light yellow oil (75.5 mg, 98% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.44 min, t_R (major) = 9.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.36 – 7.21 (m, 5H), 7.21 – 7.15 (m, 2H), 5.57 (ddt, J = 16.6, 9.6, 6.8 Hz, 1H), 5.00 – 4.92 (m, 2H), 4.21 – 4.07 (m, 2H), 3.29 (ddd, J = 13.8, 8.2, 5.7 Hz, 1H), 2.96 (ddd, J = 13.7, 8.4, 7.0 Hz, 1H), 2.41 (s, 3H), 2.38 – 2.17 (m, 2H), 1.33 (s, 9H).

¹³C **NMR** (100 MHz, CDCl₃) δ 192.0, 142.0, 137.2, 135.5, 133.1, 129.9, 128.9, 128.6, 127.7, 116.8, 53.2, 49.0, 40.9, 33.1, 28.8, 21.5.

HRMS (ESI) m/z calcd. for C₂₃H₃₁N₂OS [M + H]⁺ 383.2152, found 383.2149.

(S)-N-((Benzyl(but-3-yn-1-yl)amino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (66)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N-benzyl-N-(but-3-yn-1-yl)hydroxylamine **N12** (83.8 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 3/1) to afford the product **66** as a light yellow oil (74.8 mg, 98% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.95 min, t_R (major) = 10.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.37 – 7.21 (m, 5H), 7.21 – 7.15 (m, 2H), 4.22 – 4.06 (m, 2H), 3.47 (dt, J = 13.7, 6.7 Hz, 1H), 3.11 (dt, J = 14.1, 7.2 Hz, 1H), 2.53 – 2.43 (m, 1H), 2.42 (s, 3H), 2.33 – 2.20 (m, 1H), 1.99 – 1.93 (m, 1H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.1, 142.1, 136.7, 132.7, 129.9, 128.9, 128.6(4), 128.5(8), 127.8, 81.8, 70.1, 53.0, 48.6, 40.8, 28.8, 21.4, 19.1.

HRMS (ESI) m/z calcd. for C₂₃H₂₉N₂OS [M + H]⁺ 381.1995, found 381.1992.

Methyl (S)-3-((N-benzyl-4-methyl-N'-pivaloylphenyl)sulfinoamidimidamido)propanoate (67)

According to **General procedure E** with *N*-(*p*-tolylthio)pivalamide **S20**(44.7 mg, 0.20 mmol, 1.0 equiv.) and methyl 3-((benzoyloxy)(benzyl)amino)propanoate **N13** (94.0 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **67** as a colorless oil (78.1 mg, 94% yield, 98% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.91 min, t_R (major) = 13.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2H), 7.34 – 7.19 (m, 5H), 7.12 (d, J = 7.2 Hz, 2H), 4.09 (s, 2H), 3.62 – 3.47 (m, 4H), 3.24 (dt, J = 14.3, 7.3 Hz, 1H), 2.60 (dt, J = 15.1, 7.3 Hz, 1H), 2.45 (dt, J = 16.2, 7.1 Hz, 1H), 2.39 (s, 3H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.1, 171.9, 142.2, 136.7, 132.6, 130.0, 128.8, 128.6, 128.5, 127.8, 53.1, 51.7, 45.7, 40.8, 33.7, 28.8, 21.4.

HRMS (ESI) m/z calcd. for $C_{23}H_{31}N_2O_3S$ [M + H]⁺ 415.2050, found 415.2047.

(S)-N-((Benzyl(2-(thiophen-2-yl)ethyl)amino)(p-tolyl)- λ^4 -sulfanylidene)pivalamide (68)

According to **General procedure E** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and O-benzoyl-N-benzyl-N-(2-(thiophen-2-yl)ethyl)hydroxylamine **N14** (101.2 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford vthe product **68** as a colorless oil (86.2 mg, 98% yield, 97% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 95/05, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 6.20 min, t_R (major) = 10.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.29 – 7.19 (m, 5H), 7.13 – 7.05 (m, 3H), 6.89 – 6.82 (m, 1H), 6.62 (d, J = 3.4 Hz, 1H), 4.09 (s, 2H), 3.53 (dt, J = 14.4, 7.2 Hz, 1H), 3.20 (ddd, J = 14.2, 8.3, 6.5 Hz, 1H), 3.02 (dt, J = 14.7, 7.3 Hz, 1H), 2.84 (dt, J = 14.8, 7.2 Hz, 1H), 2.37 (s, 3H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.2, 142.0, 141.5, 136.8, 132.9, 129.9, 129.1, 128.6(4), 128.5(7), 127.9, 126.9, 125.5, 123.7, 53.2, 51.7, 40.9, 29.3, 28.9, 21.5.

HRMS (ESI) m/z calcd. for $C_{25}H_{31}N_2OS_2$ [M + H]⁺ 439.1872, found 439.1872.

(S)-N-(Phenyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (69)

According to **General Procedure C** with *N*-(phenylthio)pivalamide **S21** (41.8 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **69** as a colorless oil (60.1 mg, 94% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 10.94 min, t_R (major) = 13.61 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.76 (m, 2H), 7.66 – 7.46 (m, 3H), 4.01 (d, J = 15.7 Hz, 1H), 3.86 (d, J = 15.7 Hz, 1H), 1.26 (s, 9H), 0.10 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 132.9, 132.6, 129.4, 128.3, 95.1, 93.3, 41.9, 40.3, 28.7, – 0.3.

HRMS (ESI) m/z calcd. for C₁₇H₂₆NOSSi [M + H]⁺ 320.1499, found 320.1495.

(S)-N-((4-(tert-Butyl)phenyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -pivalamide (70)

According to **General Procedure** C with N-((4-(tert-butyl)phenyl)thio)pivalamide **S22** (53.1 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **70** as a colorless oil (72.9 mg, 97% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 9.09 min, t_R (major) = 13.16 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 4.00 (d, J = 15.7 Hz, 1H), 3.81 (d, J = 15.7 Hz, 1H), 1.33 (s, 9H), 1.24 (s, 9H), 0.08 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.7, 156.3, 129.4, 128.1, 126.5, 94.9, 93.6, 41.8, 40.2, 35.2, 31.2, 28.8, -0.3.

HRMS (ESI) m/z calcd. for C₂₁H₃₄NOSSi [M + H]⁺ 376.2125, found 376.2119.

(S)-N-((4-Methoxyphenyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (71)

According to **General Procedure** C with N-((4-methoxyphenyl)thio)pivalamide **S23** (47.9 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **71** as a colorless oil (55.9 mg, 80% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 12.66 min, t_R (major) = 19.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 3.97 (d, J = 15.6 Hz, 1H), 3.84 (s, 3H), 3.79 (d, J = 15.7 Hz, 1H), 1.23 (s, 9H), 0.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.5, 163.1, 130.2, 123.3, 114.9, 94.9, 93.5, 55.7, 42.1, 40.2, 28.7, -0.3.

HRMS (ESI) m/z calcd. for C₁₈H₂₈NO₂SSi [M + H]⁺ 350.1605, found 350.1601.

(S)-N-((4-Acetamidophenyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (72)

According to **General Procedure** C with N-((4-acetamidophenyl)thio)pivalamide **S24** (53.3 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 10/20/1) to afford **72** as a colorless oil (60.4 mg, 80% yield, 99% e.e.).

HPLC analysis: Chiralpak IE (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 270 nm), t_R (minor) = 33.56 min, t_R (major) = 47.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 9.24 (s, 1H), 7.54 – 7.35 (m, 4H), 3.87 (d, J = 15.7 Hz, 1H), 3.78 (d, J = 15.8 Hz, 1H), 2.18 (s, 3H), 1.27 (s, 9H), 0.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 169.5, 142.9, 127.9, 126.2, 120.0, 95.2, 93.2, 41.6, 40.2, 28.8, 24.6, -0.4.

HRMS (ESI) m/z calcd. for C₁₉H₂₉N₂O₂SSi [M + H]⁺ 377.1714, found 377.1716.

(S)-N-((4-Methoxyphenyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (73)

According to **General Procedure** C with N-((4-(trifluoromethyl)phenyl)thio)pivalamide **S25** (55.5 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **73** as a colorless oil (74.4 mg, 96% yield, 90% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 240 nm), t_R (minor) = 11.38 min, t_R (major) = 13.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 4.01 (d, J = 15.8 Hz, 1H), 3.90 (d, J = 15.9 Hz, 1H), 1.24 (s, 9H), 0.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.1, 137.4, 134.4 (q, J = 33.0 Hz), 128.7, 126.3 (q, J = 3.8 Hz), 123.4 (q, J = 272.8 Hz), 95.9, 92.6, 41.8, 40.3, 28.7, -0.4.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –63.11.

HRMS (ESI) m/z calcd. for C₁₈H₂₅F₃NOSSi [M + H]⁺ 388.1373, found 388.1368.

(S)-N-((3-Bromophenyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (74)

According to **General Procedure C** with N-((3-bromophenyl)thio)pivalamide **S26** (57.6 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **74** as a colorless oil (71.6 mg, 90% yield, 92% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 270 nm), t_R (minor) = 15.09 min, t_R (major) = 28.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.93 (m, 1H), 7.74 – 7.66 (m, 2H), 7.43 – 7.34 (m, 1H), 3.96 (d, J = 15.8 Hz, 1H), 3.88 (d, J = 15.8 Hz, 1H), 1.24 (s, 9H), 0.12 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.0, 135.7, 135.0, 131.0, 130.7, 126.6, 123.3, 95.8, 92.7, 41.9, 40.2, 28.7, -0.3.

HRMS (ESI) m/z calcd. for C₁₇H₂₅BrNOSSi [M + H]⁺ 398.0604, found 398.0600.

$(S)-N-(o-\text{Tolyl}(3-(\text{trimethylsilyl})\text{prop-}2-\text{yn-}1-\text{yl})-\lambda^4-\text{sulfaneylidene})$ pivalamide (75)

$$\begin{array}{c} \text{Me} \\ \text{S} \\ \text{NHPiv} \\ \text{S} \\ \text{NHPiv} \\ \text{H} \\ \text{Br} \\ \text{C16} \\ \text{C16} \\ \text{(0.20 mmol)} \\ \text{(1.2 equiv.)} \\ \end{array}$$

According to **General Procedure C** with N-(o-tolylthio)pivalamide **S27** (44.7 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **75** as a colorless oil (52.1 mg, 78% yield, 95% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 8.81 min, t_R (major) = 11.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 7.7 Hz, 1H), 7.49 – 7.34 (m, 2H), 7.31 – 7.22 (m, 1H), 3.98 (d, J = 15.8 Hz, 1H), 3.90 (d, J = 15.8 Hz, 1H), 2.60 (s, 3H), 1.24 (s, 9H), 0.07 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 139.3, 132.5, 132.2, 130.8, 127.6, 127.2, 94.2, 93.1, 40.5, 40.1, 28.7, 19.8, -0.4.

HRMS (ESI) m/z calcd. for C₁₈H₂₈NOSSi [M + H]⁺ 334.1655, found 334.1652.

(S)-N-(Naphthalen-2-yl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (76)

According to **General Procedure** C with *N*-(naphthalen-2-ylthio)pivalamide **S28** (51.9 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **76** as a colorless oil (59.9 mg, 81% yield, 98% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 12.25 min, t_R (major) = 16.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, J = 1.8 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.95 – 7.84 (m, 3H), 7.65 – 7.56 (m, 2H), 4.08 (d, J = 15.7 Hz, 1H), 3.92 (d, J = 15.7 Hz, 1H), 1.29 (s, 9H), 0.02 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.86, 135.2, 132.6, 130.0, 129.8(4), 129.7(9), 128.8, 128.6, 128.2, 127.5, 122.9, 95.2, 93.3, 41.9, 40.3, 28.8, -0.4.

HRMS (ESI) m/z calcd. for C₂₁H₂₈NOSSi [M + H]⁺ 370.1655, found 370.1652.

(S)-N-(Thiophen-2-yl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (77)

According to **General Procedure C** with *N*-(thiophen-2-ylthio)pivalamide **S29** (43.1 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **77** as a colorless oil (52.1 mg, 80% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 11.29 min, t_R (major) = 13.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 1H), 7.59 – 7.47 (m, 1H), 7.18 – 7.03 (m, 1H), 4.18 (d, J = 15.5 Hz, 1H), 3.84 (d, J = 15.5 Hz, 1H), 1.22 (s, 9H), 0.11 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 133.7, 133.0, 132.7, 127.3, 95.9, 93.1, 44.3, 40.2, 28.6, – 0.3.

HRMS (ESI) m/z calcd. for C₁₅H₂₄NOS₂Si [M + H]⁺ 326.1063, found 326.1059.

(R)-N-(Methyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (78)

According to **General Procedure C** with *N*-(methylthio)pivalamide **S30** (29.5 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (57.3 mg, 0.3 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (PE/EtOAc/Et₃N = 30/30/1) to afford **78** as a yellow oil (46.3 mg, 90% yield, 81% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 33.40 min, t_R (major) = 35.45 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.96 (d, J = 16.0 Hz, 1H), 3.75 (d, J = 16.0 Hz, 1H), 2.73 (s, 3H), 1.18 (s, 9H), 0.19 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.3, 94. 8, 92.9, 39.8, 37.4, 28.6, 27.9, -0.3.

HRMS (ESI) m/z calcd. for $C_{12}H_{25}NOSSi$ [M + H]⁺ 258.1342, found 258.1338.

(S)-N-(Hexyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (79)

According to **General Procedure C** with *N*-(hexylthio)pivalamide **S31** (43.5 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **79** as a colorless oil (51.2 mg, 78% yield, 96% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 15.33 min, t_R (major) = 18.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.88 (d, J = 16.1 Hz, 1H), 3.74 (d, J = 16.1 Hz, 1H), 3.16 – 2.98 (m, 2H), 1.77 – 1.65 (m, 2H), 1.50 – 1.37 (m, 2H), 1.34 – 1.24 (m, 4H), 1.16 (s, 9H), 0.93 – 0.83 (m, 3H), 0.16 (s, 9H).

¹³C **NMR** (100 MHz, CDCl₃) δ 191.3, 94.3, 93.2, 42.6, 40.0, 35.5, 31.2, 28.6, 28.2, 23.0, 22.4, 14.0, -0.3.

HRMS (ESI) m/z calcd. for C₁₇H₃₄NOSSi [M + H]⁺ 328.2125, found 328.2121.

(S)-N-(Benzyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (80)

According to **General Procedure C** with *N*-(benzylthio)pivalamide **S32**(44.7 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **80** as a colorless oil (50.0 mg, 75% yield, 94% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min. λ = 254 nm), t_R (minor) = 9.99 min, t_R (major) = 11.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 3H), 7.34 – 7.28 (m, 2H), 4.44 (d, J = 13.0 Hz, 1H), 4.28 (d, J = 13.0 Hz, 1H), 3.68 (d, J = 16.3 Hz, 1H), 3.52 (d, J = 16.3 Hz, 1H), 1.17 (s, 9H), 0.22 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.2, 130.9, 129.1, 128.9, 128.3, 94.9, 93.5, 46.5, 40.0, 33.0, 28.7, -0.2.

HRMS (ESI) m/z calcd. for C₁₈H₂₈NOSSi [M + H]⁺ 334.1655, found 334.1651.

(R)-N-((6-Chlorohexyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (81)

According to **General Procedure** C with *N*-((6-chlorohexyl)thio)pivalamide **S33** (50.4 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (57.3 mg, 0.3 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (PE/EtOAc/Et₃N = 30/30/1) to afford **81** as a yellow oil (65.2 mg, 90% yield, 96% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 85/15, flow rate 0.7 mL/min, λ = 246 nm), t_R (minor) = 5.58 min, t_R (major) =7.18 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.99 – 3.86 (m, 1H), 3.83 – 3.69 (m, 1H), 3.60 – 3.47 (m, 2H), 3.15 – 2.94 (m, 2H), 1.86 – 1.71 (m, 4H), 1.60 – 1.40 (m, 4H), 1.23 – 1.10 (m, 9H), 0.26 – 0.10 (m, 9H).

¹³C **NMR** (100 MHz, CDCl₃) δ 191.3, 94.4, 93.1, 44.8, 42.5, 40.0, 35.7, 32.2, 28.6, 27.8, 26.3, 23.0, -0.3.

HRMS (ESI) m/z calcd. for C₁₇H₃₂ClNOSSi [M + H]⁺ 362.1735, found 362.1735.

$(R)-N-((5-Cyanopentyl)(3-(trimethylsilyl)prop-2-yn-1-yl)-\lambda^4$ -sulfaneylidene)pivalamide (82)

According to **General Procedure C** with *N*-((5-cyanopentyl)thio)pivalamide **S34** (45.7 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (57.3 mg, 0.3 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (PE/EtOAc/Et₃N = 30/30/1) to afford **82** as a yellow oil (50.0 mg, 74% yield, 94% e.e.). **HPLC** analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 31.06 min, t_R (major) = 51.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.92 (d, J = 16.2 Hz, 1H), 3.76 (d, J = 16.1 Hz, 1H), 3.15 – 3.04 (m, 2H), 2.44 – 2.33 (m, 2H), 1.87 – 1.79 (m, 2H), 1.77 – 1.69 (m, 2H), 1.69 – 1.61 (m, 2H), 1.18 (s, 9H), 0.19 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 119.3, 94.8, 93.0, 42.4, 40.1, 36.0, 28.7, 27.7, 25.0, 22.6, 17.1, -0.2.

HRMS (ESI) m/z calcd. for C₁₇H₃₀N₂OSSi [M + H]⁺ 339.1921, found 339.1915.

(R)-N-(2,2,15,15-Tetramethyl-14,14-diphenyl-13-oxa- $6\lambda^4$ -thia-2,14-disilahexadec-3-yn-6-ylidene)pivalamide (83)

According to **General Procedure** C with N-((6-((tert-butyldiphenylsilyl)oxy)-hexyl)thio)pivalamide **S35** (94.4 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (57.3 mg, 0.3 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by preparative thin-layer chromatography on silica gel (PE/EtOAc/Et₃N = 100/500/1) to afford **83** as a colorless oil (85.8 mg, 74% yield, 94% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 245 nm), t_R (minor) = 9.92 min, t_R (major) = 13.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 4H), 7.58 – 7.42 (m, 6H), 3.99 (d, J = 16.2 Hz, 1H), 3.86 (d, J = 16.1 Hz, 1H), 3.80 – 3.70 (m, 2H), 3.22 – 3.08 (m, 2H), 1.87 – 1.78 (m, 2H), 1.72 – 1.60 (m, 2H), 1.59 – 1.46 (m, 4H), 1.28 (s, 9H), 1.15 (s, 9H), 0.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.5, 135.7, 134.2, 129.7, 127.8, 94.5, 93.3, 63.8, 42.8, 40.1, 35.7, 32.3, 28.7, 28.5, 27.0, 25.5, 23.2, 19.4, -0.2.

HRMS (ESI) m/z calcd. for C₃₃H₅₂NO₂SSi₂ [M + H]⁺ 582.3252, found 582.3266.

(S)-N-(Isobutyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (84)

According to **General Procedure** C with *N*-(isobutylthio)pivalamide **S36** (37.8 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 30/10/1) to afford **84** as a colorless oil (50.5 mg, 84% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 8.07 min, t_R (major) = 9.79 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.88 (d, J = 16.1 Hz, 1H), 3.75 (d, J = 16.1 Hz, 1H), 3.11 – 2.81 (m, 2H), 2.22 – 2.08 (m, 1H), 1.16 (s, 9H), 1.08 (dd, J = 12.2, 6.7 Hz, 6H), 0.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.5, 94.5, 93.4, 52.2, 40.1, 36.3, 28.7, 24.7, 22.5, 22.0, -0.2. **HRMS** (ESI) m/z calcd. for C₁₅H₃₀NOSSi [M + H]⁺ 300.1812, found 300.1815.

(S)-N-(Cyclohexyl(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (85)

According to **General Procedure** C with *N*-(cyclohexylthio)pivalamide **S37** (43.1 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **85** as a colorless oil (52.1 mg, 80% yield, 98% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 19.74 min, t_R (major) = 26.13 min.

¹**H NMR** (400 MHz, CDCl₃) δ 4.06 – 3.63 (m, 2H), 3.29 – 3.19 (m, 1H), 2.20 – 1.94 (m, 2H), 1.94 – 1.81 (m, 2H), 1.78 – 1.47 (m, 3H), 1.46 – 1.20 (m, 3H), 1.16 (s, 9H), 0.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.3, 94.0, 93.8, 52.9, 40.3, 33.3, 28.7, 27.6, 26.0, 25.7, 25.4(8), 25. 4(6), -0.2.

HRMS (ESI) m/z calcd. for C₁₇H₃₂NOSSi [M + H]⁺ 326.1968, found 326.1965.

(S)-4-(N-Pivaloyl-S-(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfinimidoyl)piperidine-1-carboxylate (86)

According to **General Procedure** C with *tert*-butyl 4-(pivalamidothio)piperidine-1-carboxylate **S38** (63.3 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **86** as a colorless oil (71.2 mg, 83% yield, 94% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 11.54 min, t_R (major) = 14.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 4.35 – 4.04 (m, 2H), 3.97 - 3.71 (m, 2H), 3.44 - 3.32 (m, 1H), 2.90 – 2.71 (m, 2H), 2.13 - 1.65 (m, 4H), 1.44 (s, 9H), 1.15 (s, 9H), 0.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 154.6, 94.7, 93.2, 80.3, 51.6, 42.9, 40.4, 33.7, 28.7, 28.5, 26.9, -0.3.

HRMS (ESI) m/z calcd. for C₂₁H₃₈N₂O₃SSiNa [M + Na]⁺ 449.2265, found 449.2268.

(S)-N-Adamantan-1-yl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (87)

According to **General Procedure** C with *N*-(adamantan-1-ylthio)pivalamide **S39** (53.5 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc/Et₃N = 20/10/1) to afford **87** as a colorless oil (40.9 mg, 54% yield, 89% e.e.).

HPLC analysis: Chiralpak IE (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 24.11 min, t_R (major) = 36.81 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.77 – 3.61 (m, 2H), 2.23 – 2.15 (m, 3H), 2.15 – 2.06 (m, 3H), 2.05 – 1.96 (m, 3H), 1.83 – 1.72 (m, 6H), 1.19 (s, 9H), 0.14 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.0, 95.3, 93.6, 56.8, 40.6, 37.1, 36.2, 30.4, 29.2, 28.9, -0.3. **HRMS** (ESI) m/z calcd. for C₂₁H₃₆NOSSi [M + H]⁺ 378.2281, found 378.2285.

N-(((S)-(((3aR,5S,5aR,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5H-bis([1,3]dioxolo) [4,5-b:4',5'-d]pyran-5-yl)methyl)(3-(trimethylsilyl)prop-2-yn-1-yl)- λ^4 -sulfaneylidene)pivalamide (88)

According to **General Procedure C** with N-((((3aR,5S,5aR,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl)thio)pivalamide **S40** (75.1 mg, 0.20 mmol, 1.0 equiv.) and (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) for 72 h, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc/Et₃N = 75/25/1) to afford **88** as a light yellow solid (93.3 mg, 96% yield, >20:1 d.r.).

¹**H NMR** (400 MHz, CDCl₃) δ 5.48 (d, J = 4.9 Hz, 1H), 4.66 (dd, J = 7.8, 2.6 Hz, 1H), 4.36 – 4.26 (m, 2H), 4.22 (dd, J = 7.8, 2.0 Hz, 1H), 3.97 (s, 2H), 3.39 (dd, J = 13.3, 10.4 Hz, 1H), 3.20 (dd, J = 13.3, 2.3 Hz, 1H), 1.53 (s, 3H), 1.46 (s, 3H), 1.36 (s, 3H), 1.32 (s, 3H), 1.17 (s, 9H), 0.18 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 191.1, 109.9, 109.3, 96.3, 94.6, 93.1, 72.7, 71.1, 70.4, 63.4, 44.6, 40.0, 36.6, 28.7, 26.3, 26.1, 25.0, 24.6, -0.2.

HRMS (ESI) m/z calcd. for C₂₃H₄₀NO₆SSi [M + H]⁺ 486.2340, found 486.2346.

Methyl (R)-4-(S-hexyl-N-pivaloylsulfinimidoyl)butanoate (89)

According to **General Procedure D** with *N*-(hexylthio)pivalamide **S31** (43.5 mg, 0.20 mmol, 1.0 equiv.), methyl 4-iodobutanoate **C35** (68.4 mg, 0.30 mmol, 1.5 equiv.), **L10** (10.44 mg, 0.03 mmol, 15 mol%) for 48 h, the product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **89** as a colorless oil (47.6 mg, 75% yield, 96% e.e.).

HPLC analysis: Chiralpak IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 224 nm), t_R (minor) = 12.41 min, t_R (major) = 17.88 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.69 (s, 3H), 3.06 - 2.91 (m, 3H), 2.89 - 2.79 (m, 1H), 2.52 (t, J = 7.0 Hz, 2H), 2.04 (p, J = 7.0 Hz, 2H), 1.70 (p, J = 7.6 Hz, 2H), 1.51 - 1.37 (m, 2H), 1.37 - 1.24 (m, 4H), 1.19 (s, 9H), 0.92 - 0.84 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.2, 172.9, 51.9, 44.6, 43.5, 40.1, 32.3, 31.3, 28.7, 28.3, 23.2, 22.4, 18.8, 14.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{32}NO_3S$ [M + H]⁺ 318.2097, found 318.2087.

(R)-N-(Hexyl(4-oxopentyl)- λ^4 -sulfaneylidene)pivalamide (90)

According to **General Procedure D** with *N*-(hexylthio)pivalamide **S31** (43.5 mg, 0.20 mmol, 1.0 equiv.) and 5-iodopentan-2-one **C36** (63.6 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the product mixture was purified by silica gel column chromatography ($CH_2Cl_2/MeOH = 20/1$) to afford **90** as a colorless liquid (46.4 mg, 77% yield, 96% e.e.).

HPLC analysis: Chiralpak IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 226 nm), t_R (minor) = 12.20 min, t_R (major) = 14.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.06 – 2.89 (m, 3H), 2.90 – 2.79 (m, 1H), 2.68 (t, J = 6.7 Hz, 2H), 2.16 (s, 3H), 1.97 (p, J = 6.9 Hz, 2H), 1.70 (p, J = 7.6 Hz, 2H), 1.52 – 1.37 (m, 2H), 1.35 – 1.26 (m, 4H), 1.19 (s, 9H), 0.93 – 0.84 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.3, 191.0, 44.4, 43.7, 41.3, 40.0, 31.2, 30.0, 28.6, 28.2, 23.1, 22.3, 17.3, 13.9.

HRMS (ESI) m/z calcd. for C₁₆H₃₂NO₂S [M + H]⁺ 302.2148, found 302.2140.

(S)-N-((4-Methoxyphenyl)(morpholino)- λ^4 -sulfanylidene)pivalamide (91)

According to **General procedure E** with N-((4-methoxyphenyl)thio)pivalamide **S23** (47.9 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **91** as a light yellow oil (61.7 mg, 95% yield, 96% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 5.87 min, t_R (major) = 9.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 2H), 7.03 – 6.96 (m, 2H), 3.84 (s, 3H), 3.71 – 3.59 (m, 4H), 3.18 – 3.08 (m, 2H), 3.02 – 2.92 (m, 2H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.2, 162.3, 130.1, 125.1, 114.7, 67.0, 55.6, 47.2, 41.0, 28.7.

HRMS (ESI) m/z calcd. for C₁₆H₂₅N₂O₃S [M + H]⁺ 325.1580, found 325.1576.

(S)-N-(Morpholino(4-(trifluoromethyl)phenyl)- λ^4 -sulfanylidene)pivalamide (92)

According to **General procedure E** with N-((4-(trifluoromethyl)phenyl)thio)pivalamide **S25** (55.5 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **92** as a colorless oil (48.3 mg, 67% yield, 96% e.e.). **HPLC** analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 6.50 min, t_R (major) = 9.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 3.76 – 3.63 (m, 4H), 3.24 – 3.14 (m, 2H), 3.07 – 2.97 (m, 2H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.7, 139.0, 133.6 (q, J = 32.8 Hz), 129.1, 126.3 (q, J = 3.7 Hz), 123.5 (q, J = 272.8 Hz), 67.0, 47.7, 41.0, 28.7.

¹⁹F NMR (375 MHz, CDCl₃) δ –62.97.

HRMS (ESI) m/z calcd. for $C_{16}H_{22}F_3N_2O_2S$ [M + H]⁺ 363.1349, found 363.1346.

Methyl (S)-2-(N-pivaloylmorpholine-4-sulfinimidoyl)benzoate (93)

According to **General procedure E** with methyl 2-(pivalamidothio)benzoate **S41** (53.5 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **93** as a colorless oil (60.6 mg, 86% yield, 96% e.e.).

HPLC analysis: Chiralpak IG (*n*-hexane/*i*-PrOH = 60/40, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R (minor) = 9.51 min, t_R (major) = 15.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.56 – 8.48 (m, 1H), 8.20 – 8.15 (m, 1H), 8.15 – 8.10 (m, 1H), 7.66 – 7.56 (m, 1H), 3.95 (s, 3H), 3.71 – 3.65 (m, 4H), 3.23 – 2.95 (m, 4H), 1.28 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.5, 165.8, 135.6, 132.7, 132.6, 131.5, 129.7, 129.5, 66.9, 52.7, 47.6, 41.0, 28.7.

HRMS (ESI) m/z calcd. for C₁₇H₂₅N₂O₄S [M + H]⁺ 353.1530, found 353.1533.

(S)-N-(Morpholino(pyridin-4-yl)- λ^4 -sulfanylidene)pivalamide (94)

According to **General procedure** E with N-(pyridin-4-ylthio)pivalamide **S42** (42.1 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 1/1) to afford the product **94** as a colorless oil (44.1 mg, 75% yield, 97% e.e.).

HPLC analysis: Chiralpak IH (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 7.63 min, t_R (major) = 9.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 - 8.76 (m, 2H), 7.86 - 7.80 (m, 2H), 3.71 (t, J = 4.8 Hz, 4H), 3.18 (dt, J = 12.5, 4.8 Hz, 2H), 3.04 (dt, J = 12.4, 4.8 Hz, 2H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.9, 150.8, 145.2, 122.6, 67.0, 48.0, 41.0, 28.7.

HRMS (ESI) m/z calcd. for C₁₄H₂₂N₃O₂S [M + H]⁺ 296.1427, found 296.1426.

(S)-N-(Morpholino(thiophen-2-yl)- λ^4 -sulfanylidene)pivalamide (95)

According to **General procedure E** with N-(thiophen-2-ylthio)pivalamide **S29** (43.1 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 2/1) to afford the product **95** as a light yellow oil (43.6 mg, 73% yield, 95% e.e.).

HPLC analysis: Chiralpak IG (n-hexane/i-PrOH = 60/40, flow rate 0.8 mL/min, λ = 254 nm), t_R (minor) = 9.56 min, t_R (minor) = 12.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 1H), 7.48 – 7.43 (m, 1H), 7.19 – 7.12 (m, 1H), 3.68 (t, J = 4.8 Hz, 4H), 3.23 – 3.02 (m, 4H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.3, 136.7, 132.8, 131.3, 128.6, 67.0, 47.0, 40.7, 28.6.

HRMS (ESI) m/z calcd. for $C_{13}H_{21}N_2O_2S_2$ [M + H]⁺ 301.1039, found 301.1037.

(S)-N-((2-Methylfuran-3-yl)(morpholino)- λ^4 -sulfaneylidene)pivalamide (96)

According to **General procedure E** with N-((2-methylfuran-3-yl)thio)pivalamide **S43** (42.7 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) for 48 h, the reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the product **96** as a light yellow oil (26.3 mg, 44% yield, 97% e.e.).

HPLC analysis: Chiralpak IG (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 9.55 min, t_R (major) = 11.50 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 1H), 3.67 (t, J = 4.8 Hz, 4H), 3.21 – 2.99 (m, 4H), 2.48 (s, 3H), 1.22 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 192.4, 155.4, 141.4, 114.2, 110.8, 66.9, 47.1, 40.7, 28.7, 13.4. **HRMS** (ESI) m/z calcd. for $C_{14}H_{23}N_2O_3S$ [M + H]⁺ 299.1424, found 299.1425.

(S)-N-(Hexyl(morpholino)- λ^4 -sulfanylidene)pivalamide (97)

According to **General procedure E** with *N*-(hexylthio)pivalamide **S31** (43.5 mg, 0.20 mmol, 1.0 equiv.) and morpholino benzoate **N4** (62.2 mg, 0.30 mmol, 1.5 equiv.) at 40 °C for 24 h, the reaction mixture was purified by column chromatography on silica gel ($CH_2Cl_2/EtOAc = 5/1$) to afford the product **97** as a light yellow oil (57.5 mg, 95% yield, 97% e.e.).

HPLC analysis: Chiralpak IC (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 11.87 min, t_R (minor) = 13.90 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.68 (t, J = 4.8 Hz, 4H), 3.20 (dt, J = 12.4, 4.7 Hz, 2H), 3.01 (dt, J = 12.2, 4.8 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 1.72 – 1.54 (m, 2H), 1.47 – 1.34 (m, 2H), 1.33 – 1.22 (m, 4H), 1.17 (s, 9H), 0.90 – 0.82 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.3, 66.9, 47.7, 45.8, 40.3, 31.3, 28.6, 28.0, 23.9, 22.4, 14.0. **HRMS** (ESI) m/z calcd. for C₁₅H₃₁N₂O₂S [M + H]⁺ 303.2101, found 303.2098.

(S)-N-((4-Methoxyphenyl)sulfinyl)pivalamide (98)

According to **General Procedure F** with N-((4-methoxyphenyl)thio)pivalamide **S23** (47.9 mg, 0.20 mmol, 1.0 equiv.) and *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) for 48 h with workup method 2, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 2.5/1) to afford the product **98** as a white solid (50.0 mg, 98% yield, 94% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 23.72 min, t_R (minor) = 27.40 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.58 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.1, 162.5, 135.1, 126.6, 114.9, 55.7, 39.8, 27.1.

HRMS (ESI) m/z calcd. for $C_{12}H_{18}NO_3S$ [M + H]⁺ 256.1002, found 256.0999.

(S)-N-(Thiophen-2-ylsulfinyl)pivalamide (99)

According to **General Procedure F** with N-((4-(trifluoromethyl)phenyl) thio)pivalamide **S25** (55.5 mg, 0.20 mmol, 1.0 equiv.), *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.), CuI (10 mol%) and **L4** (15 mol%) at -20 °C for 72 h with workup method 2, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 4/1) to afford the product **99** as a light yellow solid (54.0 mg, 92% yield, 92% e.e.).

HPLC analysis: Chiralcel OD-3 (*n*-hexane/*i*-PrOH = 50/50, flow rate 0.7 mL/min, $\lambda = 254$ nm), t_R (minor) = 5.57 min, t_R (major) = 20.42 min.

¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.96 – 7.59 (m, 4H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 179.1, 148.3, 133.9 (q, J = 33.0 Hz), 126.5 (q, J = 3.8 Hz), 125.7, 123.5 (q, J = 272.7 Hz), 40.0, 27.1.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –62.94.

HRMS (ESI) m/z calcd. for $C_{12}H_{15}F_{3}NO_{2}S$ [M + H]⁺ 294.0770, found 294.0767.

(S)-N-(Thiophen-2-ylsulfinyl)pivalamide (100)

According to **General Procedure F** with *N*-(thiophen-2-ylthio)pivalamide **S29** (43.1 mg, 0.20 mmol, 1.0 equiv.), *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.), CuI (10 mol%) and **L4** (15 mol%) at -20 °C for 72 h with workup method 2, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 3/1) to afford the product **100** as a light yellow solid (44.0 mg, 95% yield, 93% e.e.).

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 60/40, flow rate 0.4 mL/min, λ = 254 nm), t_R (minor) = 21.13 min, t_R (major) = 23.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.64 (d, J = 5.0 Hz, 1H), 7.43 (d, J = 3.6 Hz, 1H), 7.13 (t, J = 4.4 Hz, 1H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 178.9, 146.1, 131.7, 130.2, 128.1, 39.8, 27.1.

HRMS (ESI) m/z calcd. for C₉H₁₄NO₂S₂ [M + H]⁺ 232.0460, found 232.0459.

(S)-N-(Hexylsulfinyl)pivalamide (101)

According to **General Procedure F** with *N*-(hexylthio)pivalamide **S31** (43.5 mg, 0.20 mmol, 1.0 equiv.) and *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) for 48 h with workup method 2, the reaction mixture was purified by flash column chromatography on silica gel (PE/EtOAc = 2/1) to afford the product **101** as a colorless liquid (38.3 mg, 82% yield, 91% e.e.). **HPLC** analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (major) = 22.82 min, t_R (minor) = 25.52 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.90 (s, 1H), 3.17 – 3.05 (m, 1H), 3.05 – 2.94 (m, 1H), 1.76 – 1.63 (m, 2H), 1.53 – 1.39 (m, 2H), 1.37 – 1.27 (m, 4H), 1.22 (s, 9H), 0.93 – 0.86 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 55.4, 39.9, 31.5, 28.3, 27.2, 22.7, 22.5, 14.0.

HRMS (ESI) m/z calcd. for $C_{11}H_{24}NO_2S$ [M + H]⁺ 234.1522, found 234.1521.

7. Transformation

Gram-scale reaction

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (76.0 mg, 0.4 mmol, 10 mol%), **L5** (200 mg, 0.6 mmol, 15 mol%), sulfenamide **S20** (0.89 g, 4.0 mmol, 1.0 equiv.), **C17** (1.02 g, 6.0 mmol, 1.5 equiv.), MesN₂BF₄ (**C39**, 1.87 g, 8.0 mmol, 2.0 equiv.), and K₃PO₄ (2.6 g, 12.0 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by the addition of anhydrous MTBE (40 mL). The reaction mixture was stirred at r.t. for 96 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **36** (0.84 g, 84% yield, 92% e.e.).

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S20** (1.12 g, 5.0 mmol, 1.0 equiv.), CuI (47.6 mg, 0.250 mmol, 5.0 mol%), **L4** (198.2 mg, 0.375 mmol, 7.5 mol%), K₃PO₄ (3.18 g, 15.0 mmol, 3.0 equiv.), and anhydrous MeCN (50 mL). Then, *tert*-butyl hydroperoxide **O1** (70% in H₂O, 6.0 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at -20 °C for 72 h. Upon completion (monitored by TLC), a mixed solvent (50 mL, AcOH:H₂O = 1:2) was added and the reaction mixture was stirred at r.t. for 1 h. Then the reaction mixture was extracted with EtOAc three times (5 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by flash column chromatography on silica gel to afford the desired product **40'** (1.16 g, 97% yield, 97% e.e.).

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (23.8 mg, 0.125 mmol, 2.50 mol%), **L4** (99.1 mg, 0.188 mmol, 3.75 mol%), sulfenamide **S20** (1.12 g, 5.0 mmol, 1.0 equiv.), piperidin-1-yl benzoate **N3** (1.54 g, 7.5 mmol, 1.5 equiv.), and K₃PO₄ (3.18 g, 15.0 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then EtOAc (50 mL) was added by syringe under argon and the reaction mixture was stirred at r.t. for 72 h. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate

was evaporated and the residue was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 10:1) to afford the desired product **57** (1.13 g, 74%, 93% e.e.).

The synthesis of sulfoxide from sulfimide:

According to the literature reported procedure⁵⁰ with slight modification. To a solution of sulfimide **38** (31.9 mg, 0.10 mmol, 1.0 equiv.) in MeCN (1.0 mL) was added a predissolved solution of NaIO₄ (21.6 mg, 0.10 mmol, 1.0 equiv.) in H₂O (2.0 mL). This solution was cooled to 0 °C, and then RuCl₃ hydrate (1.0 mg, 0.005 mmol, 5.0 mol%) was added under argon. After stirring at 0 °C to r.t. for 6 h, the reaction mixture was extracted with CH₂Cl₂. The combined organic layers were dried over sodium sulfate and concentrated without further purification.

To the above concentrated organic layer in MeOH (1.0 mL) and H₂O (0.5 mL) was added NaOH (60 mg, 1.50 mmol, 15 equiv.) under argon. The reaction mixture was heated to 80 °C for 5 h. After cooling to r.t., the reaction mixture was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated without further purification. According to the literature reported procedure⁶² with slight modification. To the above concentrated organic layer in CHCl₃ (2.0 mL) was added 'BuONO (11.4 mg, 0.11 mmol, 1.1 equiv.) under argon. The reaction mixture was stirred at r.t. for 1 h. Then, the reaction mixture was concentrated. Purification by silica gel chromatography afforded the product 102.

(R)-1-Methyl-4-(phenylsulfinyl)benzene (102)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 4/1) to afford **102** as light yellow solid (13.7 mg, 63% yield, 92% e.e.).

HPLC analysis: Chiralcel OD-H (n-hexane/i-PrOH = 95/5, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 28.52 min, t_R (minor) = 31.05 min.

¹**H NMR** (400 MHz, CDCl₃): δ 7.66 – 7.60 (m, 2H), 7.56 – 7.50 (m, 2H), 7.48 – 7.40 (m, 3H), 7.29 – 7.24 (m, 2H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 146.0, 142.6, 141.8, 131.0, 130.2, 129.4, 125.1, 124.8, 21.5.

According to the literature reported procedure⁵⁰ with slight modification. To a solution of sulfimide **89** (63.5 mg, 0.20 mmol, 1.0 equiv.) in MeCN (2.0 mL) was added a predissolved solution of NaIO₄ (43.0 mg, 0.20 mmol, 1.0 equiv.) in H₂O (4.0 mL). This solution was cooled to 0 °C, and then RuCl₃ hydrate (2.4 mg, 0.01 mmol, 5.0 mol%) was added under argon. After stirring

at 0 °C to r.t. for 4 h, the reaction mixture was extracted with CH₂Cl₂. The combined organic layers were dried over sodium sulfate and concentrated without further purification.

According to the literature reported procedure⁶³ with slight modification. To the above concentrated organic layer in MeOH (1.0 mL) was added HCl (Conc., 0.5 mL) under argon. The reaction mixture was heated to 40 °C for 12 h. After cooling to r.t., the reaction mixture was quenched with sat. Na₂CO₃ aqueous solution, and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated without further purification.

According to the literature reported procedure⁶² with slight modification. To the above concentrated organic layer in MeCN (4.0 mL) was added 'BuONO (22.7 mg, 0.22 mmol, 1.1 equiv.) under argon. The reaction mixture was stirred at r.t. for 4 h. Then, the reaction mixture was concentrated. Purification by silica gel column chromatography (PE/EtOAc = 1/2) to afford **106** as a white solid (35.2 mg, 75% yield, 95% e.e.).

Methyl (S)-4-(hexylsulfinyl)butanoate (106)

HPLC analysis: Chiralpak IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.7 mL/min, λ = 210 nm), t_R (minor) = 15.36 min, t_R (major) = 16.38 min.

¹**H NMR** (400 MHz, CDCl₃) δ 3.70 (s, 3H), 2.84 - 2.60 (m, 4H), 2.53 (t, J = 7.1 Hz, 2H), 2.20 - 2.07 (m, 2H), 1.77 (q, J = 8.2 Hz, 2H), 1.57 - 1.17 (m, 6H), 0.99 - 0.82 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 52.6, 51.9, 51.3, 32.7, 31.4, 28.6, 22.6, 22.5, 18.3, 14.0.

HRMS (ESI) m/z calcd. for C₁₁H₂₃O₃S [M + H]⁺ 235.1362, found 235.1359.

The deprotection of diarylsulfimide:

According to the literature reported procedure⁶⁴ with slight modification. An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with (R)-phenyl(p-tolyl)- λ^4 -sulfanimine **38** (260 mg, 0.81 mmol) and 0.5 mL conc. H₂SO₄ under argon and the reaction mixture was stirred at r.t. for 1 h. Upon completion, the mixture was poured into ice water and washed with CH₂Cl₂ three times (3 × 10 mL). Then aqueous solution of NaOH (5.0 M) was added dropwise into the aqueous layer until basic. The solution was extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the product **103** as a light yellow oil (127 mg, 0.59 mmol, 73% yield), which was pure enough.

To the above product in CH₂Cl₂ was added Et₃N (90.1 mg, 0.89 mmol, 1.5 equiv.) under argon. The mixture was cooled to 0 °C and BzCl (98.4 mg, 0.70 mmol, 1.2 equiv.) was added dropwise under argon. The reaction mixture was warmed to r.t. and stirred overnight. Upon completion, the mixture was concentrated and purification by silica gel chromatography to afford the product **38** (143 mg, 0.45 mmol, 76% yield, 91% e.e.).

(R)-phenyl(p-tolyl)- λ^4 -sulfanimine (103)

¹**H NMR** (400 MHz, CDCl₃): δ 7.57 – 7.49 (m, 2H), 7.45 – 7.31 (m, 5H), 7.20 (d, J = 7.9 Hz, 2H), 2.53 (br s, 1H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 144.8, 141.4, 141.1, 130.4, 130.1, 129.3, 126.2, 126.0, 21.4. **HRMS** (ESI) m/z calcd. for C₁₃H₁₄NS [M + H]⁺ 216.0841, found 216.0841.

(R)-N-(phenyl(p-tolyl)- λ^4 -sulfaneylidene)benzamide (38)

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.6 mL/min, λ = 254 nm), t_R (major) = 22.11 min, t_R (minor) = 25.19 min.

The deprotection of sulfinamide:

According to the literature reported procedure⁶⁵ with slight modification. To a solution of sulfinamide **40'** (47.9 mg, 0.20 mmol, 1.0 equiv.) in 1,4-dioxane (0.5 mL) was added N₂H₄·H₂O (192.3 mg, 6.0 mmol, 30 equiv.), then the reaction mixture was stirred at r.t. for 18 h and a full consumption of **40'** was observed. Upon completion, the mixture was diluted with water (5.0 mL) and extracted with EtOAc (3×5.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel (PE/EtOAc = 3/1) to afford the desired product **104** as a white solid (23.9 mg, 77% yield, 96% e.e.).

(S)-4-Methylbenzenesulfinamide (104)

HPLC analysis: Chiralcel ODH (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 17.14 min t_R (major) =21.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.35 – 7.28 (m, 2H), 4.56 – 4.18 (m, 2H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.5, 141.7, 129.7, 125.5, 21.5.

The synthesis of sulfinimidate ester from sulfinamide

According to the literature reported procedure⁶⁴ with slight modification. Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfinamide **40'** (0.20 mmol, 1.0 equiv.), K₂CO₃ (33.2 mg, 0.24 mmol, 1.2 equiv.), and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU, 1.0 mL). PrI (C17, 68.0 mg, 0.40 mmol, 2.0 equiv.) was added. After stirring at 70 °C for 24 h, the reaction mixture was cooled to r.t. and quenched with sat. NH₄Cl aqueous solution. The mixture was extracted with EtOAc three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude mixture was purified by column chromatography on silica gel to afford the alkylation product **105**.

Isopropyl (S)-N-(pivaloyl)-p-tolylsulfinimidate (105)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 10/1) to afford 105 as a colorless oil (42.2 mg, 75% yield, 97% e.e.).

HPLC analysis: Chiralpak IG (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 9.17 min, t_R (major) = 14.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.92 (hept, J = 6.3 Hz, 1H), 2.43 (s, 3H), 1.39 (d, J = 6.3 Hz, 3H), 1.29 (s, 9H), 1.20 (d, J = 6.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.1, 143.1, 134.8, 130.0, 127.7, 75.3, 41.0, 28.4, 23.8, 23.5, 21.6. **HRMS** (ESI) m/z calcd. for C₁₅H₂₄NO₂S [M + H]⁺ 282.1522, found 282.1524.

The synthesis of Fulvestrant

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.80 mg, 0.02 mmol, 10 mol%), **L10** (10.44 mg, 0.03 mmol, 15 mol%), sulfenamide **S44** (58.7 mg, 0.20 mmol, 1.0 equiv.), **C37** (0.30 mmol, 1.5 equiv., 182.5 mg), MesN₂BF₄ (93.6 mg, 0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon for three times, anhydrous MTBE (4.0 mL) were added into the mixture and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **113-a** as colorless oil (125.3 mg, 81% yield, 98:2 d.r.).

According to the literature reported procedure⁵⁰ with slight modification. To a solution of **113-a** (154.8 mg, 0.20 mmol, 1.0 equiv.) in MeCN (4.0 mL) was added a predissolved solution of NaIO₄ (43.0 mg, 0.20 mmol, 1.0 equiv.) in H₂O (2.0 mL). This solution was cooled to 0 °C, and then RuCl₃ hydrate (2.4 mg, 0.01 mmol, 5.0 mol%) was added under argon. After stirring at 0 °C to r.t. for 4 h, the reaction mixture was extracted with CH₂Cl₂. The combined organic layers were dried over sodium sulfate and concentrated without further purification.

According to the literature reported procedure⁶¹ with slight modification. To the above concentrated organic layer in dry THF (8.0 mL) was added LiAlH₄ (38.0 mg, 1.0 mmol, 5.0 equiv.) under argon at 0 °C. Then, the reaction mixture was stirred at 0 °C for 4 h. Upon completion, the reaction mixture was quenched with 0.10 N HCl and extracted with EtOAc. The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated without further purification.

According to the literature reported procedure⁶² with slight modification. To the above concentrated organic layer in MeCN (4.0 mL) was added 'BuONO (26 μ L, 0.22 mmol, 1.1 equiv.) under argon. The reaction mixture was stirred at r.t. for 4 h. Then, the reaction mixture was concentrated. Purification by purified by silica gel column chromatography (CH₂Cl₂/EtOAc = 1/1) to afford **113** as colorless oil (70.4 mg, 58% yield, 98:2 d.r.).

(7*R*,8*R*,9*S*,13*S*,14*S*,17*S*)-13-Methyl-7-(9-((*R*)-*S*-(4,4,5,5,5-pentafluoropentyl)-*N*-pivaloyl sulfinimidoyl)nonyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diyl diacetate (113-a)

HPLC analysis: Chiralcel IG (*n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 230 nm), t_R (major) = 14.28 min, t_R (minor) = 18.08 min.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.16 (m, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.76 (s, 1H), 4.67 (t, J = 8.4 Hz, 1H), 3.17 – 2.59 (m, 6H), 2.43 – 2.13 (m, 8H), 2.13 – 1.94 (m, 5H), 1.91 – 1.78 (m, 1H), 1.78 – 1.18 (m, 23H), 1.17 (s, 9H), 1.08 – 0.92 (m, 1H), 0.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.3, 171.2, 169.8, 148.5, 137.1, 137.0, 127.0, 122.4, 118.7, 117.5 (qt, J = 285.2 Hz, J = 36.3 Hz), 115.2 (tq, J = 252.4 Hz, J = 37.9 Hz), 82.7, 46.2, 44.8, 43.1, 42.9, 41.4, 40.0, 38.1, 37.0, 34.5, 33.1, 29.8, 29.5, 29.4 (t, J = 22.1 Hz), 29.2, 29.0, 28.6, 28.5, 28.1, 27.5, 26.9, 25.6, 23.2, 22.8, 21.1(3), 21.1(0), 15.0, 12.0.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –85.45 (s, 3F), –118.26 (m, 2F).

HRMS (ESI) m/z calcd. for C₄₁H₆₀NNaO₅S [M + Na]⁺ 796.4005, found 796.4000.

(7R,8R,9S,13S,14S,17S)-13-Methyl-7-(9-((S)-(4,4,5,5,5-pentafluoropentyl)sulfinyl)nonyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (113, fulvestrant)

HPLC analysis: Chiralcel OD-H (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 280 nm), t_R (minor) = 65.69 min, t_R (major) = 73.13 min.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.56 (d, J = 2.7 Hz, 1H), 3.74 (t, J = 8.4 Hz, 1H), 2.94 – 2.55 (m, 6H), 2.34 – 2.20 (m, 3H), 2.20 – 2.06 (m, 3H), 1.96 – 1.55 (m, 6H), 1.52 – 1.10 (m, 18H), 1.10 – 0.95 (m, 1H), 0.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 154.3, 137.0, 131.2, 127.1, 118.2 (qt, J = 285.2 Hz, J = 36.2 Hz), 116.3,115.3 (tq, J = 252.5 Hz, J = 37.8 Hz), 113.2, 82.2, 53.6, 52.6, 51.0, 46.6, 43.5, 42.2, 38.4, 37.1, 34.9, 33.5, 30.7, 29.9, 29.8, 29.7, 29.5(0), 29.4(5) (t, J = 22.1 Hz), 29.3, 29.1, 28.9, 28.8, 28.7, 27.3(9), 27.3(6), 25.1, 22.7(8), 22.7(6), 14.8, 11.3.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –85.43 (s, 3F), –118.08 (m, 2F).

HRMS (ESI) m/z calcd. for C₃₂H₄₇F₅NaO₃S [M + Na]⁺ 629.3058, found 629.3061.

The synthesis of sulfondiimine from sulfimide:

According to the literature reported procedure 66 with slight modification. To a solution of (S)-N-(isopropyl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide **36** (53.2 mg, 0.20 mmol, 1.0 equiv.), PhI=NNs (363.6 mg, 0.90 mmol, 4.5 equiv.), and AgNTf (12.4 mg, 0.032 mmol, 16 mol%) in MeCN (4.0 mL) was added 4-*tert*-butyl-2,6-bis(4-*tert*-butylpyridin-2-yl)pyridine (t Bu₃tpy, 19.2 mg, 0.032 mmol, 16 mol%) under an argon atmosphere. The reaction mixture was heated to 50 °C and stirred for 96 h. After cooling to r.t., the reaction mixture was extracted with CH₂Cl₂ three times (3 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the product **107**.

(R)-N-(Isopropyl(((4-nitrophenyl)sulfonyl)imino)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide (107)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **107** as a colorless oil (31.8 mg, 34% yield, 92% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 230 nm), t_R (major) = 13.37 min, t_R (minor) = 15.56 min.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.9 Hz, 2H), 8.10 (d, J = 8.9 Hz, 2H), 7.80 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 7.9 Hz, 2H), 4.60 – 4.53 (m, 1H), 2.47 (s, 3H), 1.41 (d, J = 6.8 Hz, 3H), 1.27 (d, J = 4.9 Hz, 3H), 1.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 187.5, 149.7, 148.9, 146.2, 130.5, 129.6, 128.4, 123.8, 120.0, 59.7, 42.0, 27.7, 21.7, 16.1, 16.0.

HRMS (ESI) m/z calcd. for $C_{21}H_{27}N_3O_5S_2Na$ [M + Na]⁺ 488.1284, found 488.1284.

The synthesis of sulfoximine from sulfimide:

According to the literature reported procedure⁵⁰ with slight modification. To a solution of (*S*)-*N*-(isopropyl(*p*-tolyl)- λ^4 -sulfaneylidene)pivalamide **36** (796 mg, 3.0 mmol, 1.0 equiv.) in MeCN (30 mL) was added a solution of NaIO₄ (642 mg, 3.0 mmol, 1.0 equiv.) in H₂O (60 mL). The reaction mixture was cooled to 0 °C, and then RuCl₃ hydrate (31.1 mg, 0.15 mmol, 5.0 mol%) was added. After stirring at r.t. for 8 h, the reaction mixture was extracted with CH₂Cl₂ three times (3 × 30 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the product **108a**.

(R)-N-(Isopropyl(oxo)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide (108a)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 5/1) to afford **108a** as a white solid (795 mg, 94% yield, 92% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 11.06 min, t_R (major) = 13.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 3.63 – 3.56 (m, 1H), 2.41 (s, 3H), 1.33 (d, J = 6.8 Hz, 3H), 1.21 – 1.19 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 188.2, 144.4, 131.7, 130.0, 128.7, 55.9, 41.5, 27.8, 21.6, 15.8, 15.3. **HRMS** (ESI) m/z calcd. for C₁₅H₂₄NO₂S [M + H]⁺ 282.1522, found 282.1524.

According to the literature reported procedure⁵⁰ with slight modification. To a solution of (*S*)-*N*-(isopropyl(oxo)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide **108a** (56.3 mg, 0.20 mmol, 1.0 equiv.) in MeOH (2.0 mL) and H₂O (1.0 mL) was added NaOH (120 mg, 3.0 mmol, 15.0 equiv.) under an argon atmosphere. The reaction mixture was heated to 80 °C and stirred for 48 h. After cooling to r.t., the reaction mixture was extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the desired product **108**.

(R)-Imino(isopropyl)(p-tolyl)- λ^6 -sulfanone (108)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 2/1) to afford **108** as a white solid (36.7 mg, 93% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 14.69 min, t_R (major) = 15.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 3.34 – 3.12 (m, 1H), 2.43 (s, 3H), 2.18 (s, 1H), 1.30 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.0, 136.7, 129.7, 129.5, 56.6, 21.6, 16.6, 16.1.

HRMS (ESI) m/z calcd. for C₁₀H₁₆NOS [M + H]⁺ 198.0947, found 198.0948.

The synthesis of sulfondiimidamide from sulfinamidine:

According to the literature reported procedure⁶⁶ with slight modification. To a solution of (*S*)-*N*-(piperidin-1-yl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide **57** (61.2 mg, 0.20 mmol, 1.0 equiv.), PhI=NNs (121.2 mg, 0.30 mmol, 1.5 equiv.), AgNTf (12.4 mg, 0.032 mmol, 16 mol%), and 4-*tert*-butyl-2,6-bis(4-*tert*-butylpyridin-2-yl)pyridine (tBu_3 tpy, 19.2 mg, 0.032 mmol, 16 mol%) in MeCN (4.0 mL) was added NaHCO₃ (24.1 mg, 0.30 mmol, 1.5 equiv.). The reaction mixture was stirred at r.t. for 96 h. After cooling to r.t., the reaction mixture was extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the desired product **111**.

(R)-N-(Isopropyl(((4-nitrophenyl)sulfonyl)imino)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide (111)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford 111 as a colorless oil (62.3 mg, 63% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 11.49 min, t_R (minor) = 13.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 8.9 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 3.41 – 3.25 (m, 4H), 2.42 (s, 3H), 1.71 – 1.50 (m, 6H), 1.00 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 185.5, 149.6, 148.8, 145.4, 132.4, 130.1, 128.5, 128.4, 123.8, 46.7, 42.0, 27.6, 25.5, 23.8, 21.7.

HRMS (ESI) m/z calcd. for C₂₃H₃₀N₄O₅S₂Na [M + Na]⁺ 529.1550, found 529.1549.

The synthesis of sulfonimidamide from sulfinamidine:

According to the literature reported procedure⁵⁰ with slight modification. To a solution of (S)-N-(piperidin-1-yl(p-tolyl)- λ^4 -sulfaneylidene)pivalamide **57** (61.2 mg, 0.20 mmol, 1.0 equiv.) in

MeCN (2.0 mL) was added a solution of NaIO₄ (42.8 mg, 0.20 mmol, 1.0 equiv.) in H₂O (4.0 mL). This solution was cooled to 0 °C, and then RuCl₃ hydrate (2.06 mg, 0.010 mmol, 5.0 mol%) was added under an argon atmosphere. After stirring at r.t. for 4 h, the reaction mixture was extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the desired product **112a**.

I-N-(Oxo(piperidin-1-yl)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide (112a)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 4/1) to afford **112a** as a colorless oil (58.2 mg, 90% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 80/20, flow rate 0.5 mL/min, λ = 254 nm), t_R (minor) = 10.89 min, t_R (major) = 12.49 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 3.16 – 3.06 (m, 4H), 2.42 (s, 3H), 1.69 – 1.56 (m, 4H), 1.51 – 1.43 (m, 2H), 1.22 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 186.9, 143.7, 134.2, 129.8, 127.8, 46.4, 41.9, 27.9, 25.4, 23.8, 21.6. **HRMS** (ESI) m/z calcd. for C₁₇H₂₆N₂O₂SNa [M + Na]⁺ 345.1607, found 345.1604.

To a solution of (R)-N-(oxo(piperidin-1-yl)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide **112a** (64.4 mg, 0.20 mmol, 1.0 equiv.) in iPr_2O (2.0 mL) was added nBuLi (0.40 mmol, 2.0 equiv., 2.4 M in hexane) at 0 °C under an argon atmosphere. The reaction mixture was stirred at r.t. for 8 h. After cooling to r.t., the reaction mixture was quenched with saturated NH₄Cl solution and extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel chromatography to afford the desired product **112**.

(R)-1-(4-Methylphenylsulfonimidoyl)piperidine (112)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 4/1) to afford 112 as a colorless oil (35.8 mg, 75% yield, 93% e.e.).

HPLC analysis: Chiralpak IA (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 10.73 min, t_R (major) = 13.42 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.97 (t, J = 5.5 Hz, 4H), 2.42 (s, 3H), 1.72 – 1.52 (m, 4H), 1.48 – 1.29 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.9, 133.4, 129.4, 128.2, 48.1, 25.8, 23.8, 21.6.

HRMS (ESI) m/z calcd. for $C_{12}H_{18}N_2OSNa$ [M + Na]⁺ 261.1032, found 261.1030.

The synthesis of sulfonimidoyl fluoride from sulfinamide

According to the literature reported procedure²⁴ with slight modification. To a solution of (S)-N-(p-tolylsulfinyl)pivalamide **40'** (119.7 mg, 0.50 mmol, 1.0 equiv.) in anhydrous THF (5.0 mL) was added NaH (60% in mineral oil, 22 mg, 0.55 mmol, 1.1 equiv.) at 0 °C. Then the reaction mixture was stirred for 1 h at r.t.. The reaction mixture was quenched with MeOH (1.0 mL) and concentrated under reduced pressure. The precipitate was washed with n-hexane to give the sulfinamide salt. Then the salt and potassium acetate (98.1 mg, 1.0 mmol, 2.0 equiv.) were dissolved in anhydrous ethanol (5.0 mL), followed by the addition of selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv.) at 0 °C. The reaction mixture was allowed to warm up to r.t. and stirred for 24 h. The reaction was quenched by adding water (5.0 mL), extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude mixture was purified by silica gel column chromatography to afford **109**.

(R)-4-Methyl-N-pivaloylbenzenesulfonimidoyl fluoride (109)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 20/1) to afford 109 as a white solid (44.3 mg, 86% yield, 97% e.e.).

HPLC analysis: Chiralpak IA (*n*-hexane/*i*-PrOH = 99/01, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 10.45 min, t_R (minor) = 12.25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 2.49 (s, 3H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 184.0, 147.0, 131.71 (d, J = 20.8 Hz), 130.3, 128.1, 42.4, 27.3, 22.0.

¹⁹**F NMR** (375 MHz, CDCl₃) δ 65.91 (d, J = 37.9 Hz).

HRMS (ESI) m/z calcd. for C₁₂H₁₇FNO₂S [M + H]⁺ 258.0959, found 258.0961.

The synthesis of sulfonimidamide from sulfinamide

According to the literature reported procedure⁶⁷ with slight modification. To a solution of (*S*)-*N*-(*p*-tolylsulfinyl)pivalamide **40'** (47.9 mg, 0.20 mmol, 1.0 equiv.) in dry THF (2.5 mL) was added 'BuOCl (32.6 mg, 0.30 mmol, 1.5 equiv.) dropwise at 0 °C. After stirring at 0 °C for 2 h, an aqueous solution of NH₃·H₂O (1.0 mL) was added at 0 °C, and the reaction mixture was stirred at r.t. for 45 min. Subsequently, water (15.0 mL) was added and the phases were separated. The aqueous phase was extracted four times with EtOAc (4×10 mL). The combined organic phases were washed with brine, and the aqueous phase was extracted once with EtOAc (10 mL). All organic phases were combined and dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, the crude residue was purified by silica gel column chromatography to afford **110**.

(S)-N-(Amino(oxo)(p-tolyl)- λ^6 -sulfaneylidene)pivalamide (110)

The product mixture was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford 110 as a white solid (40.7 mg, 80% yield, 96% e.e.).

HPLC analysis: Chiralpak IH (n-hexane/i-PrOH = 70/30, flow rate 0.7 mL/min, λ = 254 nm), t_R (major) = 8.75 min, t_R (minor) = 17.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.34 (s, 2H), 2.42 (s, 3H), 1.15 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 188.0, 144.2, 138.7, 129.8, 126.5, 41.6, 27.6, 21.6.

HRMS (ESI) m/z calcd. for C₁₂H₁₉N₂O₂S [M + H]⁺ 255.1162, found 255.1162.

8. Mechanistic studies

Preparation of sulfinimidoyl Cu(II) complexes:

According to the literature reported procedure⁶⁸ with slight modification. In a 100 mL Schlenk reaction tube equipped with a Teflon stopcock and a magnetic stirring bar, 3,5-bis(phenyl)pyrazole (17.6 g, 80 mmol, 4.0 equiv.) was treated with KBH₄ (1.08 g, 20 mmol). The mixture was heated to 220 °C, wherein 3,5-bis(phenyl)pyrazole was found to gradually thaw and a small amount of bubble was observed. The Schlenk tube was equipped with liquid sealing to against excess pressure imposed by the released H₂. The mixture was then heated up to 260 °C and reacted until no H₂ bubble was produced. After cooling to r.t., the reaction residue was vigorously mixed with a boiling toluene (50 mL). The resulting suspension was then passed through a filter with Celite to remove the unreacted 3,5-bis(phenyl)pyrazole upon thermal filtration. The residue was washed with hexane to give a white solid of Tp^{Ph,Ph}K (7.1 g, 50% yield). It was dried under a vacuum condition overnight and stored under Ar.

To a solution of Tp^{Ph,Ph}K (7.1 g, 10 mmol, 1.0 equiv.) in THF (150 mL) was added CuCl₂ (1.48 g, 11 mmol, 1.1 equiv.). The reaction mixture was stirred at r.t. for 4 h and the resulting suspension was passed through a filter with Celite to remove the white precipitate. The filtrate was then concentrated, and recrystallized in hexane and acetone (1:10). Then the resulting suspension was passed through a filter to give a black solid of Tp^{Ph,Ph}CuCl (6.7 g, 87% yield), and then dried under vacuum.

To a solution of **S1** (876 mg, 3.6 mmol, 1.2 equiv.) in CH₂Cl₂ (30 mL) was added 'BuOK (404 mg, 3.6 mmol, 1.2 equiv.). The reaction mixture was stirred at r.t. for 1 h, and then Tp^{Ph,Ph}CuCl (2.31 g, 3.0 mmol, 1.0 equiv.) was added and the reaction mixture was stirred at r.t. for another 2 h. Then the solvent was removed under reduced pressure to afford the crude mixture, which was purified by column chromatography on silica gel to afford the desired product **M1** as a purple solid (1.76 g, 60% yield).

Radical substitution reaction of ethyl radicals with sulfinimidoyl Cu(II) complexes

To a dark purple solution of M1 (97.6 mg, 0.1 mmol) in THF (2.0 mL) was added Et₃B (1M in hexane, 0.3 mmol, 3.0 equiv.) at –30 °C, and the reaction mixture was stirred at that temperature for 3 h. The dark purple solution turned gradually to pale green with a large amount of white precipitate. The mixture was warmed to r.t. followed by the addition of Et₂O (3.0 mL) and the supernatant liquid was removed to afford the precipitate M2. The precipitate M2 was washed with Et₂O for 3 times until there was no 1 in supernatant liquid (detected by TLC) and the residue was dried in a stream of argon. The yields of 1 and M2 were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. White X-ray quality crystals of M2 were grown from degassed CH₂Cl₂ under an argon atmosphere in the glovebox.

Caution: the Cu(I) complex (M2) is air-stable in solid state but is air-sensitive in solution.

N-(Ethyl(p-tolyl)- λ^4 -sulfanylidene)benzamide (1)

¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.14 (m, 2H), 7.68 – 7.61 (m, 2H), 7.43 – 7.32 (m, 3H), 7.28 (d, J = 8.1 Hz, 2H), 3.23 – 3.06 (m, 2H), 2.35 (s, 3H), 1.20 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 142.7, 136.7, 130.5, 130.4, 130.1, 128.7, 127.7, 127.3, 43.6,

HRMS (ESI) m/z calcd. for C₁₆H₁₈NOS [M + H]⁺ 272.1104, found 272.1102.

$Cu(Tp^{Ph,Ph})(C_2H_4)$ (M2)

21.4, 7.5.

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 6H), 7.44 – 7.33 (m, 9H), 7.26 – 7.19 (m, 3H), 7.06 – 7.00 (m, 6H), 7.00 – 6.91 (m, 6H), 6.36 (s, 3H), 3.53 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 152.8, 149.8, 134.8, 132.4, 130.0, 128.6, 128.1(4), 128.06, 127.7, 127.6, 105.6, 81.6.

HRMS (ESI) m/z calcd. for C₄₅H₃₅BCuN₆ [M – C₂H₄ + H]⁺ 733.2307, found 733.2301. The corresponding monocrystal was consistent with that reported in the literature.¹

Enantiospecific intramolecular radical substitution reaction of chiral sulfilimine.

According to the literature reported procedure⁴⁶ with slight modification. *N*-(Benzylthio)pivalamide **S32** (1.1 g, 5.0 mmol) was dissolved in 1,4-dioxane (25.0 mL). To this solution was added a solution of 30% NaOH (2.0 g in 4.6 mL H₂O, 10.0 equiv.), 1-bromo-2-(2-iodoethyl)benzene (20 mmol, 4.0 equiv.), and TBAB (322 mg, 1.0 mmol, 0.2 equiv.) sequentially. The reaction mixture was stirred at 55 °C for 6 h and a full consumption of **S32** was observed. The solution was diluted with water (20 mL) and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel (30% EtOAc in hexane) to afford the desired product **116** as a white solid (1.38 g, 68%).

High enantiomeric (R)-116 with 92% e.e. was obtained through preparative HPLC (CHIRALPAK® IC, n-hexane/i-PrOH = 70/30, flow rate 5.0 mL/min). The absolute configuration of (R)-116 was determined by comparison with the known compound synthesized from a chiral source.

(R)-N-(Benzyl(2-bromophenethyl)- λ^4 -sulfanylidene)pivalamide ((R)-116)

HPLC analysis: Chiralpak IC (n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 7.50 min, t_R (minor) = 8.14 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 1H), 7.36 – 7.29 (m, 3H), 7.27 – 7.22 (m, 2H), 7.20 – 7.16 (m, 2H), 7.09 – 7.02 (m, 1H), 4.30 (d, J = 12.9 Hz, 1H), 4.08 (d, J = 12.9 Hz, 1H), 3.19 – 2.96 (m, 4H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.9, 137.5, 133.0, 131.0, 130.4, 128.8(4), 128.8(2), 128.7(5), 127.8, 124.2, 49.3, 41.5, 40.0, 29.8, 28.7.

HRMS (ESI) m/z calcd. for C₂₀H₂₅BrNOS [M + H]⁺ 406.0835, found 406.0833.

According to the literature reported procedure⁶⁹ with slight modification. To a solution of (*R*)-116 (92% e.e., 144 mg, 0.355 mmol, 1.0 equiv.) and tris(trimethylsilyl)silane (TTMSS, 353 mg, 1.42 mmol, 4.0 equiv.) in benzene (2.0 mL) was added Et₃B (1M in hexane, 3.55 mmol, 10 equiv.). The reaction mixture was stirred at r.t. for 2 h, and then concentrated under reduced pressure. The

residue was purified by flash column chromatography on silica gel (5% MeOH in dichloromethane) to afford product **117** as a colorless oil (26.7 mg, 32% yield, 92% e.e.). The absolute configuration of (S)-**117** was determined by comparison of its derivative **117b** with the known compound synthesized from a chiral source.

(S)-N-(2,3-Dihydro- $1\lambda^4$ -benzo[b]thiophen-1-ylidene)pivalamide (117)

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 10.60 min, t_R (minor) = 13.46 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, J = 7.7 Hz, 1H), 7.51 – 7.43 (m, 1H), 7.43 – 7.33 (m, 2H), 3.79 (dt, J = 15.5, 7.6 Hz, 1H), 3.64 (dt, J = 13.0, 7.6 Hz, 1H), 3.47 (ddd, J = 12.7, 7.9, 4.3 Hz, 1H), 3.32 (ddd, J = 15.9, 7.9, 4.4 Hz, 1H), 1.15 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.2, 143.2, 136.7, 132.0, 128.6, 128.5, 125.9, 45.5, 39.8, 32.0, 28.7.

HRMS (ESI) m/z calcd. for C₁₃H₁₈NOS [M + H]⁺ 236.1104, found 236.1105.

Determination of the absolute configuration of 116 and 117:

Determination of the configuration of 116.

The synthesis of **SM2d** was according to the literature reported procedure⁶¹.

To a solution of (*S*)-*N*-(*tert*-butylsulfinyl)pivalamide **SM2a** (2.67 g, 22.0 mmol) in anhydrous THF (100 mL) was added NaH (60% in mineral oil, 2.4 g, 60 mmol) at 0 °C. After stirring for 10 min at r.t., a solution of pivalic anhydride (3.73 g, 20 mmol) in anhydrous THF (50 mL) was added at r.t. in 2 h. After stirring vigorously for 1 h, the reaction mixture was quenched with MeOH at 0 °C, followed by the addition of brine and sat. NH₄Cl aqueous solution. The mixture was extracted with EtOAc three times (3×50 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and then concentrated to afford the crude product, which was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford product **SM2b** as a white solid (3.28 g, 69%).

To a solution of **SM2b** (1.64 g, 8.0 mmol) in anhydrous dioxane (48 mL) was added NaH (60% in mineral oil, 384 mg, 9.6 mmol, 1.2 equiv.) and 15-crown-5 (1.9 mL, 9.6 mmol, 1.2 equiv.) at r.t.. After stirring for 10 min, 1-bromo-2-(2-iodoethyl)benzene (4.98 g, 16 mmol, 2.0 equiv.) was added. The reaction mixture was stirred at 70 °C for 24 h and cooled to r.t.. Sat. NH₄Cl aqueous solution was added to quench the reaction and the reaction mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc = 5/1) to afford the corresponding product **SM2c** as a white solid (600 mg, 18%).

To a solution of compound **SM2c** (600 mg, 1.55 mmol) in CH₂Cl₂ (3.0 mL) was added TFA (176 μ L, 2.30 mmol, 1.5 equiv.) at r.t.. After stirring for 40 min, the reaction mixture was diluted with CH₂Cl₂ and brine. The organic layer was separated and washed with sat. NaHCO₃ aqueous solution and brine. After drying with Na₂SO₄, the solvent was removed under reduced pressure. The crude mixture was purified by column chromatography on silica gel (PE/EtOAc = 1/1) to afford **SM2d** as a colorless oil (466 mg, 1.40 mmol, 90%). The synthesis of (*R*)-116 was according to the literature reported procedure⁶⁴.

To a tube equipped with a stir bar was added sulfinamide **SM2d** (66.4 mg, 0.20 mmol, 1.0 equiv.) and K₂CO₃ (33.2 mg, 0.24 mmol, 1.2 equiv.). The reaction vessel was then capped and backfilled with argon three times. To this mixture was added DMPU (1.0 mL), followed by the addition of i-PrI (40 μ L, 0.40 mmol, 2.0 equiv.). After stirring for 48 h at 70 °C, the mixture was cooled to r.t. and quenched with sat. NH₄Cl aqueous solution. Then, the mixture was extracted with EtOAc three times (3 × 5.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and then concentrated to afford the crude product, which was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the alkylation product **SM2e** (20 mg, 27%).

A round-bottom flask with Mg turnings (24 mg, 1.0 mmol, 1.0 equiv.) was dried under vacuum with a hot gun. It was cooled to r.t. and was replaced with argon. After the addition of a grain of I₂, to this mixture was added a solution of benzyl bromide (171 mg, 1.0 mmol, 1.0 equiv. in 2.0 mL of THF) dropwise. After stirring for 3 h at 80 °C, the obtained solution of benzylmagnesium bromide was cooled to r.t.. To a solution of **SM2e** (20 mg, 0.053 mmol) in THF (2.0 mL) was added the freshly prepared benzylmagnesium bromide (0.2 mL) at 0 °C. The reaction mixture was stirred at r.t. overnight and quenched with sat. NH₄Cl aqueous solution. The mixture was extracted with EtOAc three times (3×5.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by preparative TLC (PE/EtOAc = 3/1) to afford the corresponding product (R)-116 (4 mg, 19%, 98% e.e.).

(S)-N-((2-Bromophenethyl)(tert-butyl)(0x0)- λ^6 -sulfanylidene)pivalamide (SM2c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 1H), 7.43 – 7.36 (m, 1H), 7.31 – 7.23 (m, 1H), 7.15 – 7.07 (m, 1H), 3.76 – 3.55 (m, 2H), 3.47 – 3.17 (m, 2H), 1.49 (s, 9H), 1.21 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 188.2, 137.8, 133.0, 131.6, 128.9, 128.3, 124.3, 62.2, 46.3, 41.8, 30.9, 28.0, 23.5.

HRMS (ESI) m/z calcd. for C₁₇H₂₇BrNO₂S [M + H]⁺ 388.0940, found 388.0943.

(R)-N-((2-Bromophenethyl)sulfinyl)pivalamide (SM2d)

¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.57 – 7.51 (m, 1H), 7.26 – 7.22 (m, 2H), 7.16 – 7.06 (m, 1H), 3.40 – 3.25 (m, 2H), 3.22 – 3.04 (m, 2H), 1.21 (s, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 179.2, 137.6, 133.3, 131.0, 129.0, 128.1, 124.4, 54.4, 39.9, 29.3, 27.2.

HRMS (ESI) m/z calcd. for C₁₃H₁₉BrNO₂S [M + H]⁺ 332.0314, found 332.0317.

Isopropyl (R)-N-(pivaloyl)-(2-bromophenethyl)sulfinimidate (SM2e)

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 1H), 7.31 – 7.22 (m, 2H), 7.17 – 7.08 (m, 1H), 4.84 (hept, J = 6.2 Hz, 1H), 3.37 – 3.08 (m, 4H), 1.35 (d, J = 6.2 Hz, 3H), 1.29 (d, J = 6.2 Hz, 3H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 193.5, 137.8, 133.3, 130.8, 128.9, 128.0, 124.5, 77.0, 50.2, 40.6, 30.0, 28.4, 23.5(2), 23.4(5).

HRMS (ESI) m/z calcd. for C₁₆H₂₅BrNO₂S [M + H]⁺ 374.0784, found 374.0788.

Determination of the absolute configuration of 117.

The synthesis of 117b was according to the literature reported procedure ⁵⁰ with slight modification. To a solution of 117 (27.1 mg, 0.115 mmol, 1.0 equiv.) in MeCN (1.0 mL) was added a solution of NaIO₄ (29.5 mg, 0.138 mmol, 1.2 equiv.) in H₂O (2.0 mL). The solution was cooled to 0 °C, followed by the addition of RuCl₃ hydrate (1.2 mg, 0.00575 mmol, 5.0 mol%) under argon. After stirring at r.t. for 8 h, the reaction mixture was extracted with CH₂Cl₂ three times (3 × 5.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was purified by silica gel column chromatography (PE/EtOAc = 5/1) to afford 117a as a colorless oil (13 mg, 45% yield, 92% e.e.).

To a solution of **117a** (13 mg, 0.052 mmol, 1.0 equiv.) in MeOH (0.5 mL) and H₂O (0.25 mL) was added NaOH (31.2 mg, 0.780 mmol, 15.0 equiv.) under argon. The reaction mixture was heated

to 80 °C and stirred at that temperature for 48 h. After cooling to r.t., the reaction mixture was extracted with CH_2Cl_2 three times (3 × 5 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated to afford the crude product. Purification by preparative TLC (PE/EtOAc = 2/1) afforded product (R)-117b as a pale yellow oil (4.0 mg, 46%, 92% e.e.). The absolute configuration of (R)-117b was determined by comparing its optical rotation with that reported in the literature⁷⁰.

(R)-N-(1-Oxido-2,3-dihydro- $1\lambda^4$ -benzo[b]thiophen-1-ylidene)pivalamide (117a)

HPLC analysis: Chiralpak IC (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 12.01 min, t_R (minor) = 14.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 – 7.95 (m, 1H), 7.64 – 7.56 (m, 1H), 7.52 – 7.44 (m, 1H), 7.43 – 7.37 (m, 1H), 4.01 – 3.90 (m, 1H), 3.71 – 3.60 (m, 1H), 3.52 – 3.45 (m, 2H), 1.17 (s, 9H).

¹³C **NMR** (100 MHz, CDCl₃) δ 188.8, 138.9, 137.5, 134.1, 128.9, 127.0, 124.4, 52.1, 41.1, 27.8, 27.1.

HRMS (ESI) m/z calcd. for C₁₃H₁₈NO₂S [M + H]⁺ 252.1053, found 252.1055.

(R)-1-Imino-2,3-dihydro-1H-1 λ^4 -benzo[b]thiophene 1-oxide (117b)

HPLC analysis: Chiralpak IC (n-hexane/i-PrOH = 60/40, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 22.04 min, t_R (major) = 28.53 min.

 $[\alpha]_{\mathbf{p}^{21}} = 20 \ (c \ 0.3, \text{ acetone})$

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.51 – 7.43 (m, 1H), 7.41 – 7.35 (m, 1H), 3.62 – 3.55 (m, 2H), 3.42 (t, J = 6.9 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 137.3, 132.7, 128.7, 127.1, 121.0, 55.0, 26.3.

HRMS (ESI) m/z calcd. for C₈H₁₀NOS [M + H]⁺ 168.0478, found 168.0480.

The absolute configuration of (R)-117b was determined by comparing its optical rotation with that reported in the literature⁷⁰.

The control experiments using enantioenriched and racemic alkyl iodide C38.

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.80 mg, 0.02 mmol, 10 mol%), **L5** (10.0 mg, 0.03 mmol, 15 mol%), sulfenamide **S20** (44.6 mg, 0.20 mmol, 1.0 equiv.), second alkyl iodide **C38** (0.30 mmol, 1.5 equiv.), MesN₂BF₄ (93.6 mg, 0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Anhydrous MTBE (4.0 mL) was added and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **115**.

Benzyl (E)-4-(1-(N-pivaloyl-S-(p-tolyl)sulfinimidoyl)ethyl)piperidine-1-carboxylate (115)

According to the **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (44.7 mg, 0.20 mmol, 1.0 equiv.) and racemic second alkyl iodide **C38** (56.0 mg, 0.30 mmol, 1.5 equiv.) for 24 h, The product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **115** as a colorless oil (63.7 mg, 68% yield, 1.3:1 d.r., 93% e.e.major, 93% e.e.minor).

According to the **General Procedure D** with N-(p-tolylthio)pivalamide **S20** (11.2 mg, 0.05 mmol, 1.0 equiv.) and chiral second alkyl iodide **C38** (14.0 mg, 0.3 mmol, 1.5 equiv.) for 24 h, The product mixture was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford **115** as a colorless oil (16.2 mg, 69% yield, 1.3:1 d.r., 94% e.e._{major}, 93% e.e._{minor}).

HPLC analysis (from racemic **C38**): Chiralcel OD-H (*n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_R (major 1) = 27.14 min, t_R (major 2) = 29.38 min, t_R (minor 1) = 42.08 min, t_R (minor 2) = 49.82 min.

HPLC analysis (from chiral **C38**): Chiralcel OD-H (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm), t_R (major 1) = 27.44 min, t_R (major 2) = 29.80 min, t_R (minor 1) = 42.24 min, t_R (minor 2) = 49.97 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2.6H), 7.51 (d, J = 8.0 Hz, 2H), 7.41 – 7.27 (m, 16H), 5.12 (s, 5H), 4.24 (s, 5H), 3.35 – 3.02 (m, 1.3H), 2.91 – 2.57 (m, 6H), 2.40 (d, J = 2.1 Hz,

6.9H), 2.16 - 1.65 (m, 9H), 1.59 - 1.31 (m, 4H), 1.26 (s, 9H), 1.23 (s, 12H), 1.17 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 7.0 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 190.5, 190.1, 155.2(3), 155.2(0), 143.0, 142.2, 136.8, 130.4, 130.3, 128.6, 128.5, 128.1, 128.0, 127.2, 67.2(1), 67.2(0), 62.8, 59.8, 59.7, 44.2, 44.1, 44.0, 43.9, 40.6, 40.3, 37.8, 36.4, 28.9(3), 28.8(6), 28.8, 26.9, 21.6, 21.5, 9.9, 9.2.

HRMS (ESI) m/z calcd. for C₂₇H₃₇N₂O₃S [M + H]⁺ 469.2519, found 469.2517.

Determining the origin of the diastereoselectivity of 115:

According to the literature reported procedure 50 with slight modification. To a solution of 115 (46.9 mg, 0.10 mmol, 1.0 equiv.) in MeCN (1.0 mL) was added a solution of NaIO₄ (25.9 mg, 0.12 mmol, 1.2 equiv.) in H₂O (2.0 mL). The solution was cooled to 0 °C, and then RuCl₃ hydrate (1.0 mg, 0.005 mmol, 5.0 mol%) was added under argon. After stirring at r.t. for 8 h, the reaction mixture was extracted with CH₂Cl₂ three times (3 × 5.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude sulfoximine 115a without further purification.

According to the literature reported procedure⁷¹ with slight modification. To a solution of sulfoximine **115a** in anhydrous THF (1.0 mL) was added "BuLi (94 μL, 1.6 M in hexanes, 0.15 mmol) dropwise at –78 °C. The reaction mixture was stirred for 30 min, followed by the addition of MeI (21.3 mg, 0.15 mmol). The reaction mixture was stirred at –78 °C for another 15 min. Then the reaction mixture was warmed to r.t. and stirred for an additional 30 min at that temperature. After that, the reaction was quenched with saturated NH₄Cl aqueous solution. The layers were separated and the aqueous layers were extracted with CH₂Cl₂ three times (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by silica gel chromatography to afford the desired product **115b** (24.9 mg, 50%, 91% e.e.).

Benzyl (R)-4-(2-(4-methyl-N-pivaloylphenylsulfonimidoyl)propan-2-yl)piperidine-1-carboxylate (115b)

HPLC analysis: Chiralpak OD-H (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 230 nm), t_R (major) = 16.84 min, t_R (minor) = 19.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.41 – 7.28 (m, 7H), 5.12 (s, 2H), 4.37 – 4.15 (m, 2H), 2.86 – 2.63 (m, 2H), 2.43 (s, 3H), 2.39 – 2.27 (m, 1H), 2.18 – 1.97 (m, 2H), 1.37 (qd, J = 12.5, 4.2 Hz, 2H), 1.28 (s, 3H), 1.21 (s, 9H), 1.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 187.6, 155.3, 144.6, 136.9, 131.5, 130.1, 129.9, 128.6, 128.2, 128.1, 67.5, 67.2, 44.5, 44.4, 41.9, 40.4, 28.1, 27.9, 21.7. HRMS (ESI) m/z calcd. for C₂₈H₃₉N₂O₄S [M + H]⁺ 499.2625, found 499.2623.

Control experiments of chiral C center

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.010 mmol, 5.0 mol%), L1 (9.1 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (65.1 mg, 0.20 mmol, 1.0 equiv.), proton sponge (4.3 mg, 0.020 mmol, 0.10 equiv.), γ -aminocarbonyl alcohol S2 (46.7 mg, 0.20 mmol, 1.0 equiv.), BHT (132.1 mg, 0.60 mmol, 3.0 equiv.) and anhydrous CHCl₃ (1.0 mL). Then the 3-fluorobenzenesulfonyl chloride H1 (23.9 μ L, 0.18 mmol, 0.9 equiv.) was added and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed with EtOAc. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard and the e.e. values are based on HPLC analysis. The yield of 118 is based on H1.

2,6-Di-tert-butyl-4-(((3-fluorophenyl)sulfonyl)methyl)phenol (118)

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.37 (m, 2H), 7.32 – 7.26 (m, 1H), 7.25 – 7.17 (m, 1H), 6.78 (s, 2H), 5.29 (s, 1H), 4.23 (s, 2H), 1.33 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 252.1 Hz), 154.6, 140.1 (d, J = 6.4 Hz), 136.4, 130.6 (d, J = 7.5 Hz), 127.7, 124.7 (d, J = 3.5 Hz), 120.7 (d, J = 21.3 Hz), 118.5, 116.5 (d, J = 24.3 Hz), 63.3, 34.3, 30.2.

¹⁹**F NMR** (375 MHz, CDCl₃) δ –110.13.

HRMS (ESI) m/z calcd. for $C_{21}H_{27}FNaO_3S$ [M + H]⁺ 401.1557, found 401.1558.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L1** (9.1 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 1.0 equiv.), proton sponge (4.3 mg, 0.020 mmol, 10 mol%), γ -aminocarbonyl alcohol **S2** (46.7 mg, 0.20 mmol, 1.0 equiv.) and anhydrous CHCl₃ (1.0 mL). Then the benzenesulfonyl chloride **H3** (23.0 μ L, 0.18 mmol, 0.9 equiv.) was added and the reaction mixture was stirred at r.t. for 4 d. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the residue was purified by column chromatography

on silica gel (PE/Acetone = 8/1) to afford **119** (34.5 mg, 46% yield, 92% e.e.) as a colorless oil and (R)-**S2** (23.5 mg, 50% yield, 89% e.e.).

(S)-2-(Indoline-1-carbonyl)-3-methylbutyl benzenesulfonate (119)

HPLC analysis of **119**: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (minor) = 14.77 min, t_R (major)= 17.95 min.

HPLC analysis of (*R*)-**S2**: Chiralpak IB (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 12.93 min, t_R (minor)= 14.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 8.3 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.64 – 7.56 (m, 1H), 7.51 – 7.43 (m, 2H), 7.24 – 7.15 (m, 2H), 7.09 – 6.97 (m, 1H), 4.41 – 4.30 (m, 2H), 4.19 (td, J = 9.6, 7.4 Hz, 1H), 4.06 (td, J = 9.7, 7.5 Hz, 1H), 3.27 – 3.09 (m, 2H), 2.88 (td, J = 8.5, 5.5 Hz, 1H), 2.04 – 1.90 (m, 1H), 1.05 – 0.92 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 142.8, 135.7, 133.9, 131.7, 129.3, 127.9, 127.5, 124.7, 124.1, 117.6, 71.1, 51.1, 48.6, 29.1, 28.0, 21.0, 20.0.

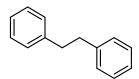
HRMS (ESI) m/z calcd. for $C_{20}H_{24}NO_4S$ [M + H]⁺ 374.1421, found 374.1422.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.020 mmol, 10 mol%), **L1** (18.2 mg, 0.030 mmol, 15 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 1.0 equiv.), proton sponge (4.3 mg, 0.020 mmol, 10 mol%), γ-aminocarbonyl alcohol **S2** (46.7 mg, 0.20 mmol, 1.0 equiv.) and anhydrous CHCl₃ (1.0 mL). Then the (allylsulfonyl)benzene **H4** (46.0 μL, 0.30 mmol, 1.5 equiv.) and aryldiazonium tetrafluoroborate **C19** (76.8 mg, 0.40 mmol, 2.0 equiv.) were added and the reaction mixture was stirred at 0 °C for 96 h. Upon completion, the precipitate was filtered off and washed with EtOAc. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard and the e.e. values are based on HPLC analysis.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.010 mmol, 5.0 mol%), L1 (9.1 mg, 0.015 mmol, 7.5 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 1.0 equiv.), Proton Sponge (4.3 mg, 0.020 mmol, 10 mol%), γ-aminocarbonyl alcohol S2 (46.7 mg, 0.20 mmol, 1.0 equiv.) and anhydrous CHCl₃ (1.0 mL). Then

the benzylsulfonyl chloride **H5** (34.3 mg, 0.18 mmol, 0.9 equiv.) was added and the reaction mixture was stirred at r.t. for 5 d. Upon completion, the precipitate was filtered off and washed with EtOAc. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard and the e.e. values are based on HPLC analysis. The yield of **121** is based on **H5**.

2-(Indoline-1-carbonyl)-3-methylbutyl phenylmethanesulfonate (120)


HPLC analysis: Chiralpak IB (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm), t_R (major) = 22.40 min, t_R (minor)= 29.11 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 8.1 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 7.16 – 7.10 (m, 2H), 7.09 – 7.02 (m, 1H), 4.48 (t, J = 10.0 Hz, 1H), 4.37 (dd, J = 9.6, 4.1 Hz, 1H), 4.28 (s, 2H), 4.00 (t, J = 8.5 Hz, 2H), 3.18 – 3.00 (m, 2H), 2.89 – 1.78 (m, 1H), 2.07 – 1.91 (m, 1H), 1.03 – 0.93 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 142.8, 131.8, 130.7, 128.9, 128.7, 127.7, 127.5, 124.7, 124.2, 117.5, 71.1, 56.3, 51.1, 48.4, 29.2, 27.9, 20.9, 19.9.

HRMS (ESI) m/z calcd. for $C_{21}H_{26}NO_4S$ [M + H]⁺ 388.1577, found 388.1578.

1,2-Diphenylethane (121)

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 4H), 7.21 – 7.13 (m, 6H), 2.91 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 128.6, 128.5, 126.0, 38.1.

The NMR data of 121 is consistent with that reported in the literature.⁷²

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBH₄(PPh₃)₂ (6.0 mg, 0.010 mmol, 10 mol %), **L1** (9.1 mg, 0.015 mmol, 15 mol%), γ-aminocarbonyl alcohol **S18** (26.1 mg, 0.10 mmol, 1.0 equiv.), TEMPO or BHT (3.0 equiv.), and anhydrous CCl₄ (1.0 mL). Then, **O2** (20.2 mg, 0.10 mmol, 1.0 equiv.) and 3-ethylbenzaldehyde **C1** (8.1 mg, 0.06 mmol, 0.6 equiv.) were added to the mixture and the reaction mixture was stirred at r.t. for 4 d. The reaction mixture was filtered through a plug of celite (rinsed with EtOAc) and concentrated in vacuo. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. values are based on HPLC analysis. The yield of **122a** and **122b** are based on **O2**.

4,4'-(Ethane-1,2-diyl)bis(2,6-di-tert-butylphenol) (122a)

¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 4H), 5.02 (s, 2H), 2.81 (s, 4H), 1.43 (s, 36H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 135.8, 132.9, 125.0, 38.2, 34.4, 30.5. HRMS (ESI) m/z calcd. for C₃₀H₄₆NaO₂ [M + Na]⁺ 461.3390, found 461.3387.

2,6-Di-*tert*-butyl-4-(3,5-di-*tert*-butyl-4-hydroxybenzyl)-4-methylcyclohexa-2,5-dien-1-one (122b)

¹**H NMR** (400 MHz, CDCl₃) δ 6.80 (s, 2H), 6.51 (s, 2H), 5.04 (s, 1H), 2.74 (s, 2H), 1.40 (s, 18H), 1.21 (s, 3H), 1.18 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 186.6, 146.8, 145.9, 135.3, 132.7, 127.9, 126.6, 48.2, 41.1, 34.7, 34.3, 30.4, 29.6, 26.4.

HRMS (ESI) m/z calcd. for C₃₀H₄₇O₂ [M + H]⁺ 439.3571, found 439.3586.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.020 mmol, 10 mol%), **L7** (19.4 mg, 0.015 mmol, 15 mol%), Cs₂CO₃ (65.1 mg, 0.20 mmol, 1.0 equiv.), γ-aminocarbonyl alcohol **S2** (46.7 mg, 0.20 mmol, 1.0 equiv.), oxime phosphonate **P1** (88.8 mg, 0.20 mmol, 1.0 equiv.), BHT (132.1 mg, 0.60 mmol, 3.0 equiv.) and anhydrous Pr₂O (2.0 mL). Then the reaction mixture was stirred at 0 °C for 8 d. Upon completion, the precipitate was filtered off and washed with EtOAc. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Control experiments of chiral P(V) center

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuBr (1.42 mg, 0.010 mmol, 10 mol%), **L2** (9.8 mg, 0.0150 mmol, 15 mol%), *H*-phosphinate **S45** or **S19** (0.10 mmol, 1.0 equiv.), **C2** (25.6 mg, 0.15 mmol, 1.5 equiv.), and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (4.0 mL) was added by syringe under argon and the reaction mixture was stirred at r.t.. Upon completion, the precipitate was filtered off and washed with CH₂Cl₂. The yields are based on ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard. The yield of **124** are based on **S19**.

1-(Benzyloxy)-2,2,6,6-tetramethylpiperidine (124)

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.23 (m, 5H), 4.83 (s, 2H), 1.73 – 1.30 (m, 6H), 1.26 (s, 6H), 1.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 138.5, 128.4, 127.6, 127.4, 78.9, 60.2, 39.9, 33.2, 20.5, 17.3. **HRMS** (ESI) m/z calcd. for C₁₆H₂₆NO [M + H]⁺ 248.1936, found 248.2009. The NMR data of **124** is consistent with that reported in the literature.⁷³

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with **S45** or **S19** (0.12 mmol, 1.2 equiv.), CuTc (1.91 mg, 0.010 mmol, 10 mol%), **L2** (9.80 mg, 0.015 mmol, 15 mol%), H₂O (3.6 μ L, 0.20 mmol, 2.0 equiv.), Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 equiv.), TEMPO (0 or 2.0 equiv.) and anhydrous MTBE (4.0 mL). Then, (3-bromoprop-1-yn-1-yl)triisopropylsilane **C15** (26.0 μ L, 0.10 mmol, 1.0 equiv.) was added and the reaction mixture was stirred at at r.t. for 72 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard, and the yield of **126** is based on **S19**.

2,2,6,6-Tetramethyl-1-((3-(triisopropylsilyl)prop-2-yn-1-yl)oxy)piperidine (126)

¹**H NMR** (400 MHz, CDCl₃) δ 4.43 (s, 2H), 1.62 – 1.23 (m, 6H), 1.19 (s, 6H), 1.14 – 1.02 (m, 27H).

¹³C NMR (100 MHz, CDCl₃) δ 104.2, 86.9, 66.9, 59.9, 39.8, 33.2, 20.1, 18.7, 17.3, 11.4. **HRMS** (ESI) m/z calcd. for C₂₁H₄₂NOSi [M + H]⁺ 352.3030, found 352.3031.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with Cu(OAc)₂ (1.90 mg, 0.010 mmol, 10 mol%), **L8** (7.80 mg, 0.015 mmol, 15 mol%), **S45** or **S19** (0.15 mmol, 1.5 equiv.), **N1** (36.0 mg, 0.10 mmol, 1.0 equiv.), BHT or TEMPO (0 or 3.0 equiv.) and Cs₂CO₃ (97.6 mg, 0.30 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then anhydrous toluene (2.0 mL) and H₂O (3.6 μ L, 0.20 mmol, 2.0 equiv.) were added by syringe under argon and the reaction mixture was stirred at r.t. for 72 h. Upon completion, the precipitate was filtered off and washed with CH₂Cl₂. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard, and the yield of **128** is based on **S19**.

(4-(3,5-Di-tert-butyl-4-hydroxybenzyl)piperazin-1-yl)(naphthalen-1-yl)methanone (128)

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.78 (m, 3H), 7.62 – 7.44 (m, 3H), 7.43 – 7.36 (m, 1H), 7.06 (s, 2H), 5.13 (s, 1H), 4.09 – 3.78 (m, 2H), 3.44 (s, 2H), 3.29 – 3.06 (m, 2H), 2.71 – 2.49 (m, 2H), 2.35 – 2.12 (m, 2H), 1.42 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 153.1, 135.8, 134.5, 133.6, 129.7, 129.2, 128.5, 128.1, 127.1, 126.6, 125.9, 125.3, 125.0, 123.9, 63.2, 53.6, 53.0, 47.4, 42.0, 34.4, 30.5. **HRMS** (ESI) *m/z* calcd. for C₃₀H₃₉N₂O₂ [M + H]⁺ 459.3006, found 459.3005.

Control experiments of chiral S(IV) center

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.90 mg, 0.020 mmol, 5.0 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), sulfenamide **S20** (44.6 mg, 0.20 mmol, 1.0 equiv.), (3-bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.), TEMPO or BHT (0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Anhydrous CH₂Cl₂ (2.0 mL) was added and the reaction mixture was stirred at r.t. for 72 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂, then the filtrate was evaporated. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the ^{e.e.} values are based on HPLC analysis. The yield of **129** is based on **C16**.

2,2,6,6-Tetramethyl-1-((3-(trimethylsilyl)prop-2-yn-1-yl)oxy)piperidine (129)

¹**H NMR** (400 MHz, CDCl₃) δ 4.40 (s, 2H), 1.47 – 1.39 (m, 4H), 1.33 – 1.24 (m, 2H), 1.18 (s, 6H), 1.11 (s, 6H), 0.18 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 102.0, 90.7, 66.3, 59.9, 39.8, 33.1, 20.2, 17.2, 0.1. HRMS (ESI) m/z calcd. for C₁₅H₃₀NOSi [M + H]⁺ 268.2091, found 268.2088.

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (1.90 mg, 0.010 mmol, 5.0 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), sulfenamide **S20** (44.6 mg, 0.20 mmol, 1.0 equiv.), bromoacetonitrile **C24** (36.0 mg, 0.24 mmol, 1.5 equiv.), TEMPO or BHT (0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Anhydrous CH₂Cl₂ (2.0 mL) was added and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂,

and then the filtrate was evaporated. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. values are based on HPLC analysis. The yield of **130** is based on **C24**.

2-((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)acetonitrile (130)

¹H NMR (400 MHz, CDCl₃) δ 4.52 (s, 2H), 1.72 – 1.24 (m, 6H), 1.20 (s, 6H), 1.10 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 116.2, 62.8, 60.5, 39.7, 33.1, 20.0, 17.0. HRMS (ESI) m/z calcd. for C₁₁H₂₁N₂O [M + H]⁺ 197.1648, found 197.1645. The NMR data of **130** is consistent with that reported in the literature. ⁷⁴

To a flame-dried Schlenk tube equipped with a magnetic stir bar was charged with CuI (3.80 mg, 0.02 mmol, 10 mol%), **L5** (10.0 mg, 0.03 mmol, 15 mol%), sulfenamide **S20** (44.6 mg, 0.20 mmol, 1.0 equiv.), iodomethane **C34** (0.30 mmol, 1.5 equiv.), MesN₂BF₄ (93.6 mg, 0.40 mmol, 2.0 equiv.), TEMPO or BHT (0.40 mmol, 2.0 equiv.), and K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Anhydrous MTBE (4.0 mL) was added and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed by CH₂Cl₂, then the filtrate was evaporated. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. values are based on HPLC analysis. The yield of **114** is based on **C34**.

1-Methoxy-2,2,6,6-tetramethylpiperidine (114)

¹H NMR (400 MHz, CDCl₃) δ 3.58 (s, 3H), 1.62 – 1.21 (m, 6H), 1.15 (s, 6H), 1.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 65.4, 59.8, 39.8, 33.1, 20.1, 17.2. HRMS (ESI) m/z calcd. for C₁₀H₂₂NO [M + H]⁺ 172.1696, found 172.1696. The NMR data of **114** is consistent with that reported in the literature. ⁷⁴

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S20** (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), TEMPO or BHT (2.0 mmol, 10.0 equiv.), and anhydrous MeCN (2.0 mL). Then, *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at -10 °C for 36 h. Upon completion (monitored by TLC), the reaction was quenched with a saturated aqueous solution of NH₄Cl, and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were concentrated in vacuo. The yield is based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the yields of **122a** and **122b** are based on **S20**.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.48 mg, 0.00250 mmol, 5.0 mol%), **L4** (1.98 mg, 0.00375 mmol, 7.5 mol%), **S20** (11.17 mg, 0.050 mmol, 1.0 equiv.), **N4** (15.54 mg, 0.075 mmol, 1.5 equiv.), BHT or TEMPO (0.10 mmol, 2.0 equiv.), and K₃PO₄ (31.8 mg, 0.150 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then EtOAc (0.5 mL) was added by syringe under argon and the reaction mixture was stirred at 40 °C for 24 h. Upon completion, the precipitate was filtered off and washed with EtOAc. The filtrate was evaporated and the yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard the yield of **131** is based on **N4**.

2,6-Di-tert-butyl-4-(morpholinomethyl)phenol (131)

¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (s, 2H), 5.14 (s, 1H), 3.72 (t, J = 4.7 Hz, 4H), 3.43 (s, 2H), 2.54 – 2.33 (m, 4H), 1.44 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 152.8, 135.5, 127.8, 125.9, 67.0, 63.6, 53.4, 34.2, 30.3.

HRMS (ESI) m/z calcd. for C₁₉H₃₂NO₂ [M + H]⁺ 306.2428, found 306.3423.

The NMR data of **131** is consistent with that reported in the literature.⁷⁵

Radical verification experiment:

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.95 mg, 0.0050 mmol, 10 mol%), **L10** (3.86 mg, 0.0075 mmol, 15 mol%), sulfenamide **S20** (11.2 mg, 0.05 mmol, 1.0 equiv.), and K₃PO₄ (31.8 mg, 0.15 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then toluene (0.5 mL) and *tert*-butyl propyl carbonoperoxoate **O3** (17.62 mg, 0.10 mmol, 2.0 equiv.) were added by syringe under argon and the reaction mixture was stirred at r.t. for 24 h. Upon completion, the precipitate was filtered off and washed with EtOAc, and the filtrate was evaporated. The yield of **41** was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. E.e. value was based on HPLC analysis.

An oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with CuI (0.95 mg, 0.0050 mmol, 10 mol%), **L4** (3.86mg, 0.0075 mmol, 15 mol%), sulfenamide **S20** (11.2 mg, 0.05 mmol, 1.0 equiv.), MesN₂BF₄ **C39** (58.5 mg, 0.25 mmol, 5.0 equiv.) and K₃PO₄ (31.8 mg, 0.15 mmol, 3.0 equiv.). The tube was evacuated and backfilled with argon three times. Then MeCN (0.5 mL) was added by syringe under argon and the reaction mixture was stirred at r.t. for 48 h. Upon completion, the precipitate was filtered off and washed with EtOAc, and the filtrate was evaporated. The yield of **46** was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. E.e. value was based on HPLC analysis.

The mechanistic study of O radical:

Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S20** (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L4** (7.9 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous MeCN (2.0 mL). Then, *tert*-butyl hydroperoxide **O1** (70% in H₂O, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at -10 °C for 36 h. Upon completion (monitored by TLC), the reaction was quenched with sat. NH₄Cl aqueous solution, and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were concentrated *in vacuo*, and the filtrate was evaporated to afford the crude residue **40** and **40**′.

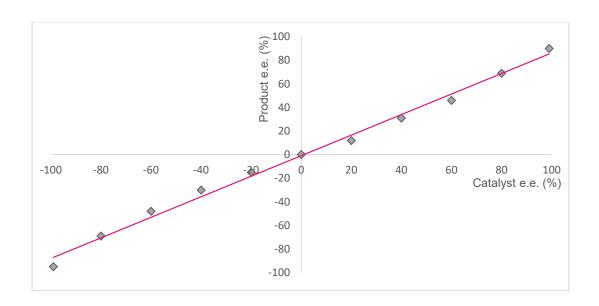
To a solution of the crude residue in EtOAc (1.5 mL) was added H_2O (1.0 mL) and AcOH (0.5 mL). The reaction mixture was then stirred at r.t. for 1 h. Upon completion (monitored by TLC), the reaction was quenched with H_2O and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The yield is based on 1H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. value is based on HPLC analysis.

To a solution of **40** (29.5 mg, 0.10 mmol, 1.0 equiv.) in EtOAc (1.5 mL) was added H_2O (1.0 mL) and AcOH (0.5 mL). The reaction mixture was stirred at r.t. for 1 h. Upon completion (monitored by TLC), the reaction was quenched with H_2O and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated to afford the crude product. The yield is based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. value is based on HPLC analysis.

Under argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide \$23 (0.10 mmol, 1.0 equiv.), sulfinimidate ester 40 (0.10 mmol, 1.0 equiv.), CuI (0.95 mg, 0.0050 mmol, 5.0 mol%), L4 (3.9 mg, 0.0075 mmol, 7.5 mol%), K₃PO₄ (63.7 mg, 0.30 mmol, 3.0 equiv.), and anhydrous MeCN (1.0 mL). Then, *tert*-butyl hydroperoxide O1 (70% in H₂O, 0.12 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at –10 °C for 36 h. Upon completion (monitored by TLC), the reaction was quenched with sat. NH₄Cl aqueous solution, and extracted with EtOAc three times (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product. The yields are based on ¹H NMR analysis of the crude product using dibromomethane as an internal standard and the e.e. values are based on HPLC analysis.

(R)-tert-Butyl N-(pivaloyl)-4-methoxyphenylsulfinimidate (98')

HPLC analysis: Chiralpak IA-3 (n-hexane/i-PrOH = 95/5, flow rate 0.7 mL/min, λ = 254 nm), t_R (minor) = 10.34 min, t_R (major) = 14.44 min.


¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 9.0 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 1.55 (s, 9H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.7, 162.6, 130.6, 129.0, 114.6, 84.5, 55.6, 41.0, 29.5, 28.1.

The non-linear effect of catalyst:

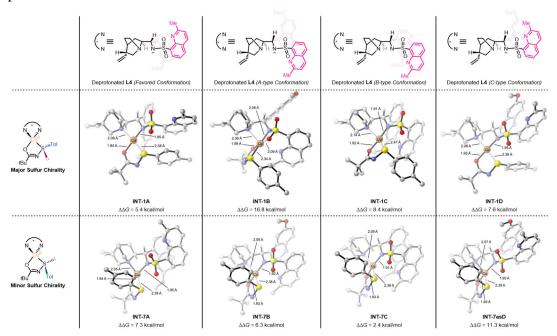
Under an argon atmosphere, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with sulfenamide **S20** (0.20 mmol, 1.0 equiv.), CuI (1.9 mg, 0.010 mmol, 5.0 mol%), **L15** (6.7 mg, 0.015 mmol, 7.5 mol%), K₃PO₄ (127.4 mg, 0.60 mmol, 3.0 equiv.), and anhydrous CH₂Cl₂ (2.0 mL). (3-Bromoprop-1-yn-1-yl)trimethylsilane **C16** (45.9 mg, 0.24 mmol, 1.2 equiv.) was added and the reaction mixture was stirred at r.t. for 48 h. Upon completion (monitored by TLC), product **35** was separated by preparative TLC on silica gel. The e.e. value of product **35** was then determined by HPLC, which indicated a linear relationship between the e.e. value of product **35** and the corresponding catalyst. The catalyst **L15** with different e.e. values was prepared by mixing (*S*,*S*)-**L15** (99% e.e.) and (*R*,*R*)-**L15** (99% e.e.) in appropriate ratios.

Entry	Catalyst e.e. (%)	Product e.e. (%)
1	99	90
2	80	69
3	60	46
4	40	31
5	20	12
6	0	0
7	-20	-15
8	-40	-30
9	-60	-48
10	-80	-69
11	–99	-95

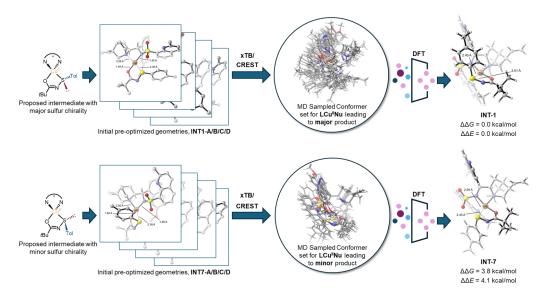
9. Computational details

All density functional theory (DFT) calculation results were obtained with the Gaussian 16 program⁷⁶. The default G16 SCF convergence criteria (scf=tight), optimization convergence criteria, and integral grid parameters (int=(ultrafine,acc2e=12)) for Gaussian 16 were applied unless otherwise stated. The (5d,7f) keyword in Gaussian 16 was used. Geometry optimizations were conducted with the B3LYP functional 77-78, employing the D3 version of Grimme's dispersion corrections⁷⁹ with Becke-Johnson damping⁸⁰. The def2-SVP basis set⁸¹⁻⁸² was used for all atoms. Single-point energies and solvent effects in dichloromethane (DCM) were also evaluated using the B3LYP functional with Grimme's dispersion corrections and Becke-Johnson damping. The def2-TZVP basis set⁸¹⁻⁸² was used for all atoms. Solvation energies in geometry optimizations and single-point energy calculations were obtained with a self-consistent reaction field (SCRF) using the SMD implicit solvent model⁸³. The solvent-accessible surface is used in geometry optimization (surface = SAS). Frequency analyses were also performed at the same level of theory as geometry optimizations, using the harmonic oscillator model to confirm whether the optimized stationary points are local minima or transition states, as well as to evaluate zero-point vibrational energies and thermal corrections for enthalpies and free energies at 298.15 K. Mulliken spin distributions were obtained at the same level of theory as geometry optimizations. NBO analysis was performed using NBO7 program⁸⁴. Cartesian coordinates of the computed species are included in the Computational Archives.

In addition, geometry optimizations, frequency analyses, and single-point energy calculations of open-shell transition states and local minima were carried out with unrestricted DFT methods, while same computations for closed-shell structures were performed with restricted DFT methods. A wavefunction stability test at the same level of theory as geometry optimizations was employed to ensure that the SCF-converged wavefunction was stable.


Configurational and conformational searches were performed with the Conformer-Rotamer Ensemble Sampling Tool (CREST, version 2.12)⁸⁵ using the xTB program package (version 6.4.0)⁸⁶. The conformers generated by CREST were optimized at the GFN2-xTB level, based on proposed initial structures. Solvation effects in ether, instead of dichloromethane, were calculated with the GBSA implicit solvation model. An energy window of 6.0 kcal/mol, an RMSD threshold of 0.25 Å, and a "--mdlen" (MD length in picoseconds) parameter of 6.0 were used for sampling. For conformational sampling of transition state structures, atoms involved in forming/cleaving bonds were constrained using a force constant of 1.0 Hartree/Bohr. The "--cluster" keyword was used to apply the default clustering algorithm. The "--noreftopo" keyword was also applied to ensure the successful initial geometry optimization with xTB.

The 3D diagrams of optimized structures shown in this Supplementary Information were generated with CYLview software⁸⁷. Graphs of frontier orbitals were generated with VMD⁸⁸.


Configurational and Conformational Searches for L4Cu(II)Nu Species

The configurational and conformational searches for the key L4Cu(II)Nu species were based on manually defined conformational space and xTB/CREST sampling methods. Initially, considering different sulfur-centered chiralities and rotations of the two substituted quinoline rings, eight possible isomers (INT-1A to INT-1D and INT-7A to INT-7D; Supplementary Fig. 24 and Supplementary Table 19) were identified.

However, some isomers may be omitted by using only manually defined conformational space. Hence, the xTB/CREST programs were employed (Supplementary Fig. 25 and Supplementary Table 20). Starting from the eight possible isomers (INT-1A to INT-1D and INT-7A to INT-7D), 28 isomers for the L4Cu(II)Nu intermediate leading to the experimentally observed sulfurcentered chirality were identified (Supplementary Tables 17 and 19), and 13 isomers for the L4Cu(II)Nu intermediate leading to the opposite sulfur-centered chirality were identified (Supplementary Tables 18 and 19). Among them, INT-1 is the most favorable. The corresponding intermediate, maintaining similar conformational features but possessing the opposite sulfur chirality to INT-1, is INT-7. INT-1 is used as the reference intermediate in energy evaluations for subsequent mechanistic studies.

Supplementary Fig. 24 | Proposed configurational and conformational isomers of L4Cu(II)Nu intermediates INT-1 and INT-7. Free energies are given relative to INT-1. Trivial hydrogen atoms in the 3D structures are omitted for clarity.

Supplementary Fig. 25 | Combined DFT and xTB/CREST workflow for the configurational and conformational searches of key L4Cu(II)Nu intermediates responsible for C–S bond formation. Free energies and electronic energies are given relative to INT-1.

Supplementary Table 17 | Identified isomers of INT-1 that lead to the major product with the experimentally observed sulfur-centered chirality. Free energies are given relative to INT-1.

Isomer No.	$\Delta\Delta G$ /kcal/mol	Isomer No.	$\Delta\Delta G$ /kcal/mol
INT-1	0.0	INT-1_No-12	15.0
INT-1A	5.4	INT-1_No-13	16.7
INT-1B	16.8	INT-1_No-14	16.8
INT-1C	8.4	INT-1_No-15	19.3
INT-1D	7.6	INT-1_No-16	20.4
INT-1_No-01	7.2	INT-1_No-17	8.4
INT-1_No-02	7.7	INT-1_No-18	10.1
INT-1_No-03	5.4	INT-1_No-19	7.6
INT-1_No-04	5.3	INT-1_No-20	8.2
INT-1_No-05	16.7	INT-1_No-21	3.7
INT-1_No-06	16.5	INT-1_No-22	3.8
INT-1_No-07	17.5	INT-1_No-23	5.2
INT-1_No-08	16.4	INT-1_No-24	1.3
INT-1_No-09	16.7	INT-1_No-25	0.3
INT-1_No-10	19.1	INT-1_No-26	1.7
INT-1_No-11	18.0	INT-1_No-27	1.9

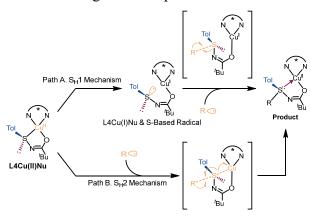
Supplementary Table 18 | Identified isomers of INT-7 that lead to the minor product with the sulfur-centered chirality opposite to the experimentally observed configuration. Free energies are given relative to INT-1.

Isomer No.	$\Delta\Delta G$ /kcal/mol	Isomer No.	$\Delta\Delta G$ /kcal/mol
INT-7	3.8	INT-7_No-05	5.2
INT-7A	7.3	INT-7_No-06	6.3
INT-7B	6.3	INT-7_No-07	6.2
INT-7C	2.4	INT-7_No-08	3.8
INT-7D	11.3	INT-7_No-09	4.4
INT-7_No-01	3.8	INT-7_No-10	4.2
INT-7_No-02	6.9	INT-7_No-11	4.9
INT-7_No-03	6.3	INT-7_No-12	5.7
INT-7 No-04	6.6		_

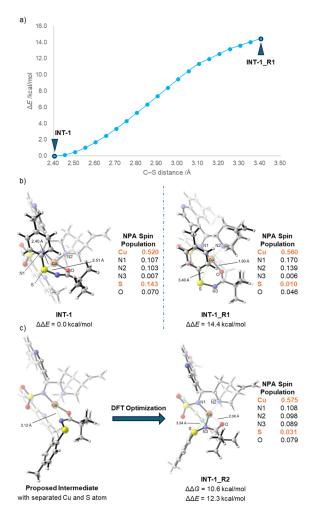
Mechanistic Studies on the C-S Bond Formation Step

Two main possibilities for the key, final radical termination (C–S bond formation) step are considered: a) an S_H1 mechanism involving Cu–S cleavage and subsequent radical coupling of a S-based radical (Supplementary Fig. 26, path A); b) an S_H2 mechanism involving direct attack of an outer-sphere-generated radical on the Cu–S bond (Supplementary Fig. 26, path B).

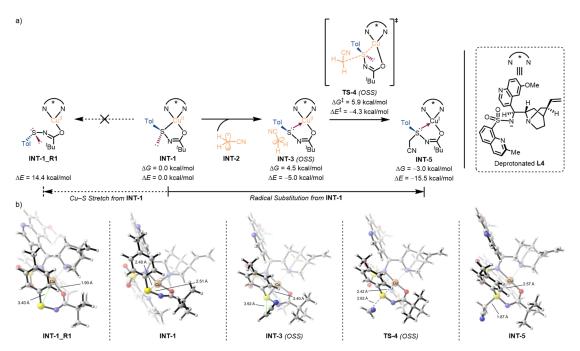
We tried to obtain the proposed Cu(I)-coordinated S-based radical intermediate involved in the S_H1 mechanism. The key intermediate INT-1 (L4Cu(II)Nu) has a Cu–S bond length of 2.40 Å. Natural population analysis (NPA) reveals a spin density of 0.520 on the Cu center, with the remaining spin delocalized over the coordinating N, O, and S atoms (Supplementary Fig. 27b, left and Supplementary Table 20). This confirms INT-1 as a Cu(II)-centered radical. Upon stretching the Cu–S atom distance to 3.40 Å from INT-1, the potential energy increases by 14.4 kcal/mol (Supplementary Figs. 27a and 27b and Supplementary Tables 20 and 21). In this Cu–S-elongated structure (INT-1_R1), the Cu spin density slightly increases to 0.560, while the S atom retains a small spin density (0.010) (Supplementary Fig. 27b, structure on the right). Additionally, starting from the proposed intermediate with separated Cu and S atoms, INT-1_R2 was independently obtained with a DFT-optimized separated Cu–S length of 3.54 Å. This INT-1_R2 shows spin densities of 0.575 (Cu) and 0.031 (S), maintaining Cu-radical character (Supplementary Fig. 27c). These results reveal that the Cu(I)-coordinated S-based radical intermediate is unstable.

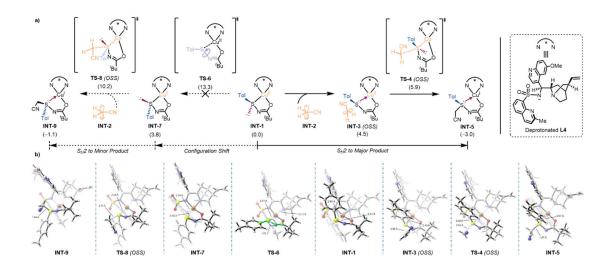

In addition, sequential, facile radical substitution involving **INT-1** and the cyanomethyl radical **INT-2**, with an activation barrier of 0.7 kcal/mol (electronic energy change from **INT-3** to **TS-4**), is more favorable than the endergonic Cu–S dissociation (an endergonic electronic energy change of 14.4 kcal/mol; Supplementary Fig. 28 and Supplementary Table 20). These results rule out the S_H1 mechanism involving *S*-radical formation.

For path B, the S_H2 (bimolecular homolytic substitution) pathway in Supplementary Fig. 26, the Cu(II) intermediate INT-1 and cyanomethyl radical INT-2 first generate the open-shell singlet diradical complex INT-3. INT-3 then undergoes C-S bond formation via an open-shell singlet transition state, TS-4, generating INT-5 with the newly formed C-S bond, which eventually liberates the observed product (Supplementary Fig. 29 and Supplementary Table 20). Spin population analysis by NPA (natural population analysis) reveals the open-shell singlet diradical nature of TS-4 (Supplementary Fig. 30 and Supplementary Table 20). Canonical frontier bonding orbitals (SOMO-alpha and SOMO-beta, where SOMO stands for singly occupied molecular orbital) in the C-S bond formation transition state TS-4 confirm the interaction between the SOMO of the cyanomethyl radical and the anti-bonding orbital of the Cu–S bond (Supplementary Fig. 30), which is consistent with the nature of radical substitution⁸⁹. For the minor pathway leading to the byproduct with the opposite configuration, INT-1 undergoes a configuration shift via TS-6, affording INT-7 with the opposite sulfur chirality. Subsequent C-S bond formation via TS-8 generates INT-9, which eventually liberates the minor byproduct (Supplementary Fig. 29). The configuration shift transition state **TS-6** is 7.4 kcal/mol less favorable than the S_H2 transition state TS-4 (TS-6 vs TS-4; Supplementary Fig. 29). This energy difference indicates that radical substitution is facile from INT-1, and the formation of the byproduct with the minor configuration from the configuration flip of INT-1 is unlikely.

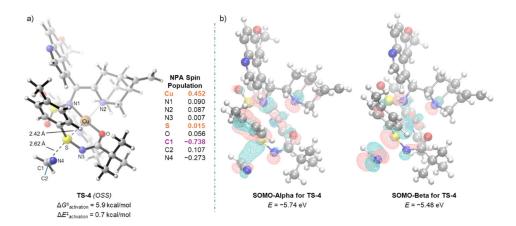

Furthermore, radical substitution involving the tribromomethyl radical **INT-10** is barrierless compared to the configuration shift, which requires a free energy barrier of 13.3 kcal/mol from **INT-1** (Supplementary Fig. 31 and Supplementary Table 20). Starting from a proposed complex of **INT-1** and **INT-10**, the potential energy decreases as the carbon atom of the tribromomethyl radical and the S atom of the nucleophile approach, indicating that a transition state for C–S bond

formation cannot be located on the potential energy surface (Supplementary Fig. 32 and Supplementary Table 22). This discussion shows that C–S bond formation is facile with **INT-1** and tribromomethyl radical **INT-10**.

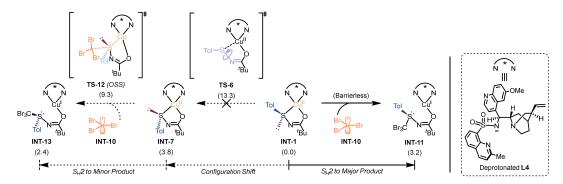

To sum up, C–S bond formation favors a facile S_H2-type radical substitution for both cyanomethyl radical and tribromomethyl radical. Furthermore, the formation of the byproduct with the minor configuration from the configuration flip of **INT-1** is kinetically unfavorable.


Supplementary Fig. 26 | Proposed C-S bond formation pathways.

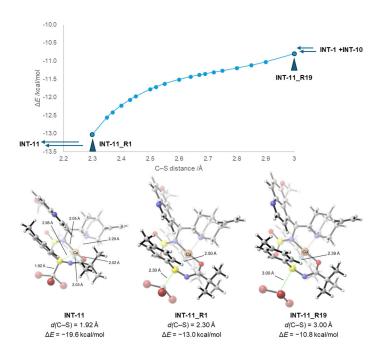
Supplementary Fig. 27 | **a**, Electronic energy profile along the Cu–S stretch. **b**, Key intermediate and spin population based on natural population analysis (NPA). **c**, Independently identified configurational isomer of L*Cu(II)Nu species **INT-1** with a Cu–S distance of 3.54 Å and its NPA spin population. Relative free energies and electronic energies are given relative to **INT-1**. The scan along the C–S distance was performed using the internal procedure of Gaussian 16, starting from **INT-1** at the same level of theory as the geometry optimization, with a scan step size of 0.05 Å. Electronic energies from the scan are listed in Supplementary Table 21.



Supplementary Fig. 28 | **a**, Energy diagram comparing the Cu–S stretch pathway and the operative radical substitution pathway. **b**, 3D structures of the calculated intermediates and transition state. Electronic energies and free energies are given relative to the sum of **INT-1** and the cyanomethyl radical **INT-2**.



Supplementary Fig. 29 | **a**, Free energy diagram for radical substitution pathways of the cyanomethyl radical leading to the major product **46** and its stereoisomer. **b**, 3D structures of key configuration shift and radical substitution transition states. Free energies in parentheses are in


kcal/mol, relative to the sum of the LCu(II)Nu intermediate INT-1 and the cyanomethyl radical INT-2.

Supplementary Fig. 30 | **a**, 3D structures of the key radical substitution transition state **TS-4** and NPA spin populations. **b**, Canonical SOMOs for **TS-4**. The activation energy ($\Delta E^{\ddagger}_{\text{activation}}$) is given relative to the reactant adduct **INT-3**. The activation free energy ($\Delta G^{\ddagger}_{\text{activation}}$) is given relative to the sum of **INT-1** and **INT-2**. The isovalues of the corresponding orbitals are set to 0.04 for clarity.

Supplementary Fig. 31 | Free energy diagram for the radical substitution pathways of the tribromomethyl radical INT-10 leading to the major product 45 and its stereoisomer. Free energies in parentheses are in kcal/mol, relative to the sum of the LCu(II)Nu intermediate INT-1 and the tribromomethyl radical INT-10.

Supplementary Fig. 32 | Electronic energy changes along the carbon–sulfur distance during radical substitution by the tribromomethyl radical. Electronic energies are given relative to the sum of INT-1 and the tribromomethyl radical INT-10. Electronic energies from the scan curve are listed in Supplementary Table 22.

Table of Energies

Supplementary Table 19 | Energies from Supplementary Tables 17 and 18 and Supplementary Fig. 24. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) for the structures calculated at the B3LYP-D3(BJ)/Def2-TZVP-SMD(Dichloromethane)// B3LYP-D3(BJ)/Def2-SVP-SMD(Dichloromethane) level of theory are listed.

Structure	ZPE	ТСН	TCG	E	Н	G
INT-1	0.825067	0.876828	0.737628	-4641.622035	-4640.745207	-4640.884407
INT-1A	0.824851	0.876885	0.736699	-4641.612461	-4640.735576	-4640.875762
INT-1B	0.824005	0.876276	0.733974	-4641.591659	-4640.715383	-4640.857685
INT-1C	0.825989	0.877356	0.741034	-4641.612048	-4640.734692	-4640.871014
INT-1D	0.825096	0.876728	0.738498	-4641.610784	-4640.734056	-4640.872286
INT-1_No-01	0.824672	0.876644	0.737260	-4641.610155	-4640.733511	-4640.872895
INT-1_No-02	0.824832	0.876743	0.737683	-4641.609839	-4640.733096	-4640.872156
INT-1_No-03	0.824850	0.876885	0.736693	-4641.612465	-4640.735580	-4640.875772
INT-1_No-04	0.824935	0.876968	0.736147	-4641.612111	-4640.735143	-4640.875964
INT-1_No-05	0.823989	0.876273	0.733815	-4641.591673	-4640.715400	-4640.857858
INT-1_No-06	0.824385	0.876526	0.735510	-4641.593560	-4640.717034	-4640.858050
INT-1_No-07	0.823687	0.876058	0.733233	-4641.589785	-4640.713727	-4640.856552
INT-1_No-08	0.824202	0.876431	0.734544	-4641.592837	-4640.716406	-4640.858293
INT-1_No-09	0.824239	0.876420	0.733681	-4641.591508	-4640.715088	-4640.857827
INT-1_No-10	0.824048	0.876262	0.734805	-4641.588733	-4640.712471	-4640.853928
INT-1_No-11	0.824241	0.876344	0.735777	-4641.591564	-4640.715220	-4640.855787
INT-1_No-12	0.823583	0.875819	0.734407	-4641.594856	-4640.719037	-4640.860449
INT-1_No-13	0.823985	0.876016	0.736256	-4641.594042	-4640.718026	-4640.857786
INT-1_No-14	0.823833	0.875925	0.735469	-4641.593117	-4640.717192	-4640.857648
INT-1_No-15	0.824622	0.876334	0.738043	-4641.591752	-4640.715418	-4640.853709
INT-1_No-16	0.824372	0.876178	0.737504	-4641.589440	-4640.713262	-4640.851936
INT-1_No-17	0.825992	0.877357	0.741057	-4641.612045	-4640.734688	-4640.870988
INT-1_No-18	0.826104	0.877378	0.741655	-4641.609892	-4640.732514	-4640.868237
INT-1_No-19	0.825098	0.876730	0.738506	-4641.610782	-4640.734052	-4640.872276
INT-1_No-20	0.825329	0.876905	0.738836	-4641.610117	-4640.733212	-4640.871281
INT-1_No-21	0.826255	0.877444	0.742887	-4641.621421	-4640.743977	-4640.878534
INT-1_No-22	0.826229	0.877484	0.742449	-4641.620737	-4640.743253	-4640.878288
INT-1_No-23	0.826361	0.877443	0.743489	-4641.619608	-4640.742165	-4640.876119
INT-1_No-24	0.824900	0.876755	0.737102	-4641.619473	-4640.742718	-4640.882371
INT-1_No-25	0.825039	0.876817	0.737067	-4641.620942	-4640.744125	-4640.883875
INT-1_No-26	0.825170	0.876864	0.738367	-4641.620056	-4640.743192	-4640.881689
INT-1_No-27	0.825065	0.876826	0.737675	-4641.619090	-4640.742264	-4640.881415
INT-7	0.823941	0.875659	0.737050	-4641.615445	-4640.739786	-4640.878395
INT-7A	0.824383	0.876453	0.735559	-4641.608272	-4640.731819	-4640.872713
INT-7A	0.824898	0.876834	0.737279	-4641.611687	-4640.734853	-4640.874408
INT-7B	0.825305	0.876925	0.740156	-4641.620780	-4640.743855	-4640.880624
INT-7C	0.825166	0.876817	0.738891	-4641.605216	-4640.728399	-4640.866325

INT-7_No-01	0.825629	0.877099	0.740381	-4641.618653	-4640.741554	-4640.878272
INT-7_No-02	0.824936	0.876790	0.738519	-4641.611939	-4640.735149	-4640.873420
INT-7_No-03	0.824899	0.876834	0.737289	-4641.611685	-4640.734851	-4640.874396
INT-7_No-04	0.824681	0.876694	0.736357	-4641.610316	-4640.733622	-4640.873959
INT-7_No-05	0.825218	0.876840	0.739592	-4641.615657	-4640.738817	-4640.876065
INT-7_No-06	0.824900	0.876835	0.737289	-4641.611685	-4640.734850	-4640.874396
INT-7_No-07	0.824622	0.876664	0.736324	-4641.610852	-4640.734188	-4640.874528
INT-7_No-08	0.825626	0.877096	0.740370	-4641.618651	-4640.741555	-4640.878281
INT-7_No-09	0.825815	0.877210	0.740917	-4641.618261	-4640.741051	-4640.877344
INT-7_No-10	0.825089	0.876916	0.736330	-4641.614058	-4640.737142	-4640.877728
INT-7_No-11	0.825293	0.877018	0.737103	-4641.613733	-4640.736715	-4640.876630
INT-7_No-12	0.825279	0.877021	0.736871	-4641.612197	-4640.735176	-4640.875326

Supplementary Table 20 | Energies from Supplementary Figs. 25 and 27 to 31. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures calculated at the B3LYP-D3(BJ)/Def2-TZVP-SMD(Dichloromethane)// B3LYP-D3(BJ)/Def2-SVP-SMD(Dichloromethane) level of theory are listed.

Structure	ZPE	ТСН	TCG	E	Н	G	Imaginary Frequency
INT-1_R1	/	/	/	-4641.599086	/	/	
INT-1_R2	0.824679	0.876803	0.734888	-4641.602422	-4640.725619	-4640.867534	
INT-1	0.825067	0.876828	0.737628	-4641.622035	-4640.745207	-4640.884407	
INT-2	0.030930	0.035510	0.006653	-132.159833	-132.124323	-132.153180	
INT-3	0.857657	0.914615	0.762409	-4773.789820	-4772.875205	-4773.027411	
TS-4	0.858203	0.914127	0.765387	-4773.790510	-4772.876383	-4773.025123	94.7 <i>i</i>
INT-5	0.860868	0.916892	0.767130	-4773.806507	-4772.889615	-4773.039377	
TS-6	0.824335	0.875791	0.736107	-4641.599261	-4640.723470	-4640.863154	152.5 <i>i</i>
INT-7	0.823941	0.875659	0.737050	-4641.615445	-4640.739786	-4640.878395	
TS-8	0.858083	0.914063	0.764468	-4773.782793	-4772.868730	-4773.018325	31.6i
INT-9	0.860549	0.916811	0.765811	-4773.802109	-4772.885298	-4773.036298	
INT-10	0.005432	0.011577	-0.026785	-7760.619682	-7760.608105	-7760.646467	
INT-11	0.831356	0.890023	0.733842	-12402.256582	-12401.366559	-12401.522740	
TS-12	0.830550	0.889241	0.730052	-12402.243014	-12401.353773	-12401.512962	18.2 <i>i</i>
INT-13	0.830925	0.889938	0.731669	-12402.255668	-12401.365730	-12401.523999	

Supplementary Table 21 | Electronic energy changes along the carbon–sulfur stretch for the proposed intermediate of INT-1_R2 in Supplementary Fig. 27. Electronic energies are calculated at the B3LYP-D3(BJ)/Def2-SVP-SMD(dichloromethane) level of theory.

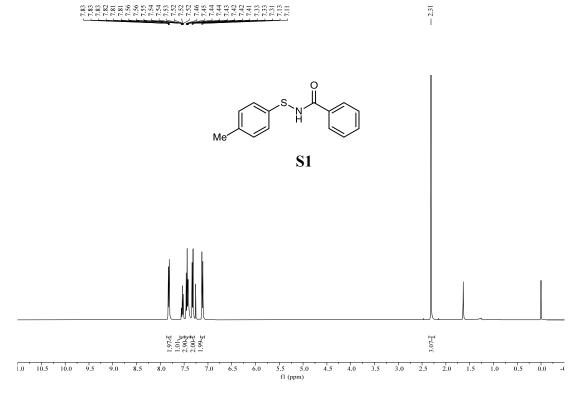
C–S Distance / Å	ΔE /Hartree	$\Delta\Delta E$ /kcal/mol
2.40 (INT-1)	-4638.617306	0.0
2.45	-4638.617101	0.1
2.50	-4638.616536	0.5
2.55	-4638.615682	1.0
2.60	-4638.614597	1.7
2.65	-4638.613332	2.5
2.70	-4638.611930	3.4
2.75	-4638.610426	4.3
2.80	-4638.608846	5.3
2.85	-4638.607215	6.3
2.90	-4638.605552	7.4
2.95	-4638.603872	8.4
3.00	-4638.602190	9.5
3.05	-4638.600581	10.5
3.10	-4638.599161	11.4
3.15	-4638.598236	12.0
3.20	-4638.597225	12.6
3.25	-4638.596270	13.2
3.30	-4638.595578	13.6
3.35	-4638.594898	14.1
3.40	-4638.594240	14.5

Supplementary Table 22 | Electronic energy changes along the carbon–sulfur distance during radical substitution by the tribromomethyl radical in Supplementary Fig. 32. Electronic energies are calculated at the B3LYP-D3(BJ)/Def2-SVP-SMD(dichloromethane) level of theory.

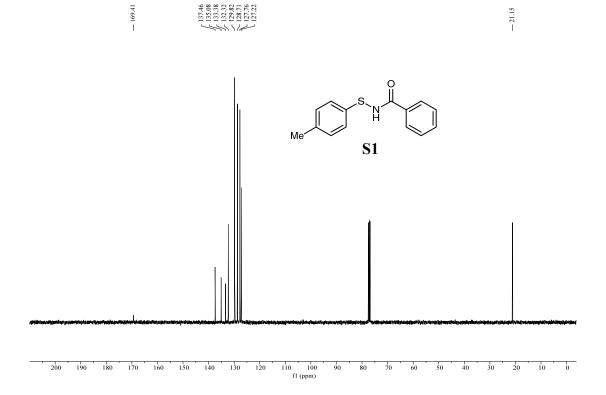
Structure	C–S Distance / Å	ΔE /Hartree	$\Delta\Delta E$ /kcal/mol
INT-1 + INT-10	/	-12398.252353	0.0
INT-11	1.92	-12398.283600	-19.6
INT-11_R1	2.30	-12398.273107	-13.0
INT-11_R2	2.35	-12398.272362	-12.6
INT-11_R3	2.37	-12398.272130	-12.4
INT-11_R4	2.40	-12398.271834	-12.2
INT-11_R5	2.43	-12398.271583	-12.1
INT-11_R6	2.45	-12398.271437	-12.0
INT-11_R7	2.50	-12398.271125	-11.8
INT-11_R8	2.52	-12398.271020	-11.7
INT-11_R9	2.55	-12398.270882	-11.6
INT-11_R10	2.60	-12398.270694	-11.5
INT-11_R11	2.64	-12398.270573	-11.4
INT-11_R12	2.67	-12398.270495	-11.4
INT-11_R13	2.69	-12398.270446	-11.4
INT-11_R14	2.72	-12398.270378	-11.3
INT-11_R15	2.75	-12398.270311	-11.3
INT-11_R16	2.80	-12398.270196	-11.2
INT-11_R17	2.85	-12398.270070	-11.1
INT-11_R18	2.90	-12398.269923	-11.0
INT-11_R19	3.00	-12398.269564	-10.8

10. References

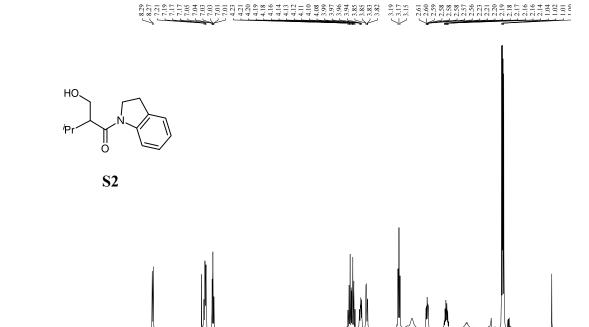
- 1. van Dijkman, T. F. et al. Extremely bulky copper(I) complexes of [HB(3,5-{1-naphthyl}2pz)₃]⁻ and [HB(3,5-{2-naphthyl}2pz)₃]⁻ and their self-assembly on graphene. *Dalton Trans.* **46**, 6433–6446 (2017).
- 2. Ocaña, I. et al. Enhanced mechanistic understanding through the detection of Radical Intermediates in Organic Reactions. *Chimia* **78**, 123–128 (2024).
- 3. Grotewold, J., Lissi, E. A. & Scaiano, J. C. Mechanism of the autoxidation of triethylborane. Part I. Reaction in the gas phase. *J. Chem. Soc. B*, 475–480 (1969).
- 4. Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. *Chem. Rev.* **107**, 5133–5209 (2007).
- 5. Otocka, S., Kwiatkowska, M., Madalińska, L. & Kiełbasiński, P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: Applications in asymmetric synthesis. *Chem. Rev.* **117**, 4147–4181 (2017).
- 6. Bentley, R. Role of sulfur chirality in the chemical processes of biology. *Chem. Soc. Rev.* **34**, 609–624 (2005).
- 7. Feng, M., Tang, B., Liang, S. H. & Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. *Curr. Top. Med. Chem.* **16**, 1200–1216 (2016).
- 8. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. *Top. Curr. Chem.* **376**, 5 (2018).
- 9. Mustafa, M. & Winum, J.-Y. The importance of sulfur-containing motifs in drug design and discovery. *Expert Opin. Drug Discov.* **17**, 501–512 (2022).
- 10. Lamberth, C. Sulfur chemistry in crop protection. *J. Sulfur Chem.* **25**, 39–62 (2004).
- 11. Devendar, P. & Yang, G.-F. Sulfur-containing agrochemicals. *Top. Curr. Chem.* **375**, 82 (2017).
- 12. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: Exploration of novel chemical space by the interplay of drug design and method development. *Org. Chem. Front.* **6**, 1319–1324 (2019).
- 13. Tilby, M. J. & Willis, M. C. How do we address neglected sulfur pharmacophores in drug discovery? *Expert Opin. Drug Discov.* **16**, 1227–1231 (2021).
- 14. Ellman, J. A., Owens, T. D. & Tang, T. P. *N-tert-*Butanesulfinyl imines: Versatile intermediates for the asymmetric synthesis of amines. *Acc. Chem. Res.* **35**, 984–995 (2002).
- 15. Zhang, X., Wang, F. & Tan, C.-H. Asymmetric synthesis of S(IV) and S(VI) stereogenic centers. *JACS Au* 3, 700–714 (2023).
- 16. Wojaczyńska, E. & Wojaczyński, J. Modern stereoselective synthesis of chiral sulfinyl compounds. *Chem. Rev.* **120**, 4578–4611 (2020).
- 17. Lücking, U. Sulfoximines: A neglected opportunity in medicinal chemistry. *Angew. Chem. Int. Ed.* **52**, 9399–9408 (2013).
- 18. Frings, M., Bolm, C., Blum, A. & Gnamm, C. Sulfoximines from a medicinal chemist's perspective: Physicochemical and in vitro parameters relevant for drug discovery. *Eur. J. Med. Chem.* **126**, 225–245 (2017).
- 19. Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. *J. Med. Chem.* **63**, 14243–14275 (2020).
- 20. Han, Y. et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020. *Eur. J. Med. Chem.* **209**, 112885 (2021).
- 21. Lücking, U. New opportunities for the utilization of the sulfoximine group in medicinal chemistry from the drug designer's perspective. *Chem. Eur. J.* **28**, e202201993 (2022).
- 22. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. *J. Am. Chem. Soc.* **142**, 10899–10904 (2020).
- 23. Brighty, G. J. et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. *Nat. Chem.* **12**, 906–913 (2020).
- 24. Chao, Y. et al. Sulfur-phenolate exchange: SuFEx-derived dynamic covalent reactions and degradation of SuFEx polymers. *Angew. Chem. Int. Ed.* **61**, e202207456 (2022).
- 25. Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral SuFExbased polymers. *Angew. Chem. Int. Ed.* **61**, e202116158 (2022).
- 26. Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. *Nat. Chem.* 13, 858–867 (2021).


- 27. Liu, F. et al. Biocompatible SuFEx click chemistry: Thionyl tetrafluoride (SOF₄)-derived connective hubs for bioconjugation to DNA and proteins. *Angew. Chem. Int. Ed.* **58**, 8029–8033 (2019).
- 28. Homer, J. A. et al. Sulfur fluoride exchange. *Nat. Rev. Methods Primers* **3**, 58 (2023).
- 29. Taylor, P. C. Sulfimides (sulfilimines): Applications in stereoselective synthesis. *Sulfur Reports* **21**, 241–280 (1999).
- 30. Andresini, M., Colella, M., Degennaro, L. & Luisi, R. Overlooked aza-S(IV) motifs: Synthesis and transformations of sulfinamidines and sulfinimidate esters. *Org. Biomol. Chem.* **21**, 7681–7690 (2023).
- 31. Zhang, Q., Xi, J., Ze, H. & Zeng, Q. Syntheses and transformations of sulfinamides. *Synthesis* **53**, 2570–2582 (2021).
- 32. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of *tert*-butanesulfinamide. *Chem. Rev.* **110**, 3600–3740 (2010).
- 33. Wojaczyńska, E. & Wojaczyński, J. Enantioselective synthesis of sulfoxides: 2000–2009. *Chem. Rev.* **110**, 4303–4356 (2010).
- 34. Kagan, H. B. & Rebiere, F. Some routes to chiral sulfoxides with very high enantiomeric excesses. *Synlett* **1990**, 643–650 (1990).
- 35. Bizet, V., Hendriks, C. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. *Chem. Soc. Rev.* 44, 3378–3390 (2015).
- 36. Champlin, A. T., Kwon, N. Y. & Ellman, J. A. Enantioselective S-alkylation of sulfenamides by phase-transfer catalysis. *Angew. Chem. Int. Ed.* **63**, e202408820 (2024).
- 37. Liang, Q. et al. Enantioselective Chan–Lam S-arylation of sulfenamides. *Nat. Catal.* 7, 1010–1020 (2024).
- 38. Patel, S., Greenwood, N. S., Mercado, B. Q. & Ellman, J. A. Rh(II)-catalyzed enantioselective *S*-alkylation of sulfenamides with acceptor–acceptor diazo compounds enables the synthesis of sulfoximines displaying diverse functionality. *Org. Lett.* **26**, 6295–6300 (2024).
- 39. Wang, F. et al. Synthesis of chiral sulfilimines by organocatalytic enantioselective sulfur alkylation of sulfenamides. *Sci. Adv.* **10**, eadq2768 (2024).
- 40. Yuan, Y. et al. Enantioselective arylation of sulfenamides to access sulfilimines enabled by palladium catalysis. *Angew. Chem. Int. Ed.* **63**, e202409541 (2024).
- 41. Boyer, Z. W., Kwon, N. Y. & Ellman, J. A. Ruthenium-catalyzed enantioselective alkylation of sulfenamides: A general approach for the synthesis of drug relevant *S*-methyl and *S*-cyclopropyl sulfoximines. *J. Am. Chem. Soc.* **147**, 14954–14959 (2025).
- 42. Fang, W. et al. Asymmetric S-arylation of sulfenamides to access axially chiral sulfilimines enabled by anionic stereogenic-at-cobalt(III) Complexes. *Angew. Chem. Int. Ed.* **64**, e202419596 (2025).
- 43. He, M., Zhang, R., Wang, T., Xue, X.-S. & Ma, D. Assembly of (hetero)aryl sulfilimines via copper-catalyzed enantioselective S-arylation of sulfenamides with (hetero)aryl Iodides. *Nat. Commun.* **16**, 2310 (2025).
- 44. Shi, Y. et al. Catalytic asymmetric synthesis of chiral sulfilimines via S–C bond formation. *Org. Chem. Front.* **12**, 953–959 (2025).
- Wu, X.-B., Shen, Y., Jiang, H.-J. & Gong, L.-Z. Cu-catalyzed enantioselective *S*-arylation of sulfenamides enabled by confined ligands. *Org. Lett.* **27**, 2845–2851 (2025).
- 46. Champlin, A. T. & Ellman, J. A. Preparation of sulfilimines by sulfur-alkylation of *N*-acyl sulfenamides with alkyl halides. *J. Org. Chem.* **88**, 7607–7614 (2023).
- 47. Sladojevich, F., Michaelides, I. N., Darses, B., Ward, J. W. & Dixon, D. J. Expedient route to the functionalized calyciphylline A-type skeleton via a Michael addition–RCM Strategy. *Org. Lett.* **13**, 5132–5135 (2011).
- 48. Thomson, J. E. et al. Applications of NHC-mediated O- to C-carboxyl transfer: synthesis of (\pm) -N-benzyl-coerulescine and (\pm) -horsfiline. *Tetrahedron* **66**, 3801–3813 (2010).
- 49. Queffélec, C. & Montchamp, J.-L. Facile P,N-heterocycle synthesis via tandem aminomethylation—cyclization of *H*-phosphinate building blocks. *Org. Biomol. Chem.* **8**, 267–273 (2010).
- 50. Greenwood, N. S., Champlin, A. T. & Ellman, J. A. Catalytic enantioselective sulfur alkylation of sulfenamides for the asymmetric synthesis of sulfoximines. *J. Am. Chem. Soc.* **144**, 17808–17814 (2022).
- 51. Zhang, X.-S. & Zhang, X.-H. Mild synthesis of *N*-acylsulfenamides from arylamides and disulfides. *Phosphorus, Sulfur, Silicon Relat. Elem.* **191**, 89–94 (2016).
- 52. Liang, Y., Jiao, H., Zhang, H., Wang, Y.-Q. & Zhao, X. Chiral chalcogenide-catalyzed enantioselective electrophilic hydrothiolation of alkenes. *Org. Lett.* **24**, 7210–7215 (2022).
- 53. Cai, A., Yan, W., Wang, C. & Liu, W. Copper-catalyzed difluoromethylation of alkyl iodides enabled by aryl radical activation of carbon–iodine bonds. *Angew. Chem. Int. Ed.* **60**, 27070–27077 (2021).

- 54. Maury, J. et al. Aminomethylation of Michael acceptors: Complementary radical and polar approaches mediated by dialkylzincs. *Chem. Eur. J.* **18**, 3241–3247 (2012).
- 55. Caprioglio, D. & Fletcher, S. P. An alternative synthesis of the breast cancer drug fulvestrant (Faslodex®): catalyst control over C–C bond formation. *Chem. Commun.* **51**, 14866–14868 (2015).
- 56. Magolan, J., Carson, C. A. & Kerr, M. A. Total synthesis of (±)-mersicarpine. *Org. Lett.* **10**, 1437–1440 (2008).
- 57. Lv, X.-Y. & Martin, R. Cu-catalyzed C(sp³) amination of unactivated secondary alkyl iodides promoted by diaryliodonium salts. *Org. Lett.* **25**, 3750–3754 (2023).
- 58. Luo, B., Gao, J.-M. & Lautens, M. Palladium-catalyzed norbornene-mediated tandem amination/cyanation reaction: A method for the synthesis of *ortho*-aminated benzonitriles. *Org. Lett.* **18**, 4166–4169 (2016).
- 59. Zhu, N., Zhao, J. & Bao, H. Iron catalyzed methylation and ethylation of vinyl arenes. *Chem. Sci.* **8**, 2081–2085 (2017).
- 60. Li, Y.-H., Wang, C.-H., Gao, S.-Q., Qi, F.-M. & Yang, S.-D. Visible photocatalysis of novel oxime phosphonates: synthesis of β-aminophosphonates. *Chem. Commun.* **55**, 11888–11891 (2019).
- 61. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines through the S-alkylation of sulfinamides. *Angew. Chem. Int. Ed.* **58**, 17661–17665 (2019).
- 62. Zhou, T. et al. Efficient synthesis of sulfur-stereogenic sulfoximines via Ru(II)-catalyzed enantioselective C–H functionalization enabled by chiral carboxylic acid. *J. Am. Chem. Soc.* **143**, 6810–6816 (2021).
- 63. Lamers, P., Priebbenow, D. L. & Bolm, C. Iron-catalyzed acylative dealkylation of *N*-alkylsulfoximines. *Eur. J. Org. Chem.* **2015**, 5594–5602 (2015).
- 64. Tsuzuki, S. & Kano, T. Asymmetric synthesis of chiral sulfimides through the *O*-alkylation of enantioenriched sulfinamides and addition of carbon nucleophiles. *Angew. Chem. Int. Ed.* **62**, e202300637 (2023).
- 65. Savile, C. K., Magloire, V. P. & Kazlauskas, R. J. Subtilisin-catalyzed resolution of *N*-acyl arylsulfinamides. *J. Am. Chem. Soc.* **127**, 2104–2113 (2005).
- 66. García Mancheño, O. & Bolm, C. Comparative study of metal-catalyzed iminations of sulfoxides and sulfides. *Chem. Eur. J.* **13**, 6674–6681 (2007).
- 67. Steurer, M. & Bolm, C. Synthesis of amino-functionalized sulfonimidamides and their application in the enantioselective Henry reaction. *J. Org. Chem.* **75**, 3301–3310 (2010).
- 68. Lin, Y. et al. Tris(pyrazolyl)borate cobalt-catalyzed hydrogenation of C=O, C=C, and C=N bonds: An assistant role of a Lewis base. *Org. Lett.* **21**, 2693–2698 (2019).
- 69. Coulomb, J. et al. Intramolecular homolytic substitution of sulfinates and sulfinamides. *Chem. Eur. J.* **15**, 10225–10232 (2009).
- 70. Yamagishi, F. G., Rayner, D. R., Zwicker, E. T. & Cram, D. J. Stereochemistry of sulfur compounds. V. Stereochemical reaction cycles that involve cyclic sulfoxides, sulfimides, and sulfoximides. *J. Am. Chem. Soc.* **95**, 1916–1925 (1973).
- 71. Bolm, C., Simić, O. & Martin, M. C₂-Symmetric bissulfoximines in palladium-catalyzed allylic alkylations. *Synlett* **2001**, 1878–1880 (2001).
- 72. Cheng, Y.-F. et al. Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling. *Nat. Chem.* **15**, 395–404 (2023).
- 73. Yu, X.-Y. et al. Dual photoredox/nickel-catalyzed regioselective cross-coupling of 2-arylaziridines and potassium benzyltrifluoroborates: Synthesis of β-substitued amines. *Org. Lett.* **20**, 421–424 (2018).
- 74. Wu, X., Riedel, J. & Dong, V. M. Transforming olefins into γ, δ -unsaturated nitriles through copper catalysis. *Angew. Chem. Int. Ed.* **56**, 11589–11593 (2017).
- 75. Hemric, B. N., Chen, A. W. & Wang, Q. Copper-catalyzed 1,2-amino oxygenation of 1,3-dienes: A chemo-, regio-, and site-selective three-component reaction with *O*-acylhydroxylamines and carboxylic acids. *ACS Catal.* **9**, 10070–10076 (2019).
- 76. Frisch, M. J. et al. *Gaussian 16, Revision A.03* (Gaussian, Inc., Wallingford CT, 2016).
- 77. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **37**, 785–789 (1988).
- 78. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).
- 79. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).


- 80. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comp. Chem.* **32.** 1456–1465 (2011).
- Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297–3305 (2005).
- 82. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **8**, 1057–1065 (2006).
- 83. Glendening, E. D. B., J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R. & Weinhold, F. *NBO 7.0* (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018).
- 84. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378–6396 (2009).
- 85. Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys. Chem. Chem. Phys.* **22**, 7169–7192 (2020).
- 86. Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. *J. Chem. Theory Comput.* **15**, 2847–2862 (2019).
- 87. Legault, C. Y. CYLView, 1.0b (Universitéde Sherbrooke, Québec, Montreal, Canada, 2009).
- 88. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38 (1996).
- 89. Walton, J. C. Homolytic substitution: A molecular ménage à trois. Acc. Chem. Res. 31, 99–107 (1998).

11. NMR spectra


¹**H NMR of S1** (400 MHz, CDCl₃)

¹³C NMR of S1 (100 MHz, CDCl₃)

¹H NMR of S2 (400 MHz, CDCl₃)

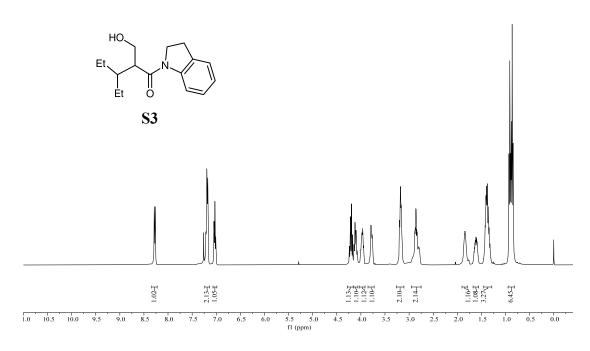
2.21<u>4</u> 1.03<u>4</u> 1.07<u>4</u>

4.0 3.5

5.5 5.0 4.5 fl (ppm) 2.09/4 0.87-J 1.05-J

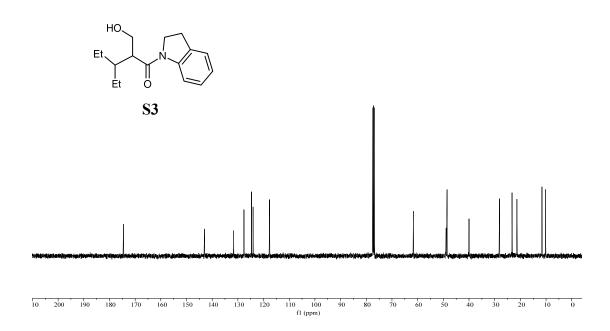
¹³C NMR of S2 (100 MHz, CDCl₃)

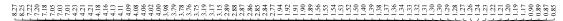
131.73 131.73 124.74 1124.13

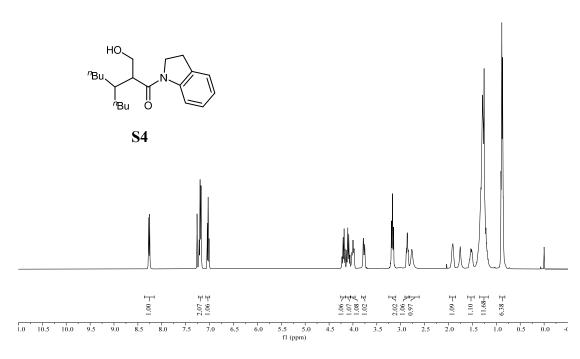

2.0**%** 1.06**£**

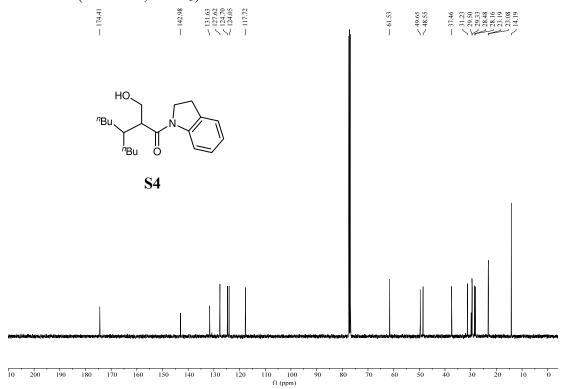
S2

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

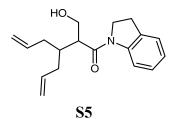

¹H NMR of S3 (400 MHz, CDCl₃)

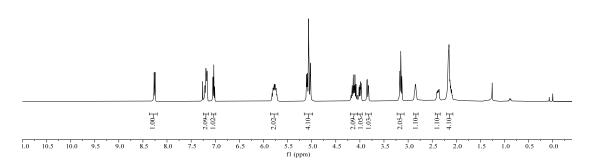


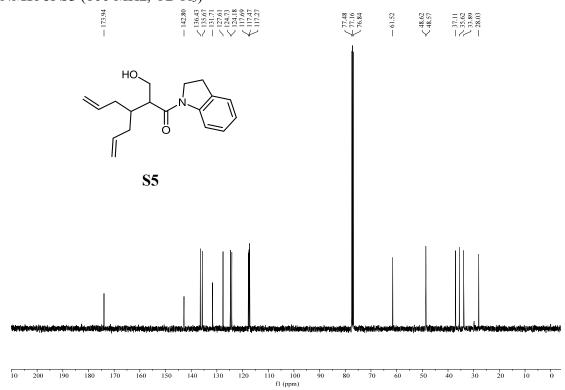

¹³C NMR of S3 (100 MHz, CDCl₃)



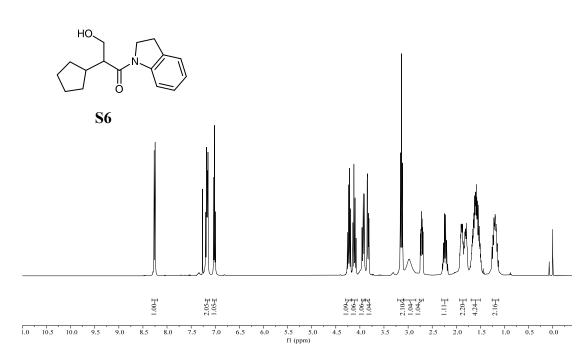
¹H NMR of S4 (400 MHz, CDCl₃)



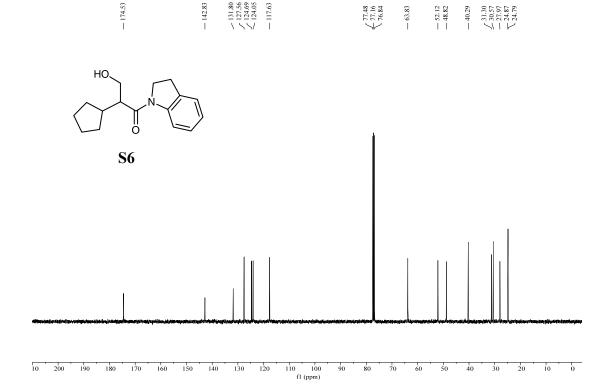

^{13}C NMR of S4 (100 MHz, CDCl₃)


¹H NMR of S5 (400 MHz, CDCl₃)

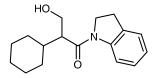
$\begin{array}{c} 8.88 \\ 1.21 \\ 1.$



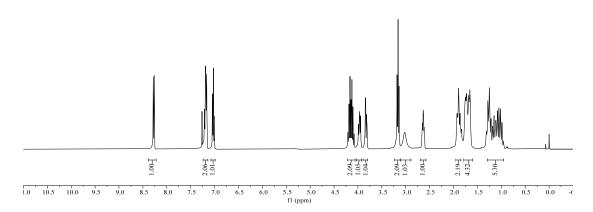
¹³C NMR of S5 (100 MHz, CDCl₃)



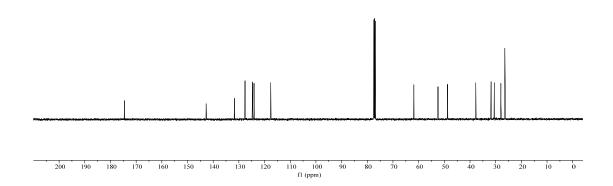
¹**H NMR of S6** (400 MHz, CDCl₃)

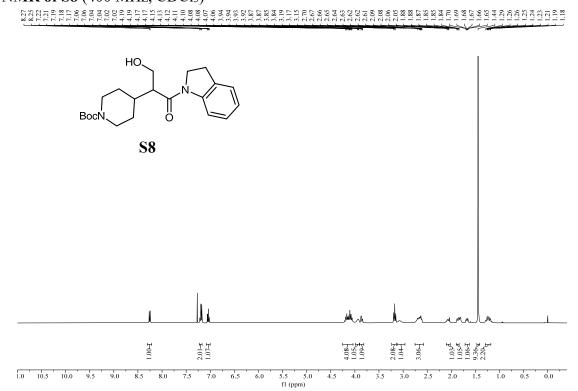


13 C NMR of S6 (100 MHz, CDCl₃)

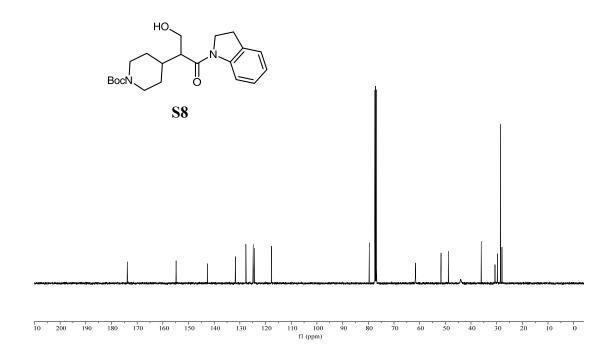


¹H NMR of S7 (400 MHz, CDCl₃)

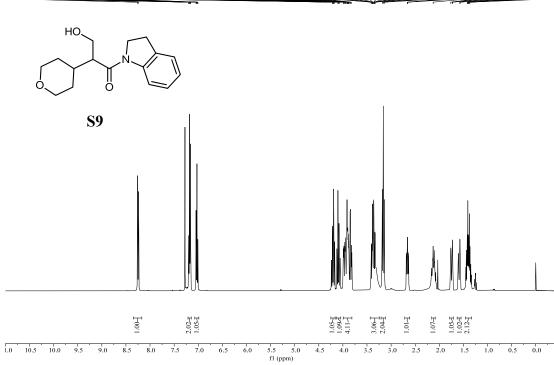



S7

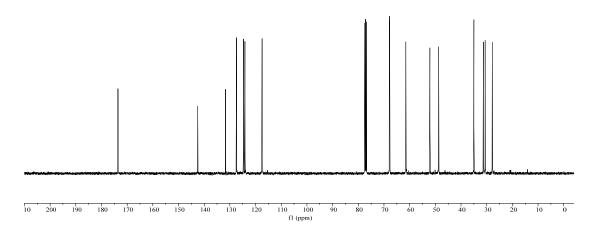
¹³C NMR of S7 (100 MHz, CDCl₃)



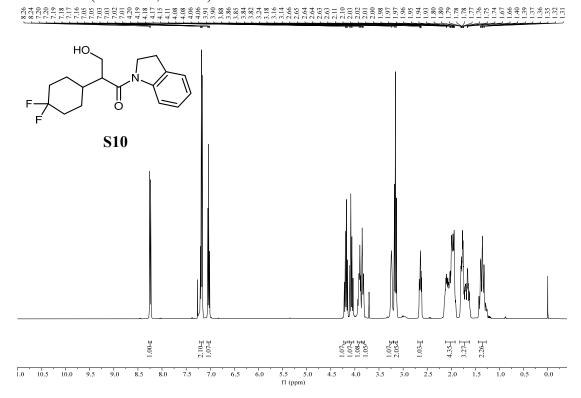
¹**H NMR of S8** (400 MHz, CDCl₃)

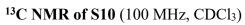

¹³C NMR of S8 (100 MHz, CDCl₃)

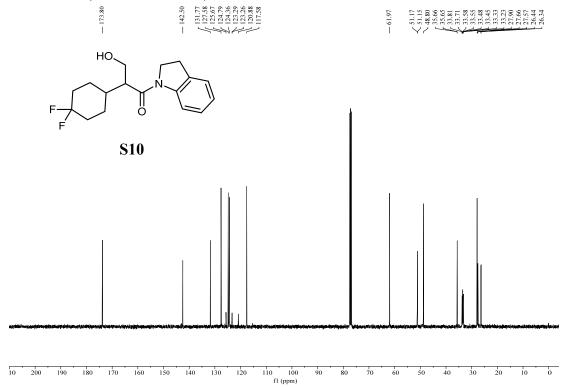
| 173.81 | 154.82 | 117.54 | 124.37 | 127.65 | 124.37 | 127.65 | 124.37 | 127.65 | 124.37 | 127.65 | 124.37 | 127.65 | 1



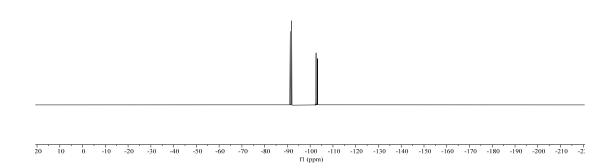
¹H NMR of S9 (400 MHz, CDCl₃)

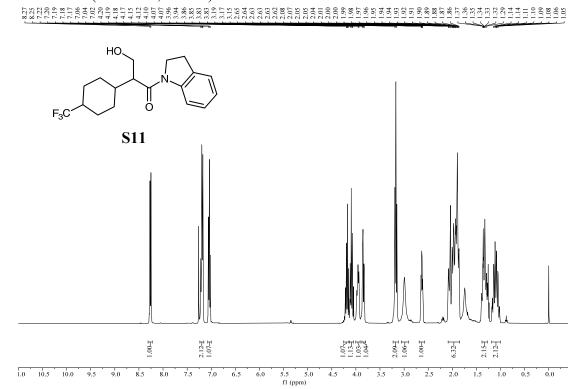


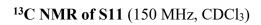


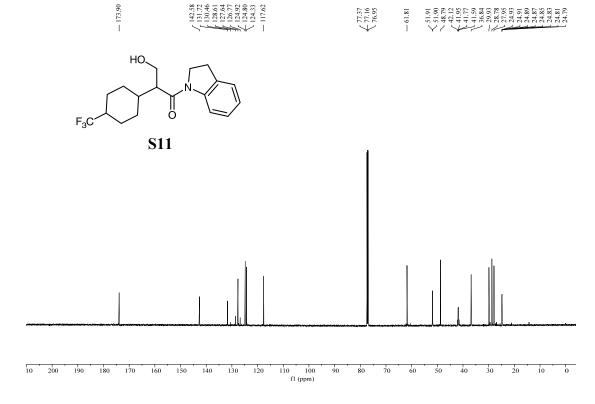

¹³C **NMR of S9** (100 MHz, CDCl₃)

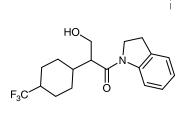
¹H NMR of S10 (400 MHz, CDCl₃)

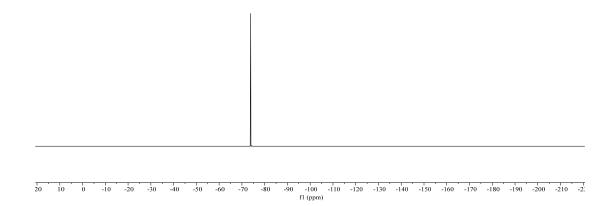


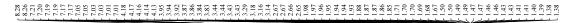


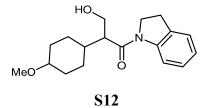

¹⁹F NMR of S10 (375 MHz, CDCl₃)

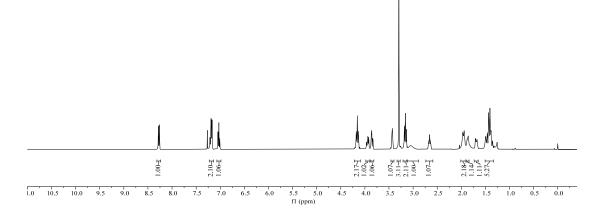


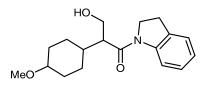

¹H NMR of S11 (400 MHz, CDCl₃)

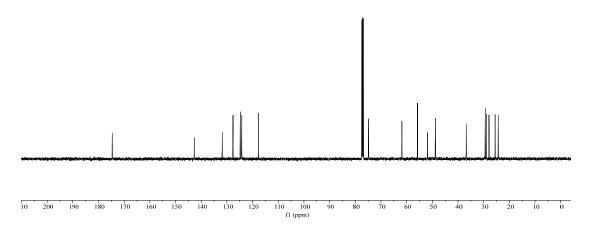


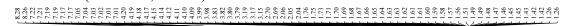

¹⁹F NMR of S11 (375 MHz, CDCl₃)

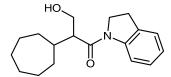




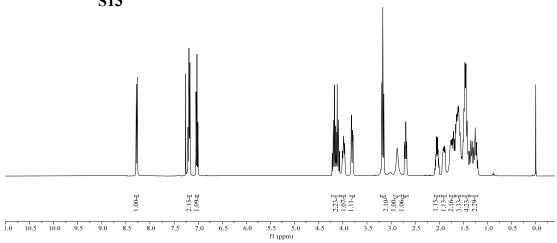

¹H NMR of S12 (400 MHz, CDCl₃)



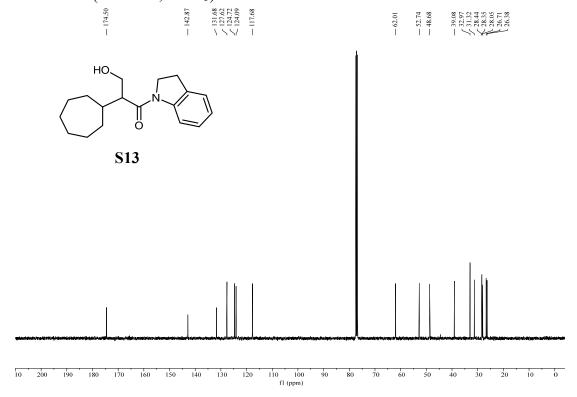

¹³C NMR of S12 (100 MHz, CDCl₃)

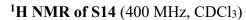


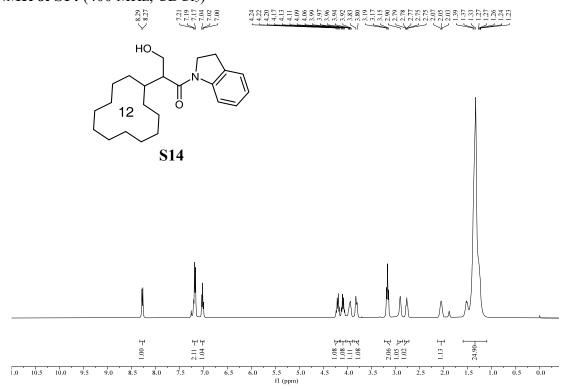
S12

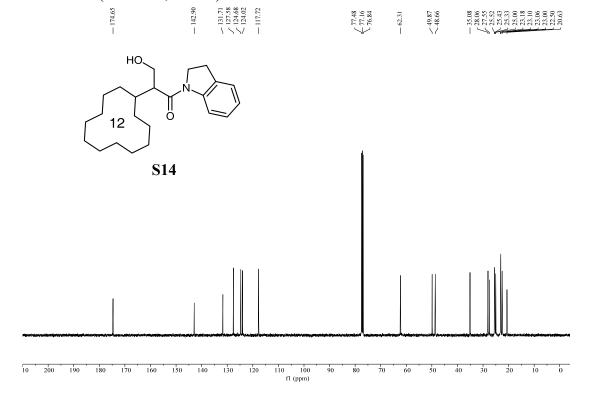


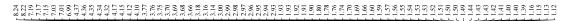
¹H NMR of S13 (400 MHz, CDCl₃)

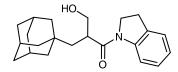




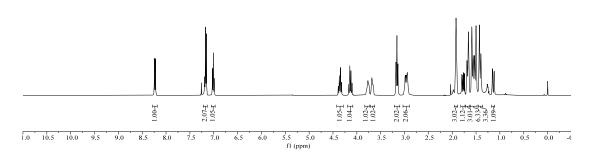

S13


¹³C NMR of S13 (100 MHz, CDCl₃)

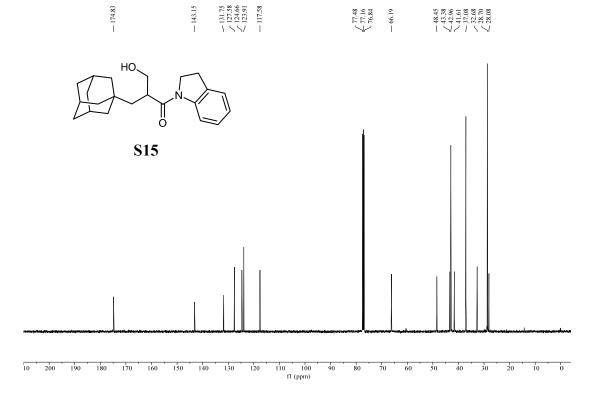


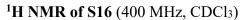


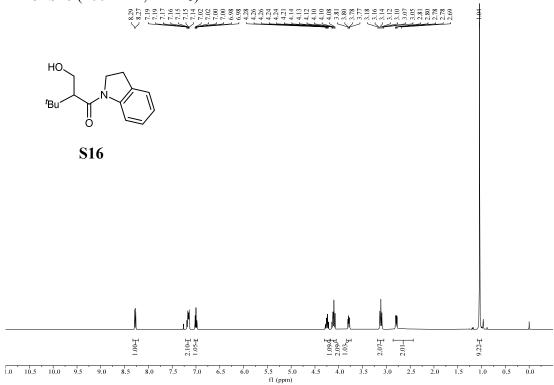
¹³C NMR of S14 (100 MHz, CDCl₃)

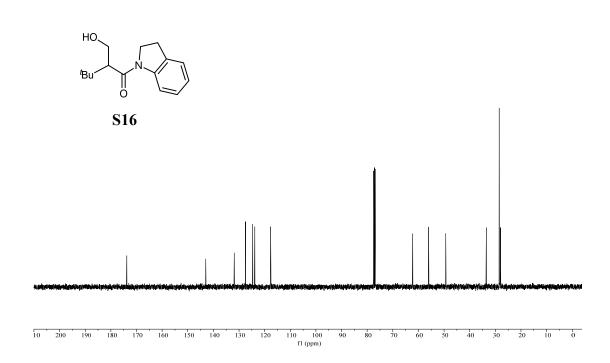


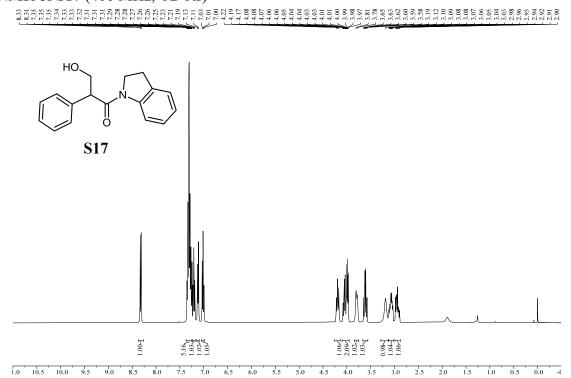
¹H NMR of S15 (400 MHz, CDCl₃)



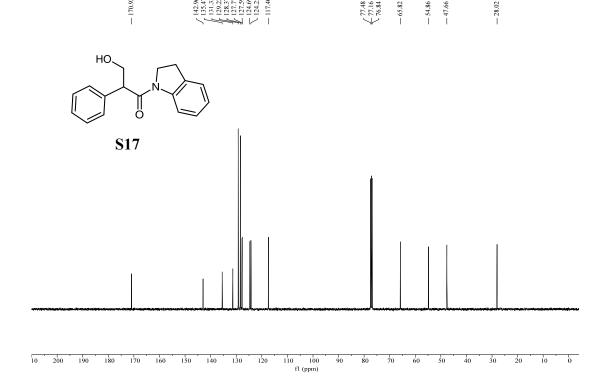


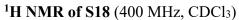

S15

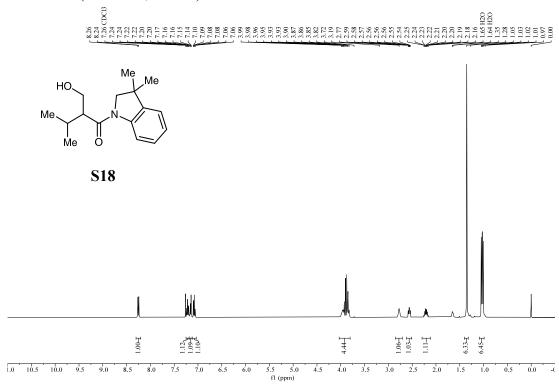

¹³C **NMR of S15** (100 MHz, CDCl₃)

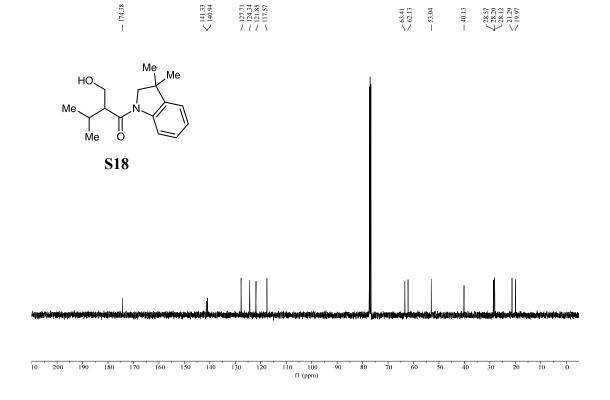


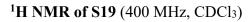
¹³C NMR of S16 (100 MHz, CDCl₃)

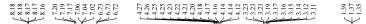


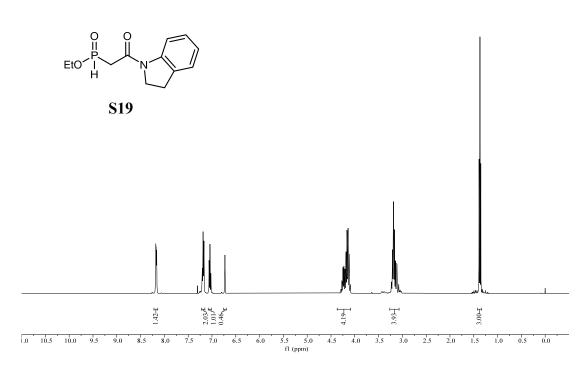

 $\begin{cases}
77.48 \\
77.16
\end{cases}$ -62.23 -62.23 -96.02 -49.32 -33.52 -38.50 -27.97


¹H NMR of S17 (400 MHz, CDCl₃)

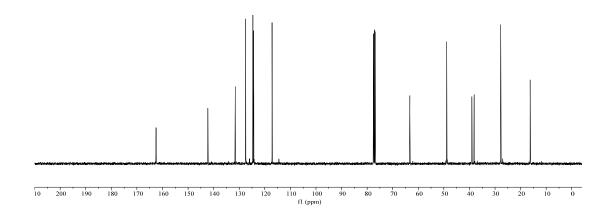

13 C NMR of S17 (100 MHz, CDCl₃)

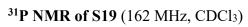


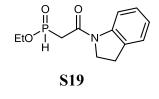


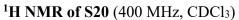


¹³C NMR of S18 (100 MHz, CDCl₃)

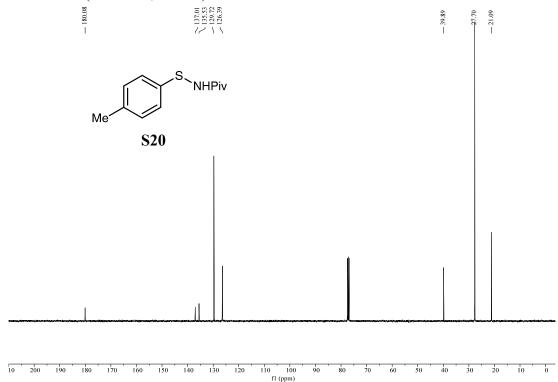


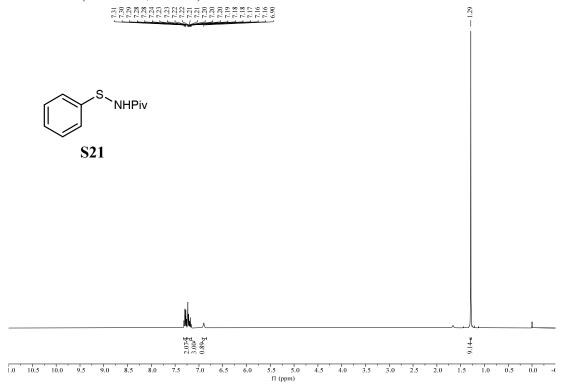


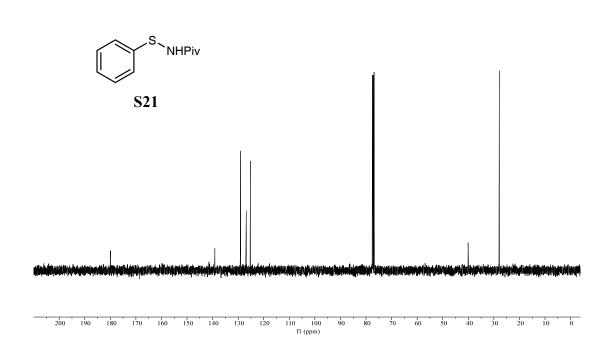


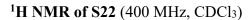

¹³C NMR of S19 (100 MHz, CDCl₃)

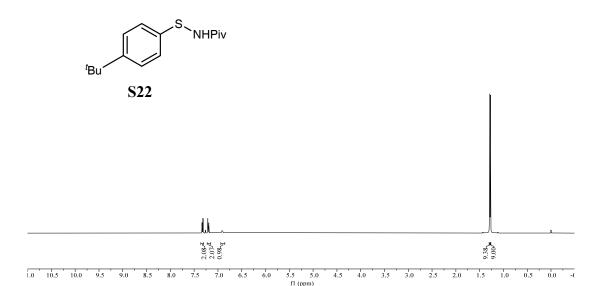


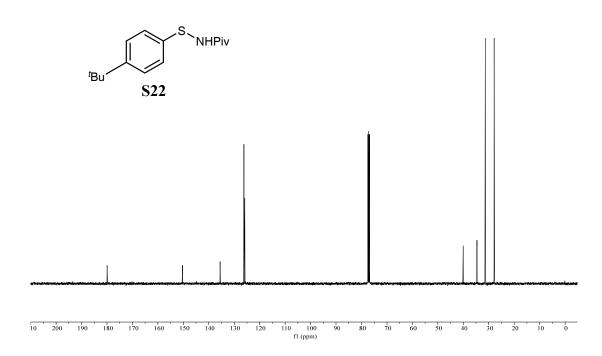


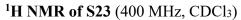


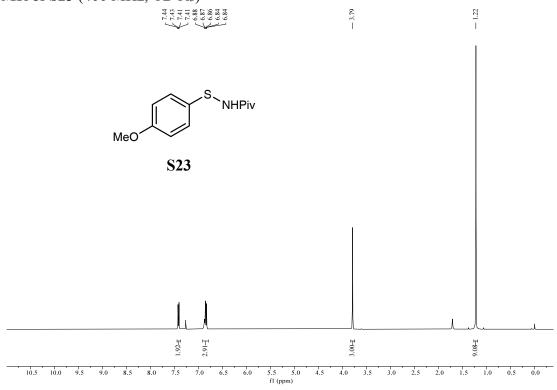

¹³C NMR of S20 (100 MHz, CDCl₃)



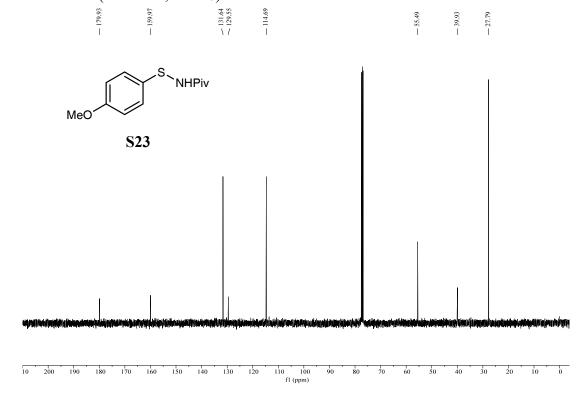

¹³C NMR of S21 (100 MHz, CDCl₃)

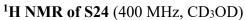


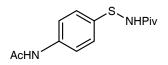

¹³C NMR of S22 (100 MHz, CDCl₃)


- 179.94

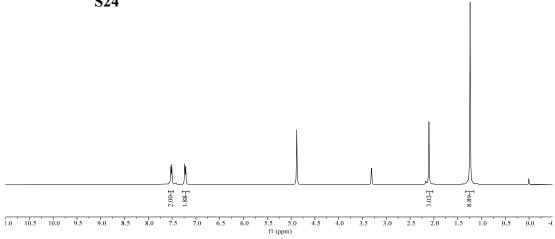
- 150.31 - 135.56 - 135.56

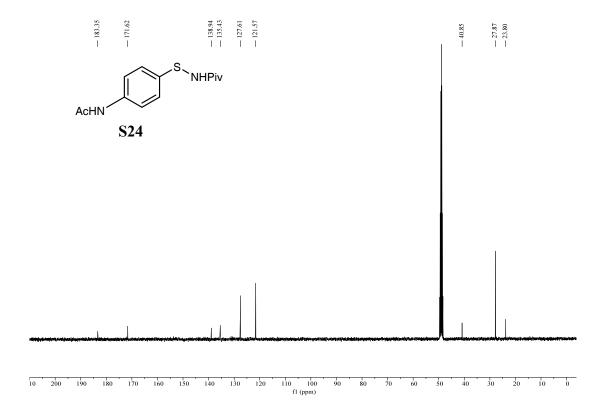

240.03 34.64 31.36 27.86





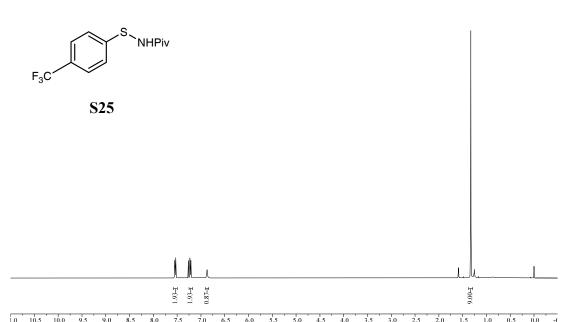
¹³C NMR of S23 (100 MHz, CDCl₃)



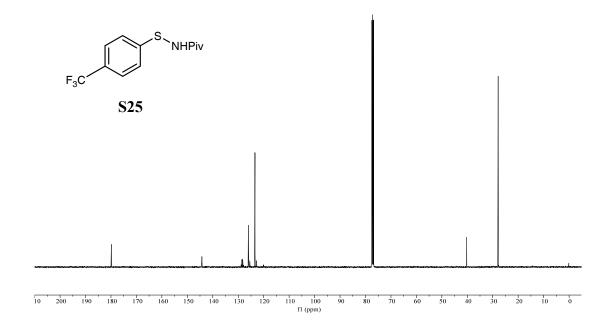


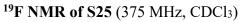


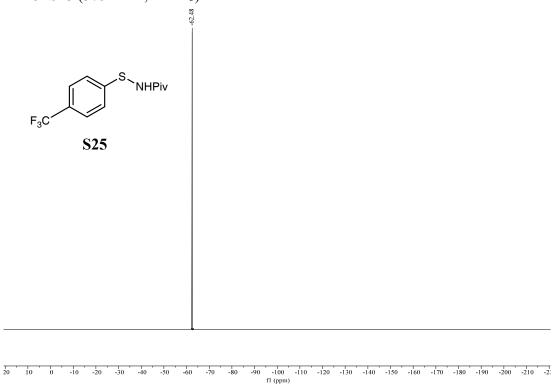
S24

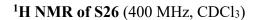


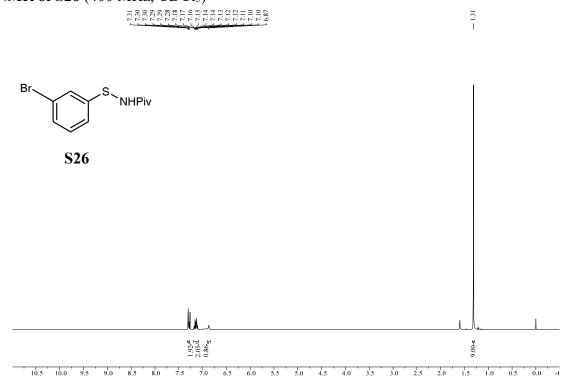
¹³C NMR of S24 (100 MHz, CD₃OD)

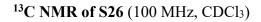


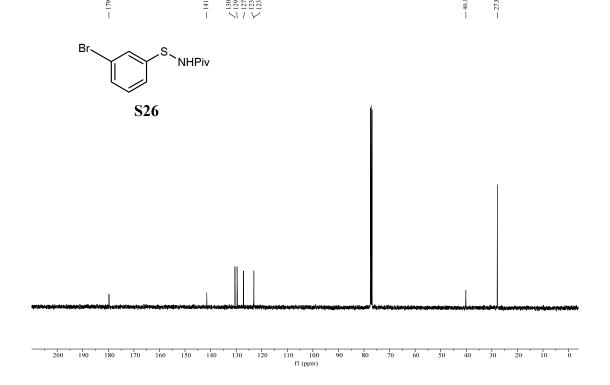


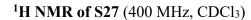


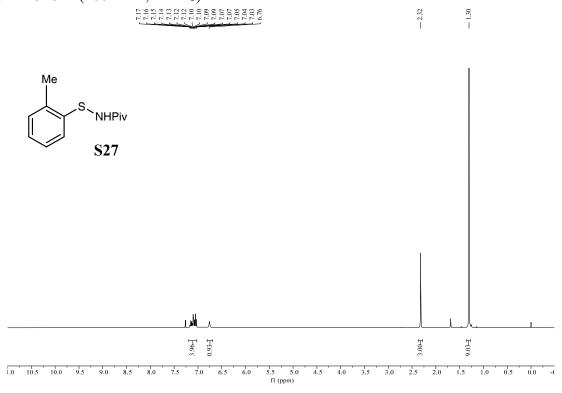

¹³C NMR of S25 (100 MHz, CDCl₃)

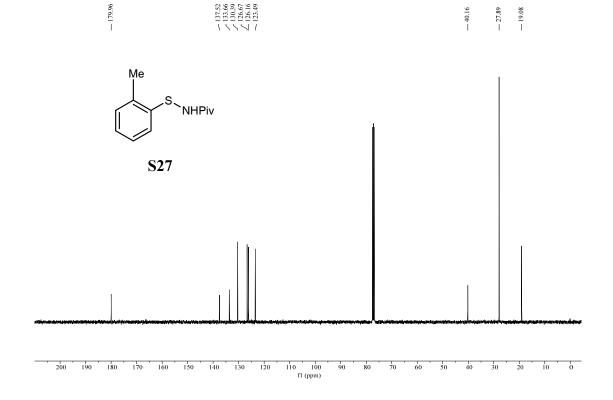


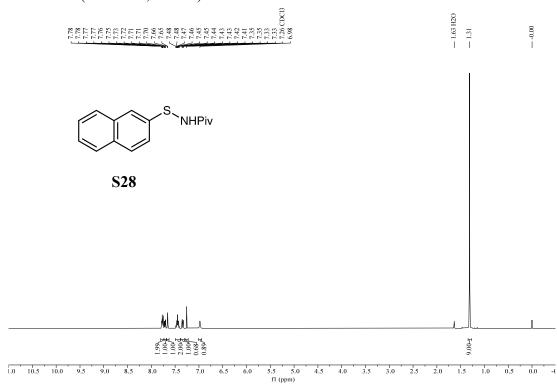


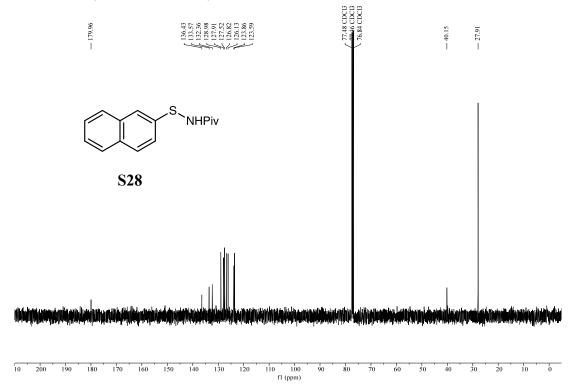


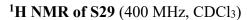


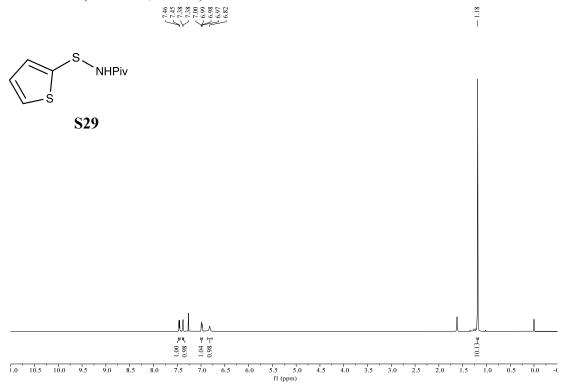


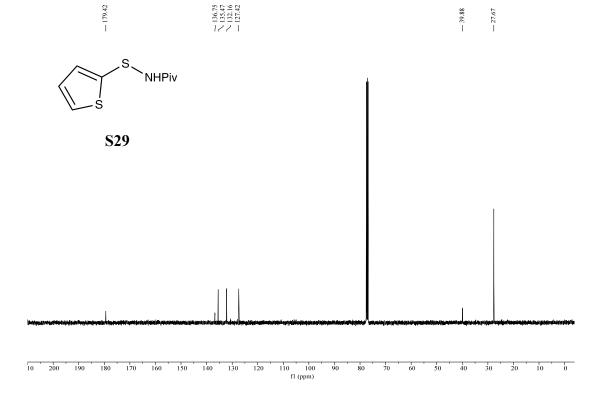


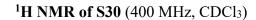


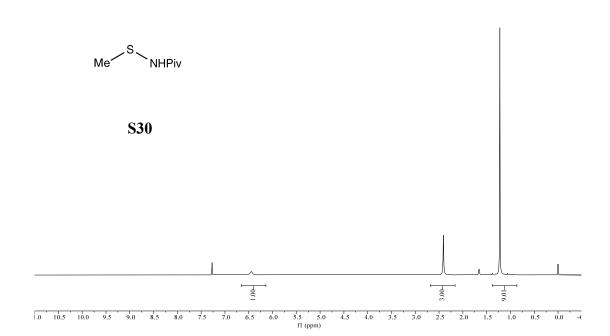

¹³C NMR of S27 (100 MHz, CDCl₃)



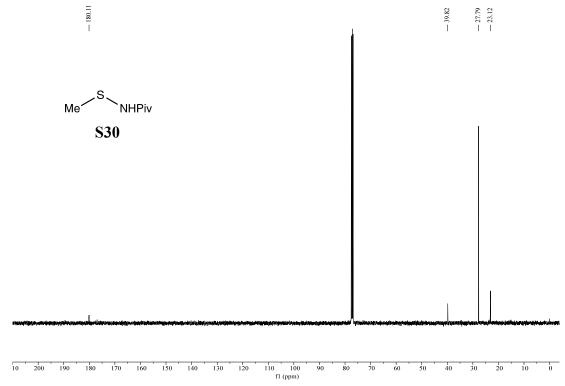

¹H NMR of S28 (400 MHz, CDCl₃)

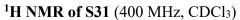

¹³C NMR of S28 (100 MHz, CDCl₃)

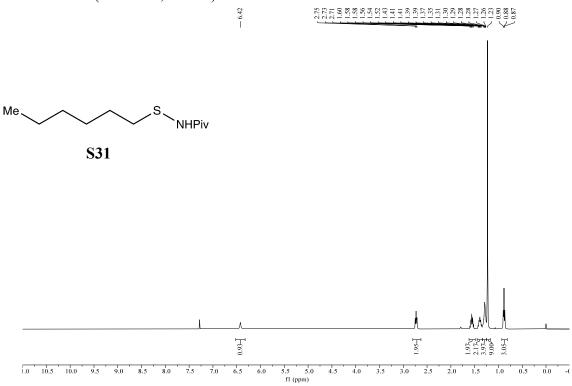


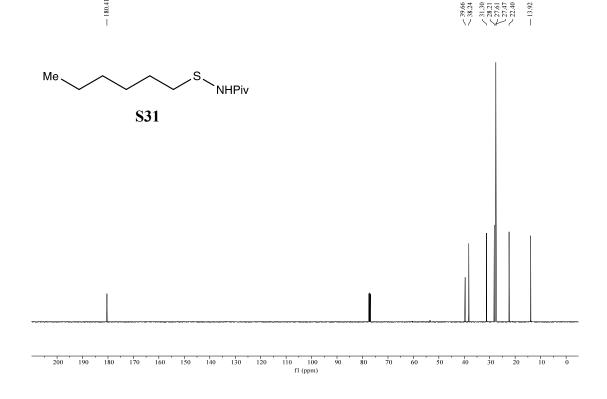


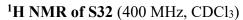
¹³C **NMR of S29** (100 MHz, CDCl₃)

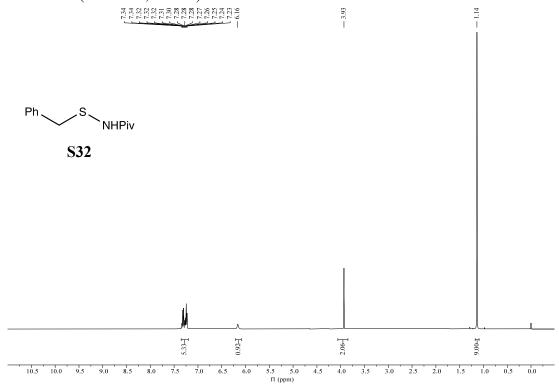


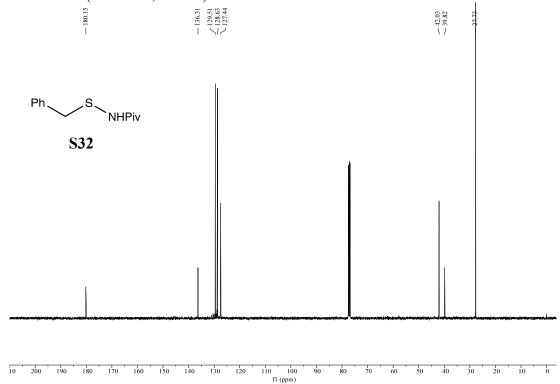




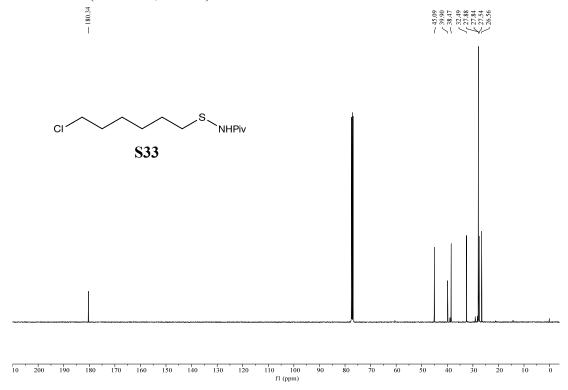

13 C NMR of S30 (100 MHz, CDCl₃)



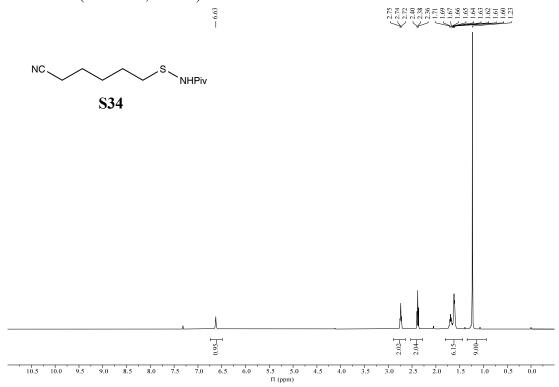


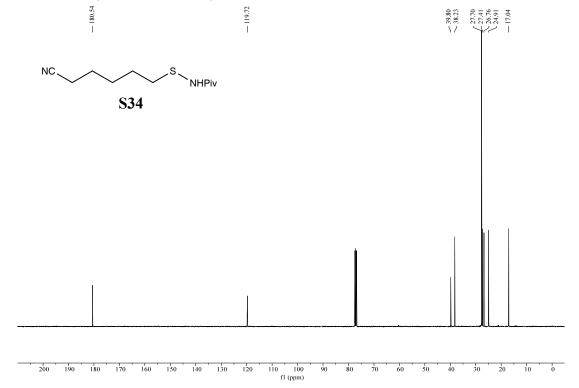

¹³C NMR of S31 (100 MHz, CDCl₃)

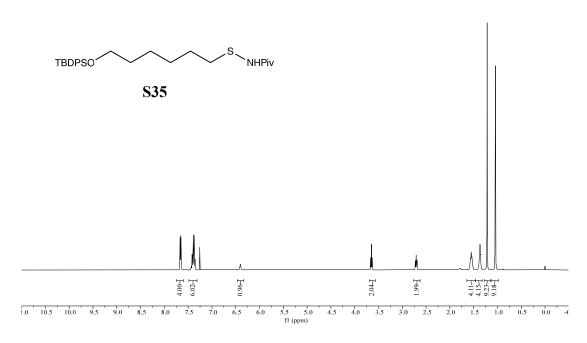
¹³C NMR of S32 (100 MHz, CDCl₃)



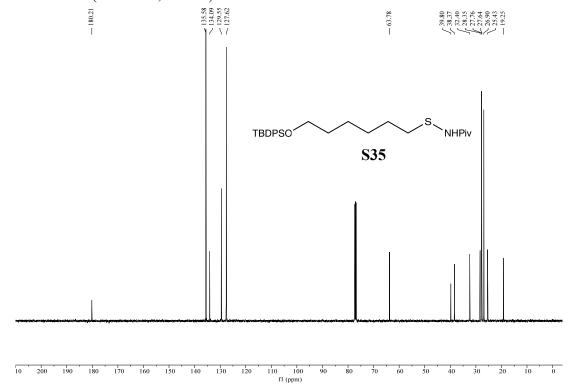


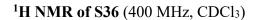


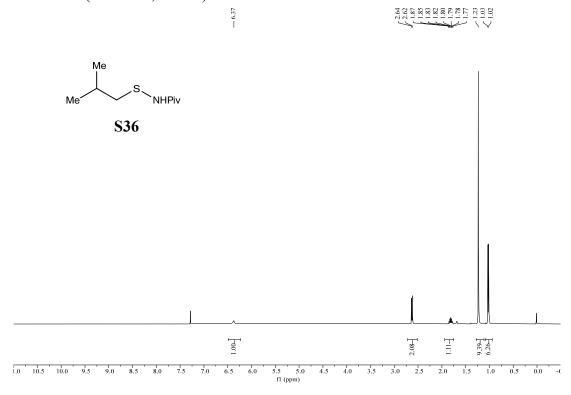

¹³C NMR of S33 (100 MHz, CDCl₃)

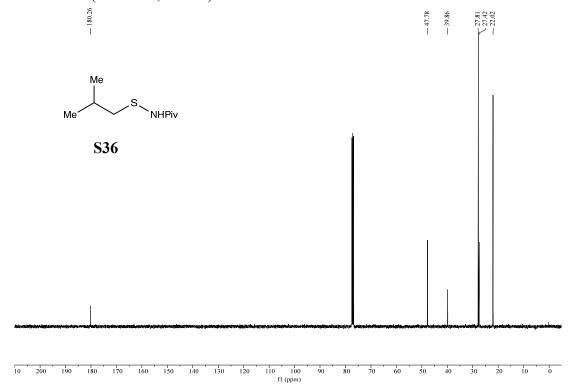


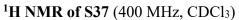
¹³C NMR of S34 (100 MHz, CDCl₃)

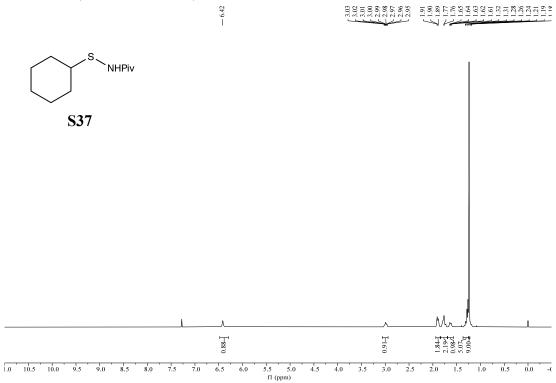



¹H NMR of S35 (400 MHz, CDCl₃)

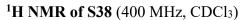

3.66 3.65 3.63 3.63 3.63 2.73 2.73 2.69 1.57 1.57 1.57 1.53

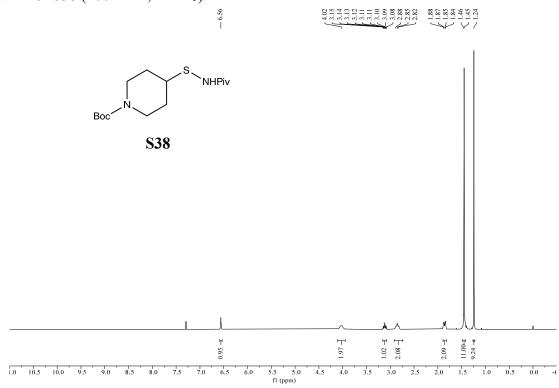

¹³C NMR of S35 (100 MHz, CDCl₃)



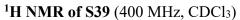


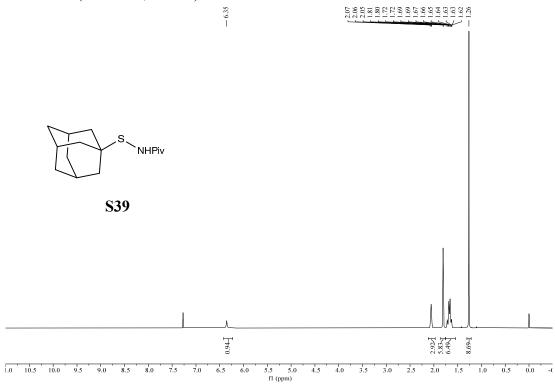

13 C NMR of S35 (100 MHz, CDCl₃)

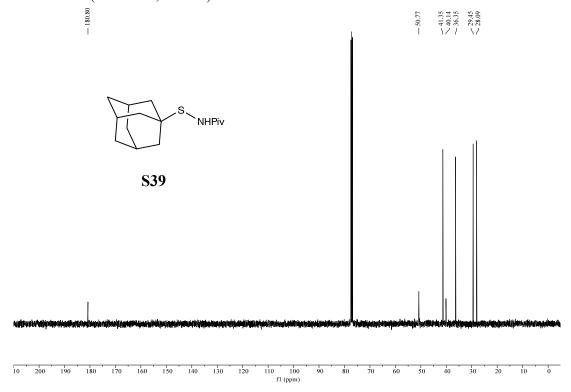


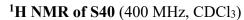


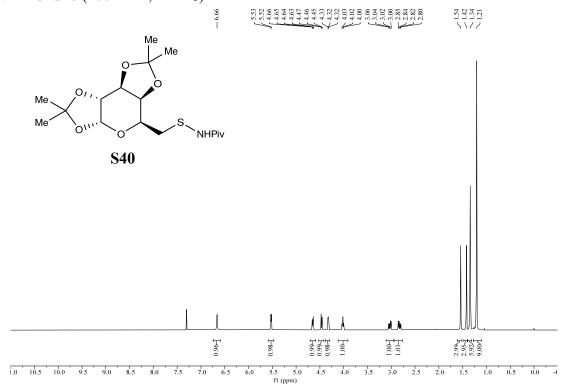

¹³C NMR of S37 (100 MHz, CDCl₃)

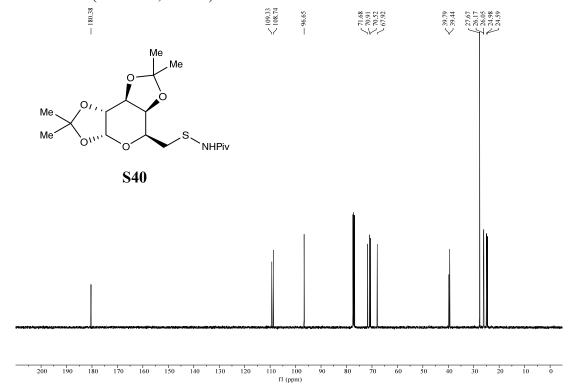


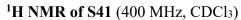


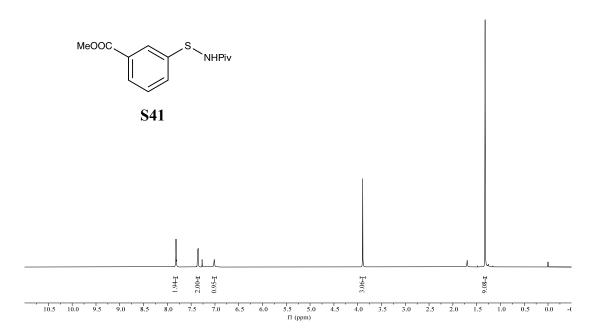

13 C NMR of S38 (100 MHz, CDCl₃)



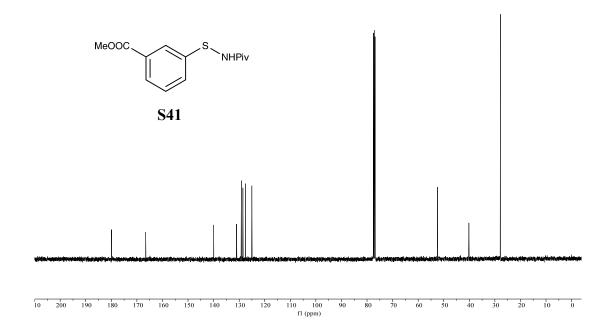


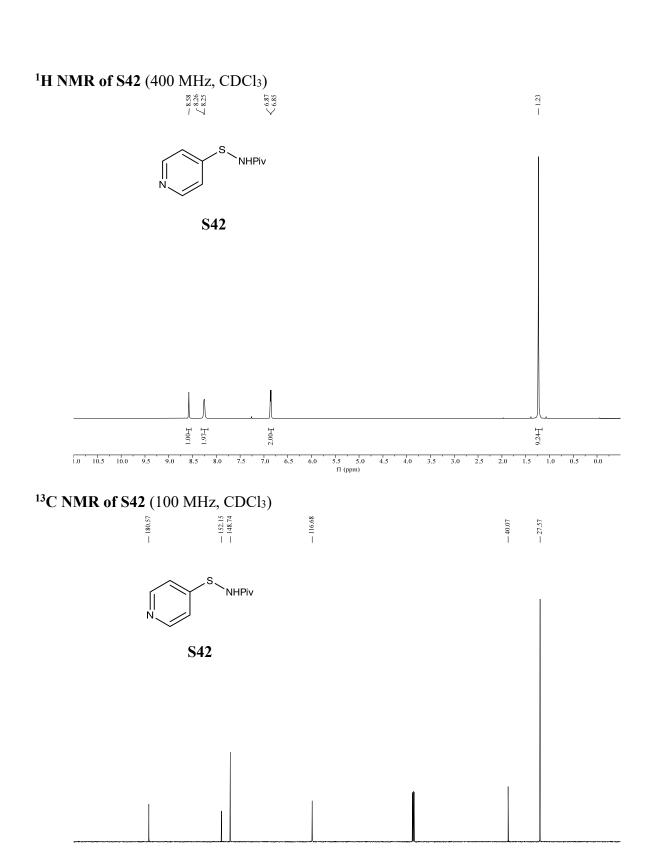

¹³C NMR of S39 (100 MHz, CDCl₃)





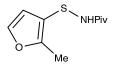
13 C NMR of S40 (100 MHz, CDCl₃)

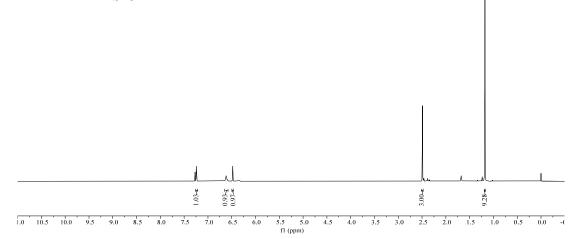


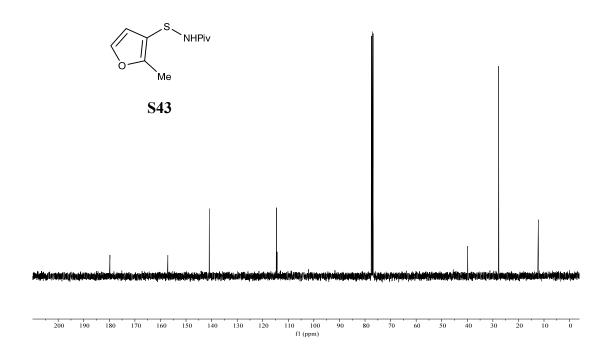


¹³C NMR of S41 (100 MHz, CDCl₃)

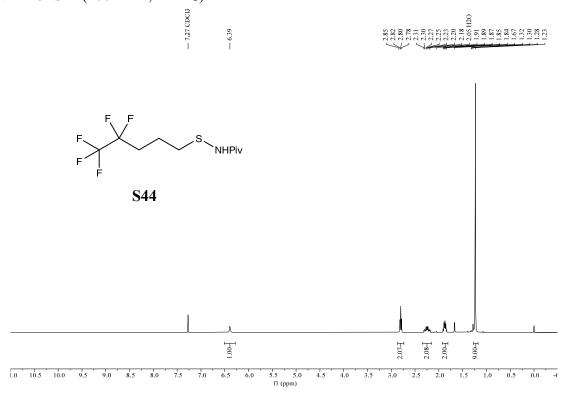
179.90	166.56	139.96 131.02 129.15 128.56 127.56 125.05	52.39	40.15	27.84
			1	- 1	- 1



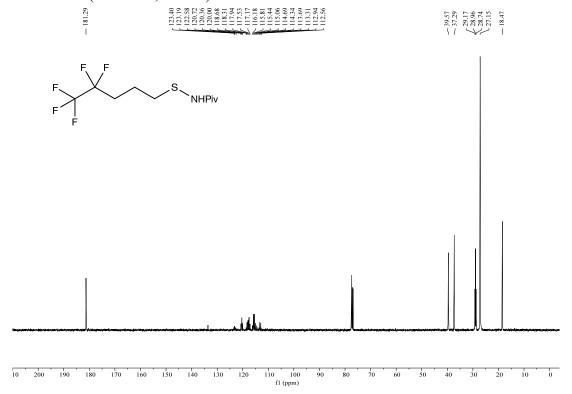

10 200 190 180 170 160 150 140 130 120 110 100 fl (ppm)

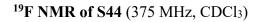


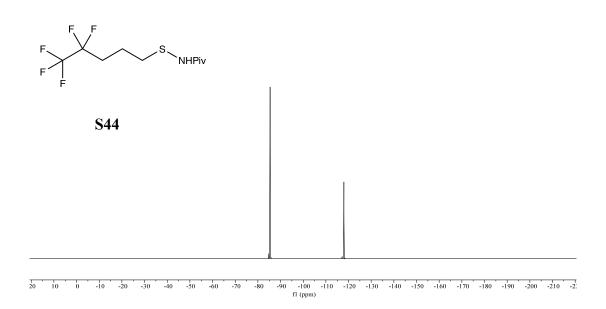

S43



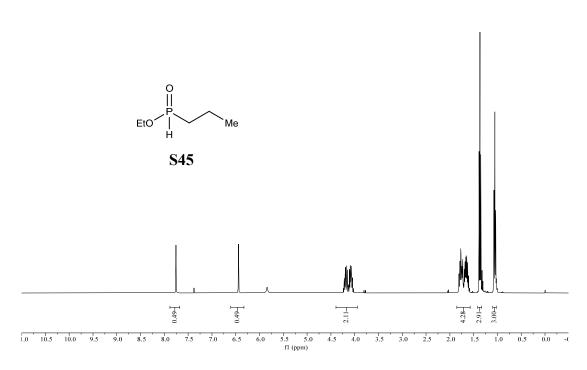
¹³C NMR of S43 (100 MHz, CDCl₃)



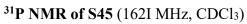




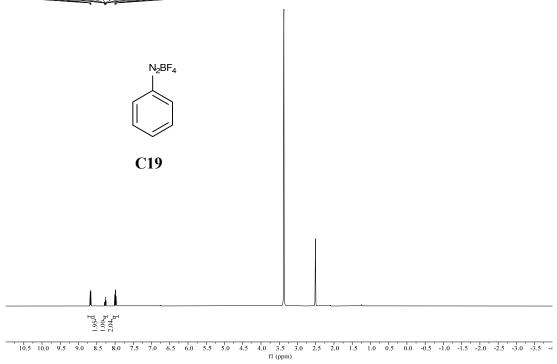
¹³C NMR of S44 (100 MHz, CDCl₃)

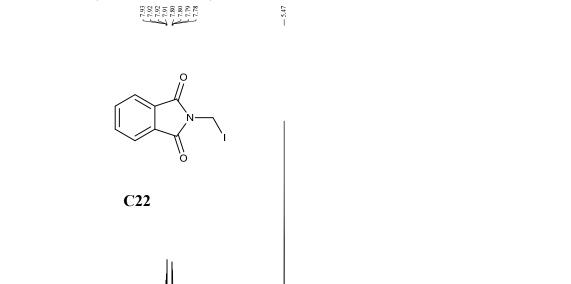


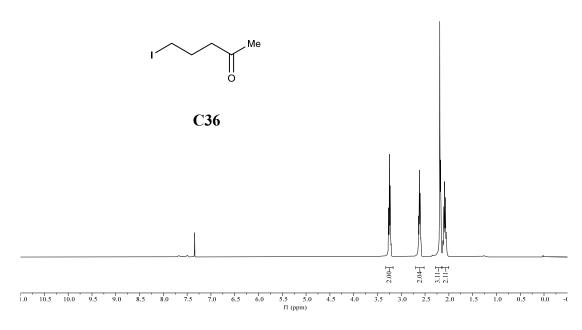


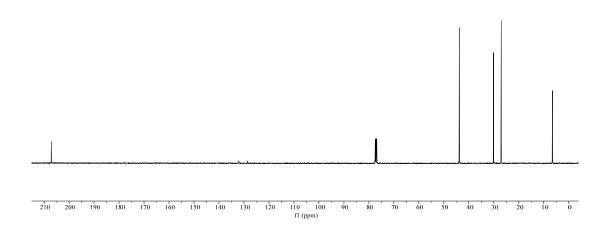

¹H NMR of S45 (400 MHz, CDCl₃)

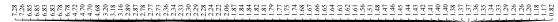
¹³C NMR of S45 (100 MHz, CDCl₃)

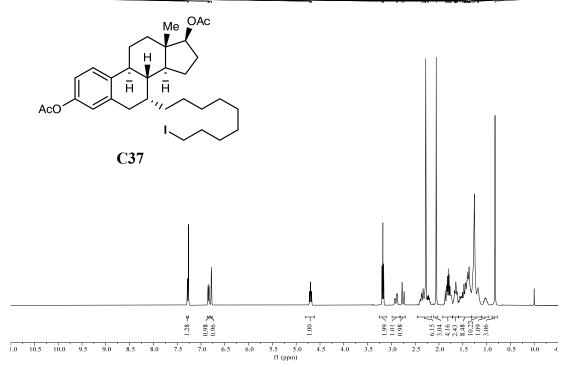




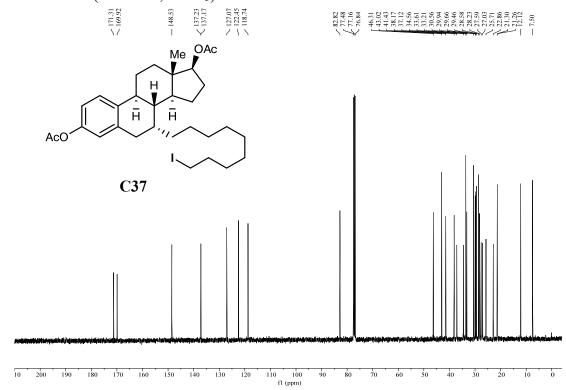

¹**H NMR of C19** (400 MHz, DMSO-*d*₆)

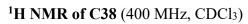

2.00 - 1

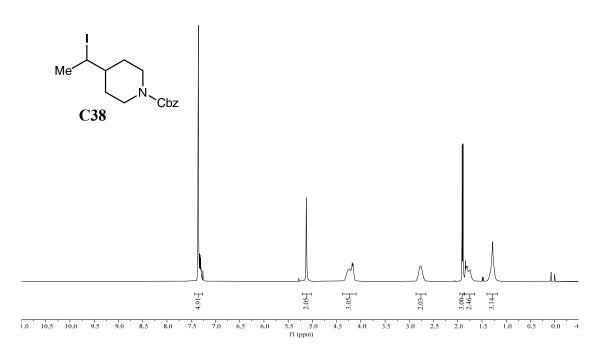

¹³C **NMR of C36** (100 MHz, CDCl₃)


- 207.15 We We - 43.81

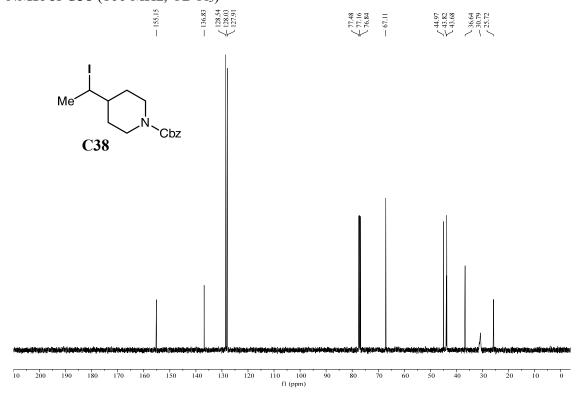
C36

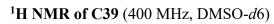


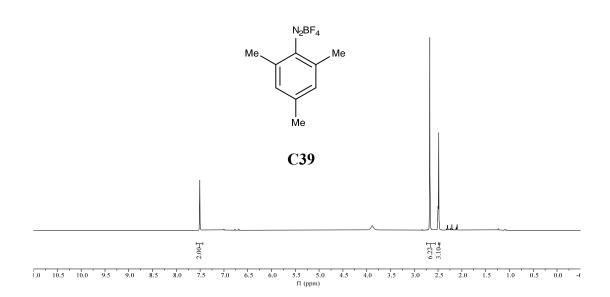

¹H NMR of C37 (400 MHz, CDCl₃)



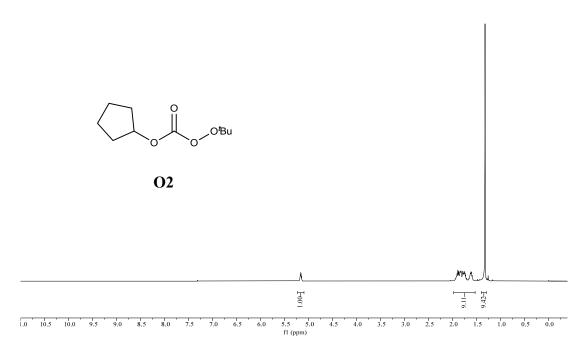
13 C NMR of C37 (100 MHz, CDCl₃)

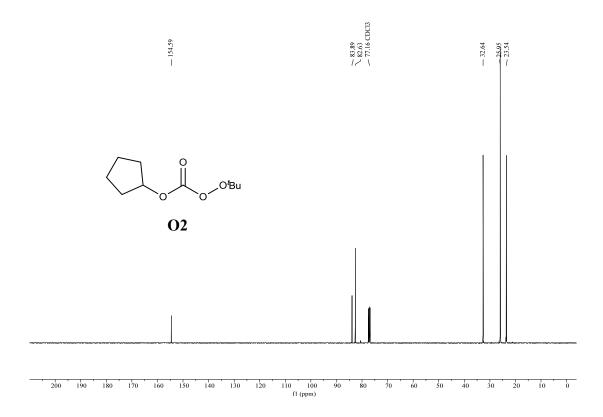


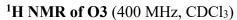


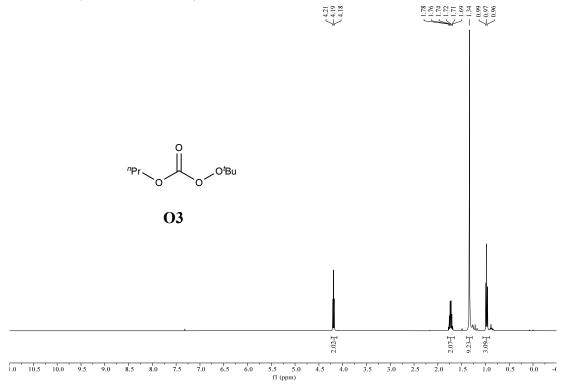


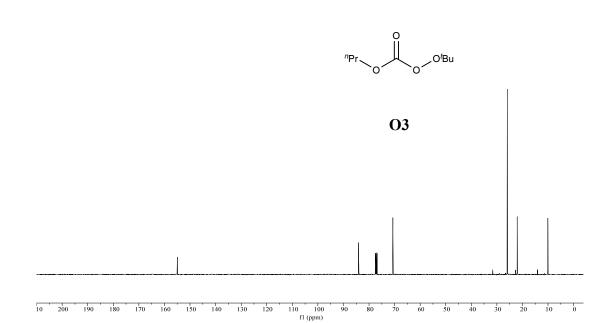
¹³C NMR of C38 (100 MHz, CDCl₃)

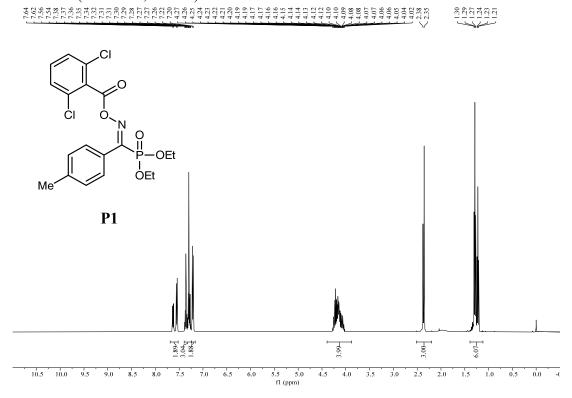


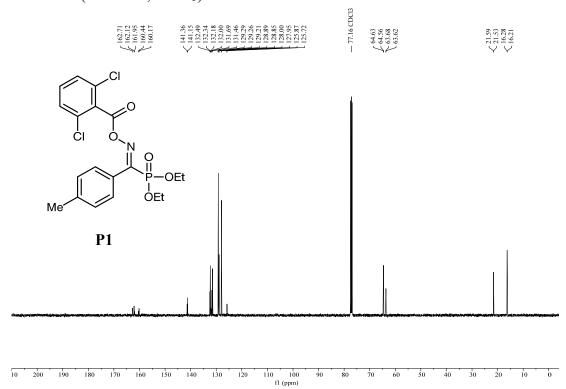



¹**H NMR of O2** (400 MHz, CDCl₃)

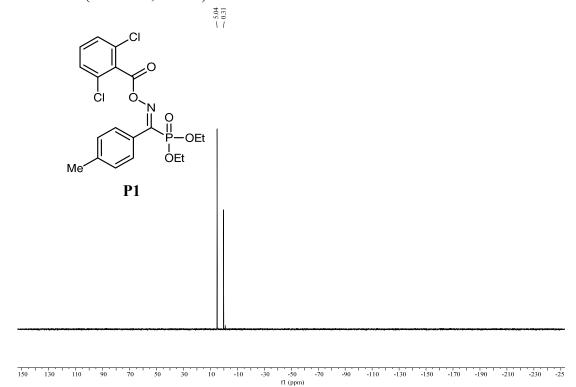


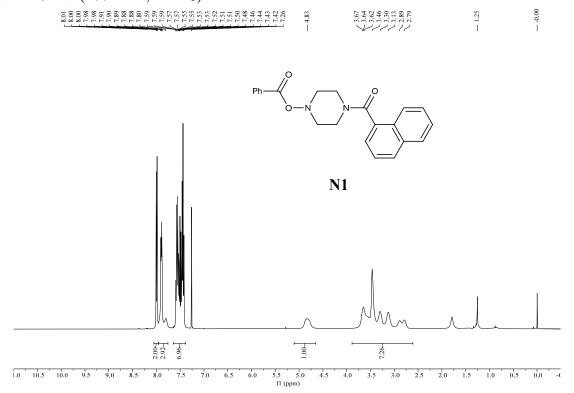

¹³C NMR of O2 (100 MHz, CDCl₃)

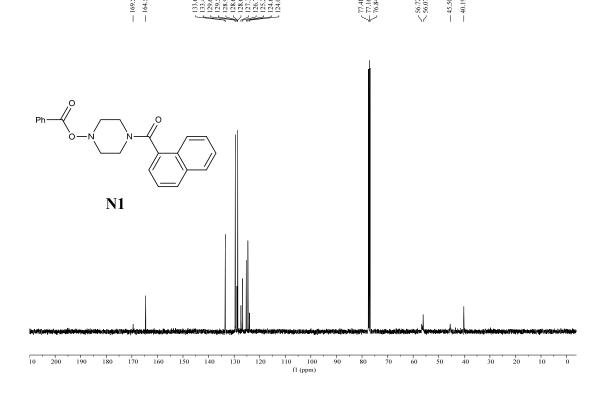


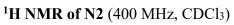

¹³C NMR of O3 (100 MHz, CDCl₃)

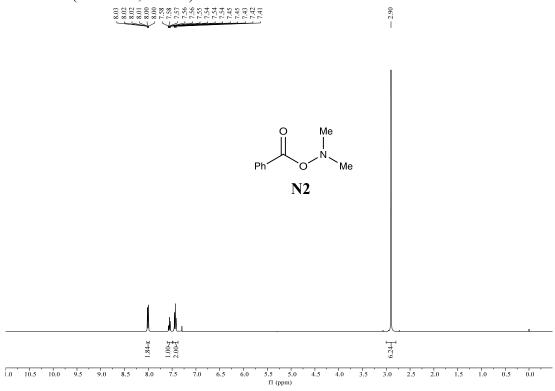



¹H NMR of P1 (400 MHz, CDCl₃)

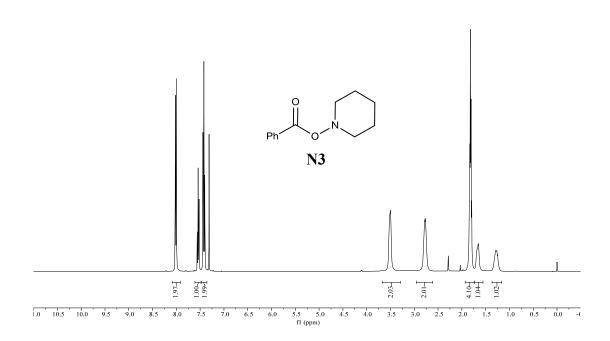

¹³C NMR of P1 (100 MHz, CDCl₃)

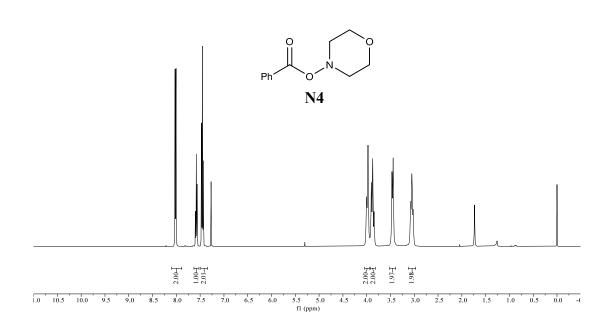




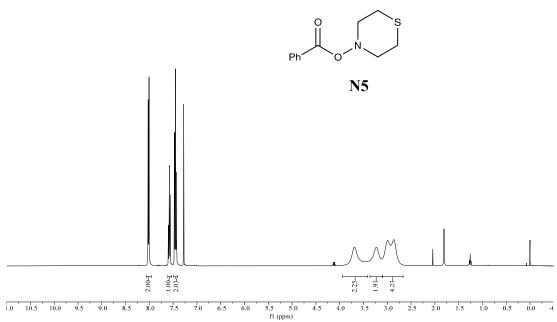


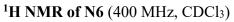
¹³C NMR of N1 (100 MHz, CDCl₃)

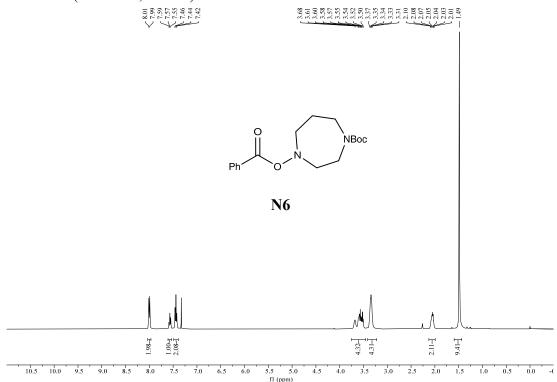


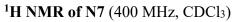

¹**H NMR of N3** (400 MHz, CDCl₃)

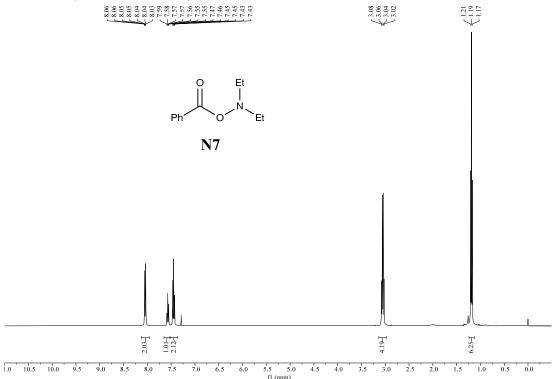
8.00 8.00 8.00 7.56 7.56 7.55 7.55 7.54 7.53 7.53 7.53 7.54 7.44 7.44 7.44 7.44

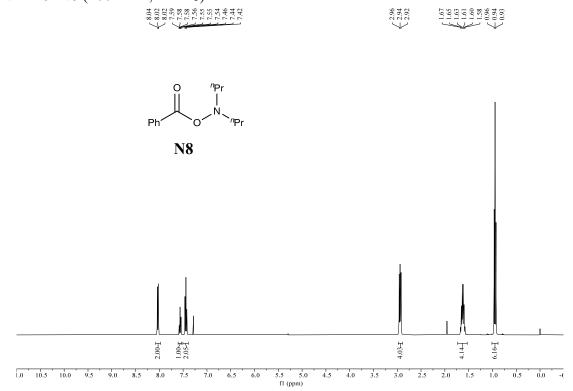

¹**H NMR of N4** (400 MHz, CDCl₃)

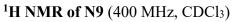

8.03 7.60 7.58 7.47 7.45 2.004 2.005

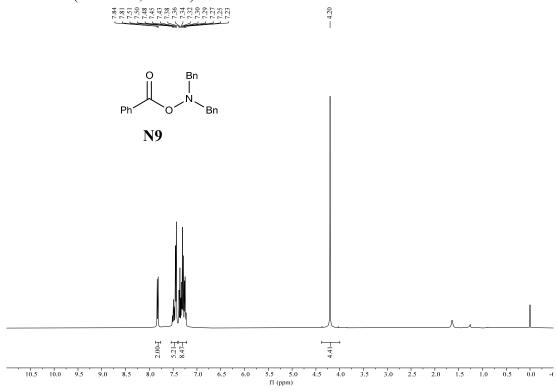


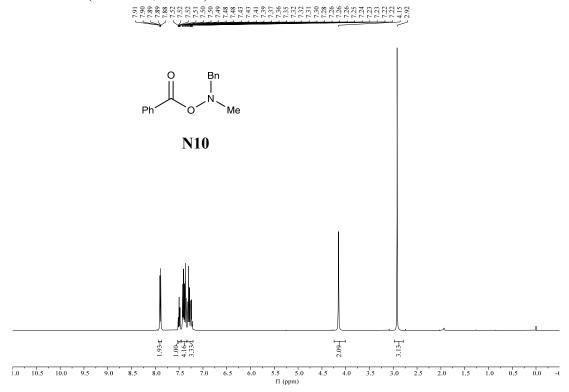


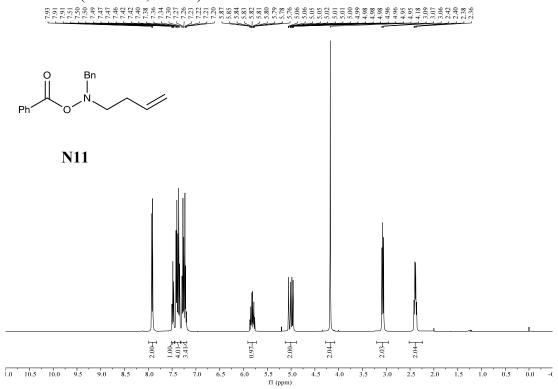




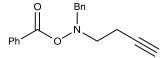




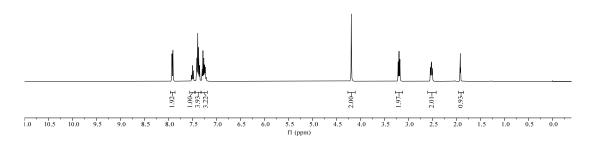




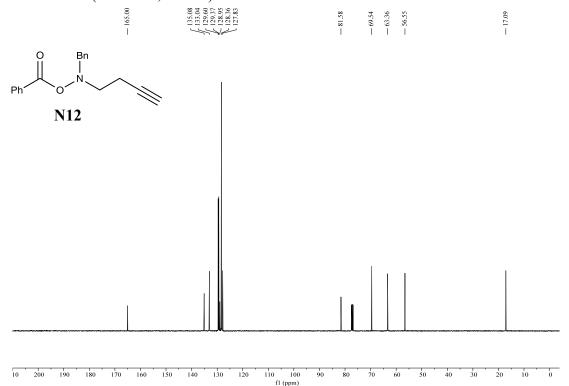
¹**H NMR of N10** (400 MHz, CDCl₃)

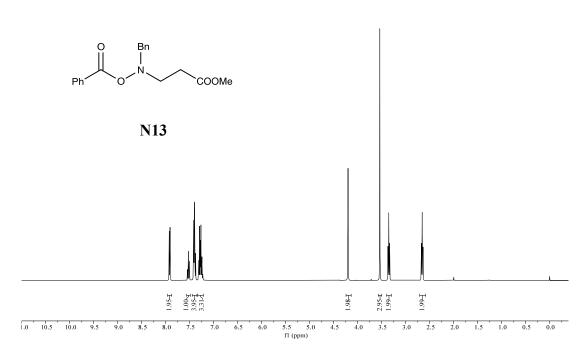


¹**H NMR of N11** (400 MHz, CDCl₃)

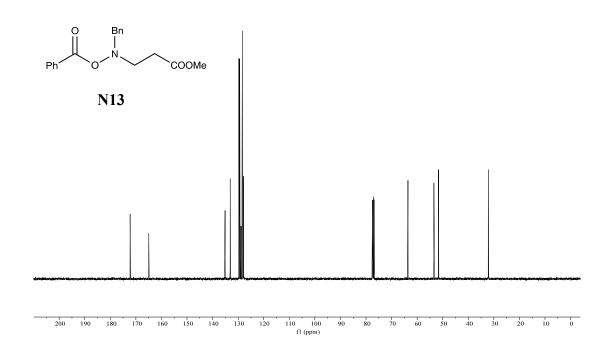


¹H NMR of N12 (400 MHz, CDCl₃)

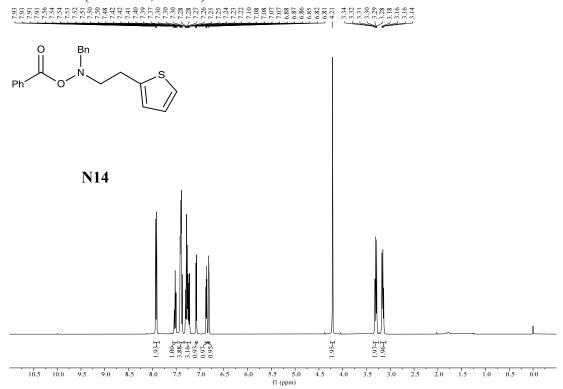



N12

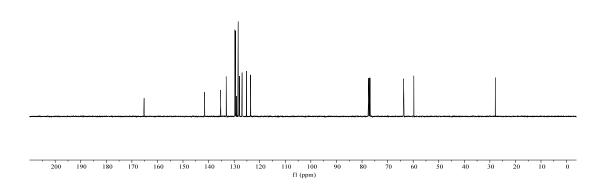
¹³C NMR of N12 (100 MHz, CDCl₃)

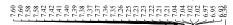


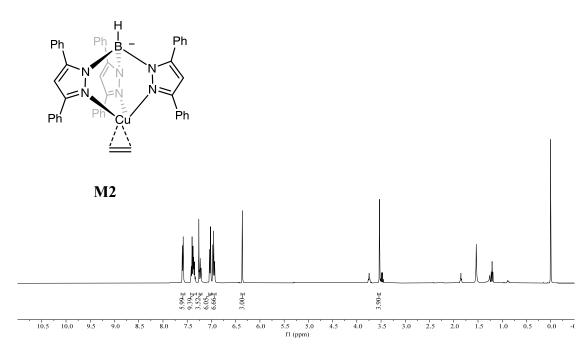
¹H NMR of N13 (400 MHz, CDCl₃)

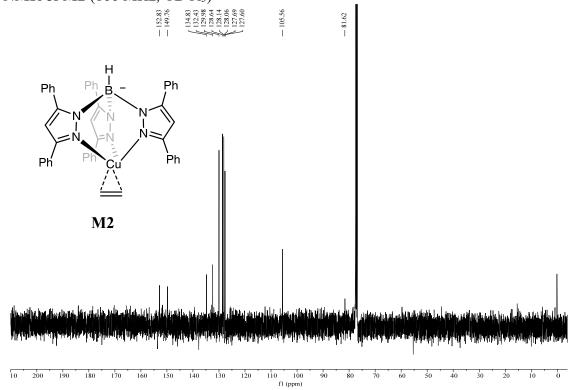


¹³C NMR of N13 (100 MHz, CDCl₃)

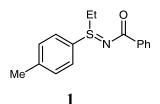

| 164.97 | 157.25 | 1

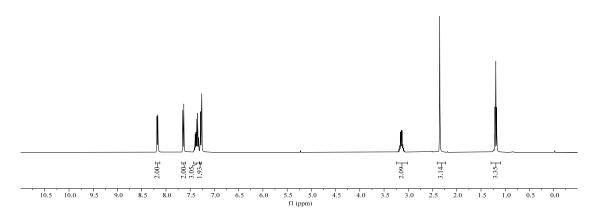

¹H NMR of N14 (400 MHz, CDCl₃)

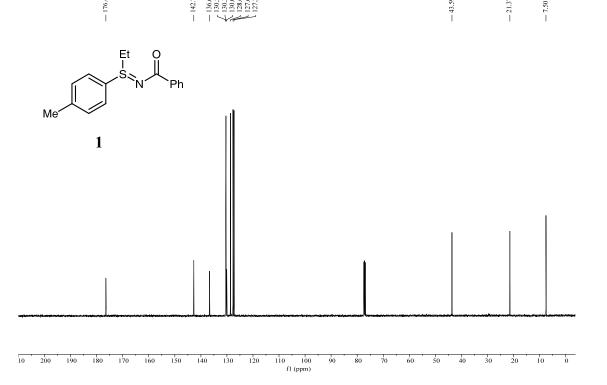

¹³C NMR of N14 (100 MHz, CDCl₃)

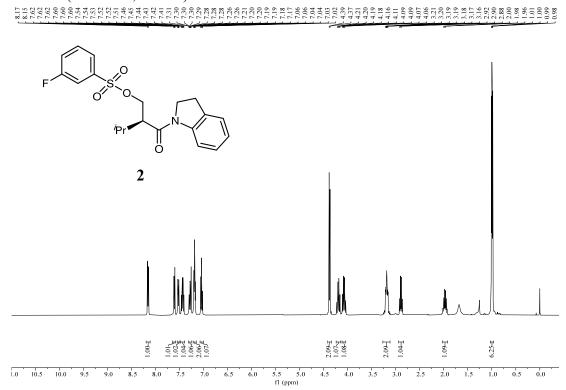


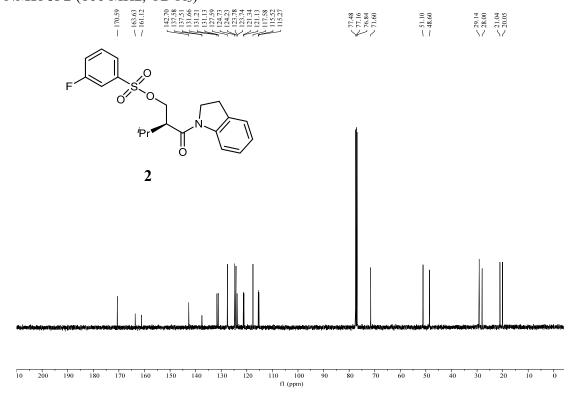
- 3.53

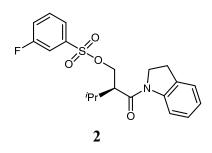



¹³C NMR of M2 (100 MHz, CDCl₃)

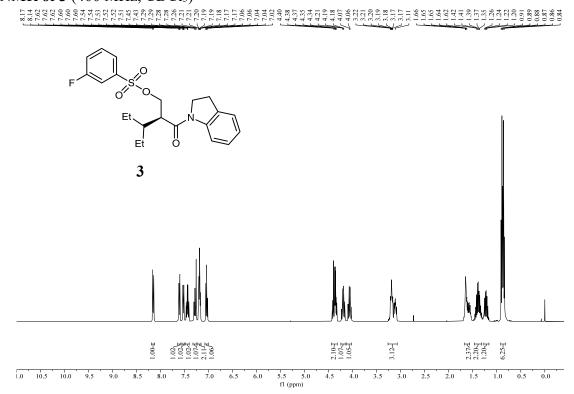

¹H NMR of 1 (400 MHz, CDCl₃)

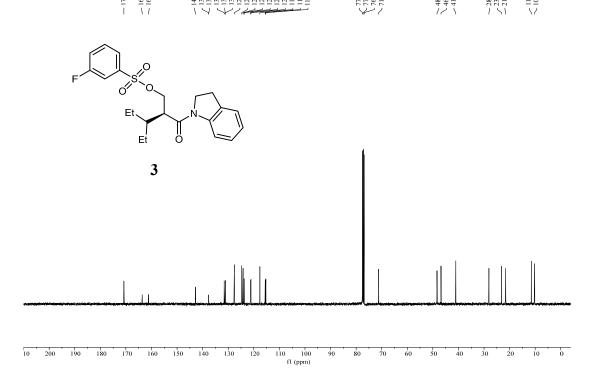


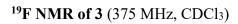

13 C NMR of 1 (100 MHz, CDCl₃)

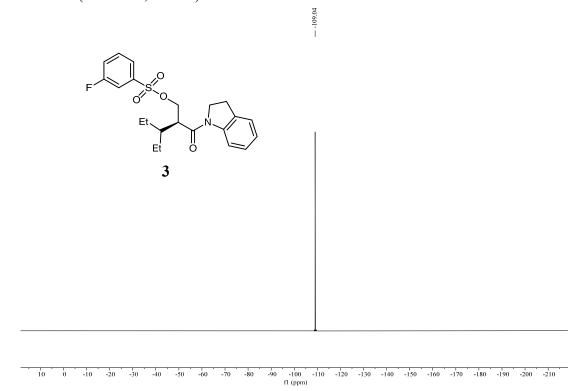


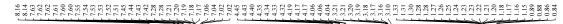
¹H NMR of 2 (400 MHz, CDCl₃)

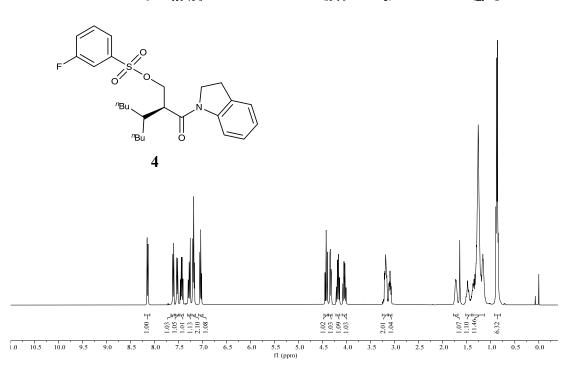

¹³C NMR of 2 (100 MHz, CDCl₃)

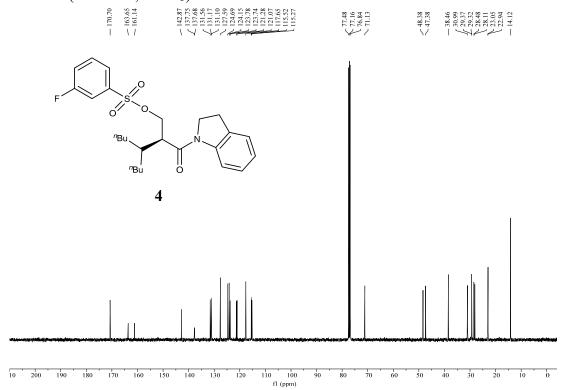


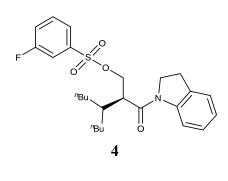

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:
f1 (ppm)

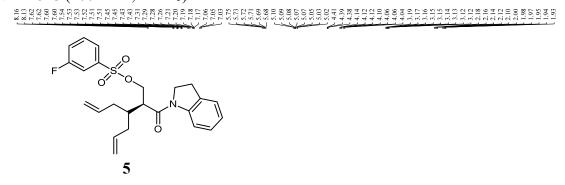

¹H NMR of 3 (400 MHz, CDCl₃)

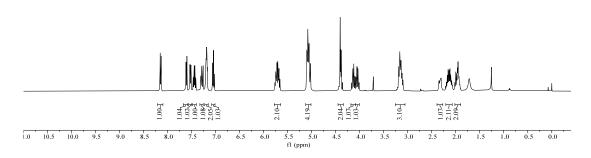

¹³C NMR of 3 (100 MHz, CDCl₃)



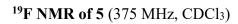


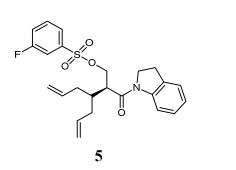

¹H NMR of 4 (400 MHz, CDCl₃)


¹³C NMR of 4 (100 MHz, CDCl₃)

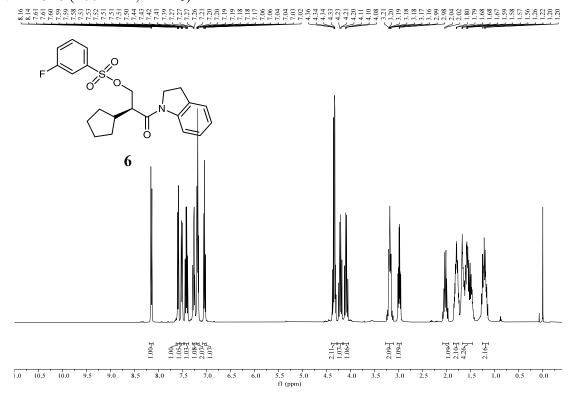


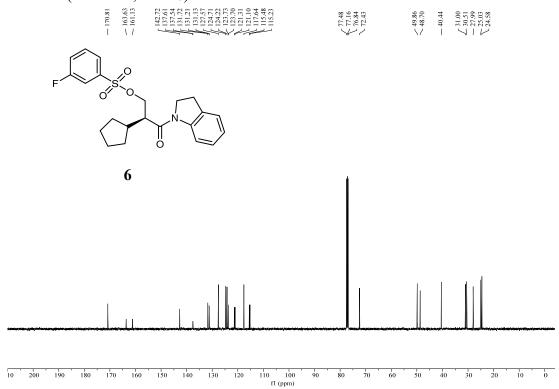
-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 ff (ppm)


¹H NMR of 5 (400 MHz, CDCl₃)

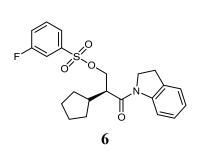


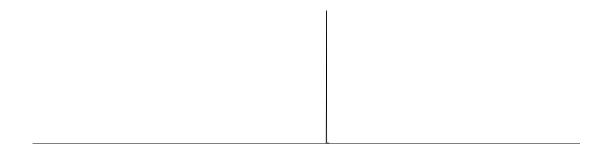
¹³C NMR of 5 (100 MHz, CDCl₃)





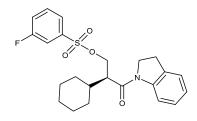
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

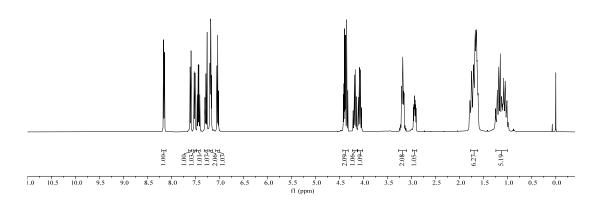

¹H NMR of 6 (400 MHz, CDCl₃)



¹³C NMR of 6 (100 MHz, CDCl₃)

¹⁹F NMR of 6 (375 MHz, CDCl₃)




20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR of 7 (400 MHz, CDCl₃)

7

¹³C NMR of 7 (100 MHz, CDCl₃)

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

10.175

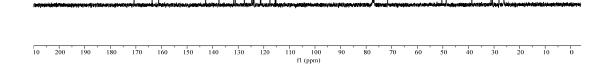
10.175

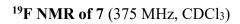
10.175

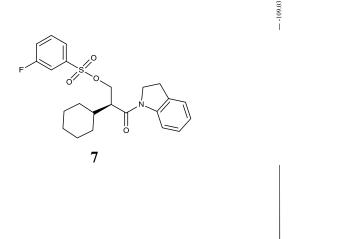
10.175

10.175

10.175

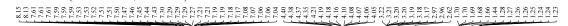

10.175

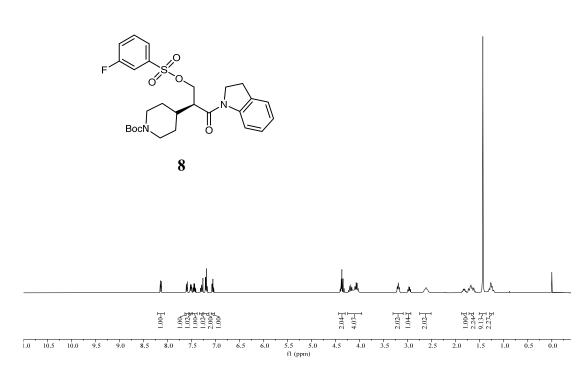

10.175

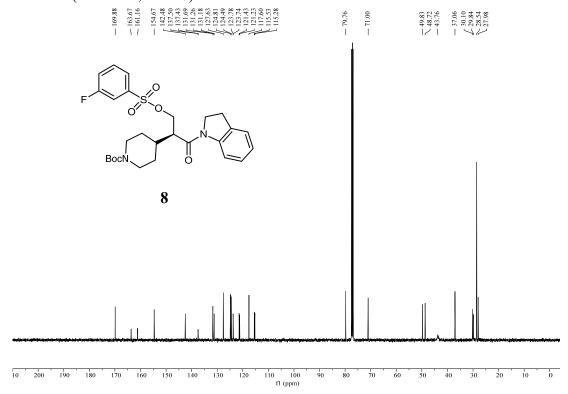

10.175

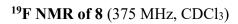
10.175

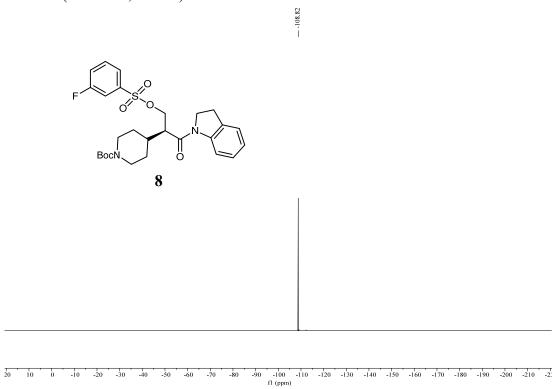
10.175



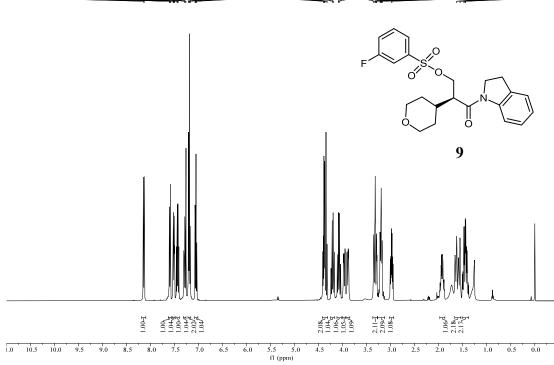


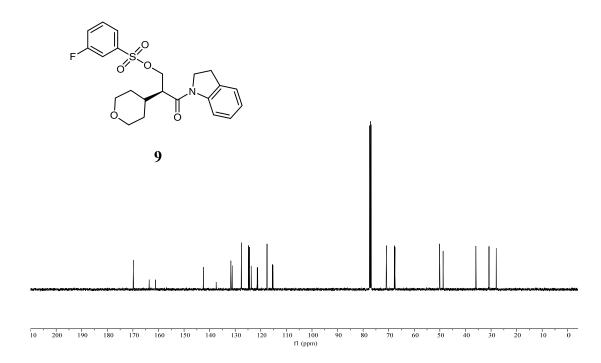

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

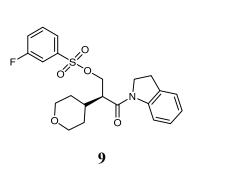

¹H NMR of 8 (400 MHz, CDCl₃)




¹³C NMR of 8 (100 MHz, CDCl₃)

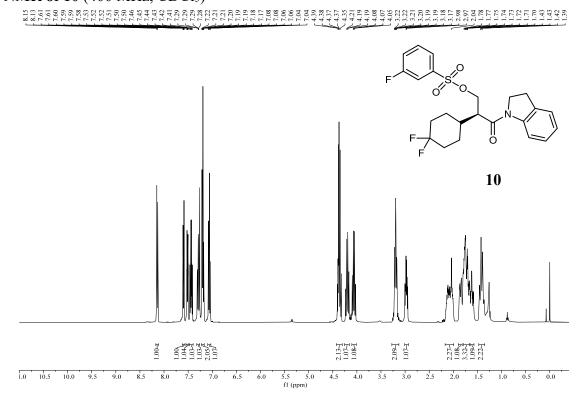


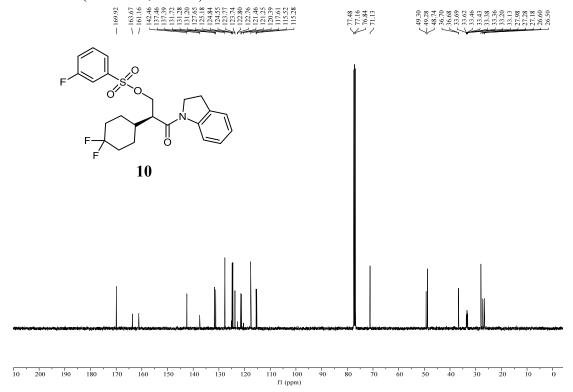

¹H NMR of 9 (400 MHz, CDCl₃)



¹³C NMR of 9 (100 MHz, CDCl₃)

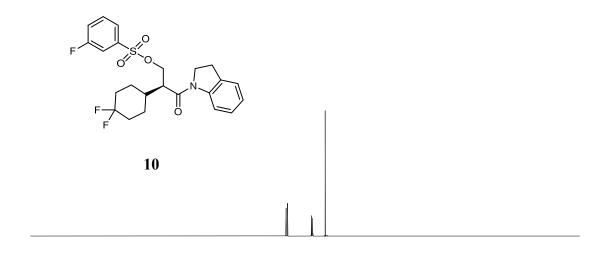
| 169.83 | 163.64 | 137.36 | 137.76 | 137.76 | 137.76 | 137.77 | 1


¹⁹F NMR of 9 (375 MHz, CDCl₃)

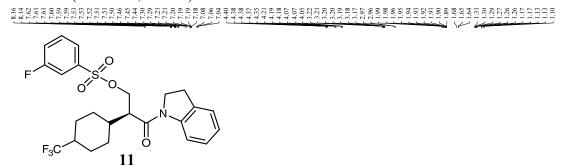


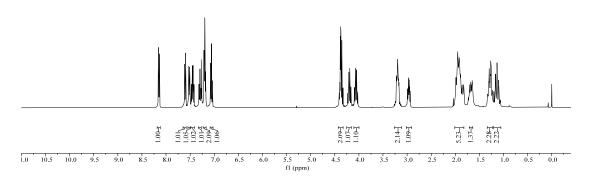
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

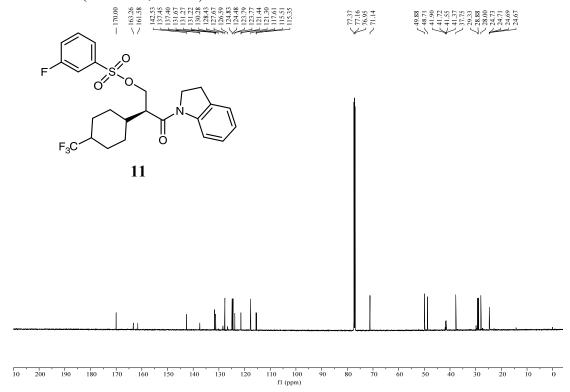
¹H NMR of 10 (400 MHz, CDCl₃)

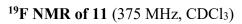


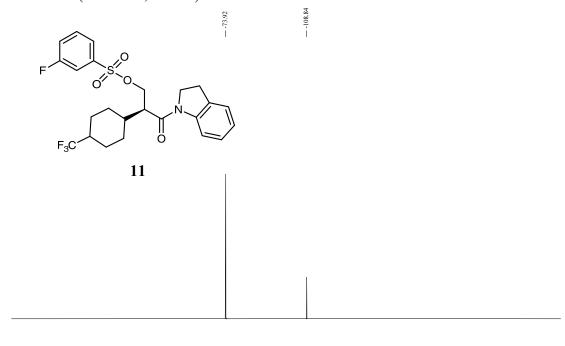
¹³C NMR of 10 (100 MHz, CDCl₃)


¹⁹F NMR of 10 (375 MHz, CDCl₃)

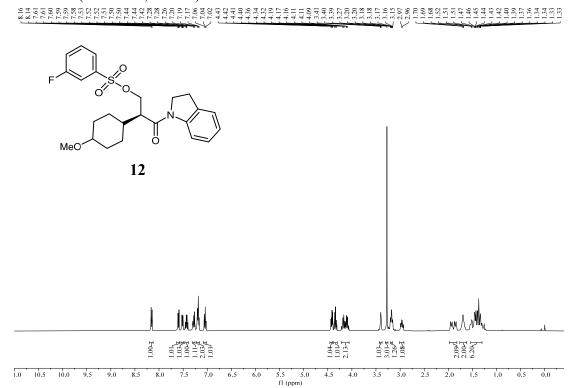


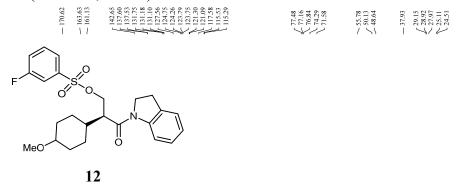

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:
fl (ppm)

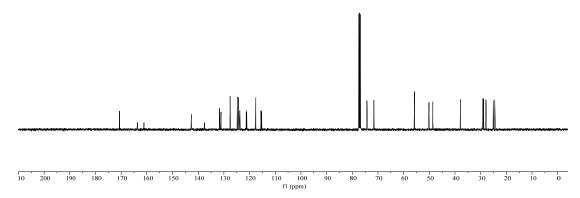

¹H NMR of 11 (400 MHz, CDCl₃)



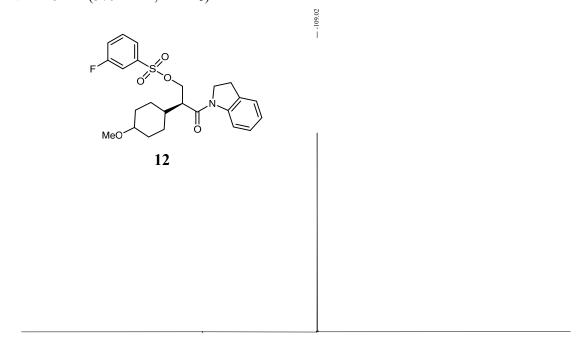
¹³C NMR of 11 (150 MHz, CDCl₃)



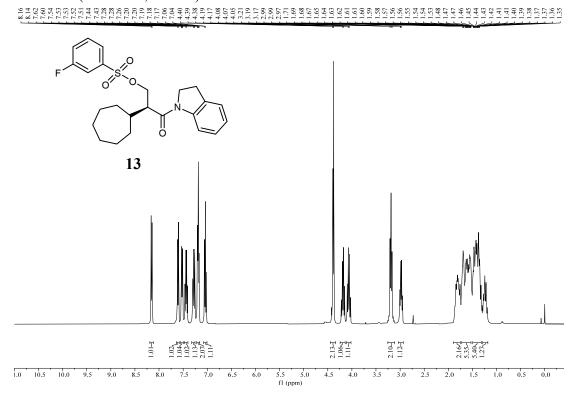


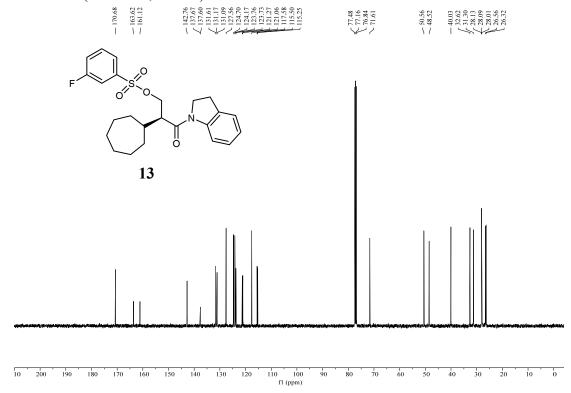

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR of 12 (400 MHz, CDCl₃)

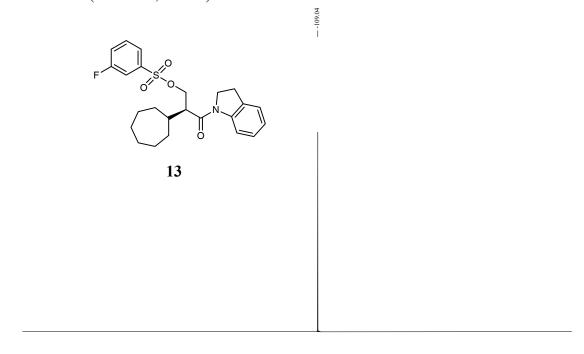


¹³C NMR of 12 (100 MHz, CDCl₃)

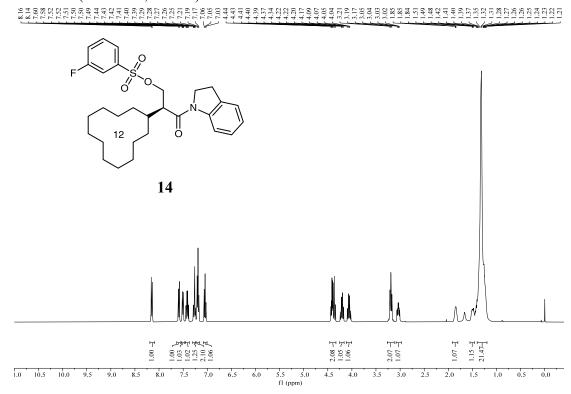


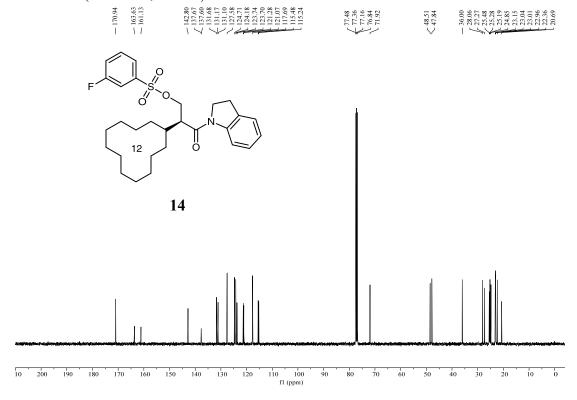


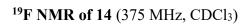


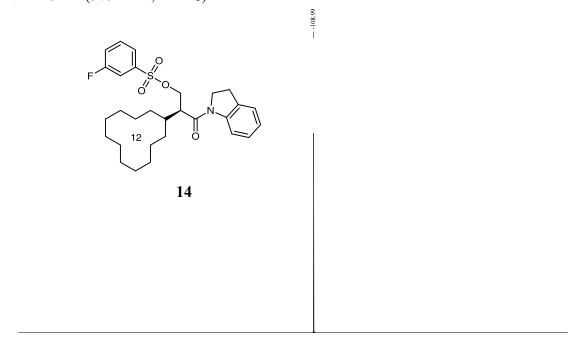

¹H NMR of 13 (400 MHz, CDCl₃)

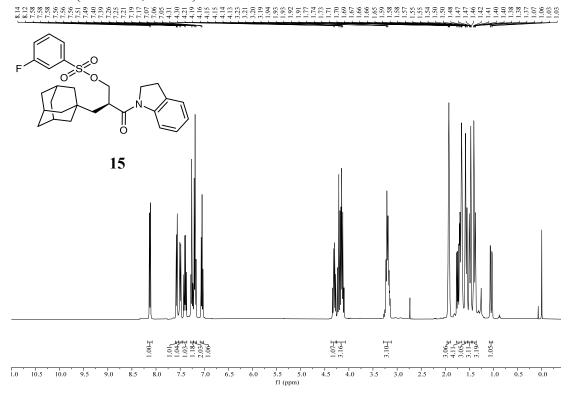
¹³C NMR of 13 (100 MHz, CDCl₃)

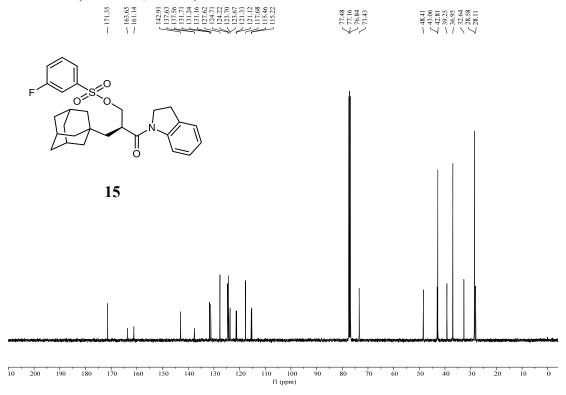





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:
f1 (ppm)


¹H NMR of 14 (400 MHz, CDCl₃)

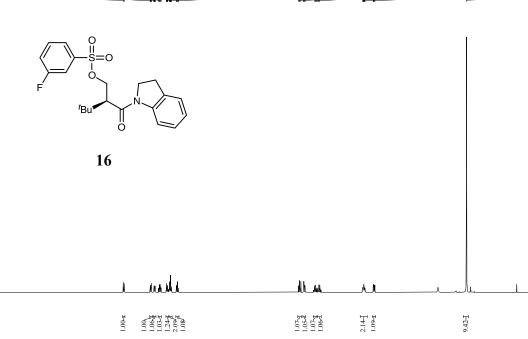

¹³C NMR of 14 (100 MHz, CDCl₃)



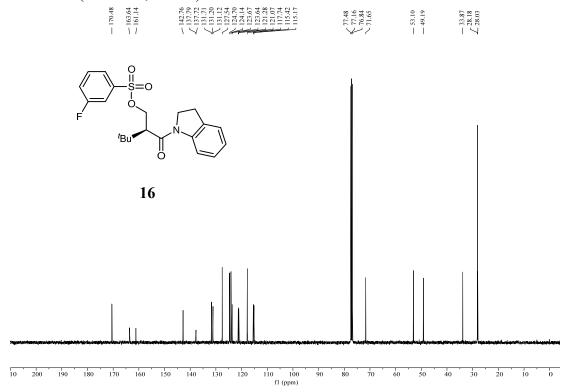
¹H NMR of 15 (400 MHz, CDCl₃)

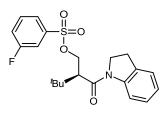
¹³C NMR of 15 (100 MHz, CDCl₃)

¹⁹F NMR of 15 (375 MHz, CDCl₃)

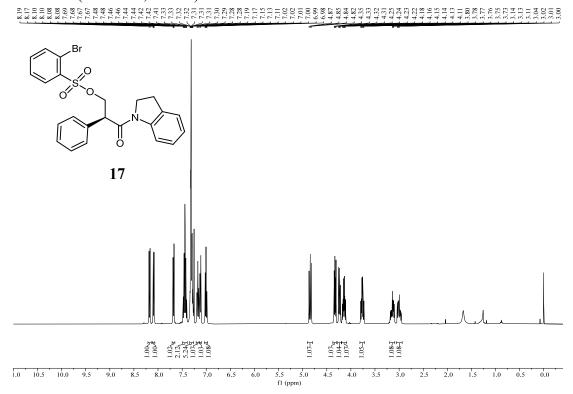

-108.87

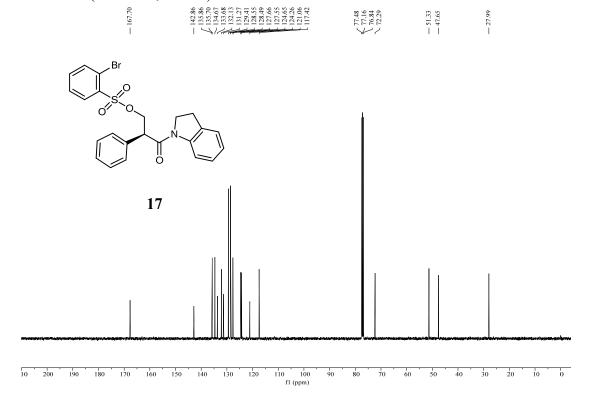
15


^{-104.5 -105.0 -105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.}


¹H NMR of 16 (400 MHz, CDCl₃)

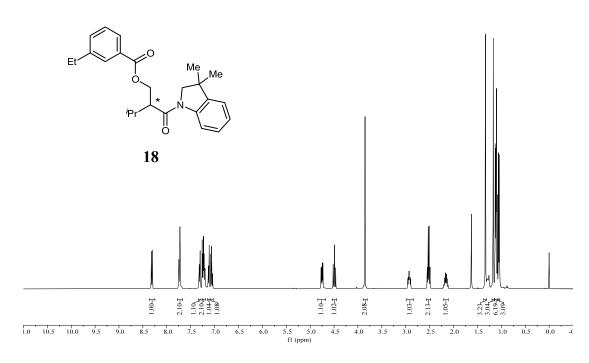
¹³C NMR of 16 (100 MHz, CDCl₃)



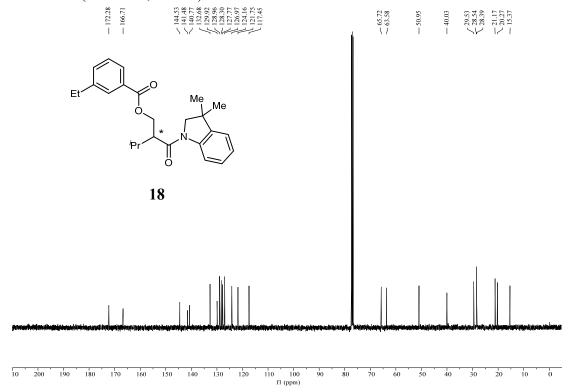

16

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

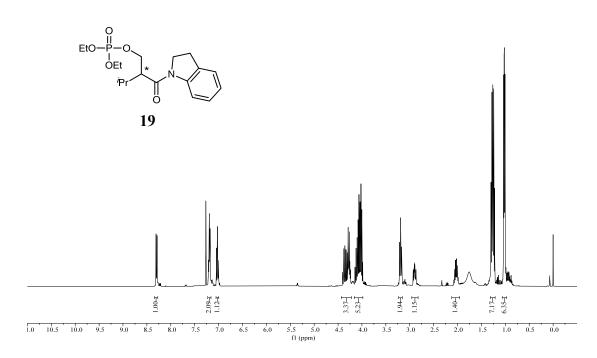
¹H NMR of 17 (400 MHz, CDCl₃)

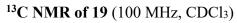


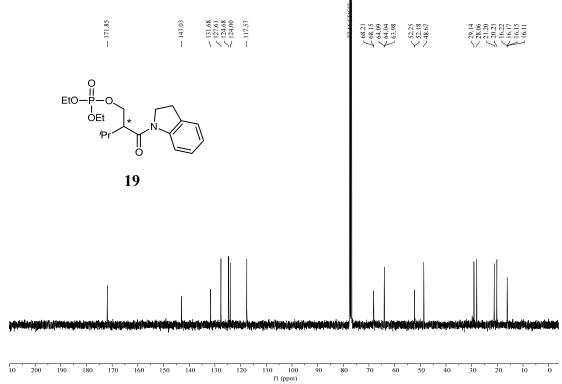
¹³C NMR of 17 (100 MHz, CDCl₃)

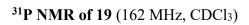


¹H NMR of 18 (400 MHz, CDCl₃)

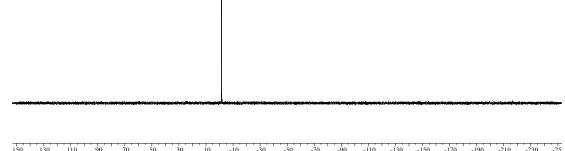


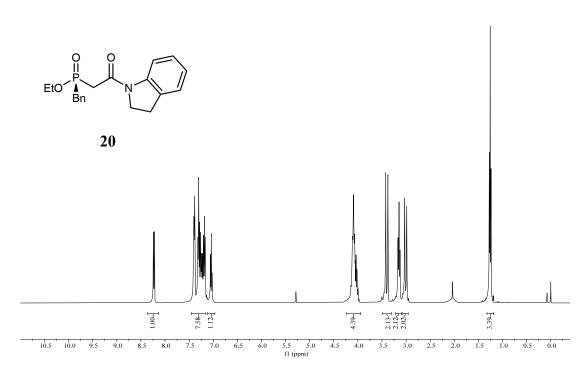


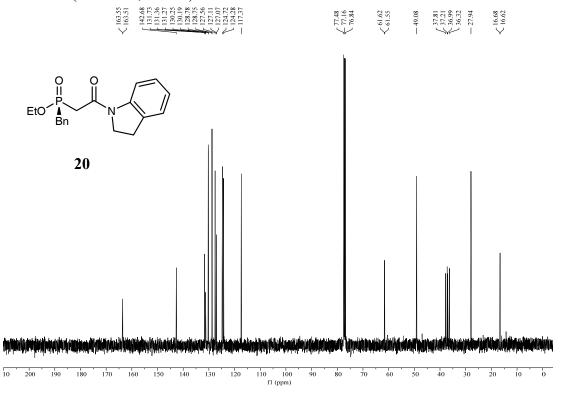

¹³C NMR of 18 (100 MHz, CDCl₃)

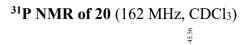


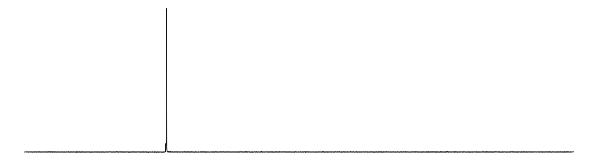
¹H NMR of 19 (400 MHz, CDCl₃)

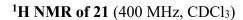


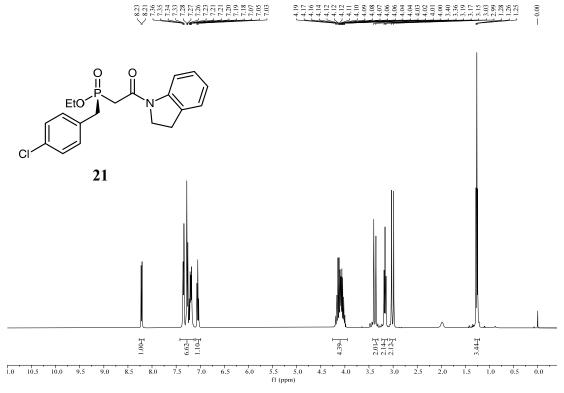

19


fl (ppm

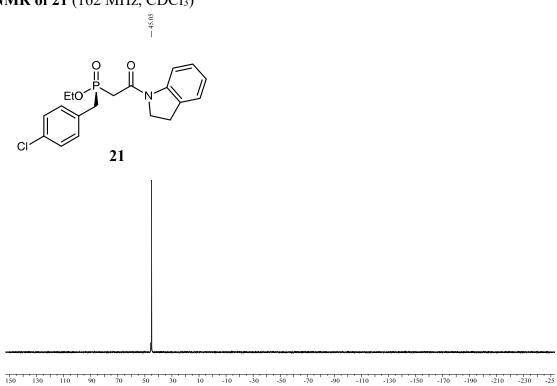

¹H NMR of 20 (400 MHz, CDCl₃)

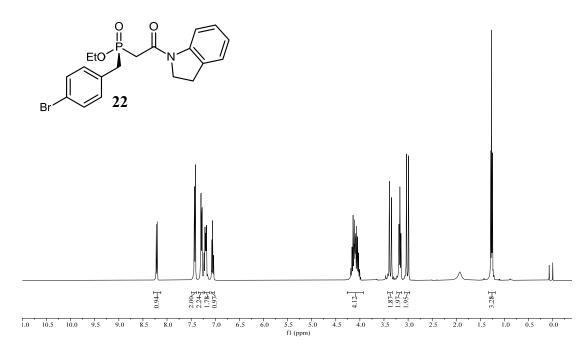


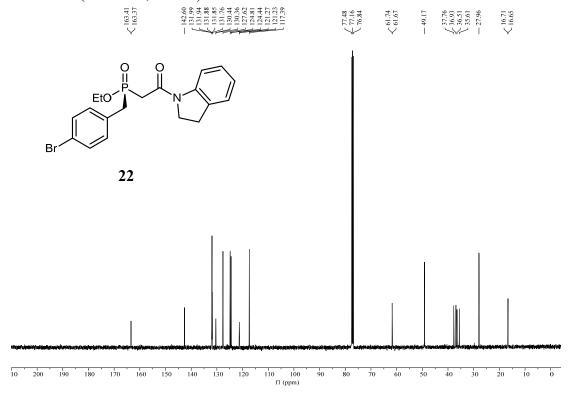

¹³C NMR of 20 (100 MHz, CDCl₃)



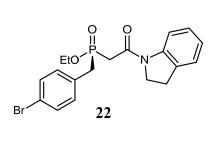



^{140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240} fl (ppm)

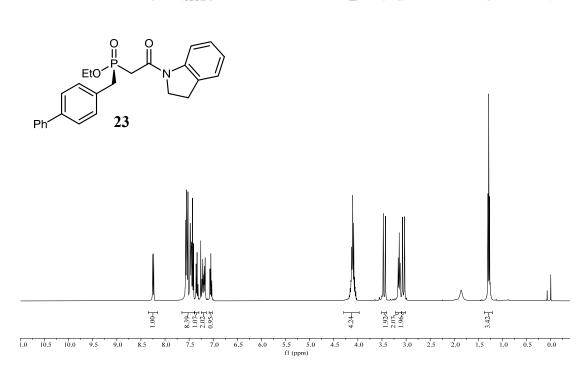


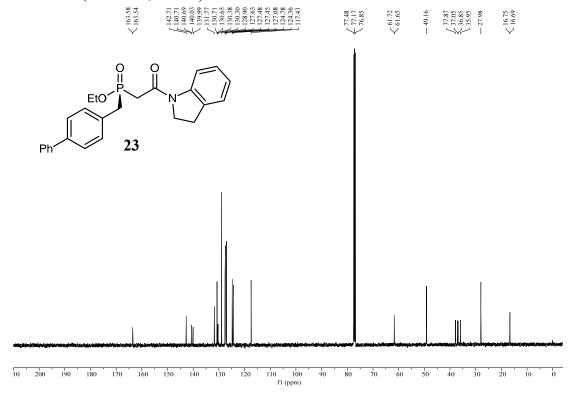


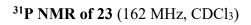
¹H NMR of 22 (400 MHz, CDCl₃)

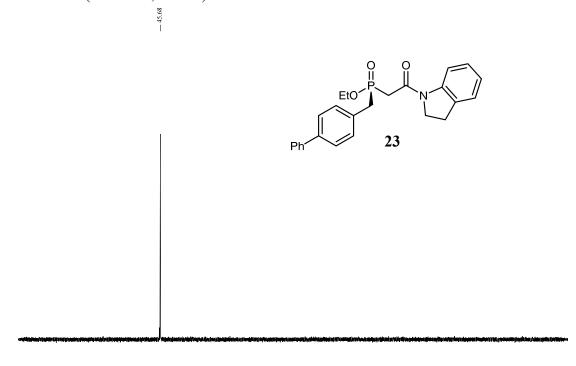


¹³C NMR of 22 (100 MHz, CDCl₃)

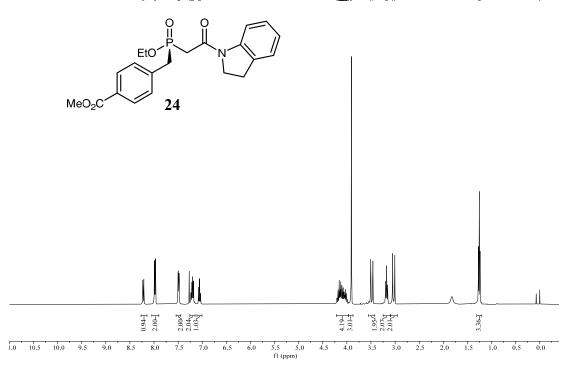

³¹P NMR of 22 (162 MHz, CDCl₃)

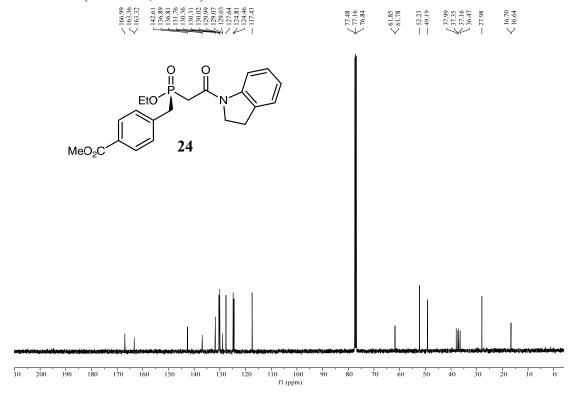

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 fl (ppm)


¹H NMR of 23 (400 MHz, CDCl₃)

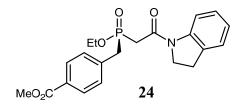


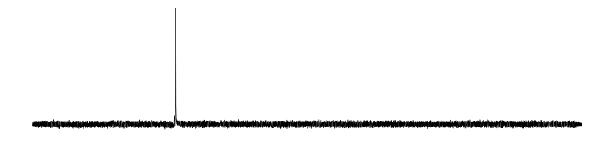
¹³C NMR of 23 (100 MHz, CDCl₃)



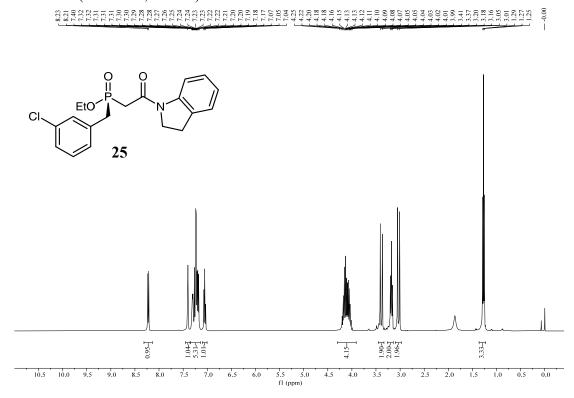

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220-230-240 fl (ppm)

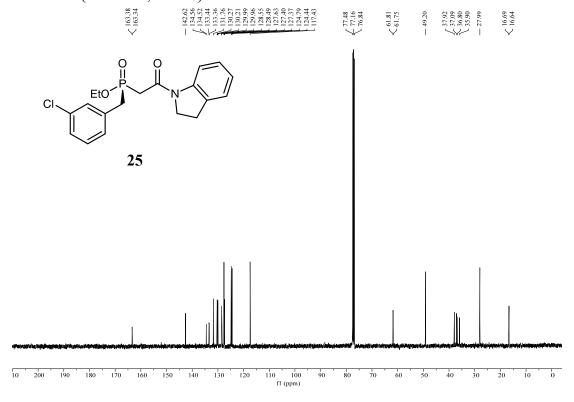
¹H NMR of 24 (400 MHz, CDCl₃)

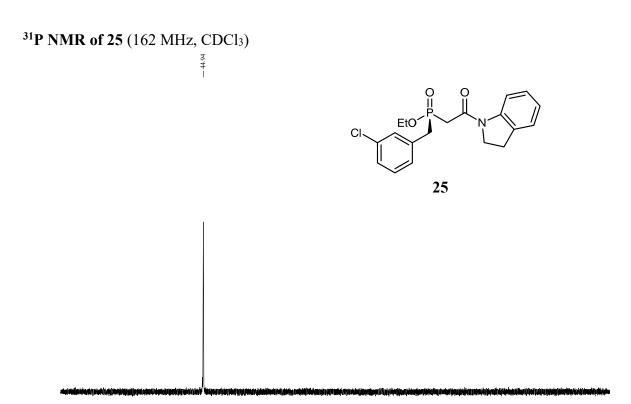



¹³C NMR of 24 (100 MHz, CDCl₃)

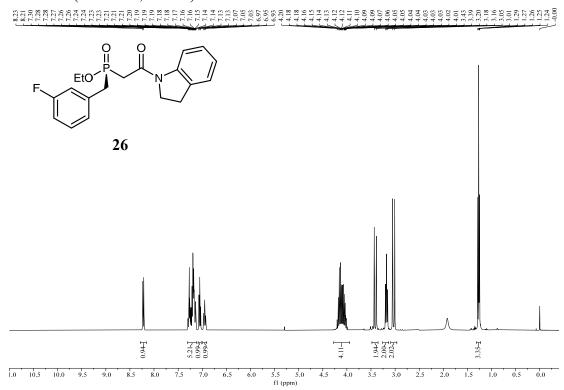
³¹P NMR of 24 (162 MHz, CDCl₃)

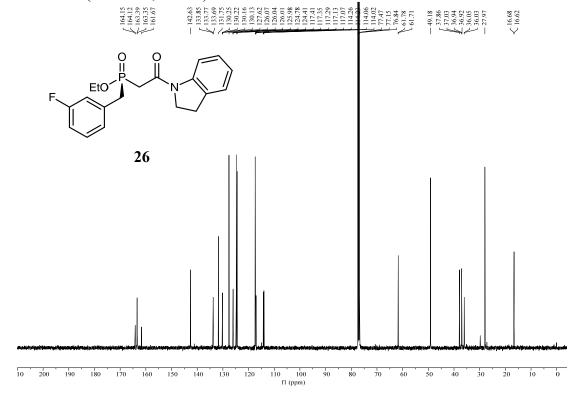


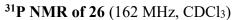



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220-230-240 fl (ppm)

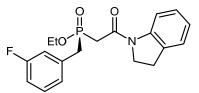
¹H NMR of 25 (400 MHz, CDCl₃)


¹³C NMR of 25 (100 MHz, CDCl₃)

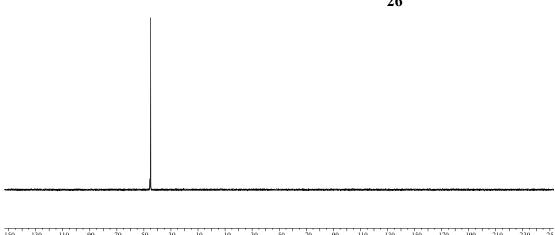


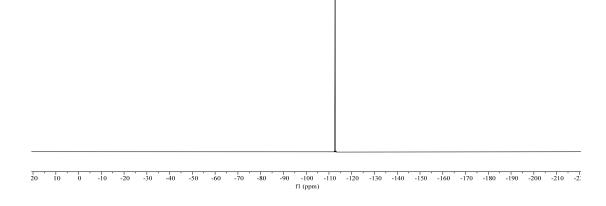

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 fl (ppm)

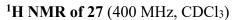
¹H NMR of 26 (400 MHz, CDCl₃)

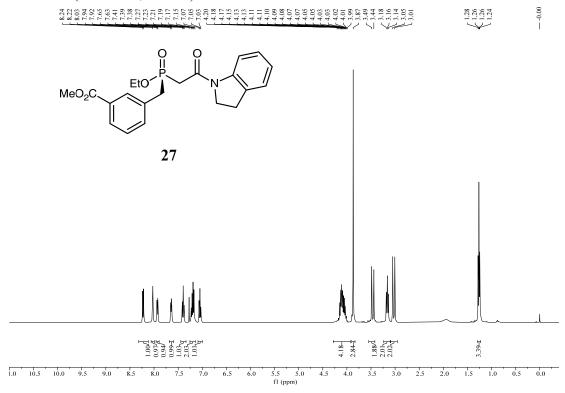


¹³C NMR of 26 (100 MHz, CDCl₃)

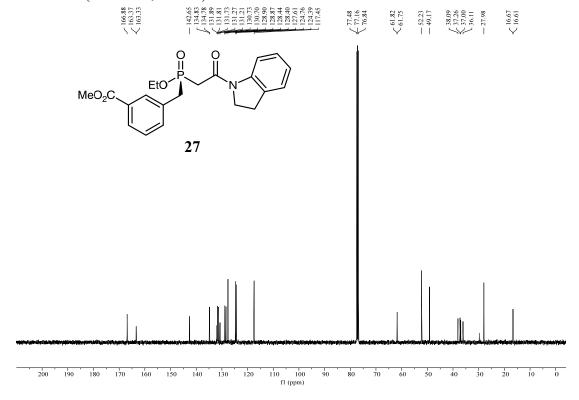


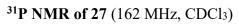


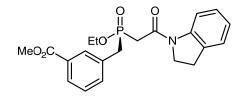

26



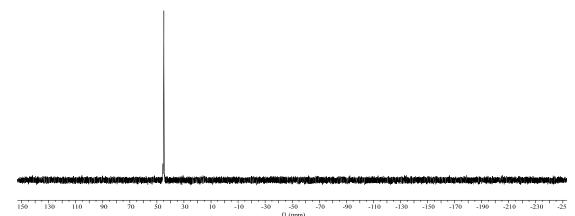
¹⁹F NMR of 26 (375 MHz, CDCl₃)

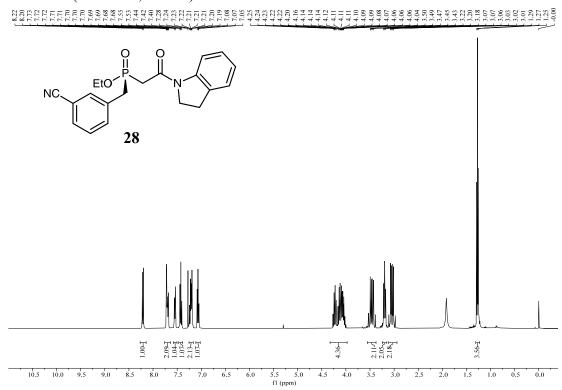

26

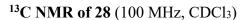


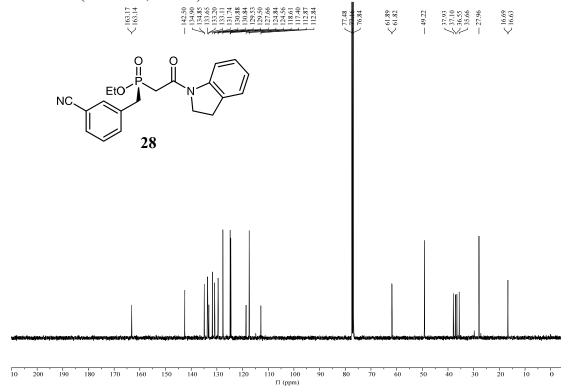


¹³C NMR of 27 (100 MHz, CDCl₃)



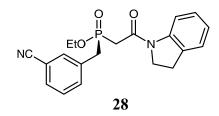


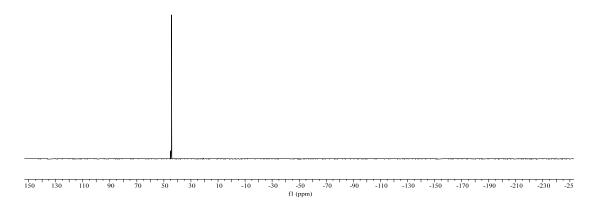

27

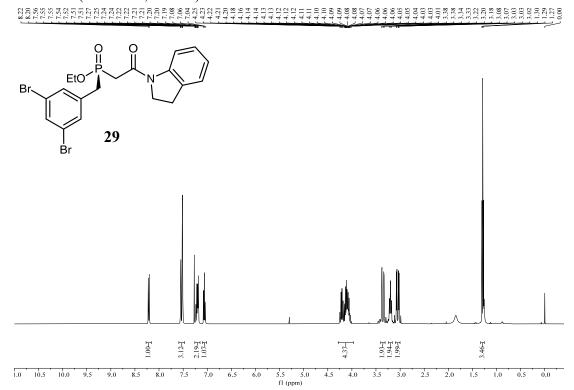


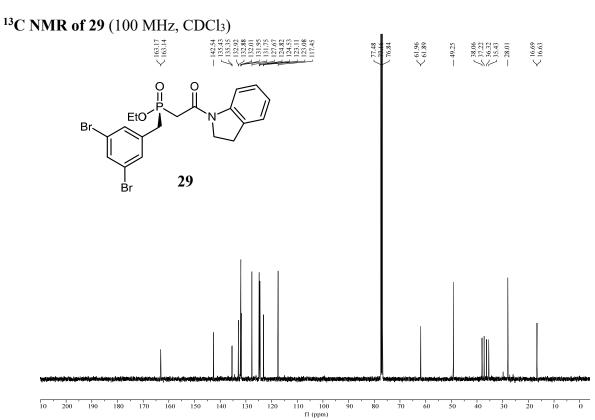

S320

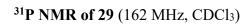
¹H NMR of 28 (400 MHz, CDCl₃)

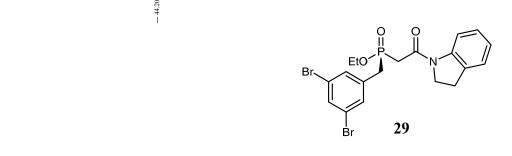


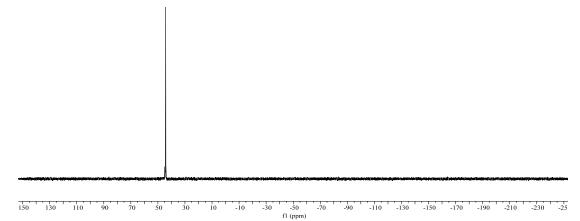


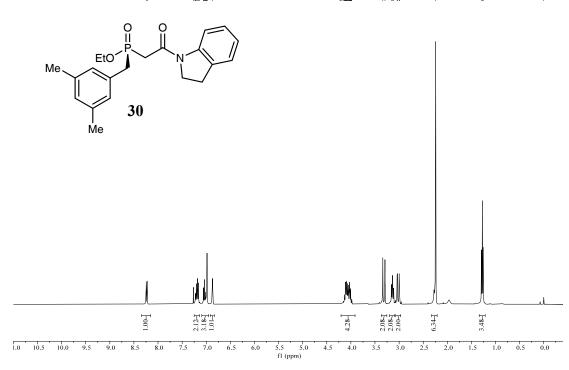


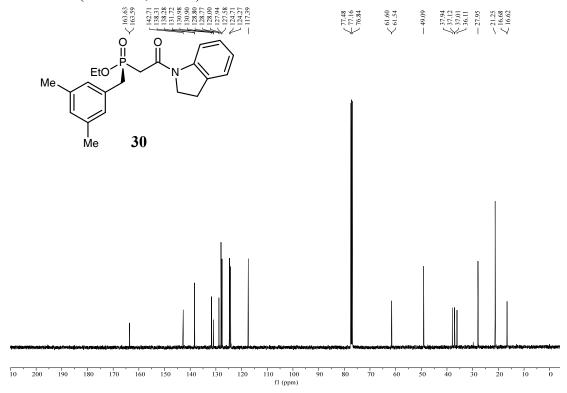


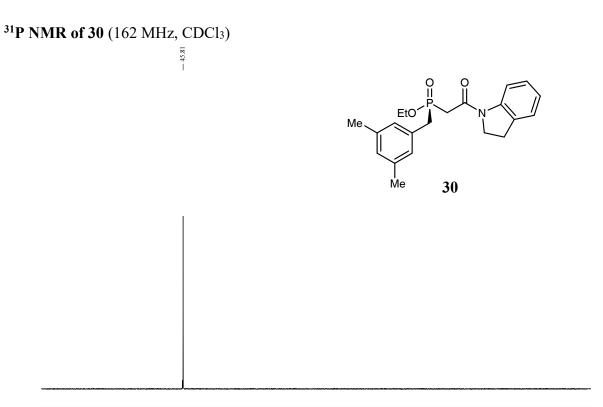


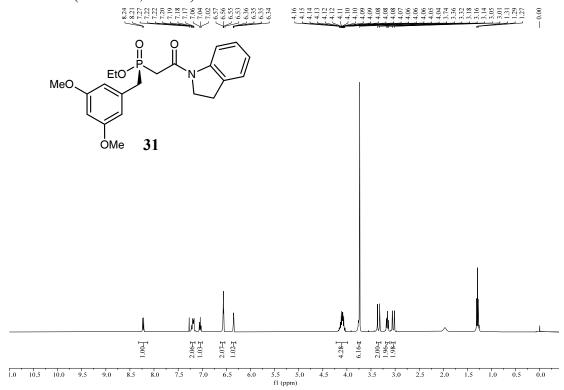



¹H NMR of 29 (400 MHz, CDCl₃)

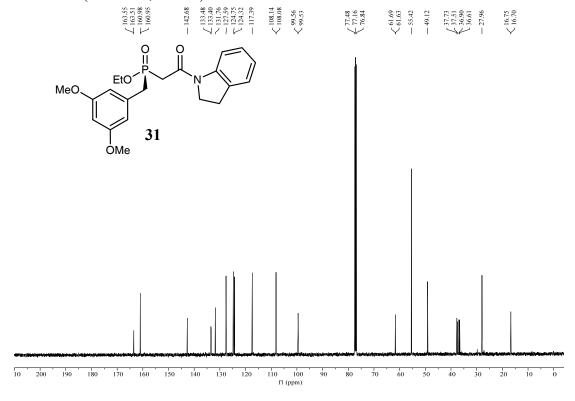


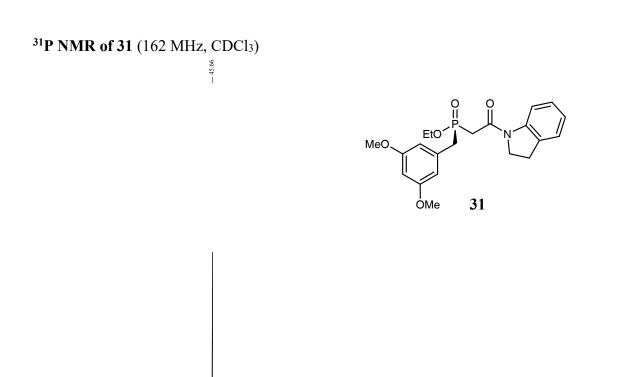



¹H NMR of 30 (400 MHz, CDCl₃)



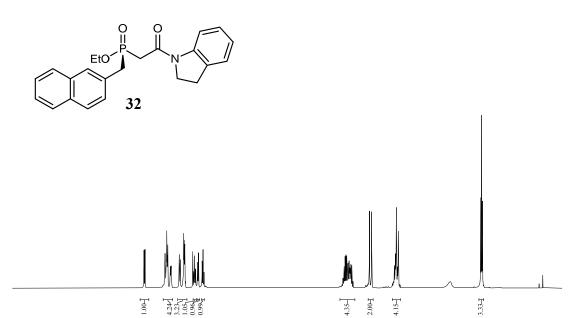
¹³C NMR of 30 (100 MHz, CDCl₃)



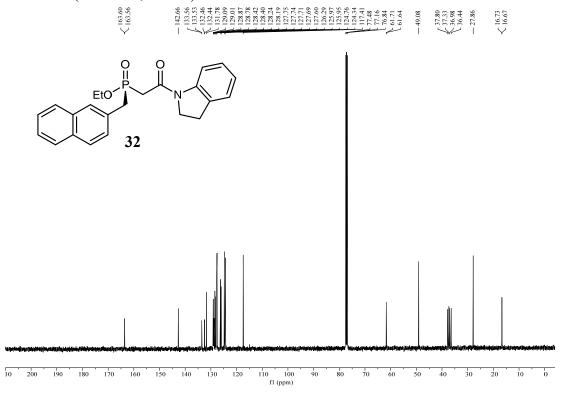


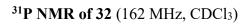
¹H NMR of 31 (400 MHz, CDCl₃)

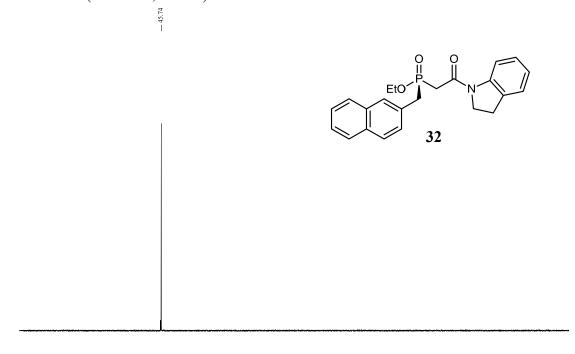
¹³C NMR of 31 (100 MHz, CDCl₃)



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220-230-240 fl (ppm)

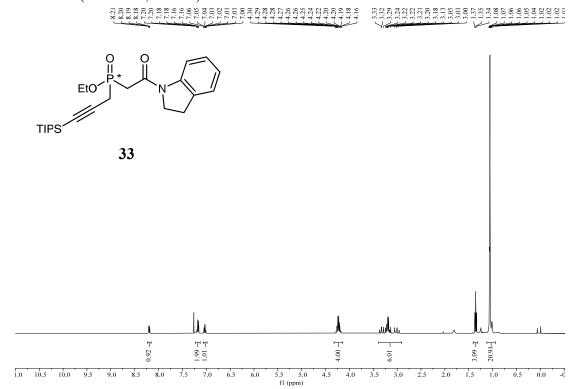

¹H NMR of 32 (400 MHz, CDCl₃)

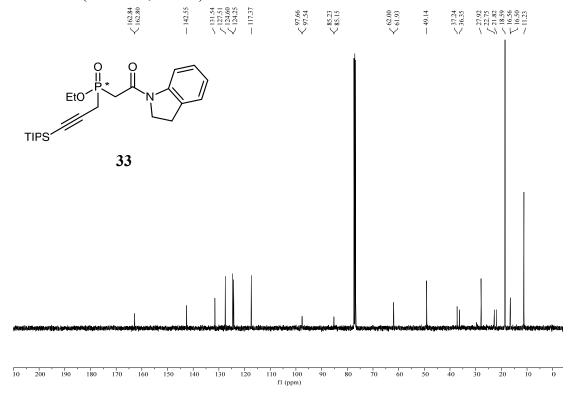


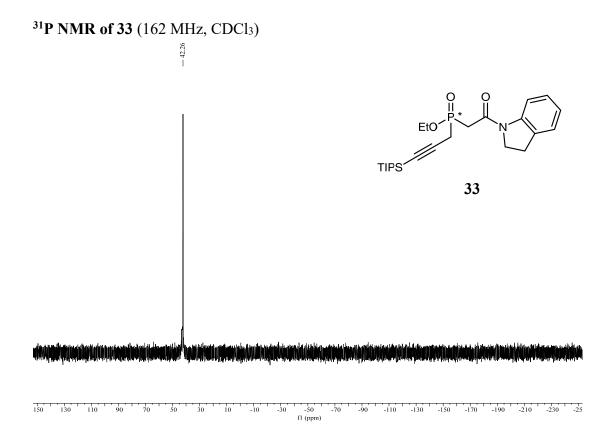


5.5 5.0 4.5 fl (ppm) 4.0 3.5

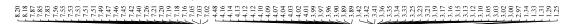
¹³C NMR of 32 (100 MHz, CDCl₃)

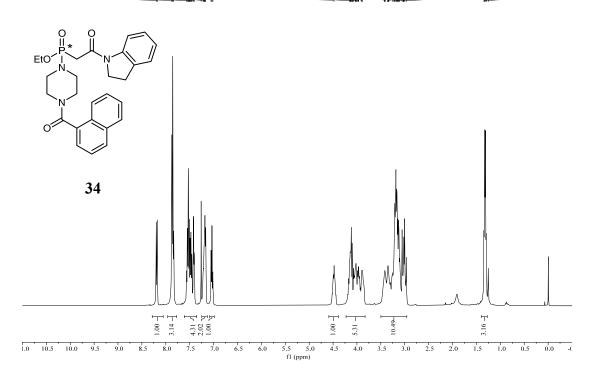


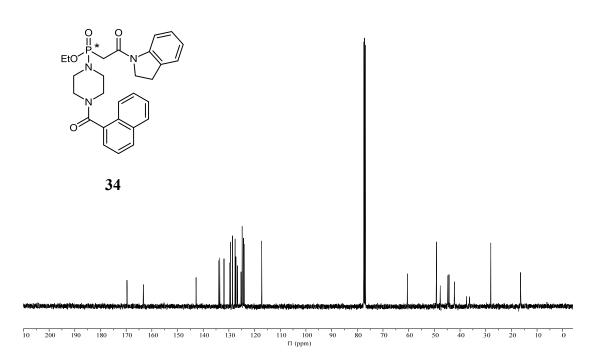



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220-230-240 fl (ppm)

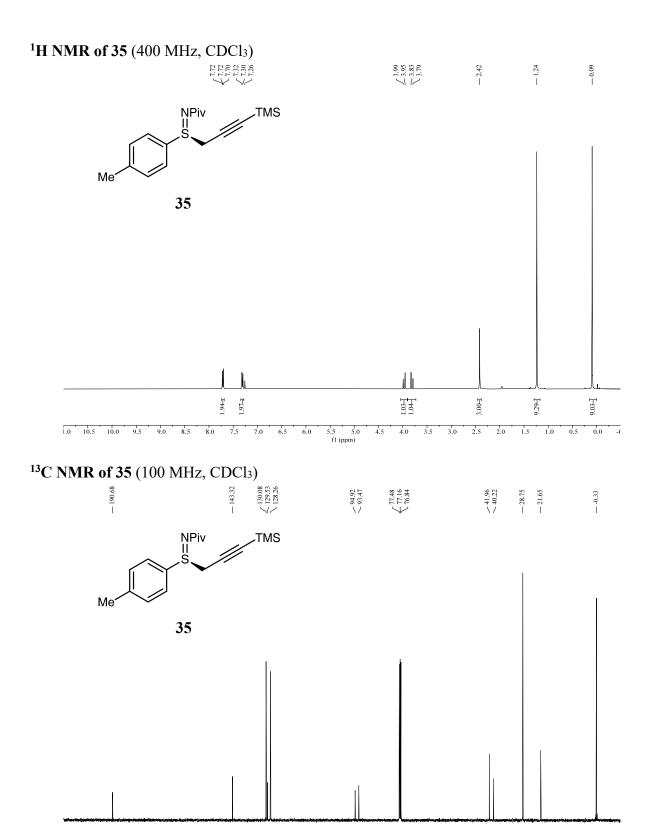
¹H NMR of 33 (400 MHz, CDCl₃)

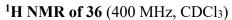


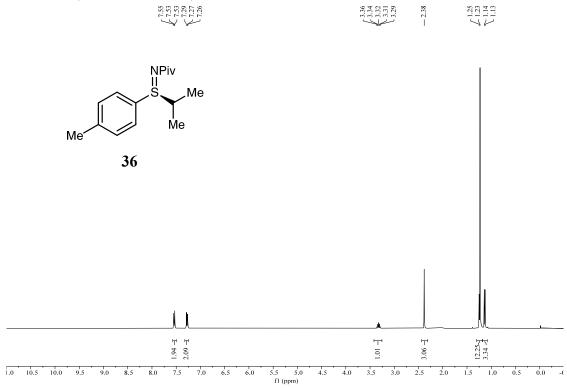

¹³C NMR of 33 (100 MHz, CDCl₃)


¹H NMR of 34 (400 MHz, CDCl₃)

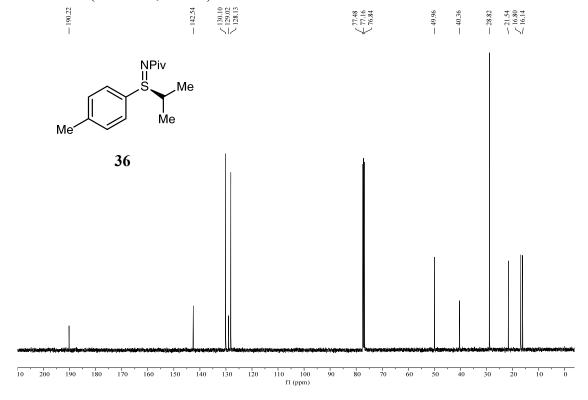
¹³C NMR of 34 (100 MHz, CDCl₃)

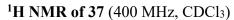


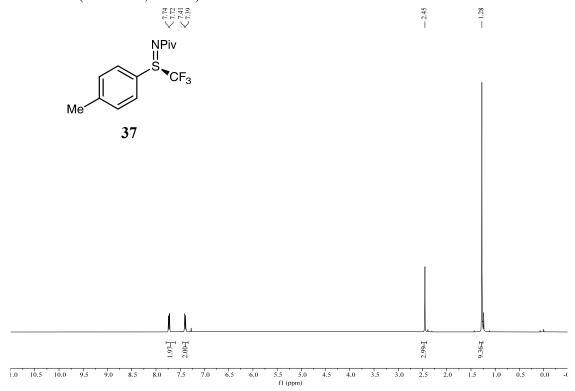

³¹P NMR of 34 (162 MHz, CDCl₃)

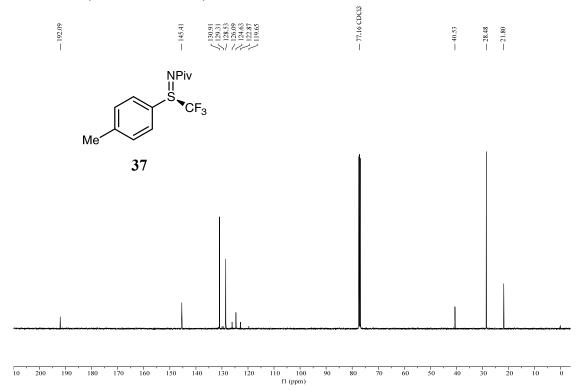


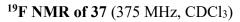
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220-230-240 fl (ppm)

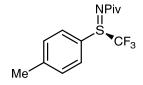



100 90 80 70 fl (ppm)

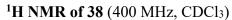


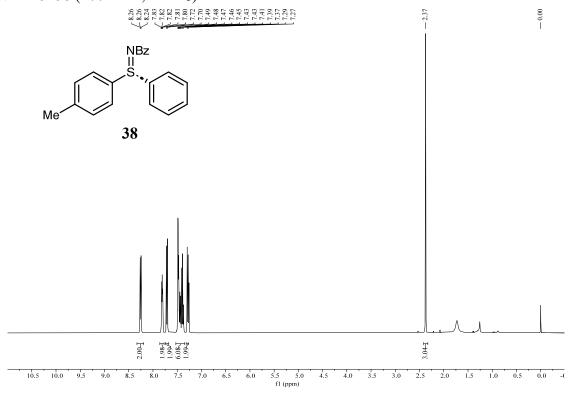

¹³C NMR of 36 (100 MHz, CDCl₃)



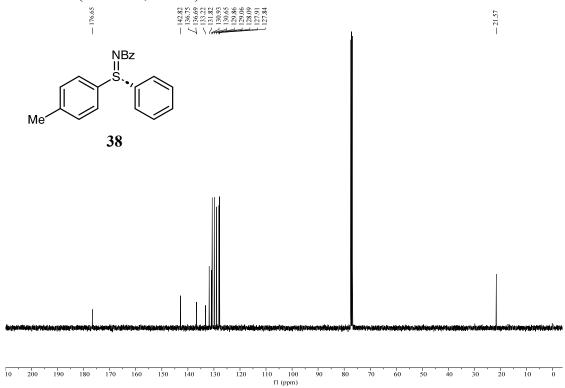


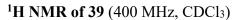
¹³C NMR of 37 (100 MHz, CDCl₃)

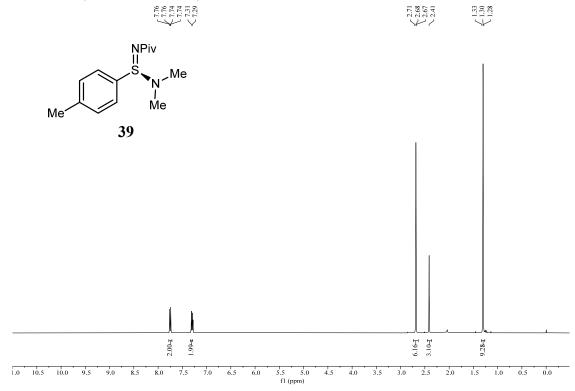


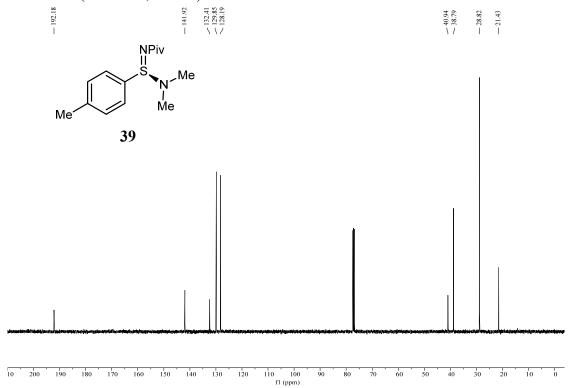


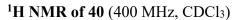
37

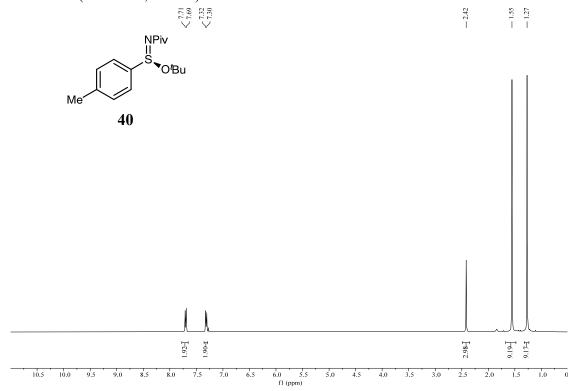


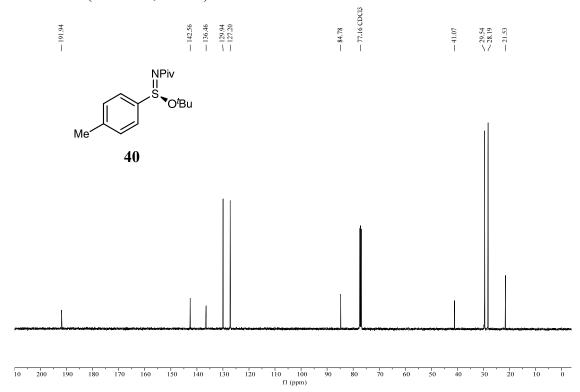

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

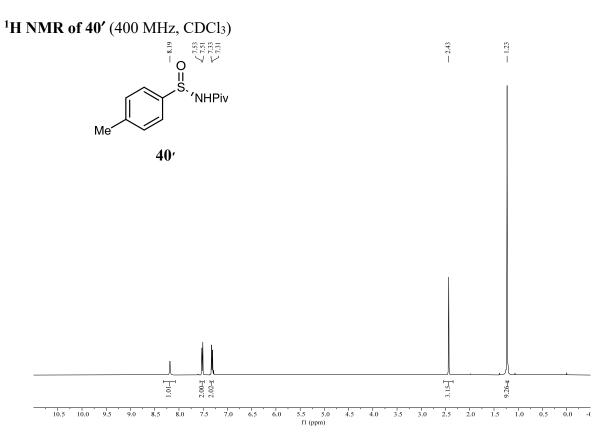


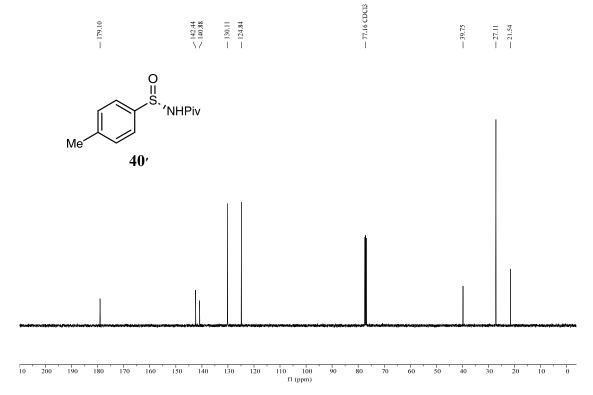

¹³C NMR of 38 (100 MHz, CDCl₃)

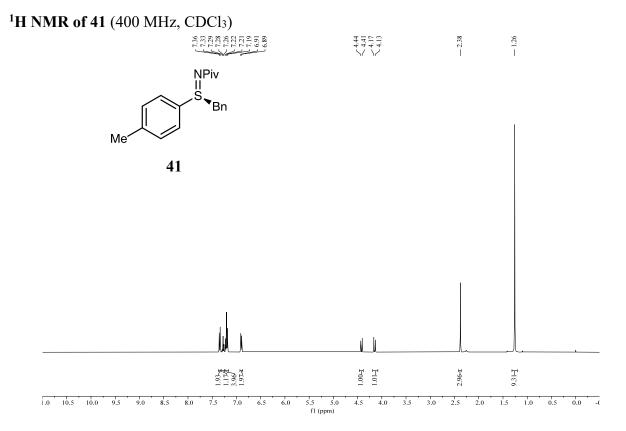


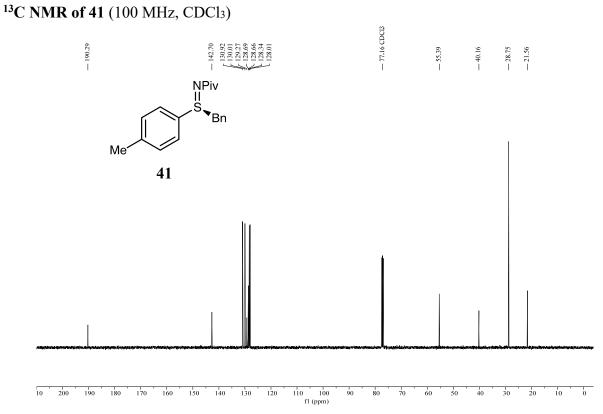


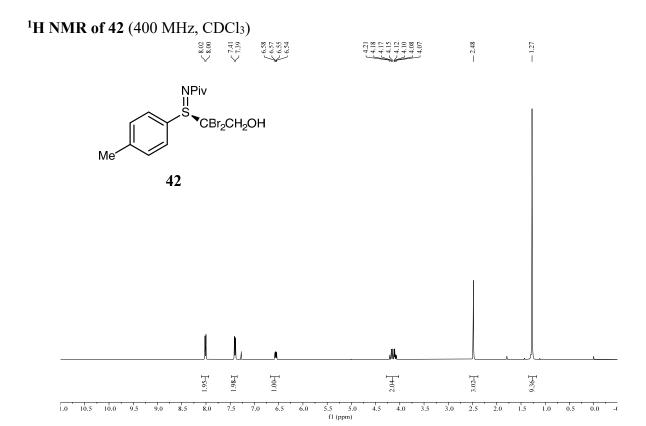

¹³C NMR of 39 (100 MHz, CDCl₃)

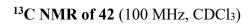


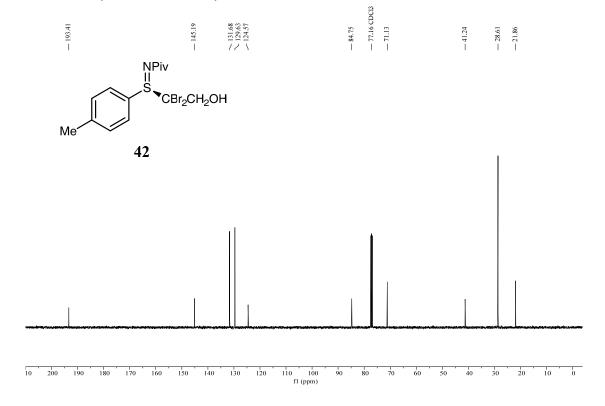


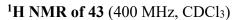

¹³C **NMR of 40** (100 MHz, CDCl₃)

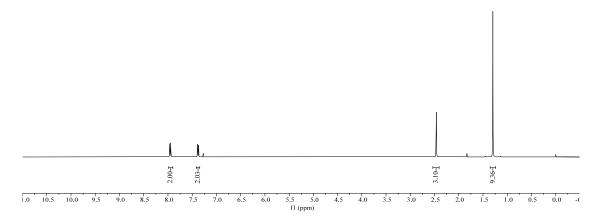


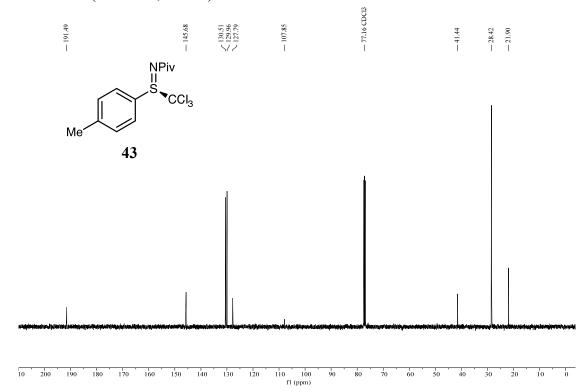




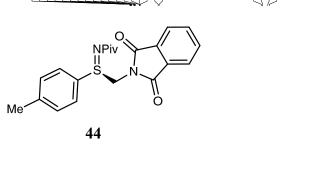


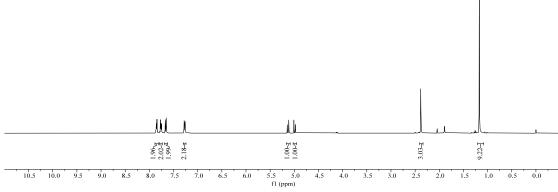




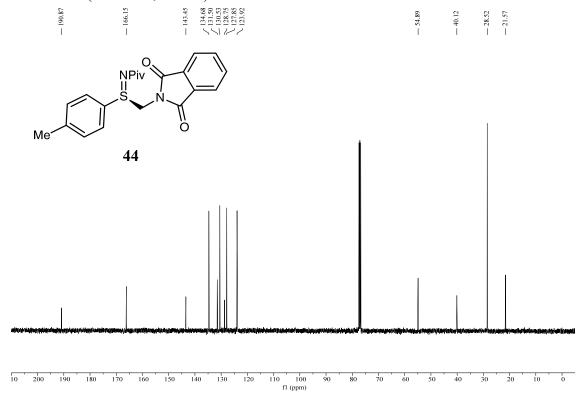


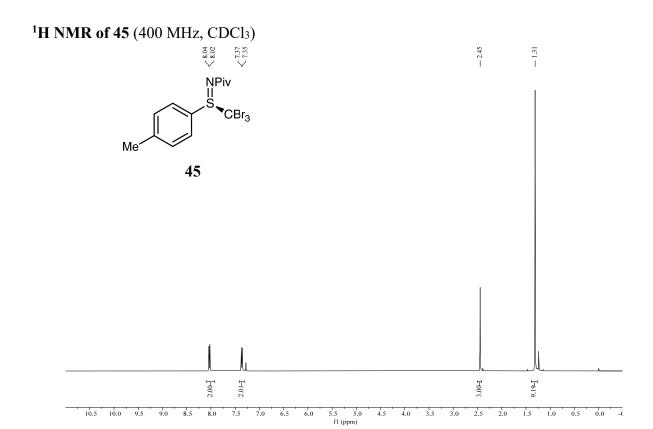


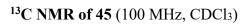


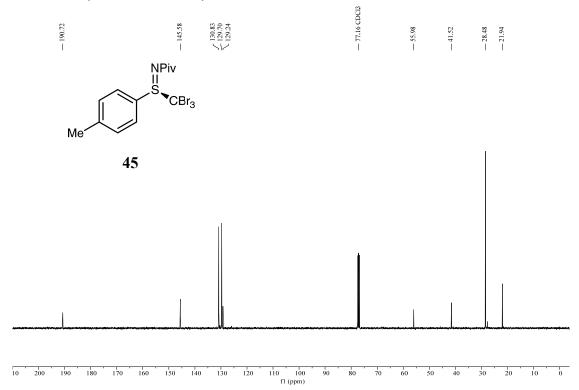


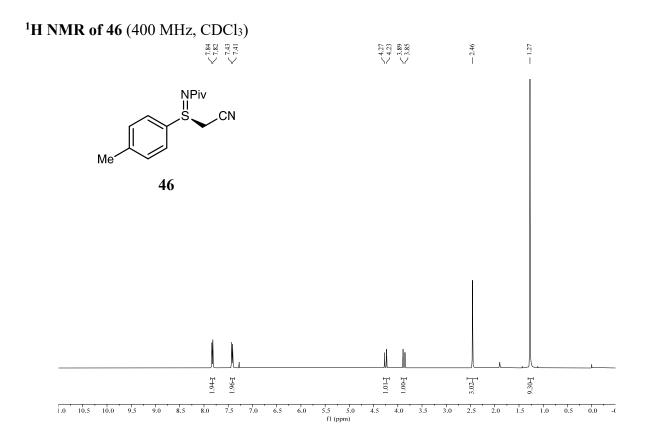
¹³C NMR of 43 (100 MHz, CDCl₃)

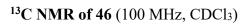


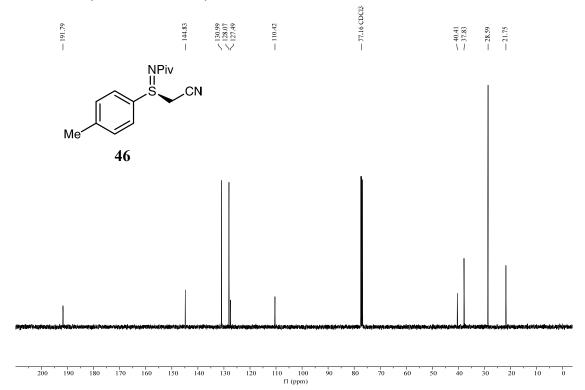


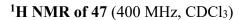


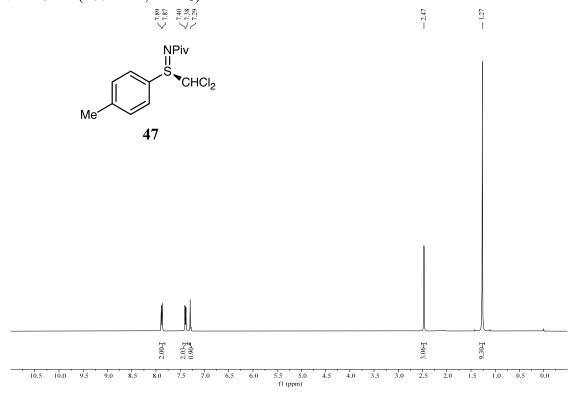


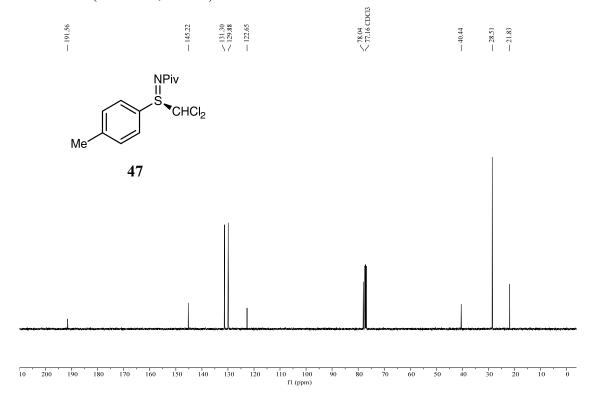

¹³C NMR of 44 (100 MHz, CDCl₃)

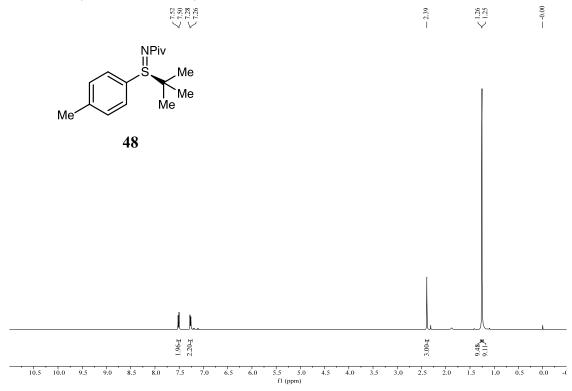




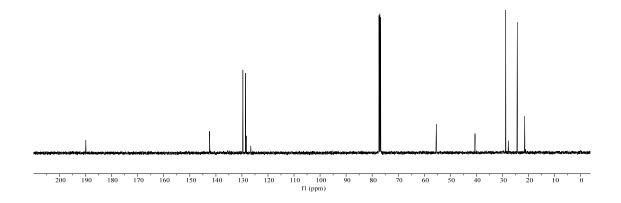




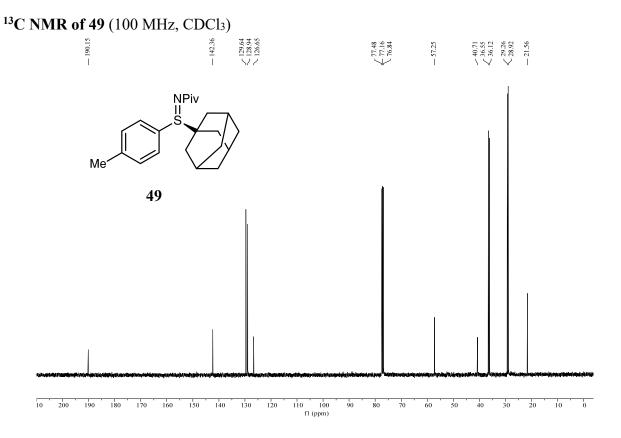


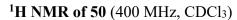


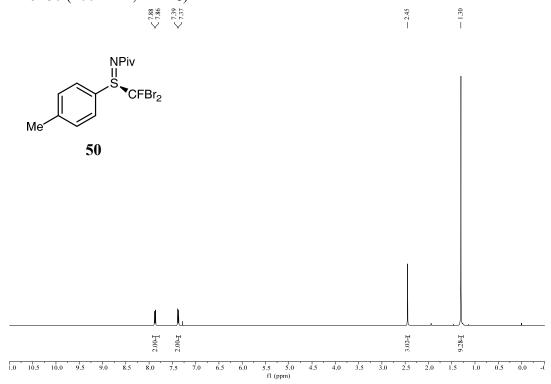
¹³C **NMR of 47** (100 MHz, CDCl₃)

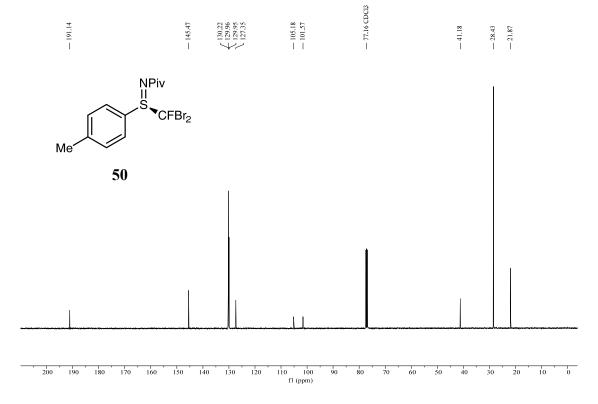


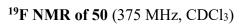


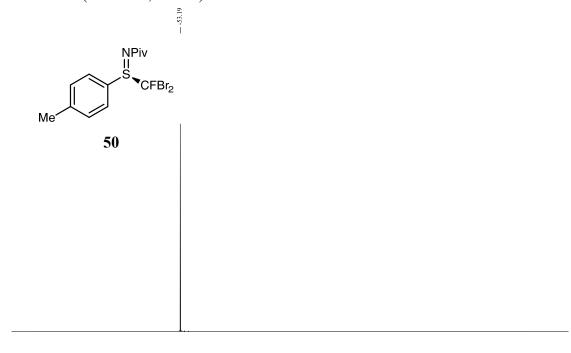


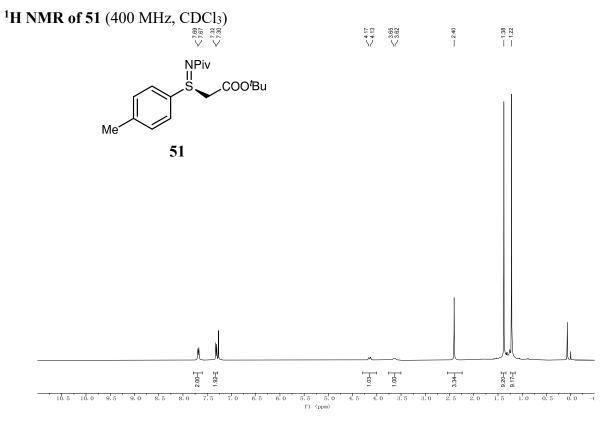

¹³C NMR of 48 (100 MHz, CDCl₃)

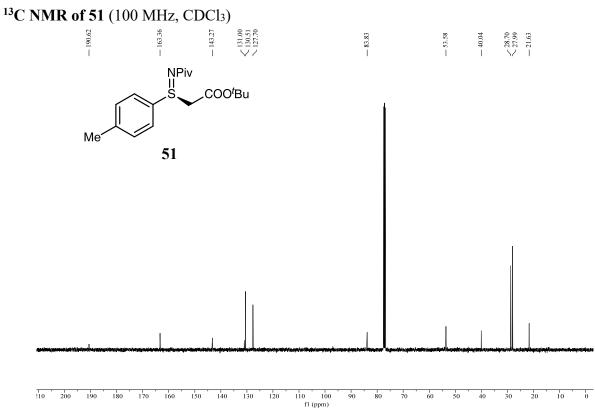


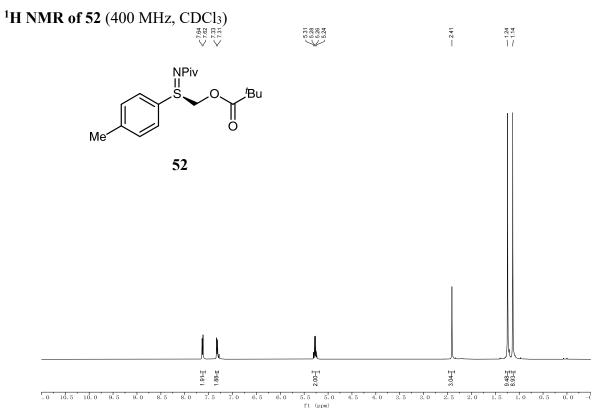


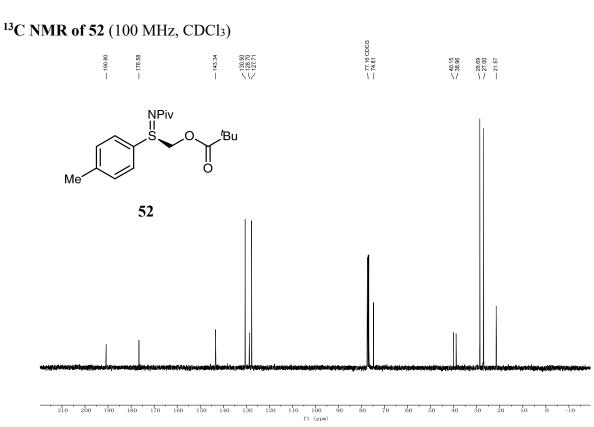


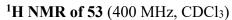


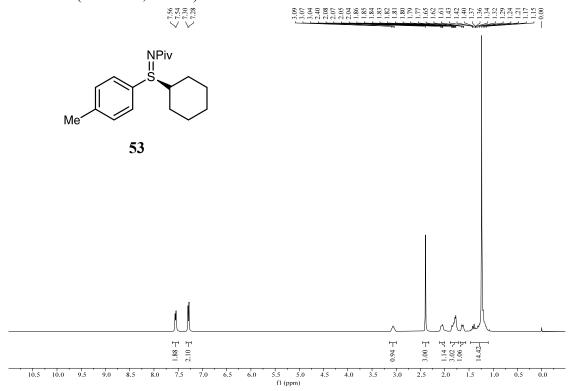

$^{13}\text{C NMR of 50} \ (100 \ \text{MHz}, \text{CDCl}_3)$

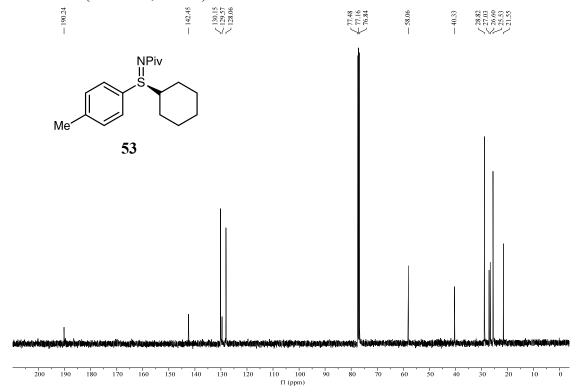


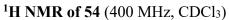


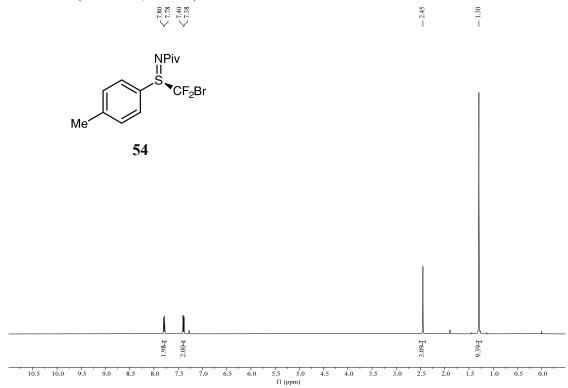


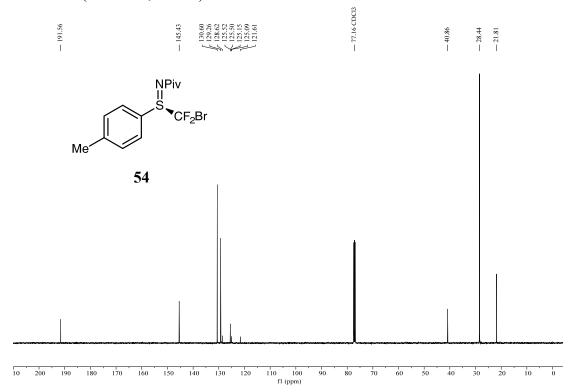

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

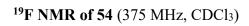


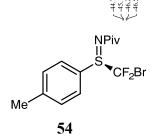


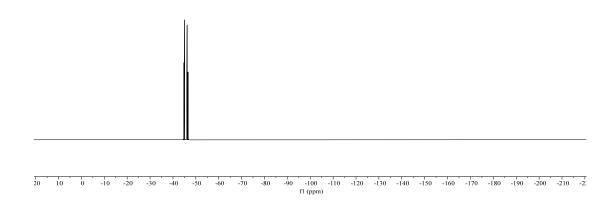




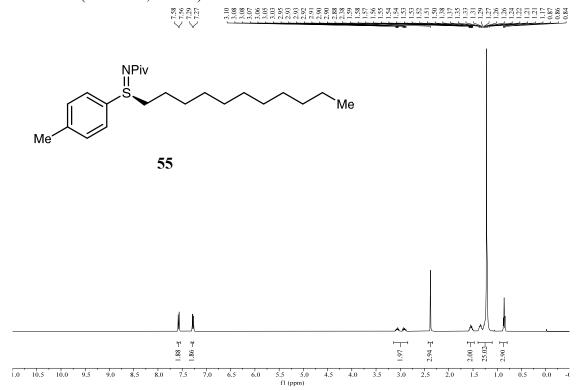

¹³C NMR of 53 (100 MHz, CDCl₃)

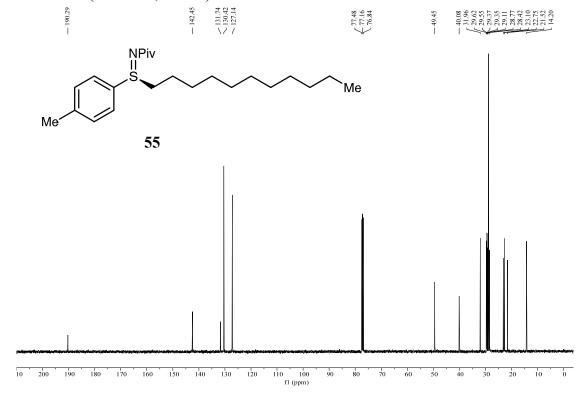


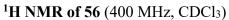




¹³C NMR of 54 (100 MHz, CDCl₃)

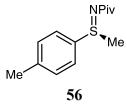


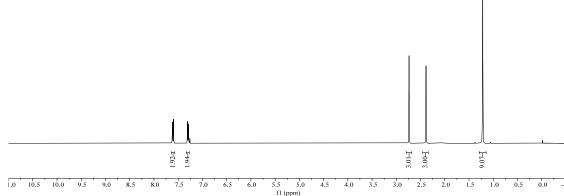


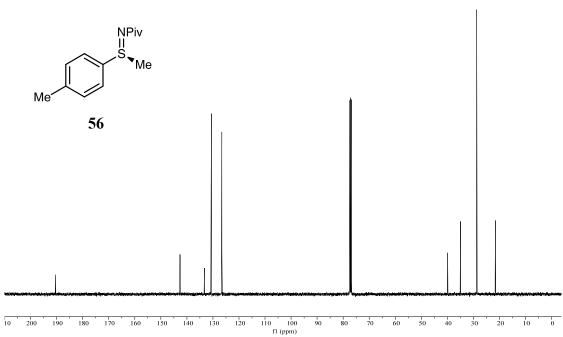


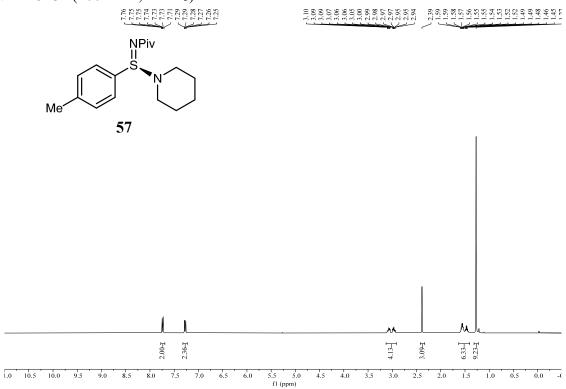
¹H NMR of 55 (400 MHz, CDCl₃)

¹³C NMR of 55 (100 MHz, CDCl₃)

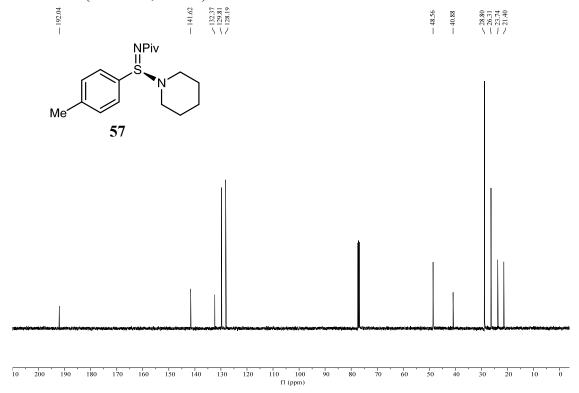


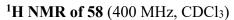


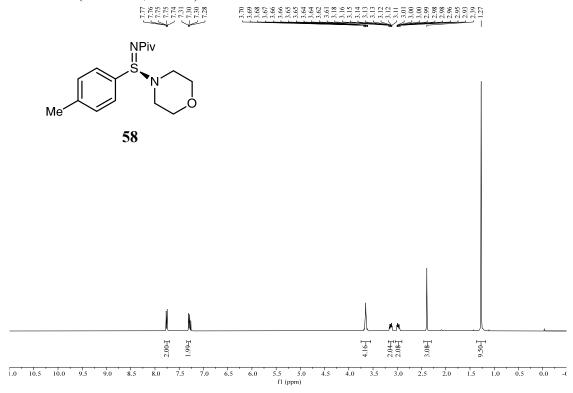


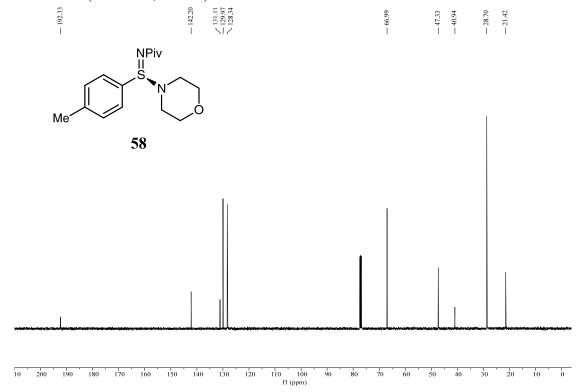


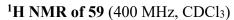
¹³C NMR of 56 (100 MHz, CDCl₃)

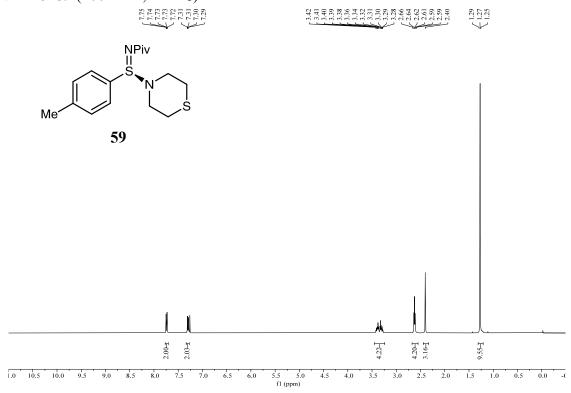


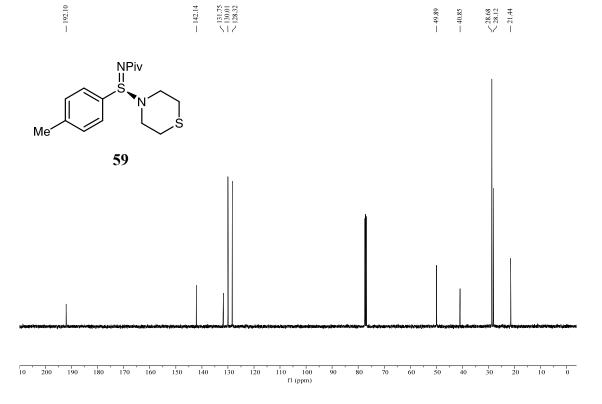


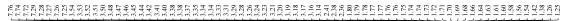


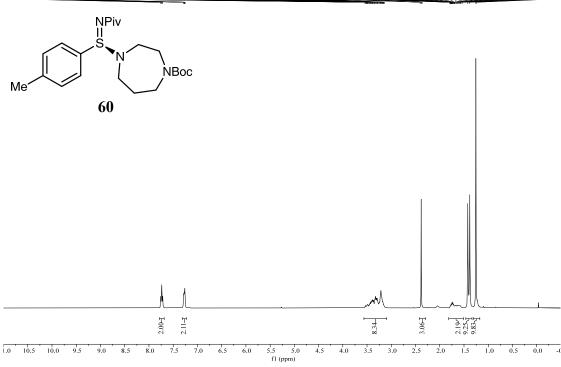

¹³C NMR of 57 (100 MHz, CDCl₃)



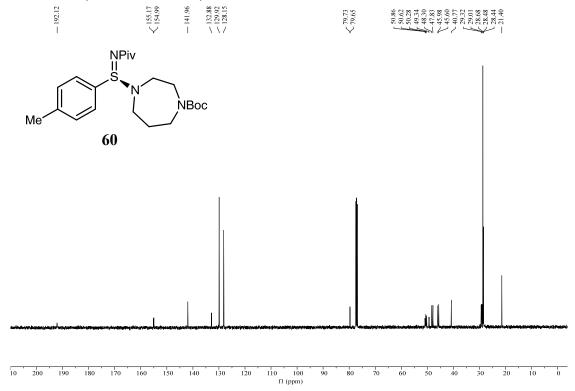


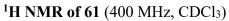

¹³C NMR of 58 (100 MHz, CDCl₃)

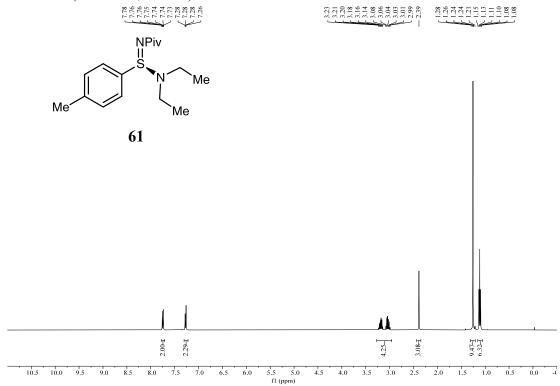


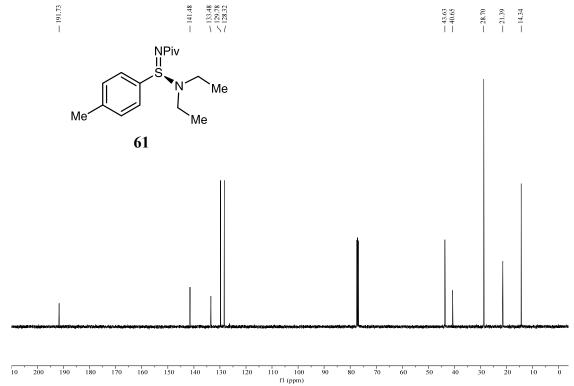


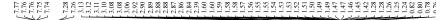
¹³C NMR of 59 (100 MHz, CDCl₃)

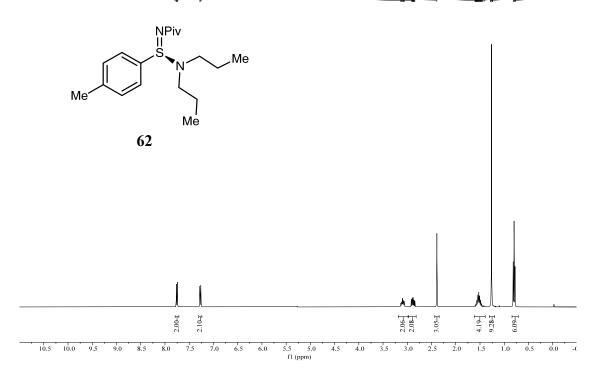



¹H NMR of 60 (400 MHz, CDCl₃)

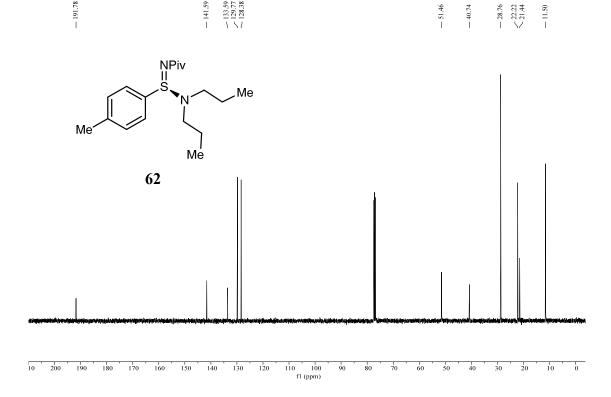


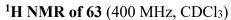

¹³C NMR of 60 (100 MHz, CDCl₃)

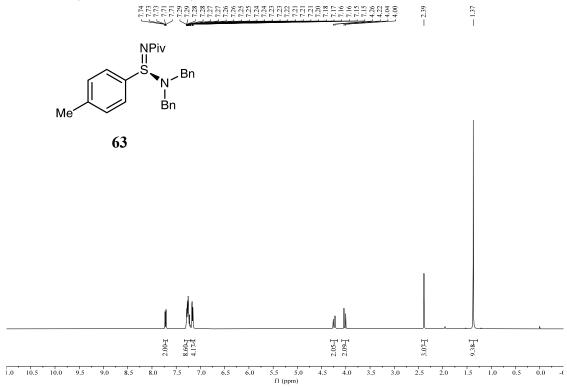


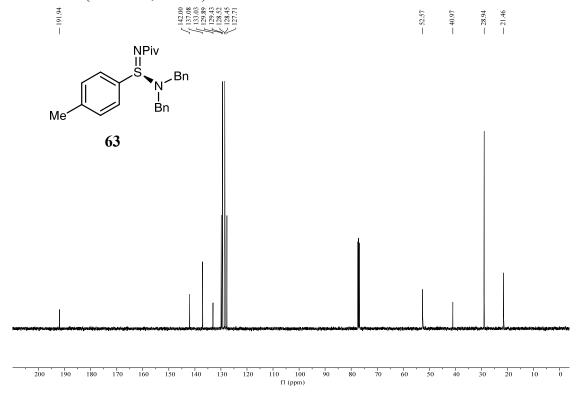


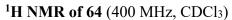
¹³C NMR of 61 (100 MHz, CDCl₃)

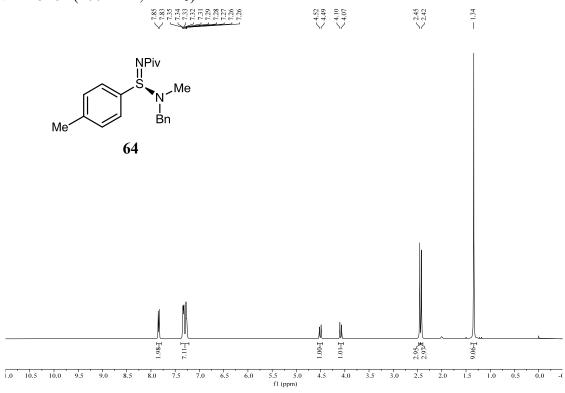


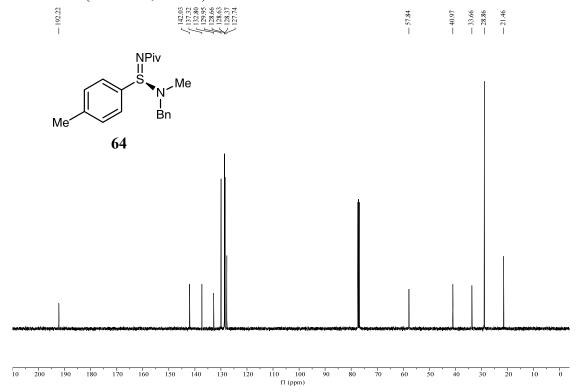

¹H NMR of 62 (400 MHz, CDCl₃)

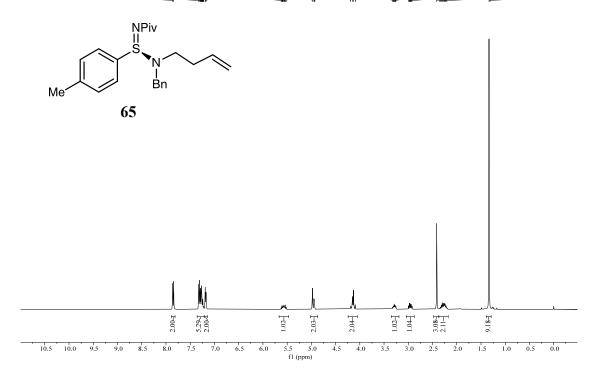



¹³C NMR of 62 (100 MHz, CDCl₃)

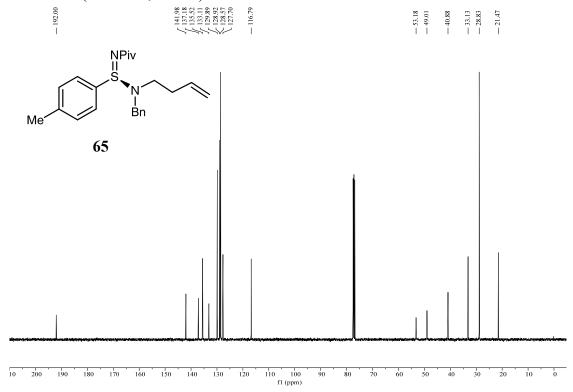




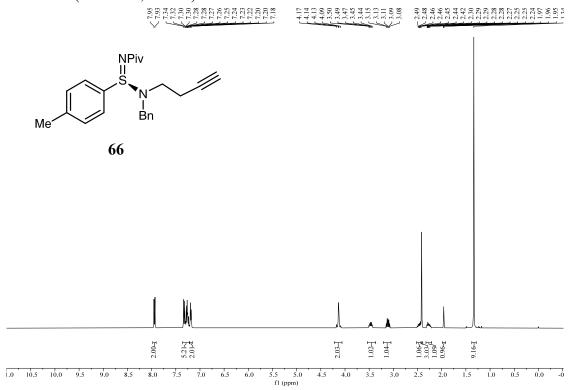

¹³C NMR of 63 (100 MHz, CDCl₃)

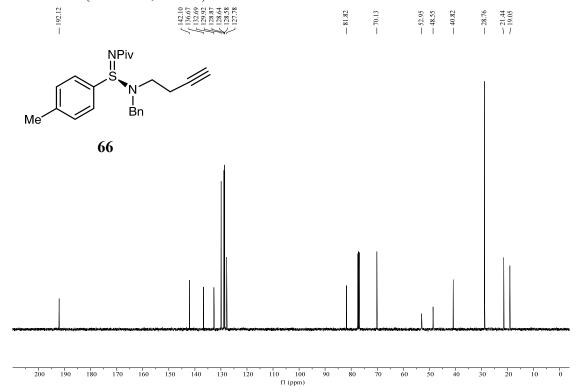


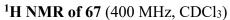
¹³C NMR of 64 (100 MHz, CDCl₃)

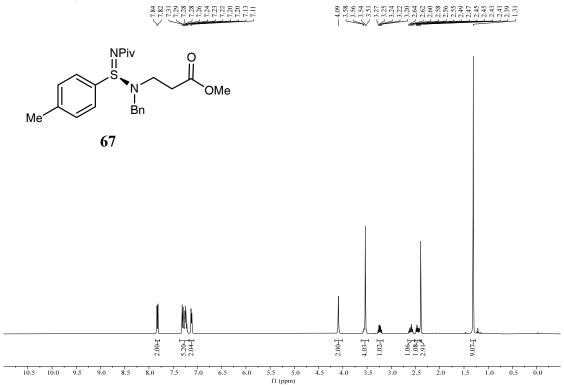


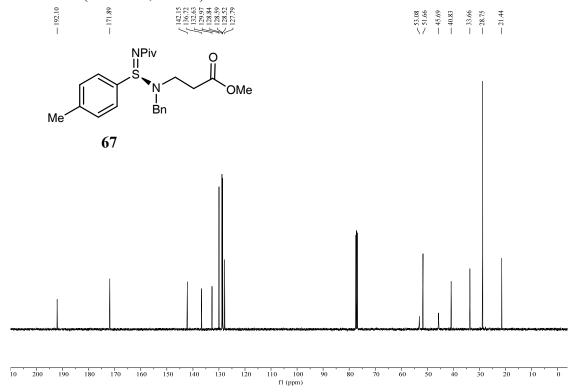
¹H NMR of 65 (400 MHz, CDCl₃)

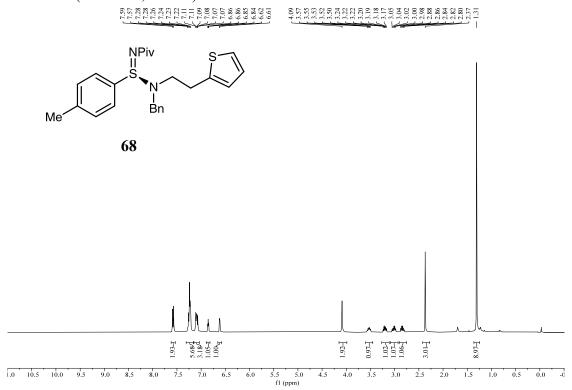


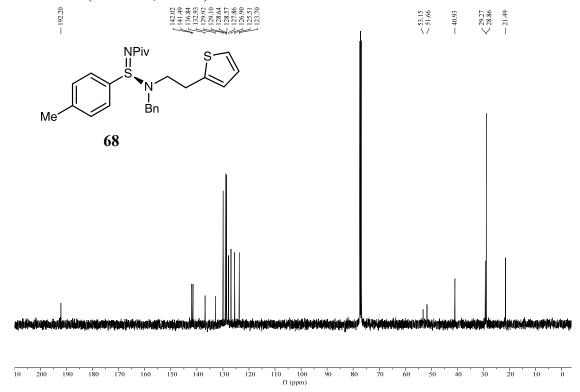

¹³C NMR of 65 (100 MHz, CDCl₃)

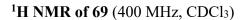


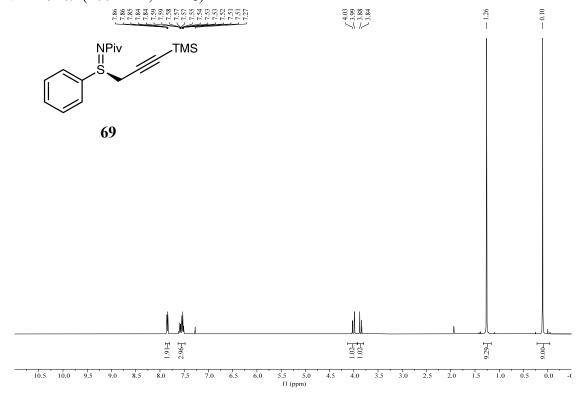

¹H NMR of 66 (400 MHz, CDCl₃)

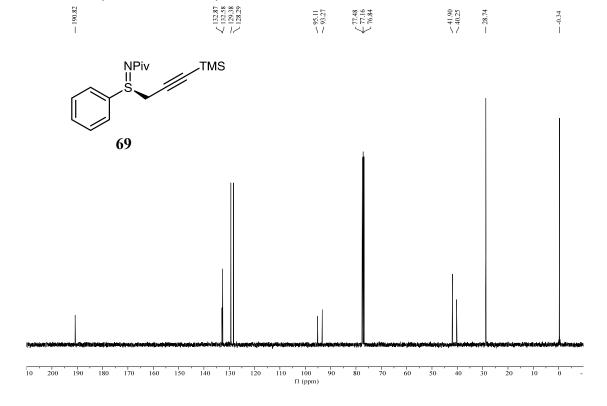

¹³C NMR of 66 (100 MHz, CDCl₃)

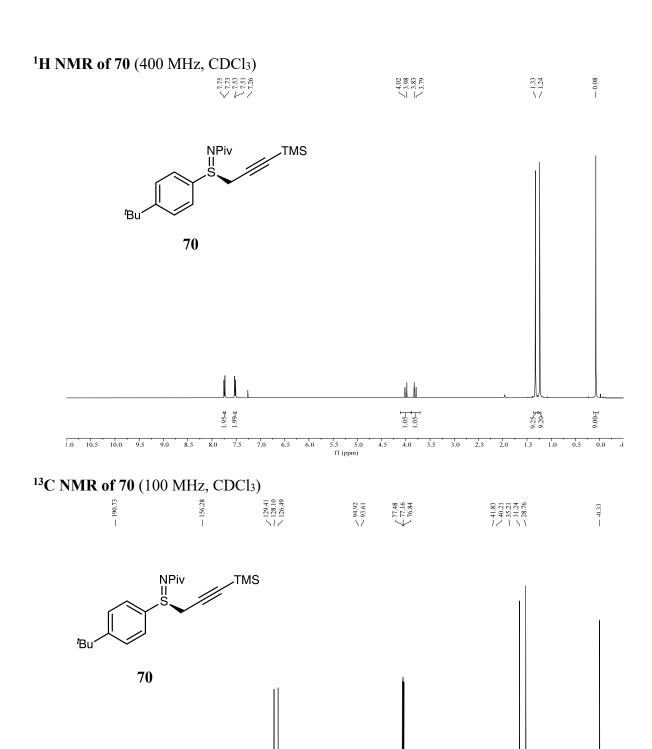


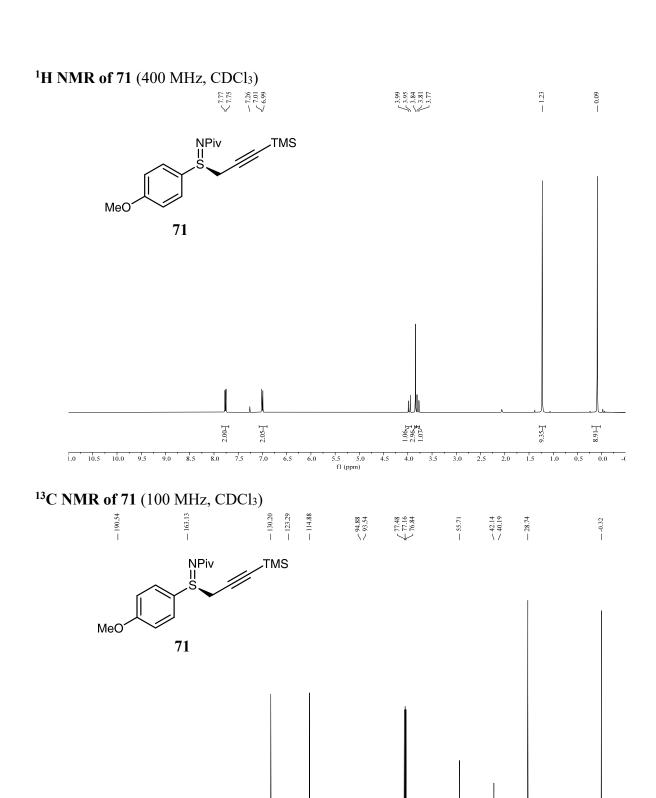

¹³C NMR of 67 (100 MHz, CDCl₃)



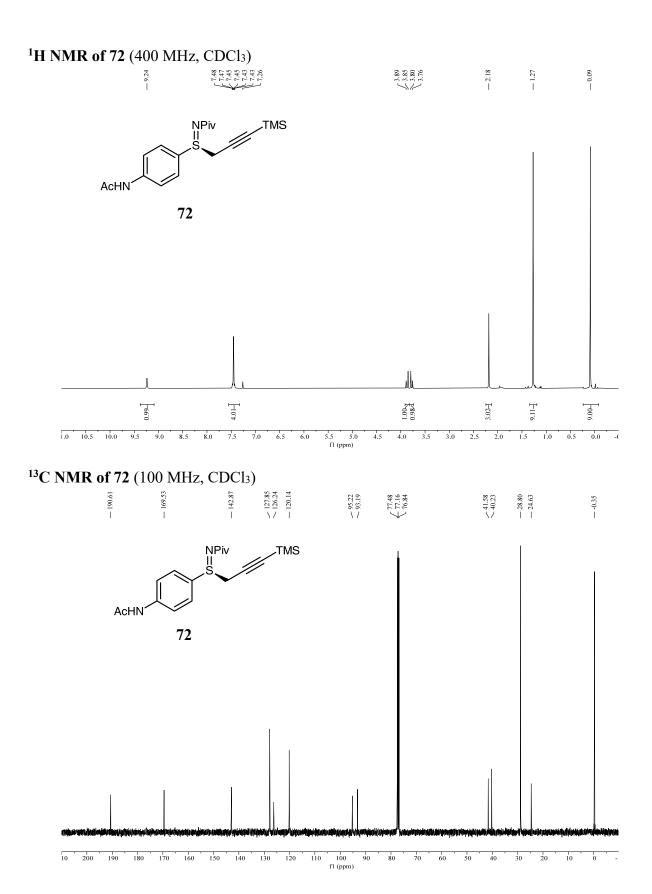

¹H NMR of 68 (400 MHz, CDCl₃)

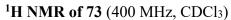

¹³C NMR of 68 (100 MHz, CDCl₃)

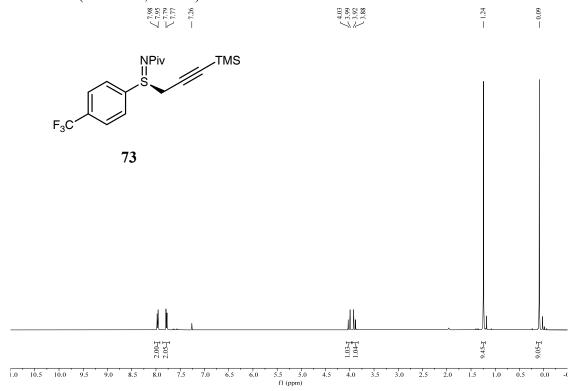


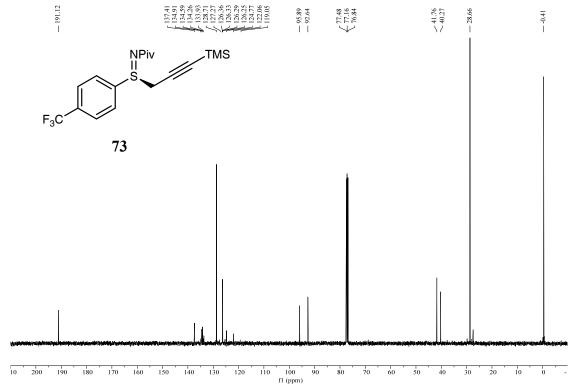


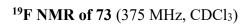
¹³C **NMR of 69** (100 MHz, CDCl₃)

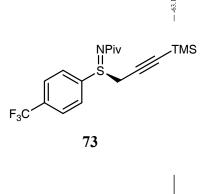


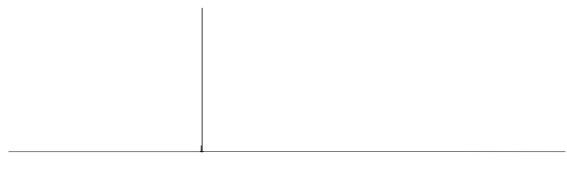


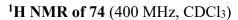

100 90 80 70 fl (ppm)

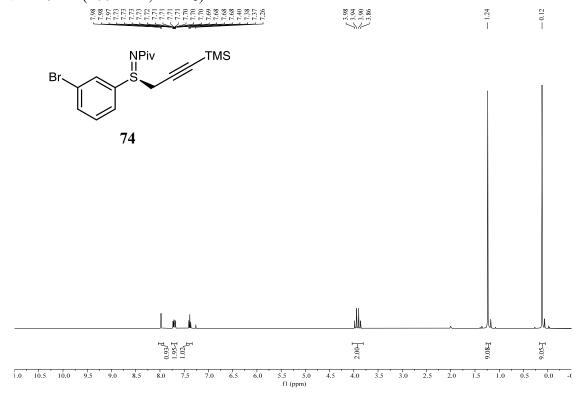

170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

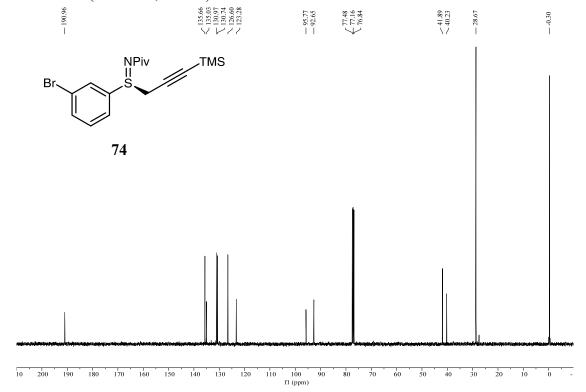




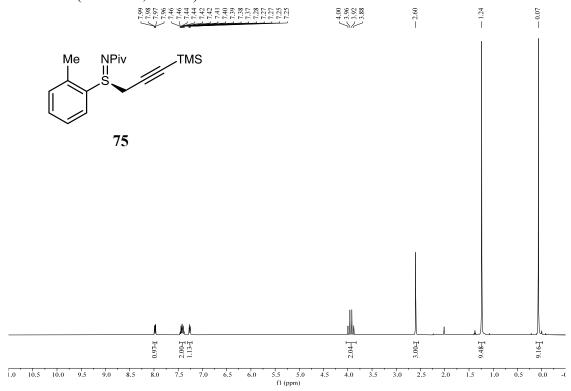


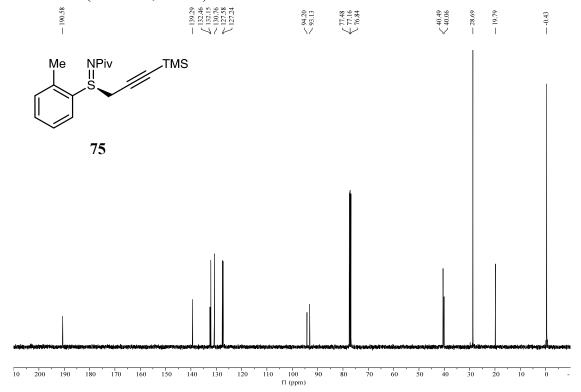

¹³C NMR of 73 (100 MHz, CDCl₃)

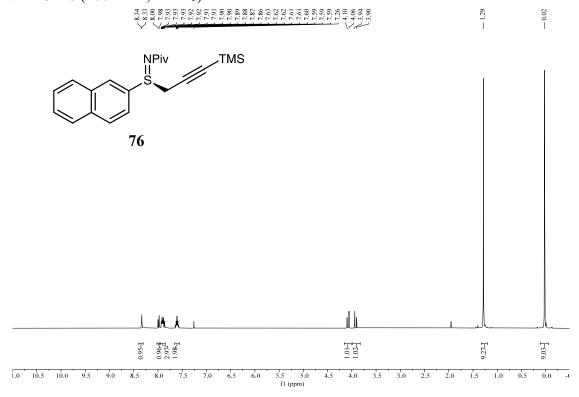


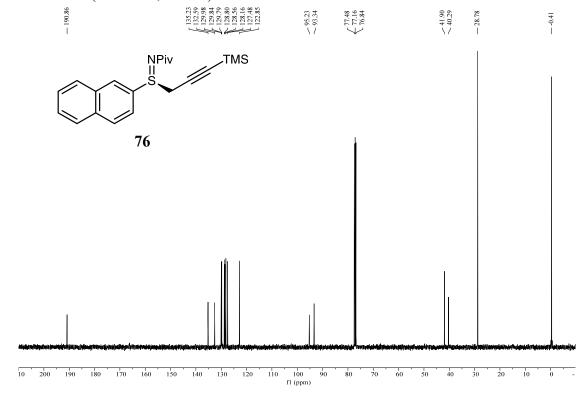


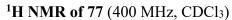


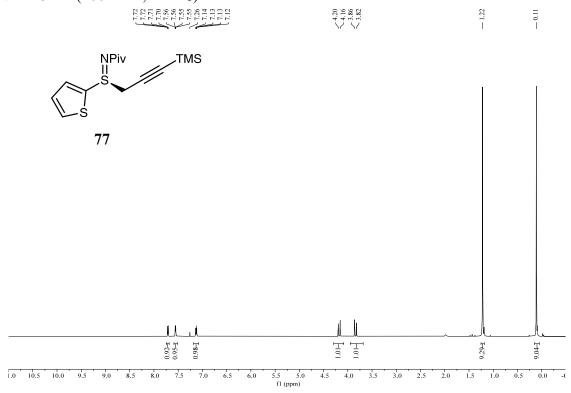


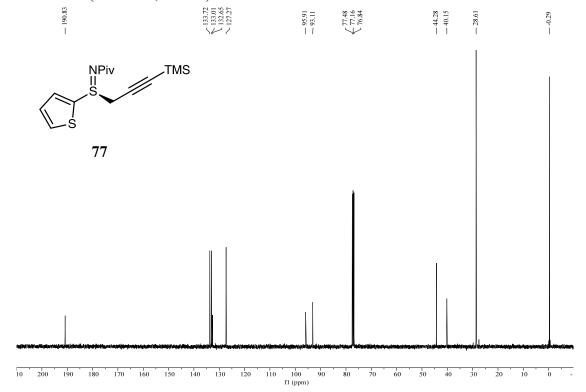

¹³C NMR of 74 (100 MHz, CDCl₃)

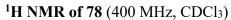


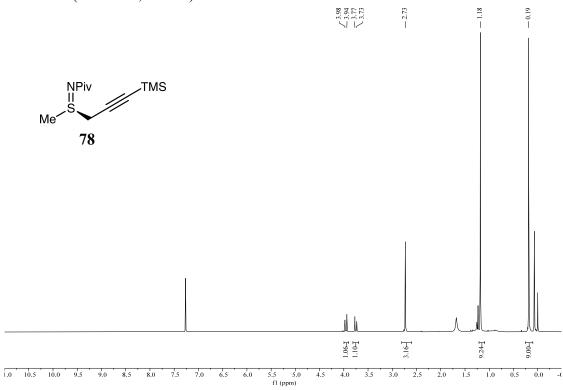

¹³C NMR of 75 (100 MHz, CDCl₃)

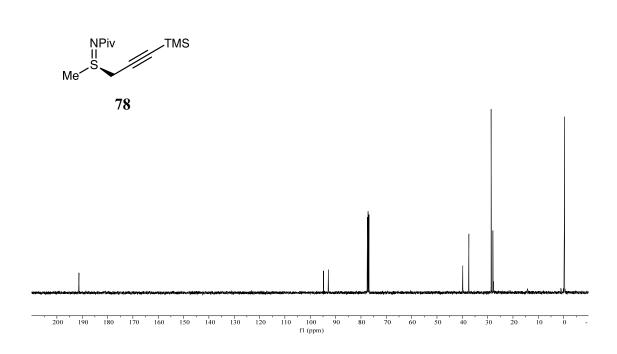




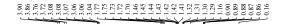

¹³C NMR of 76 (100 MHz, CDCl₃)

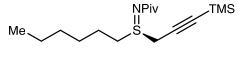


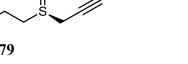


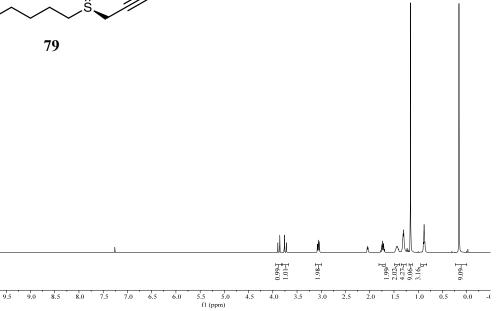

¹³C NMR of 77 (100 MHz, CDCl₃)

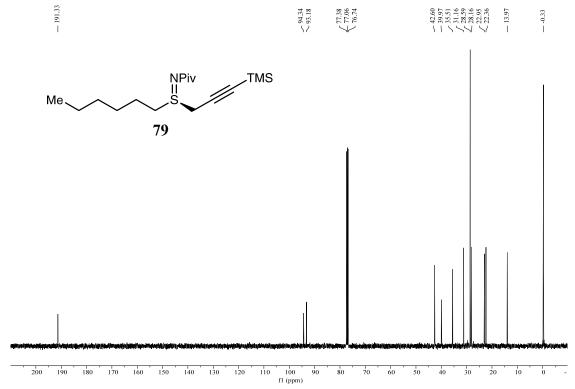


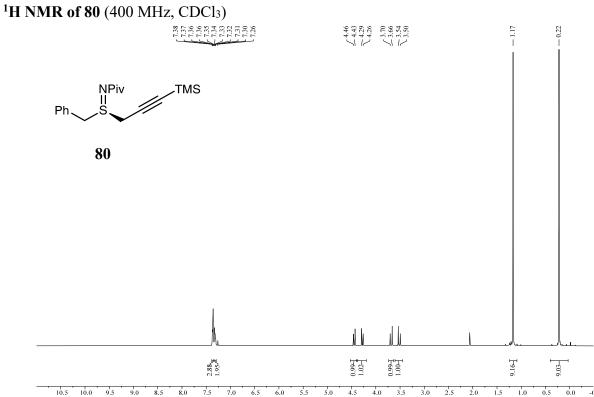


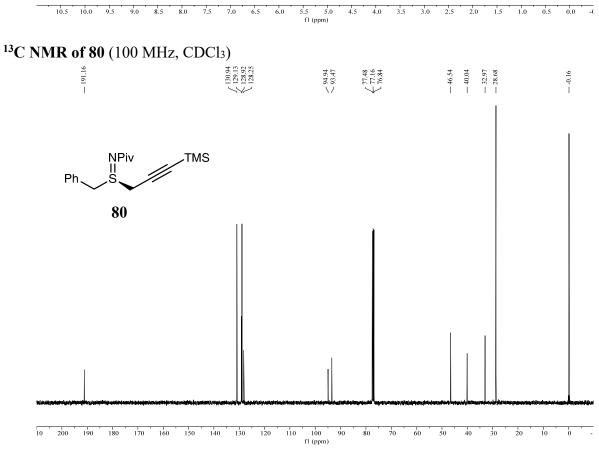


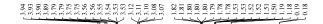

¹³C NMR of 78 (100 MHz, CDCl₃)

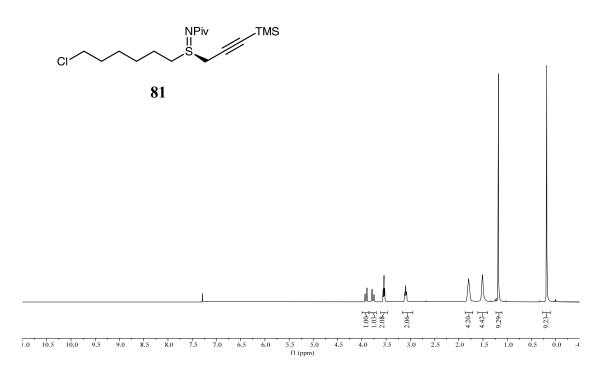


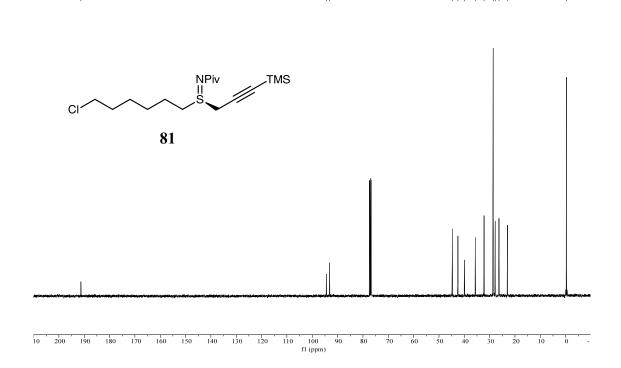






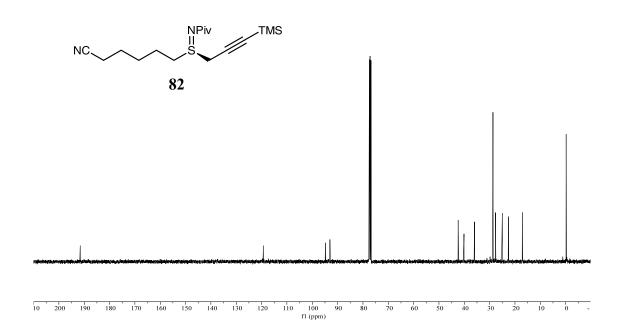

¹³C NMR of 79 (100 MHz, CDCl₃)



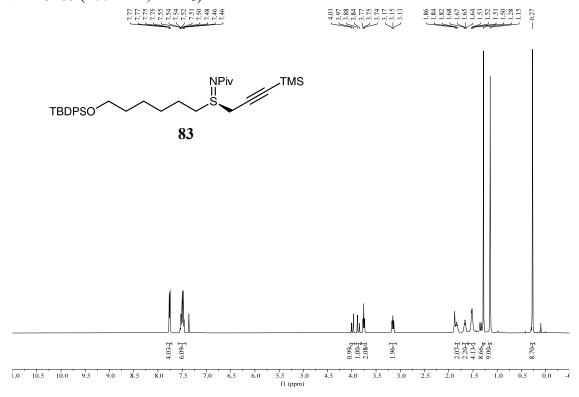


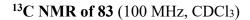
¹H NMR of 81 (400 MHz, CDCl₃)

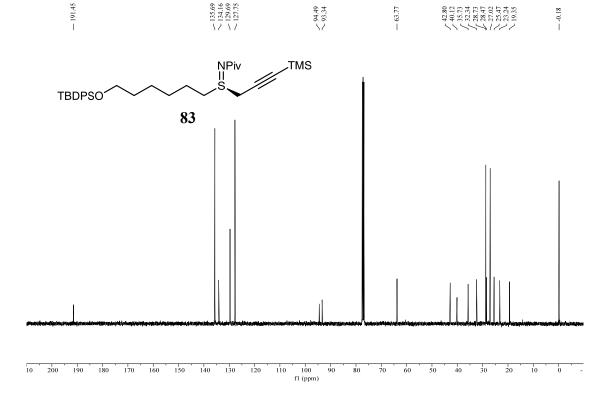
$^{13}\text{C NMR of 81} \ (100 \ \text{MHz}, \text{CDCl}_3)$

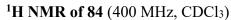


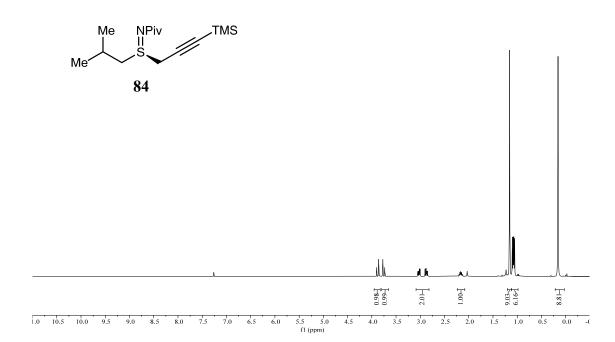
¹H NMR of 82 (400 MHz, CDCl₃)

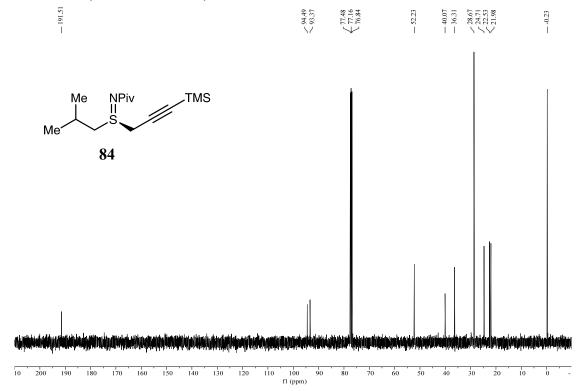


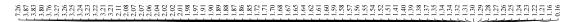

¹³C **NMR of 82** (100 MHz, CDCl₃)

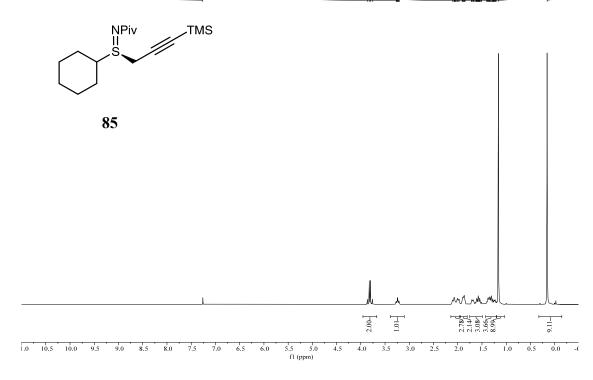

| 119.33 | 1.7.7.7 | 1.40.11 | 1.7.08 63 94 | 1.9.33 | 1.7.7.7 | 1.7.09



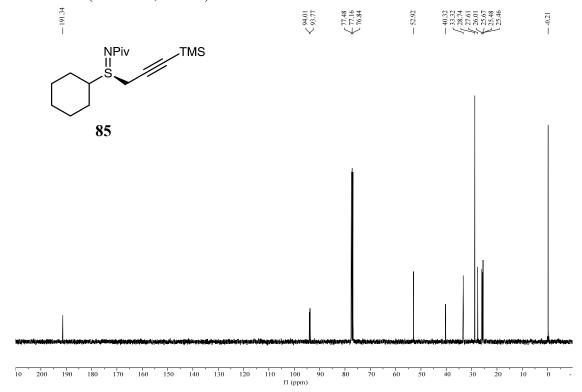


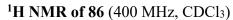


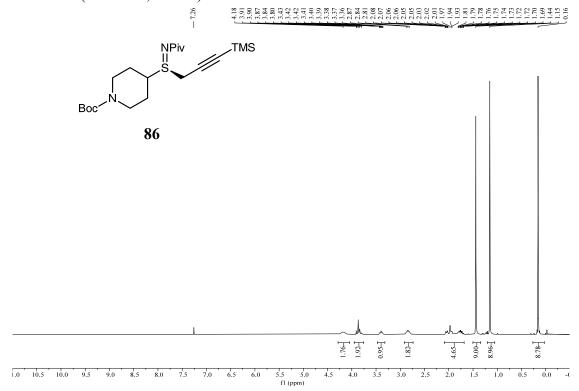


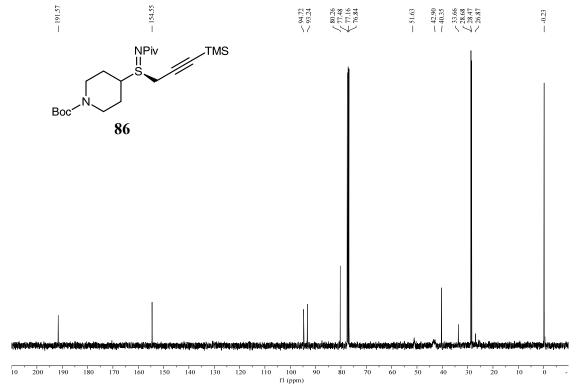


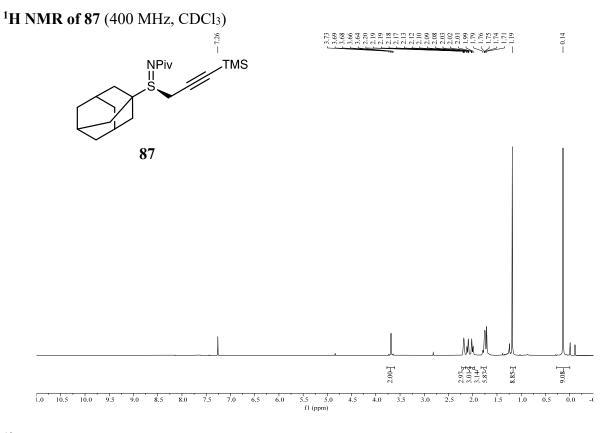
¹³C NMR of 84 (100 MHz, CDCl₃)

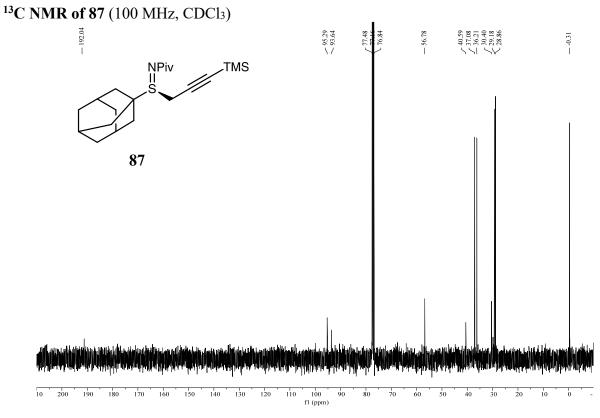


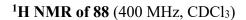

¹H NMR of 85 (400 MHz, CDCl₃)

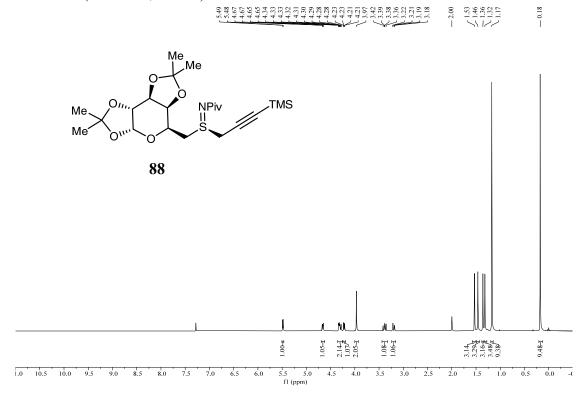


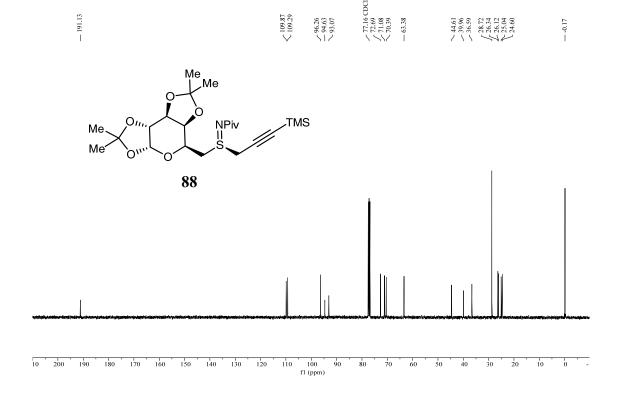

¹³C NMR of 85 (100 MHz, CDCl₃)

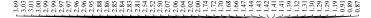


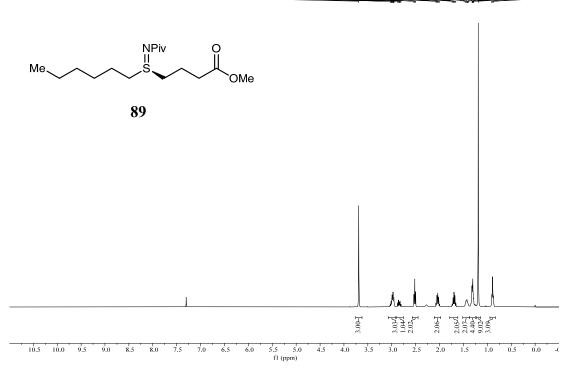





¹³C NMR of 86 (100 MHz, CDCl₃)

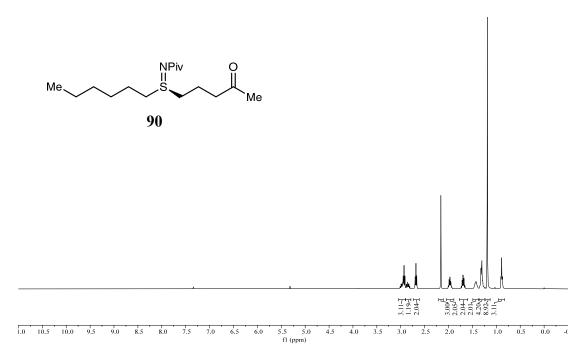




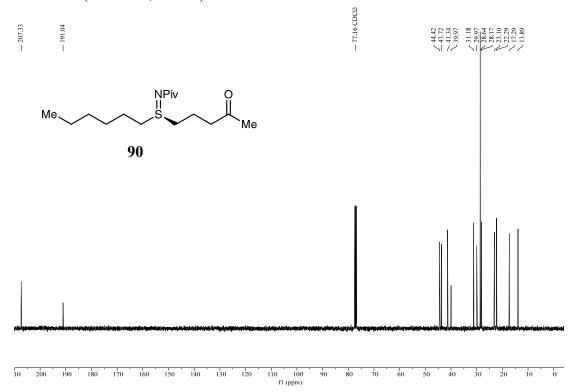


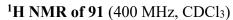
¹³C **NMR of 88** (100 MHz, CDCl₃)

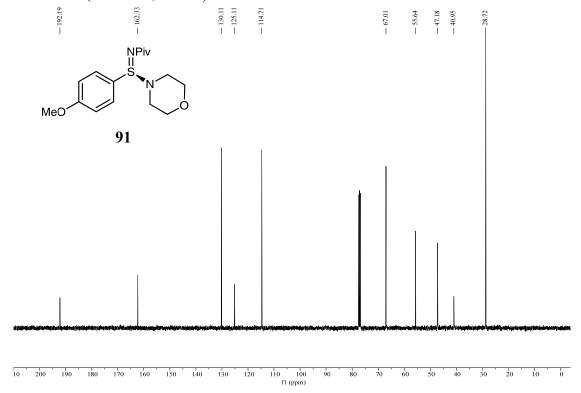
¹H NMR of 89 (400 MHz, CDCl₃)

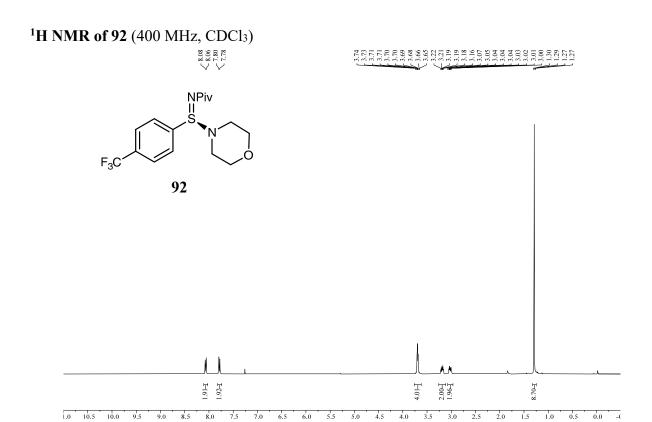


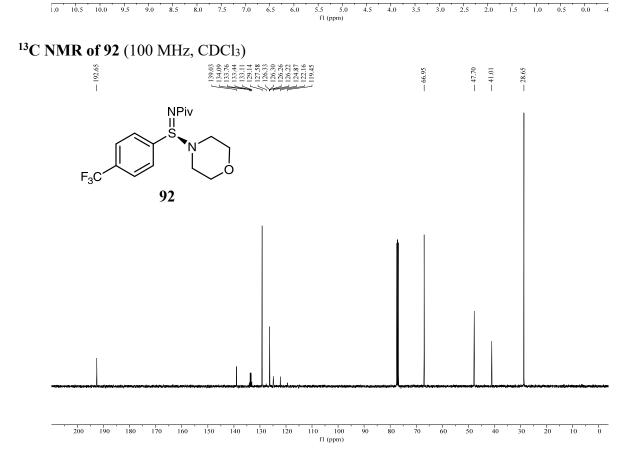
¹³C **NMR of 89** (100 MHz, CDCl₃)

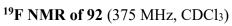


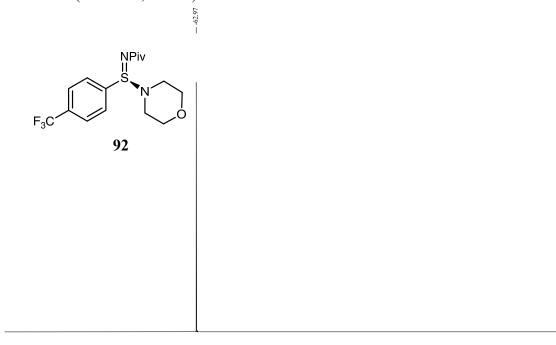

¹H NMR of 90 (400 MHz, CDCl₃)


¹³C NMR of 90 (100 MHz, CDCl₃)

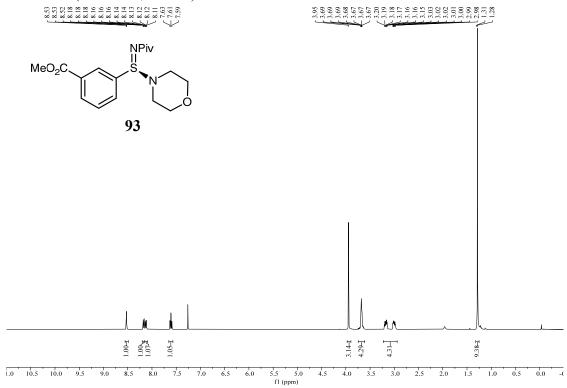


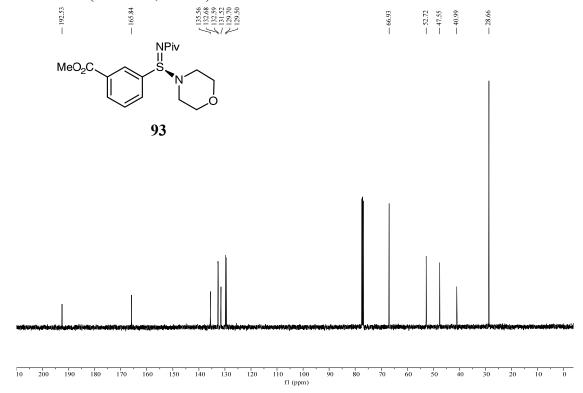


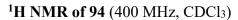


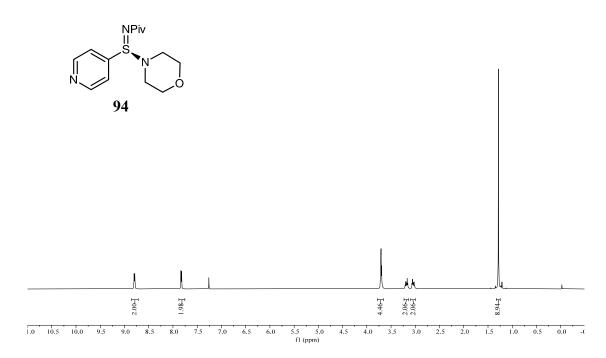

¹³C NMR of 91 (100 MHz, CDCl₃)

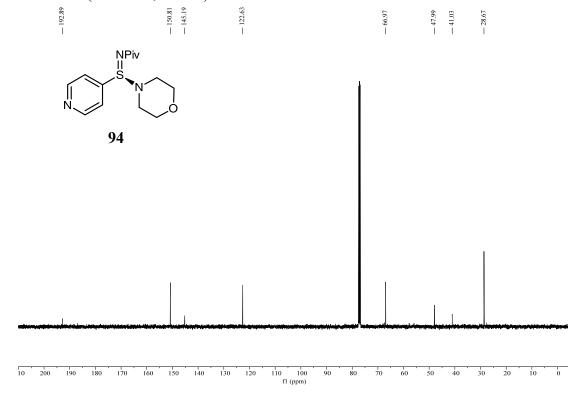


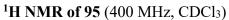


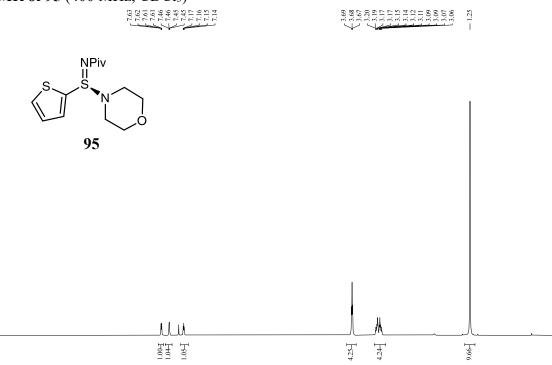




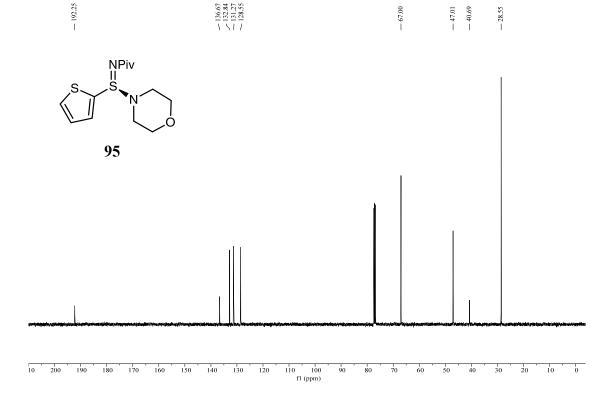

¹³C NMR of 93 (100 MHz, CDCl₃)

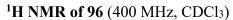


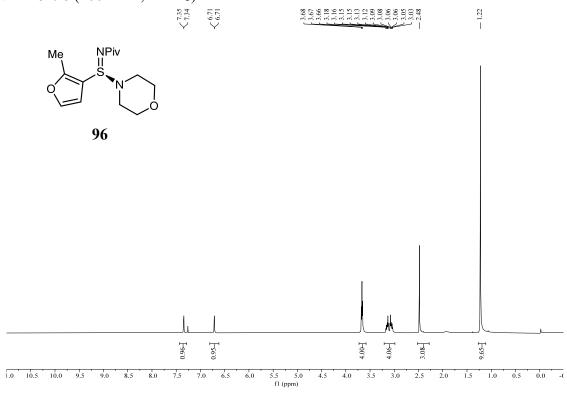




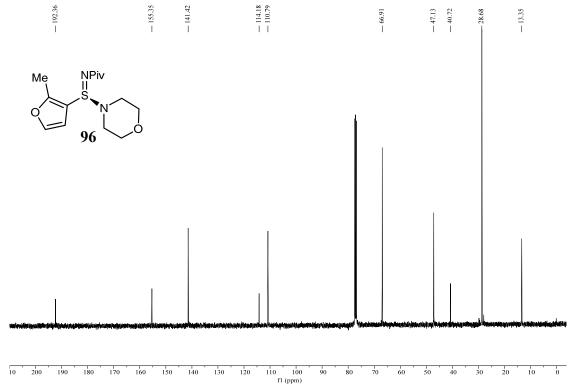
¹³C NMR of 94 (100 MHz, CDCl₃)

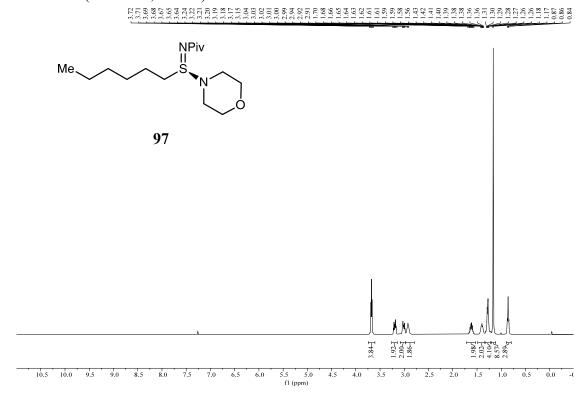


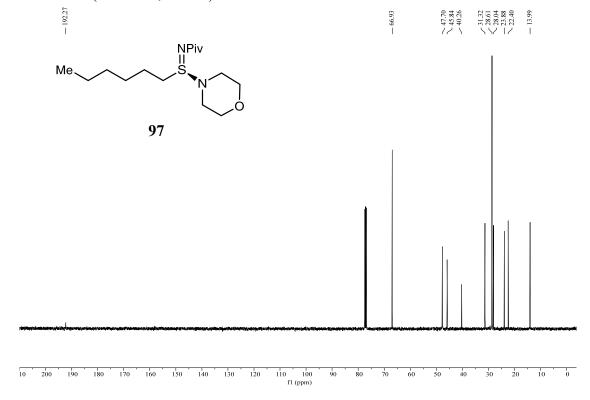


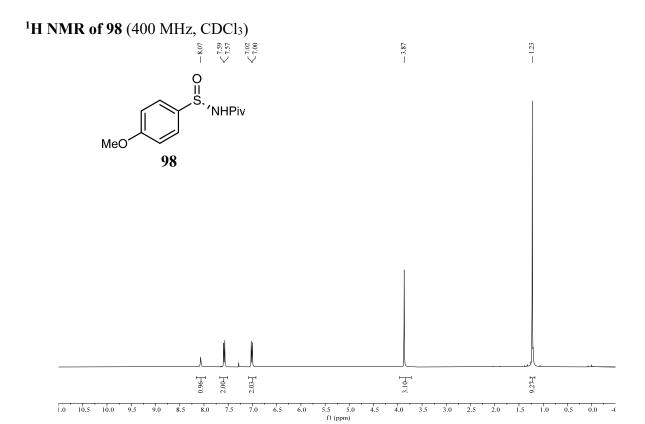

5.5 5.0 fl (ppm) 4.5 4.0 3.5 3.0

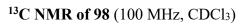
¹³C NMR of 95 (100 MHz, CDCl₃)

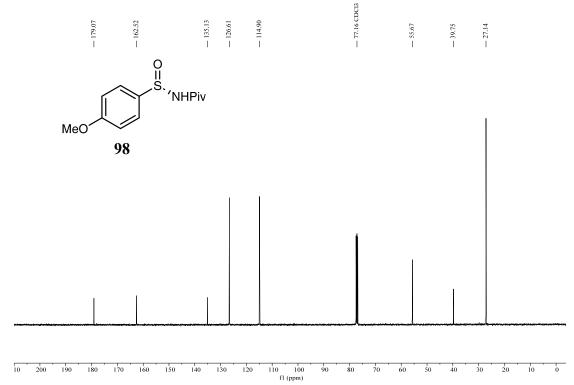

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0

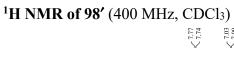


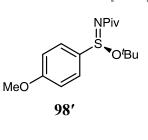

¹³C NMR of 96 (100 MHz, CDCl₃)

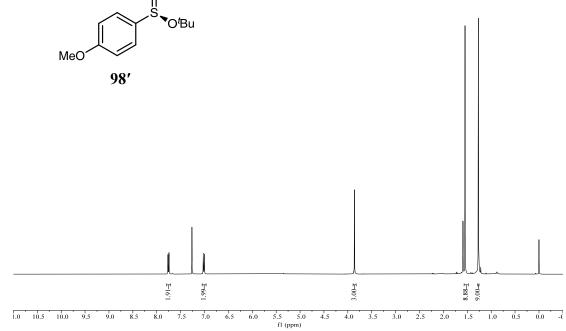


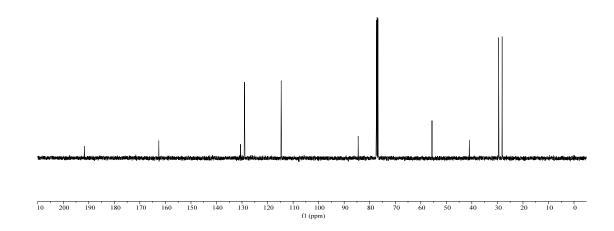

¹H NMR of 97 (400 MHz, CDCl₃)

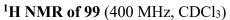


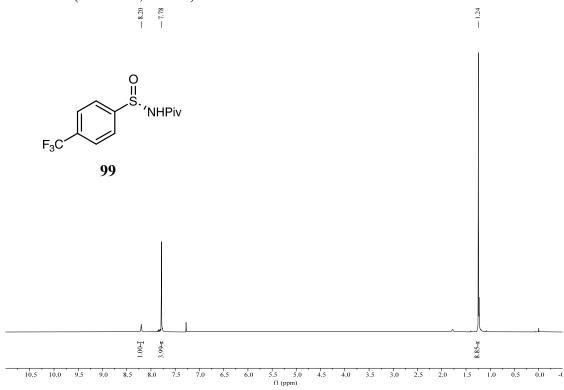

¹³C NMR of 97 (100 MHz, CDCl₃)



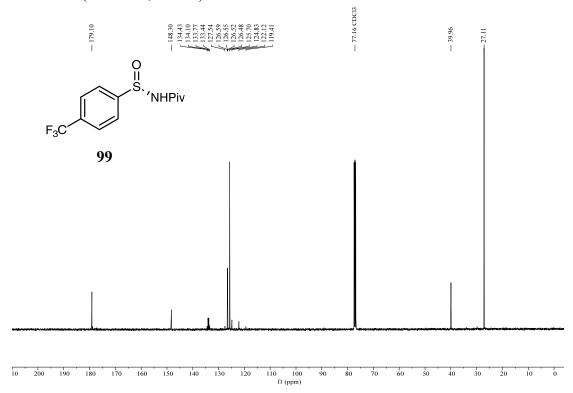


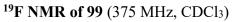


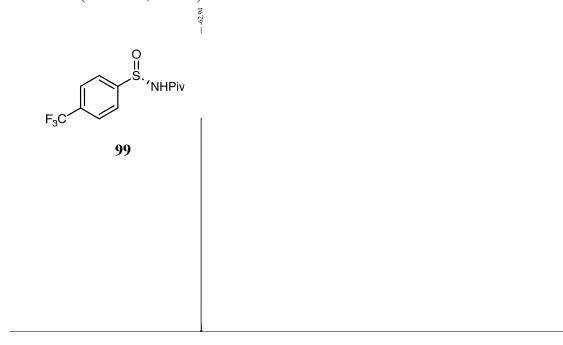




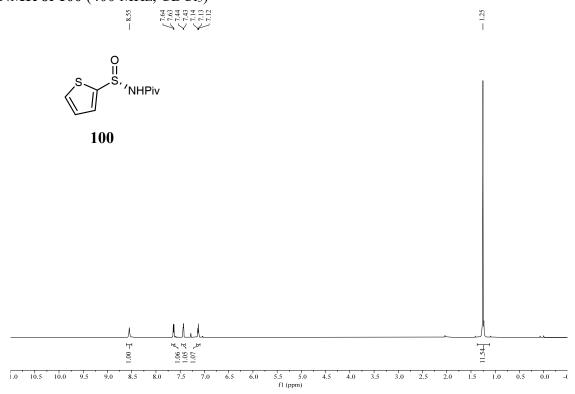
¹³C **NMR of 98'** (100 MHz, CDCl₃)

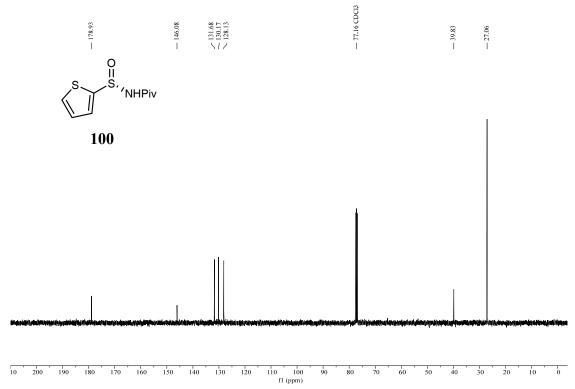


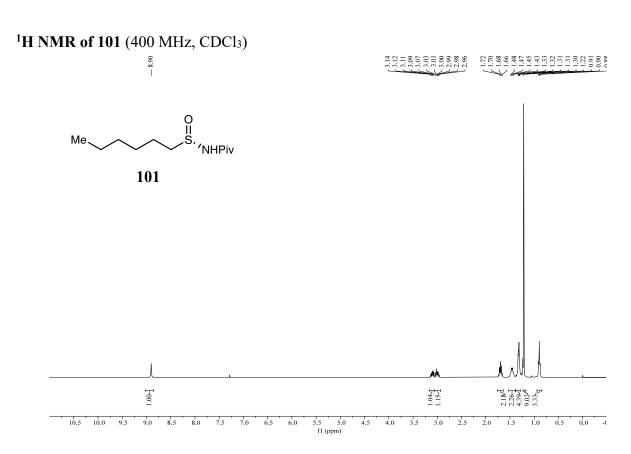


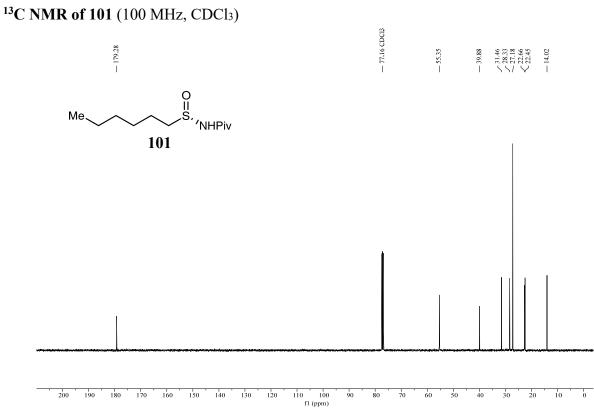


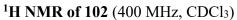
¹³C NMR of 99 (100 MHz, CDCl₃)

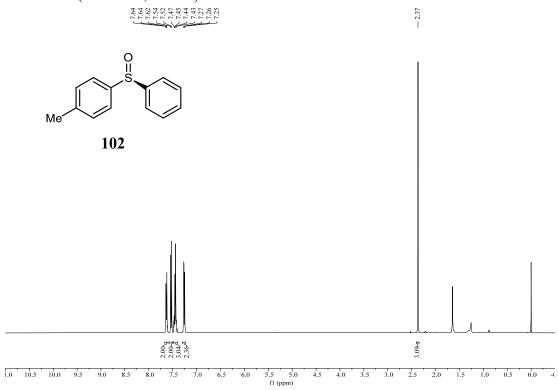


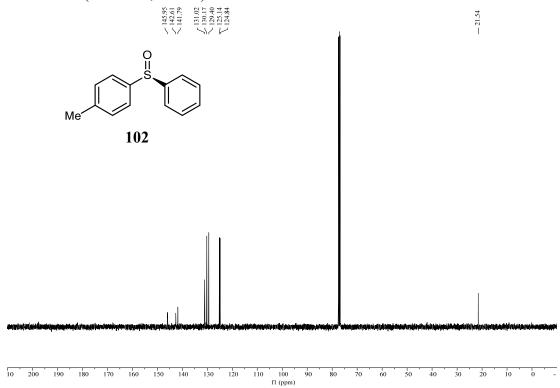


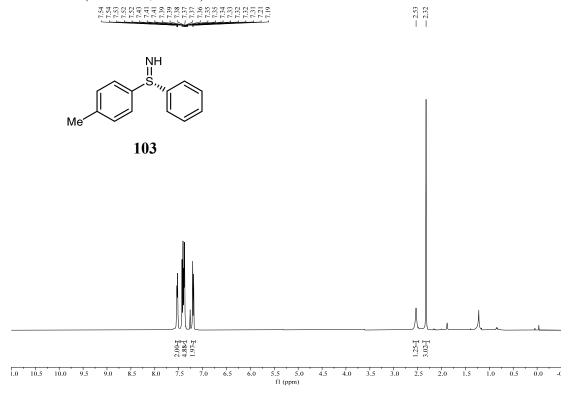

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

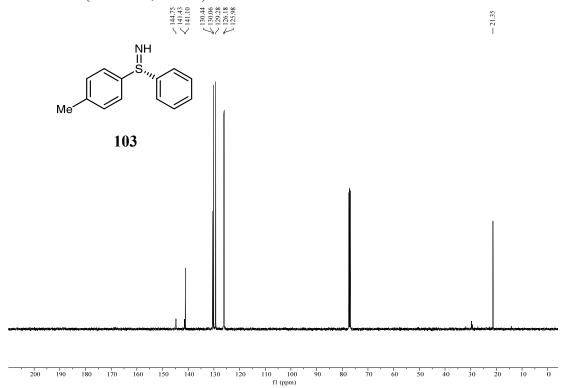


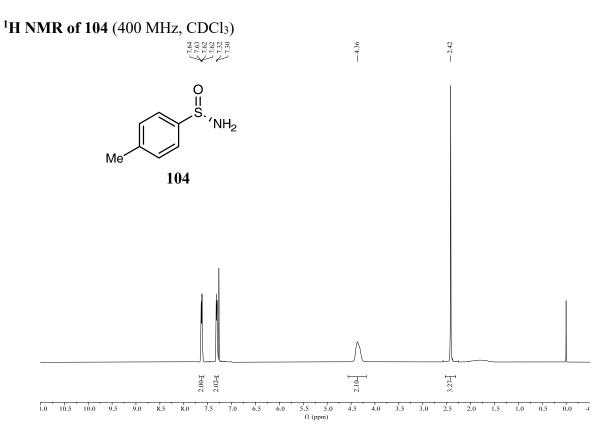


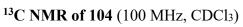

¹³C NMR of 100 (100 MHz, CDCl₃)

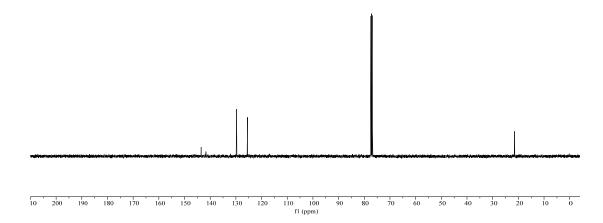


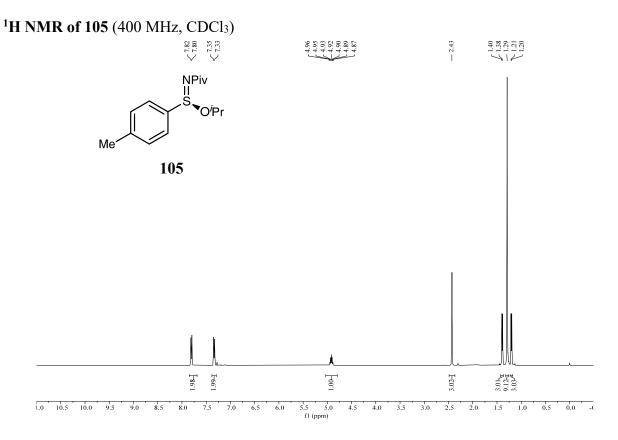


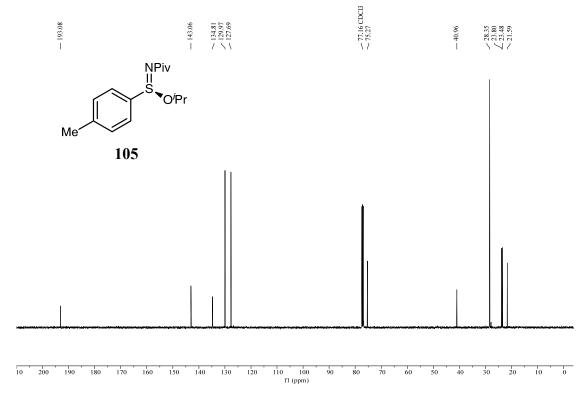

¹³C NMR of 102 (100 MHz, CDCl₃)

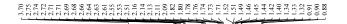


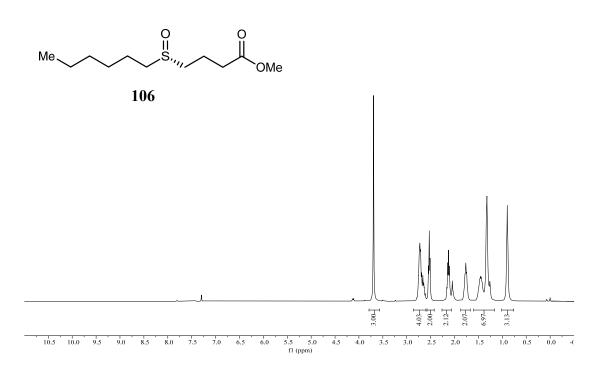


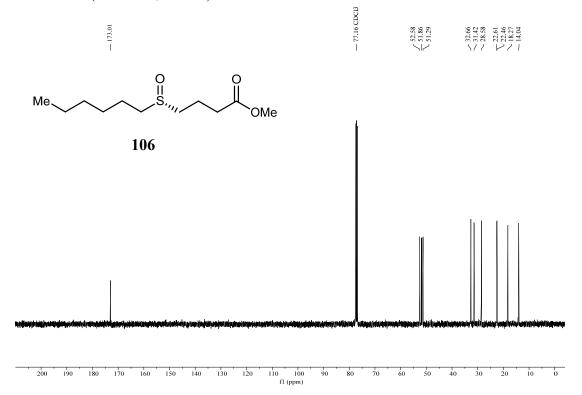

¹³C NMR of 103 (100 MHz, CDCl₃)

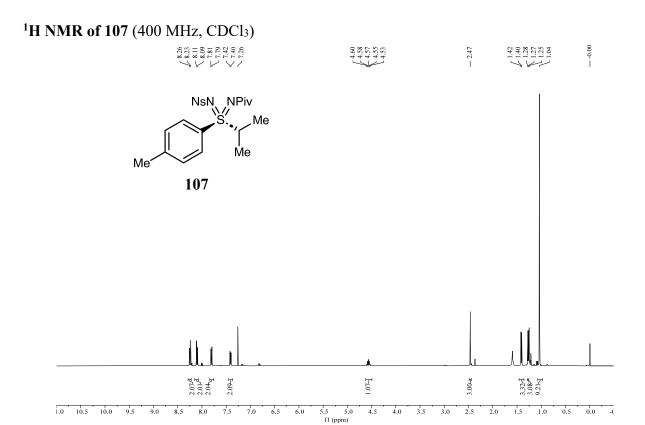


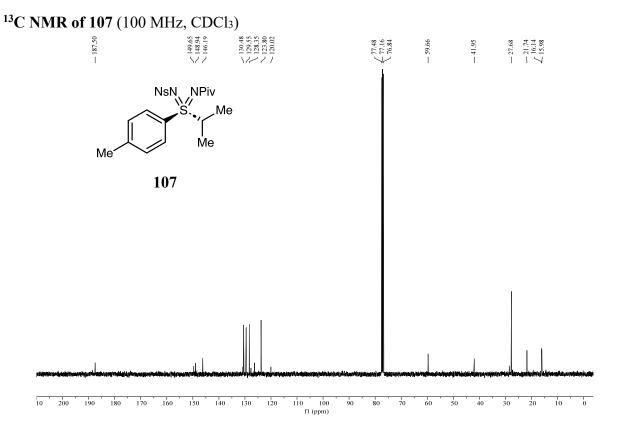


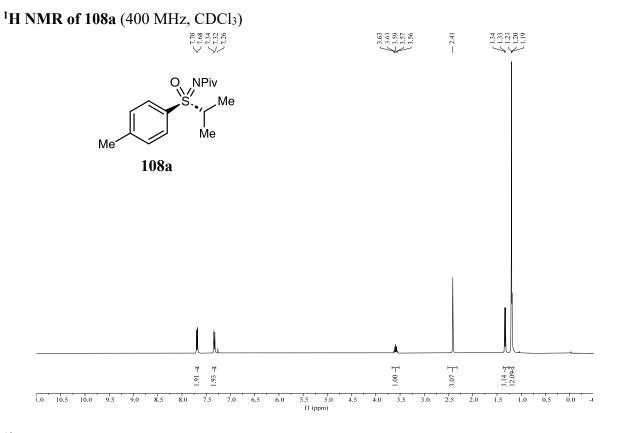


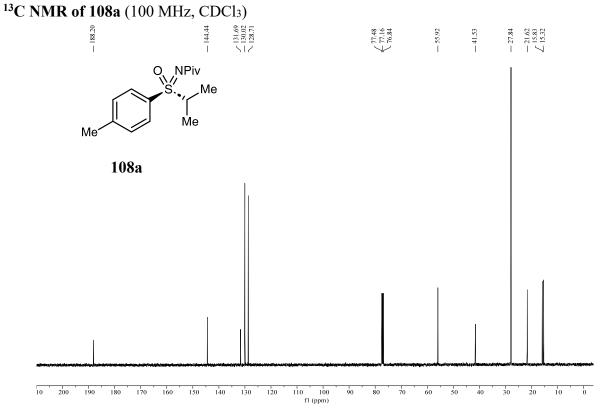


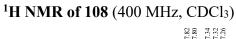


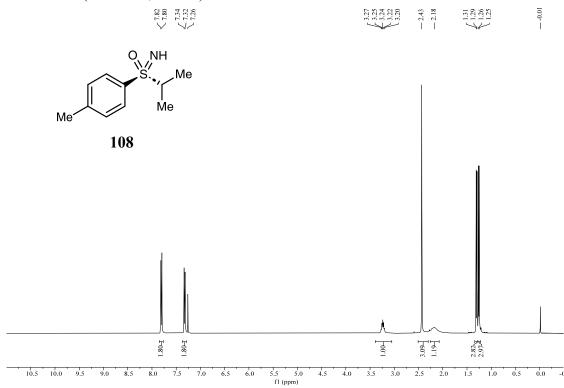

¹H NMR of 106 (400 MHz, CDCl₃)

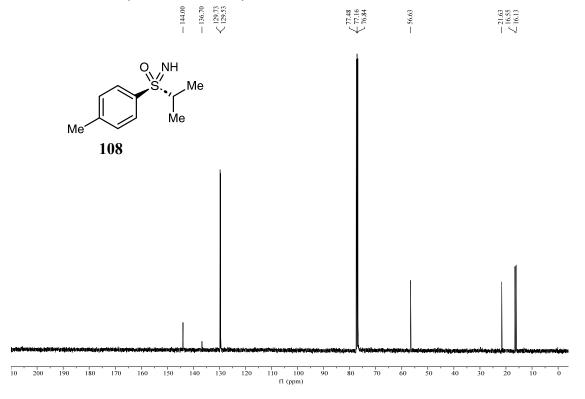


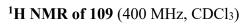


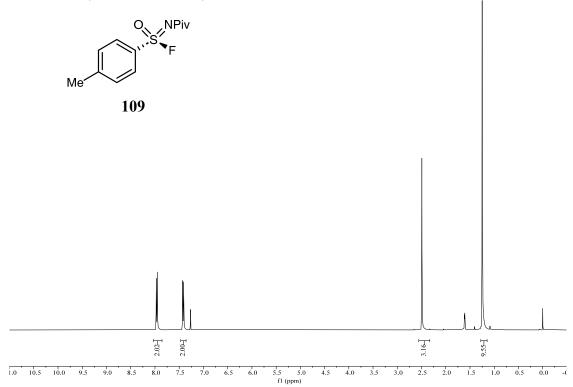

¹³C NMR of 106 (100 MHz, CDCl₃)

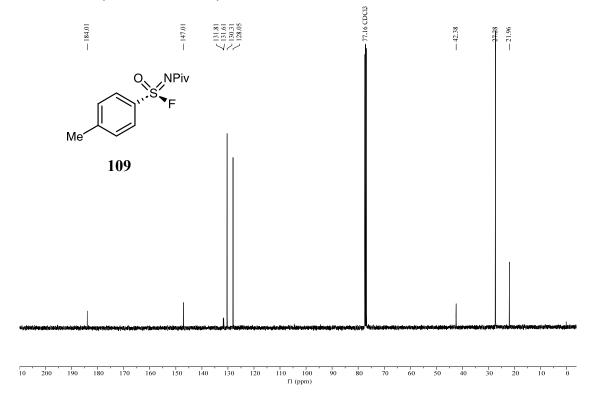


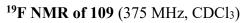




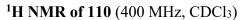


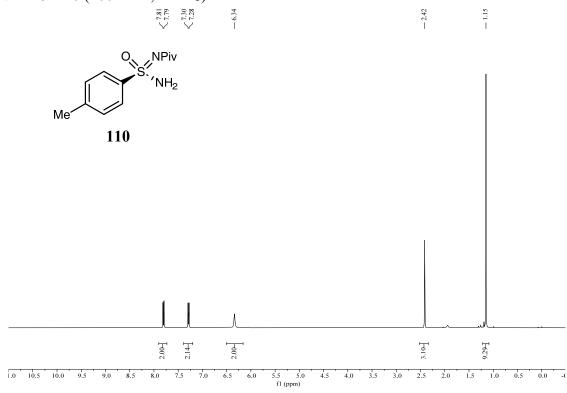



¹³C NMR of 108 (100 MHz, CDCl₃)

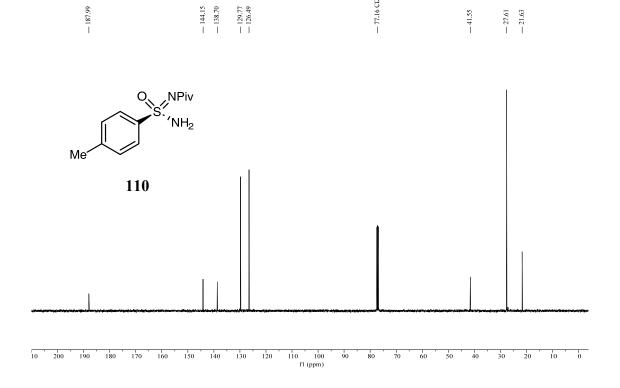


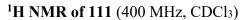
¹³C NMR of 109 (100 MHz, CDCl₃)

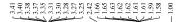


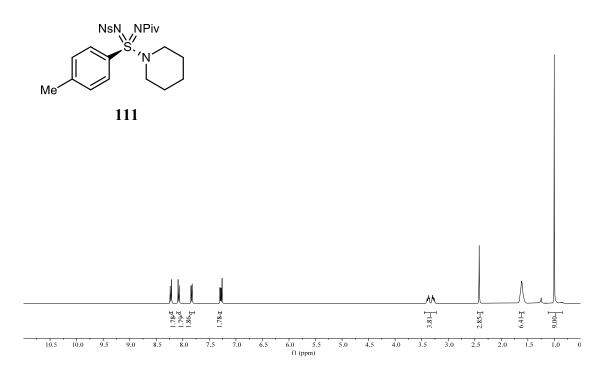


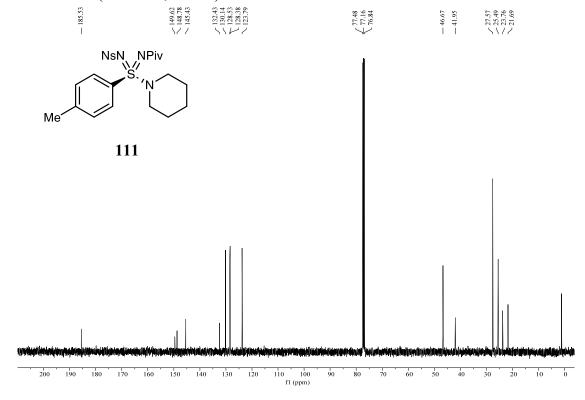
- 65.86

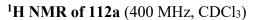


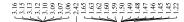

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 fl (ppm)

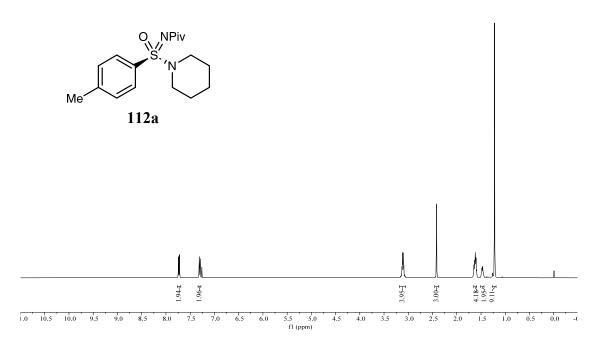


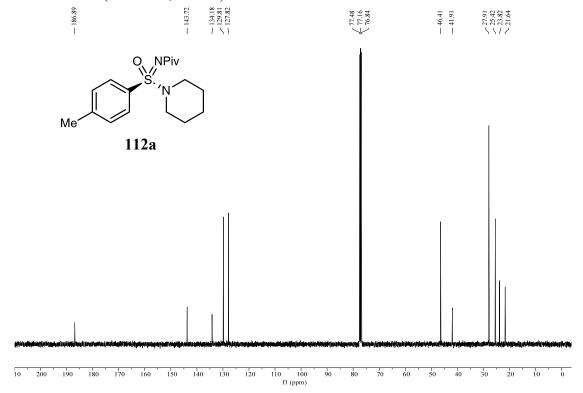

¹³C NMR of 110 (100 MHz, CDCl₃)

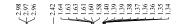


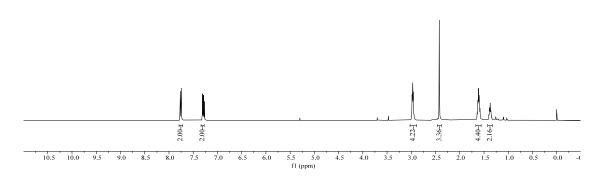


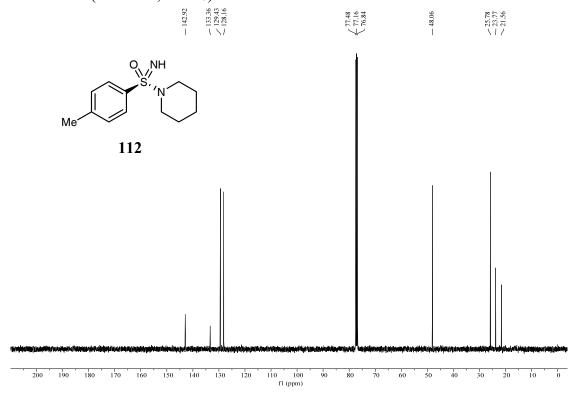


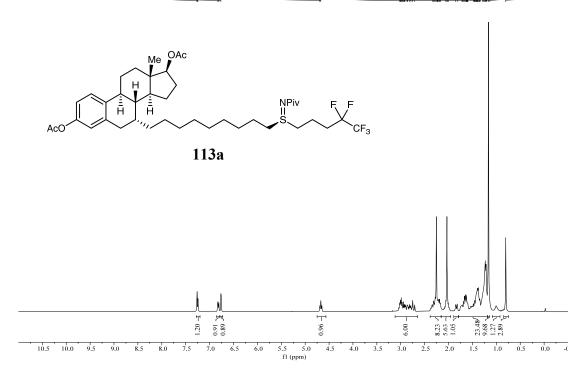

¹³C NMR of 111 (100 MHz, CDCl₃)



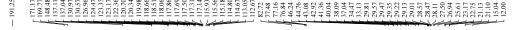


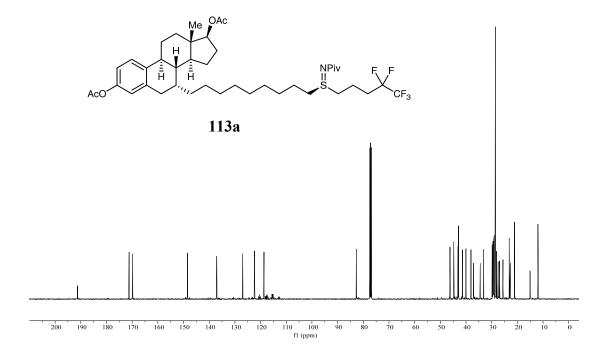

¹³C **NMR of 112a** (100 MHz, CDCl₃)

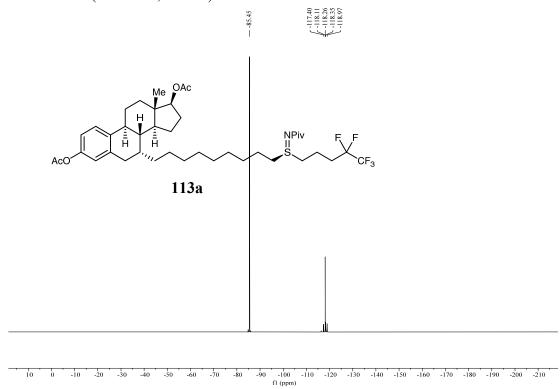

¹H NMR of 112 (400 MHz, CDCl₃)



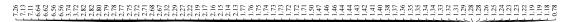
¹³C NMR of 112 (100 MHz, CDCl₃)

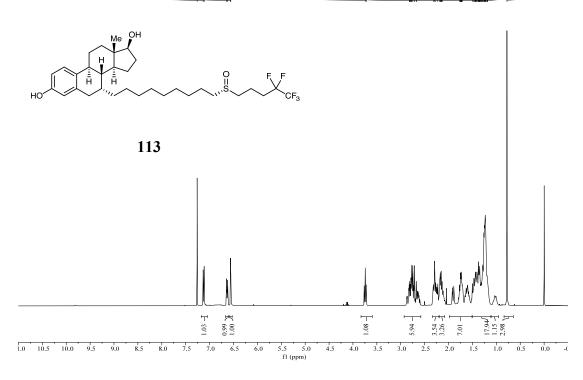



¹H NMR of 113a (400 MHz, CDCl₃)

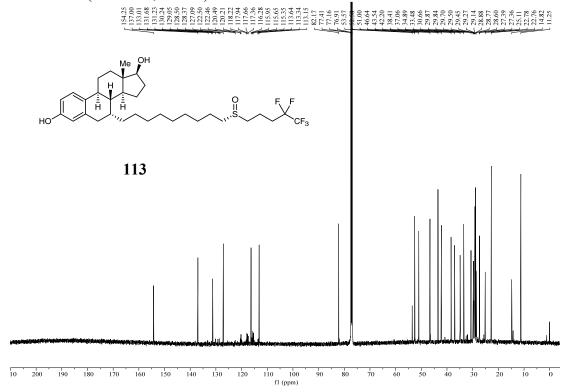


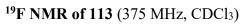
¹³C **NMR of 113a** (100 MHz, CDCl₃)

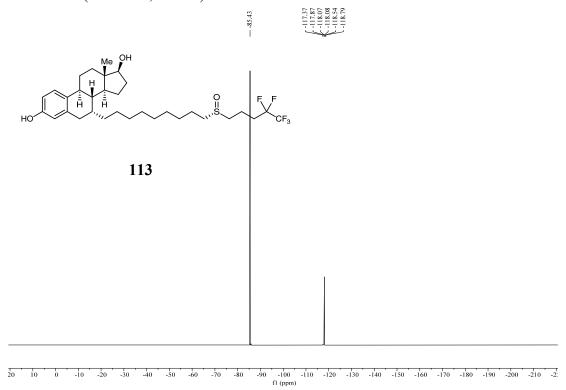




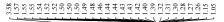
¹⁹F NMR of 113a (375 MHz, CDCl₃)

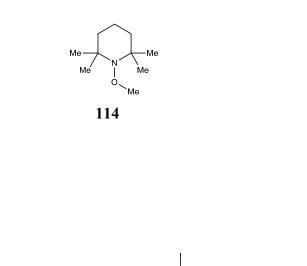


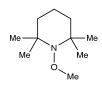

¹H NMR of 113 (400 MHz, CDCl₃)

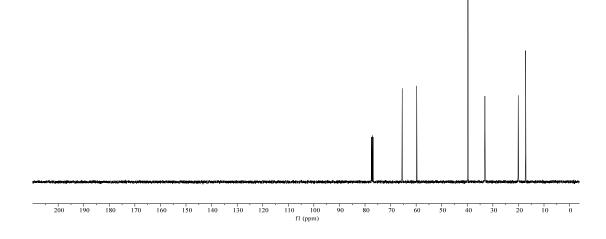


¹³C NMR of 113 (100 MHz, CDCl₃)



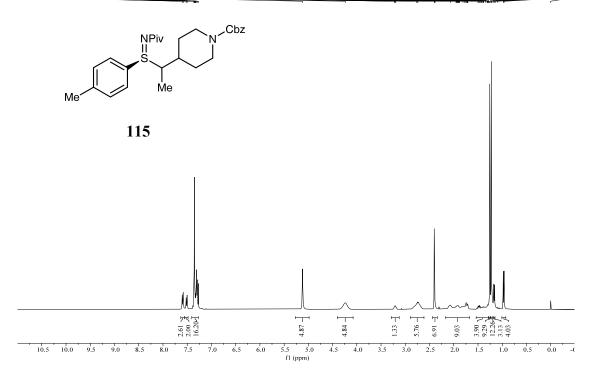




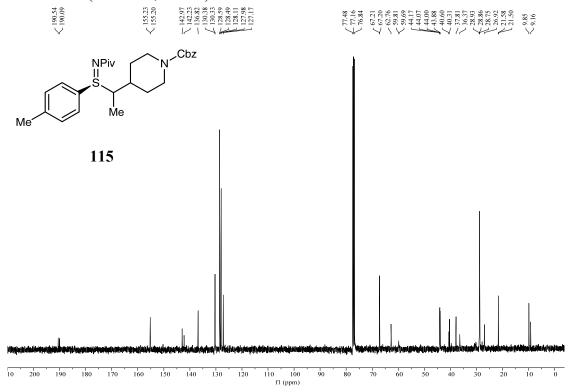


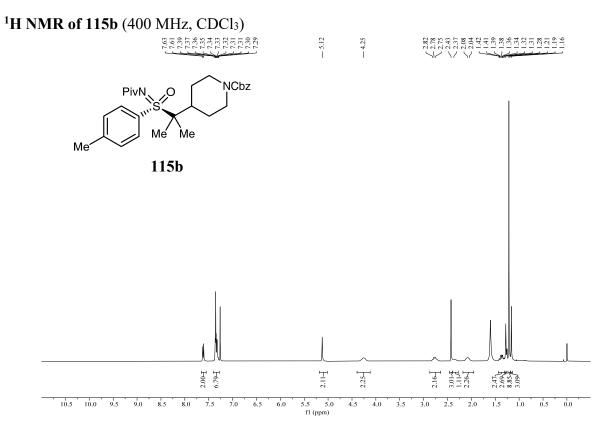
¹³C NMR of 114 (100 MHz, CDCl₃)

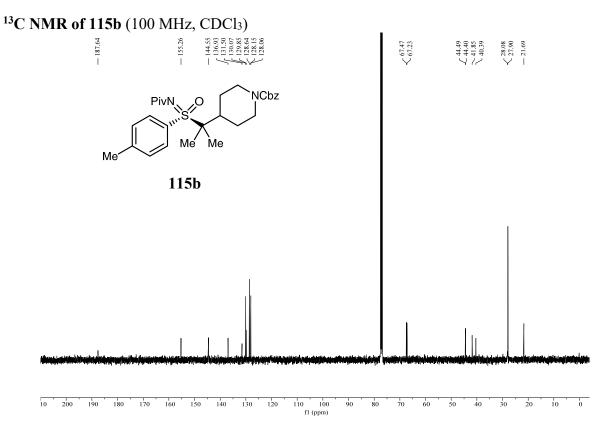
2.5 2.0 1.5 1.0 0.5 0.0 -(

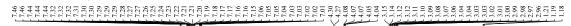


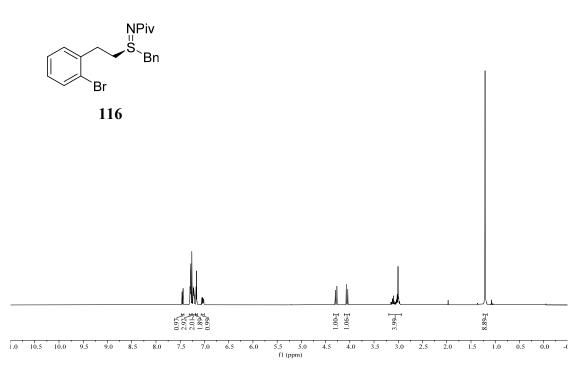
114

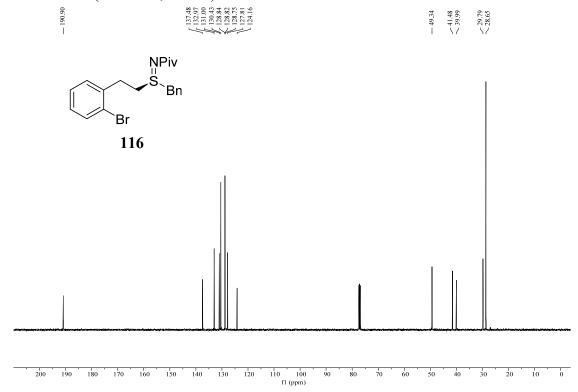


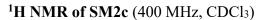

¹H NMR of 115 (400 MHz, CDCl₃)

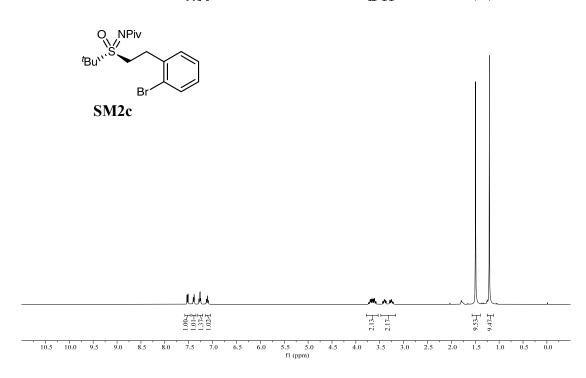



¹³C NMR of 115 (100 MHz, CDCl₃)

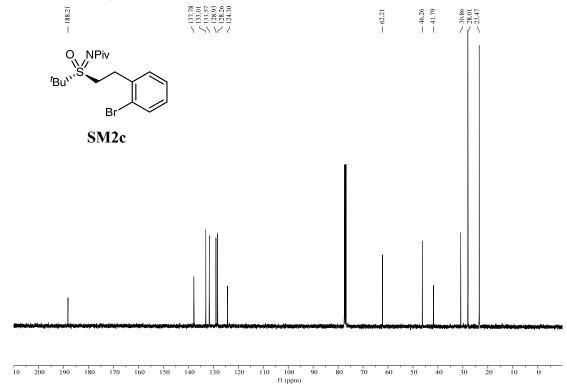


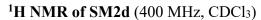


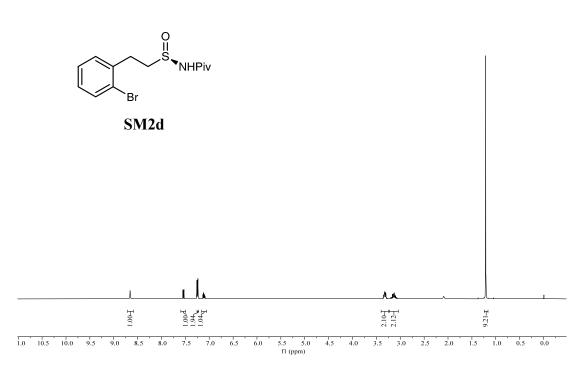

¹H NMR of 116 (400 MHz, CDCl₃)



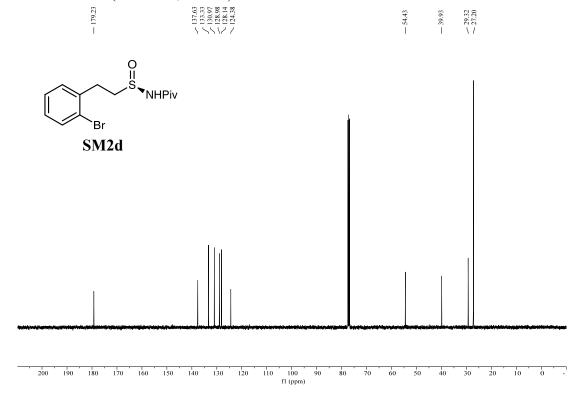
¹³C NMR of 116 (100 MHz, CDCl₃)

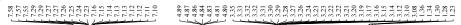


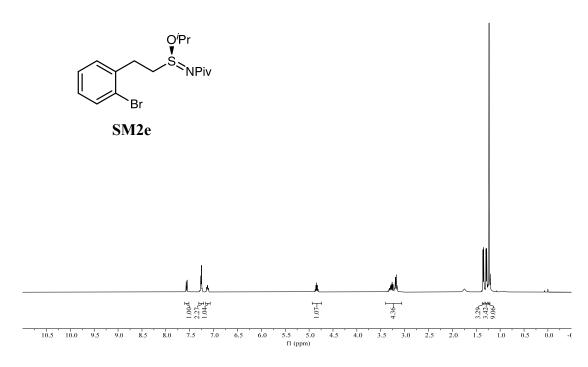




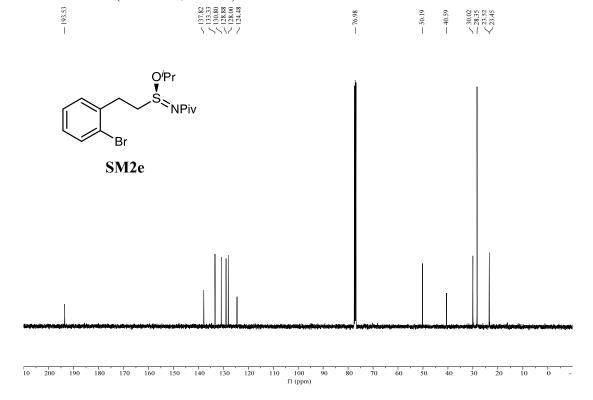
¹³C NMR of SM2c (100 MHz, CDCl₃)



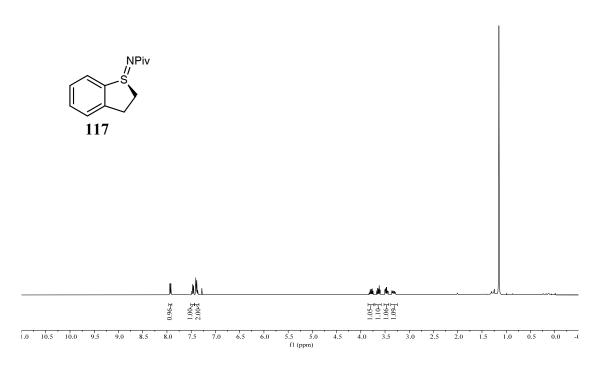




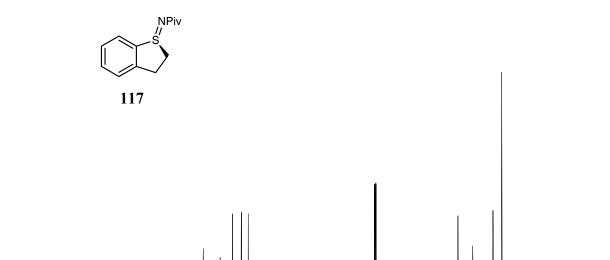
¹³C NMR of SM2d (100 MHz, CDCl₃)



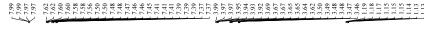
¹H NMR of SM2e (400 MHz, CDCl₃)

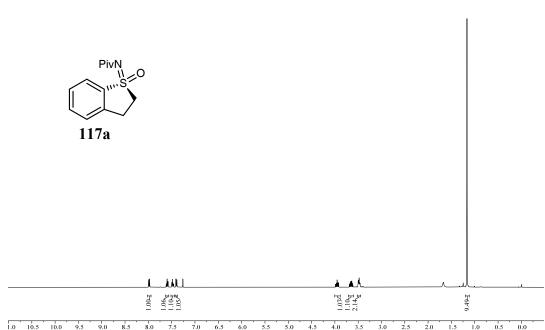


¹³C NMR of SM2e (100 MHz, CDCl₃)

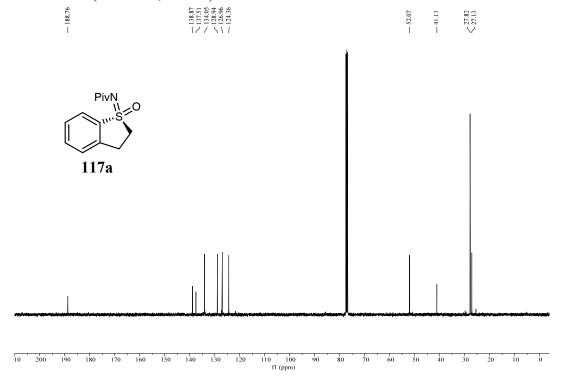


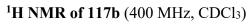
¹H NMR of 117 (400 MHz, CDCl₃)


¹³C NMR of 117 (100 MHz, CDCl₃)

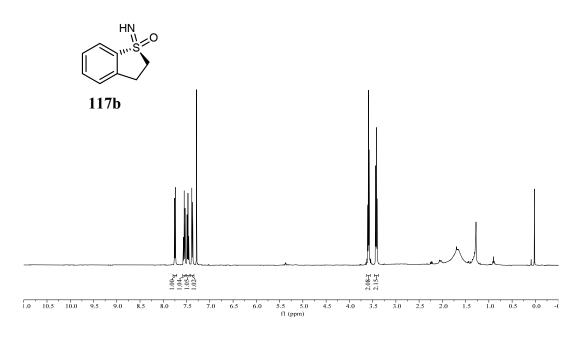


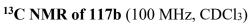
- 45.45 - 39.75 - 31.98 - 28.65

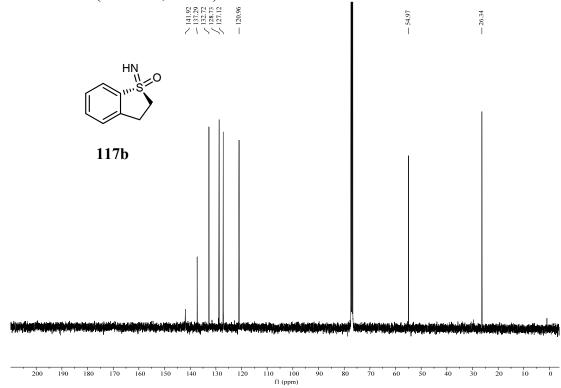

110 100 fl (ppm)


¹H NMR of 117a (400 MHz, CDCl₃)

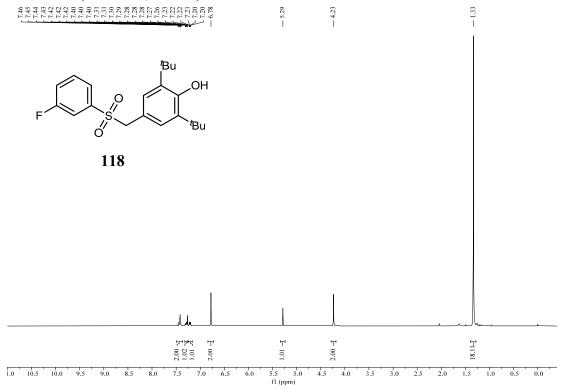


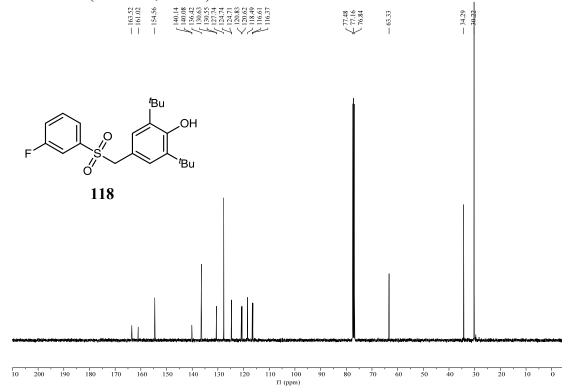


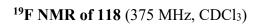

¹³C NMR of 117a (100 MHz, CDCl₃)

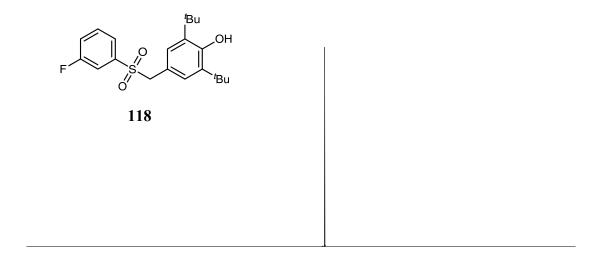




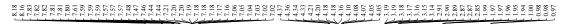


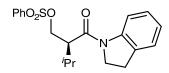


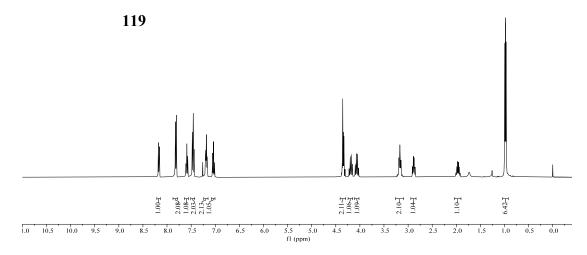




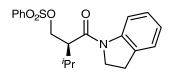
¹³C NMR of 118 (100 MHz, CDCl₃)

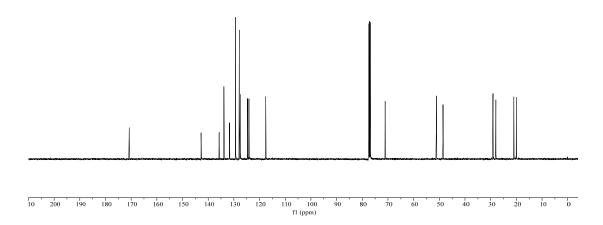


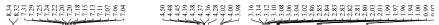


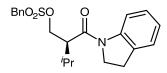


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

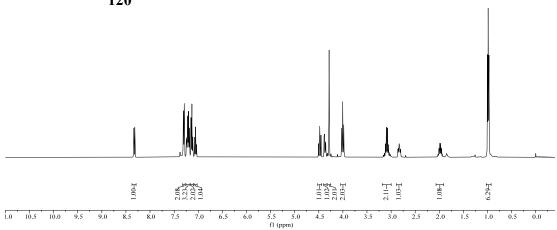

¹H NMR of 119 (400 MHz, CDCl₃)




¹³C NMR of 119 (100 MHz, CDCl₃)

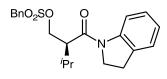


119

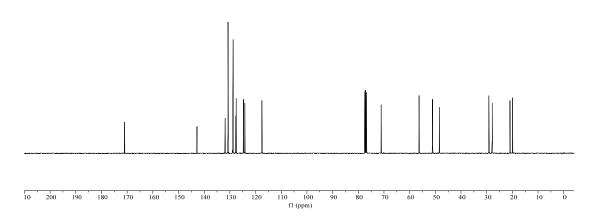


¹H NMR of 120 (400 MHz, CDCl₃)

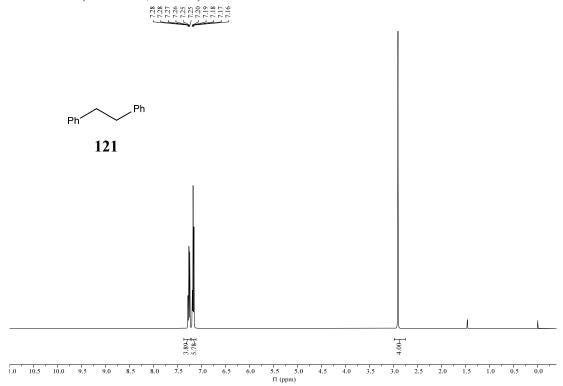
120

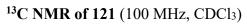


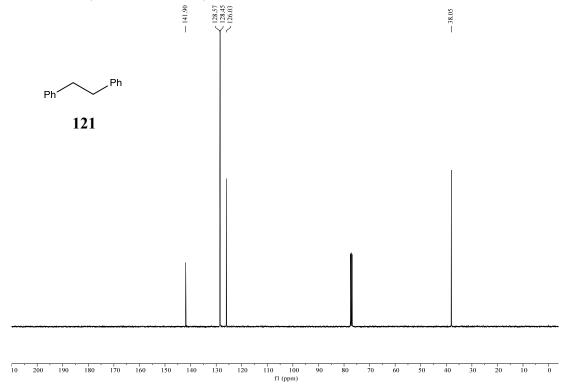
13 C NMR of 120 (100 MHz, CDCl₃)

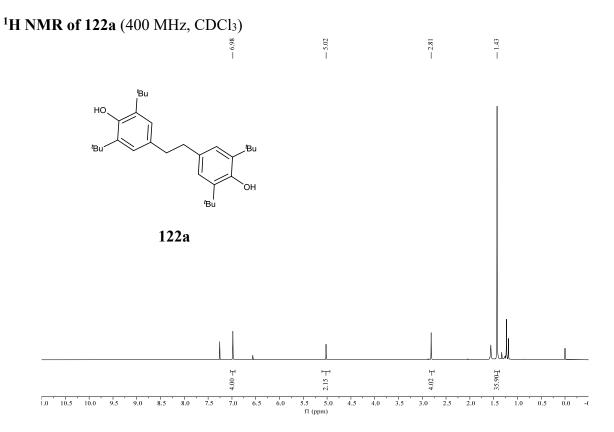

142.79 131.83 130.72 128.86 128.86 127.73 127.53 127.53

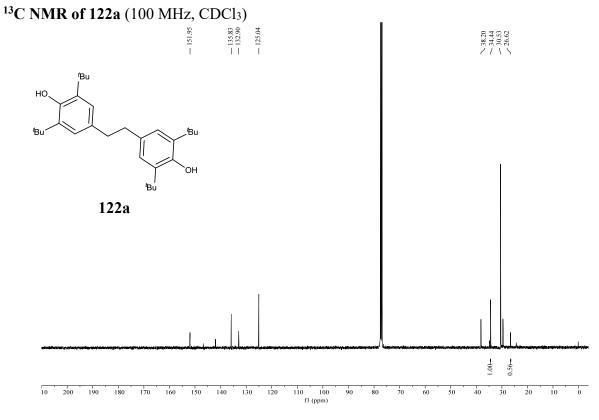
7.7.16 7.7.16 7.7.10 7.7.10 7.8.31

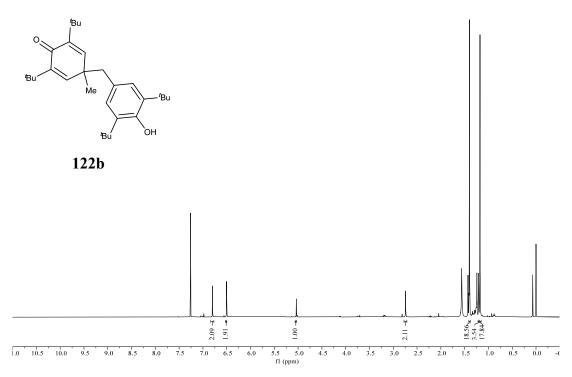

29.16 20.95 20.95 20.95

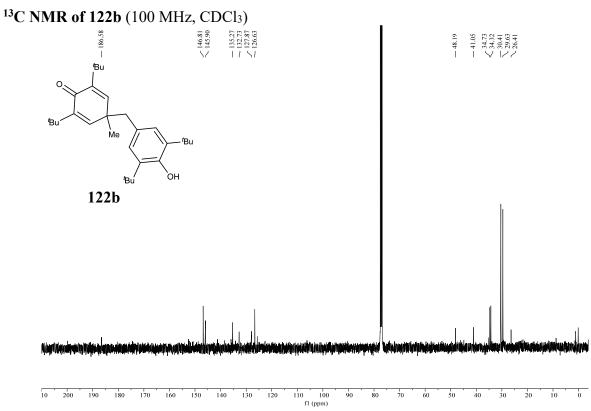


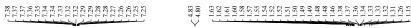

120

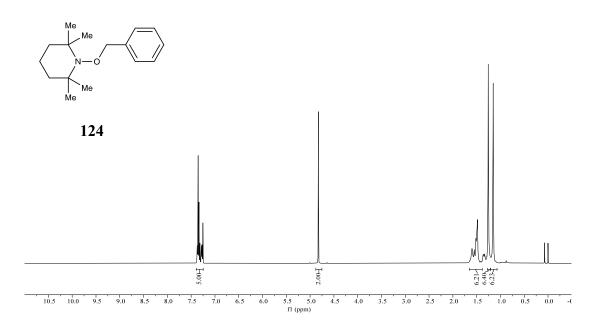


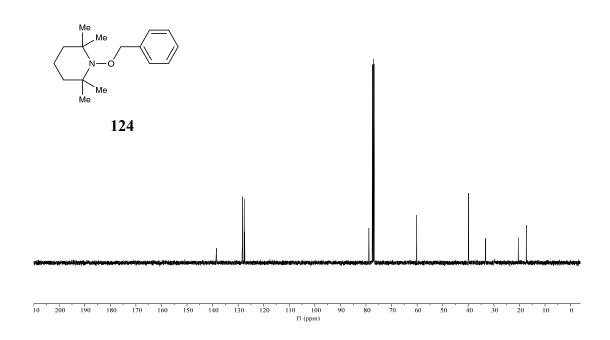

¹**H NMR of 121** (400 MHz, CDCl₃)

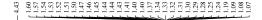


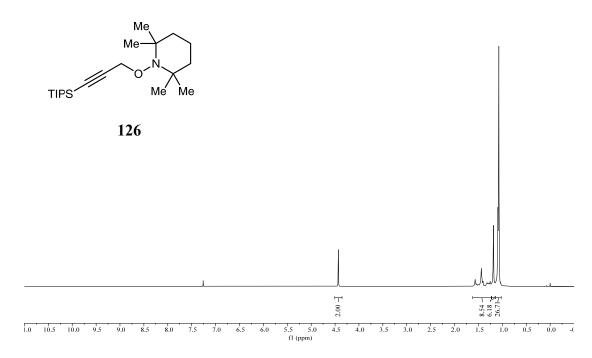




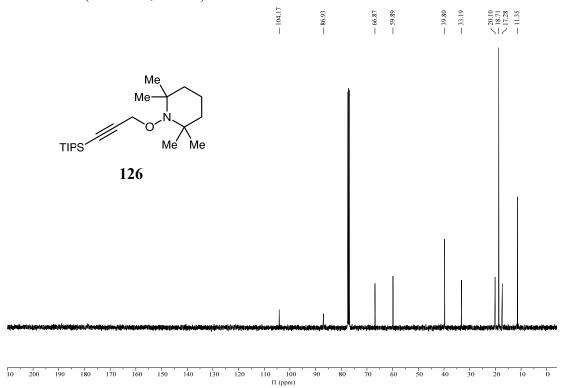

¹**H NMR of 122b** (400 MHz, CDCl₃)


¹**H NMR of 124** (400 MHz, CDCl₃)




¹³C NMR of 124 (100 MHz, CDCl₃)

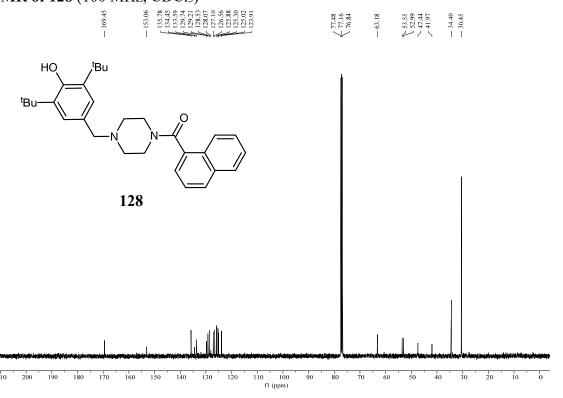
138.49	128.37 127.61 127.44	78.89	60.17	39.89	20.46
- 1	\V	1	1	1 1	1.1

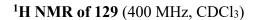


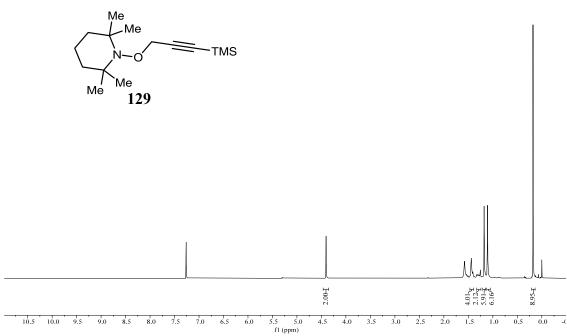
¹H NMR of 126 (400 MHz, CDCl₃)



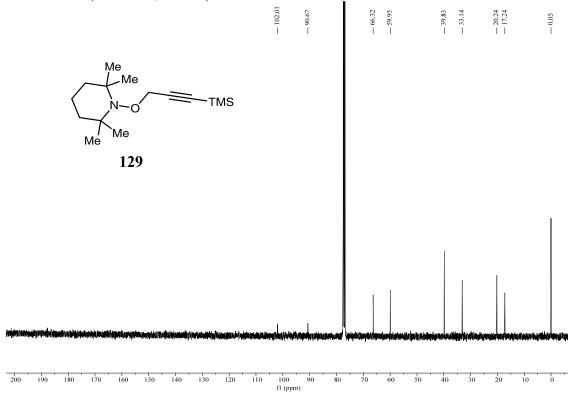
¹³C NMR of 126 (100 MHz, CDCl₃)

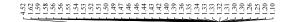


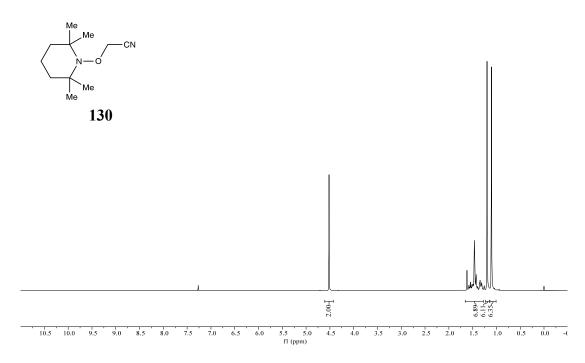




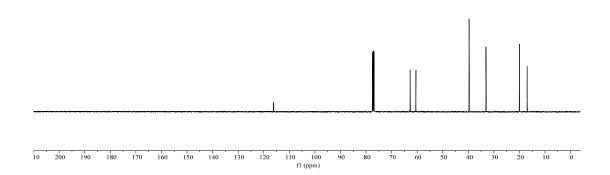
¹³C NMR of 128 (100 MHz, CDCl₃)

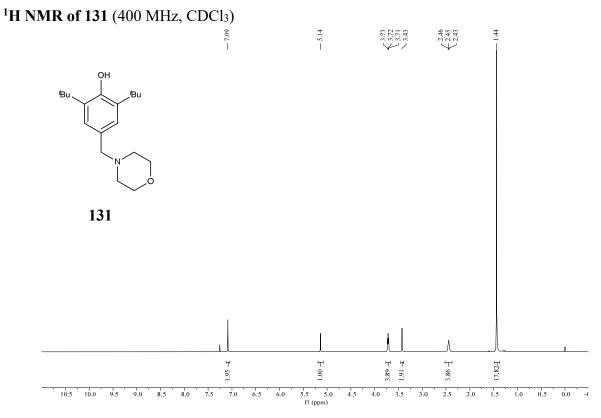


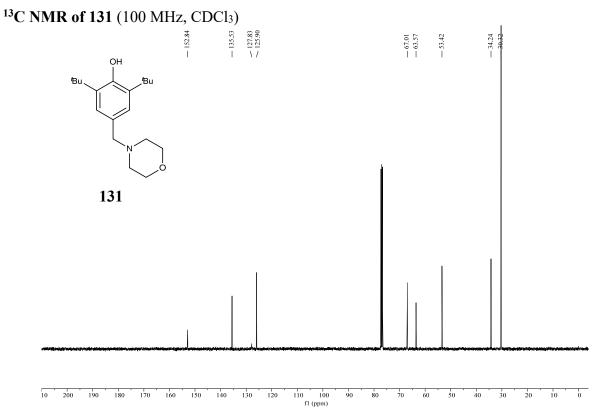




¹³C NMR of 129 (100 MHz, CDCl₃)

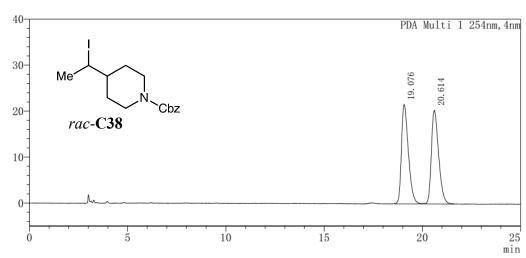

¹H NMR of 130 (400 MHz, CDCl₃)





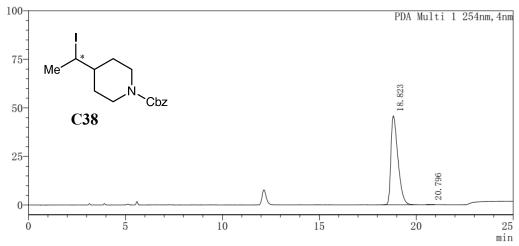
¹³C NMR of 130 (100 MHz, CDCl₃)

130



12. HPLC spectra HPLC of C38

mAU

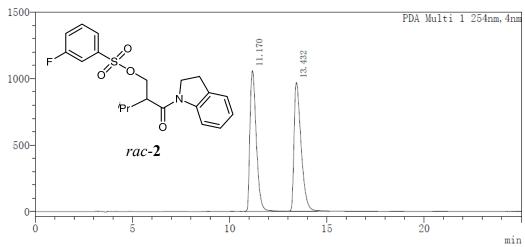


Peak Table

PDA Ch1 254nm

DR CHI ZOTHIII				
Peak#	Ret.	Time	Area	Area%
1	19.	076	528520	50. 199
2	20.	614	524339	49.801

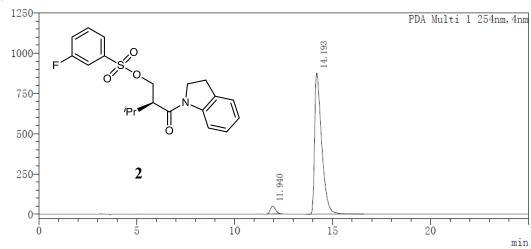
mAU



Peak Table

Dir ciri Borini					
Peak#	Ret. Time	Area	Area%		
1	18.823	1152460	99.857		
2	20. 796	1647	0. 143		

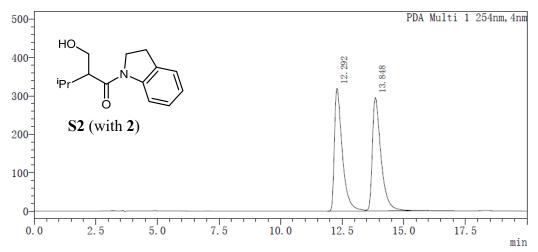
HPLC of 2



Peak Table

PDA Chl 254nm

PDA Chl 254nm				
	Peak#	Ret. Tim	ne Area	Area%
	1	11. 170	23997980	49. 641
	2	13. 432	24344668	50. 359

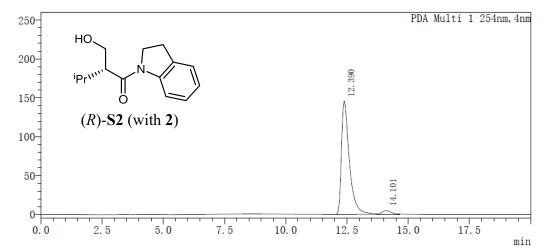


Peak Table

PDA Ch	1 204	±nm		
Peak#	Ret.	Time	Area	Area%
1	11.	940	927787	4.054
2.	14.	193	21959835	95, 946

HPLC of S2

mAU

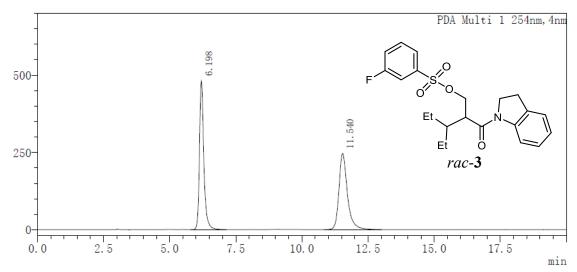


Peak Table

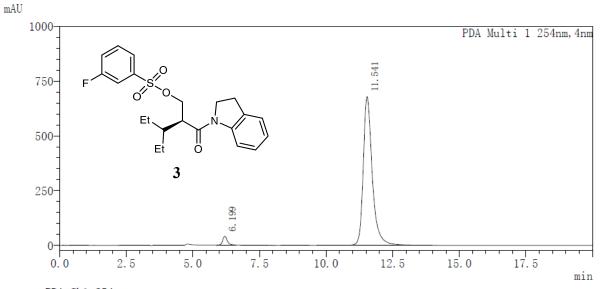
PDA Ch1 254nm

FDA CITI 254IIII					
	Peak#	Ret.	Time	Area	Area%
	1	12.	292	7131722	49. 660
	2	13.	848	7229508	50. 340

 mAU

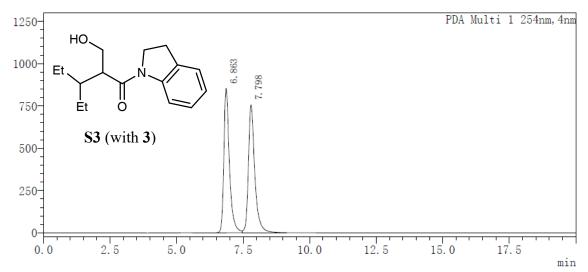


Peak Table


I DR CHI ZOTHII					
	Peak#	Ret.	Time	Area	Area%
	1	12.	390	3287106	95. 999
	2	14.	101	137008	4.001

HPLC of 3

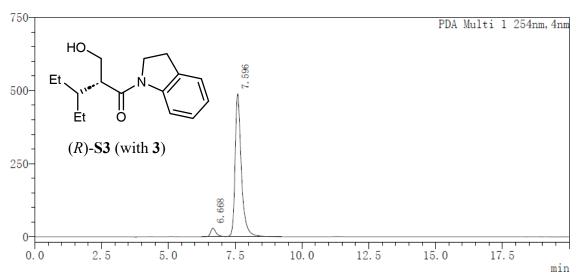
mAU


PDA Ch1 25	4nm		
T	Hight	Area	Area%
6. 198	481868	5516235	50.060
11. 540	246675	5502942	49. 940

PDA Chl 254nm						
T	Hight	Area	Area%			
6. 199	40364	480034	2. 921			
11. 541	679548	15955118	97. 079			

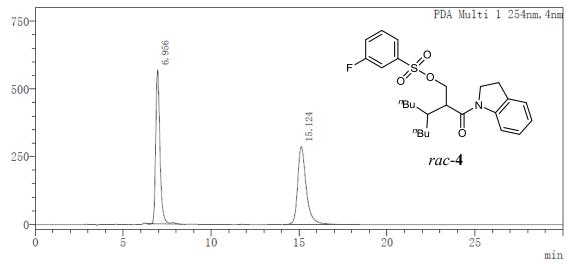
HPLC of S3

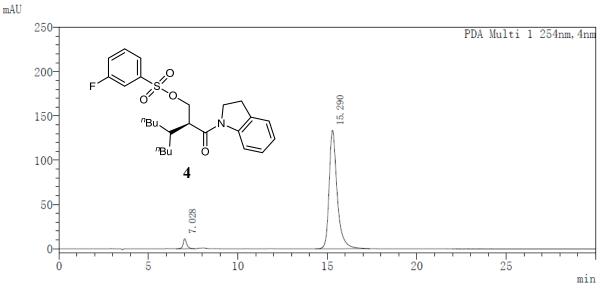
mAU


 PDA Ch1
 254nm

 T
 Hight
 Area
 Area%

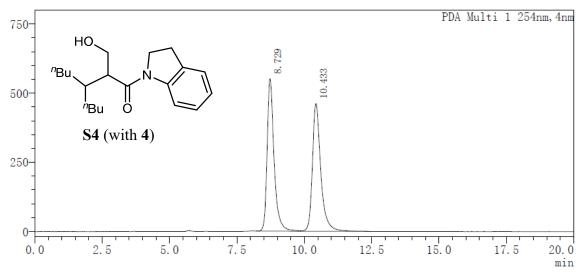
 6.863
 853792
 12450013
 49.612


 7.798
 754962
 12644676
 50.388



PDA Ch1 25	4nm		
T	Hight	Area	Area%
6. 668	29582	417099	4. 979
7, 596	488827	7960758	95. 021

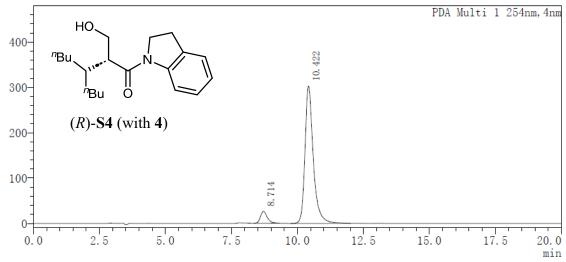
HPLC of 4


PDA Ch1 25	4nm		
T	Hight	Area	Area%
6. 956	567702	9602612	49.860
15. 124	287662	9656485	50. 140

PDA Ch1 25	4nm		
T	Hight	Area	Area%
7. 028	11419	160011	3. 685
15. 290	133731	4182789	96. 315

HPLC of S4

mAU


 PDA Ch1 254nm

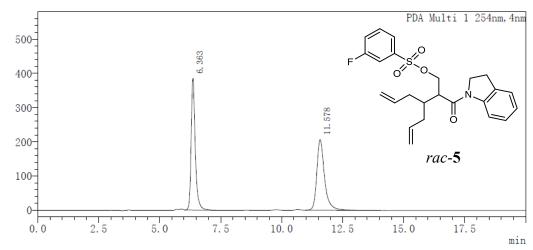
 T
 Hight
 Area
 Area%

 8.729
 551137
 9869447
 49.784

 10.433
 461451
 9955079
 50.216

mAU

 PDA Ch1 254nm

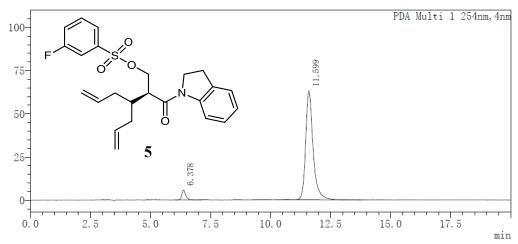

 T
 Hight
 Area
 Area%

 8.714
 26267
 465683
 6.568

 10.422
 303124
 6624031
 93.432

HPLC of 5

mAU

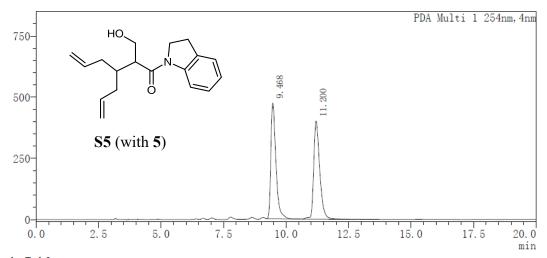


Peak Table

PDA Ch1 254nm

IDA CITI ZOTIIII			ш		
	Peak#	Ret.	Time	Area	Area%
	1	6. 3	63	4519926	49. 892
	2	11.5	78	4539531	50. 108

 mAU

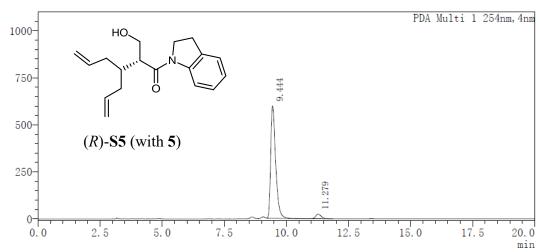


Peak Table

I DA CII	I ZUTIIII		
Peak#	Ret. Time	Area	Area%
1	6. 378	64976	4. 528
2	11. 599	1370155	95, 472

HPLC of S5

mAU

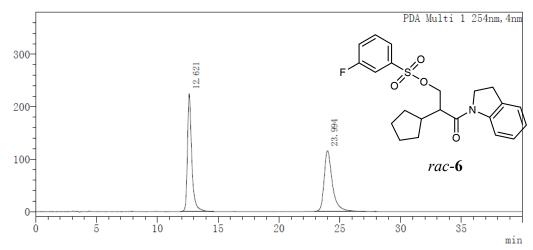


Peak Table

PDA Ch1 254nm

IDA CIII ZOTIIII					
	Peak#	Ret. Ti	me	Area	Area%
	1	9. 468	3	6659147	49. 742
	2	11. 20	0	6728161	50, 258

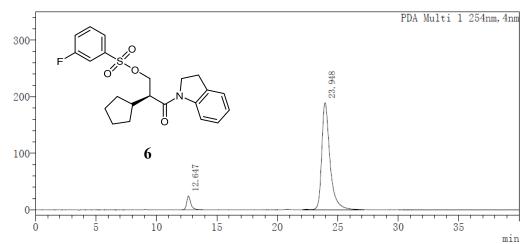
mAU



Peak Table

IDA CIII ZOTIIII				
	Peak#	Ret. Time	Area	Area%
	1	9. 444	8297700	95. 429
	2	11. 279	397452	4.571

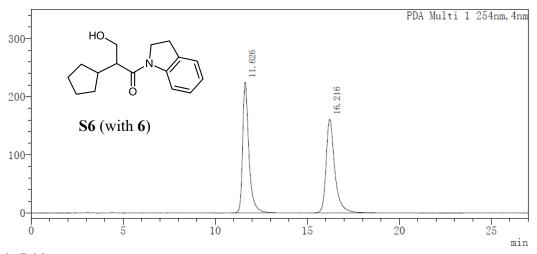
HPLC of 6


mAU

Peak Table

PDA Ch1 254nm				
Peak#	Ret.	Time	Area	Area%
1	12.	621	5522970	50. 327
2	23.	994	5451192	49, 673

mAU

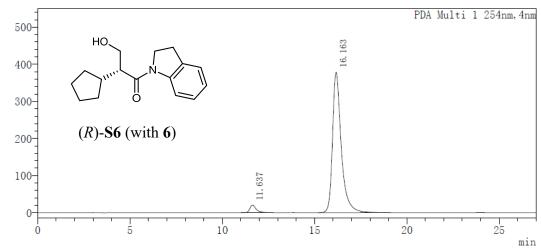


Peak Table

PDA CD	1 Zo4nm		
Peak#	Ret. Time	Area	Area%
1	12.647	577577	6. 069
2	23. 948	8939275	93. 931

HPLC of S6

mAU

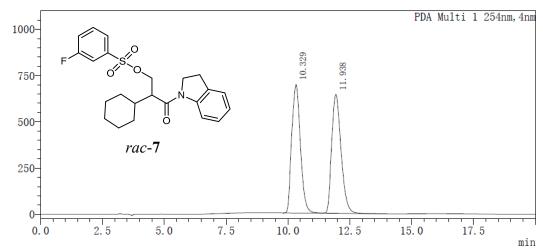


Peak Table

PDA Ch1 254nm

FDA CHI 254HIII					
	Peak#	Ret.	Time	Area	Area%
	1	11.	626	5290179	49. 903
	2	16.	216	5310829	50. 097

mAU

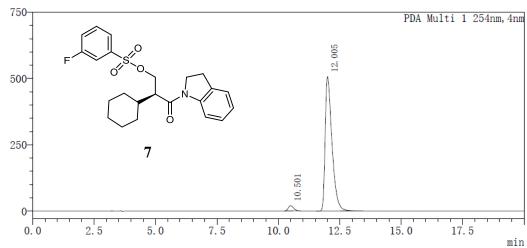


Peak Table

Peak	# Ret.	Time	Area	Area%
1	11.	637	491547	3. 787
2	16.	163	12487638	96. 213

HPLC of 7

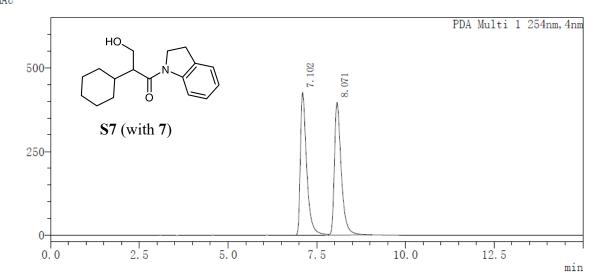
mAU



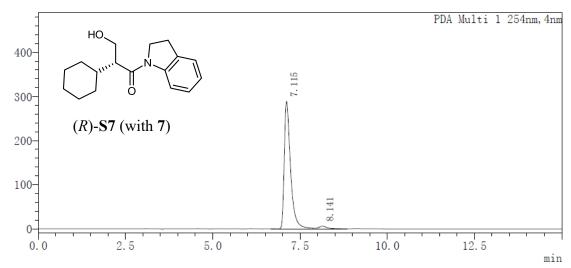
Peak Table

PDA Ch1 254nm

FDA CITI ZOTIIII					
	Peak#	Ret.	Time	Area	Area%
	1	10.	329	16981465	50. 015
	2	11.	938	16970953	49. 985



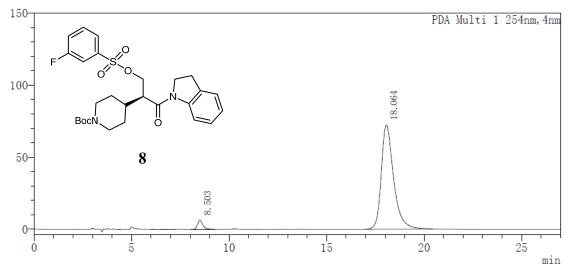
Peak Table


IDN CHI ZOTHII					
	Peak#	Ret.	Time	Area	Area%
	1	10.	501	301211	2.979
	2	12.	005	9811535	97.021

$\underset{\text{mAU}}{\text{HPLC of S7}}$

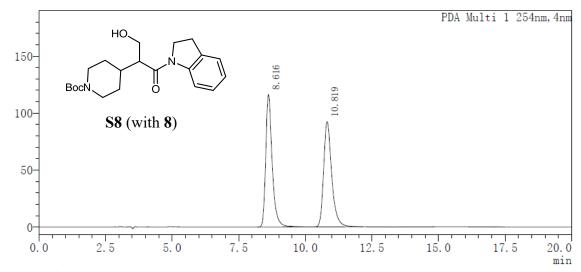
PDA Ch1 25	4nm		
T	Hight	Area	Area%
7. 102	425782	5283720	49.877
8. 071	396127	5309707	50. 123

 mAU

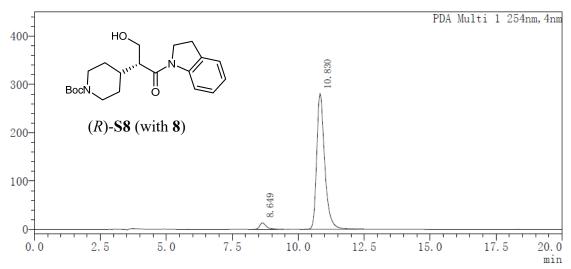

PDA Ch1 254nm							
T	Hight	Area	Area%				
7. 115	288501	3611953	97. 270				
8. 141	6044	101374	2. 730				

HPLC of 8

PDA Ch1 254nm						
T	Hight	Area	Area%			
8. 515	76525	1462189	50.620			
18. 260	32685	1426396	49. 380			

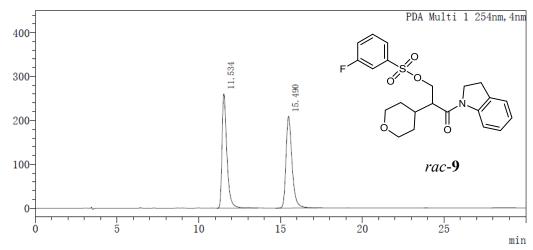

mAU

$\Delta \Pi \Phi$	Ch1	254nm
ותעו	OHI	20 HIIII


T	Hight	Area	Area%
8. 503	6439	121831	3. 687
18.064	72385	3182252	96. 313

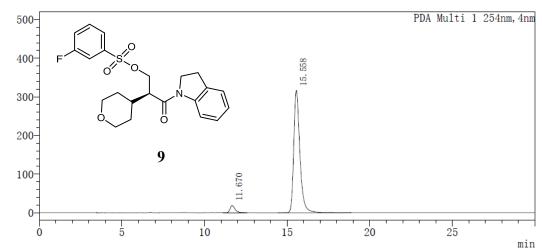
$\underset{\text{mAU}}{\text{HPLC of S8}}$

PDA Ch1 254nm						
T	Hight	Area	Area%			
8. 616	116303	1965397	50. 093			
10.819	92315	1958114	49. 907			


mAU

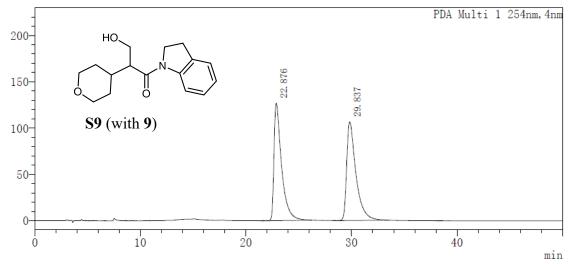
PDA Ch1 254nm						
T	Hight	Area	Area%			
8. 649	13428	236556	3. 835			
10.830	280599	5931335	96. 165			

HPLC of 9

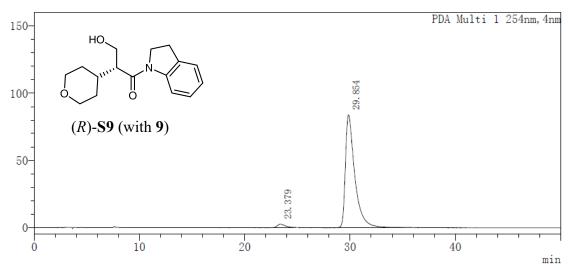

mAU

Peak Table

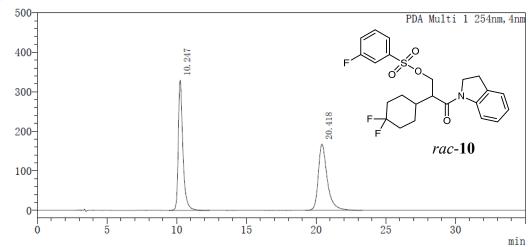
PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	11.	534	5389432	49. 957
	2	15.	490	5398717	50. 043


mAU

Peak Table


I DIT CITE DO TIM					
	Peak#	Ret.	Time	Area	Area%
	1	11.	670	389678	4. 545
	2	15.	558	8184879	95. 455

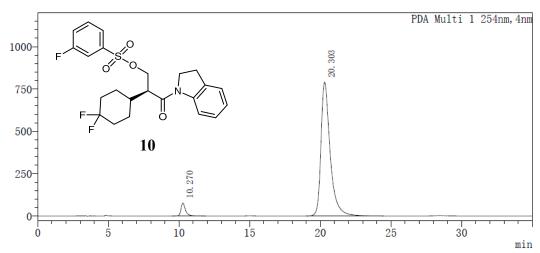
$\underset{\text{mAU}}{\text{HPLC of S9}}$


PDA Ch1 25	4nm		
T	Hight	Area	Area%
22. 876	126718	6348759	49. 356
29. 837	106567	6514449	50, 644

mAU

PDA Ch1 25	4nm		
T	Hight	Area	Area%
23. 379	2593	134701	2. 520
29.854	84002	5211320	97. 480

mAU

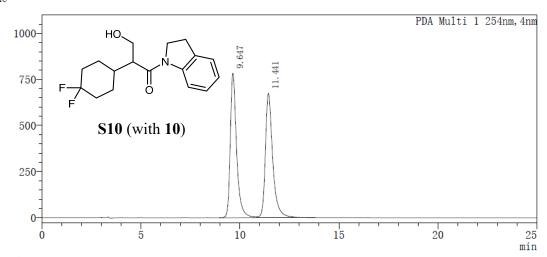


Peak Table

PDA Ch1 254nm

DA CHI ZOTHIII				
Peak#	Ret.	Time	Area	Area%
1	10.	247	7563221	50. 172
2	20.	418	7511351	49. 828

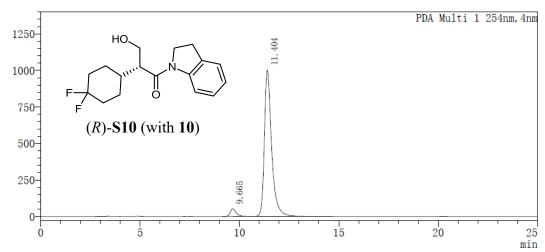
mAU



Peak Table

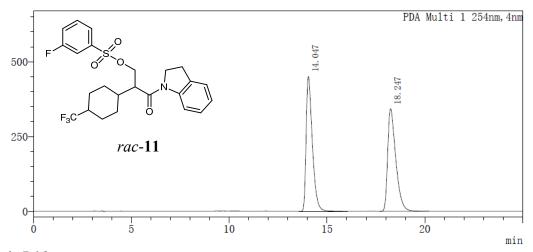
Peak#	Ret.	Time	Area	Area%
1	10.	270	1729383	4. 598
2	20.	303	35880644	95. 402

HPLC of S10


mAU

Peak Table

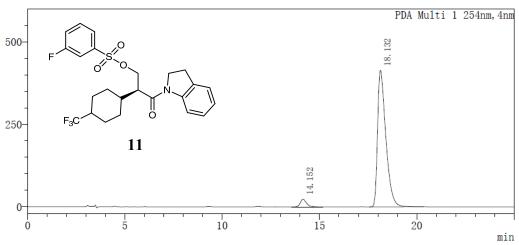
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.647	17330789	49.852		
2	11. 441	17433433	50. 148		


mAU

Peak Table

I DI CIII ZO IIIII				
Peak#	Ret. Time	Area	Area%	
1	9. 665	1067364	4. 038	
2	11. 404	25367501	95. 962	

mAU

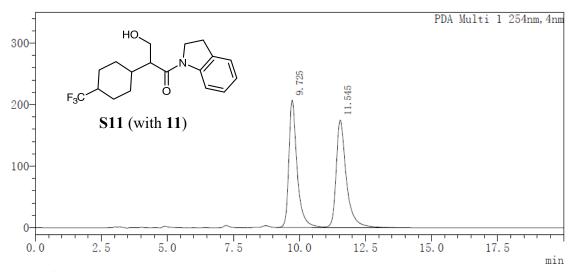


Peak Table

PDA Ch1 254nm

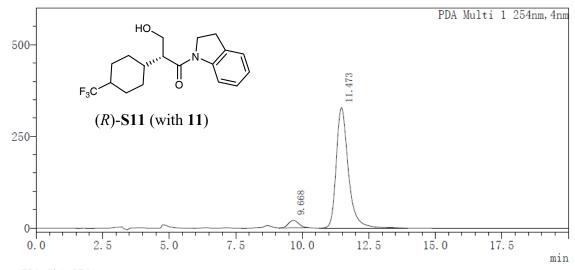
PDA CHI ZO4HIII				
Peak#	Ret.	Time	Area	Area%
1	14.	047	9980967	50. 164
2	18.	247	9915849	49. 836

mAU

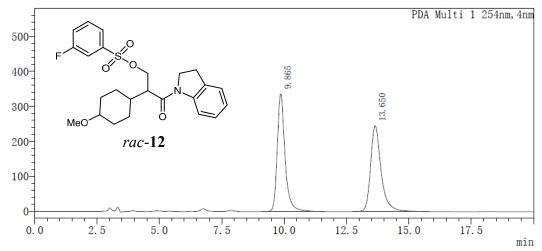


Peak Table

Peak#	Ret. Ti	me	Area	Area%
1	14. 15	2	514228	4. 027
2	18. 13	2	12254461	95. 973

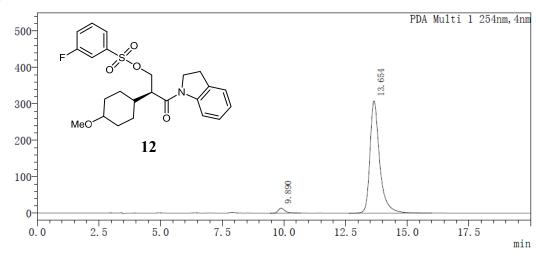

HPLC of S11

mAl



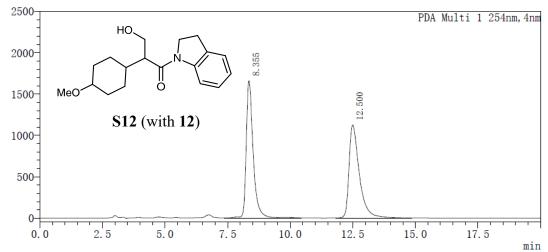
PDA Ch1 25	PDA Ch1 254nm				
T	Hight	Area	Area%		
9. 725	207037	4519364	49.057		
11. 545	174804	4693056	50. 943		

mAU


PDA Ch1 25	4nm		
T	Hight	Area	Area%
9. 668	20534	551133	5. 023
11. 473	328369	10421021	94. 977

Peak Table

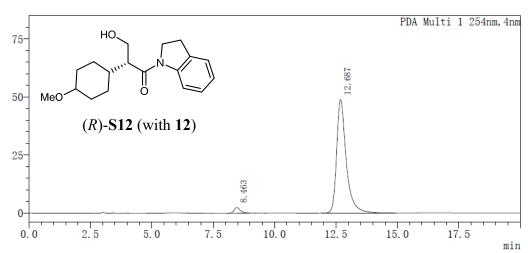
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.865	7301811	50. 315		
2	13 650	7210274	49 685		


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	9.890	264616	3. 033
2	13. 654	8460574	96. 967

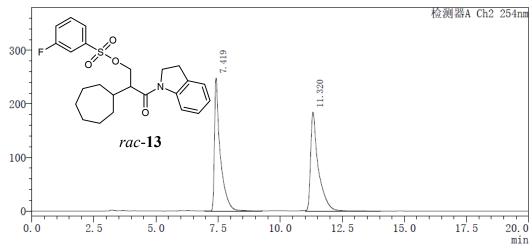
$\underset{\text{mAU}}{\text{HPLC of S12}}$



Peak Table

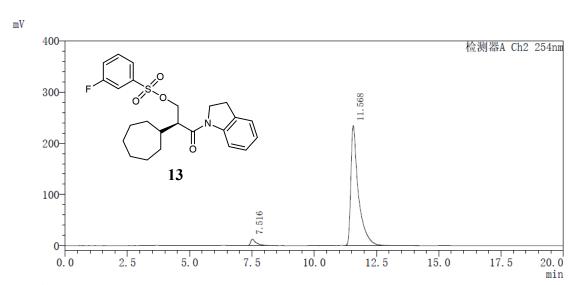
PDA Ch1 254nm

IDA CITI ZUTIIII				
	Peak#	Ret. Tim	e Area	Area%
	1	8. 355	31983413	49. 702
	2	12. 500	32367334	50. 298


mAU

Peak Table

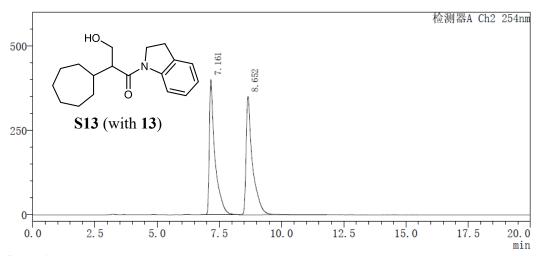
DA CIT ZOTIII			
Peak#	Ret. Time	Area	Area%
1	8. 463	42253	3. 072
2	12. 687	1333061	96. 928


mV

Peak Table

检测器A Ch2 254nm

1W 1991 OF A CITE 2041 IIII				
Peak#	Ret. Time	Area	Area%	
1	7. 419	4032361	50. 205	
2	11. 320	3999353	49. 795	

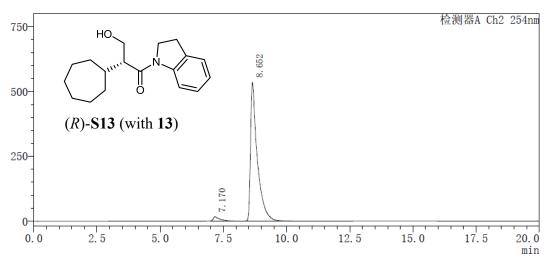


Peak Table

检测器A Ch2 254nm

Peak#	Ret. Time	Area	Area%
1	7. 516	200717	3.887
2	11. 568	4963557	96. 113

$\underset{\text{mV}}{\text{HPLC of S13}}$

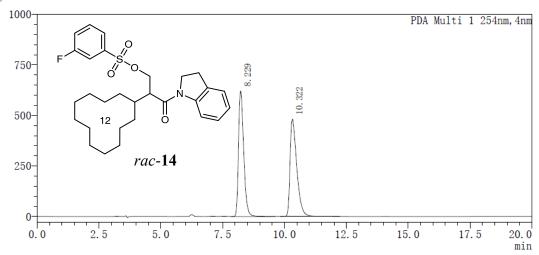


Peak Table

检测界A Cho o54

位.例 希A CNZ ZO4NIII				
	Peak#	Ret. Time	Area	Area%
	1	7. 161	6289302	49. 841
	2	8, 652	6329551	50, 159

mV

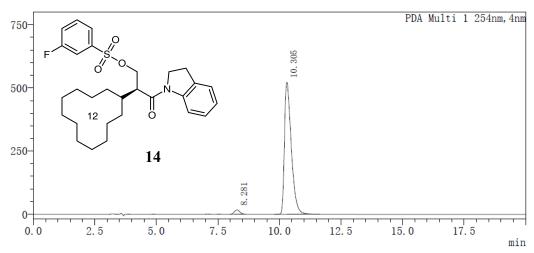


Peak Table

检测器A Ch2 254nm

Peak#	Ret. Time	Area	Area%
1	7. 170	310467	3. 009
2	8. 652	10008232	96. 991

mAU

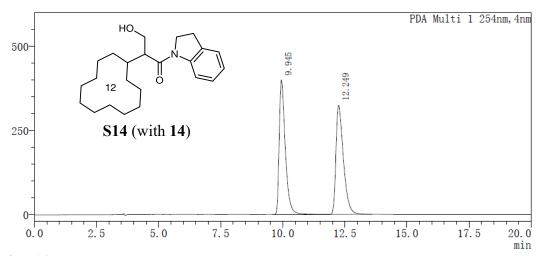


Peak Table

PDA Ch1 254nm

PDA CHI ZO4HIII				
Peak#	Ret. Time	Area	Area%	
1	8. 229	9087067	49. 920	
2	10. 322	9116334	50, 080	

mAU

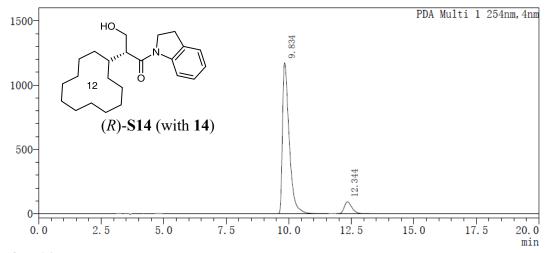


Peak Table

FDA CITI 254IIII				
Peak#	Ret.	Time	Area	Area%
1	8. 2	281	260884	2. 526
2	10. 3	305	10065730	97. 474

HPLC of S14

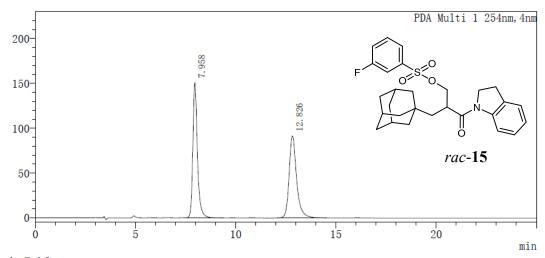
mAU



Peak Table

PDA Ch1 254nm

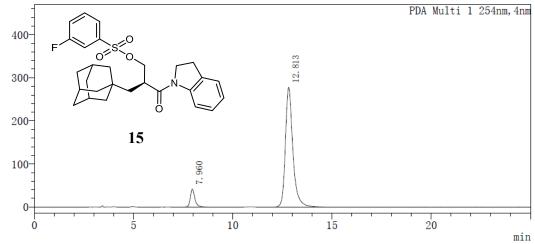
PDA CHI ZO4HIII				
Peak#	Ret. Time	Area	Area%	
1	9. 945	6809951	50. 149	
2	12, 249	6769366	49.851	


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	9.834	22114326	91.653
2	12. 344	2013984	8. 347

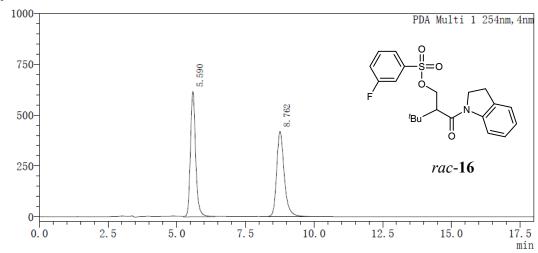
mAU



Peak Table

PDA Ch1 254nm

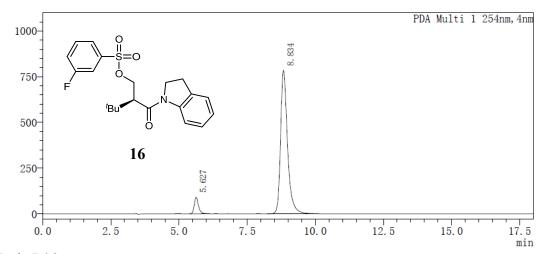
FDA CITI Z54IIII				
Peak#	Ret. Time	Area	Area%	
1	7. 958	2413117	50. 182	
2	12, 826	2395647	49, 818	


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	7. 960	673309	8. 446
2	12.813	7298883	91. 554

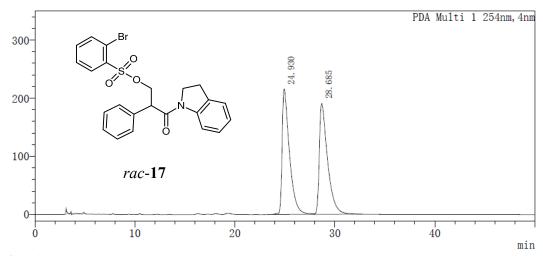
mAU



Peak Table

PDA Ch1 254nm

I DA CHI ZUHINI				
Peak#	Ret. Time	Area	Area%	
1	5. 590	8185111	50. 357	
2	8. 762	8069090	49. 643	

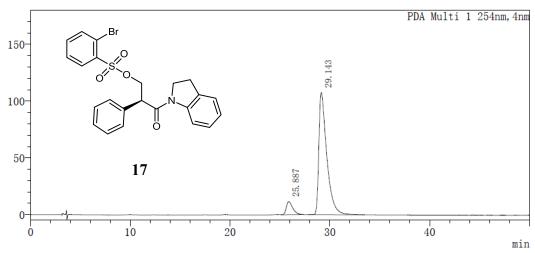

mAU

Peak Table

FDA CITI Z54IIII				
Peak#	Ret. Tir	ne Area	Area%	
1	5. 627	981797	6. 570	
2	8.834	13960972	93. 430	

mAU

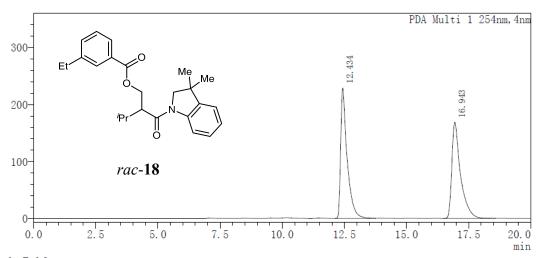
Peak Table


 PDA Ch1 254nm

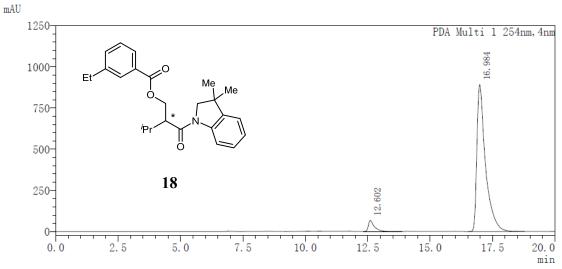
 Peak# Ret. Time
 Area
 Area%

 1
 24.930
 11011774
 50.144

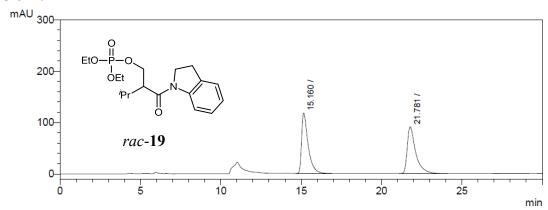
 2
 28.685
 10948656
 49.856


mAU

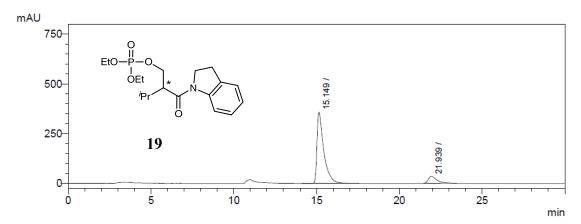
Peak Table


Peak#	Ret.	Time	Area	Area%
1	25.	887	513001	7. 932
2	29.	143	5954588	92. 068

mAU

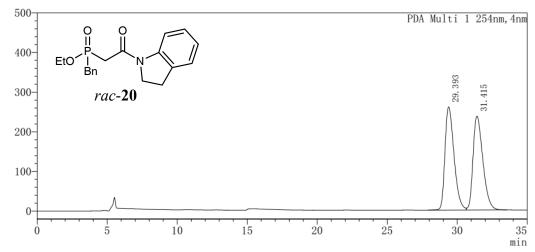

Peak Table

PDA Ch	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%				
1	12.434	4124909	50. 106				
2	16. 943	4107468	49.894				



Peak Table

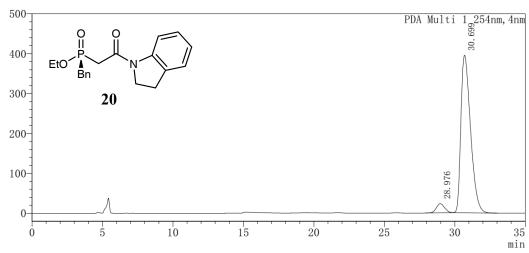
Peak#	Ret.	Time	Area	Area%
1	12.	602	1129825	5. 006
2	16.	984	21441578	94. 994



PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	15.160	3314619	49.950		
2	21.781	3321271	50.050		

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	15.149	10157516	89.553			
2	21.939	1185004	10.447			

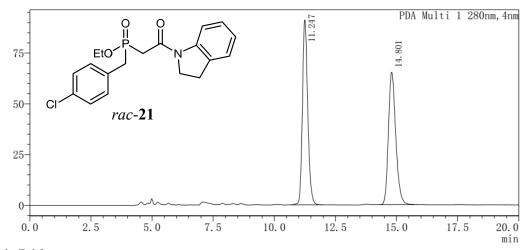
mAU



Peak Table

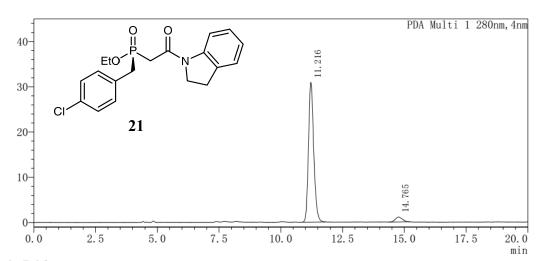
PDA Ch1 254nm

FDA CITI 204IIII					
	Peak#	Ret.	Time	Area	Area%
	1	29.	393	11721510	50. 342
	2	31.	415	11562222	49.658



Peak Table

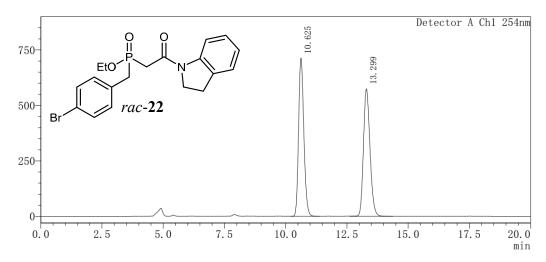
Peak#	Ret.	Time	Area	Area%
1	28.	976	943662	4. 780
2	30.	699	18798592	95. 220


mAU

Peak Table

PDA Ch1 280nm				
	Peak#	Ret. Time	Area	Area%
	1	11. 247	1382257	50. 341
	2	14.801	1363521	49, 659

mAU

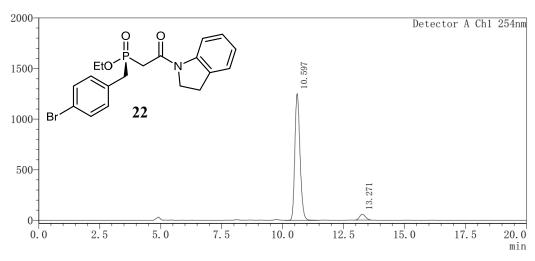


Peak Table

	1 280nm	
Peak#	Ret. Time	
-	11 010	

Peak#	Ret. Time	Area	Area%
1	11. 216	457080	95. 475
2	14. 765	21665	4. 525

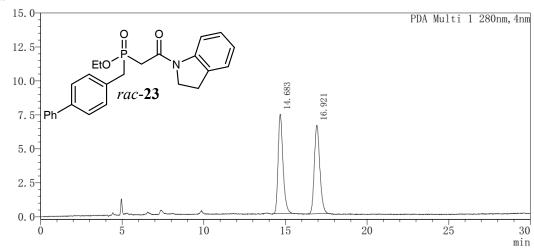
mV



Peak Table

Detector A Ch1 254nm

Detect	OI II	OHI Z	OTHI	
Peak#	Ret.	Time	Area	Area%
1	10.	625	10660470	49. 975
2	13.	299	10671240	50. 025

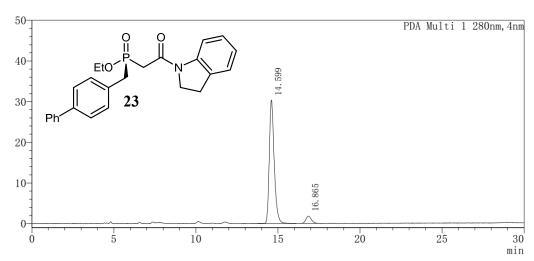


Peak Table

Detector A Ch1 254nm

	Peak#	Ret.	Time	Area	Area%
	1	10.	597	18477271	94. 918
	2	13.	271	989318	5. 082

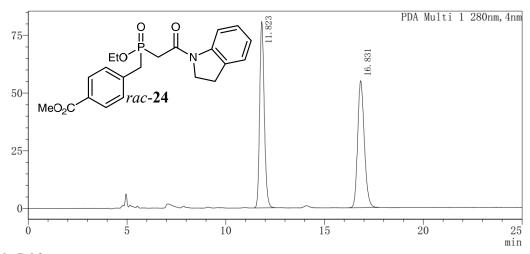
mAU



Peak Table

PDA Ch1 280nm

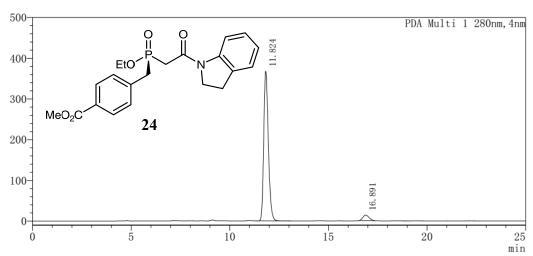
FUN CII	11 40011111		
Peak#	Ret. Time	Area	Area%
1	14. 683	153084	49. 925
2	16. 921	153546	50.075


mAU

Peak Table

PDA CHI Zouniii				
Peak#	Ret.	Time	Area	Area%
1	14.	599	632183	93. 904
2	16.	865	41039	6.096

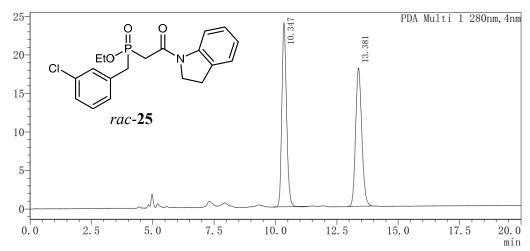
mAU



Peak Table

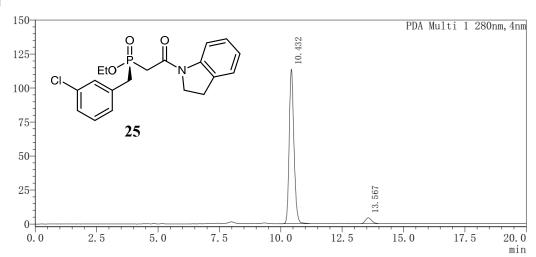
PDA Ch1 280nm

FDA CII	1 40011111		
Peak#	Ret. Time	Area	Area%
1	11.823	1307521	50. 334
2	16. 831	1290172	49, 666



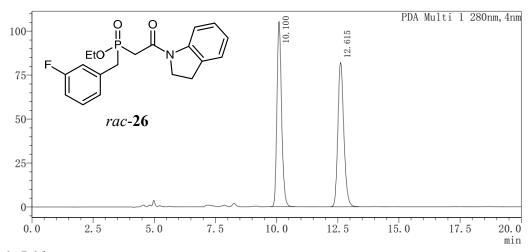
Peak Table

PDA CII	1 20011111		
Peak#	Ret. Time	Area	Area%
1	11.824	5955177	95. 371
2	16, 891	289069	4, 629


mAU

Peak Table

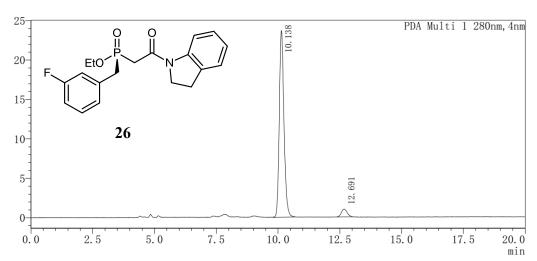
PDA Ch1 280nm				
	Peak#	Ret. Time	Area	Area%
	1	10. 347	316272	50. 211
	2	12 201	313614	40 780


mAU

Peak Table

Peak#	Ret.	Time	Area	Area%
1	10.	432	1530070	95. 415
2	13.	567	73528	4. 585

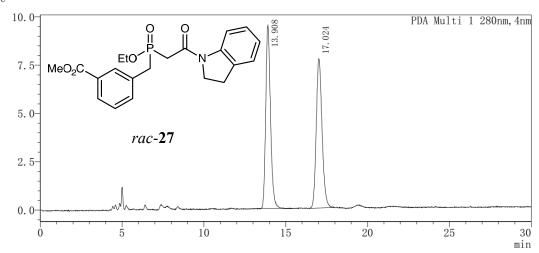
m A U



Peak Table

PDA Ch1 280nm

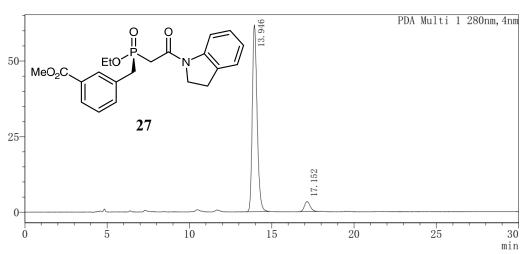
FDA CITI ZOUTIII				
	Peak#	Ret. Time	Area	Area%
	1	10. 100	1388298	49. 996
	2	12.615	1388516	50.004


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	10. 138	311038	95. 103
2	12.691	16015	4. 897

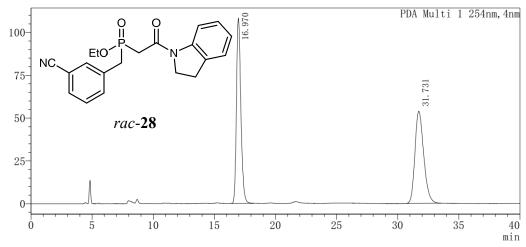
mAU



Peak Table

PDA Ch1 280nm

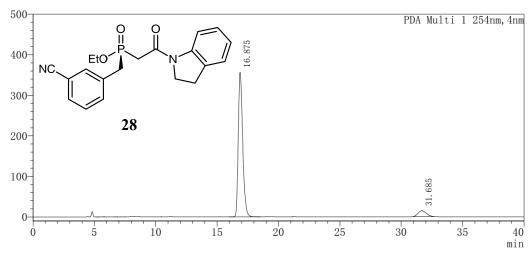
I DA CHI 2001III					
	Peak#	Ret.	Time	Area	Area%
	1	13.	908	191259	50.012
	2	17.	024	191169	49. 988


mAU

Peak Table

I DA CH	1 20011111		
Peak#	Ret. Time	Area	Area%
1	13.946	1254973	93. 846
2	17. 152	82293	6. 154

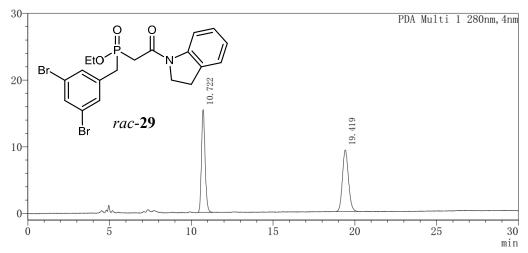
mAU



Peak Table

PDA Ch1 254nm

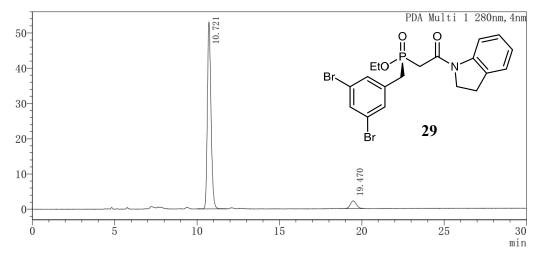
PDA CHI ZO4HIII				
Peak#	Ret. Time	Area	Area%	
1	16. 970	2702871	50. 119	
2	31. 731	2690068	49. 881	


mAU

Peak Table

PDA Ch1 254nm

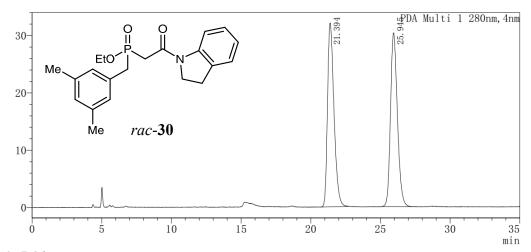
Peak#	Ret.	Time	Area	Area%
1	16.	875	8979244	93. 081
2	31.	685	667447	6. 919



Peak Table

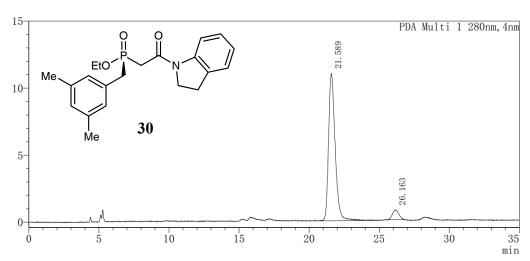
PDA Ch1 280nm

FDA CITI ZOUIIII				
Peak#	Ret. Time	Area	Area%	
1	10.722	237159	50. 230	
2	19. 419	234987	49. 770	


mAU

Peak Table

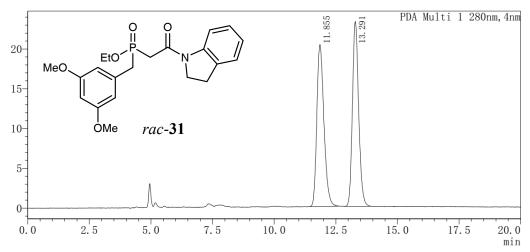
Peak#	Ret. Time	Area	Area%
1	10.721	813747	93. 599
2	19. 470	55652	6. 401


mAU

Peak Table

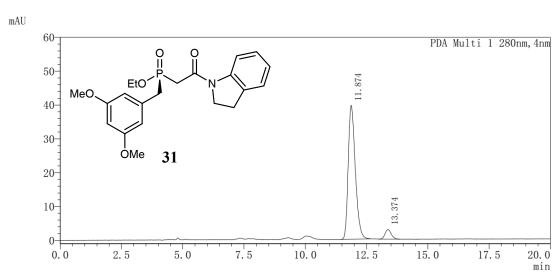
PDA Ch1 280nm				
Peak#	Ret. Time	Area	Area%	
1	21. 394	1030951	49. 794	
2	25. 945	1039492	50. 206	

mAU


Peak Table

PDA Ch1 280nm					
Peak#	Ret. Time	Area			
1	21.589	360629			
2	26. 163	23681			

Area% 93.838


6. 162

mAU

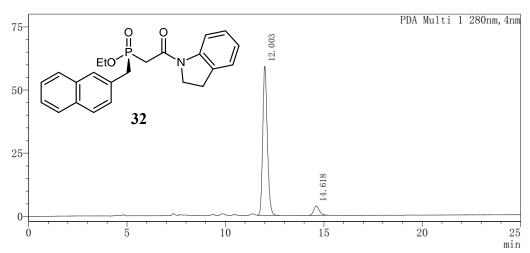
Peak Table

PDA Ch1 280nm					
Peak#	Ret. Time	Area	Area%		
1	11.855	406485	49. 961		
2	13. 291	407112	50. 039		

Peak Table

PDA Ch1 280nm				
Peak#	Ret. Time	Area	Area%	
1	11.874	796467	94. 052	
2	13, 374	50372	5, 948	

mAU

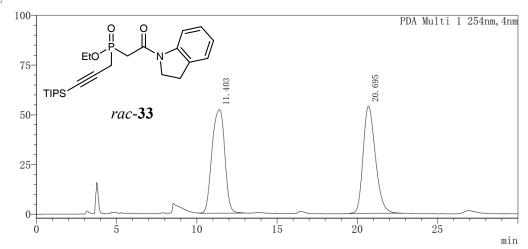


Peak Table

PDA Ch1 280nm

FDA CITI 280IIII				
Peak#	Ret.	Time	Area	Area%
1	11.	871	258246	49. 908
2	14.	347	259203	50. 092

mAU

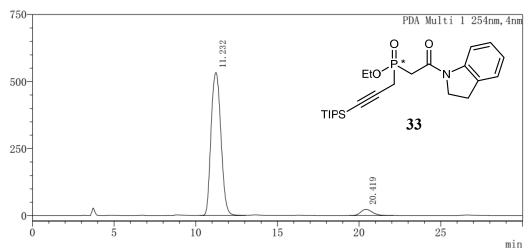


Peak Table

	Peak#	Ret.	Time	Area	Area%
	1	12.	003	954583	92.674
	2	14.	618	75458	7. 326

HPLC of 33

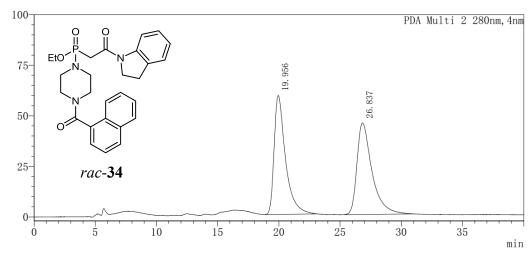
mAU



Peak Table

PDA Ch1 254nm

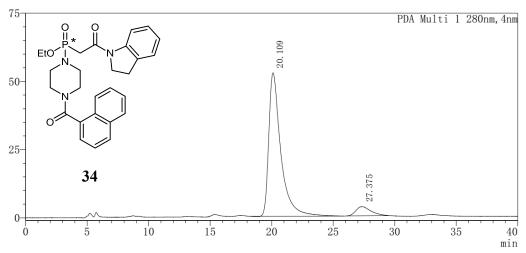
I DA CII			
Peak#	Ret. Time	Area	Area%
1	11. 403	2880581	50.006
2	20.695	2879871	49. 994



Peak Table

I DA CHI 204HIII			
Peak#	Ret. Time	Area	Area%
1	11. 232	22447638	95. 020
2	20.419	1176407	4. 980

mAU

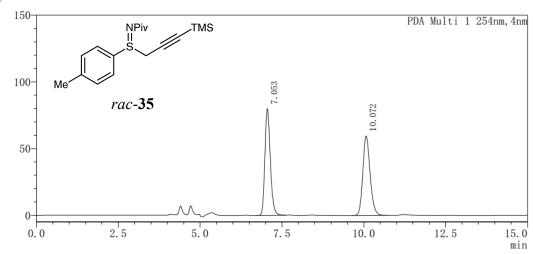


Peak Table

PDA Ch2 280nm

FDA CIIZ ZOUIIII				
Peak#	Ret.	Time	Area	Area%
1	19.	956	3812649	49.609
2	26.	837	3872800	50. 391

mAU

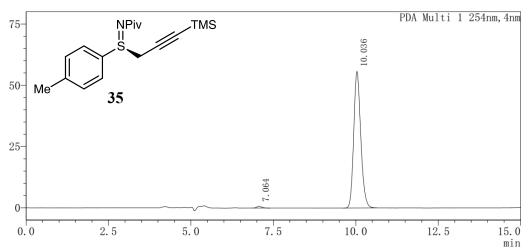


Peak Table

PDA Ch1 280nm

Peak#	Ret. Time	Area	Area%
1	20. 109	3578678	92. 566
2	27. 375	287387	7. 434

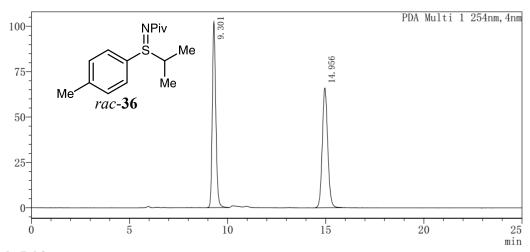
mAU



Peak Table

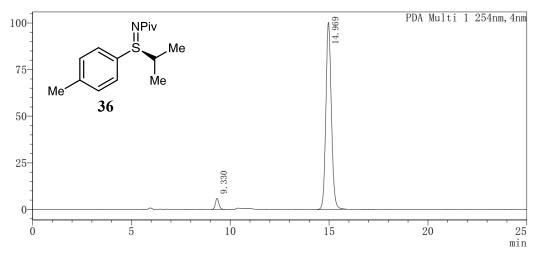
PDA Ch1 254nm

PDA CII	1 2341111		
Peak#	Ret. Time	Area	Area%
1	7.053	924422	50. 156
2	10.072	918672	49.844

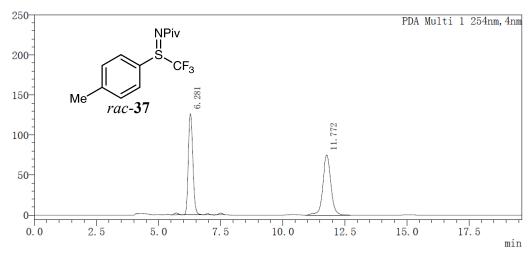

mAU

Peak Table

I DA CHI 254HIII				
	Peak#	Ret. Time	Area	Area%
	1	7.064	7879	0. 938
	2	10.036	831800	99. 062


mAU

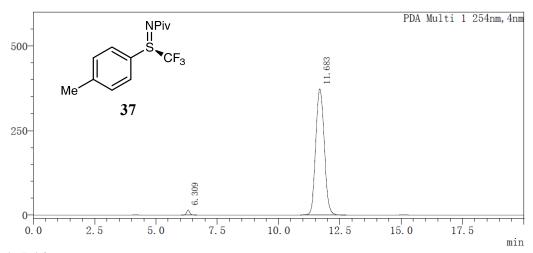
Peak Table


PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	9.301	1269773	49.867		
2	14. 956	1276548	50. 133		

m A U

Peak Table

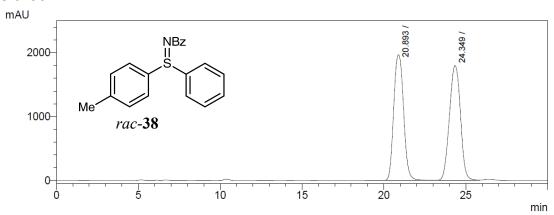
PDA CITI ZO4IIII					
Peak#	Ret. Time	Area	Area%		
1	9. 330	73486	3.653		
2	14, 969	1938287	96, 347		

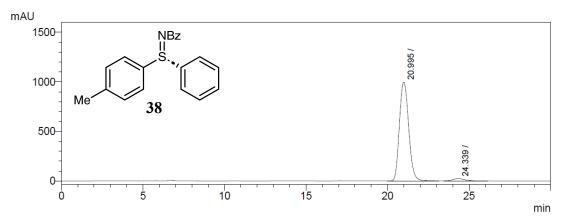


Peak Table

PDA Ch1 254nm

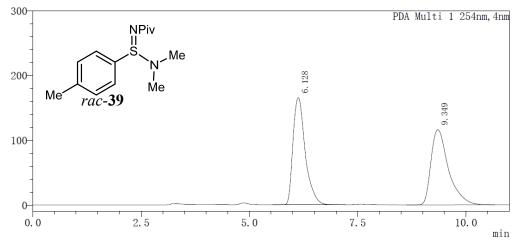
I DA CITI ZUHIM				
	Peak#	Ret. Time	Area	Area%
	1	6. 281	1606804	48. 876
	2	11. 772	1680719	51. 124


mAU


Peak Table

PDA Ch1 254nm

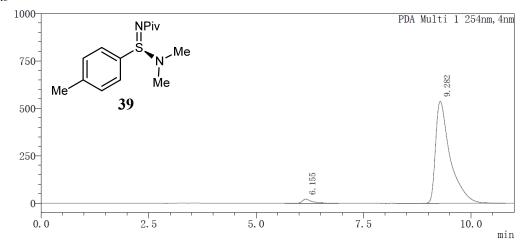
Peak#	Ret. Time	Area	Area%
1	6. 309	140994	1. 527
2	11. 683	9092483	98. 473



PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	20.893	82444333	49.396	
2	24.349	84459366	50.604	

PDA CI	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	20.995	39271076	97.255
2	24.339	1108322	2.745

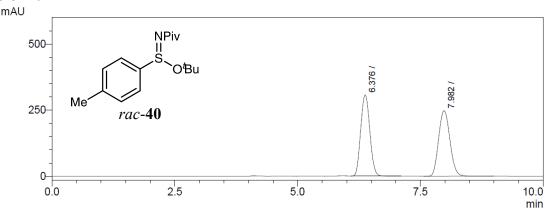
mAU

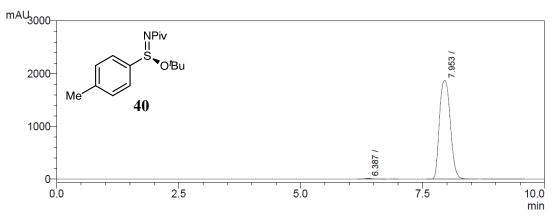


Peak Table

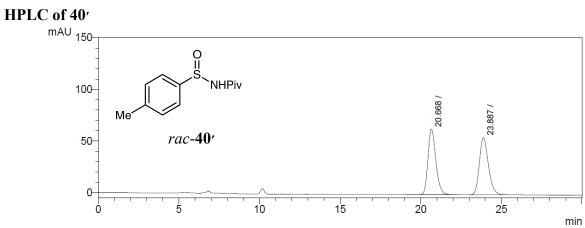
PDA Ch1 254nm

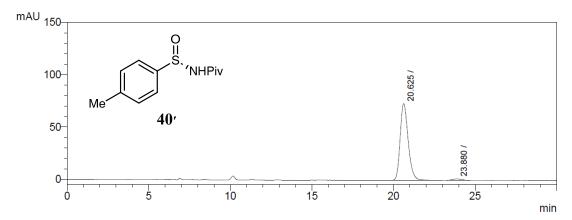
PDA CIT 254IIII				
Peak#	Ret. Time	Area	Area%	
1	6. 128	3268039	50.014	
2	9. 349	3266163	49. 986	


mAU

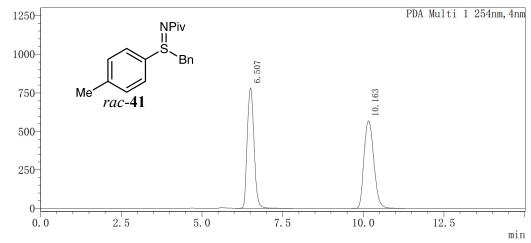

Peak Table

1 DI CIT ZOTIM					
	Peak#	Ret.	Time	Area	Area%
	1	6.	155	324414	2. 508
	2	9.	282	12613052	97. 492


HPLC of 40 mAU


PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.376	3972487	50.031		
2	7.982	3967563	49.969		

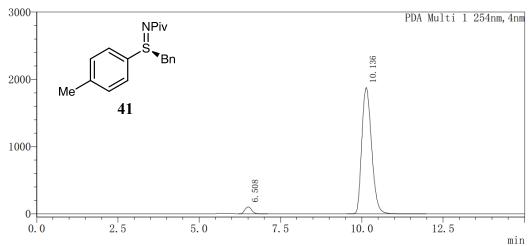
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.387	149849	0.516	
2	7.953	28897698	99.484	



PDA C	PDA Ch1 254nm				
Peak#		Area	Area%		
1	20.668	2155840	50.042		
2	23.887	2152234	49.958		

PDA Ch1 254nm				
Peak# Ret. Time		Area	Area%	
1	20.625	2489291	97.903	
2	23.880	53318	2.097	

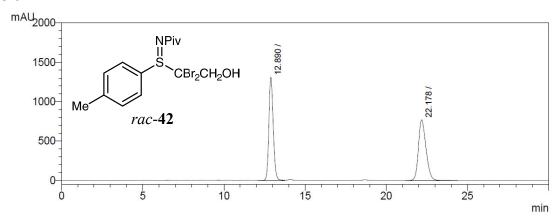
mAU

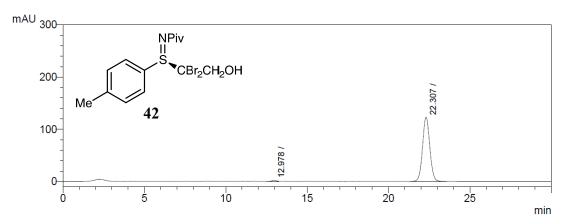


Peak Table

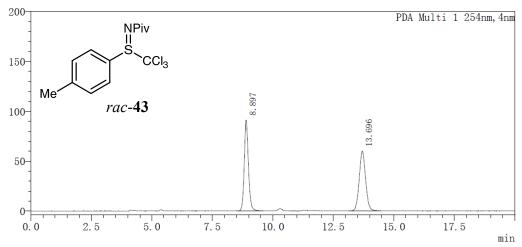
PDA Ch1 254nm

I DIT CITE BOTTIME			
Peak#	Ret. Time	Area	Area%
1	6. 507	11449566	48. 684
2	10. 163	12068331	51. 316



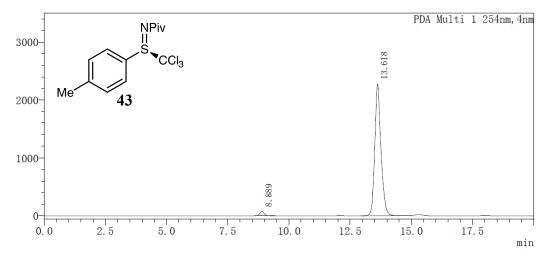

Peak Table

PDA Ch1 254nm


I DI CITI 20 IIIII				
Peak#	Ret. Time	Area	Area%	
1	6. 508	1470270	3. 598	
2	10. 136	39389958	96, 402	

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	12.890	24451369	49.486
2	22.178	24959593	50.514

PDA Ch1 254nm				
Peak# Ret. Time		Area	Area%	
1	12.978	41621	1.078	
2	22.307	3818485	98.922	

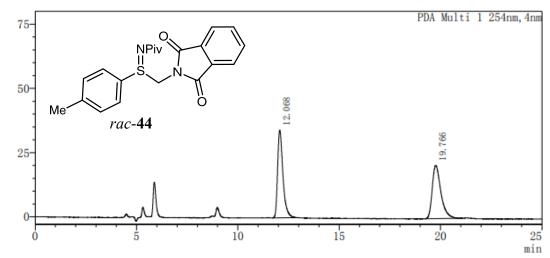


Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	8. 897	1102620	50. 043
2	13. 696	1100723	49. 957

mAU

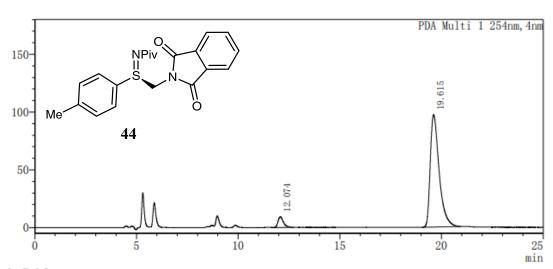


Peak Table

PDA Chl 254nm

Peak#	Ret. Time	Area	Area%
1	8. 889	932253	2. 297
2	13. 618	39646576	97. 703

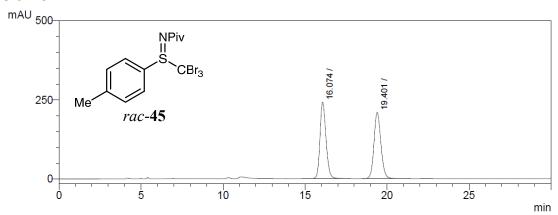
mAU

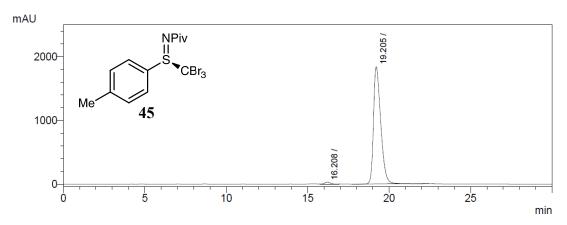


Peak Table

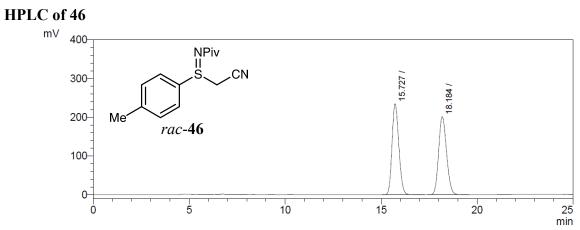
PDA Ch1 254nm

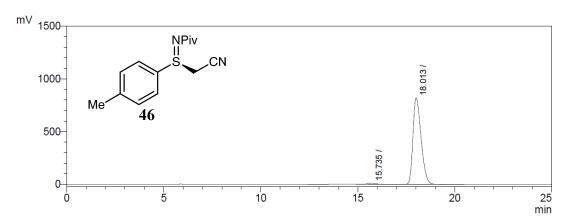
i bii cii	1 20 111111		
Peak#	Ret. Time	Area	Area%
1	12.068	625341	50. 241
2	19. 766	619348	49.759

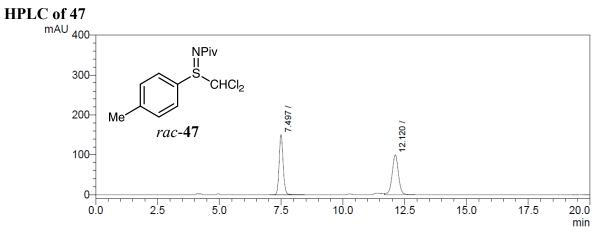

mAU

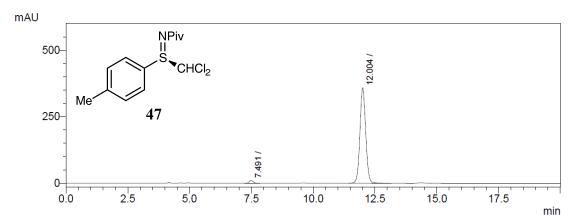

Peak Table

PDA Ch1 254nm

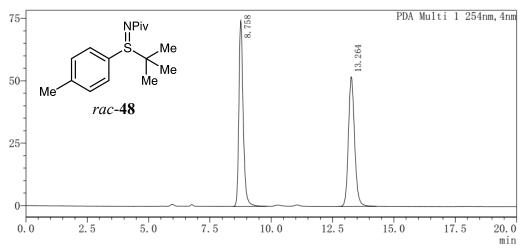

I DIT CITE DO TIM					
	Peak#	Ret. T	ime	Area	Area%
	1	12.07	74	170725	5. 442
	2	19. 61	15	2966719	94. 558


Peak# Ret Time	A	
reak# Net. Hille	Area	Area%
1 16.074	6179380	50.035
2 19.401	6170711	49.965


PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.208	716015	1.254
2	19.205	56404753	98.746


检测器	4 Ch1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.727	5780549	49.961
2	18.184	5789592	50.039

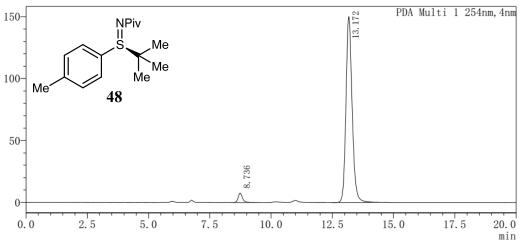
检测器	A Ch1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.735	377464	1.565
2	18.013	23744057	98.435



	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.497	1706892	49.185
2	12.120	1763478	50.815

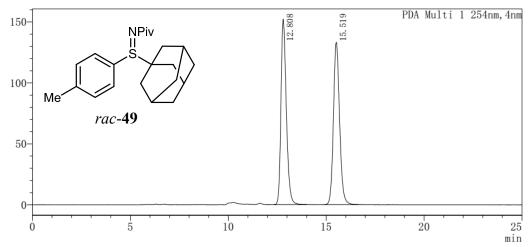
PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.491	110317	1.862	
2	12.004	5814708	98.138	

mAU



Peak Table

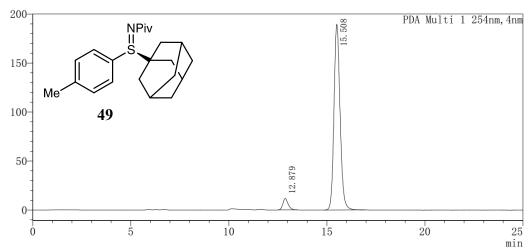
PDA Ch1 254nm


I DA CHI 254IIII				
	Peak#	Ret. Time	Area	Area%
	1	8.758	912198	49.969
	2	13. 264	913325	50.031

m A U

Peak Table

Peak#		A	A 0/
reak#	ket. Ilme	Area	Area%
1	8. 736	92311	3. 391
2	13. 172	2629885	96.609

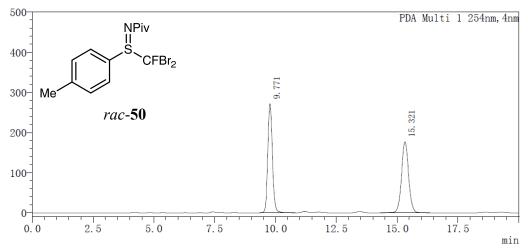


Peak Table

PDA Ch1 254

PDA CN	I 204	±nm		
Peak#	Ret.	Time	Area	Area%
1	12.	808	2904290	49.866
2	15.	519	2919879	50. 134

mAU

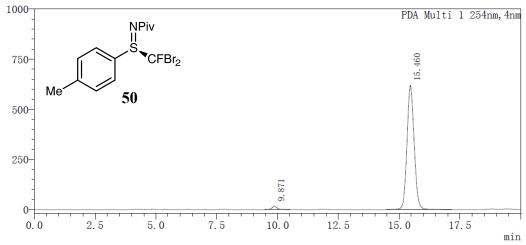


Peak Table

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	12.879	220447	5. 110
2	15. 508	4093867	94. 890

mAU

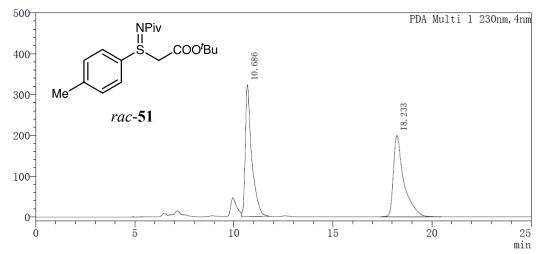


Peak Table

PDA Ch1 254nm

FDA CHI 254HIII				
	Peak#	Ret. Time	Area	Area%
	1	9. 771	3563529	49. 747
	2	15. 321	3599807	50. 253

mAU

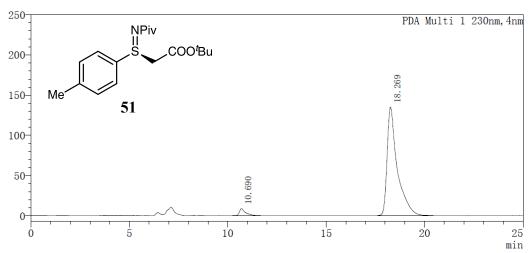


Peak Table

PDA Ch1 254nm

I DII CIII ZOIIIII			
Peak#	Ret. Time	Area	Area%
1	9.871	234546	1.818
2	15. 460	12665457	98. 182

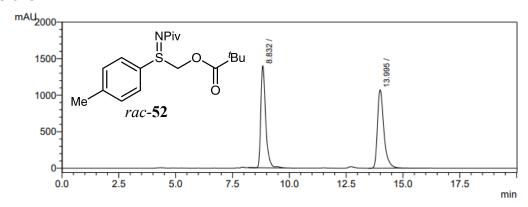
$\begin{array}{c} HPLC \text{ of } 51 \\ \text{mAU} \end{array}$

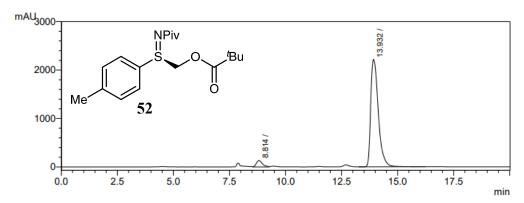


Peak Table

PDA Ch1 230nm

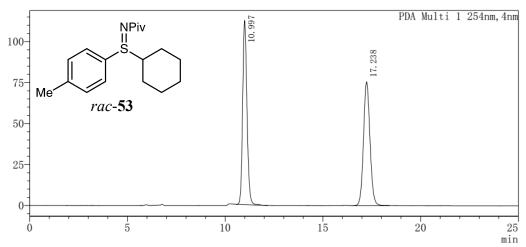
I DI CITI 250IIII					
	Peak#	Ret.	Time	Area	Area%
	1	10.	686	7246052	49. 976
	2	18.	233	7253146	50.024


mAU


Peak Table

PDA Ch1 230nm

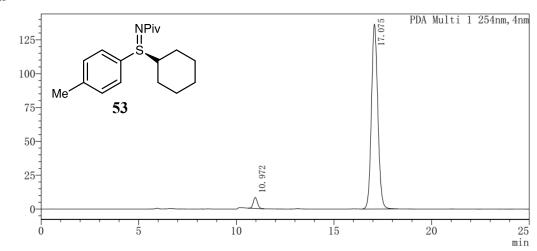
I DA CITI Z30IIII					
	Peak#	Ret.	Time	Area	Area%
	1	10.	690	179675	3. 582
	2	18.	269	4836319	96. 418



PDA C	h1 227nm		
Peak#	Ret. Time	Area	Area%
1	8.832	20937401	49.822
2	13.995	21086733	50.178

PDA C	h1 227nm		
Peak#	Ret. Time	Area	Area%
1	8.814	2474625	4.524
2	13 932	52221423	95 476

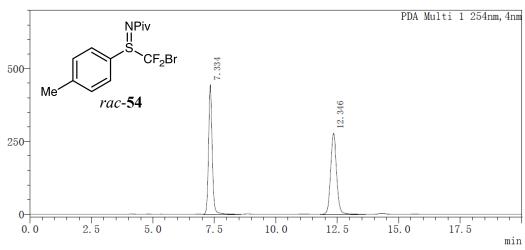
mAU



Peak Table

PDA Ch1 254nm

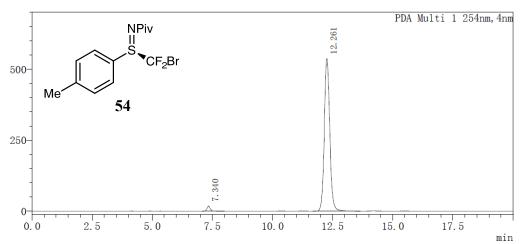
I DA CITI 254IIII				
Peak#	Ret.	Time	Area	Area%
1	10.	997	1728035	49. 774
2	17.	238	1743739	50. 226


m A U

Peak Table

DΑ	Ch1	254nm

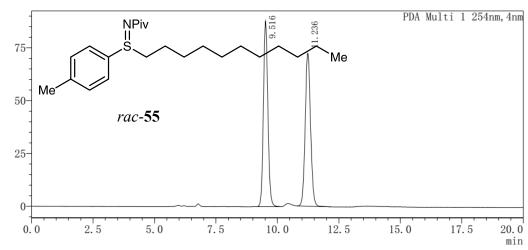
FDA CHI ZO4HIII				
	Peak#	Ret. Time	Area	Area%
	1	10.972	121329	3. 751
	2	17.075	3113325	96, 249



Peak Table

PDA Ch1 254nm

I DII CIII ZO IIIII				
Peak#	Ret. Ti	me	Area	Area%
1	7. 334		4650513	49. 893
2	12. 34	6	4670429	50. 107


mAU

Peak Table

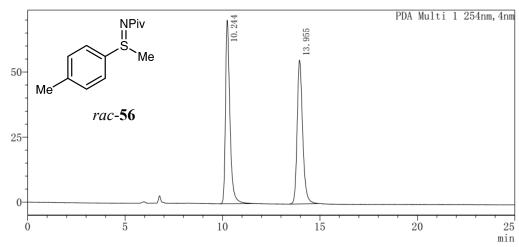
FDA CITI ZUHIIII				
Peak#	Ret. Tin	ne Area	Area%	
1	7. 340	174039	2.014	
2	12. 261	8466356	97. 986	

mAU

Peak Table

PDA Ch1 254nm

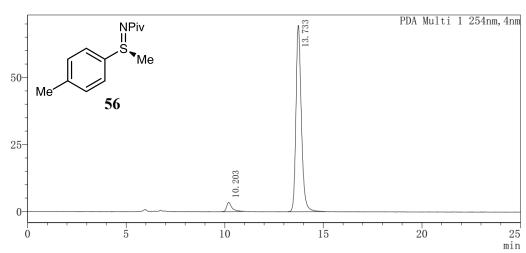
PDA Cni Zo4nm				
Peak#	Ret. Time	Area	Area%	
1	9.516	1107184	50. 115	
2	11. 236	1102115	49.885	


m A U

Peak Table

PDA Chi 254nm				
Peak#	Ret. Time	Area	Area%	
1	9.417	81672	3. 928	
2	11.066	1997574	96.072	

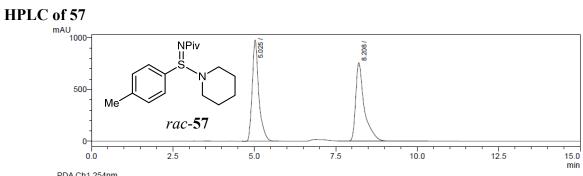
mAU

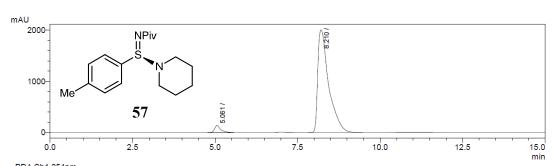


Peak Table

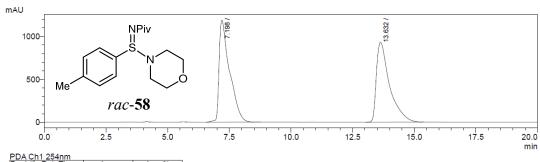
PDA Ch1 254nm

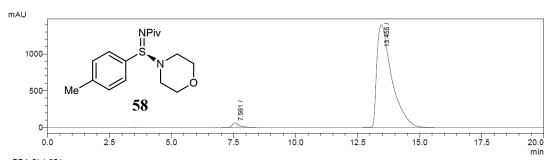
I DA CHI 254IIII			
Peak#	Ret. Ti	me Area	a Area%
1	10. 24	11198	50.658
2	13. 95	5 10907	74 49. 342

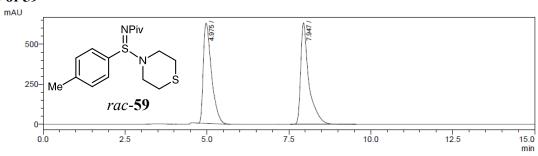

mAU

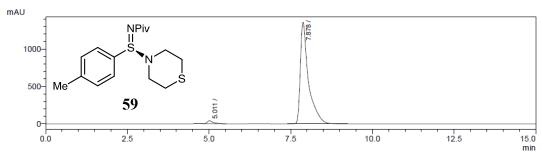

Peak Table

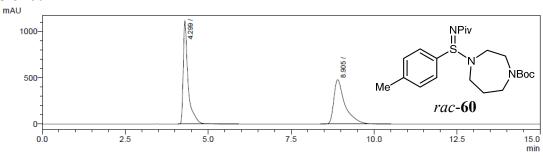
PDA Ch1 254nm

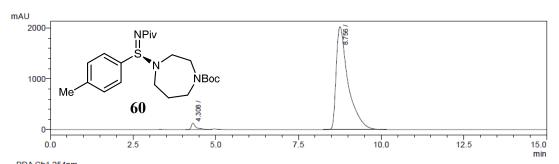

I DA CIII 254IIII					
Peak#	Ret.	Time	Area	Area%	
1	10.	203	64491	4. 626	
2	13.	733	1329455	95. 374	

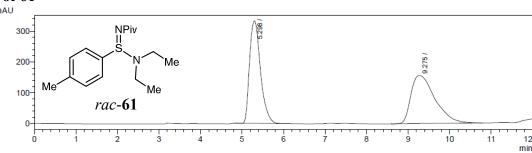

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	5.025	13776938	49.878		
2	8.208	13844449	50.122		

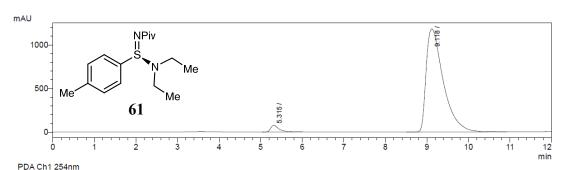

PDA CN1 254NM			
Peak#	Ret. Time	Area	Area%
1	5.061	1709751	3.585
2	8.210	45976221	96.415


PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	7.198	35063568	50.306
	2	13.632	34636634	49.694

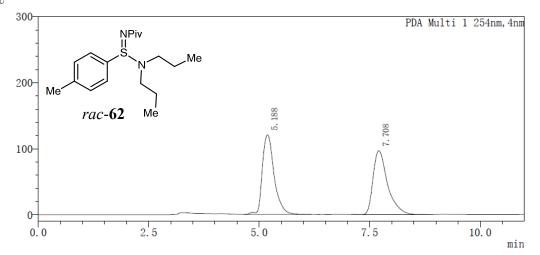

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.561	1172955	1.969
2	13.455	58405130	98.031


PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	4.975	10842486	49.679
2	7.947	10982692	50.321


PDA Cn1 254nm			
Peak#	Ret. Time	Area	Area%
1	5.011	492019	2.043
2	7.878	23590112	97.957


PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	4.299	11425402	50.440
2	8.905	11225926	49.560

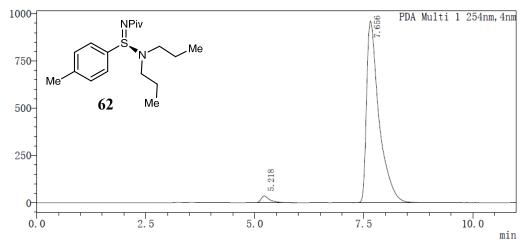
FUAG	III 234IIIII		
Peak#	Ret. Time	Area	Area%
1	4.308	1185960	2.285
2	8.756	50705968	97.715



PDA C			
Peak#	Ret. Time	Area	Area%
1	5.298	6100530	49.310
2	9.275	6271372	50.690

FDAC	111 23411111		
Peak#	Ret. Time	Area	Area%
1	5.315	1075156	3.073
2	9.118	33909346	96.927

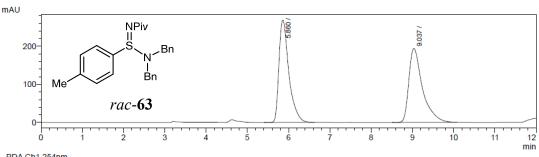
$\begin{array}{c} \textbf{HPLC of 62} \\ \textbf{mAU} \end{array}$

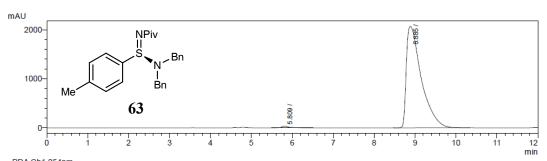


Peak Table

PDA Ch1 254nm

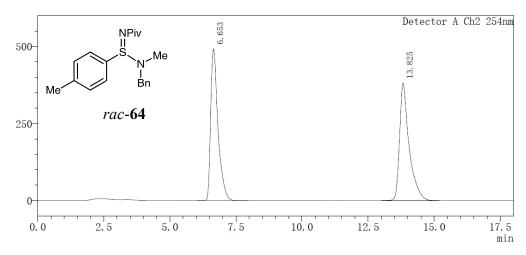
I DIT CHI EO HIM				
	Peak#	Ret. Time	Area	Area%
	1	5. 188	2249901	50. 402
	2	7. 708	2214040	49. 598


mAU


Peak Table

PDA Ch1 254nm

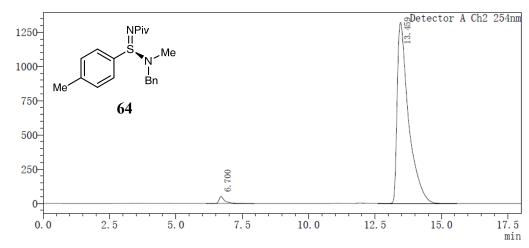
I DIT CITE 20 IIIII				
Peak#	Ret.	Time	Area	Area%
1	5.	218	488568	2. 494
2	7.	656	19101700	97. 506



<u>PDA C</u>	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	5.860	4488666	50.152
2	9.037	4461527	49.848

	N1 254NM		
Peak#	Ret. Time	Area	Area%
1	5.809	450523	0.850
2	8.885	52525284	99.150

$\underset{\text{mV}}{\textbf{HPLC of 64}}$

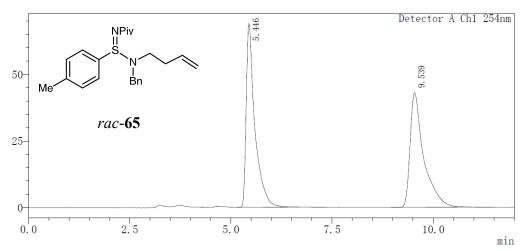


Peak Table

Detector A Ch2 254nm

Peak#		Time		Area%
1	6.	653	9481344	49.804
2	13.	825	9555969	50. 196

mV

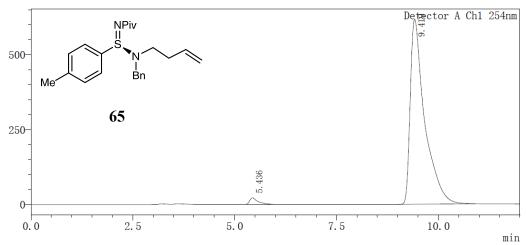


Peak Table

Detector A Ch2 254nm

Peak#	Ret. Tim	e Area	Area%
1	6. 700	780428	1. 941
2	13. 459	39435361	98. 059

mV

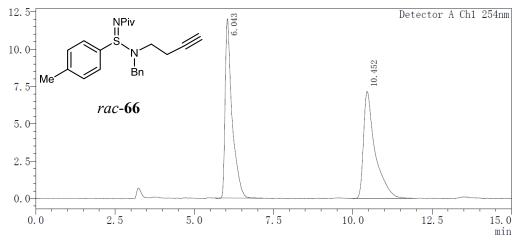


Peak Table

Detector A Ch1 254nm

Detector A CHI 234HH				
Peak#	Ret. Time	Area	Area%	
1	5. 446	1023615	50. 552	
2	9. 539	1001278	49. 448	

mV

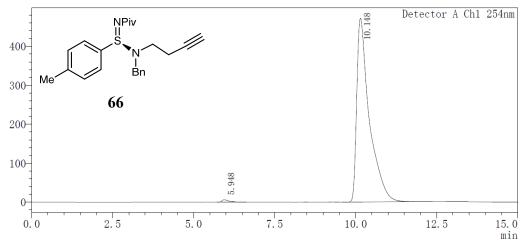


Peak Table

Detector A Ch1 254nm

Detector h chr Zomin					
	Peak#	Ret.	Time	Area	Area%
	1	5.	436	315074	2.028
	2	9.	419	15223640	97. 972

$\underset{mV}{\textbf{HPLC of 66}}$

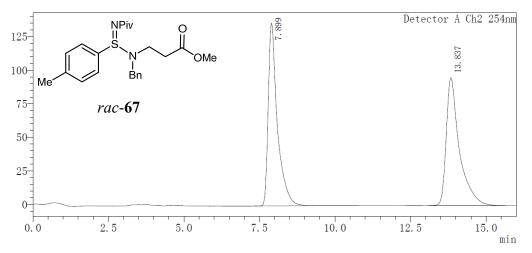


Peak Table

Detector A Ch1 254nm

Detector A CIII 254IIII				
	Peak#	Ret. Time	Area	Area%
	1	6.043	181107	49. 780
	2	10. 452	182706	50. 220

 mV

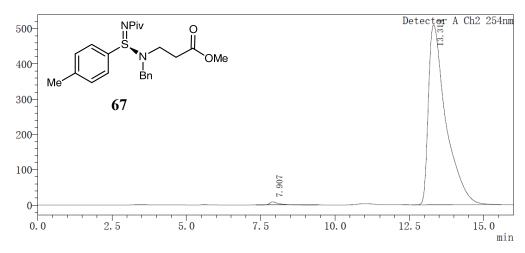


Peak Table

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	5. 948	103054	0.800
2	10. 148	12778110	99. 200

$\begin{array}{c} \textbf{HPLC of 67} \\ \textbf{mV} \end{array}$

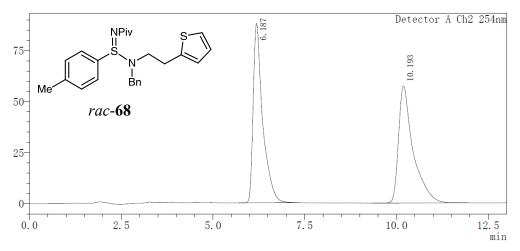


Peak Table

Detector A Ch2 254nm

Detector in the 25-min				
Peak#	Ret.	Time	Area	Area%
1	7.	899	2871888	49. 920
2	13.	837	2881090	50.080

mV

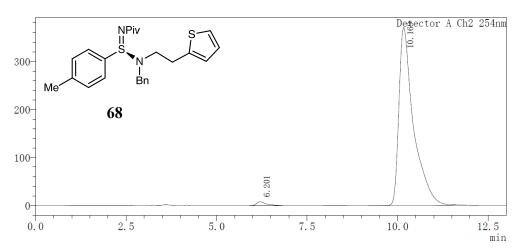


Peak Table

Detector A Ch2 254nm

Detector A CHZ Z54HH					
Peak#	Ret.	Time	Area	Area%	
1	7.	907	191007	0. 907	
2	13.	314	20860901	99, 093	

$\begin{array}{c} \textbf{HPLC of 68} \\ \textbf{mV} \end{array}$

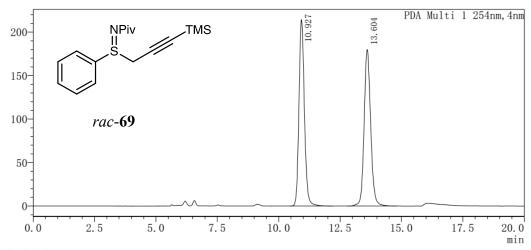


Peak Table

Detector A Ch2 254nm

Detector A Ch2 254hiii				
Peak#	Ret. Tim	e Area	Area%	
1	6. 187	1584023	49. 952	
2	10. 193	1587052	50. 048	

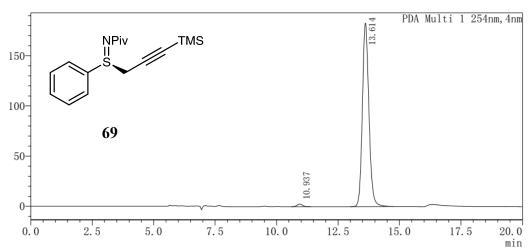
 $\, mV \,$



Peak Table

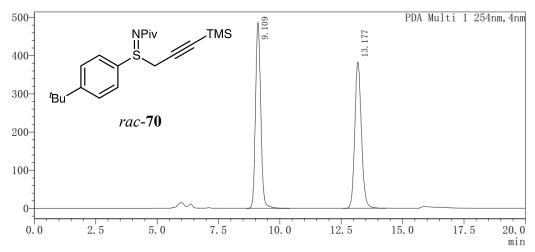
Detector A Ch2 254nm

Detector A Cn2 254nm					
Peak#	Ret.	Time	Area	Area%	
1	6.	201	139679	1. 324	
2	10.	169	10413251	98. 676	


mAU

Peak Table

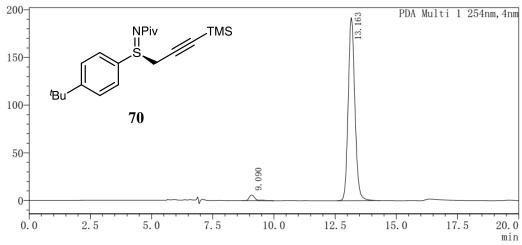
PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Area%	
	1	10.927	3310651	49. 736	
	2	13, 604	3345737	50, 264	


mAU

Peak Table

Peak#	Ret. Ti	me Area	Area%
1	10.93	7 39296	1. 148
2	13.61	4 3382944	98. 852

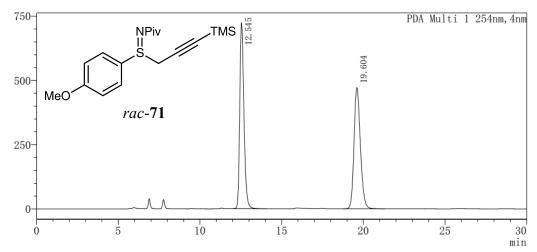
mAU



Peak Table

PDA Ch1 254nm

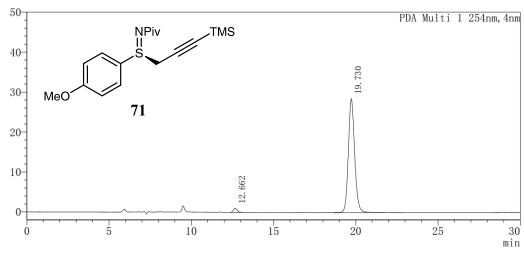
IDA CIII 234IIII				
Peak#	Ret. Time	Area	Area%	
1	9. 109	7258586	50. 136	
2	13. 177	7219223	49. 864	


mAU

Peak Table

I DII CII			
Peak#	Ret. Time	Area	Area%
1	9.090	96986	2. 589
2	13. 163	3649573	97. 411

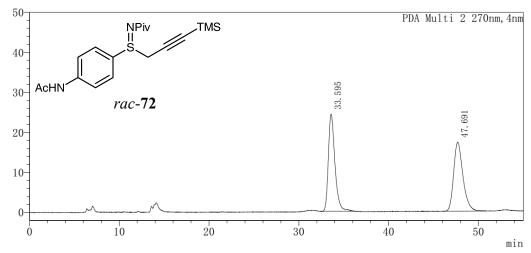
mAU



Peak Table

PDA Ch1 254nm

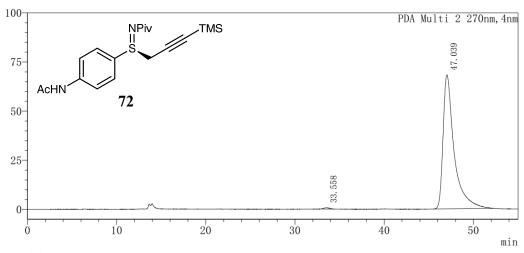
FDA CII	1 40	±11III		
Peak#	Ret.	Time	Area	Area%
1	12.	545	12830959	49.976
2	19.	604	12843448	50.024


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	12.662	17223	2. 226
2	19. 730	756453	97. 774

m A U

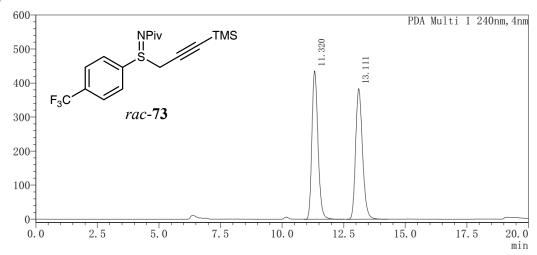


Peak Table

PDA Ch2 270nm

FDA CHZ Z10Hili					
Peak#	Ret. Ti	me	Area	Area%	
1	33. 59	5 1	237726	50. 031	
2	47.69	1 1	236201	49. 969	

m A U

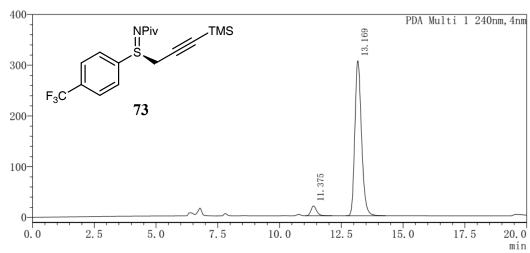


Peak Table

PDA Ch2 270nm

I DA CHZ ZIOHII					
	Peak#	Ret.	Time	Area	Area%
	1	33.	558	29716	0. 504
	2	47.	039	5871236	99. 496

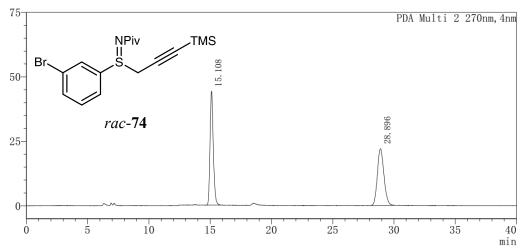
$\underset{\text{mAU}}{\textbf{HPLC of 73}}$



Peak Table

PDA Ch1 240nm

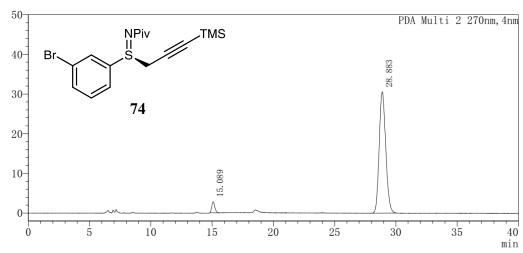
I DA CII	1 2401111		
Peak#	Ret. Time	Area	Area%
1	11. 320	7485634	49. 993
2	13. 111	7487745	50.007



Peak Table

FDA CITI 240IIII					
	Peak#	Ret.	Time	Area	Area%
	1	11.	375	305165	5. 049
	2	13.	169	5738928	94. 951

$\begin{array}{c} \textbf{HPLC of 74} \\ \text{mAU} \end{array}$

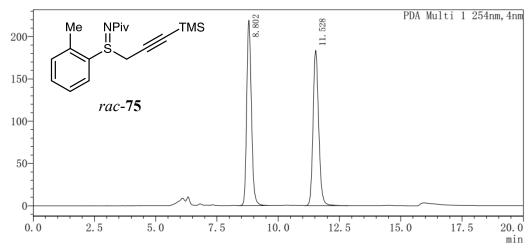


Peak Table

PDA Ch2 270nm

FDA CIIZ Z70IIII					
	Peak#	Ret. Time	Area	Area%	
	1	15. 108	818696	50. 092	
	2	28. 896	815676	49. 908	

mAU

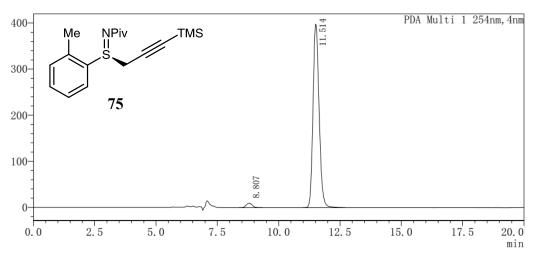


Peak Table

PDA Ch2 270nm

Peak#	Ret.	Time	Area	Area%
1	15.	089	47088	3. 981
2	28.	883	1135635	96. 019

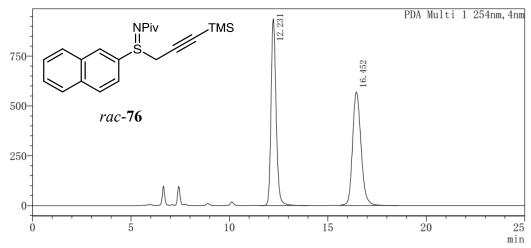
mAU



Peak Table

PDA Ch1 254nm

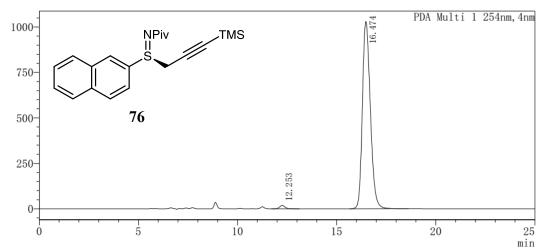
PDA CHI 254HIII				
	Peak#	Ret. Time	Area	Area%
	1	8.802	2931633	49. 883
	2	11. 528	2945340	50. 117


 $m\mathrm{AU}$

Peak Table

Peak#	Ret. Time	Area	Area%
1	8.807	169231	2. 389
2	11.514	6913585	97. 611

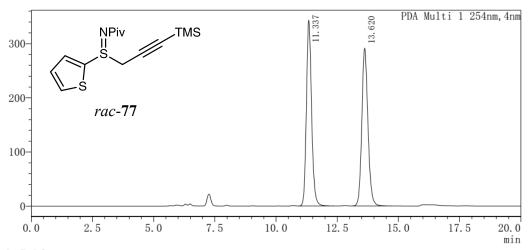
mAU



Peak Table

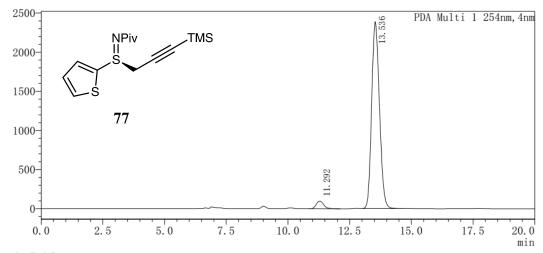
PDA Ch1 254nm

PDA Chi 254nm					
Peak#	Ret. Time	Area	Area%		
1	12. 231	16696156	49.416		
2	16. 452	17090827	50. 584		


m A U

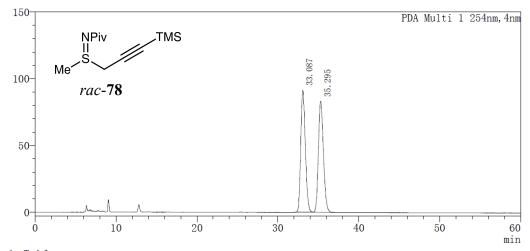
Peak Table

Peak#	Ret.	Time	Area	Area%
1	12.	253	363241	1. 244
2	16.	474	28843084	98. 756


mAU

Peak Table

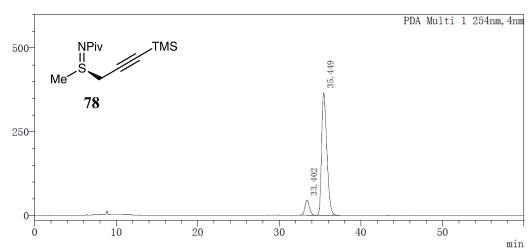
PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	11. 337	5062484	49. 930		
2	13, 620	5076582	50, 070		



Peak Table

PDA Ch1 254nm					
	Peak#	Ret.	Time	Area	Area%
	1	11.	292	2035825	3. 729
	2	13.	536	52561458	96. 271

$\begin{array}{c} \textbf{HPLC of 78} \\ \textbf{mAU} \end{array}$

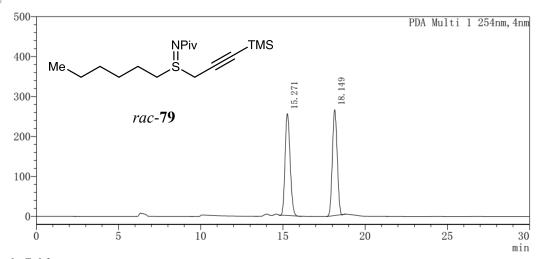


Peak Table

PDA Ch1 254nm

1 DA CHI ZO HIII					
	Peak#	Ret.	Time	Area	Area%
	1	33.	087	3609207	49. 966
	2	35.	295	3614117	50. 034

mAU

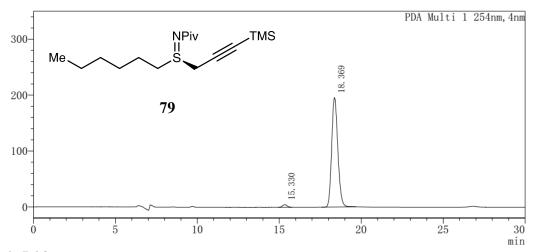


Peak Table

PDA Ch1 254nm

I DIT CITE ECTIM				
Peak#	Ret.	Time	Area	Area%
1	33.	402	1712184	9. 429
2	35.	449	16446184	90. 571

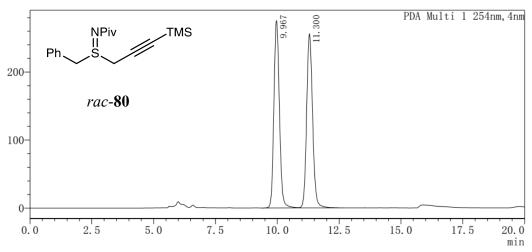
mAU



Peak Table

PDA Ch1 254nm

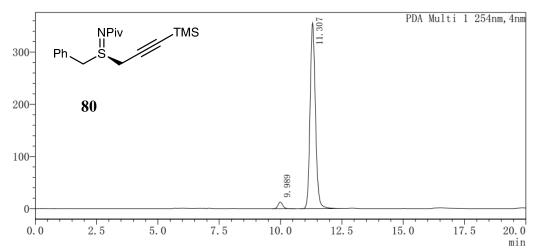
PDA CII	1 2341111		
Peak#	Ret. Time	Area	Area%
1	15. 271	5416040	50.004
2	18. 149	5415101	49. 996


mAU

Peak Table

Peak#	Ret.	Time	Area	Area%
1	15.	330	98497	1.891
2	18.	369	5110801	98. 109

mAU

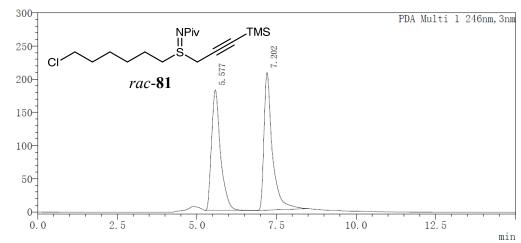


Peak Table

PDA Ch1 254nm

I DA CII	1 40411111		
Peak#	Ret. Time	Area	Area%
1	9.967	4289840	50.029
2	11.300	4284904	49.971

mAU

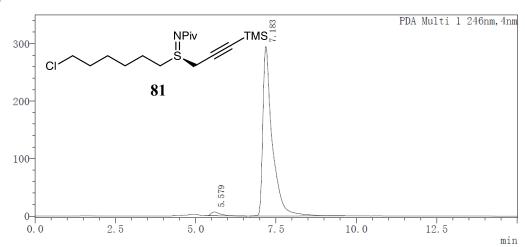


Peak Table

PDA Ch1 254nm

PDA Cn1 254nm						
Peak#	Ret. Time	Area	Area%			
1	9.989	172957	3. 094			
2	11. 307	5417489	96. 906			

mAU

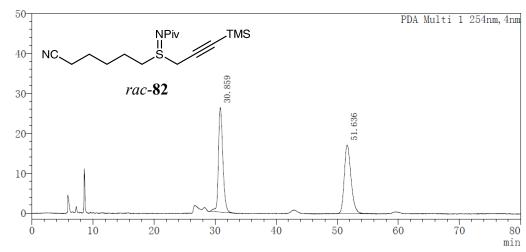


Peak Table

PDA Ch1 246nm

FDA CITI Z-FOIIII					
Peak#	Ret. Time	Area	Area%		
1	5. 577	3570063	48. 433		
2	7. 202	3801094	51. 567		

mAU

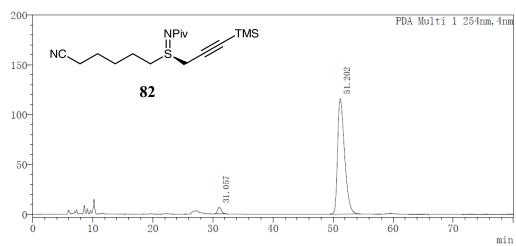


Peak Table

PDA Ch1 246nm

I DA CII	1 24	OTHIL		
Peak#	Ret.	Time	Area	Area%
1	5.	579	132830	2. 161
2	7.	183	6012802	97, 839

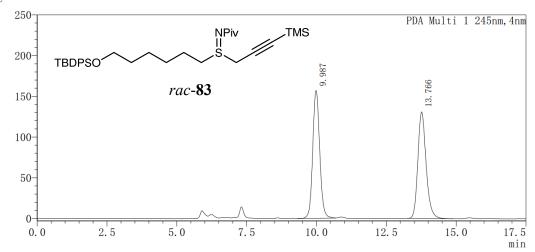
mAU



Peak Table

PDA Ch1 254nm

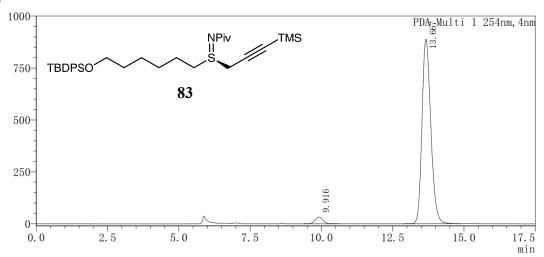
PDA Chi 254nm					
	Peak#	Ret. Time	Area	Area%	
	1	30. 859	1318595	50. 108	
	2	51, 636	1312908	49. 892	


mAU

Peak Table

Peak#	Ret.	Time	Area	Area%
1	31.	057	305188	3. 164
2	51.	202	9339746	96. 836

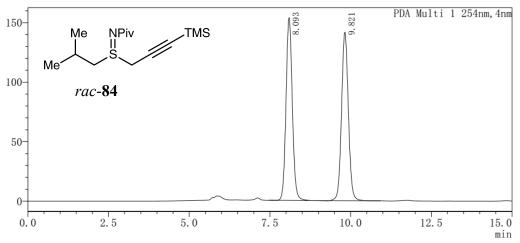
mAU



Peak Table

PDA Ch1 245nm

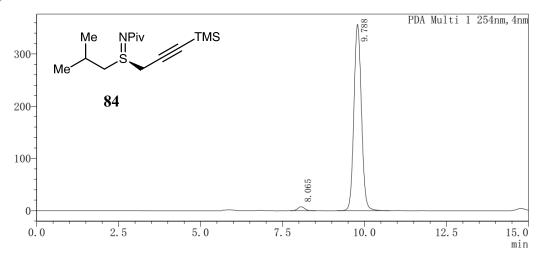
PDA Cn1 245nm					
Peak#	Ret. 1	`ime	Area	Area%	
1	9. 98	37	2717266	50. 244	
2	13. 7	66	2690842	49.756	


mAU

Peak Table

Peak#	Ret. Time	Area	Area%
1	9. 916	631581	3. 192
2	13. 667	19156708	96. 808

mAU

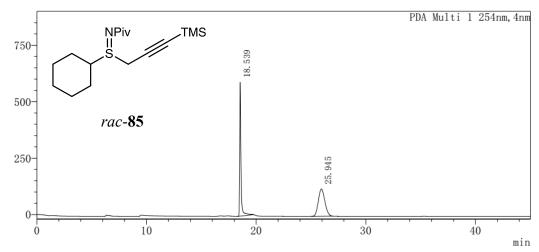


Peak Table

PDA Ch1 254nm

I DA CH	II 20TIIII		
Peak#	Ret. Time	Area	Area%
1	8.093	2088936	50.058
2	9.821	2084115	49.942

mAU

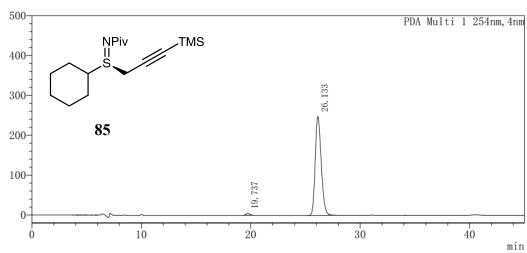


Peak Table

PDA Ch1 254nm

I DIT CITE BOTTIM					
Peak#	Ret. Time	Area	Area%		
1	8.065	110014	1.890		
2	9. 788	5710652	98. 110		

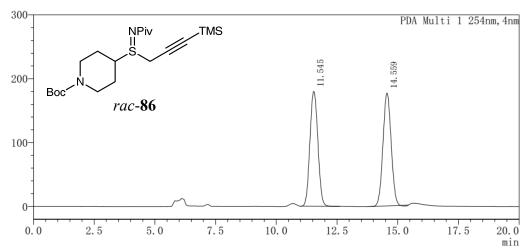
mAU



Peak Table

PDA Ch1 254nm

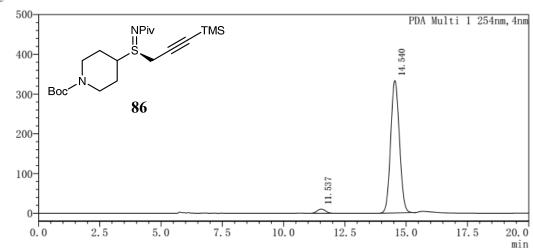
FDA CITI 254IIII					
Peak#	Ret.	Time	Area	Area%	
1	18.	539	4916783	49. 598	
2	25.	945	4996521	50. 402	



Peak Table

Peak	# Ret.	Time	Area	Area%
1	19.	737	103943	1.084
2	26.	. 133	9483346	98. 916

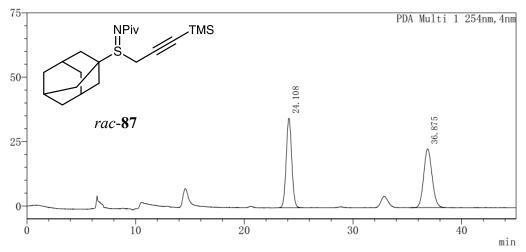
mAU



Peak Table

PDA Ch1 254nm

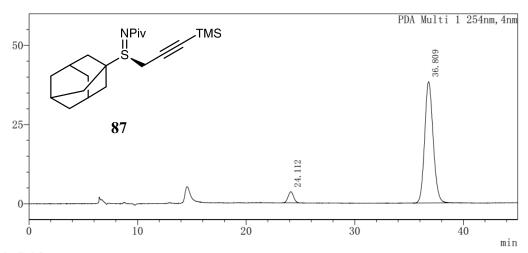
PDA Chi 254nm					
Peak#	Ret. Time	Area	Area%		
1	11.545	4105368	49. 906		
2	14. 559	4120868	50.094		



Peak Table

IDA CIII 254IIII						
Peak#	Ret.	Time	Area	Area%		
1	11.	537	246990	2.892		
2	14.	540	8292314	97. 108		

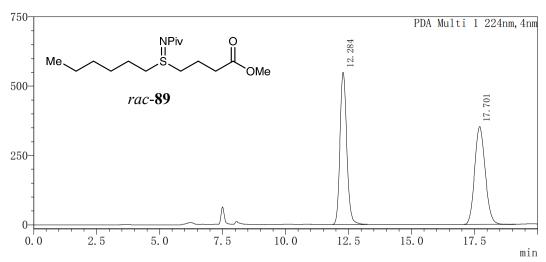
mAU



Peak Table

PDA Ch1 254nm

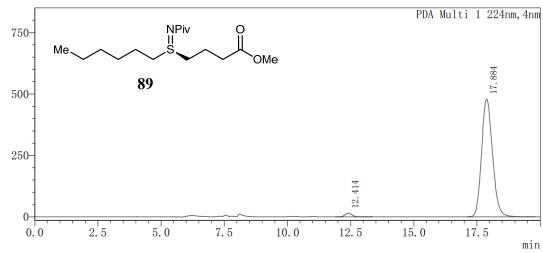
FDA CII	1 2041111		
Peak#	Ret. Time	Area	Area%
1	24. 108	1237222	50. 250
2	36. 875	1224888	49.750


mAU

Peak Table

PDA CITI 254IIII				
Peak#	Ret. Time	Area	Area%	
1	24. 112	125019	5. 659	
2	36.809	2084282	94. 341	

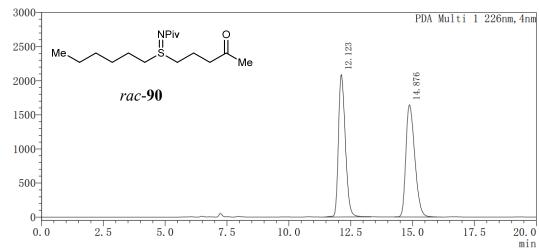
mAU



Peak Table

PDA Ch1 224nm

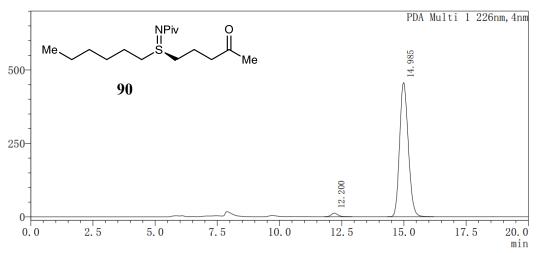
1 DIT CITE 22 TIME			
Peak#	Ret. Time	Area	Area%
1	12. 284	10265418	49. 857
2	17. 701	10324455	50. 143


mAU

Peak Table

Peak#	Ret. Time	Area	Area%	
1	12. 414	285800	1. 942	
2	17. 884	14429689	98. 058	

mAU

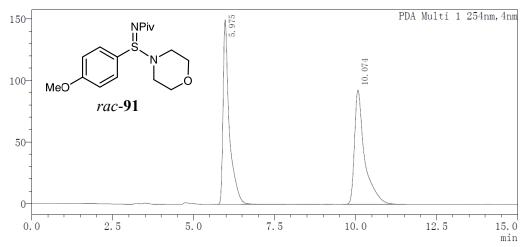


Peak Table

PDA Ch1 226nm

TDA CITI ZZOTIII				
Peak#	Ret.	Time	Area	Area%
1	12.	123	40443708	49. 535
2	14.	876	41202881	50. 465

mAU

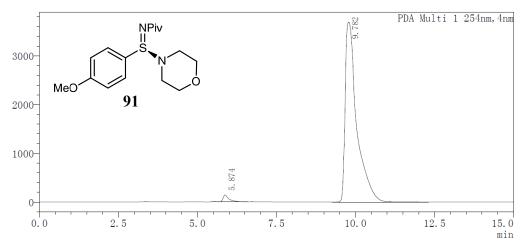


Peak Table

PDA Ch1 226nm

Peak#	Ret.	Time	Area	Area%
1	12. 2	002	225610	1. 998
2	14.9	85	11066397	98. 002

mAU

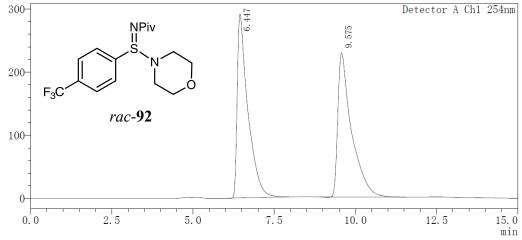


Peak Table

PDA Ch1 254nm

I DA CHI 254HIII				
Peak#	Ret. Time	Area	Area%	
1	5. 975	2000691	50.063	
2	10.074	1995687	49. 937	

mAU

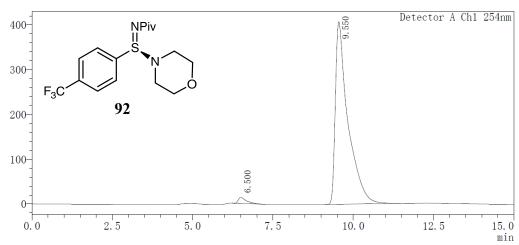


Peak Table

PDA Ch1 254nm

FDA CITI Z54IIII					
Peak#	Ret.	Time	Area	Area%	
1	5. 8	874	1928267	2.022	
2	9. ′	782	93443289	97. 978	

mV

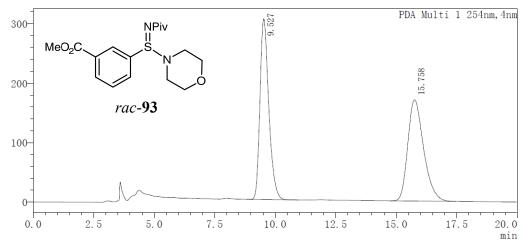


Peak Table

Detector A Ch1 254nm

	k# Ret.			Area%
1	6.	447	6651746	49.771
2	9.	575	6713072	50. 229

mV

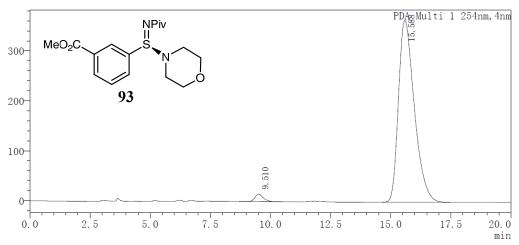


Peak Table

Detector A Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	6.	500	236271	2.074
2	9. 5	550	11154585	97. 926

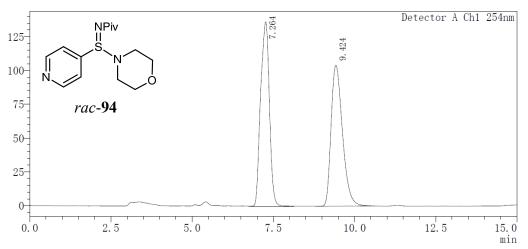
mAU



Peak Table

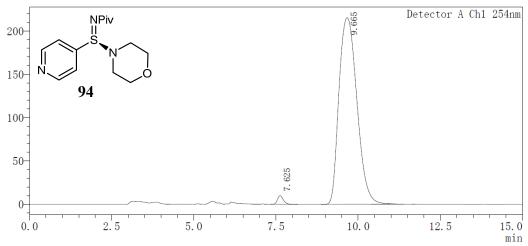
PDA Ch1 254nm

FDA CITI Z54IIII				
Peak#	Ret. Time	Area	Area%	
1	9. 527	7704427	49. 882	
2	15. 758	7740808	50. 118	


mAU

Peak Table

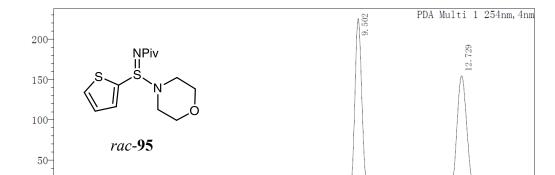
FDA CL	11 2041111		
Peak#	Ret. Time	Area	Area%
1	9. 510	359545	2. 110
2	15. 588	16681194	97. 890


$\mathbf{HPLC}_{mV}^{}\mathbf{0f}\,\mathbf{94}$

Peak Table

Detect	or A Ch1 2	54nm	
Peak#	Ret. Time	Area	Area%
1	7. 264	2563601	50. 172
2	9. 424	2545989	49.828

mV



Peak Table

Detector A Ch1 254nm

DCCCCC	OI II CIII 20 IIIII			
Peak#	Ret.	Time	Area	Area%
1	7.	625	122718	1. 478
2	9.	665	8178846	98. 522

$\underset{\text{mAU}}{\textbf{HPLC of 95}}$

7. 5

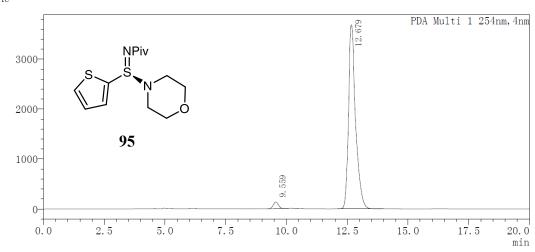
10.0

12. 5

15.0 min

Peak Table

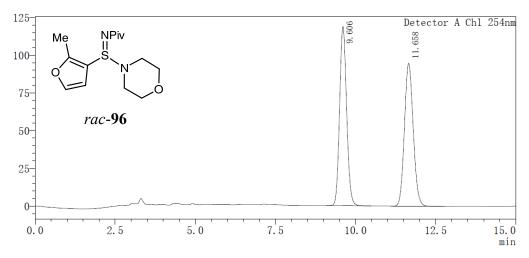
0.0


PDA Ch1 254nm

PDA CHI ZD4NM				
	Peak#	Ret. Time	Area	Area%
	1	9. 502	3535729	49.891
	2	12. 729	3551190	50. 109

2. 5

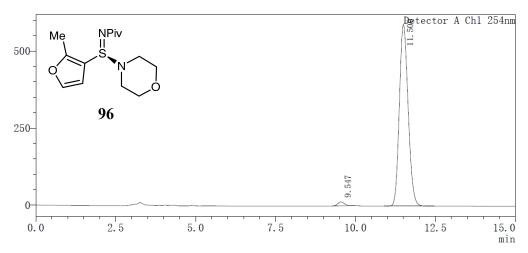
5. 0


mAU

Peak Table

IDA CIT 254IIII					
	Peak#	Ret. Time	Area	Area%	
	1	9. 559	2000690	2. 616	
	2	12.679	74465439	97. 384	

mV

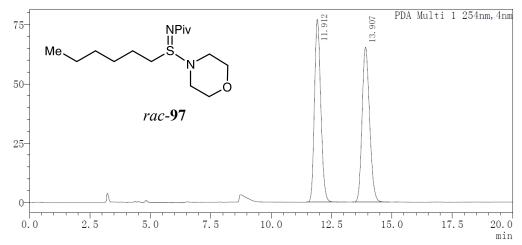


Peak Table

Detector A Ch1 254nm

Peak#	Ret. T	ime	Area	Area%
1	9. 60	6	1808073	49. 983
2	11. 6	58	1809308	50.017

 $\, mV \,$

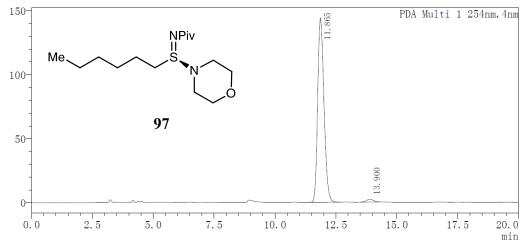


Peak Table

Detector A Ch1 254nm

DC CCC C	OI II	CITT Z	O IIIII	
Peak#	Ret.	Time	Area	Area%
1	9.	547	179395	1. 565
2	11.	500	11283436	98. 435

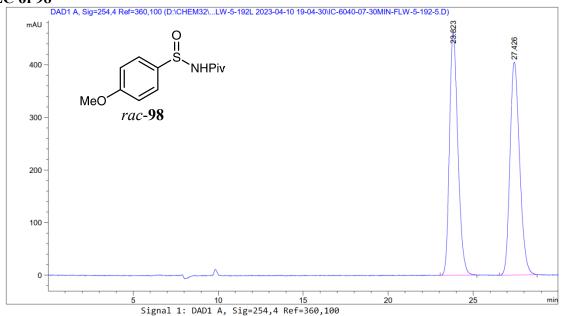
mAU

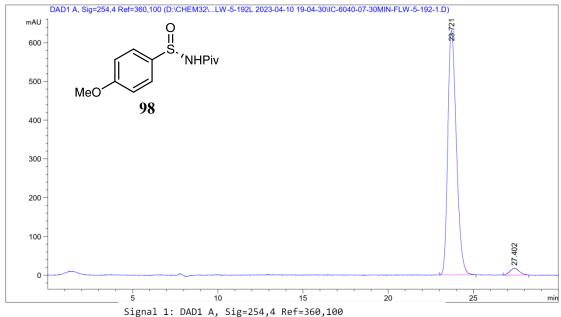


Peak Table

PDA Ch1 254nm

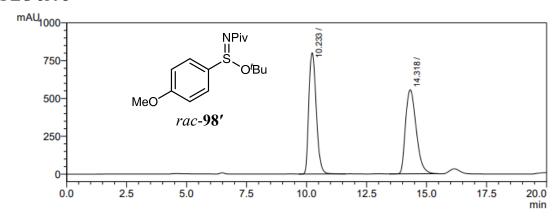
PDA CHI 254NM				
Peak#	Ret.	Time	Area	Area%
1	11.	912	1409156	49. 944
2	13.	907	1412298	50.056


mAU

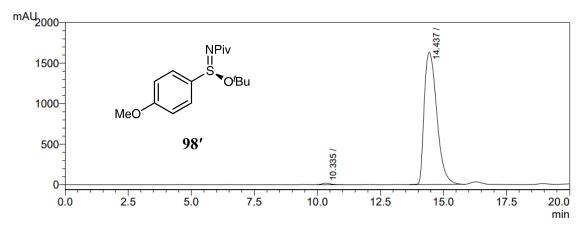

Peak Table

PDA Ch1 254nm

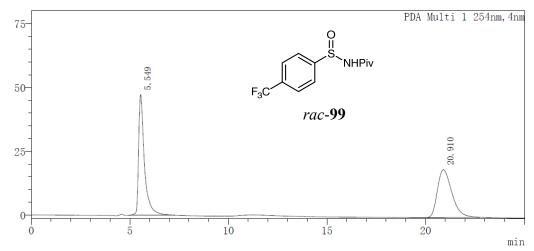
Peak#	Ret.	Time	Area	Area%
1	11.	865	2591355	98. 299
2	13.	900	44838	1. 701



Totals: 3.19384e4 866.24600

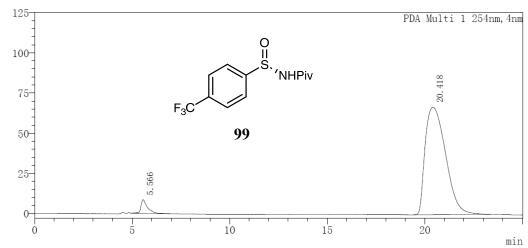


Totals: 2.27993e4 649.51643


HPLC of 98'

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.233	17236450	50.070
2	14.318	17188452	49.930

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.335	465521	0.815
2	14.437	56634777	99.185

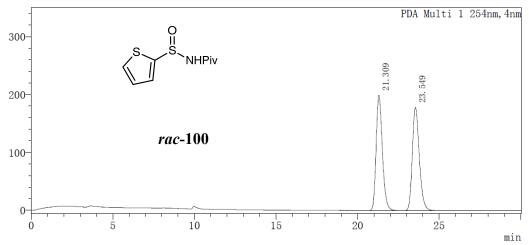


Peak Table

PDA	Ch	1 :	254	ŀnm	
Pea	k#	Re	+	Τi	m

Peak#	Ret. Time	Area	Area%
1	5. 549	977425	50. 702
2	20. 910	950373	49. 298

mAU

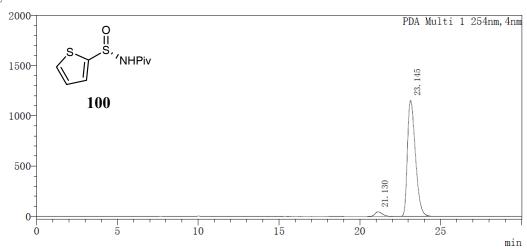


Peak Table

PDA Ch1 254

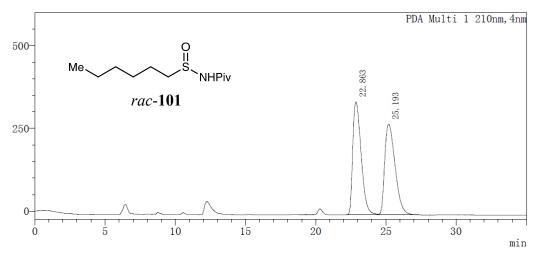
PDA Cn	11 Zb4r	ım		
Peak#	Ret. 7	Time	Area	Area%
1	5. 566 20, 418		196417	3. 867
2.			4882458	96 133

$\underset{\text{mAU}}{\textbf{HPLC of 100}}$


Peak Table

PDA Ch1 254nm

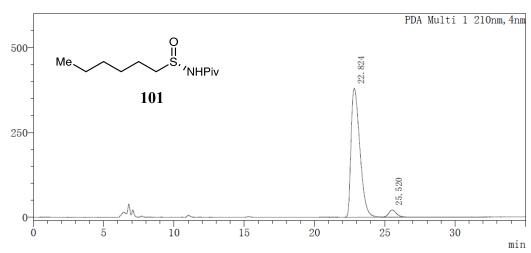
I DA CII			
Peak#	Ret. Time	Area	Area%
1	21. 309	5312692	50. 023
2	23. 549	5307835	49. 977


HPLC of 100

mAU

Peak Table

I DA CITI ZOTIIII						
Peak#	Ret. Time	Area	Area%			
1	21. 130	1435863	3. 503			
2	23. 145	39555901	96. 497			

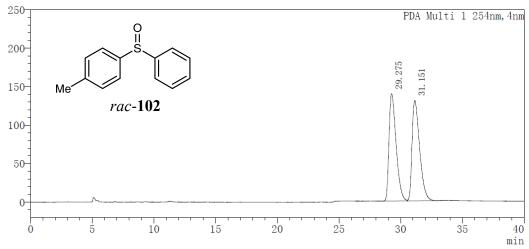


Peak Table

PDA Ch1 210nm

Peak#	Ret.	Time	Area	Area%
1	22.	863	14243350	50. 170
2	25.	193	14146748	49. 830

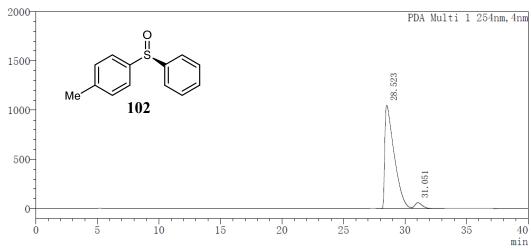
mAU



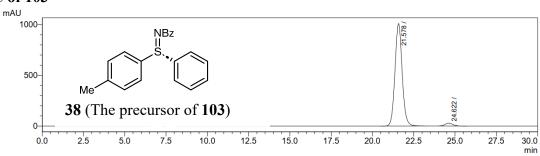
Peak Table

PDA Ch1 210nm

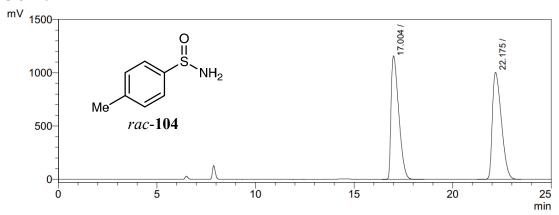
I Dit Citt 210iiii						
Peak#	Ret.	Time	Area	Area%		
1	22.	824	16603383	95. 605		
2	25.	520	763343	4. 395		

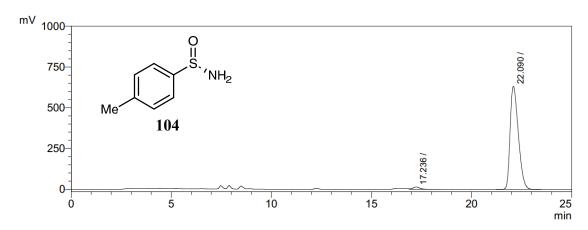

$\underset{\text{mAU}}{\text{HPLC of 102}}$

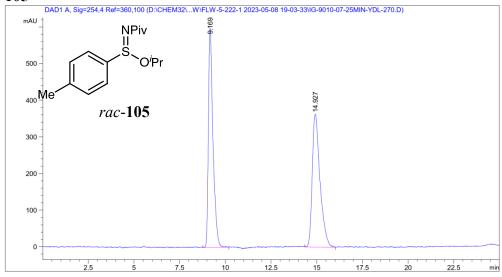
Peak Table


PDA Ch1 254nm						
Peak#	Ret. Tim	e Area	Area%			
1	29. 275	5563281	50. 035			
2	31. 151	5555585	49. 965			

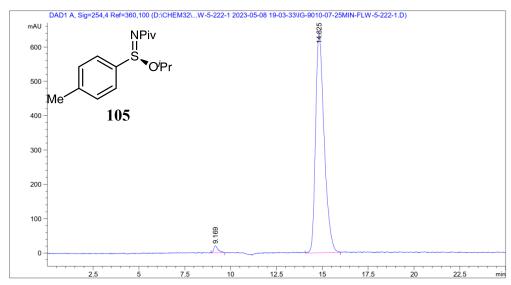
Peak Table


ווט חעו				
Peak#	Ret.	Time	Area	Area%
1	28.	523	55694287	95. 792
2	31.	051	2446446	4. 208


PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	21.578	30537294	97.079
2	24.622	918765	2.921

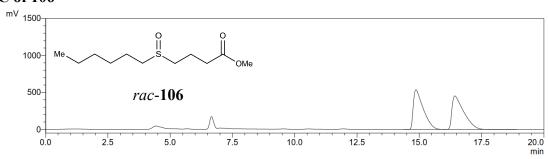

	DA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	22.106	55860618	95.517			
2	25.193	2622006	4.483			

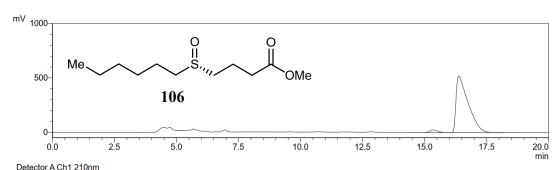
检测器A Ch1 254nm							
Peak#	Ret. Time	Area	Area%				
1	17.004	31338519	49.579				
2	22.175	31871251	50.421				


检测器A Ch1 254nm						
Peak#	Ret. Time	Area	Area%			
1	17.236	349559	1.907			
2	22.090	17976568	98.093			

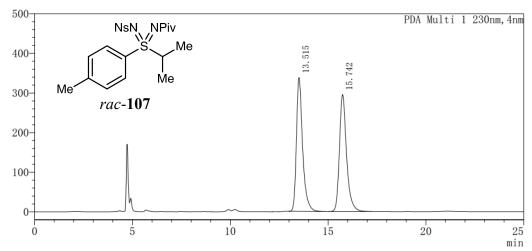
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	9.169	VV R	0.2528	1.04086e4	598.27026	49.3640	
2	14.927	VV R	0.4150	1.06768e4	362.73062	50.6360	


Totals: 2.10854e4 961.00089

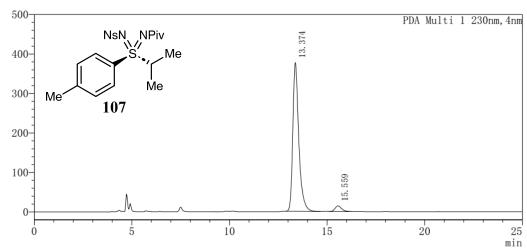

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	
				[mAU*s]			
1	9.169	VV R	0.2049	340.24985	20.91678	1.6023	
2	14.825	VV R	0.4599	2.08951e4	637.93341	98.3977	


Totals: 2.12353e4 658.85019

	Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Area%						
1	14.864	14931775	49.934						
2	16.427	14971155	50.066						

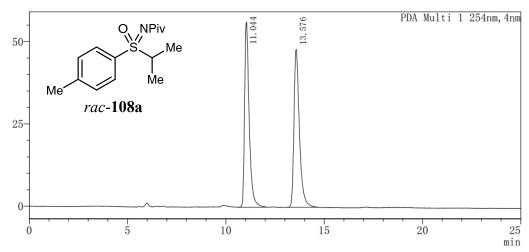
Detect	OF A CITE 2 TO	1111	
Peak#	Ret. Time	Area	Area%
1	15.355	478539	2.669
2	16.381	17452645	97.331



Peak Table

PDA Ch1 230nm

I DI CIT 2001III						
Peak#	Ret.	Time	Area	Area%		
1	13.	515	7446464	49.851		
2	15.	742	7491043	50. 149		

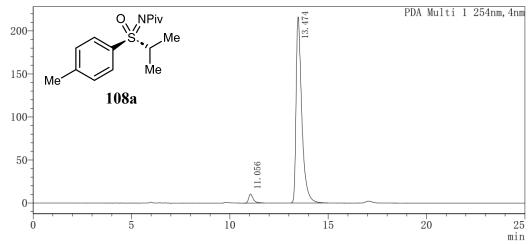

Peak Table

PDA Ch1 230nm

PDA CNI Z3UNM							
Peak#	Ret.	Time	Area	Area%			
1	13.	374	8020826	95. 886			
2	15.	559	344177	4, 114			

HPLC of 108a

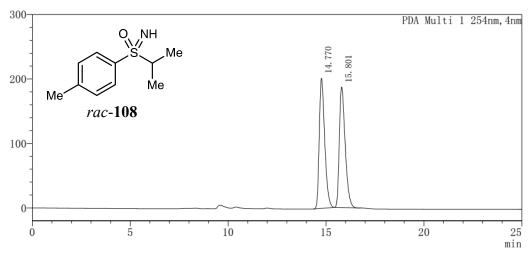
mAU



Peak Table

PDA Ch1 254nm

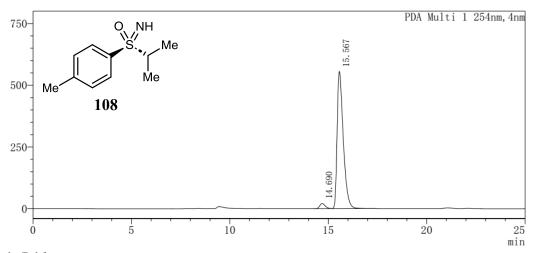
I DA CITI 254IIII						
Peak#	Ret.	Time	Area	Area%		
1	11.	044	910709	49. 555		
2	13.	576	927048	50. 445		


mAU

Peak Table

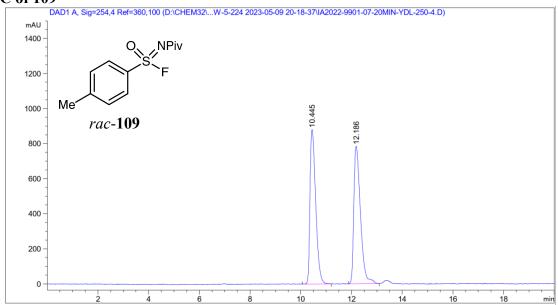
I DI CIII ZO IIIII						
Peak#	Ret. Time	Area	Area%			
1	11.056	172198	3. 783			
2	13. 474	4379463	96. 217			

mAU



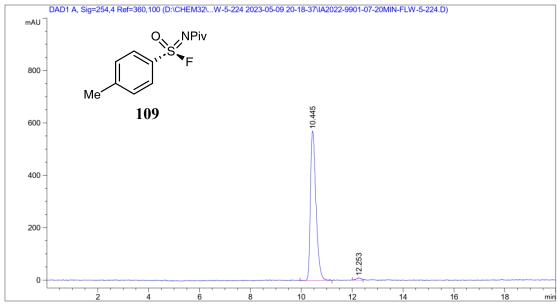
Peak Table

PDA Ch1 254nm


FDA CHI 254HIII						
Peak#	Ret.	Time	Area	Area%		
1	14.	770	3921486	50. 170		
2	15.	801	3894987	49.830		

mAU

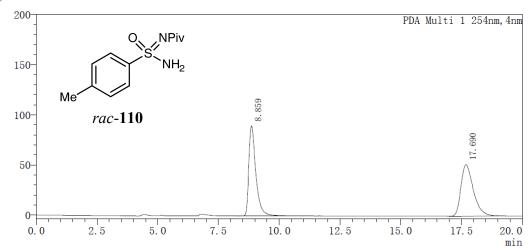
Peak Table


DA CITI 254IIII							
Peak#	Ret. Time	Area	Area%				
1	14.690	407229	3. 257				
2	15. 567	12097843	96. 743				

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.445	VV R	0.2399	1.37359e4	880.97089	49.1631
2	12.186	BB	0.2674	1.42036e4	783.71619	50.8369

Totals: 2.79395e4 1664.68707

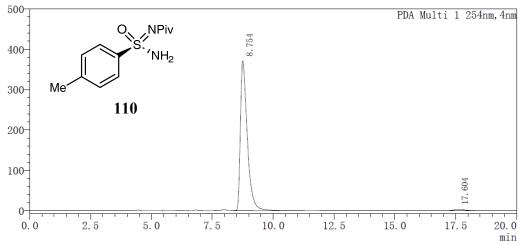


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]		
1 10.445 VV R	0.2346	8657.74805	571.04645	98.6895
2 12.253 BV	0.1645	114.96727	8.57088	1.3105

Totals: 8772.71532 579.61732

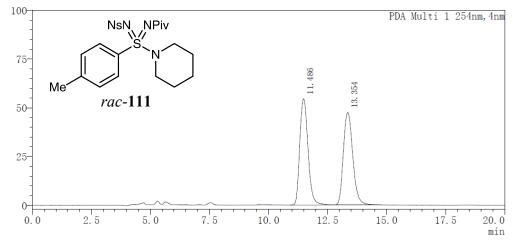
mAU



Peak Table

PDA Ch1 254nm

FDA CII	1 2041111		
Peak#	Ret. Ti	me Area	Area%
1	8. 859	181377	1 49. 752
2	17. 690	183183	4 50. 248


mAU

Peak Table

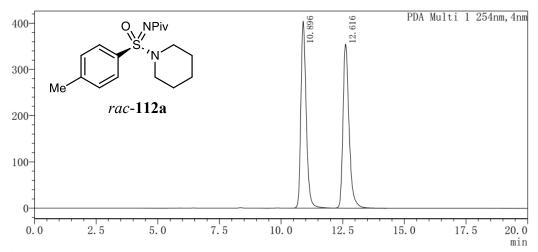
PDA Ch1 254nm

Peak#	Ret.	Time	Area	Area%
1	8.	754	7370390	98. 249
2	17.	604	131351	1. 751

Peak Table

PDA Ch1 254nm							
Peak#	Ret.	Time	Area	Area%			
1	11. 4	486	1329696	50. 073			
2	13.	354	1325816	49. 927			

mAU

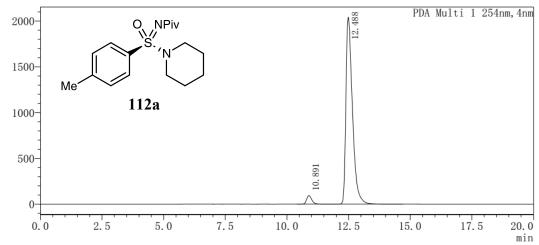


Peak Table

Peak#	Ret.	Time	Area	Area%
1	11.	485	1747659	96. 564
2	13.	367	62192	3. 436

HPLC of 112a

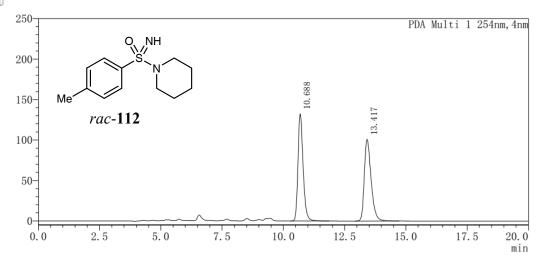
mAU



Peak Table

PDA Ch1 254nm

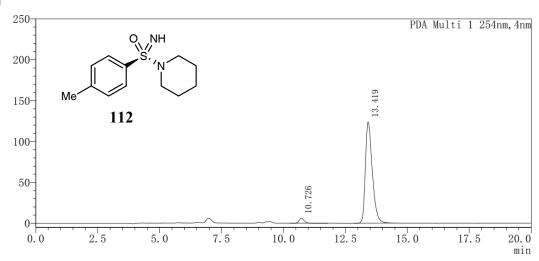
FDA CITI 254IIII					
	Peak#	Ret.	Time	Area	Area%
	1	10.	896	6096391	49.963
	2	12.	616	6105528	50.037


m A U

Peak Table

ווא כוו	1 4041	THI		
Peak#	Ret.	Time	Area	Area%
1	10.8	391	1401150	3. 583
2	12.4	188	37703542	96.417

mAU

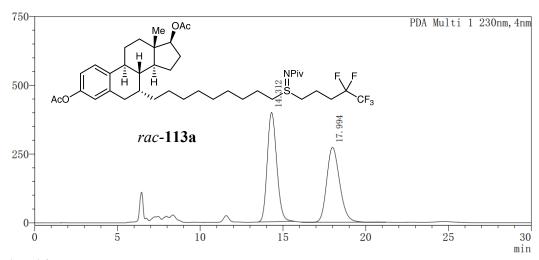


Peak Table

PDA Ch1 254nm

PDA CII	1 2041	1111		
Peak#	Ret. '	Time	Area	Area%
1	10.6	886	1934255	49. 775
2	13.4	117	1951717	50. 225

mAU

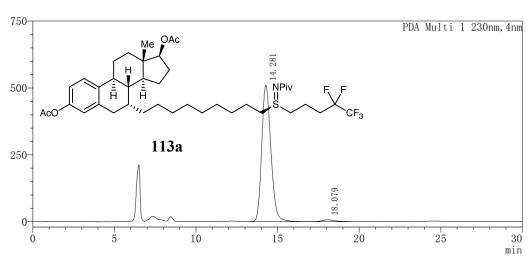


Peak Table

IDA CIII 254IIII						
Peak#	Ret.	Time	Area	Area%		
1	10.	726	88872	3. 545		
2	13.	419	2418021	96, 455		

HPLC of 113a

mAU

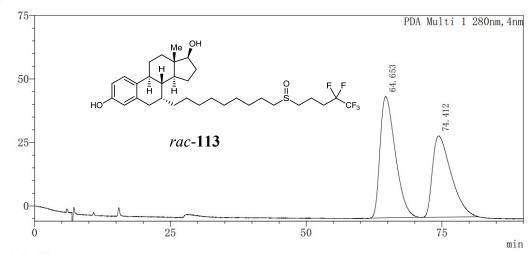

Peak Table

PDA Ch1 230nm

PDA CHI Z3UNIII					
Peak#	Ret. Time	Area	Area%		
1	14. 312	15833805	51. 562		
2	17. 994	14874718	48, 438		

HPLC of 113a

mAU

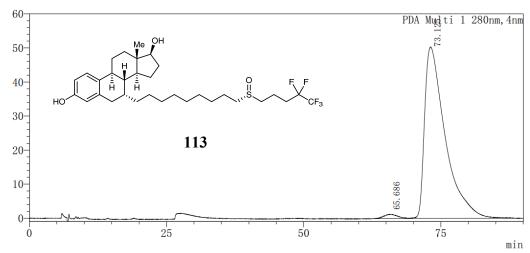


Peak Table

PDA Ch1 230nm

Peak#	Ret. Tim	e Area	Area%
1	14. 281	20077786	97. 939
2	18.079	422431	2.061

mAU

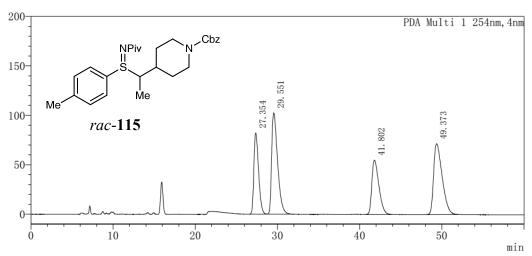


Peak Table

PDA Ch1 280nm

	Peak#	Ret. Time	Area	Area%
1 04, 000 901/010 04, 000	1	64, 653	9317310	54, 880

mAU

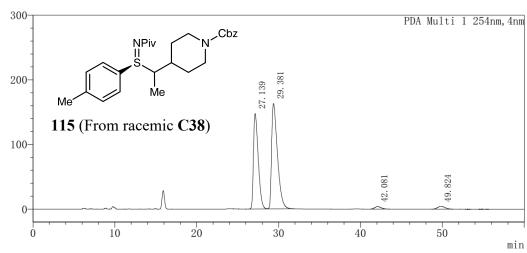


Peak Table

PDA Ch1 280nm

Peak#	Ret.	Time	Area	Area%
1	65.	686	230267	1. 720
2	73.	125	13157999	98. 280

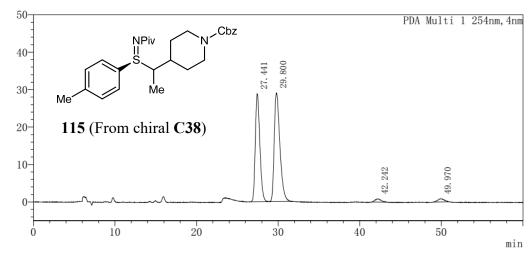
mAU



Peak Table

PDA Ch1 254nm

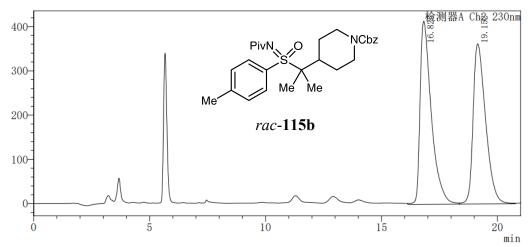
PDA CHI 254HIII			
Peak#	Ret. Time	Area	Area%
1	27. 354	3271464	19. 331
2	29. 551	5174668	30. 577
3	41.802	3289366	19. 437
4	49. 373	5187837	30. 655



Peak Table

FDA CIII 254IIII				
Peak#	Ret. Ti	me	Area	Area%
1	27. 13	9	5992931	40. 962
2	29.38	1	8147233	55. 687
3	42.08	1	214267	1. 465
4	49.82	4	275969	1. 886

mAU

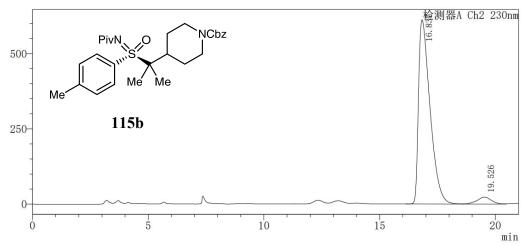


Peak Table

PDA Chi Zo4nm				
Peak#	Ret. Time	Area	Area%	
1	27. 441	1119858	42. 937	
2	29.800	1399180	53. 646	
3	42. 242	42328	1.623	
4	49.970	46797	1.794	

HPLC of 115b

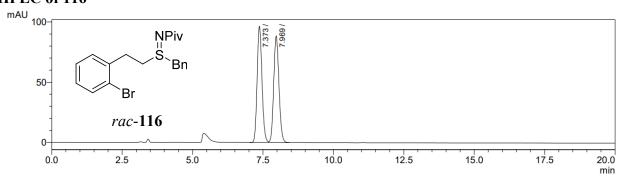
mV

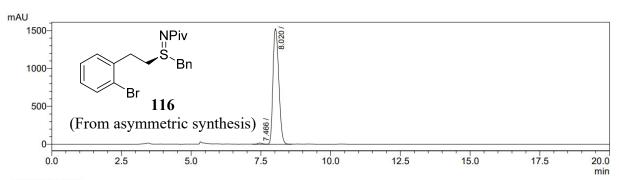


Peak Table

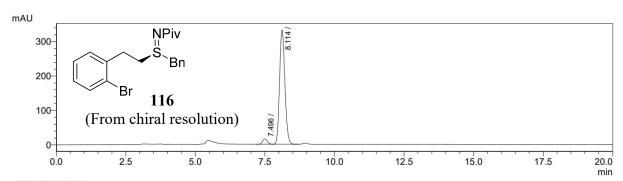
Detector A Ch2 230nm

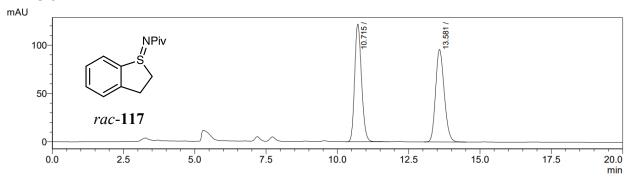
Detector it one booms					
	Peak#	Ret.	Time	Area	Area%
	1	16.	825	13969619	50. 715
	2	19.	152	13575944	49. 285

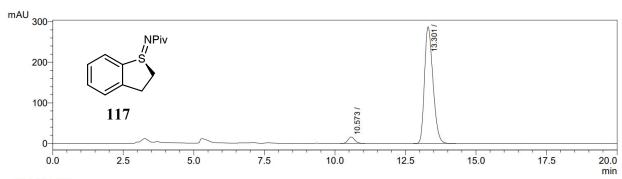

mV


Peak Table

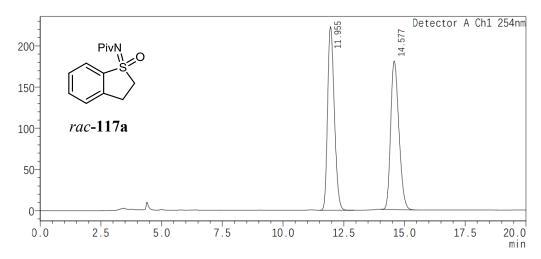
Detector A Ch2 230nm


Peak#	Ret.	Time	Area	Area%
1	16.	837	21144431	95. 534
2	19.	526	988391	4, 466


PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	7.373	1158885	50.300
2	7.969	1145045	49.700


PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	7.466	209735	0.937
	2	8.020	22166548	99.063

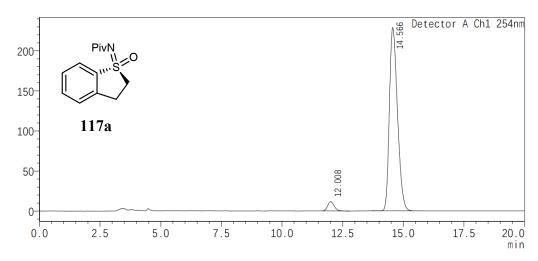
PDA	Cr	11 254nm		
Peal	Peak# Ret. Time		Area	Area%
	1	7.496	190232	4.138
	2	8 114	4407043	95 862


PDA CI	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	10.715	2044769	50.353
2	13.581	2016126	49.647

PDA Ch	11 254nm		
Peak#	Ret. Time	Area	Area%
1	10.573	262488	4.194
2	13.301	5995780	95.806

HPLC of 117a

 mV

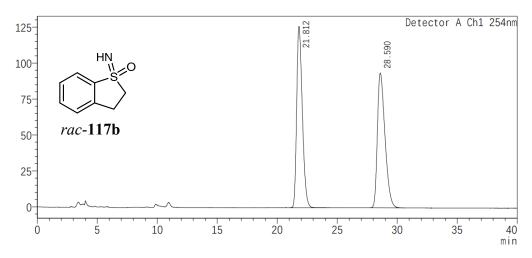


Peak Table

Detector A Ch1 254nm

Detector A Chi 254hiii				
	Peak#	Ret. Time	Area	Area%
	1	11.955	4275374	50.046
	2	14.577	4267545	49.954

 mV


Peak Table

Detector A Ch1 254nm

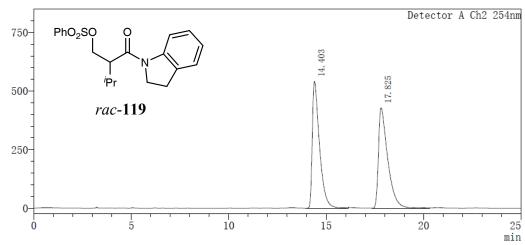
DC CCCCOT A CHI 2341111				
Peak#	Ret. Tir	ne	Area	Area%
1	12.008		216225	3.914
2	14.566		5308741	96.086

HPLC of 117b

 mV

Peak Table

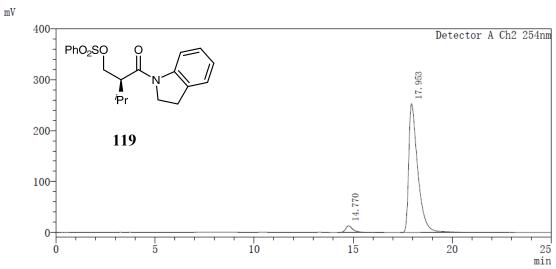
Detector A Ch1 254nm					
	Peak#	Ret. Tir	ne Area	Area%	
	1	21.812	413045	49.978	
	2	28 590	413402	7 50 022	



Peak Table

Detector A Ch1 254nm

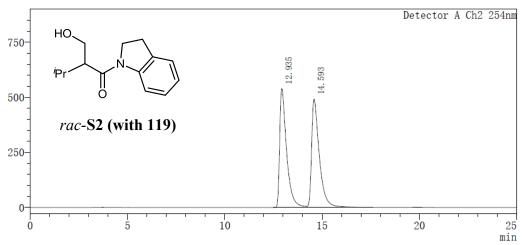
Peak#		Time		Area%
1	22.	036	335419	3.821
2	28.	533	8443100	96.179


 mV

Peak Table

Detector A Ch2 254nm

Detector A CHZ Z54HH					
Peak#	Ret. T	`ime	Area	Area%	
1	14. 40	03	14023626	49. 618	
2	17. 82	25	14239764	50. 382	

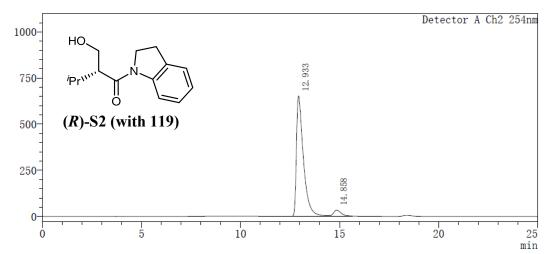

Peak Table

Detector A Ch2 254nm

Peak#	Ret.	Time	Area	Area%
1	14.	770	319806	3.863
2	17.	953	7959382	96. 137

HPLC of S2

mV

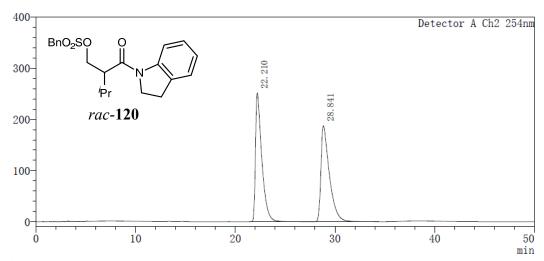


Peak Table

Detector A Ch2 254nm

Detector A CHZ Z54HH				
Peak#	Ret.	Time	Area	Area%
1	12.	935	13266477	49. 415
2	14.	593	13580349	50. 585

 $\, mV \,$

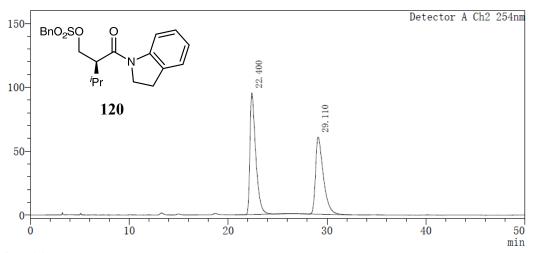


Peak Table

Detector A Ch2 254nm

DCCCCC	OI 11	0112 2	70 IIIII	
Peak#	Ret.	Time	Area	Area%
1	12.	933	15903250	94. 459
2	14.	858	932944	5. 541

mV



Peak Table

Detector A Ch2 254nm

Detector A CHZ ZOTHIII					
Peak#	Ret.	Time	Area	Area%	
1	22.	210	11099399	50.064	
2	28.	841	11071130	49. 936	

mV

Peak Table

Detector A Ch2 254nm

Peak#	Ret. Time	Area	Area%
1	22. 400	3866049	53. 903
2	29. 110	3306133	46. 097